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Abstract

The goal of our industrial ticketing system is to retrieve a relevant solution for an input query, by
matching with historical tickets stored in knowledge base. A query is comprised of subject and
description, while a historical ticket consists of subject, description and solution. To retrieve a
relevant solution, we use textual similarity paradigm to learn similarity in the query and historical
tickets. The task is challenging due to significant term mismatch in the query and ticket pairs of
asymmetric lengths, where subject is a short text but description and solution are multi-sentence
texts. We present a novel Replicated Siamese LSTM model to learn similarity in asymmetric text
pairs, that gives 22% and 7% gain (Accuracy@10) for retrieval task, respectively over unsuper-
vised and supervised baselines. We also show that the topic and distributed semantic features for
short and long texts improved both similarity learning and retrieval.

1 Introduction

Semantic Textual Similarity (STS) is the task to find out if the text pairs mean the same thing. The
important tasks in Natural Language Processing (NLP), such as Information Retrieval (IR) and text
understanding may be improved by modeling the underlying semantic similarity between texts.

With recent progress in deep learning, the STS task has gained success using LSTM (Mueller and
Thyagarajan, 2016) and CNN (Yin et al., 2016) based architectures; however, these approaches model
the underlying semantic similarity between example pairs, each with a single sentence or phrase with
term overlaps. In the domain of question retrieval (Cai et al., 2011; Zhang et al., 2014), users retrieve
historical questions which precisely match their questions (single sentence) semantically equivalent or
relevant. However, we investigate similarity learning between texts of asymmetric lengths, such as short
(phrase) Vs longer (paragraph/documents) with significant term mismatch. The application of textual
understanding in retrieval becomes more challenging when the relevant document-sized retrievals are
stylistically distinct with the input short texts. Learning a similarity metric has gained much research
interest, however due to limited availability of labeled data and complex structures in variable length
sentences, the STS task becomes a hard problem. The performance of IR system is sub-optimal due to
significant term mismatch in similar texts (Zhao, 2012), limited annotated data and complex structures
in variable length sentences. We address the challenges in a real-world industrial application.

Our ticketing system (Figure 1(a)) consists of a query and historical tickets (Table 1). A query (re-
porting issue, q) has 2 components: subject (SUB) and description (DESC), while a historical ticket (t)
stored in the knowledge base (KB) has 3 components: SUB, DESC and solution (SOL). A SUB is a short
text, but DESC and SOL consist of multiple sentences. Table 1 shows that SUB P q and SUB P t are
semantically similar and few terms in SUB P q overlap with DESC P t. However, the expected SOL P t
is distinct from both SUB and DESC P q. The goal is to retrieve an optimal action (i.e. SOL from t) for
the input q.

To improve retrieval for an input q, we adapt the Siamese LSTM (Mueller and Thyagarajan, 2016)
for similarity learning in asymmetric text pairs, using the available information in q and t. For instance,
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QUERY pqq

SUB: GT Trip - Low Frequency Pulsations
DESC: GT Tripped due to a sudden increase in Low Frequency Pulsations. The machine has been restarted and is now
operating normally. Alarm received was: GT XXX Low Frequency Pulsation.

HISTORICAL TICKET ptq

SUB: Narrow Frequency Pulsations
DESC: Low and Narrow frequency pulsations were detected. The peak value for the Low Frequency Pulsations is ## mbar.
SOL: XXXX combustion support is currently working on the issue. The action is that the machine should not run until resolved.

Table 1: Example of a Query and Historical Ticket
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Figure 1: (a): Intelligent Ticketing System (ITS) (b): High-level illustration of Siamese LSTM for
cross-level pairwise similarity. (c): Replicated Siamese with multi-channel (SumEMB, LSTM and topic
vectors) and multi-level (SUB, DESC and/or SOL) inputs in the objective function, g. y: similarity score.
The dotted lines indicate ITS output. (d): Symbols used.

we compute multi-level similarity between (SUB P q, SUB P t) and (DESC P q, DESC P t). However,
observe in Table 1 that the cross-level similarities such as between (SUB P q, DESC P t), (DESC P q,
SUB P t) or (SUB P q, SOL P t), etc. can supplement IR performance. See Figure 1(b).

The contributions of this paper are as follows: (1) Propose a novel architecture (Replicated Siamese
LSTM) for similarity learning in asymmetric texts via multi-and-cross-level semantics (2) Investigate
distributed and neural topic semantics for similarity learning via multiple channels (3) Demonstrate a gain
of 22% and 7% in Accuracy@10 for retrieval, respectively over unsupervised and supervised baselines
in the industrial application of a ticketing system.

2 Methodology

Siamese networks (Chopra et al., 2005) are dual-branch networks with tied weights and an objective
function. The aim of training is to learn text pair representations to form a highly structured space
where they reflect complex semantic relationships. Figure 1 shows the proposed Replicated Siamese
neural network architecture such that (LSTMSUB1+LSTMDESC1) = (LSTMSUB2+LSTMDESC2+LSTMSOL2), to learn
similarities in asymmetric texts, where a query (SUB1+DESC1) is stylistically distinct from a historical
ticket (SUB2+DESC2+SOL2).

Note, the query components are suffixed by “1” and historical ticket components by “2” in context of
the following work for pairwise comparisons.
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Figure 2: Multi-Channel Manhattan Metric

2.1 Replicated, Multi-and-Cross-Level, Multi-Channel Siamese LSTM

Manhattan LSTM (Mueller and Thyagarajan, 2016) learns similarity in text pairs, each with a single
sentence; however, we advance the similarity learning task in asymmetric texts pairs consisting of one
or more sentences, where similarity is computed between different-sized subject and description or so-
lution texts. As the backbone of our work, we compute similarity scores to learn a highly structured
space via LSTM (Hochreiter and Schmidhuber, 1997) for representation of each pair of the query (SUB1
and DESC1) or historical ticket (SUB2, DESC2 and SOL2) components, which includes multi-level
(SUB1-SUB2, DESC1-DESC2) and cross-level (SUB1-DESC2, SUB1-SOL2, etc.) asymmetric textual similari-
ties, Figure 1(b) and (c). To accumulate the semantics of variable-length sentences (x1, ..., xT ), recurrent
neural networks (RNNs) (Vu et al., 2016a; Gupta et al., 2016; Gupta and Andrassy, 2018), especially the
LSTMs (Hochreiter and Schmidhuber, 1997) have been successful.

LSTMs are superior in learning long range dependencies through their memory cells. Like the stan-
dard RNN (Mikolov et al., 2010; Gupta et al., 2015a; Vu et al., 2016b), LSTM sequentially updates a
hidden-state representation, but it introduces a memory state ct and three gates that control the flow of
information through the time steps. An output gate ot determines how much of ct should be exposed to
the next node. An input gate it controls how much the input xt be stored in memory, while the forget
gate ft determines what should be forgotten from memory. The dynamics:

it � σpWixt � Uiht�1q

ft � σpWfxt � Ufht�1q

ot � σpWoxt � Uoht�1q

c̃t � tanhpWcxt � Ucht�1q

ct � it d c̃t � ft d ct�1

ht � ot d tanhpctq

(2)

where σpxq � 1
1�e�x and tanhpxq � ex�e�x

ex�e�x . The proposed architecture, Figure 1(c) is composed of
multiple uni-directional LSTMs each for subject, description and solution within the Siamese framework,
where the weights at over levels are shared between the left and right branch of the network. Therefore,
the name replicated.

Each LSTM learns a mapping from space of variable length sequences, including asymmetric texts,
to a hidden-state vector, h. Each sentence (w1, ...wT ) is passed to LSTM, which updates hidden state
via eq 2. A final encoded representation (e.g. hSUB1, hSUB2 in Figure 1(c)) is obtained for each query or
ticket component. A single LSTM is run over DESC and SOL components, consisting of one or more
sentences. Therefore, the name multi-level Siamese.

The representations across the text components (SUB DESC or SOL) are learned in order to maxi-
mize the similarity and retrieval for a query with the historical tickets. Therefore, the name cross-level
Siamese.

The sum-average strategy over word embedding (Mikolov et al., 2010) for short and longer texts has
demonstrated a strong baseline for text classification (Joulin et al., 2016) and pairwise similarity learning
(Wieting et al., 2016). This simple baseline to represent sentences as bag of words (BoW) inspires us to
use the BoW for each query or historical ticket component, for instance ESUB1. We refer the approach
as SumEMB in the context of this paper.
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We supplement the similarity metric (g) with SumEMB (E), latent topic (T ) (section 2.2) and hidden
vectors (h) of LSTM for each text component from both the Siamese branches. Therefore, the name
multi-channel Siamese.
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Figure 3: DocNADE: Neural Auto-
regressive Topic Model

Parameter Search Optimal
E [350] 350
T [20, 50, 100] 100
h [50, 100] 50
Wh [0.6, 0.7, 0.8] 0.7
WE [0.3, 0.2, 0.1] 0.1
WT [0.3, 0.2, 0.1] 0.2

VSUB1�SUB2 [0.3, 0.4 0.3
VDESC1�DESC2 [0.3, 0.4] 0.3
VSUB1�DESC2 [0.10, 0.15, 0.20] 0.20
VSUB1�SOL2 [0.10, 0.15, 0.20] 0.10
VDESC1�SOL2 [0.10, 0.15, 0.20] 0.10

Table 2: Hyperparameters in the Replicated Siamese
LSTM (experiment #No:22)

2.2 Neural Auto-Regressive Topic Model

Topic models such as Latent Dirichlet allocation (LDA) (Blei et al., 2003) and Replicated Softmax (RSM)
(Hinton and Salakhutdinov, 2009; Gupta et al., 2018c) have been popular in learning meaningful repre-
sentations of unlabeled text documents. Recently, a new type of topic model called the Document Neural
Autoregressive Distribution Estimator (DocNADE) (Larochelle and Lauly, 2012; Zheng et al., 2016;
Gupta et al., 2018a) was proposed and demonstrated the state-of- the-art performance for text document
modeling. DocNADE models are advanced variants of Restricted Boltzmann Machine (Hinton, 2002;
Salakhutdinov et al., 2007; Gupta et al., 2015b; Gupta et al., 2015c), and have shown to outperform LDA
and RSM in terms of both log-likelihood of the data and document retrieval. In addition, the training
complexity of a DocNADE model scales logarithmically with vocabulary size, instead linear as in RSM.
The features are important for an industrial task along with quality performance. Therefore, we adopt
DocNADE model for learning latent representations of tickets and retrieval in unsupervised fashion. See
Larochelle and Lauly (2012) and Gupta et al. (2018a) for further details, and Figure 3 for the DocNADE
architecture, where we extract the last hidden topic layer (h4) to compute document representation.

2.3 Multi-Channel Manhattan Metric

Chopra et al. (2005) indicated that using l2 instead of l1 norm in similarity metric can lead to undesirable
plateaus. Mueller and Thyagarajan (2016) showed stable and improved results using Manhattan distance
over cosine similarity.

Mueller and Thyagarajan (2016) used a Manhattan metric (l1-norm) for similarity learning in single
sentence pairs. However, we adapt the similarity metric for 2-tuple (SUB1, DESC1) vs 3-tuple (SUB2,
DESC2 and SOL2) pairs, where the error signals are back-propagated in the multiple levels and channels
during training to force the Siamese network to entirely capture the semantic differences across the query
and historical tickets components. The similarity metric, g P [0,1] is given in eq 1, where || � || is l1 norm.
Wh, WE and WT are the three channels weights for h, E and and T , respectively. The weights (V ) are
the multi-level weights between the ticket component pairs. Observe that a single weight is being used
in the ordered ticket component pairs, for instance VSUB1�DESC2 is same as VDESC2�SUB1.

3 Evaluation and Analysis

We evaluate the proposed method on our industrial data for textual similarity learning and retrieval tasks
in the ticketing system. Table 4 shows the different model configurations used in the following exper-



5

Held-out Perplexity (100 topics)
Ticket M1: SUB+DESC M2: SUB+DESC+SOL

Component LDA DocNADE LDA DocNADE

DESC 380 362 565 351
SUB+DESC 480 308 515 289

SUB+DESC+SOL 553 404 541 322

(a)

Query Perplexity (100 topics)
Component DocNADE:M1 DocNADE:M2

|Q|L |Q|U |Q|L |Q|U

DESC1 192 177 132 118

SUB1+DESC1 164 140 130 118

(b)

Table 3: (a) Perplexity by DocNADE and LDA trained with M1: SUB+DESC or M2:
SUB+DESC+SOL on all tickets and evaluated on 50 held-out tickets with their respective components or
their combination. Observe that when DocNADE is trained with SUB+DESC+SOL, it performs better
when training with SUB+DESC+SOL and outperforms LDA. (b) Perplexity by DocNADE: M1 trained
on SUB+ DESC and M2 on SUB+DESC+SOL of the historical tickets.

Model Model Configuration
T (X1–X2) Compute Similarity using topic vector (T) pairs of a query (X1) and historical ticket (X2) components
E (X1–X2) Compute Similarity using embedding vector (E) pairs of a query (X1) and historical ticket (X2) components
X � Y � Z Merge text components (SUB, DESC or SOL), representing a single document
T (X1� Y 1–X2� Y 2� Z2) Compute Similarity using topic vector (T) pairs of a query (X1� Y 1) and historical ticket (X2� Y 2� Z2) components
S-LSTM (X1–X2) Compute Similarity using Standard Siamese LSTM on a query (X1) and historical ticket (X2) components
ML (X1–X2, Y 1–Y 2) Multi-level Replicated Siamese LSTM. Compute similarity in (X1–X2) and (Y 1–Y 2) components of a query and historical ticket
CL (X, Y, Z) Cross-level Replicated Siamese LSTM. Compute similarity in (X1–Y 2), (X1–Z2), (Y 1–X2) and (Y 1–Z2) pairs

Table 4: Different model configurations for the experimental setups and evaluations. See Figure 1(c) for
LSTM configurations.

imental setups. We use Pearson correlation, Spearman correlation and Mean Squared Error1 (MSE)
metrics for STS and 9 different metrics (Table 5) for IR task.

3.1 Industrial Dataset for Ticketing System

Our industrial dataset consist of queries and historical tickets. As shown in Table 1, a query consists
of subject and description texts, while a historical ticket in knowledge base (KB) consists of subject,
description and solution texts. The goal of the ITS is to automatically recommend an optimal action i.e.
solution for an input query, retrieved from the existing KB.

There are T � 949 historical tickets in the KB, out of which 421 pairs are labeled with their relat-
edness score. We randomly split the labeled pairs by 80-20% for train (Ptr) and development (Pdev).
The relatedness labels are: YES (similar that provides correct solution), REL (does not provide correct
solution, but close to a solution) and NO (not related, not relevant and provides no correct solution). We
convert the labels into numerical scores [1,5], where YES:5.0, REL:3.0 and NO:1.0. The average length
(#words) of SUB, DESC and SOL are 4.6, 65.0 and 74.2, respectively.

The end-user (customer) additionally supplies 28 unique queries (QU ) (exclusive to the historical
tickets) to test system capabilities to retrieve the optimal solution(s) by computing 28 � 949 pairwise
ticket similarities. We use these queries for the end-user qualitative evaluation for the 28� 10 proposals
(top 10 retrievals for each query).

3.2 Experimental Setup: Unsupervised

We establish baseline for similarity and retrieval by the following two unsupervised approaches:
(1) Topic Semantics T: As discussed in section 2.2, we use DocNADE topic model to learn document

representation. To train, we take 50 held-out samples from the historical tickets T. We compute per-
plexity on 100 topics for each ticket component from the held-out set, comparing LDA and DocNADE
models trained individually with SUB+DESC (M1) and SUB+DESC+SOL texts2 (M2). Table 3a shows
that DocNADE outperforms LDA.

1http://alt.qcri.org/semeval2016/task1/
2+: merge texts to treat them as a single document
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#No Model (Query-Historical Ticket) Similarity Task Retrieval Task
r ρ MSE MAP@1 MAP@5 MAP@10 MRR@1 MRR@5 MRR@10 Acc@1 Acc@5 Acc@10

1 T (SUB1–SUB2) (unsupervised baseline) 0.388 0.330 5.122 0.08 0.08 0.07 1.00 0.28 0.10 0.04 0.19 0.30
2 T (SUB1–DESC2) 0.347 0.312 3.882 0.09 0.07 0.07 0.00 0.05 0.08 0.04 0.13 0.21
3 T (DESC1–SUB2) 0.321 0.287 3.763 0.08 0.09 0.09 0.00 0.05 0.11 0.03 0.20 0.31
4 T (DESC1–DESC2) 0.402 0.350 3.596 0.08 0.08 0.08 0.00 0.04 0.10 0.03 0.19 0.33
5 T (SUB1–SUB2+DESC2) 0.413 0.372 3.555 0.09 0.09 0.08 0.00 0.05 0.11 0.04 0.20 0.32
6 T (SUB1+DESC1–SUB2) 0.330 0.267 3.630 0.09 0.10 0.09 0.00 0.26 0.12 0.04 0.23 0.35
7 T (SUB1+DESC1–DESC2) 0.400 0.350 3.560 0.07 0.08 0.08 0.00 0.00 0.10 0.03 0.19 0.35
8 T (SUB1+DESC1–SUB2+DESC2) 0.417 0.378 3.530 0.05 0.07 0.08 0.00 0.07 0.11 0.03 0.22 0.37
9 T (SUB1+DESC1–SUB2+DESC2+SOL2) 0.411 0.387 3.502 0.09 0.09 0.08 0.00 0.06 0.12 0.04 0.20 0.40

11 E (SUB1–SUB2) (unsupervised baseline) 0.141 0.108 3.636 0.39 0.38 0.36 0.00 0.03 0.08 0.02 0.13 0.24
12 E (DESC1–DESC2) 0.034 0.059 4.201 0.40 0.40 0.39 0.00 0.10 0.07 0.03 0.12 0.18
13 E (SUB1+DESC1–SUB2+DESC2) 0.103 0.051 5.210 0.16 0.16 0.15 0.00 0.03 0.11 0.07 0.16 0.20
14 E (SUB1+DESC1–SUB2+DESC2+SOL2) 0.063 0.041 5.607 0.20 0.17 0.16 0.00 0.03 0.13 0.05 0.13 0.22

15 S-LSTM(SUB1–SUB2) (supervised baseline) 0.530 0.501 3.778 0.272 0.234 0.212 0.000 0.128 0.080 0.022 0.111 0.311
16 S-LSTM (DESC1–DESC2) 0.641 0.586 3.220 0.277 0.244 0.222 0.100 0.287 0.209 0.111 0.3111 0.489
17 S-LSTM (SUB1+DESC1–SUB2+DESC2) 0.662 0.621 2.992 0.288 0.251 0.232 0.137 0.129 0.208 0.111 0.342 0.511
18 S-LSTM (SUB1+DESC1–SUB2+DESC2+SOL2) 0.693 0.631 2.908 0.298 0.236 0.241 0.143 0.189 0.228 0.133 0.353 0.548
19 ML-LSTM (SUB1–SUB2, DESC1–DESC2) 0.688 0.644 2.870 0.290 0.255 0.234 0.250 0.121 0.167 0.067 0.289 0.533
20 + CL-LSTM (SUB, DESC, SOL) 0.744 0.680 2.470 0.293 0.259 0.238 0.143 0.179 0.286 0.178 0.378 0.564
21 + weighted channels (h*0.8, E*0.2) 0.758 0.701 2.354 0.392 0.376 0.346 0.253 0.176 0.248 0.111 0.439 0.579
22 + weighted channels (h*0.7, E*0.1, T*0.2) 0.792 0.762 2.052 0.382 0.356 0.344 0.242 0.202 0.288 0.133 0.493 0.618

Table 5: Results on Development set: Pearson correlation (r), Spearmans rank correlation coefficient
(ρ), Mean Squared Error (MSE), Mean Average Precision@k (MAP@k), Mean Reciprocal Rank@k
(MRR@k) and Accuracy@k (Acc@k) for the multi-level (ML) and cross-level (CL) similarity learn-
ing, and retrieving the k-most similar tickets for each query (SUB1+DESC1). #[1-14]: Unsupervised
baselines with DocNADE (T) and SumEMB (E). #[15-18]: Supervised Standard Siamese baselines.
#[19-22]: Supervised Replicated Siamese with multi-channel and cross-level features.

Model Similarity Task Retrieval Task
r ρ MSE MAP@1 MAP@5 MAP@10 MRR@1 MRR@5 MRR@10 Acc@1 Acc@5 Acc@10

T (SUB1-SUB2) 0.414 0.363 5.062 0.04 0.03 0.03 0.29 0.24 0.10 0.01 0.17 0.28
T (SUB1-DESC2) 0.399 0.362 3.791 0.04 0.03 0.03 0.00 0.05 0.07 0.03 0.12 0.19
T (DESC1-SUB2) 0.371 0.341 3.964 0.05 0.06 0.05 0.25 0.07 0.11 0.04 0.21 0.33
T (DESC1-DESC2) 0.446 0.398 3.514 0.05 0.05 0.04 0.00 0.04 0.10 0.04 0.18 0.34
T (SUB1-SUB2+DESC2) 0.410 0.370 3.633 0.05 0.04 0.04 0.00 0.12 0.08 0.04 0.13 0.20
T (SUB1+DESC2-SUB2) 0.388 0.326 3.561 0.06 0.06 0.05 0.25 0.29 0.13 0.05 0.22 0.38
T (SUB1+DESC1-DESC2) 0.443 0.396 3.477 0.04 0.04 0.04 0.00 0.00 0.10 0.03 0.17 0.37
T (SUB1+DESC1, SUB2+DESC2) 0.466 0.417 3.460 0.05 0.05 0.04 0.00 0.06 0.11 0.03 0.24 0.37
T (SUB1+DESC1, SUB2+DESC2+SOL2) 0.418 0.358 3.411 0.07 0.06 0.06 0.00 0.09 0.14 0.05 0.20 0.39

Table 6: DocNADE (M2) performance for the queries QL P pPtr � Pdevq in the labeled pairs in unsu-
pervised fashion.

Next, we need to determine which DocNADE model (M1 or M2) is less perplexed to the queries.
Therefore, we use M1 and M2 to evaluate DESC1 and SUB1+DESC1 components of the two sets of
queries: (1) QL is the set of queries from labeled (421) pairs and (2) QU is the end-user set. Table 3b
shows that M2 performs better than M1 for both the sets of queries with DESC1 or SUB1+DESC1
texts. We choose M2 version of the DocNADE to setup baseline for the similarity learning and retrieval
in unsupervised fashion.

To compute a similarity score for the given query q and historical ticket t where (q, t)P Pdev, we first
compute a latent topic vector (T) each for q and t using DocNADE (M2) and then apply the similarity
metric g (eq 1). To evaluate retrieval for q, we retrieve the top 10 similar tickets, ranked by the similarity
scores on their topic vectors. Table 5 (#No [1-9]) shows the performance of DocNADE for similarity
and retrieval tasks. Observe that #9 achieves the best MSE (3.502) and Acc@10 (0.40) out of [1-9],
suggesting that the topic vectors of query (SUB1+DESC1) and historical ticket (SUB2+DESC2+SOL2)
are the key in recommending a relevant SOL2. See the performance of DocNADE for all labeled pairs
i.e. queries and historical tickets (Ptr � Pdev) in the Table 6.

(2) Distributional Semantics E: Beyond topic models, we establish baseline using the SumEMB
method (section 2.1), where an embedding vector E is computed following the topic semantics approach.
The experiments #11-14 show that the SumEMB results in lower performance for both the tasks, sug-
gesting a need of a supervised paradigm in order to learn similarities in asymmetric texts. Also, the
comparison with DocNADE indicates that the topic features are important in the retrieval of tickets.
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Figure 4: Evaluation on End-user Queries (sub-sample). UNK: Unknown. (Left) Gold Data: The count
of similar (YES) and relevant (REL) tickets for each query (q1-q17). (Middle) ITS Results: For each
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matched out of the top 10 gold proposals for each q. UNK may include YES, REL or NO, not annotated
in the gold pairs. (Right) Success Rate: YES: percentage of correct similar(YES) proposal out of the top
10; YES+REL: percentage of correct similar (YES) and relevant(REL) proposals out of the top 10.

3.3 Experimental Setup: Supervised

For semantic relatedness scoring, we train the Replicated Siamese, using backpropagation-through-time
under the Mean Squared Error (MSE) loss function (after rescaling the training-set relatedness labels
to lie P [0, 1]). After training, we apply an additional non-parametric regression step to obtain better-
calibrated predictions P [1, 5], same as (Mueller and Thyagarajan, 2016). We then evaluate the trained
model for IR task, where we retrieve the top 10 similar results (SUB2+DESC2+SOL2), ranked by
their similarity scores, for each query (SUB1+DESC1) in the development set and compute MAP@K,
MRR@K and Acc@K, where K=1, 5, and 10.

We use 300-dimensional pre-trained word2vec3 embeddings for input words, however, to generalize
beyond the limited vocabulary in word2vec due to industrial domain data with technical vocabulary,
we also employ char-BLSTM (Lample et al., 2016) to generate additional embeddings (=50 dimen-
sion4).The resulting dimension for word embeddings is 350. We use 50-dimensional hidden vector, ht,
memory cells, ct and Adadelta (Zeiler, 2012) with dropout and gradient clipping (Pascanu et al., 2013) for
optimization. The topics vector (T) size is 100. We use python NLTK toolkit5 for sentence tokenization.
See Table 2 for the hyperparameters in Replicated Siamese LSTM for experiment #No:22.

3.4 Results: State-of-the-art Comparisons

Table 5 shows the similarity and retrieval scores for unsupervised and supervised baseline methods. The
#9, #18 and #20 show that the supervised approach performs better than unsupervised topic models.
#17 and #19 suggest that the multi-level Siamese improves (Acc@10: 0.51 vs. 0.53) both STS and IR.
Comparing #18 and #20, the cross-level Siamese shows performance gains (Acc@10: 0.55 vs. 0.57).
Finally, #21 and #22 demonstrates improved similarity (MSE: 2.354 vs. 2.052) and retrieval (Acc@10:
0.58 vs. 0.62) due to weighted multi-channel (h, E and T ) inputs.

The replicated Siamese (#22) with different features best results in 2.052 for MSE and 0.618 (= 61.8%)
for Acc@10. We see 22% and 7% gain in Acc@10 for retrieval task, respectively over unsupervised (#9
vs. #22: 0.40 vs. 0.62) and supervised (#18 vs. #22: 0.55 vs. 0.62) baselines. The experimental results
suggest that the similarity learning in supervised fashion improves the ranking of relevant tickets.

3.5 Success Rate: End-User Evaluation

We use the trained similarity model to retrieve the top 10 similar tickets from KB for each end-user query
QU , and compute the number of correct similar and relevant tickets. For ticket ID q6 (Figure 4, Middle),

3Publicly available at: code.google.com/p/word2vec
4Run forward-backward character LSTM for every word and concatenate the last hidden units (25 dimension each)
5http://www.nltk.org/api/nltk.tokenize.html
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Query Recommendation 1 Recommendation 2 Recommendation 3

SUB:
GT Trip - Low Frequency Pulsations

DESC:
GT Tripped due to a sudden

increase in Low Frequency

Pulsations. The machine has been

restarted and is now operating

normally. Alarm received was:

GT XXX Low Frequency Pulsation

SUB:
Narrow Frequency Pulsations

DESC:
Low and Narrow frequency

pulsations were detected.

The peak value for the Low

Frequency Pulsations is

## mbar.

SOL:
XXXXX combustion support is

currently working on the issue.

The recommended action for

now is that the machine XXXX

at load XXXX ## MW.

SUB:
Low frequency pulsations

DESC:
High level low frequency

pulsations were detected

when active load is XXXX.

SOL:
Since the machine is running

with XXXX, the XXX be

changed in the register. After

adjustment is complete, monitor

the machine behavior between

## MW to ## load.

SUB:
GT3 - High Low Frequency Pulsation alarms after trip

DESC:
Yesterday, after Steam Turbine tripped, GT-3

experienced high Low Frequency Pulsation alarm.

Theload of GT-3 was ## MW and

went up as high as ## MW. During the time,

Low Frequency Pulsation for 3 pulsation

devices went up as high as ##. The Low

frequency pulsation was a XXX.

SOL:
A load XXXX from ## MW to ## MW is an

event XXX the unit XXXX trip. The XXXX to

low frequency pulsation during similar event,

should be XXXX. Check that XXXX from after

the XXXX (XX005/XX01) into combustion chamber

(XX030/XX01), XXXX should be XXXX. Repeat

until XXXX is within the range of ## -##.

(Rank, Similarity Score) (1, 4.75) (2, 4.71) (3, 4.60)

#Topics {#83, #7, #30} {#83, #16, #30} {#7, #83, #19} {#7, #83, #19}

Table 7: Top-3 Tickets Retrieved and ordered by their (rank, similarity score) for an input test query.
#Topics: the top 3 most probable associated topics. SOL of the retrieved tickets is returned as recom-
mended action. Underline: Overlapping words; XXXX and ##: Confidential text and numerical terms.

3 out of 10 proposed tickets are marked similar, where the end-user expects 4 similar tickets (Figure 4,
Left). For ticket ID q1, q13 and q17, the top 10 results do not include the corresponding expected tickets
due to no term matches and we find that the similarity scores for all the top 10 tickets are close to 4.0
or higher, which indicates that the system proposes more similar tickets (than the expected tickets), not
included in the gold annotations. The top 10 proposals are evaluated for each query by success rate
(success, if N/10 proposals supply the expected solution). We compute success rate (Figure 4, Right) for
(1 or more), (2 or more) and (3 or more) correct results out of the top 10 proposals.

4 Qualitative Inspections for STS and IR

Table 7 shows a real example for an input query, where the top 3 recommendations are proposed from
the historical tickets using the trained Replicated Siamese model. The recommendations are ranked by
their similarity scores with the query. The underline shows the overlapping texts.

We also show the most probable topics (#) that the query or each recommendation is associated with.
The topics shown (Table 8) are learned from DocNADE model and are used in multi-channel network.
Observe that the improved retrieval scores (Table 5 #22) are attributed to the overlapping topic semantics
in query and the top retrievals. For instance, the topic #83 is the most probable topic feature for the query
and recommendations. We found terms, especially load and MW in SOL (frequently appeared for other
Frequency Pulsations tickets) that are captured in topics #7 and #83, respectively.

5 Related Work

Semantic Textual Similarity has diverse applications in information retrieval (Larochelle and Lauly,
2012; Gupta et al., 2018a), search, summarization (Gupta et al., 2011), recommendation systems, etc.
For shared STS task in SemEval 2014, numerous researchers applied competitive methods that utilized
both heterogeneous features (e.g. word overlap/similarity, negation modeling, sentence/phrase composi-
tion) as well as external resources (e.g. Wordnet (Miller, 1995)), along with machine learning approaches
such as LSA (Zhao et al., 2014) and word2vec neural language model (Mikolov et al., 2013). In the do-
main of question retrieval (Cai et al., 2011; Zhang et al., 2014), users retrieve historical questions which
precisely match their questions (single sentence) semantically equivalent or relevant.

Neural network based architectures, especially CNN (Yin et al., 2016), LSTM (Mueller and Thya-
garajan, 2016), RNN encoder-decoder (Kiros et al., 2015), etc. have shown success in similarity learning
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ID Topic Words (Top 10)
#83 pulsation, frequency, low, load, high, pulsations, increase, narrow, XXXX, mw

#7 trip, turbine, vibration, gas, alarm, gt, time, tripped, pressure, load

#30 start, flame, unit, turbine, combustion, steam, temperature, compressor, XXXX, detector

#16 oil, XXXX, XXXX, pressure, kpa, dp, level, high, mbar, alarm

#19 valve, XXXX, fuel, valves, gas, bypass, check, control, XXXX, XXXX

Table 8: Topics Identifier and words captured by DocNADE

task in Siamese framework (Mueller and Thyagarajan, 2016; Chopra et al., 2005). These models are
adapted to similarity learning in sentence pairs using complex learners. Wieting et al. (2016) observed
that word vector averaging and LSTM for similarity learning perform better in short and long text pairs,
respectively. Our learning objective exploits the multi-channel representations of short and longer texts
and compute cross-level similarities in different components of the query and tickets pairs. Instead of
learning similarity in a single sentence pair, we propose a novel task and neural architecture for asymmet-
ric textual similarities. To our knowledge, this is the first advancement of Siamese architecture towards
multi-and-cross level similarity learning in asymmetric text pairs with an industrial application.

6 Conclusion and Discussion

We have demonstrated deep learning application in STS and IR tasks for an industrial ticketing system.
The results indicate that the proposed LSTM is capable of modeling complex semantics by explicit
guided representations and does not rely on hand-crafted linguistic features, therefore being generally
applicable to any domain. We have showed improved similarity and retrieval via the proposed multi-and-
cross-level Replicated Siamese architecture, leading to relevant recommendations especially in industrial
use-case. As far we we know, this is the first advancement of Siamese architecture for similarity learning
and retrieval in asymmetric text pairs with an industrial application.

We address the challenges in a real-world industrial application of ticketing system. Industrial assets
like power plants, production lines, turbines, etc. need to be serviced well because an unplanned outage
always leads to significant financial loss. It is an established process in industry to report issues (via
query) i.e. symptoms which hint at an operational anomaly to the service provider. This reporting
usually leads to textual descriptions of the issue in a ticketing system. The issue is then investigated by
service experts who evaluate recommended actions or solutions to the reported issue. The recommended
actions or solutions are usually attached to the reported issues and form a valuable knowledge base on
how to resolve issues. Since industrial assets tend to be similar over the various installations and since
they don’t change quickly it is expected that the issues occurring over the various installations may be
recurring. Therefore, if for a new issue similar old issues could be easily found this would enable service
experts to speed up the evaluation of recommended actions or solutions to the reported issue. The chosen
approach is to evaluate the pairwise semantic similarity of the issues describing texts.

We have compared unsupervised and supervised approach for both similarity learning and retrieval
tasks, where the supervised approach leads the other. However, we foresee significant gains with the
larger amount of similarity data as the amount of labeled similarity data grows and the continuous feed-
back is incorporated for optimization within the industrial domain, where quality results are desired. In
future work, we would also like to investigate attention (Bahdanau et al., 2014) mechanism and depen-
dency (Socher et al., 2012; Gupta et al., 2018b) structures in computing tickets’ representation.
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