
ACL 2018

Multilingual Surface Realisation: Shared Task and Beyond

Proceedings of the Workshop

July 19, 2018
Melbourne, Australia

c©2018 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

978-1-948087-49-0

ii

Introduction

Natural Language Generation (NLG) is in the ascendant both as a stand-alone (data-to-text or text-to-
text) task and as part of downstream applications such as abstractive summarization, dialogue-based
interaction, question answering, etc. Only in 2017, three “deep” NLG shared tasks that focused
on language generation from abstract semantic representations have been organized, although for
English only. Surface realization is also a burning issue, in particular, in view of the recent creation
of multilingual treebanks annotated with Universal Dependencies (UD). The Multilingual Surface
Realization Shared Task (SR ’18), whose outcome is presented in these proceedings, targets surface
realization from data released for the recent CoNLL shared task on multilingual parsing to UDs. After
the First Surface Realization Shared Task in 2011, which focused on English, SR ’18 is the second shared
task on surface realization and the first to target multilingual input. 21 teams registered for SR ’18, and
eight of them submitted outputs of their systems.

These proceedings include an overview of SR ’18 and the description of the eight participating systems,
which will be presented at the workshop. We are pleased that for the workshop we could also win Hadar
Shemtov, Head of NLG, dialog and summarization groups at Google Research, as invited speaker. We
trust that overall the workshop will be a forum for fruitful discussion, and that it will give an impetus to
further advances and to further shared tasks in the field.

The workshop organizers

June 2018

iii

Organizers:

Anja Belz, University of Brighton, UK
Bernd Bohnet, Google Research, UK
Yvette Graham, Dublin City University, Ireland
Simon Mille, Pompeu Fabra University, Spain
Emily Pitler, Google Research, USA
Leo Wanner, Pompeu Fabra University, Spain

Program Committee:

Miguel Ballesteros, IBM Research, USA
Anders Björkelund, University of Stuttgart, Germany
Johan Bos, University of Groningen, Netherlands
Robert Dale, Macquarie University, Australia
Katja Filippova, Google Research, Switzerland
Claire Gardent, CNRS, LORIA, France
Kim Gerdes, Sorbonne Nouvelle, France
Yannis Konstas, Heriot Watt University, UK
Emiel Krahmer, Tilburg University, Netherlands
Mirella Lapata, University of Edinburgh, UK
Jonathan May, Information Sciences Institute, USA
David McDonald, Sift Inc., USA
Ryan McDonald, Google Research, USA
Detmar Meurers, University of Tübingen, Germany
Alexis Nasr, University of Aix Marseille, France
Joakim Nivre, Uppsala University, Sweden
Stephan Oepen, University of Oslo, Norway
Horacio Saggion, Pompeu Fabra University, Spain
Lucia Specia, University of Sheffield, UK
Kees Van Deemter, University of Aberdeen, UK
Sina Zarrieß, University of Bielefeld, Germany
Yue Zhang, Singapore University of Technology and Design, Singapore

Invited Speaker:

Hadar Shemtov, Google Research, USA

v

Table of Contents

The First Multilingual Surface Realisation Shared Task (SR’18): Overview and Evaluation Results
Simon Mille, Anja Belz, Bernd Bohnet, Yvette Graham, Emily Pitler and Leo Wanner 1

BinLin: A Simple Method of Dependency Tree Linearization
Yevgeniy Puzikov and Iryna Gurevych . 13

IIT (BHU) Varanasi at MSR-SRST 2018: A Language Model Based Approach for Natural Language
Generation

Shreyansh Singh, Ayush Sharma, Avi Chawla and A.K. Singh . 29

Surface Realization Shared Task 2018 (SR18): The Tilburg University Approach
Thiago Castro Ferreira, Sander Wubben and Emiel Krahmer . 35

The OSU Realizer for SRST ’18: Neural Sequence-to-Sequence Inflection and Incremental Locality-
Based Linearization

David King and Michael White . 39

Generating High-Quality Surface Realizations Using Data Augmentation and Factored Sequence Models
Henry Elder and Chris Hokamp . 49

AX Semantics’ Submission to the Surface Realization Shared Task 2018
Andreas Madsack, Johanna Heininger, Nyamsuren Davaasambuu, Vitaliia Voronik, Michael Käufl

and Robert Weißgraeber .54

NILC-SWORNEMO at the Surface Realization Shared Task: Exploring Syntax-Based Word Ordering
using Neural Models

Marco Antonio Sobrevilla Cabezudo and Thiago Pardo . 58

The DipInfo-UniTo system for SRST 2018
Valerio Basile and Alessandro Mazzei . 65

vii

Workshop Program

8:45–9:00 Opening

9:00–10:00 Invited Talk
Hadar Shemtov

10:00–10:30 The First Multilingual Surface Realisation Shared Task: Overview and Evaluation
Results
Simon Mille, Anja Belz, Bernd Bohnet, Yvette Graham, Emily Pitler, Leo Wanner

10:30–11:00 Coffee break

11:00–12:30 Oral session 1
11:00–11:30 BinLin: A Simple Method of Dependency Tree Linearization

Yevgeniy Puzikov and Iryna Gurevych

11:30–12:00 IIT (BHU) Varanasi at MSR-SRST 2018: A Language Model Based Approach for
Natural Language Generation
Shreyansh Singh, Ayush Sharma, Avi Chawla and A.K. Singh

12:00–12:30 Surface Realization Shared Task 2018 (SR18): The Tilburg University Approach
Thiago Castro Ferreira, Sander Wubben and Emiel Krahmer

12:30–13:45 Lunch break

13:45–14:15 Oral session 2
13:45–14:15 The OSU Realizer for SRST ’18: Neural Sequence-to-Sequence Inflection and In-

cremental Locality-Based Linearization
David King and Michael White

14:15–15:30 Poster session
Generating High-Quality Surface Realizations Using Data Augmentation and Fac-
tored Sequence Models
Henry Elder and Chris Hokamp
AX Semantics’ Submission to the Surface Realization Shared Task 2018
Andreas Madsack, Johanna Heininger, Nyamsuren Davaasambuu, Vitaliia Voronik,
Michael Käufl and Robert Weißgraeber

NILC-SWORNEMO at the Surface Realization Shared Task: Exploring Syntax-
Based Word Ordering using Neural Models
Marco Antonio Sobrevilla Cabezudo and Thiago Pardo

The DipInfo-UniTo system for SRST 2018
Valerio Basile and Alessandro Mazzei

15:30–16:00 Coffee break

16:00–17:30 Panel, Discussions

ix

Proceedings of the First Workshop on Multilingual Surface Realisation, pages 1–12
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

The First Multilingual Surface Realisation Shared Task (SR’18):
Overview and Evaluation Results

Simon Mille
UPF, Barcelona

simon.mille@upf.edu

Anja Belz
University of Brighton

a.s.belz@brighton.ac.uk

Bernd Bohnet
Google Inc.

bohnetbd@google.com

Yvette Graham
ADAPT Research Centre, DCU

graham.yvette@gmail.com

Emily Pitler
Google Inc.

epitler@google.com

Leo Wanner
ICREA and UPF, Barcelona
leo.wanner@upf.edu

Abstract

We report results from the SR’18 Shared
Task, a new multilingual surface realisa-
tion task organised as part of the ACL’18
Workshop on Multilingual Surface Reali-
sation. As in its English-only predecessor
task SR’11, the shared task comprised two
tracks with different levels of complexity:
(a) a shallow track where the inputs were
full UD structures with word order infor-
mation removed and tokens lemmatised;
and (b) a deep track where additionally,
functional words and morphological infor-
mation were removed. The shallow track
was offered in ten, and the deep track in
three languages. Systems were evaluated
(a) automatically, using a range of intrin-
sic metrics, and (b) by human judges in
terms of readability and meaning similar-
ity. This report presents the evaluation re-
sults, along with descriptions of the SR’18
tracks, data and evaluation methods. For
full descriptions of the participating sys-
tems, please see the separate system re-
ports elsewhere in this volume.

1 Introduction and Task Overview

Natural Language Generation (NLG) is attract-
ing growing interest both in the form of end-to-
end tasks (e.g. data-to-text and text-to-text gen-
eration), and as embedded component tasks (e.g.
in abstractive summarisation, dialogue-based in-
teraction and question answering).

NLG research has been given a boost by two
recent developments: the rapid spread of neural
language generation techniques, and the growing
availability of multilingual treebanks annotated
with Universal Dependencies1 (UD), to the point

1http://universaldependencies.org/

where as many as 70 treebanks covering about 50
languages can now be downloaded freely.2 UD
treebanks facilitate the development of applica-
tions that work potentially across all languages for
which UD treebanks are available in a uniform
fashion, which is a big advantage for system de-
velopers. As has already been seen in parsing,
UD treebanks are also a good basis for multilin-
gual shared tasks: a method that works for some
languages may also work for others.

The SR’18 task is to generate sentences from
structures at the level of abstraction of outputs
in state-of-the-art parsing, encouraging partici-
pants to explore the extent to which neural net-
work parsing algorithms can be reversed for gen-
eration. SR’18 also addresses questions about
just how suitable and useful the notion of univer-
sal dependencies—which is in the process of be-
coming the dominant linguistic formalism across
a wide range of NLP applications, parsing in
particular—is for NLG. SR’18 follows the SR’11
pilot surface realisation task for English (Belz
et al., 2011) which was part of Generation Chal-
lenges 2011 (GenChal’11), the fifth round of
shared-task evaluation competitions (STECs) in-
volving the language generation tasks.

Outside of the SR tasks, just three ‘deep’ NLG
shared tasks focusing on language generation from
abstract semantic representations have been organ-
ised to date: WebNLG3 (Gardent et al., 2017), Se-
mEval Task 94 (May and Priyadarshi, 2017), and
E2E5 (Novikova et al., 2017). What is more, these

2See the recent parsing shared task based on UDs
(Nivre and de Marneffe et al., 2016): http://
universaldependencies.org/conll17/.

3http://talc1.loria.fr/webnlg/stories/
challenge.html

4http://alt.qcri.org/semeval2017/
task9/

5http://www.macs.hw.ac.uk/
InteractionLab/E2E/

1

tasks have only been offered for English.
As in SR’11, the Multilingual Surface Reali-

sation shared task (SR’18) comprises two tracks
with different levels of difficulty:

Shallow Track: This track starts from genuine
UD structures in which word order information
has been removed and tokens have been lemma-
tised. In other words, it starts from unordered de-
pendency trees with lemmatised nodes that hold
PoS tags and morphological information as found
in the original treebank annotations. The task
amounts to determining the word order and inflect-
ing words.

Deep Track: This track starts from UD structures
from which functional words (in particular, aux-
iliaries, functional prepositions and conjunctions)
and surface-oriented morphological and syntactic
information have been removed. In addition to
what is required for the Shallow Track, the task in
the Deep Track thus also requires reintroduction of
the removed functional words and morphological
features.

In the remainder of this paper, we describe the data
we used in the two tracks (Section 2), and the eval-
uation methods we used to evaluate submitted sys-
tems (Sections 3.1 and 3.2). We then briefly in-
troduce the participating systems (Section 4), re-
port and discuss evaluation results (Section 5), and
conclude with some discussion and a look to the
future (Section 6).

2 Data

To create the SR’18 training and testing data,
we used as data sources ten UD treebanks
for which annotations of reasonable qual-
ity were available, providing PoS tags and
morphologically relevant markup (number,
tense, verbal finiteness, etc.): UD Arabic,
UD Czech, UD Dutch, UD English, UD Finnish,
UD French, UD Italian, UD Portuguese,
UD Russian-SynTagRus and UD Spanish-
AnCora.6 We created training and test data for
all ten languages for the Shallow Track, and for
three of the languages, namely English, French
and Spanish, for the Deep Track.

Inputs in both Shallow and Deep Tracks are
trees, and are released in CoNLL-U format, with
no meta-information.7 Figures 1, 2 and 3 show

6universaldependencies.org
7http://universaldependencies.org/

a sample original UD annotation for English, and
the corresponding shallow and deep input struc-
tures derived from it.

To create inputs to the Shallow Track, the UD
structures were processed as follows:

1. Word order information was removed by ran-
domised scrambling;

2. Words were replaced by their lemmas.

For the Deep Track, the following steps were ad-
ditionally carried out:

3. Edge labels were generalised into pred-
icate/argument labels, in the Prop-
Bank/NomBank (Palmer et al., 2005;
Meyers et al., 2004) fashion. That is, the
syntactic relations were mapped to core (A1,
A2, etc.) and non-core (AM) labels, applying
the following rules: (i) the first argument is
always labeled A1 (i.e. there is no external
argument A0); (ii) in order to maintain the
tree structure and account for some cases
of shared arguments, there can be inverted
argument relations; (iii) all modifier edges
are assigned the same generic label AM;
(iv) there is a coordinating relation; see the
inventory of relations in Table 1.

4. Functional prepositions and conjunctions in
argument position (i.e. prepositions and con-
junctions that can be inferred from other lex-
ical units or from the syntactic structure) are
removed (e.g. by and of in Figure 2); prepo-
sitions and conjunctions retained in the deep
representation can be found under a A2INV
dependency; a dependency path Gov AM →
Dep A2INV → Prep is equivalent to a pred-
icate (the conjunction/preposition) with 2 ar-
guments: Gov← A1 Prep A2→ Dep.

5. Definite and indefinite determiners, auxil-
iaries and modals are converted into at-
tribute/value pairs, as are definiteness fea-
tures, and the universal aspect and mood fea-
tures8, see examples in Figure 3.

6. Subject and object relative pronouns directly
linked to the main relative verb are removed
(and instead, the verb is linked to the an-
tecedent of the pronoun); a dummy pronoun

format.html
8http://universaldependencies.org/u/

feat/index.html

2

Figure 1: A sample UD structure in English.

Figure 2: Shallow input (Track 1) derived from UD structure in Figure 1.

Figure 3: Deep input (Track 2) derived from UD structure in Figure 1.

node for the subject is added if an originally
finite verb has no first argument and no avail-
able argument to build a passive; for a pro-
drop language such as Spanish, a dummy
pronoun is added if the first argument is miss-
ing.

7. Surface-level morphologically relevant infor-
mation as prescribed by syntactic structure or
agreement (such as verbal finiteness or verbal
number) is removed, whereas semantic-level
information such as nominal number and ver-
bal tense is retained.

8. Fine-grained PoS labels found in some tree-
banks (see e.g. column 5 in Figure 2) are re-
moved, and only coarse-grained ones are re-
tained (column 4 in Figures 2 and 3).

Shallow Track inputs were generated with the aid
of a simple Python script from the original UD
structures. During the conversion, we filtered out
sentences that contained dependencies that only
make sense in an analysis context (e.g. reparan-
dum, or orphan). This amounted to around 1.5%
of sentences for the different languages on av-
erage; see Table 2 for an overview of the final
sizes of the datasets. Deep Track inputs were

then generated by automatically processing the
Shallow Track structures using a series of graph-
transduction grammars that cover steps 3–8 above
(in a similar fashion as Mille et al. (2017)). There
is a node-to-node correspondence between the
deep and shallow input structures.

The Deep Track inputs can be seen as closer to
a realistic application context for NLG systems,
in which the component that generates the inputs
presumably would not have access to syntactic or
language-specific information (see, e.g. the inputs
in the SemEval, WebNLG, E2E shared tasks). At
the same time, we used only information found in
the UD syntactic structures to create the deep in-
puts, and tried to keep their structure simple. It
can be argued that not all the information neces-
sary to reconstruct the original sentences is avail-
able in the Deep Track inputs. Task definitions
specifically designed for NLG, as used e.g. in Se-
mEval Task 9, tend to use abstract meaning rep-
resentations (AMRs) as inputs that contain addi-
tional information such as OntoNotes labelling or
typed circumstantials, which make the generation
task easier. In the SR’18 Deep Track inputs, words
are not disambiguated, full prepositions may be
missing, and some argument relations may be un-
derspecified or missing.

3

Deep label Description Example
A1, A2, ..., A6 nth argument of a predicate fall→ the ball

A1INV, ..., A6INV nth inverted argument of a predicate the ball→ fall

AM/AMINV (i) none of governor or dependent are argument of the other fall→ last night(ii) unknown argument slot
LIST List of elements fall→ [and] bounce

NAME Part of a name Tower→ Eiffel
DEP Undefined dependent N/A

Table 1: Deep labels.

ar cs en es fi fr it nl pt ru
train 6,016 66,485 12,375 14,289 12,030 14,529 12,796 12,318 8,325 48,119
dev 897 9,016 1,978 1,651 1,336 1,473 562 720 559 6,441
test 676 9,876 2,061 1,719 1,525 416 480 685 476 6,366

Table 2: SR’18 dataset sizes for training, development and test sets.

3 Evaluation Methods

3.1 Automatic methods

We used BLEU, NIST, and inverse normalised
character-based string-edit distance (referred to as
DIST, for short, below) to assess submitted sys-
tems. BLEU (Papineni et al., 2002) is a precision
metric that computes the geometric mean of the
n-gram precisions between generated text and ref-
erence texts and adds a brevity penalty for shorter
sentences. We use the smoothed version and re-
port results for n = 4.

NIST9 is a related n-gram similarity metric
weighted in favour of less frequent n-grams which
are taken to be more informative.

Inverse, normalised, character-based string-edit
distance (DIST in the tables below) starts by com-
puting the minimum number of character inserts,
deletes and substitutions (all at cost 1) required
to turn the system output into the (single) refer-
ence text. The resulting number is then divided by
the number of characters in the reference text, and
finally subtracted from 1, in order to align with
the other metrics. Spaces and punctuation marks
count as characters; output texts were otherwise
normalised as for all metrics (see below).

The figures in the tables below are the system-
level scores for BLEU and NIST, and the mean
sentence-level scores for DIST.

Text normalisation: Output texts were nor-
malised prior to computing metrics by lower-
casing all tokens, removing any extraneous
whitespace characters.

9http://www.itl.nist.gov/iad/mig/tests/mt/doc/ngram-
study.pdf; http://www.itl.nist.gov/iad/mig/tests/mt/2009/

Missing outputs: Missing outputs were scored
0. Since coverage was 100% for all systems ex-
cept one, we only report results for all sentences
(incorporating the missing-output penalty), rather
than also separately reporting scores for just the
in-coverage items.

3.2 Human-assessed methods
We assessed two quality criteria in the human eval-
uations, in separate evaluation experiments: Read-
ability and Meaning Similarity. As in SR’11 (Belz
et al., 2011), we used continuous sliders as rating
tools, because raters tend to prefer them (Belz and
Kow, 2011). Slider positions were mapped to val-
ues from 0 to 100 (best). Raters were first given
brief instructions, including instructions to ignore
formatting errors, superfluous whitespace, capital-
isation issues, and poor hyphenation. The part of
the instructions used only in the Readability as-
sessment experiments was:

“The quality criterion you need to assess
is Readability. This is sometimes called
fluency, and your task is to decide how
well the given text reads; is it good flu-
ent English, or does it have grammatical
errors, awkward constructions, etc.

Please rate the text by moving the slider
to the position that corresponds to your
rating, where 0 is the worst, and 100 is
the best rating.”

The corresponding instructions for Meaning Sim-
ilarity assessment, in which system outputs were
compared to reference sentences, were as follows:

“The quality criterion you need to assess
is Meaning Similarity. You need to read

4

both texts, and then decide how close in
meaning the second text (in black) is to
the first (in grey).

Please use the slider at the bottom of the
page to express your rating. The closer
in meaning the second text clipping is to
the first, the further to the right (towards
100) you need to place the slider.

In other words, a rating of 100% would
mean that the meaning of the two text
clippings is exactly identical.”

Slider design: In SR’11, a slider design was
used, which had a smiley face at the 100 end and
a frowning face at the 0 end, with the pointer
starting out at 50. For conformity with what has
emerged as a new affordable human evaluation
standard over the past two years in the main ma-
chine translation shared tasks held at WMT (Bojar
et al., 2017a), we changed this design to look as
follows, with the pointer starting at 0:

Test data sets for human evaluations: Test set
sizes out of the box varied considerably for the
different languages. For the human test sets we
selected either the entire set or a subset of 1,000,
whichever was the smaller number, for a given lan-
guage. For subsets, test set items were selected
randomly but ensuring a similar sentence length
distribution as in the whole set.

Reported scores: Again in keeping with the
WMT approach, we report both average raw
scores and average standardised scores per system.
In order to produce standardised scores we sim-
ply map each individual evaluator’s scores to their
standard scores (or z-scores) computed on the set
of all raw scores by the given evaluator using each
evaluator’s mean and standard deviation. For both
raw and standard scores, we compute the mean of
sentence-level scores.

3.2.1 Mechanical Turk evaluations
For three of the languages in the shallow track
(English, Spanish and French), we replicated the
human evaluation method from WMT’17, known
as Direct Assessment (DA) (Graham et al., 2016),
exactly, except that we also ran (separate) experi-
ments to assess the Readability criterion, using the
same method.

Quality assurance: System outputs are ran-
domly assigned to HITs (following Mechanical
Turk terminology) of 100 outputs, of which 20
are used solely for quality assurance (QA) (i.e. do
not count towards system scores): (i) some are re-
peated as are, (ii) some are repeated in a ‘dam-
aged’ version and (iii) some are replaced by their
corresponding reference texts. In each case, a min-
imum threshold has to be reached for the HIT to be
accepted: for (i), scores must be similar enough,
for (ii) the score for the damaged version must be
worse, and for (iii) the score for the reference text
must be high. For full details of how these ad-
ditional texts are created and thresholds applied,
please refer to Bojar et al. (2017a). Below we re-
port QA figures for the MTurk evaluations (Sec-
tion 3.2.1).

Code: We were able to reuse, with minor adap-
tations, the code produced for the WMT’17 evalu-
ations.10

3.2.2 Google Data Compute Evaluation
In order to cover more languages, and to en-
able comparison between crowdsourced and ex-
pert evaluation, we also conducted human evalua-
tions using Google’s internal ‘Data Compute’ sys-
tem evaluation service, where experienced evalua-
tors carefully assess each system output. We used
an interface that matches the WMT’17 interface
above, as closely as was possible within the con-
straints of the Data Compute platform.

Everything stated at the beginning of Sec-
tion 3.2 also holds for the expert annotator eval-
uations with Google Data Compute.

Quality assurance: Because in the Google Data
Compute version of the evaluation experiment we
were using expert evaluators from a pool of work-
ers routinely employed to perform such tasks, we
did not replicate the WMT’17 QA techniques pre-
cisely, opting for a simpler test of self-consistency,
or intra-evaluator agreement (IEA) instead. Test
set items were randomly grouped into sets of 100
(which we are also calling HITs here for unifor-
mity) and order was again randomised before pre-
sentation to evaluators. Each evaluator did at least
one HIT. Each HIT contained 5 items which were
duplicated to test for IEA which we computed
as the average Pearson correlation coefficient per
HIT. The average IEA for English was 0.75 on the

10https://github.com/ygraham/segment-mteval

5

raw scores for Meaning Similarity, and 0.66 for
Readability.

4 Overview of Submitted Systems

Eight different teams (out of twenty-one regis-
tered) submitted outputs to SR’18: the ADAPT
Centre (ADAPT, Ireland), AX Semantics (AX,
Germany), IIT-BHU Varanasi (IIT-BHU, India),
Ohio State University (OSU, USA), University
of São Paulo (NILC, Brazil), Tilburg University
(Tilburg, The Netherlands), Università degli Studi
di Torino (DipInfo-UniTo, Italy), and Technische
Universität Darmstadt (BinLin, Germany).

All teams submitted outputs for at least the En-
glish Shallow Track; one team participated in the
Deep Track (ADAPT, English), and three teams
submitted outputs for all ten languages of the Shal-
low Track (AX, OSU, and BinLin). Most submit-
ted systems are based on neural components, and
break down the surface realisation task into two
subtasks: linearisation, and word inflection. De-
tails of each approach are provided in the teams’
reports elsewhere in this volume; here, we briefly
summarise each approach:

ADAPT uses linearised parse tree inputs to
train a sequence-to-sequence LSTM model with
copy attention, augmenting the training set with
additional synthetic data.

AX is trained on word pairs for ordering and is
combined with a rule-based morphology compo-
nent.

IIT-BHU uses an LSTM-based encoder-
decoder model for word re-inflection, and a
Language Model-based approach for word
reordering.

OSU first generates inflected wordforms with a
neural sequence-to-sequence model, and then in-
crementally linearises them using a global linear
model over features that take into account the de-
pendency structure and dependency location.11

NILC is a neural-based system that uses a
bottom-up approach to build the sentence using
the dependency relations together with a language
model, and language-specific lexicons to produce
the word forms of each lemma in the sentence.

Tilburg works by first preprocessing an input
dependency tree into an ordered linearised string,

11Some of OSU’s outputs were submitted after the start of
the human evaluations and are not included in this report; out-
puts submitted late, but before the human evaluation started,
are included and marked with asterisks in the results tables.

which is then realised using a statistical machine
translation model.

DipInfo-UniTo employs two separate neural
networks with different architectures to predict the
word ordering and the morphological inflection in-
dependently; outputs are combined to produce the
final sentence.

BinLin uses one neural module as a binary clas-
sifier in a sequential process of ordering token
lemmas, and another for character-level morphol-
ogy generation where the words are inflected to
finish the surface realisation.

5 Evaluation results

5.1 Results from metric evaluations

Tables 3–5 show BLEU-4, NIST, and DIST results
for both the Shallow and Deep tracks, for all sub-
mitted systems; results are listed in order of num-
ber of languages submitted for. Best results for
each language are shown in boldface.

In terms of BLEU-4, in the Shallow Track,
Tilburg obtained the best scores for four lan-
guages (French, Italian, Dutch, Portuguese), OSU
for three (Arabic, Spanish, Finnish), BinLin for
two (Czech, Russian), and ADAPT for one (En-
glish). The highest BLEU-4 scores across lan-
guages were obtained on the English and Spanish
datasets, with BLEU-4 scores of 69.14 (ADAPT)
and 65.31 (OSU) respectively.

Results are identical for DIST, except that AX,
rather than BinLin, has the highest score for
Czech. The picture for NIST is also very similar
to that for BLEU-4, except that ADAPT and OSU
are tied for best NIST score for English, and Bin-
Lin (rather than Tilburg) has the best NIST score
for Dutch.

In the Deep Track, only ADAPT submitted sys-
tem outputs (English), and as expected, the scores
are much lower than for the Shallow Track, across
all metrics.

5.2 Results from human evaluations

Given the small number of submissions in the
Deep Track, we conducted human evaluations for
the Shallow Track only. We used Mechanical Turk
for the three languages for which this is feasible
(English, Spanish and French), and our aim was to
also conduct evaluations via Google’s Data Com-
pute service for three additional languages which
had the next highest numbers of submissions, as

6

Shallow Deep
ar cs en es fi fr it nl pt ru en

AX 4.57 9.75 28.09 10.2 7.95 7.87 16.35 14.21 16.29 15.59 –
BinLin 16.2 25.05 29.6 32.15 23.26 20.53 23.55 22.69 24.59 34.34 –
OSU 25.65* – 66.33 65.31 37.52* 38.24* – 25.52* – – –

Tilburg – – 55.29 49.47 – 52.03 44.46 32.28 30.82 – –
DipInfo – – 23.2 26.9 – 23.12 24.61 – – – –
NILC – – 50.74 51.58 – – – – 27.12 – –

ADAPT – – 69.14 – – – – – – – 21.67
IIT-BHU – – 8.04 – – – – – – – –

Table 3: BLEU-4 scores for the test data. Bold = best score per language. * = late submission.

Shallow Deep
ar cs en es fi fr it nl pt ru en

AX 5.13 9.33 9.51 8.26 6.84 6.45 6.83 7.81 6.78 9.93 –
BinLin 6.94 10.74 9.58 10.21 9.36 7.21 7.6 8.64 7.54 13.06 –
OSU 7.15* – 12.02 12.74 9.56* 8.00* – 7.33* – – –

Tilburg – – 10.86 11.12 – 9.85 9.11 8.05 7.55 – –
DipInfo – – 8.86 9.58 – 7.72 8.25 – – – –
NILC – – 10.62 11.17 – – – – 7.56 – –

ADAPT – – 12.02 – – – – – – – 6.95
IIT-BHU – – 7.71 – – – – – – – –

Table 4: NIST scores for the test data. Bold = best score per language. * = late submission.

Shallow Deep
ar cs en es fi fr it nl pt ru en

AX 38.96 36.48 70.01 21.12 35.59 22.3 40.96 49.65 51.7 34.28 –
BinLin 44.37 35.7 65.9 36.95 41.21 28.6 40.74 48.23 51.36 34.56 –
OSU 46.49* – 70.22 61.46 58.7* 53.69* – 57.77* – – –

Tilburg – – 79.29 51.73 – 55.54 58.61 57.81 60.7 – –
DipInfo – – 51.87 24.53 – 18.04 36.11 – – – –
NILC – – 77.56 53.78 – – – – 57.43 – –

ADAPT – – 80.42 – – – – – – – 48.69
IIT-BHU – – 47.63 – – – – – – – –

Table 5: DIST scores for the test data. Bold = best score per language. * = late submission.

well as for English in order to enable us to com-
pare results obtained with the two different meth-
ods. However, most of the latter evaluations are
still ongoing and will be reported separately in
a future paper. Below, we report Google Data
Compute results and comparisons with Mechan-
ical Turk results, for English only.

5.2.1 Mechanical Turk results

Tables 6, 7 and 8 show the results of the hu-
man evaluation carried out via Mechanical Turk
with Direct Assessment (MTurk DA), for English,
French and Spanish, respectively. See Section 3.2
for details of the evaluation method. ‘DA’ refers
to the specific way in which scores are collected
in the WMT approach which differs from what we
did for SR’11, and here in the Google Data Com-
pute experiments.

English: Average Meaning Similarity DA
scores for English systems range from 86.9% to

67% with OSU achieving the highest overall score
in terms of both average raw DA scores and corre-
sponding z-scores. Readability scores for the same
set of systems range from 78.7% to 41.3%, reveal-
ing that MTurk workers rate the Meaning Simi-
larity between generated texts and corresponding
reference sentences higher in general than Read-
ability. In order to investigate how Readability of
system outputs compare to human-produced text,
we included the original test sentences as a system
in the Readability evaluation (for Meaning Simi-
larity the notional score is 100%). Unsurprisingly,
human text achieves the highest score in terms of
Readability (78.7%) but is quite closely followed
by the best performing system in terms of Read-
ability, ADAPT (73.9%).

Overall in the English Shallow Track, average
DA scores for systems are close. We tested for
statistical significance of differences between av-
erage DA scores using a Wilcoxon rank sum test.

7

Figure 4 shows significance test results for each
pair of systems participating in the English evalu-
ation in the form of heatmaps where a green cell
denotes a significantly higher average score for the
system in that row over the system in that column,
with a darker shade of green denoting a conclusion
drawn with more certainty. Results show that two
entries are tied for first place in terms of Meaning
Similarity, OSU and ADAPT, with the small dif-
ference in average scores proving not statistically
significant. In terms of Readability, however, the
ADAPT sentences achieve a significantly higher
readability score compared to OSU.

French: Table 7 shows average DA scores
for systems participating in the French Shallow
Track. Meaning Similarity scores for French sys-
tems range from 72.9% to 48.6% with the Tilburg
system achieving the highest overall score. In
terms of Readability, again Tilburg achieves the
highest average score of 65.4%, with a consider-
able gap to the next best entry, OSU. Compared
to the human results, there is a larger gap than we
saw for English outputs.

Figure 5 shows results of tests for statistical sig-
nificance between average DA scores for systems
in the French Shallow Track. Tilburg achieves a
significantly higher average DA score compared to
all other systems in terms of both Meaning Sim-
ilarity and Readability. All systems are signifi-
cantly worse in terms of Readability than the hu-
man authored texts.

Spanish: Table 8 shows average DA scores
for systems participating in the Shallow Track for
Spanish. Meaning Similarity scores range from
77.3% to 43.9%, with OSU achieving the highest
score. In terms of Readability, the text produced
by the systems ranges from 77.0% to 33.0%, and
again OSU achieves the highest score. Figure 6
shows results of the corresponding significance
tests: OSU significantly outperforms all other par-
ticipating systems with respect to both evaluation
criteria. Human-generated texts are significantly
more readable than all system outputs.

MTurk DA quality control: Only 31% of
workers passed quality control (being able to repli-
cate scores for same sentences and scoring dam-
aged sentences lower, for full details see Bojar
et al., 2017a), highlighting the danger of crowd-
sourcing without good quality control measures.
The remaining 69%, who did not meet this cri-
terion, were omitted from computation of the of-

ficial DA results above. Of those 31% included
in the evaluation, a very high proportion, 97%,
showed no significant difference in scores col-
lected in repeated assessment of the same sen-
tences; these high levels of agreement are consis-
tent with what we have seen in DA used for Ma-
chine Translation (Graham et al., 2016) and Video
Captioning evaluation (Graham et al., 2017).

Agreement with automatic metrics: Table 9
shows Pearson correlations between MTurk DA
scores and automatic metric scores in the En-
glish, French and Spanish shallow tracks. Over-
all, BLEU agrees most consistently across the dif-
ferent tasks, achieving a correlation above 0.95
in all settings, whereas the correlation of NIST
scores with human Meaning Similarity scores is
just 0.854 for French, while DIST scores corre-
late with human Readability scores at just 0.831
for English.

Conclusions from metric correlations should be
drawn with a degree of caution, since in all cases
the sample size from which we compute correla-
tions is small, 8 systems for English, 5 for French,
and 6 for Spanish. We carried out significance
tests to investigate to what degree differences in
correlations are likely to occur by chance. In order
to take into account the fact that we are compar-
ing correlations between human assessment and
competing pairs of metrics (where metric scores
themselves correlate with each other), we apply a
Williams test for significance of differences in de-
pendent correlations, as done in evaluation of Ma-
chine Translation metrics (Graham and Baldwin,
2014; Bojar et al., 2017b).

Results are shown in Table 9. Correlations be-
tween metrics and human assessment in bold are
not significantly lower than any other metric. As
can be seen from Table 9, there is no signifi-
cant difference between any of the three metrics
in terms of correlation with human assessment in
both the French and Spanish tracks. In the En-
glish track, however, the correlation of BLEU and
NIST scores with human assessment are signifi-
cantly higher than that of DIST.

5.2.2 Google Data Compute results
Table 10 shows the results for the English as-
sessment conducted via the Google Data Compute
(GDC) evaluation service with expert evaluators.

One difference between the MTurk and the
Google results is the range of scores, which for

8

Meaning Similarity
% z n Assess. System

86.9 0.369 1,249 1,422 OSU
85.5 0.314 1,238 1,429 ADAPT
84.8 0.291 1,294 1,498 Tilburg
84.2 0.280 1,229 1,407 NILC
77.5 0.043 1,256 1,442 AX
75.8 0 1,264 1,462 BinLin
72.6 −0.120 1,244 1,427 DipInfo
67.0 −0.312 1,257 1,412 IIT-BHU

Readability
% z n Assess. System

78.7 0.797 831 1,350 HUMAN
73.9 0.638 1,065 1,301 ADAPT
71.2 0.558 1,117 1,374 OSU
62.1 0.258 1,109 1,377 Tilburg
58.1 0.166 1,086 1,342 NILC
52.5 −0.019 1,080 1,343 AX
50.1 −0.102 1,076 1,336 BinLin
42.7 −0.345 1,091 1,355 DipInfo
41.3 −0.376 1,081 1,296 IIT-BHU

Table 6: MTurk DA human evaluation results for English Shallow Track; % = average DA score (0-100);
z = z-score; n = number of distinct sentences assessed; Assess. = total number of sentences assessed.

Meaning Similarity
% z n Assess. System

72.9 0.365 416 1,651 Tilburg
69.1 0.237 416 1,570 OSU
58.9 −0.133 416 1,575 BinLin
52.8 −0.32 416 1,648 DipInfo
48.6 −0.444 416 1,592 AX

Readability
% z n Assess. System

89.9 1.525 218 650 HUMAN
65.4 0.607 416 1060 Tilburg
54.7 0.179 416 1007 OSU
41.5 −0.26 416 1031 BinLin
38.7 −0.456 416 1094 DipInfo
32.9 −0.659 416 1033 AX

Table 7: MTurk DA human evaluation results for French Shallow Track; % = average DA score (0-100);
z = z-score; n = number of distinct sentences assessed; Assess. = total number of sentences assessed.

Meaning Similarity
% z n Assess. System

77.3 0.519 1,255 1,502 OSU
66.8 0.175 1,231 1,439 NILC
65.7 0.136 1,190 1,401 Tilburg
54.9 −0.214 1,202 1,395 BinLin
48.4 −0.445 1,190 1,401 DipInfo
43.9 −0.583 1,225 1,449 AX

Readability
DA z n Assess. System

89.6 1.120 889 1,237 HUMAN
77.0 0.731 1,399 1,691 OSU
63.1 0.265 1,371 1,645 Tilburg
57.2 0.093 1,384 1,631 NILC
45.1 −0.299 1,367 1,625 BinLin
36.9 −0.558 1,370 1,629 DipInfo
33.0 −0.700 1,371 1,657 AX

Table 8: MTurk DA human evaluation results for Spanish Shallow Track; % = average DA score (0-100);
z = z-score; n = number of distinct sentences assessed; Assess. = total number of sentences assessed.

Meaning Sim. BLEU NIST DIST

English Meaning Sim. 0.968 0.967 0.911
Readability 0.927 0.971 0.977 0.831

French Meaning Sim. 0.954 0.854 0.968
Readability 0.984 0.978 0.924 0.938

Spanish Meaning Sim. 0.986 0.980 0.990
Readability 0.989 0.969 0.971 0.969

Table 9: Pearson correlation of DA human evaluation scores with Automatic Metrics for English, French
and Spanish Shallow Track.

9

Meaning Similarity Readability

O
S

U
A

D
A

P
T

T
ilb

ur
g

N
IL

C
A

X
B

in
Li

n
D

ip
In

fo
IIT

.B
H

U

IIT−BHU
DipInfo
BinLin
AX
NILC
Tilburg
ADAPT
OSU

H
U

M
A

N
A

D
A

P
T

O
S

U
T

ilb
ur

g
N

IL
C

A
X

B
in

Li
n

D
ip

In
fo

IIT
.B

H
U

IIT−BHU
DipInfo
BinLin
AX
NILC
Tilburg
OSU
ADAPT
HUMAN

Figure 4: MTurk DA human evaluation significance test results for the English shallow track.

Meaning Similarity Readability

T
ilb

ur
g

O
S

U

B
in

Li
n

D
ip

In
fo A
X

AX

DipInfo

BinLin

OSU

Tilburg

H
U

M
A

N

T
ilb

ur
g

O
S

U

B
in

Li
n

D
ip

In
fo A
X

AX

DipInfo

BinLin

OSU

Tilburg

HUMAN

Figure 5: MTurk DA human evaluation significance test results for the French shallow track.

Meaning Similarity Readability

O
S

U

N
IL

C

T
ilb

ur
g

B
in

Li
n

D
ip

In
fo A
X

AX

DipInfo

BinLin

Tilburg

NILC

OSU

H
U

M
A

N
O

S
U

T
ilb

ur
g

N
IL

C
B

in
Li

n
D

ip
In

fo A
X

AX
DipInfo
BinLin
NILC
Tilburg
OSU
HUMAN

Figure 6: MTurk DA human evaluation significance test results for the Spanish shallow track.

Meaning Similarity range from 67 to 86.9 for
MTurk, compared to 52 to 86.1 for GDC. The lat-
ter is a wider range of scores, and expert eval-
uators’ scores distinguish between systems more
clearly than the crowdsourced scores which place
the top four systems very close together.

Readability scores range from 41.3 to 78.7 for
MTurk, and from 60.2 to 88.2 for GDC. The ex-
pert evaluators tended to assign higher scores over-
all, but their range and the way they distinguish
between systems is similar. For example, neither
evaluation found much difference for the bottom

two systems.
The rank order of systems in the two separate

evaluations is identical. Table 11 shows the Pear-
son correlation of scores for systems in the evalu-
ations, where meaning similarity scores correlate
almost perfectly at 0.997 (raw %) and 0.993 (z)
and readability at 0.986 (raw %) and 0.985 (z).

6 Conclusion

SR’18 was the second surface realisation shared
task, and followed an earlier pilot task for English,
SR’11. Participation was high for a first instance

10

Meaning Similarity
% z n System

86.1 0.479 1000 OSU
83.8 0.394 1000 ADAPT
81.8 0.308 1000 Tilburg
78.8 0.219 1000 NILC
68.7 -0.109 1000 AX
65.4 -0.238 1000 BinLin
59.7 -0.414 1000 DipInfo
52.0 -0.640 1000 IIT-BHU

Readability
% z n System

88.2 0.530 1000 ADAPT
86.1 0.459 1000 OSU
81.0 0.276 1000 Tilburg
78.0 0.156 1000 NILC
67.7 -0.194 1000 AX
65.9 -0.299 1000 BinLin
60.7 -0.449 1000 DipInfo
60.2 -0.480 1000 IIT-BHU

Table 10: Google Data Compute human evaluation results for the English shallow track, where % =
average score (0-100) for generated sentences; n distinct sentences assessed per system.

Meaning Similarity Readability

% 0.997 0.986
z 0.993 0.985

Table 11: Pearson correlation between human
evaluations carried out using MTurk DA and
Google Data Compute.

of a shared task, at least in the Shallow Track, in-
dicating that interest is high enough to continue
running it again next year to enable more teams to
participate.

One important question that needs to be ad-
dressed is to what extent UDs are suitable inputs
for NLG systems. More specifically, can they
reasonably be expected to be generated by other,
content-determining, modules in an NLG system,
do they provide all the information necessary to
generate surface realisations, and if not, how can
they be augmented to provide it.

We hope to discuss these and related issues with
the research community as we prepare the next in-
stance of the SR Task. A goal to aim for may be
to make it possible for different NLG components
to be connected via standard interface represen-
tations, to increase re-usability for NLG compo-
nents. However, what may constitute a good inter-
face representation for surface realisation remains
far from clear.

Acknowledgments

The work reported in this paper has been
partly supported by Science Foundation Ireland
(sfi.ie) under the SFI Research Centres Pro-
gramme co-funded under the European Regional

Development Fund, grant number 13/RC/2106
(ADAPT Centre for Digital Content Technology,
www.adaptcentre.ie) at Dublin City University,
and by the European Commission in the frame-
work of the H2020 Programme under the contract
numbers 779962-RIA, 700475-IA, 7000024-RIA,
and 645012RIA.

References

Anja Belz and Eric Kow. 2011. Discrete vs. contin-
uous rating scales for language evaluation in NLP.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics (ACL-
HLT’11).

Anja Belz, Michael White, Dominic Espinosa, Eric
Kow, Deirdre Hogan, and Amanda Stent. 2011. The
first surface realisation shared task: Overview and
evaluation results. In Proceedings of the 13th Eu-
ropean Workshop on Natural Language Generation,
ENLG ’11, pages 217–226, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara
Logacheva, Christof Monz, Matteo Negri, Matt
Post, Raphael Rubino, Lucia Specia, and Marco
Turchi. 2017a. Findings of the 2017 conference
on machine translation (WMT’17). In Proceed-
ings of the Second Conference on Machine Trans-
lation, Volume 2: Shared Task Papers, pages 169–
214, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Ondřej Bojar, Yvette Graham, and Amir Kamran.
2017b. Results of the wmt17 metrics shared task.
In Proceedings of the Second Conference on Ma-
chine Translation, Volume 2: Shared Task Papers,
pages 489–513, Copenhagen, Denmark. Association
for Computational Linguistics.

11

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating train-
ing corpora for micro-planners. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
Vancouver, Canada. Association for Computational
Linguistics.

Yvette Graham, George Awad, and Alan Smeaton.
2017. Evaluation of Automatic Video Captioning
Using Direct Assessment. ArXiv e-prints.

Yvette Graham and Timothy Baldwin. 2014. Testing
for significance of increased correlation with human
judgment. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 172–176, Doha, Qatar. As-
sociation for Computational Linguistics.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2016. Can machine translation sys-
tems be evaluated by the crowd alone. Natural Lan-
guage Engineering, FirstView:1–28.

Jonathan May and Jay Priyadarshi. 2017. Semeval-
2017 task 9: Abstract meaning representation
parsing and generation. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 534–543, Vancouver,
Canada. Association for Computational Linguistics.

Adam Meyers, R. Reeves, C. Macleod, R. Szekely,
V. Zielinska, B. Young, and R. Grishman. 2004.
The NomBank project: An interim report. In HLT-
NAACL 2004 Workshop: Frontiers in Corpus Anno-
tation, Boston, MA, May 2004, pages 24–31.

Simon Mille, Roberto Carlini, Ivan Latorre, and Leo
Wanner. 2017. Upf at epe 2017: Transduction-based
deep analysis. In Shared Task on Extrinsic Parser
Evaluation (EPE 2017), pages 80–88, Pisa, Italy.

Joakim Nivre and Marie-Catherine de Marneffe et al.
2016. Universal dependencies v1: A multilingual
treebank collection. In Proceedings of LREC, Por-
torož, Slovenia.

Jekaterina Novikova, Ondrej Dušek, and Verena Rieser.
2017. The E2E dataset: New challenges for end-
to-end generation. In Proceedings of the 18th
Annual Meeting of the Special Interest Group on
Discourse and Dialogue, Saarbrücken, Germany.
ArXiv:1706.09254.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational Linguistics,
31(1):71–105.

K. Papineni, S. Roukos, T. Ward, and W. j. Zhu. 2002.
BLEU: A method for automatic evaluation of ma-
chine translation. In Proc. 40th Annual Meeting
on Association for Computational Linguistics, pages
311–318, Philadelphia, Pennsylvania.

12

Proceedings of the First Workshop on Multilingual Surface Realisation, pages 13–28
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

BinLin: A Simple Method of Dependency Tree Linearization

Yevgeniy Puzikov and Iryna Gurevych
Ubiquitous Knowledge Processing Lab (UKP-TUDA)

Department of Computer Science, Technische Universität Darmstadt
Research Training Group AIPHES

{puzikov,gurevych}@ukp.informatik.tu-darmstadt.de

Abstract
Surface Realization Shared Task 2018 is
a workshop on generating sentences from
lemmatized sets of dependency triples.
This paper describes the results of our par-
ticipation in the challenge. We develop a
data-driven pipeline system which first or-
ders the lemmas and then conjugates the
words to finish the surface realization pro-
cess. Our contribution is a novel sequential
method of ordering lemmas, which, despite
its simplicity, achieves promising results.
We demonstrate the effectiveness of the
proposed approach, describe its limitations
and outline ways to improve it.

1 Introduction

Natural Language generation (NLG) is the task of
generating natural language utterances from tex-
tual inputs or structured data representations. For
many years one of the research foci in the NLG
community has been Surface Realization (SR) –
the process of transforming a sentence plan into a
linearly-ordered, grammatical string of morpholog-
ically inflected words (Langkilde-Geary, 2002).

The SR Shared Task is aimed at developing a
common input representation that could be used
by a variety of NLG systems to generate realiza-
tions from (Belz et al., 2011). In the case of the
Surface Realization Shared Task 2018 (Mille et al.,
2018) there are two different representations the
contestants can use, depending on the track they
participate in:

Shallow Track: unordered dependency trees con-
sisting of lemmatized nodes with part-of-
speech (POS) tags and morphological infor-
mation as found in the Universal Dependen-
cies (UD) annotations (version 2.0).1

1http://universaldependencies.org/

Deep Track: same as above, but having functional
words and morphological features removed.

We participated in the shallow track, and there-
fore our task was to generate a sentence by order-
ing the lemmas and inflecting them to the correct
surface forms. The outputs of the participating sys-
tems are assessed using both automatic and manual
evaluation. The former is performed by computing
BLEU (Papineni et al., 2002), NIST (Doddington,
2002), CIDEr (Vedantam et al., 2015) scores and
normalized string edit distance (EDIST) between
the reference sentence and a system output. Man-
ual evaluation is based on preference judgments:
third-year undergraduate students from Cambridge,
Oxford and Edinburgh rate pairs of candidate out-
puts (including the target sentence), scoring them
for Clarity, Fluency and Meaning Similarity.

The data used for the task is the UD treebanks
distributed in the 10-column CoNLL-U format.2

The data is available for Arabic, Czech, Dutch, En-
glish, Finnish, French, Italian, Portuguese, Russian
and Spanish. According to the requirements of the
Shallow Track, the information on word order was
removed by randomized scrambling of the token
sequence; the words were also replaced by their
lemmas.

Our contribution is a simple method of depen-
dency tree linearization which orders a bag of lem-
mas based on the available syntactic information.
The major limitation of the method is its input or-
der sensitivity; solving this problem is reserved for
future work.

Our paper has the following structure. Section 2
describes related work done in the past. Section 3
presents the results of the exploratory data analy-
sis conducted prior to system development. The
details of our system architecture are specified in

2http://universaldependencies.org/
format.html

13

Section 4 which is followed by the description of
the experimental setup and evaluation (Section 5).
Section 6 mentions the limitations of the proposed
surface realization method and outlines future work
directions.

2 Related Work

As mentioned in Section 1, the task at hand is to
generate a sentence by ordering the lemmas and
inflecting them to the correct surface forms. Past
research work proposed both joint and pipeline so-
lutions for the problem. Taking into consideration
the pipeline nature of our system, we separate the
related work stage-wise.

2.1 Syntactic Ordering

Given a bag of input words, a syntactic ordering
algorithm constructs an output sentence. Prior
work explored a range of approaches to syntac-
tic ordering: grammar-based methods (Elhadad
and Robin, 1992; Carroll et al., 1999; White et al.,
2007), generate-and-rerank approaches (Banga-
lore and Rambow, 2000; Langkilde-Geary, 2002),
tree linearization using probabilistic language mod-
els (Guo et al., 2008), inter alia. Depending on
how much syntactic information is available as
input, the research on syntactic ordering can be
categorized into (1) free word ordering, (2) full tree
linearization and (3) partial tree linearization (Liu
et al., 2015). The setup of the Surface Realization
Task corresponds to the full tree linearization case,
since the dependency tree information is provided.

Conceptually, the problem of tree linearization
is simple. However, given no constraints, the
search space is exponential in the number of to-
kens, which makes exhaustive search intractable.
This stimulated the line of research focusing on
the development of approximate search methods.
Current state-of-the-art (evaluated on the English
data only) belongs to the system of Puduppully
et al. (2016) who extended the work of Liu et al.
(2015) on developing a transition-based generator.
The authors treated language generation process
as a generalized form of dependency parsing with
unordered token sequences, and used a learning
and search framework of Zhang and Clark (2011)
to keep the decoding process tractable. A similar
approach to dependency tree linearization was ex-
plored in (Bohnet et al., 2010), who approximated
exact decoding with a beam search. Our method
of syntactic ordering is also based on search ap-

proximation, but follows a different approach: we
use a greedy search strategy, but restrict the scoring
procedure to a smaller set of plausible candidate
pairs, which speeds up the search procedure and
reduces the number of mistakes the system might
make.

2.2 Word Inflection

Word inflection in the context of the Surface Real-
ization Task can be defined as the subtask of gen-
erating a surface form (was) from a given source
lemma (be) and additional morphological/syntactic
attributes (Number=Sing, Person=3, Tense=Past).

Early work proposed to approach the task with
finite state transducers (Koskenniemi, 1983; Ka-
plan and Kay, 1994). While being accurate, these
systems require a lot of time and linguistic exper-
tise to construct and maintain. With the advance
of machine learning, the community mostly shifted
towards data-driven methods of automatic morpho-
logical paradigm induction and string transduction
as the method of morphological inflection gener-
ation (Yarowsky and Wicentowski, 2000; Wicen-
towski, 2004; Dreyer and Eisner, 2011; Durrett
and DeNero, 2013; Ahlberg et al., 2015). In com-
parison with their rule-based counterparts, these
approaches scale better across languages and do-
mains, but require manually-defined comprehen-
sive feature representation of the inputs.

Current research focuses on data-driven mod-
els which learn a high-dimensional feature repre-
sentation of the input data during the optimiza-
tion procedure in an end-to-end fashion. Recent
work (Faruqui et al., 2016) proposed to model the
problem as a sequence-to-sequence learning task,
using the encoder-decoder neural network archi-
tecture developed in the machine translation com-
munity (Cho et al., 2014; Sutskever et al., 2014).
This approach showed an improvement over con-
ventional machine learning models, but failed to ad-
dress the issue of poor sample complexity of com-
plex neural networks – in practice, the approach
did not perform well on low-resource or morpho-
logically rich languages.

An attempt to address this issue was made by
Aharoni and Goldberg (2017), who proposed to
directly model an almost monotonic alignment be-
tween the input and output character sequences
by using a controllable hard attention mechanism
which allows the network to jointly align and trans-
duce, while maintaining a focused representation at

14

Language

Property ar cs en es fi fr it nl pt ru
unique features 37 112 36 56 89 35 41 66 48 40
OOV lemmas 1056 3299 1180 1368 1598 1895 439 973 535 2723
OOV forms 1745 8070 1313 2131 3666 2387 683 1131 785 8190
OOV chars 0 2 3 1 5 12 2 0 0 0

Table 1: Cross-lingual data analysis.

each step. The authors proposed to utilize indepen-
dently learned character-level alignments instead
of the weighted sum of representations (as done
in the soft attention models). Experimental results
demonstrated better sample efficiency of the mod-
els trained according to the proposed method, and
considerable improvements over the previous ap-
proaches.

3 Data Analysis

For the input to the shallow track, the organizers
separated the reference sentences from the respec-
tive structures. Although the one-to-one correspon-
dence between sentences and dependency trees was
preserved, the alignment between the lemmas in
the trees and the word forms in the sentences was
lost. To circumvent this issue and ease the burden
of aligning lemmas with the corresponding surface
forms, we decided to use the original UD data files
for all our experiments – they contain the same
dependency trees as the shared task data, but the or-
der of the tokens is not scrambled and each surface
form is aligned with the respective lemma.

Prior to system development, we analyzed the
data along the dimensions which we deemed rele-
vant for the task. Due to space constraints here we
show figures and numbers mainly for English; the
analysis results for other languages can be found in
Appendix A.1.

First, we examined the lemma-to-form ratio
(Figure 1). The majority of lemmas have only
one surface form, which suggests a strong major-
ity baseline for the morphological inflection sub-
task. However, languages with rich morphology
(Czech, Finnish, Russian) pose a challenge in this
regard and call for a more elaborate approach which
takes into account complex grammar inflection
paradigms. The number of unique features (val-
ues in the FEAT column of the input data) served
as a rough estimate of the latter (Table 1). We have
not performed any language-specific engineering
to address these linguistic properties, but took them

min = 1, max = 18
mean = 1.24, std = 0.64

len(lemma) == 1
len(lemma) == 2
len(lemma) == 3
len(lemma) == 4
len(lemma) > 4

Figure 1: Lemma-to-form ratio (English).

into consideration for future work.
Another important data property is the length dis-

tribution of lemmas, surface forms and sentences.
We computed the training data statistics and used
the obtained estimates to establish cut-off thresh-
olds for filtering out outlier lemmas and forms from
the training data.

The number of out-of-vocabulary (OOV) lan-
guage units can be viewed as a crude measure of
the expected difference between training and de-
velopment data distributions. Table 1 shows the
number of OOV lemmas, surface forms and charac-
ters for each of the languages. Some of the datasets
included foreign names and terms which are used in
their original language forms. For example, out of
356464 French data tokens, 419 include characters
that are not digits, punctuation signs or letters of
the French alphabet. Since such words are usually
not conjugated, but copied verbatim, we consider
them as outliers and exclude them from the training
procedure. Finally, tokens defined in the UD anno-
tation guidelines as multi-word expressions (MWE)
and empty nodes were excluded from the training
data, because they require language-specific treat-
ment (e.g., the French data includes 9750 tokens
which were identified as MWE; out of 870033 to-
kens in the Russian dataset, 1092 correspond to
empty nodes).

When approaching the task of syntactic ordering,

15

min = 0, max = 19
mean = 0.94, std = 1.67

children: 0-1
children: 2-3
children: 4-5
children: 6-7
children: 8-9
children: > 10

Figure 2: Branching factor of the dependency trees
(English).

one needs to take into account the complexity of
the tree structures. We found the branching factor
to be very informative in this regard: for each node
in each tree we counted the number of children the
node has. Most nodes in the dependency trees of
all examined languages have one to three children
(Figure 2 shows the distribution of branching factor
values for English). This solicits decomposition
of the syntactic ordering procedure over subtrees,
similar to what was done in (He et al., 2009).

4 Our Approach

This section describes the approach we developed
for the shared task.

Given a dependency tree, we first decompose
it into subtrees each having one head and an ar-
bitrary number of children. Each subtree is being
linearized as follows: for each of the children nodes
we predict whether it should be positioned to the
left or to the right of the head node, and store this
positional information in a binary tree structure.
We move up the original tree, linearizing subtrees
until we reach the root node. At this point we
have processed all nodes from the original depen-
dency tree – it can be now completely linearized
by traversing the binary tree with the root as a head
node.

Since each dependency node is labeled with the
corresponding lemma, it is trivial to obtain a lemma
sequence from the linearized dependency tree. We
further use the morphological inflection genera-
tor component to predict a surface form for each
lemma in the sequence and in this way generate a
sentence.

like

I apples

Egle fresh juicy

(a) Dependency tree

like

I juicy

fresh apples

Egle

(b) Binary tree

Figure 3: A dependency tree and a binary tree,
constructed according to Algorithm 1. Reference
sentence: “I like fresh juicy Egle apples”.

4.1 Syntactic Component
The first step of the proposed pipeline orders the
nodes of the dependency tree into a sequence which
ideally mirrors the order of words in the reference
sentence. The main difficulty of this step is finding
a sorting or ranking method which avoids making
many node comparisons or scoring decisions. We
propose an ordering procedure which uses a given
dependency tree and constructs a binary tree storing
the original dependency nodes (lemmas) in a sorted
order (Algorithm 1) .

As input, the algorithm takes a dependency tree
and a classifier trained to make binary decisions of
positioning child nodes to the right/left of the head
node. First, we decompose the tree into local sub-
trees, represented by (head, children) node groups.
This is achieved by running a breadth-first search
(BFS) algorithm on the input dependency tree (line
4 of the pseudocode). For each (head, children)
group, we further apply the following steps:

• initialize a binary tree with the head node (line
5)

• iterate over the child nodes and use the clas-
sifier to predict whether the child should be
inserted to the left or to the right of the head
node (lines 6-7)

When the binary tree construction is finished, we
can obtain a sorted lemma sequence by performing
in-order traversal on the resulting binary tree.

The core of the procedure is the insertion of a
new node into the binary tree (Algorithm 2). Given
a node pair (ni, nj), a classifier is used to predict
whether nj should be positioned to the left or to

16

Algorithm 1: Given a dependency tree dg and
a binary classifier clf , construct a binary tree and
traverse it to order dependency nodes. BFS denotes
the breadth-first search procedure.

1: function ORDERNODES(clf , dg)
2: root← dg.root
3: decisions← {}
4: for head, children ∈ BFS(dg) do
5: bt← BinTree(head)
6: for child ∈ children do
7: InsertNode(bt, child, clf)
8: end for
9: decisions[head] = Traverse(bt)

10: end for
11: order = OrderDec(root, decisions)
12: return order
13: end function

the right of ni. The decision is made based on the
feature representation of the two nodes.

Algorithm 2: A recursive procedure of inserting a
new node child into a binary tree bt , using a binary
classifier clf .

1: procedure INSERTNODE(bt, child, clf)
2: bf ← GetFeat(bt)
3: cf ← GetFeat(child)
4: label←MakeDecision(clf , cf, bf)
5: if label is LEFT then
6: if bt.left is None then
7: bt.left← BinTree(child)
8: else
9: InsertNode(bt.left, child, clf)

10: end if
11: else
12: if bt.right is None then
13: bt.right← BinTree(child)
14: else
15: InsertNode(bt.right, child, clf)
16: end if
17: end if
18: end procedure

For simplicity, we decided to use a multi-layer
perceptron as a classifier (Figure 4).

Given a pair of nodes (ni, nj), we first extract
their features. We consider the node itself, it’s head
and one (any) child in the dependency tree as the
neighborhood elements and extract the correspond-
ing lemmas, POS-tags (both XPOS and UPOS),
and dependency edge labels. Thus, the feature set

. . .

ne
j

. . .

ne
i

. . .

. . .

(1) x = [ne
j;n

e
i]

(2) h1 = W1x

(3) h2 = lrelu(W2h1)

(4) o = sigm(h2)

Figure 4: Schematic view of the neural network
architecture used as a classifier in the syntactic
ordering component of our system.

for one node in the node pair consists of N =
3 (neighborhood elements) × 4 (features) = 12
components.

Each component is represented as a d-
dimensional embedding vector. The embedding
matrix which contains all such vectors is denoted as
E ∈ Rd×|V |, where V is the vocabulary of unique
lemmas, XPOS, UPOS and dependency edge la-
bels, observed in the training data.

The embedding vectors for the two nodes un-
der consideration are (1) concatenated to form the
input to the classifier, (2) projected onto a lower-
dimensional space via a linear transformation, (3)
squeezed further via another linear transforma-
tion followed by applying the Leaky ReLu func-
tion (Maas et al., 2013). The last layer of the net-
work consists of one node, followed by the sigmoid
function. The decision of whether to insert node
nj to the right or to the left of node ni is made
according to the following rule:

decision =

{
right, if o ≥ 0.5,

left, otherwise.

The neural network components were imple-
mented using PyTorch (Paszke et al., 2017). No
pretrained embedding vectors or other external re-
sources were used for the experiments.

4.2 Morphological Component

To create a sentence from an ordered sequence of
lemmas, we need to predict the correct morpholog-
ical form for each of them. This is the purpose of
the second component of our system. While we
focused mostly on the syntactic realization compo-
nent, as part of the system development we experi-
mented with the following three different morpho-
logical inflection models:

17

Language
Accuracy (nocase) ar cs en es fi fr it nl pt ru

LEMMA 13.47 56.43 85.47 71.45 44.43 70.44 67.88 79.35 74.19 50.06
MAJOR 69.15 63.50 86.80 76.13 51.04 74.02 72.48 82.74 75.85 55.64
MORPHMLP 86.63 ± 0.507 94.40 ± 0.052 96.41 ± 0.053 96.72 ± 0.151 78.26 ± 0.217 92.73 ± 0.094 94.09 ± 0.062 91.05 ± 0.110 94.12 ± 0.198 90.43 ± 0.122
MORPHRNNSOFT 88.48 ± 2.409 96.61 ± 0.598 93.57 ± 1.370 97.20 ± 0.801 81.05 ± 7.405 92.30 ± 0.797 92.54 ± 3.721 85.82 ± 1.993 94.27 ± 3.424 93.65 ± 2.980
MORPHRNNHARD 93.07 ± 0.515 99.53 ± 0.031 98.11 ± 0.054 99.59 ± 0.027 95.46 ± 0.923 95.56 ± 0.066 97.44 ± 0.240 95.68 ± 0.115 99.30 ± 0.035 98.22 ± 0.056
Accuracy (case)

MORPHMLP 86.63 ± 0.507 87.31 ± 0.083 88.79 ± 0.169 93.52 ± 0.195 71.90 ± 0.286 88.17 ± 0.128 89.54 ± 0.085 85.79 ± 0.236 89.90 ± 0.171 83.32 ± 0.152
MORPHRNNSOFT 88.48 ± 2.409 89.98 ± 0.638 86.32 ± 1.446 94.15 ± 0.823 75.65 ± 6.869 87.90 ± 0.803 88.05 ± 3.524 80.69 ± 1.903 90.06 ± 3.379 87.70 ± 2.763
MORPHRNNHARD 93.07 ± 0.515 93.07 ± 0.047 90.76 ± 0.186 96.60 ± 0.037 89.32 ± 0.861 91.24 ± 0.099 93.08 ± 0.296 90.58 ± 0.219 95.19 ± 0.119 92.32 ± 0.079

Table 2: Evaluation of the morphological inflection system component on the original UD development
set using the percentage of exact string matches as a metric. For the neural architectures, we report both
case-sensitive and case-insensitive mean scores and standard deviation (averaged across ten random seed
values).

• a simple multi-layer perceptron similar to the
one employed for the syntactic component
(MORHPMLP)

• an encoder-decoder architecture with an at-
tention mechanism of Bahdanau et al. (2014)
(MORHRNNSOFT)

• an encoder-decoder model with a hard mono-
tonic attention (Aharoni and Goldberg, 2017)
(MORPHRNNHARD)

OOV lemmas and characters during decoding
were copied without any changes.

5 Experimental Setup and Evaluation

Training data was filtered to exclude outliers ac-
cording to the results of the data analysis (Section
3). The system components were trained separately
ten times with different random seeds. In this sec-
tion, we report mean scores and standard deviation
for each model evaluated on the development data
and averaged across the random seed values. The
evaluation of the proposed approach was done both
independently for each of the single components
and as a whole in the pipeline mode. All the results
are computed on the tokenized data instances.

Morphological component. We start with the
evaluation of the morphological inflection genera-
tor, and report the exact string match accuracy for
each of the tested approaches (Table 2). Two sim-
ple baselines were developed for the experiment:
given a lemma, LEMMA copies the lemma itself
as a prediction of the surface form, MAJOR out-
puts the most frequent surface form if the lemma
is not an OOV item, or the lemma itself, otherwise.
Lemma-form frequencies were computed on the
training data. For the baselines, we report case-
insensitive scores only; the results can be easily
extrapolated to the case-sensitive scenario.

As expected, the baselines are outperformed by
all data-driven methods examined. Strong perfor-
mance of the majority baseline for English and
Dutch data can be attributed to the simpler mor-
phology of the languages.

The best results are achieved by the
model of Aharoni and Goldberg (2017)
(MORPHRNNHARD), which outperforms all
other methods across all languages. Despite
the fact that the approach has a bias towards
languages with concatenative morphology (due
to the assumption of the monotonic alignment
between the input and output character sequences),
it also performs well on Arabic. This model was
chosen for our further pipeline experiments.

Bad sample complexity of the soft attention
model (MORPHRNNSOFT) explains its inferior per-
formance compared to the hard attention model.
MORPHRNNSOFT model seems to be highly sen-
sitive to the different values of hyperparameters;
its performance has the highest standard devia-
tion among all models, which is most likely due
to the same sample complexity issue. Interest-
ingly enough, on English, French, Italian and
Dutch data the multi-layer perceptron architecture
(MORPHMLP) achieves better results. The latter
has a considerably simpler, but less flexible struc-
ture, which prohibits the usage of such networks
for languages with rich morphology – the number
of parameters needed to account for various forms
and morphological features grows rapidly until the
model can no longer fit into the memory. This also
highlights the importance of cross-lingual evalua-
tion of morphological analyzers and generators.

In order to better understand the most common
errors made by each of the approaches (excluding
the baselines), we examined the predictions of the
models on the English development set. We fil-
tered out incorrect predictions of capitalization of

18

Error types MORPHMLP MORPHRNNSOFT MORPHRNNHARD

wrong lemma 42 – –
wrong form 29 8 26
alt. form 29 17 57
non-exist. form – 29 4
proper noun err. – 27 –
wrong digit seq. – 13 –

Table 3: Major error types made by each of the tested morphological component models.

the first letter of the word, because these cases are
ignored by the official evaluation protocol. After
the filtering, we randomly sampled one hundred er-
roneous predictions and manually examined them;
the results are shown in Table 3.

Unlike character-based models, MORPHMLP

treats each surface form as an atomic unit and is
therefore prone to errors caused by the data sparsity
issues, failing to predict correct forms for unseen
lemmas or unseen grammar patterns (wrong lemma
error type). If the model correctly identifies the
base form and still makes a mistake, in half of the
cases it is an incorrect prediction of verb tenses,
singular/plural noun forms or indefinite English ar-
ticles (wrong form). The latter cases are caused by
the fact that our model does not use any informa-
tion about the next token when predicting the form
of the current lemma. This limitation is inherent to
the pipeline architecture we employed and can be
accounted for in a joint morphology/syntax model-
ing scenario. Finally, there are also cases where a
model predicts an alternative surface form which
does not match the ground truth, but is grammati-
cally correct (alt. form): “not” vs. “n’t”, “are” vs.
“’re”, “have” vs. “’ve”). Strictly speaking, the latter
cases are not errors, but for simplicity we will treat
them as such in this section.

MORPHRNNSOFT model predicts fewer wrong
morphological variants, but suffers from another
problem – hallucinating non-existing surface forms:
“singed” instead of “sung”, “dened” instead of “de-
nied”, “siaseme” vs. “siamese”. This is not sur-
prising, given the sequential nature of the model;
usually this happens in cases with flat probability
distributions over a number of possible characters
following the already predicted character sequence.
A large portion of such errors includes incorrect
spellings of proper nouns (proper noun err): “Jer-
sualm” vs. “Jerusalem”, “Mconal” instead of “Mc-
Donal”. Finally, one prominent group of errors is
that of incorrect digit sequences. MORPHMLP does
not make these mistakes, because it uses a heuristic:

OOV lemmas are copied verbatim as predictions
of the surface forms.

The majority of erroneous cases for MOR-
PHRNNHARD model constitute the group of alter-
native forms. Compared to other models, there are
considerably fewer cases of predicting non-existent
forms (“allergys”, “goining”). The wrong form
error type is mainly represented by incorrect pre-
dictions of verb forms: “sing” instead of “sung”,
“got” instead of “gotten”, “are” instead of “’m”, etc.

The results of the error analysis suggest that
there is still a large room for improvement of the
morphological inflection generation component. A
principled approach to handling unseen tokens and
a way to constrain the predictions to well-formed
outputs would be interesting directions to investi-
gate further.

Syntactic component. The syntactic compo-
nent has been evaluated by computing system-level
BLEU, NIST and edit distance scores (Table 4).
Following the official evaluation protocol, output
texts were normalized prior to computing metrics
by lower-casing all tokens.

To the best of our knowledge, surface realization
systems have not been evaluated on all the data
used in the shared task. A simple baseline (RAND)
which outputs a random permutation of the sen-
tence tokens performs poorly across all languages.
Compared to it, the 74.88% of the development
data sentences ordered correctly by our method
seem to indicate a good performance.

To get an idea of where our approach breaks, we
sampled a few erroneous predictions and examined
them manually. Generally speaking, the syntactic
ordering procedure works well on the deeper tree
levels, but as we move up, it gets harder to account
for the many descendants a node has. An example
of this error mode is given in Figure 5.

We tried to improve the prediction capabilities of
the system by incorporating feature representations
of the leftmost and the rightmost descendant nodes
and conditioning the model on the previous pre-

19

Language
BLEU ar cs en es fi fr it nl pt ru

RAND 0.013 0.023 0.026 0.016 0.031 0.018 0.022 0.024 0.020 0.024
SYNMLP 0.896 ± 0.003 0.778 ± 0.005 0.889 ± 0.007 0.812 ± 0.005 0.762 ± 0.008 0.889 ± 0.005 0.849 ± 0.006 0.800 ± 0.007 0.901 ± 0.004 0.820 ± 0.005

EDIST

RAND 0.078 0.115 0.149 0.089 0.139 0.104 0.110 0.126 0.127 0.120
SYNMLP 0.910 ± 0.004 0.833 ± 0.004 0.912 ± 0.006 0.840 ± 0.006 0.827 ± 0.007 0.897 ± 0.005 0.849 ± 0.007 0.844 ± 0.007 0.924 ± 0.005 0.839 ± 0.005

NIST
RAND 10.40 11.86 9.88 9.78 11.18 9.86 9.40 9.45 9.05 11.35
SYNMLP 14.14 ± 0.011 15.83 ± 0.022 13.97 ± 0.025 14.51 ± 0.030 13.09 ± 0.019 14.48 ± 0.018 12.92 ± 0.016 12.59 ± 0.017 12.87 ± 0.014 15.49 ± 0.025

Table 4: Evaluation of the syntactic ordering component on the original UD development set. We report
mean scores and standard deviation for the SYNMLP model; the scores were averaged over ten models
trained with different random seeds. RAND is the random baseline. The scores are case-insensitive.

brings

move

Every makes

Google

future

this particular

closer .

Every move Google makes brings this particular future closer.

Every move Google makes closer brings this particular future.

Figure 5: A common error our syntactic ordering
component makes. The node in the rectangle is
current head, the node in the oval indicates its child
for which the position prediction was incorrect.
The upper sentence is the gold ordering, the one
below is predicted by our system.

dictions, but this did not yield any improvements.
Further investigation with regard to this issue is
reserved for future work.

Full pipeline. Table 5 shows the metric evalua-
tion results of the pipeline on the development and
test data provided by the organizers (Dev-SR and
Test-SR), as well as the development data from
the original UD dataset, which was used in our
preliminary experiments (Dev-UD).

Given the large gap between the system per-
formance on Dev-SR and Dev-UD, we manually
inspected the predictions and observed that the
Dev-SR outputs were less grammatical than those
made for the Dev-UD data. We investigated the is-
sue and discovered that the morphological compo-
nent worked as expected, but the syntactic ordering
module was flawed. The proposed method’s per-
formance varies depending on the children nodes’
order returned by the BFS procedure (line 4 of Al-
gorithm 1). Figure 6 shows an example where our

right

’s folks . That ,

Figure 6: An example sentence which poses a chal-
lenge to our system: “That ’s right , folks .”

system fails.
It is easier to determine the order of node’s chil-

dren starting with content words and then inserting
punctuation signs; if it is the other way round, or-
dering tokens becomes harder. As mentioned in
Section 3, we have used the original UD training
and development data which contains token infor-
mation in the natural order of token occurrence in
the sentences. However, in the shared task data the
word order information was removed by random-
ized scrambling of the tokens, which made it harder
for the syntactic linearizer to make predictions on
Dev-SR and Test-SR. Unfortunately, we did not
anticipate that this will have such a great influence
on the prediction capabilities of the proposed ap-
proach. We plan to investigate ways of improving
it in future.

6 Discussion and Future Work

This section summarizes our findings and outlines
perspectives for future work. The syntactic order-
ing component which we propose is capable of
performing accurate tree linearization, but its per-
formance varies depending on the order in which
nodes are being inserted into the binary tree. Per-
muting the tokens randomly and training the syn-
tactic component on scrambled token sequences
seems to be the easiest way of solving the issue.
However, this heuristic method does not guarantee
that the model will not encounter an unseen input
sequence order, in which case it could fail.

20

Language
BLEU ar cs en es fi fr it nl pt ru

Dev-UD 0.757 0.782 0.862 0.816 0.701 0.800 0.805 0.733 0.888 0.796
Dev-SR 0.148 0.250 0.291 0.332 0.230 0.244 0.225 0.221 0.261 0.34
Test-SR 0.162 0.251 0.296 0.322 0.233 0.205 0.236 0.227 0.246 0.343

EDIST
Dev-UD 0.854 0.840 0.909 0.851 0.808 0.868 0.837 0.824 0.922 0.835
Dev-SR 0.192 0.239 0.359 0.274 0.294 0.270 0.258 0.252 0.343 0.318
Test-SR 0.444 0.357 0.659 0.370 0.412 0.286 0.407 0.482 0.514 0.346

NIST
Dev-UD 12.91 15.79 13.64 14.47 12.44 13.63 12.48 11.85 12.78 15.5
Dev-SR 6.64 10.61 9.40 10.23 9.35 8.68 7.73 8.61 7.76 12.94
Test-SR 6.94 10.74 9.58 10.21 9.36 7.21 7.60 8.64 7.54 13.06

Table 5: Final metric evaluation results of the system pipeline. Dev-UD denotes the development set of
the original UD dataset. Dev-SR and Test-SR is the data provided by the organizers (with scrambled
lemmas).

A more principled approach would be to define
an adaptive model which encodes some notion of
processing preference: given a set of tokens, the
system should first make predictions it is most con-
fident about, similar to easy-first dependency pars-
ing algorithm (Goldberg and Elhadad, 2010) or im-
itation learning methods (Lampouras and Vlachos,
2016).

Another limitation of the proposed method is
its inability to handle non-projective dependencies.
This is a simplification decision we made when
designing the algorithm: at each point we assume
that the perfect token order can be retrieved by re-
cursively ordering head-children subtrees, which
excludes long-range crossing dependencies from
consideration. By doing so we aggressively prune
the search space and simplify the inference proce-
dure, but also rule out a smaller class of more com-
plex constructions. This might not be a problem for
the English UD data, which has a small number of
non-projective dependencies. However, according
to the empirical study of Nivre (2006), almost 25%
of the sentences in the Prague Dependency Tree-
bank of Czech (Böhmová, Alena and Hajič, Jan
and Hajičová, Eva and Hladká, Barbora, 2003),
and more than 15% in the Danish Dependency
Treebank (Kromann, 2003) contain non-projective
dependencies. This implies that for multi-lingual
surface realization such an assumption could be too
strong.

Finally, another simplification which could be
addressed is the decomposition of the prediction
process into two separate stages of syntactic order-
ing and word inflection. The benefits of joint mor-
phological inflection and syntactic ordering have

been previously explored, but we found no easy
way of doing so for the proposed approach. Nev-
ertheless, it seems like a promising direction to
pursue, and we plan to investigate it further.

7 Conclusion

In this paper, we have presented the results of
our participation in the Surface Realization Shared
Task 2018. We developed a promising method of
syntactic ordering; evaluation results on the de-
velopment data indicate that once the problem of
order-sensitivity is solved, it can be successfully
applied as a component in the syntactic realization
pipeline.

Acknowledgments

This work was supported by the German Research
Foundation (DFG) under grant No.GU 798/17-1
and the DFG-funded research training group “Adap-
tive Preparation of Information form Heteroge-
neous Sources” (AIPHES, GRK 1994/1). The first
author of the paper is supported by the FAZIT Foun-
dation scholarship. We thank Claire Gardent for the
insightful comments and our colleagues Michael
Bugert, Tobias Falke, Jan-Christoph Klie, Ji-Ung
Lee and Nils Reimers who provided suggestions
that greatly assisted our research. Calculations for
this research were conducted on the Lichtenberg
high performance computer of TU Darmstadt.

21

References
Roee Aharoni and Yoav Goldberg. 2017. Morpholog-

ical Inflection Generation with Hard Monotonic At-
tention. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2004–2015, Van-
couver, Canada. Association for Computational Lin-
guistics.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm Classification in Supervised Learn-
ing of Morphology. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1024–1029, Denver, Col-
orado. Association for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural Machine Translation by
Jointly Learning to Align and Translate. CoRR,
abs/1409.0473.

Srinivas Bangalore and Owen Rambow. 2000. Exploit-
ing a Probabilistic Hierarchical Model for Gener-
ation. In Proceedings of the 18th Conference on
Computational Linguistics: Volume 1, pages 42–48,
Saarbrücken, Germany. Association for Computa-
tional Linguistics.

Anja Belz, Mike White, Dominic Espinosa, Eric Kow,
Deirdre Hogan, and Amanda Stent. 2011. The First
Surface Realisation Shared Task: Overview and
Evaluation Results. In Proceedings of the Genera-
tion Challenges Session at the 13th European Work-
shop on Natural Language Generation, pages 217–
226, Nancy, France. Association for Computational
Linguistics.

Böhmová, Alena and Hajič, Jan and Hajičová, Eva and
Hladká, Barbora. 2003. The Prague Dependency
Treebank: a Three-level Annotation Scenario, chap-
ter 7. Kluwer Academic Publishers.

Bernd Bohnet, Leo Wanner, Simon Mille, and Alicia
Burga. 2010. Broad Coverage Multilingual Deep
Sentence Generation with a Stochastic Multi-level
Realizer. In Proceedings of the 23rd International
Conference on Computational Linguistics, pages 98–
106, Beijing, China. Association for Computational
Linguistics.

John Carroll, Ann Copestake, Dan Flickinger, and Vic-
tor Poznanski. 1999. An Efficient Chart Generator
for (Semi-)Lexicalist Grammars. In Proceedings of
the 7th European Workshop on Natural Language
Generation, pages 86–95, Toulouse, France.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations Using RNN Encoder-
decoder for Statistical Machine Translation. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),

pages 1724–1734, Doha, Qatar. Association for
Computational Linguistics.

George Doddington. 2002. Automatic Evaluation
of Machine Translation Quality Using N-gram Co-
occurrence Statistics. In Proceedings of the Second
International Conference on Human Language Tech-
nology Research, pages 138–145, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Markus Dreyer and Jason Eisner. 2011. Discovering
Morphological Paradigms from Plain Text Using a
Dirichlet Process Mixture Model. In Proceedings
of the 2011 Conference on Empirical Methods in
Natural Language Processing, pages 616–627, Edin-
burgh, Scotland, UK. Association for Computational
Linguistics.

Greg Durrett and John DeNero. 2013. Supervised
Learning of Complete Morphological Paradigms. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1185–1195, Atlanta, Georgia. Association for
Computational Linguistics.

Michael Elhadad and Jacques Robin. 1992. Control-
ling Content Realization with Functional Unifica-
tion Grammars. In Proceedings of the 6th Interna-
tional Workshop on Natural Language Generation:
Aspects of Automated Natural Language Generation,
pages 89–104, London, UK, UK. Springer-Verlag.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological Inflection Gener-
ation Using Character Sequence to Sequence Learn-
ing. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 634–643, San Diego, California. Associ-
ation for Computational Linguistics.

Yoav Goldberg and Michael Elhadad. 2010. An Effi-
cient Algorithm for Easy-first Non-directional De-
pendency Parsing. In Human Language Technolo-
gies: The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 742–750, Los Angeles, Cal-
ifornia. Association for Computational Linguistics.

Yuqing Guo, Josef van Genabith, and Haifeng Wang.
2008. Dependency-based N-gram Models for Gen-
eral Purpose Sentence Realisation. In Proceedings
of the 22nd International Conference on Computa-
tional Linguistics (COLING 2008), pages 297–304,
Manchester, UK. COLING 2008 Organizing Com-
mittee.

Wei He, Haifeng Wang, Yuqing Guo, and Ting Liu.
2009. Dependency Based Chinese Sentence Realiza-
tion. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Pro-
cessing of the AFNLP: Volume 2 - Volume 2, ACL
’09, pages 809–816, Suntec, Singapore. Association
for Computational Linguistics.

22

Ronald M. Kaplan and Martin Kay. 1994. Regular
Models of Phonological Rule Systems. Computa-
tional Linguistics, 20(3):331–378.

Kimmo Koskenniemi. 1983. Two-level Morphology:
a General Computational Model for Word-form
Recognition and Production. Publications, 11:1–
160.

Matthias Trautner Kromann. 2003. The Danish Depen-
dency Treebank and the DTAG Treebank Tool. In
Proceedings of the 2nd Workshop on Treebanks and
Linguistic Theories, pages 217–220.

Gerasimos Lampouras and Andreas Vlachos. 2016.
Imitation Learning for Language Generation from
Unaligned Data. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 1101–1112,
Osaka, Japan. The COLING 2016 Organizing Com-
mittee.

Irene Langkilde-Geary. 2002. An Empirical Verifi-
cation of Coverage and Correctness for a General-
purpose Sentence Generator. In Proceedings of
the 2nd International Natural Language Genera-
tion Conference, pages 17–24, Harriman, New York,
USA.

Yijia Liu, Yue Zhang, Wanxiang Che, and Bing Qin.
2015. Transition-based Syntactic Linearization. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 113–122, Denver, Colorado. Association for
Computational Linguistics.

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng.
2013. Rectifier Nonlinearities Improve Neural Net-
work Acoustic Models. In ICML Workshop on Deep
Learning for Audio, Speech and Language Process-
ing, Atlanta, USA.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018. The
First Multilingual Surface Realisation Shared Task
(SR’18): Overview and Evaluation Results. In Pro-
ceedings of the 1st Workshop on Multilingual Sur-
face Realisation (MSR), 56th Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 1–10, Melbourne, Australia.

Joakim Nivre. 2006. Constraints on Non-Projective
Dependency Parsing. In Proceedings of the 11th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics, pages 73–80,
Trento, Italy. Association for Computational Lin-
guistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceedings
of 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic Differentiation in PyTorch.
In NIPS 2017 Workshop Autodiff, Long Beach, Cali-
fornia, USA.

Ratish Puduppully, Yue Zhang, and Manish Shrivas-
tava. 2016. Transition-based Syntactic Lineariza-
tion with Lookahead Features. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 488–
493, San Diego, California. Association for Compu-
tational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
27, pages 3104–3112. Curran Associates, Inc.

Ramakrishna Vedantam, C. Lawrence Zitnick, and
Devi Parikh. 2015. CIDEr: Consensus-based Im-
age Description Evaluation. In 2015 IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4566–4575, Boston, MA, USA.
IEEE Computer Society.

Michael White, Rajakrishnan Rajkumar, and Scott Mar-
tin. 2007. Towards Broad Coverage Surface Real-
ization with CCG. In Proceedings of the 2007 Work-
shop on Using Corpora for NLG: Language Genera-
tion and Machine Translation (UCNLG+MT), pages
22–30, Copenhagen, Danmark.

Richard Wicentowski. 2004. Multilingual Noise-
robust Supervised Morphological Analysis Using
the Wordframe Model. In Proceedings of the 7th
Meeting of the ACL Special Interest Group in Com-
putational Phonology: Current Themes in Compu-
tational Phonology and Morphology, SIGMorPhon
’04, pages 70–77, Barcelona, Spain. Association for
Computational Linguistics.

David Yarowsky and Richard Wicentowski. 2000. Min-
imally Supervised Morphological Analysis by Mul-
timodal Alignment. In Proceedings of the 38th An-
nual Meeting on Association for Computational Lin-
guistics, ACL ’00, pages 207–216, Hong Kong. As-
sociation for Computational Linguistics.

Yue Zhang and Stephen Clark. 2011. Syntactic Pro-
cessing Using the Generalized Perceptron and Beam
Search. Computational Linguistics, 37(1):105–151.

23

A Supplementary Material

A.1 Data Analysis Results

min = 1, max = 16
mean = 3.95, std = 2.33

len(form): 0-5
len(form): 5-10
len(form): 10-15
len(form): 15-20
len(form): 20-25
len(form) > 30

(a) Surface form length distribution.

min = 1, max = 19
mean = 5.12, std = 2.61

len(lemma): 0-5
len(lemma): 5-10
len(lemma): 10-15
len(lemma): 15-20
len(lemma): 20-25
len(lemma) > 30

(b) Lemma length distribution.

min = 1, max = 398
mean = 36.85, std = 27.43

len(snt): 0-10
len(snt): 10-20
len(snt): 20-30
len(snt): 30-40
len(snt): 40-50
len(snt): 50-60
len(snt): 60-70
len(snt) > 70

(c) Sentence length distribution.
min = 0, max = 29

mean = 0.97, std = 1.37

children: 0-1
children: 2-3
children: 4-5
children: 6-7
children: 8-9
children: > 10

(d) Branching factor distribution.

min = 1, max = 41
mean = 1.71, std = 1.70

len(lemma) == 1
len(lemma) == 2
len(lemma) == 3
len(lemma) == 4
len(lemma) > 4

(e) Lemma-to-form ratio.

Figure 7: Data statistics computed for the Arabic data.

min = 1, max = 34
mean = 4.83, std = 3.22

len(form): 0-5
len(form): 5-10
len(form): 10-15
len(form): 15-20
len(form): 20-25
len(form) > 30

(a) Surface form length distribution.

min = 1, max = 38
mean = 4.62, std = 3.03

len(lemma): 0-5
len(lemma): 5-10
len(lemma): 10-15
len(lemma): 15-20
len(lemma): 20-25
len(lemma) > 30

(b) Lemma length distribution.

min = 1, max = 194
mean = 17.13, std = 11.07

len(snt): 0-10
len(snt): 10-20
len(snt): 20-30
len(snt): 30-40
len(snt): 40-50
len(snt): 50-60
len(snt): 60-70
len(snt) > 70

(c) Sentence length distribution.
min = 0, max = 83

mean = 0.94, std = 1.52

children: 0-1
children: 2-3
children: 4-5
children: 6-7
children: 8-9
children: > 10

(d) Branching factor distribution.

min = 1, max = 53
mean = 2.17, std = 2.28

len(lemma) == 1
len(lemma) == 2
len(lemma) == 3
len(lemma) == 4
len(lemma) > 4

(e) Lemma-to-form ratio.

Figure 8: Data statistics computed for the Czech data.

24

min = 1, max = 140
mean = 4.06, std = 3.04

len(form): 0-5
len(form): 5-10
len(form): 10-15
len(form): 15-20
len(form): 20-25
len(form) > 30

(a) Surface form length distribution.

min = 1, max = 140
mean = 3.90, std = 2.96

len(lemma): 0-5
len(lemma): 5-10
len(lemma): 10-15
len(lemma): 15-20
len(lemma): 20-25
len(lemma) > 30

(b) Lemma length distribution.

min = 1, max = 159
mean = 16.31, std = 12.40

len(snt): 0-10
len(snt): 10-20
len(snt): 20-30
len(snt): 30-40
len(snt): 40-50
len(snt): 50-60
len(snt): 60-70
len(snt) > 70

(c) Sentence length distribution.
min = 0, max = 19

mean = 0.94, std = 1.67

children: 0-1
children: 2-3
children: 4-5
children: 6-7
children: 8-9
children: > 10

(d) Branching factor distribution.

min = 1, max = 18
mean = 1.24, std = 0.64

len(lemma) == 1
len(lemma) == 2
len(lemma) == 3
len(lemma) == 4
len(lemma) > 4

(e) Lemma-to-form ratio.

Figure 9: Data statistics computed for the English data.

min = 1, max = 28
mean = 4.42, std = 3.11

len(form): 0-5
len(form): 5-10
len(form): 10-15
len(form): 15-20
len(form): 20-25
len(form) > 30

(a) Surface form length distribution.

min = 1, max = 28
mean = 4.30, std = 2.98

len(lemma): 0-5
len(lemma): 5-10
len(lemma): 10-15
len(lemma): 15-20
len(lemma): 20-25
len(lemma) > 30

(b) Lemma length distribution.

min = 1, max = 149
mean = 31.08, std = 16.76

len(snt): 0-10
len(snt): 10-20
len(snt): 20-30
len(snt): 30-40
len(snt): 40-50
len(snt): 50-60
len(snt): 60-70
len(snt) > 70

(c) Sentence length distribution.
min = 0, max = 31

mean = 0.97, std = 1.60

children: 0-1
children: 2-3
children: 4-5
children: 6-7
children: 8-9
children: > 10

(d) Branching factor distribution.

min = 1, max = 32
mean = 1.56, std = 1.74

len(lemma) == 1
len(lemma) == 2
len(lemma) == 3
len(lemma) == 4
len(lemma) > 4

(e) Lemma-to-form ratio.

Figure 10: Data statistics computed for the Spanish data.

25

min = 1, max = 44
mean = 6.49, std = 4.29

len(form): 0-5
len(form): 5-10
len(form): 10-15
len(form): 15-20
len(form): 20-25
len(form) > 30

(a) Surface form length distribution.

min = 1, max = 44
mean = 5.73, std = 3.85

len(lemma): 0-5
len(lemma): 5-10
len(lemma): 10-15
len(lemma): 15-20
len(lemma): 20-25
len(lemma) > 30

(b) Lemma length distribution.

min = 1, max = 238
mean = 13.31, std = 9.48

len(snt): 0-10
len(snt): 10-20
len(snt): 20-30
len(snt): 30-40
len(snt): 40-50
len(snt): 50-60
len(snt): 60-70
len(snt) > 70

(c) Sentence length distribution.
min = 0, max = 33

mean = 0.92, std = 1.56

children: 0-1
children: 2-3
children: 4-5
children: 6-7
children: 8-9
children: > 10

(d) Branching factor distribution.

min = 1, max = 133
mean = 2.05, std = 3.16

len(lemma) == 1
len(lemma) == 2
len(lemma) == 3
len(lemma) == 4
len(lemma) > 4

(e) Lemma-to-form ratio.

Figure 11: Data statistics computed for the Finnish data.

min = 1, max = 62
mean = 4.33, std = 3.10

len(form): 0-5
len(form): 5-10
len(form): 10-15
len(form): 15-20
len(form): 20-25
len(form) > 30

(a) Surface form length distribution.

min = 1, max = 62
mean = 4.27, std = 3.03

len(lemma): 0-5
len(lemma): 5-10
len(lemma): 10-15
len(lemma): 15-20
len(lemma): 20-25
len(lemma) > 30

(b) Lemma length distribution.

min = 2, max = 392
mean = 24.49, std = 13.75

len(snt): 0-10
len(snt): 10-20
len(snt): 20-30
len(snt): 30-40
len(snt): 40-50
len(snt): 50-60
len(snt): 60-70
len(snt) > 70

(c) Sentence length distribution.
min = 0, max = 34

mean = 0.96, std = 1.65

children: 0-1
children: 2-3
children: 4-5
children: 6-7
children: 8-9
children: > 10

(d) Branching factor distribution.

min = 1, max = 37
mean = 1.34, std = 1.19

len(lemma) == 1
len(lemma) == 2
len(lemma) == 3
len(lemma) == 4
len(lemma) > 4

(e) Lemma-to-form ratio.

Figure 12: Data statistics computed for the French data.

26

min = 1, max = 60
mean = 4.33, std = 3.19

len(form): 0-5
len(form): 5-10
len(form): 10-15
len(form): 15-20
len(form): 20-25
len(form) > 30

(a) Surface form length distribution.

min = 1, max = 60
mean = 4.49, std = 3.18

len(lemma): 0-5
len(lemma): 5-10
len(lemma): 10-15
len(lemma): 15-20
len(lemma): 20-25
len(lemma) > 30

(b) Lemma length distribution.

min = 1, max = 310
mean = 21.09, std = 15.41

len(snt): 0-10
len(snt): 10-20
len(snt): 20-30
len(snt): 30-40
len(snt): 40-50
len(snt): 50-60
len(snt): 60-70
len(snt) > 70

(c) Sentence length distribution.
min = 0, max = 35

mean = 0.95, std = 1.58

children: 0-1
children: 2-3
children: 4-5
children: 6-7
children: 8-9
children: > 10

(d) Branching factor distribution.

min = 1, max = 40
mean = 1.54, std = 1.68

len(lemma) == 1
len(lemma) == 2
len(lemma) == 3
len(lemma) == 4
len(lemma) > 4

(e) Lemma-to-form ratio.

Figure 13: Data statistics computed for the Italian data.

min = 1, max = 57
mean = 4.70, std = 3.30

len(form): 0-5
len(form): 5-10
len(form): 10-15
len(form): 15-20
len(form): 20-25
len(form) > 30

(a) Surface form length distribution.

min = 1, max = 57
mean = 4.29, std = 2.86

len(lemma): 0-5
len(lemma): 5-10
len(lemma): 10-15
len(lemma): 15-20
len(lemma): 20-25
len(lemma) > 30

(b) Lemma length distribution.

min = 1, max = 74
mean = 15.12, std = 10.15

len(snt): 0-10
len(snt): 10-20
len(snt): 20-30
len(snt): 30-40
len(snt): 40-50
len(snt): 50-60
len(snt): 60-70
len(snt) > 70

(c) Sentence length distribution.
min = 0, max = 30

mean = 0.93, std = 1.62

children: 0-1
children: 2-3
children: 4-5
children: 6-7
children: 8-9
children: > 10

(d) Branching factor distribution.

min = 1, max = 53
mean = 1.41, std = 1.49

len(lemma) == 1
len(lemma) == 2
len(lemma) == 3
len(lemma) == 4
len(lemma) > 4

(e) Lemma-to-form ratio.

Figure 14: Data statistics computed for the Dutch data.

27

min = 1, max = 25
mean = 4.15, std = 3.20

len(form): 0-5
len(form): 5-10
len(form): 10-15
len(form): 15-20
len(form): 20-25
len(form) > 30

(a) Surface form length distribution.

min = 1, max = 25
mean = 4.02, std = 3.09

len(lemma): 0-5
len(lemma): 5-10
len(lemma): 10-15
len(lemma): 15-20
len(lemma): 20-25
len(lemma) > 30

(b) Lemma length distribution.

min = 1, max = 201
mean = 24.82, std = 16.93

len(snt): 0-10
len(snt): 10-20
len(snt): 20-30
len(snt): 30-40
len(snt): 40-50
len(snt): 50-60
len(snt): 60-70
len(snt) > 70

(c) Sentence length distribution.
min = 0, max = 21

mean = 0.96, std = 1.59

children: 0-1
children: 2-3
children: 4-5
children: 6-7
children: 8-9
children: > 10

(d) Branching factor distribution.

min = 1, max = 34
mean = 1.48, std = 1.58

len(lemma) == 1
len(lemma) == 2
len(lemma) == 3
len(lemma) == 4
len(lemma) > 4

(e) Lemma-to-form ratio.

Figure 15: Data statistics computed for the Portuguese data.

min = 1, max = 47
mean = 5.13, std = 3.74

len(form): 0-5
len(form): 5-10
len(form): 10-15
len(form): 15-20
len(form): 20-25
len(form) > 30

(a) Surface form length distribution.

min = 1, max = 46
mean = 5.06, std = 3.71

len(lemma): 0-5
len(lemma): 5-10
len(lemma): 10-15
len(lemma): 15-20
len(lemma): 20-25
len(lemma) > 30

(b) Lemma length distribution.

min = 2, max = 205
mean = 17.82, std = 10.79

len(snt): 0-10
len(snt): 10-20
len(snt): 20-30
len(snt): 30-40
len(snt): 40-50
len(snt): 50-60
len(snt): 60-70
len(snt) > 70

(c) Sentence length distribution.
min = 0, max = 19

mean = 0.94, std = 1.35

children: 0-1
children: 2-3
children: 4-5
children: 6-7
children: 8-9
children: > 10

(d) Branching factor distribution.

min = 1, max = 60
mean = 2.71, std = 3.50

len(lemma) == 1
len(lemma) == 2
len(lemma) == 3
len(lemma) == 4
len(lemma) > 4

(e) Lemma-to-form ratio.

Figure 16: Data statistics computed for the Russian data.

28

Proceedings of the First Workshop on Multilingual Surface Realisation, pages 29–34
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

IIT (BHU) Varanasi at MSR-SRST 2018: A Language Model Based
Approach for Natural Language Generation

Avi Chawla, Ayush Sharma, Shreyansh Singh and A.K. Singh

Indian Institute of Technology (BHU), Varanasi, India
{avi.chawla.cse16,ayush.sharma.cse16}@iitbhu.ac.in
{shreyansh.singh.cse16,aksingh.cse}@iitbhu.ac.in

Abstract

This paper describes our submission sys-
tem for the Shallow Track of Surface Real-
ization Shared Task 2018 (SRST'18). The
task was to convert genuine UD struc-
tures, from which word order informa-
tion had been removed and the tokens had
been lemmatized, into their correct senten-
tial form. We divide the problem state-
ment into two parts, word reinflection and
correct word order prediction. For the
first sub-problem, we use a Long Short
Term Memory based Encoder-Decoder ap-
proach. For the second sub-problem, we
present a Language Model (LM) based
approach. We apply two different sub-
approaches in the LM Based approach
and the combined result of these two ap-
proaches is considered as the final output
of the system.

1 Introduction

SRST'18 (Mille et al., 2018), organized under
ACL 2018, Melbourne, Australia aims to re-obtain
the word order information which has been re-
moved from the UD Structures (Nivre et al., 2016).
Universal Dependency (UD) structure is a tree rep-
resentation of the dependency relations between
words in a sentence of any language. Made us-
ing the UD framework, the structure of the tree
is determined by the relation between a word and
its dependents. Each node of this tree holds the
Part of Speech (PoS) tag and morphological infor-
mation as found in the original annotations of the
word corresponding to that node.
The morphological information of a word includes
the information gained from the formation of the
word and its relationship with other words. Mor-
phological information includes gender, animacy,

number, mood, tense etc.
In this problem, we are given

1. Unordered dependency trees with lemma-
tized nodes.

2. The nodes hold PoS tags and morphological
information as found in the original annota-
tions.

3. The corresponding ordered sentences.

Our system may find its use in various NLP
applications like Natural Language Generation
(NLG) (Reiter and Dale, 1997). NLG is a major
and relatively unexplored sub-field of NLP. Our
system can be used in tasks like Question Answer-
ing, where you have the knowledge base with you
which may not necessarily be holding the correct
word order information but must be holding the
dependencies between the words. This is where
NLG is useful, where you take all the dependen-
cies available with you and try to generate lan-
guage from it which can be understood and in-
terpreted easily by the person or user. This sys-
tem also finds its application in other important
tasks like abstractive text summarization (Barzi-
lay and McKeown, 2005) and image caption gen-
eration (Xu et al., 2015), since having the correct
word order is a must for any text.
Our system makes use of a Long Short Term
Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) based Encoder-Decoder (Sudhakar and
Singh, 2017) approach to tackle the subproblem-
1 of this track, i.e word re-inflection and then we
make use of a probabilistic and statistical Lan-
guage Model to determine the correct word or-
der from the unordered sentences. Statistical Lan-
guage Modeling, or Language Modeling or LM in
short, is a technique which uses probabilistic mod-
els that are able to predict the next word in the se-
quence given the words that precede it. This is

29

Figure 1: Architecture of the Proposed Model - Word sequence (w1, w2, w3, ...,wn) is reinfected into (w′
1

, w2, w′
3, ..., wm), where w′

i are the changed words due to reinfection. Final output gives the LM Score
for the sequence of reinflected words. Model is run on different possible combinations and the sequence
with best LM Score is chosen.

done by assigning a probability to the whole se-
quence.
The shared task organizers provided the training
and a small development dataset for building our
systems. A period of about 3 weeks was given for
submitting our predictions on the test set.

The rest of the paper is structured as follows.
Section 2 discusses, in brief, the dataset for the
task. Section 3 explains our proposed approach
in detail. We discuss what models we have used
to re-inflect the words and generate ordered sen-
tences from the jumbled sentences. Section 4 ex-
plains how the system is evaluated and Section
5 states the results we have obtained. We have
also included an analysis of our system in Section
6. We conclude our paper and discuss its future
prospects in Section 7.

2 Data

We used the dataset provided by the shared task
organizers for training our system. No other ex-
ternal dataset was used in training. The dataset
of the shared task is comprised of two sets of
files, a .conll file containing the UD structures
of sentences, and a text file containing the or-
dered sentences along with their sentence ids. We
have worked only on the English language dataset.
There are around 12000 sentences in the training
file and approximately 3000 sentences in the de-
velopment file. The complete details of the dataset
can be found here1.

3 Proposed System

In the Shallow Track of the shared task, we had
two subproblems to deal with. First one was the
re-inflection problem and the second one involved

1http://taln.upf.edu/pages/msr2018-ws/
SRST.html#data

30

Output Word

O1 O2 O3 ... On

Softmax Layer

LSTM Decoder

Bidirectional
LSTM Encoder

Embedding Layer

C1 C2 C3 ... Cm

Root Word
Morphological Features

Figure 2: Architecture of the Word Re-inflection model - C1, .., Cm represent characters of the root word
while O1, ..,On represent characters of the output word.

the task of re-obtaining the correct word order
from the unordered UD structure. We shall refer to
these problems as Subproblem-1 and Subproblem-
2 subsequently in this paper. Subproblem-1 is the
word re-inflection problem and Subproblem-2 is
the word ordering problem.
The complete architecture of the proposed model
is shown in Figure 1.

3.1 Sub Problem-1: Word Re-inflection

In the given UD structure, the words are given in
lemmatized form. Before proceeding to determine
the correct order of words, these lemmatized
words must be re-inflected to convert them into
their correct form. For the task of re-inflection, we
implemented an LSTM based encoder-decoder
model. The morphological information is given in
CoNLL format. Since majority of the past work in
reinfection uses the UniMorph annotation format
of the morphological features, we first converted
our morphological features from CoNLL to
an approximation of the UniMorph format by
modeling a manual mapping between the two
tagsets. Eg. For the word “preacher”, the CoNLL

annotation format is Noun & Number=Sing. We
convert this to N;SING. This can be treated as
an approximation of the UniMorph annotation
format, which is sufficient for us.

This approach is based on a submission in the
CoNLL-SIGMORPHON-2017 Shared Task (Sud-
hakar and Singh, 2017). The model takes into
account the fact that the root word (lemmatized
form) and the target word (re-inflected form) are
similar except for the parts that have been changed
due to re-inflection. The model outputs the target
word character by character, thus handling both
the cases when there are prefix or suffix changes
(play to playing) or changes occurring in the
middle of the word (man to men).
The root word is represented using character in-
dices, while the associated morphological features
are represented in the form of a binary vector. A
root word embedding for each word is formed by
making a 64 dimensional character embedding
of each character. This embedding is fed into a
bidirectional LSTM encoder. The output of this
encoder, along with the root word embedding and

31

the binary vector representing the morphological
features, acts as input to the LSTM decoder. A
softmax layer is then used to predict the character
at each position of the output word. To maintain
a common length for all words, a padding of 0 is
used. The architecture of this model is shown in
Figure 2.

3.2 Sub Problem-2: Word-Ordering

We have used a probabilistic and statistical Lan-
guage Model to tackle this subproblem. After re-
inflecting the words in the UD-Structures, the next
step is to obtain the correct word-order of each
sentence. For this, we make use of the SRILM
Toolkit (Stolcke, 2002).

Before predicting the correct word-order, we
follow the following steps to train the Language
Model:

1. We generate a vocabulary file from the corpus
of ordered sentences. The vocab file is the list
of all unique words occurring in the corpus,
with each word in a different line.

2. After we have the vocab file with us, we make
use of this and the ordered sentence data to
generate a .lm file using the SRILM toolkit.
This file contains the probability scores of the
associated n-grams (till trigrams) present in
the corpus.

After calculating these probabilities, we move
on to solve the prime objective of this subprob-
lem, which is to find the correct word order of the
unordered sentences.

For this, we have used two methods. Select-
ing which method to use depends on the sentence
length.

• Method 1: 4-gram LM Based Approach

• Method 2: Variable n-gram LM Based Ap-
proach

Method 1 is used in cases where the sentence
length is more than 23 (23 being a hyperparameter
in this case) and Method 2 is used for sentences
having their length less than or equal to 23. Note
that we have predicted the sentences without any
punctuations in it. All the punctuations appearing
in a sentence were removed. However, a full stop
was added at the end of each predicted sentence.

We thoroughly describe the two methods below.

3.2.1 Method 1: 4-gram LM Based Approach
This method is used to find the correct senten-
tial form of those sentences which have length
greater than 23. We define the Language Model
score (LM score) of a string to be the probabil-
ity measure of that string being drawn from some
vocabulary. If the vocabulary is made using lin-
guistically correct sentences, then a higher Lan-
guage Model score indicates higher probability of
a sentence being linguistically correct. An ideal
approach would be to calculate the LM score of
all possible permutations of all the words in a sen-
tence and select the permutation with the highest
LM score. Since this is computationally very ex-
pensive (specially for large sentences), hence we
check for permutations of at most 4 words only. If
the sentence length is less than or equal to 4, we
select the permutation with the highest LM score.
For length greater than 3, we calculate the LM
score of all the possible 4-grams for the given sen-
tence. Then, we select the one which gives the
highest LM score and choose this as the start of
the sentence sequence. For determining rest of the
sequence, we follow the following steps:

1. Maintain a list of remaining words (LRW).
This list consists of all the words in the sen-
tence, except the 4 words which have been
selected as the start of the sentence sequence.

2. Repeat the following until no word is left in
LRW:

• For each word left in LRW, check which
word, on addition to the predicted se-
quence gives the maximum Language
Model Score. Let this word be w.

• Add w to the predicted sequence and re-
move it from LRW.

By following the above mentioned steps, we
get the final sequence of words as predicted by
Method-1 of our LM approach.

3.2.2 Variable N-gram LM Based Approach
This method was used to find the correct sentential
form of those sentences having length less than or
equal to 23. In this method, instead of only look-
ing for the best 4-gram, we look for various bi-
grams and trigrams as well. For example, for a
sentence of length 6, we break the sentence into
(3-gram, 2-gram, 1-gram), (2-gram, 2-gram, 2-
gram) and (3-gram, 3-gram). Similarly, we have

32

manually broken each sentence length into dif-
ferent combination of unigrams, bigrams and tri-
grams. We calculate the LM score of different rel-
ative arrangements of these n-grams. Out of all
the possible relative arrangements, the one which
gives the maximum LM Score is chosen as the pre-
diction of our model for that jumbled sentence.
The idea behind choosing different combinations
of n-grams is that a sentence is generally divided
into different chunks and if we are able to iden-
tify the chunks in which the words of a sentence
appear, we can then use a language model to find
which possible sequence would have been the best
out of all the different possible relative arrange-
ments of these chunks of words.

4 Evaluation

Cross Validation (CV): We trained our model
on the training data and did predictions on the
development data, both of which were provided
by the shared task organizers. These predictions
were considered as the CV Score of our model.
The metrics that were used to evaluate the model
were BLEU (Papineni et al., 2002), NE DIST and
NIST (Doddington, 2002). Evaluation script for
the same was also provided by the organizers.

Test: Once we were done with the optimal tun-
ing of our model using the CV score, we used our
model to generate ordered sentences on the test
data. We trained on the full training data for the
re-inflection task and combined the training and
development data to generate the language model
(.lm) file for the word-ordering task.

5 Results

We worked on Track 1 (Shallow track) of the
shared task for the English language. The perfor-
mances of our system, the system which scored the
highest for English and the system which scored
the highest when averaged over the scores of all
the languages is given in the table below. Evalu-
ation is done across various metrics provided by
the shared task organizers. Note that all the scores
given below are for English language only.

BLEU Score NE DIST NIST
IIT (BHU) Varanasi 8.04 47.63 7.71
Highest for English 69.14 80.42 12.02
Highest Average 55.29 65.9 9.58

Table 1: Scores for English on test data.

For word reinflection, the LSTM based
encoder-decoder model correctly predicted the re-
inflected forms of 95.8% words when trained on
the training dataset and tested on the development
dataset.

6 Analysis

Our model for the word reinflection sub-problem
produces good results. But, the results for the
word reordering sub-problem are not very good.
Total 8 teams submitted their systems in the shared
task, and our system was ranked the last for En-
glish by each of the three metrics given in the Re-
sults section. Some of the reasons for this are

• The sentences submitted as output did not
have punctuations except a full stop at the
end. Because of this, our sentences lacked
punctuations occurring inside a sentence.
Also, it is not necessary that a sentence ends
with a full stop only.

• Enumerating over permutations for the word
reordering sub-problem was computationally
expensive for sentences of length greater than
23. So, we had to use the 4-gram ap-
proach for such sentences, which does not
perform that well as the variable n-gram ap-
proach. Since there were many sentences
having length greater than 23 in the test set,
the overall results got adversely affected. For
example, “It looks pretty cool on the other
hand.” is a prediction by our model, which
is a decent sentence. However, the predic-
tion “There have been the us soldiers with
have to either even long since by arab fun-
damentalists local sunni radicals become re-
main or or relations sunnis committed na-
tionalism roiled falluja tense.”, which is 30
words long, does not appear to be a meaning-
ful English sentence.

• There is another important point worth notic-
ing with respect to the evaluation metrics. For
a given set of words, there may be more than
one linguistically correct word order. For ex-
ample, both the sentences “The boy reads a
book.” and “The book a boy reads.” are made
up of the same set of words and both are lin-
guistically correct as well. So, the algorithms
used for evaluation of results may not give the
highest possible score to a sentence even if it
is linguistically correct.

33

7 Conclusion and Future Work

In this paper, we described a system which treats
reinflection and word reordering as two indepen-
dent sub-problems. We have used an LSTM based
approach to solve the problem of re-inflection.
The LSTM model works on character embeddings
and predicts the re-inflected word character by
character. We have observed that this type of
model can be more effective and beneficial than
other elementary approaches like String Match-
ing (Cotterell et al., 2017) etc.

For the Word-Ordering problem, we have
worked with only statistical and probabilistic ap-
proaches till now and haven't yet incorporated any
deep learning based approach in our model. Neu-
ral models are state of the art in nearly all Nat-
ural Language Processing tasks and have always
performed better than statistical and probabilistic
approaches. So in future, we wish to experiment
with deep learning based approaches as well. One
major information we didn’t exploit is the depen-
dency relations between the words. We hope to
come up with a method to somehow quantify those
relations and use those values to calculate an im-
provised language model score. Also, since a de-
pendency tree can be interpreted as a graph, us-
ing graph matching and searching techniques is
another dimension we can explore.

References

Regina Barzilay and Kathleen R McKeown. 2005.
Sentence fusion for multidocument news summa-
rization. Computational Linguistics, 31(3):297–
328.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden. 2017.
Conll-sigmorphon 2017 shared task: Universal mor-
phological reinflection in 52 languages. CoRR,
abs/1706.09031.

George Doddington. 2002. Automatic evaluation
of machine translation quality using n-gram co-
occurrence statistics. In Proceedings of the Sec-
ond International Conference on Human Language
Technology Research, HLT ’02, pages 138–145, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018. The
First Multilingual Surface Realisation Shared Task
(SR’18): Overview and Evaluation Results. In Pro-
ceedings of the 1st Workshop on Multilingual Sur-
face Realisation (MSR), 56th Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 1–10, Melbourne, Australia.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajic, Christopher D
Manning, Ryan T McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, et al. 2016. Universal de-
pendencies v1: A multilingual treebank collection.
In LREC.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311–318,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57–87.

Andreas Stolcke. 2002. Srilm – an extensible lan-
guage modeling toolkit. In IN PROCEEDINGS
OF THE 7TH INTERNATIONAL CONFERENCE
ON SPOKEN LANGUAGE PROCESSING (ICSLP
2002, pages 901–904.

Akhilesh Sudhakar and Anil Kumar Singh. 2017. Ex-
periments on morphological reinflection: Conll-
2017 shared task. In Proceedings of the CoNLL SIG-
MORPHON 2017 Shared Task: Universal Morpho-
logical Reinflection, pages 71–78. Association for
Computational Linguistics.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual at-
tention. In International Conference on Machine
Learning, pages 2048–2057.

34

Proceedings of the First Workshop on Multilingual Surface Realisation, pages 35–38
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

Surface Realization Shared Task 2018 (SR18):
The Tilburg University Approach

Thiago Castro Ferreira and Sander Wubben and Emiel Krahmer
Tilburg center for Cognition and Communication (TiCC)

Tilburg University
The Netherlands

{tcastrof,s.wubben,e.j.krahmer}@tilburguniversity.edu

Abstract

This study describes the approach devel-
oped by the Tilburg University team to the
shallow track of the Multilingual Surface
Realization Shared Task 2018 (SR18).
Based on Castro Ferreira et al. (2017),
the approach works by first preprocess-
ing an input dependency tree into an or-
dered linearized string, which is then re-
alized using a statistical machine transla-
tion model. Our approach shows promis-
ing results, with BLEU scores above 40
for 4 different languages in development
and test sets (English, French, Italian and
Spanish) and above 30 for the Dutch and
Portuguese languages. The model is pub-
licly available1.

1 Introduction

This study presents the approach developed by the
Tilburg University team for the shallow track of
the Multilingual Surface Realization Shared Task
2018 (SR18) (Mille et al., 2018). Given a lemma-
tized dependency tree without word order infor-
mation, the goal of this task consists of linearizing
the lemmas in the correct order and realizing them
as a surface string with the proper morphological
form.

For the task, parallel datasets were provided
for 10 different languages and we developed our
model for 6 out of the 10 languages (Dutch, En-
glish, French, Italian, Portuguese, Spanish). We
started from the surface realization approach de-
scribed in Castro Ferreira et al. (2017), where
a semantic graph structure is first preprocessed
into a preordered linearized form, which is sub-
sequently converted into text using a statistical

1https://github.com/ThiagoCF05/
Dep2Text

machine translation model implemented in Moses
(Koehn et al., 2007). However for this shared
task, instead of a semantic structure, our current
approach preprocesses the lemmas of the depen-
dency tree into an ordered linearized version.

Although for the task sufficient parallel corpus
data, pairing dependency tree inputs to textual out-
puts, were made available to train and test our
approach, alignments between the source lemmas
and the target words were not provided. Since this
information is crucial to train our approach, we
implemented a method consisting of four consec-
utive strategies to obtain the alignments.

Except for two languages (Dutch and Por-
tuguese, ironically), our approach showed promis-
ing results, with BLEU scores higher than 40 in
development and test sets. In the remainder of
this paper, we describe the method in more detail:
Section 2 explains the alignment method, Section
3 describes the general approach, Section 4 de-
scribes the results and discussion of our approach
in development and test sets and, finally, Section
5 concludes the study, also describing future work
which can be done to improve the model.

2 Alignment

To train and test the models for multilingual sur-
face realization, parallel corpora pairing lemma-
tized dependency trees and their textual realiza-
tions were made available in 10 different lan-
guages. However, no word alignments between
the two sides were provided, which is a crucial
information to train part of our approach. So, to
obtain this information, we implemented four se-
quential alignment strategies.

Before applying these strategies, we first used
the spaCy software2 to tokenize, lemmatize and
dependency parse the target texts. Since spaCy

2https://spacy.io/

35

only provides models for 6 out of the 10 covered
languages, the approach described in this study is
limited to these six. For the Portuguese language,
we also parsed the contractions between preposi-
tion and determiners (e.g., da/do and na/no, corre-
sponding to of the and in the in English) into two
single tokens (de a/de o and em a/em o for the pre-
vious examples).

Once the target texts were preprocessed, the first
step simply compares the lemmas of the source
side with the words on the target side. If a lemma
on the source side and a word on the target side
matched with each other and not with any other
element, they were aligned.

In the second step, we applied the same com-
parison used in the first step, but now for the lem-
mas of the target words. If lemmas on source and
target sides only matched each other and no other
element, the source lemma was aligned to the cor-
responding target word.

The third step aimed to solve situations where
a source lemma matches more than one element
on the other side, by aligning the source and tar-
get lemmas with the same dependency tags which
only matched each other.

Finally, the fourth step matched the remaining
source and target lemmas of a parallel instance
with the shortest string distance.

Based on the alignment between source and tar-
get sides of a parallel instance, we trained our ap-
proach, as described in the following section.

3 Model

Our model is based on the NLG approach intro-
duced in Castro Ferreira et al. (2017), where a se-
mantic graph structure is first preprocessed into
a preordered linearized form, which is then con-
verted into its textual counterpart using a statisti-
cal machine translation model implemented with
Moses. However for this task, instead of a seman-
tic structure, our approach takes as input a lem-
matized dependency tree. In the next sections, we
explain the preprocessing and translation phases in
more detail.

3.1 Preprocessing
The preprocessing method consists of two steps:
linearization and partial realization.

Linearization aims to linearize a dependency
tree input without punctuation nodes into an or-
dering string format. Our approach is similar to

the 2-step classifier introduced in Castro Ferreira
et al. (2017). Its pseudo-code is depicted in Algo-
rithm 1.

The approach starts by deciding which first-
order child nodes are most likely to be before and
after its head node (lines 1-13). It uses a maxi-
mum entropy classifier φ1, trained for each lan-
guage based on the relevant aligned training set.
As features, this classifier uses the lemmas as well
as the dependency and part-of-speech tags of the
head and child nodes.

Once the nodes are split into a group of nodes
before and another group of nodes after their
heads, each one of these groups is ordered with an
algorithm similar to the MergeSort one (lines 14-
24 and function SORT). To decide the order of
two child nodes of a same group, we use a second
maximum entropy classifier φ2, also trained for
each language based on the corresponding aligned
training set. As features (line 44), it uses the lem-
mas as well as the dependency and part-of-speech
tags of the head and the two child nodes involved
in each comparison.

Partial realization aims to partially realize the
lemmas in the linearized representation. For each
language, it uses a lexicon created based on the
aligned information extracted from the datasets, as
explained in Section 2. Given a lemma and its fea-
tures, our approach looks for the most likely mor-
phological form in the lexicon.

3.2 Translation

For each one of the 6 languages which our ap-
proach covers, we built a phrase-based machine
translation model using the Moses toolkit (Koehn
et al., 2007). The MT model aims to convert a lin-
earized dependency tree generated during the pre-
processing step into text, adding the proper punc-
tuation marks.

Most of the model settings were copied from the
Statistical MT system introduced in Castro Fer-
reira et al. (2017). At training time, we extract and
score phrases up to the size of nine tokens. As fea-
ture functions, we used direct and inverse phrase
translation probabilities and lexical weighting, as
well as word, unknown word and phrase penalties.
These feature functions were trained using align-
ments from the training set obtained by MGIZA
(Gao and Vogel, 2008) (not by the ones extracted
according to Section 2). Model weights were
tuned on the development data using 60-batch

36

Algorithm 1 Linearization method
Require: depTree
1: function LINEAR(root, orderId)
2: before← ∅
3: after ← ∅
4: edges← getEdges(depTree, root)
5: for all edge ∈ edges do
6: node← edge.node
7: features1 ← f1(depTree, root, node)
8: if φ1(features1) == before then
9: before← before ∪ node

10: else
11: after ← after ∪ node
12: end if
13: end for
14: before← SORT(before)
15: for all node ∈ before do
16: orderId← LINEAR(node, orderId)
17: end for
18: root.orderId← orderId
19: orderId← orderId+ 1
20: after ← SORT(after)
21: for all node ∈ after do
22: orderId← LINEAR(node, orderId)
23: end for
24: return orderId
25: end function
26:
27: function SORT(nodes)
28: if |nodes| < 2 then
29: return nodes
30: end if
31: half ← |nodes|/2
32: end← |nodes|
33: nodes1 ← SORT(nodes[0, half))
34: nodes2 ← SORT(nodes[half, end])
35: ordNodes← ∅
36: while |nodes1| > 0 or |nodes2| > 0 do
37: if |nodes1| == 0 then
38: ordNodes← ordNodes∪ POP(nodes2)
39: else if |nodes2| == 0 then
40: ordNodes← ordNodes∪ POP(nodes1)
41: else
42: node1 ←POP(nodes1)
43: node2 ←POP(nodes2)
44: features2 ← f1(depTree, node1, node2)
45: if φ2(features2) == before then
46: ordNodes← ordNodes ∪ node1
47: ordNodes← ordNodes ∪ node2
48: else
49: ordNodes← ordNodes ∪ node2
50: ordNodes← ordNodes ∪ node1
51: end if
52: end if
53: end while
54: return ordNodes
55: end function
56:
57: LINEAR(depTree.root, 0)

Language BLEU
Dutch 35.26
English 58.92
French 59.28
Italian 50.33
Portuguese 54.76
Spanish 54.88

Table 1: BLEU scores of our approach in the tok-
enized development sets.

Language BLEU DIST NIST
Dutch 32.28 57.81 8.05
English 55.29 79.29 10.86
French 52.03 55.54 9.85
Italian 44.46 58.61 9.11
Portuguese 30.82 60.70 7.55
Spanish 49.47 51.73 11.12

Table 2: BLEU, DIST and NIST scores of our ap-
proach in the original (non-tokenized) test sets.

MIRA (Cherry and Foster, 2012) with BLEU as
the evaluation metric. A distortion limit of 6 was
used for the reordering models. We used two lexi-
calized reordering models: a phrase-level (phrase-
msd-bidirectional-fe) (Koehn et al., 2005) and a
hierarchical-level one (hier-mslr-bidirectional-fe)
(Galley and Manning, 2008). At decoding time,
we used a stack size of 1000. To rerank the can-
didate texts, we used a 5-gram language model
trained on the EuroParl corpus (Koehn, 2005) us-
ing KenLM (Heafield, 2011).

4 Results and Discussion

Table 1 summarizes the BLEU scores we obtained
on the tokenized development data for the 6 rele-
vant languages. For all languages (except Dutch)
our approach yielded BLEU scores of 50 or higher,
with the highest results obtained for French (with
a BLEU score of 59).

Table 2 depicts the BLEU, DIST and NIST
scores of our approach on the test sets for the 6
target languages. For most languages, the BLEU
scores on development and test set are compara-
ble, albeit somewhat lower. The scores for Por-
tuguese, however, are substantially lower, which
we explain as follows. In contrast to the results
on the development set, computed by the authors
for the lowercased tokenized version of the set,
the scores on the test, generated by the organizers,

37

computed the metrics comparing the generated
texts with the lowercased and non-tokenized gold-
standards. Although we parsed the contractions
between preposition and determiners in this lan-
guage to align source and target data (as explained
in Section 2), our approach did not generate these
contractions. That is the case, for instance, in the
sentence “greve na televisão pública francesa”
(i.e., strike on the French public television), gen-
erated by our model with the parsed contractions:
“greve em a televisão pública francesa”. We as-
sume this problem explain most of the drop in the
BLEU score of the test set in comparison with the
development one.

The low scores for Dutch in both develop-
ment and test set might be due to the way non-
segmented words of this language were repre-
sented on the source side of the datasets, i.e., their
units were split by an underscore. During the sur-
face realization process, our approach did not real-
ize this representation in its correct form, as in the
case of the sentence “Mijn basis niveau is flink
omhoog gegaan.”, where the correct form of ba-
sis niveau is basisniveau. This may have nega-
tively affected the performance of our approach.

5 Conclusion

This study described a shallow surface realizer
for 6 languages in the Surface Realization Shared
Task 2018 (SR18), with promising results. In
future work, we aim to fix the problem of non-
segmented words in the Dutch language, as well as
the contraction generation in the Portuguese one.
Moreover, we aim to evaluate the performance of
Neural Machine Translation models in compari-
son with the statistical used here, in the veins of
Castro Ferreira et al. (2017) for AMR-to-text.

References

Thiago Castro Ferreira, Iacer Calixto, Sander Wubben,
and Emiel Krahmer. 2017. Linguistic realisation as
machine translation: Comparing different mt mod-
els for amr-to-text generation. In Proceedings of the
10th International Conference on Natural Language
Generation, pages 1–10. Association for Computa-
tional Linguistics.

Colin Cherry and George Foster. 2012. Batch tun-
ing strategies for statistical machine translation. In
Proceedings of the 2012 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-

gies, NAACL-HLT’12, pages 427–436, Montreal,
Canada. Association for Computational Linguistics.

Michel Galley and Christopher D. Manning. 2008. A
simple and effective hierarchical phrase reordering
model. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP’08, pages 848–856, Honolulu, Hawaii.
Association for Computational Linguistics.

Qin Gao and Stephan Vogel. 2008. Parallel implemen-
tations of word alignment tool. In Software Engi-
neering, Testing, and Quality Assurance for Natural
Language Processing, SETQA-NLP’08, pages 49–
57, Columbus, Ohio. Association for Computational
Linguistics.

Kenneth Heafield. 2011. Kenlm: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, WMT
’11, pages 187–197, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79–86.

Philipp Koehn, Amittai Axelrod, Alexandra Birch,
Chris Callison-Burch, Miles Osborne, and David
Talbot. 2005. Edinburgh System Description for the
2005 IWSLT Speech Translation Evaluation. In In-
ternational Workshop on Spoken Language Transla-
tion.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
ACL’07, pages 177–180, Prague, Czech Republic.
Association for Computational Linguistics.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018. The
First Multilingual Surface Realisation Shared Task
(SR’18): Overview and Evaluation Results. In Pro-
ceedings of the 1st Workshop on Multilingual Sur-
face Realisation (MSR), 56th Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 1–10, Melbourne, Australia.

38

Proceedings of the First Workshop on Multilingual Surface Realisation, pages 39–48
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

The OSU Realizer for SRST ’18:
Neural Sequence-to-Sequence Inflection and
Incremental Locality-Based Linearization

David L. King
The Ohio State University
Department of Linguistics

Columbus, Ohio
king.2138@osu.edu

Michael White
The Ohio State University
Department of Linguistics

Columbus, Ohio
mwhite@ling.osu.edu

Abstract

Surface realization is a nontrivial task
as it involves taking structured data and
producing grammatically and semanti-
cally correct utterances. Many compet-
ing grammar-based and statistical models
for realization still struggle with relatively
simple sentences. For our submission to
the 2018 Surface Realization Shared Task,
we tackle the shallow task by first gen-
erating inflected wordforms with a neural
sequence-to-sequence model before incre-
mentally linearizing them. For lineariza-
tion, we use a global linear model trained
using early update that makes use of fea-
tures that take into account the dependency
structure and dependency locality. Us-
ing this pipeline sufficed to produce sur-
prisingly strong results in the shared task.
In future work, we intend to pursue joint
approaches to linearization and morpho-
logical inflection and incorporating a neu-
ral language model into the linearization
choices.

1 Introduction

We participated in the surface track of the 2018
Surface Realization Shared Task (Mille et al.,
2018, SRST ’18). In the surface track, task inputs
were created by extracting sentences in 10 lan-
guages from the Universal Dependency treebanks
corpus, scrambling the words and converting them
to their citation form. The task was then to gen-
erate a natural and semantically adequate sentence
by inflecting and ordering the words.

Our aims in participating in the shared task were
twofold. First, we aimed to investigate the ex-
tent to which neural sequence-to-sequence mod-
els developed for the 2016 and 2017 SIGMOR-

PHON shared tasks on morphological reinflec-
tion (Faruqui et al., 2016; Kann and Schütze,
2016) could be adapted to the more realistic set-
ting for generation of SRST ’18. Second, we
aimed to investigate the extent to which depen-
dency locality (Gibson, 2000) features previously
shown to be important for grammar-based genera-
tion in English (White and Rajkumar, 2012) and in
corpus-based studies of syntactic choice (Temper-
ley, 2007; Liu, 2008; Gildea and Temperley, 2010;
Rajkumar et al., 2016) would also prove effective
with incremental, dependency-based linearization
(Liu et al., 2015; Puduppully et al., 2016) across
languages.

At an overview level, our system treats the task
of surface realization as a simple two-stage pro-
cess. First, we convert uninflected lexemes to
fully inflected wordforms using the grammatical
features supplied by the UD corpus; and second,
we incrementally linearize the inflected words us-
ing the supplied syntactic dependencies, grammat-
ical features and locality-based features that take
dependency length and phrase size into account.
A simple rule-based detokenizer attaches punctu-
ation to adjacent words in a final step. The system
was trained using only the supplied data. We leave
for future work investigating ways to jointly make
inflection and linearization choices and to incor-
porate a neural language model.

2 Background

The intuition behind using neural and statistical
models for learning morphology originated with
what Ackerman et al. (2009) referred to as the
Paradigm Cell Filling Problem (PCFP). For any
given learner, human or machine, there exists no
input such that exposing the learner to that input
will also expose the learner to every possible in-
flected wordform. Nevertheless, humans can rou-

39

Person Singular Plural
1st ich singe ???
2nd du singst ???
3rd ??? sie singen
Person Singular Plural
1st ??? wir hören
2nd ??? ihr hört
3rd er/sie/es hört ???

Table 1: For SRST ’18, our hypothesis is that
our system will not see every fully inflected word
form in the training data. For example, given
partial paradigms for the German verbs for SIN-
GEN (‘to sing’) and HÖREN (‘to hear’), we should
have enough information for our system to learn
the paradigm of TRINKEN, given only its citation
form.

tinely and accurately fill in paradigm tables for
wordforms they may have never even produced
before. For any language learner, the PCFP states
that a learner must take incomplete input (as seen
in Table 1) and be able to produce fully inflected
paradigm tables for novel words (e.g. Table 2).

Person Singular Plural
1st ich trinke wir trinken
2nd du trinkst ihr trinkt
3rd er/sie/es trinkt sie trinken

Table 2: The inferred paradigm for TRINKEN (‘to
drink’) as learned by the partial paradigms for SIN-
GEN (‘to sing’) and HÖREN (‘to hear’) from Table
1.

There has been extensive work computationally
to combat the PCFP (Nicolai et al., 2015; Dur-
rett and DeNero, 2013) and multiple shared tasks
(Cotterell et al., 2016, 2017). Recently, models
utilizing recurrent neural networks have proven
most effective at the PCFP and have produced
state-of-the-art results in the last two SIGMOR-
PHON shared tasks (Kann and Schütze, 2016).
Although we think this approach lends itself to
our task, in that we need to produce fully inflected
wordforms along with linearizing them, Kann and
Schütze’s system has only been tested on SIG-
MORPHON data and, to our knowledge, has never
been used in a downstream task such as surface re-
alization.

Turning now to dependency locality, Rajku-

mar et al. (2016) provide an overview of the
literature on how locality considerations affect
syntactic choice in human language production.
The tendency to minimize dependency length
has a long history of study going back to Be-
haghel’s (1932) principle of end weight. More re-
cently, Hawkins (1994; 2004) and Gibson (2000)
have advanced theories contending that ease of
production and comprehension favors a preference
for dependency locality, bolstered not only by the
corpus studies cited earlier but also a wide range
of experimental studies. Rajkumar et al. (2016)
additionally demonstrate a significant preference
for dependency locality in syntactic choice even
in the presence of strong controls for surprisal and
memory depth. In Section 6, we show that the fea-
tures we designed to capture locality preferences
yield impressive gains on automatic metric scores
across languages in the context of our incremental
linearization system.

3 Morphological Inflection

As an initial stage in our realization process, we
first predict the fully inflected wordforms from
the supplied lexemes. We inflect the morpholog-
ical forms before linearization in order to allow
the surface forms to be used as features for lin-
earization, but acknowledge that these steps would
ideally be done jointly. For English, a high re-
source language, morphological inflection is rel-
atively simple to do with existing rule-based re-
sources like MorphG.1 To predict fully inflected
word forms in other languages as well, we ex-
ploit recent advances in neural machine translation
(NMT) as implemented by Kann and Schütze in
the two most recent SIGMORPHON shared tasks.
Their system is based on Bahdanau et al.’s (2014)
attention-based NMT architecture and models the
task of wordform prediction as a kind of transla-
tion of one sequence to another.

Figure 1 shows the original architecture devel-
oped by Faruqui et al. (2016). Given Kann and
Schütze’s success in adapting this architecture to
work with the SIGMORPHON data, we adopt
their architecture hypothesizing that it will gener-
alize to the SRST ’18 data. The architecture uses
gated recurrent units (Chung et al., 2015, GRU),
a kind of recurrent neural network, whose hidden
state ht depends on the current input xt, the pre-
vious hidden state ht−1, and nonlinear function f

1https://github.com/knowitall/morpha

40

Figure 1: A graphical representation of the architecture originally introduced by Faruqui et al. (2016)
and adapted by Kann and Schütze (2016) to handle SIGMORPHON2016 input. A bidirectional GRU
creates an encoding of the input wordform and supplied features. That encoding is subsequently fed to
the decoder GRU along with the original input wordform.

at time t. Similarly, context c for a given sequence
is defined as the output from nonlinear function q
over all the hidden states from time step 1 to t over
the length of sequence x.

ht = f(xt, ht−1) (1)

c = q(h1, ..., hTx) (2)

Since we used a bidirectional GRU, we set hj
to be the the concatenated vectors of the forwards
and backwards encoding of the sequence:

hj =

[−→
hTj ,
←−
hTj

]T
(3)

We define inference (the decoding step) of out-
put y given input sequence x as a distribution of
possible output strings:

p(y|x) =
Ty∏

t=1

p(yt|{y1, ..., yt − 1}, st, ct) (4)

This distribution is derived from the product of
previous individual outputs y1, y2, ..., yt−1 up to
the current time step t to produce the most likely
output yt. Output y is also dependent on st (the
hidden state of the decoder) and context ct (the
weighted sum of annotations produced by the en-
coder):

ci =
Tx∑

j=1

αijhj (5)

Where we calculate weights αij for hj as:

αij =
exp(eij)∑Tx

k=1 exp(eik)
(6)

eij = a(si−1, hj) (7)

We used standard cross-entropy loss, 300 hid-
den units for both the encoder and decoder. We
followed Kann and Schütze by training the model
using minibatches of 20 and Adadelta (Zeiler,
2012). For the datasets, we used the entirety of
the supplied training data, but only used a random
sample of 6000 items from the development set to
speed up training. Models for each language were
trained until wordform prediction accuracy on the
development set was over 98% or up to 30 epochs
with early stopping. Dropout was set to 0.5.

Table 3 shows our system’s performance in se-
lecting fully inflected wordforms on the develop-
ment set. We also supply two competing baselines
as a point of comparison: one in which our sys-
tem just copies the citation form supplied and one
where it only selects the most common inflected
wordform seen in training. By and large, we see
tremendous improvements in selecting the correct
wordform.

Our final feature set included any features sup-
plied by the data, in addition to features from im-
mediate children and parents in the dependency
tree. We made use of all features from a given

41

Language
Model ar cs en es fi fr it nl pt ru
Lemma 11.5 32.9 67.0 45.5 24.9 48.9 50.8 62.9 51.5 6.2
Majority 50.7 43.0 67.5 59.2 26.2 58.5 58.9 65.1 60.3 34.1
MED 92.3 91.7 89.2 99.2 98.6 98.3 92.1 88.5 96.1 90.1

Table 3: Morphological inflection results on the development set compared to baseline results of simply
copying the lemma or using the most frequent inflected wordform.

word and any features from any parent word. We
also chose to exclusively add features from chil-
dren with argument relations (i.e. dobj, nsubj,
csubj, etc.), with the intuition that, for example,
the argument of a verb would influence a given
verb’s inflection, while an adverb might not. To
illustrate this, as seen in Figure 2, in the frag-
ment DIT IS MOOI ... (‘That is beautiful’), the
features from DIT facilitate properly inflecting the
verb ZIJN (‘to be’) as IS (‘is’) and not BENT or
BEN (‘are’ or ‘am’ respectively), since the feature
‘Person=3’ is not encoded in the copula, but rather
in the pronoun. Meanwhile the advmod relation is
not helpful in informing our system how to inflect
ZIJN.

Dit is mooi . . .

nsubj advmod

Figure 2: An example (from the Dutch training
set) of how child dependencies with argument re-
lations help with inflection, while other modifier
relations do not. The person features in DIT help
to realize ZIJN as IS and not BENT or BEN. How-
ever, the features from the advmod relation are not
helpful.

4 Linearization

Previous work on dependency-based surface re-
alization (Bangalore and Rambow, 2000; Filip-
pova and Strube, 2007, 2009; Guo et al., 2008;
Bohnet et al., 2010, 2011; Guo et al., 2011; Zhang
and Clark, 2015) has emphasized bottom-up ap-
proaches that make relatively little use of depen-
dency locality. For this task, we opted to follow
Liu et al. (2015); Puduppully et al. (2016) in taking
an incremental approach to linearization so as to
be compatible with future work incorporating neu-
ral language models (Wen et al., 2015; Dušek and
Jurcicek, 2016; Konstas et al., 2017) while giving
greater emphasis to locality considerations.

<s> from the AP story this comes :

next root

case
det

obl
nsubj

det punct

Figure 3: Example candidate realization, with AP
as the next word and remaining words (with dotted
dependencies) still in the randomized input order.

In our approach, a candidate realization is a
(partial) permutation of the input words. Candi-
dates are generated by extending a previous candi-
date with an input word that has not yet been cho-
sen, as illustrated in Figure 3. Since the number
of candidates is factorial in the number of input
words, beam search is employed with scores com-
puted using a global linear model. By tracking the
way in which the input words are permuted, fea-
tures can be calculated both from the candidate se-
quence as well as from the input dependency tree.

To further constrain linearization choices, pro-
jective outputs can be enforced by ensuring that
all output phrases are continuous. To do so, we
calculate the successors of the previous word and
require the next word choice to be a descendant
of one of the successors. If the previous word has
child words in the dependency tree that have not
yet been linearized, then the successors are the as-
yet-unselected children. Otherwise, the successors
include the unrealized parent and siblings of the
previous word; if all those words have been cov-
ered, successors are calculated by recursing up the
tree.

Since we found that 2.5% of the English devel-
opment trees contained non-projective trees (even
ignoring punctuation as a source of discontinu-
ity), we opted to allow non-projective outputs
to be generated. To do so, we used a discon-
tinuity feature to encourage the model to learn
that most choices should yield continuous phrases,

42

Events Base Predictors Locality Predictors
next word trigram word, stem and POS
dependency ordering whether initial or final; parent and

child stems, POSs, grammatical fea-
tures and dep relation; sibling stem,
POS and dep rel

difference in log binned size of sib-
ling subtree

completed arc whether projective; parent and child
stems, POSs and dep relation

log binned dependency length

discontinuity trigram POS; bigram dep relation;
relation of extraposed dep

log binned size of extraposed subtree

Table 4: Linearization features, which combine events with different base and locality predictors.

where the next word is taken to introduce a dis-
continuity if it is not a descendant of the pre-
vious word’s successors. A benefit of this soft
approach to enforcing projectivity is that all se-
quences can be generated in principle. Note that
our approach to calculating successors is simi-
lar to (though simpler than) the aforementioned
transition-based approaches while also allowing
limited non-projectivity.

We used scikit-learn’s implementation2 of the
passive-aggressive classifier (Crammer et al.,
2006) for our global linear model. The model was
trained discriminatively using early update with
the additional requirement that the gold candi-
date be top-ranked in the beam (Puduppully et al.,
2016). Mini-batches were processed in parallel
by averaging the updated models. To encourage
faster training, we averaged the models after each
mini-epoch of only a few mini-batches, rather than
waiting to the end of an entire training epoch.
Nevertheless, we suspect that the models were un-
dertrained as training often failed to reach the end
of longer sentences even after 12 hours of training
using between 12 and 28 processors (not all lan-
guages were given 28 processors to obtain faster
throughput). Looking at the training curve for
English, we obtained good performance after 10
epochs but the BLEU score on the development set
was still generally increasing when training timed
out at 30 epochs.

Our feature set is summarized in Table 4.
Features are based on four kinds of events that
are calculated as each word is added: next-word
events, dependency-ordering events, completed-
arc events and discontinuity events. A variety of
predictors are extracted for each kind of event,
as shown in the table. Base features include

2http://scikit-learn.org

trigram word-, POS- and stem-sequences, parent
and child stems, dependency relations, parent and
child grammatical features, and whether a word
is initial or final in its phrase. Locality-based
features additionally include binned dependency
length for completed arcs, binned difference in
size of sibling subtrees and binned size of any
extraposed dependent subtree. For lookahead, an-
cestor ordering features are calculated in the same
way as the head-dependent ordering features, so
for example starting a sentence with a determiner
entails that its head noun will precede its parent
(e.g. the main verb). Features are count-based and
constructed by combining each event with each of
its predictors and each pair of two predictors. For
example, when adding AP in Figure 3 as the next
word, one of the constructed features pairs the
previous two POS tags with the next-word event
as next word=AP:prev2 pos=IN:prev pos=DT

and its count is incremented.

For ease of implementation, we limited the
model to count-based features. By contrast, in
previous work with a bottom-up, chart-based re-
alizer, White and Rajkumar (2012) found it help-
ful to include a feature whose value was the total
dependency length of a constituent. In the incre-
mental setting here, we expect that the binned rel-
ative size of siblings is the most helpful locality-
based feature for ordering, as the binned depen-
dency length feature likely does not become avail-
able in a timely fashion in the beam search with
long dependencies. In future work, we plan to
investigate ways to better model the total depen-
dency length incrementally by accumulating the
sum of open dependencies in candidate realiza-
tions.

43

Language
BLEU ar cs en es fi fr it nl pt ru
NoLoc 27.5 47.5 56.8 57.9 33.1 34.6 36.7 23.5 44.1 45.8
Dev 29.3 53.7 68.9 65.0 35.9 38.4 42.3 26.2 48.0 56.6
Test 25.6 53.2 66.3 65.3 37.5 38.2 42.1 25.5 47.6 57.9
DIST
NoLoc 40.1 53.6 66.1 53.5 55.8 51.9 51.0 47.7 74.3 51.9
Dev 42.7 58.1 71.9 62.9 56.3 55.0 55.1 47.4 73.5 58.9
Test 46.7 58.1 70.2 61.5 58.7 53.7 59.7 57.8 66.0 59.9
NIST
NoLoc 7.39 13.0 11.4 12.1 9.18 8.64 8.54 7.27 8.92 13.6
Dev 7.50 13.4 12.2 12.7 9.40 8.90 8.92 7.45 9.24 14.1
Test 7.15 13.5 12.0 12.7 9.56 8.00 8.70 7.33 9.13 14.2

Table 5: Automatic metric results for combined system on development and test sets, along with ablation
results with no locality features (NoLoc) for the dev set.

5 Results

Many of our results were turned in late because
of library compatibility issues: in particular, since
Kann and Schütze’s code is based on an outdated
version of Theano, which is difficult to support, we
could not port the morphology inflection system to
more powerful computing clusters and were thus
limited to training on a single unit with only one
GPU. Nevertheless, we were careful to perform no
further development after the deadline, and the or-
ganizers encouraged us to submit results for all of
the languages when we could.

Automatic metric results for the combined
morphological inflection and linearization system
(with rule-based detokenizer) appear in Table 5,
along with no-locality ablation results discussed
in the next section. Results for the development
and test sets were fairly consistent across all three
automatic metrics used in the shared task. Based
on the test results shared with the participants, our
combined system was among the top performers
for all languages, with particularly strong BLEU
results for Arabic, Czech, Spanish, Finnish, Por-
tuguese and Russian (French, Italian and Dutch
may have suffered from undertrained linearization
models). Metric scores varied widely across the
languages, though the variation was largely con-
sistent with that observed by other participants,
suggesting that some languages are more chal-
lenging than others for surface realization (or at
least more difficult to achieve high metric scores
with).

6 Analysis and Discussion

6.1 Morphological Inflection

Compared to previous work in the context of the
SIGMORPHON shared tasks, the SRST ’18 in-
put and output vocabulary for the morphologi-
cal inflection system was much larger. Having
a larger search space seems to have affected lan-
guages non-uniformly. Although we have differ-
ent feature sets, Spanish and Russian seem to be
unaffected where as Dutch and English scores are
drastically lower than expected.

At the actual sub-word level, sequence to se-
quence models are unable to take account of con-
text originating from outside the input sequence.
For example, we observe that the model frequently
confuses when to use English ‘a’ and ‘an’, since
the information necessary to make this prediction
does not occur within the character sequence for
the word. In future work, an architecture that
jointly performs linearization and morphological
inflection could address this issue.

Another error type seen at the sub-word level is
that although the system learns what affixes look
like in a given language, it does not always learn
exactly how to apply them, as often seen with Rus-
sian. For example, when the system should pro-
duce UCHENYJ (‘scientist)’ and instead produces
UCHENOGO, it is confusing the adjectival ending
of -OGO for the nominal ending -YJ, both of which
however mean masculine, singular, and genitive.

44

Language
ar cs en es fi fr it nl pt ru

Rate 8.25 12.3 2.43 9.21 7.04 4.11 5.16 8.96 10.6 7.16
Recall 16.2 16.9 16.7 13.8 9.57 6.00 3.45 35.7 18.6 26.9
Precision 25.0 62.0 47.1 44.7 52.9 15.8 25.0 34.9 68.8 23.8

Table 6: Non-projective dependency prevalence, recall and precision in the development set.

. . . at such a ridiculously high price that . . . too high for . . .

det:predet

mark

advcl

Figure 4: Example from the development set where a non-projective adverbial clause dependency from
such to high is successfully reproduced, enhancing fluency.

6.2 Linearization

To examine the impact of the dependency local-
ity features, we trained an ablated model with no
locality features and compared its performance on
the development set to the full model, as shown
in Table 5. The ablated model performed worse
for all languages with BLEU & NIST, and for
most languages with DIST. Moreover, the locality-
based features achieved impressive gains in BLEU
scores ranging between 2 and 12 points, with the
most dramatic gains for Spanish, Russian and En-
glish.

We also investigated whether the full model bet-
ter approximated the total dependency length of
the gold development sentences than the ablated
model, but the results were inconclusive, with the
full model coming closer to gold for some lan-
guages but not others. With better incremental
features for modeling total dependency length, we
plan to investigate in future work whether locality-
based features can indeed better match the gold to-
tal dependency length in an incremental setting, as
found in our earlier work with a bottom-up, chart-
based realizer (White and Rajkumar, 2012). Nev-
ertheless, we did find many examples such as the
one in Table 7 where the locality-based features
helped to ameliorate search errors. In the table, the
realization using the ablated model (NoLoc) fails
to linearize the dependents al Sadr - ’s anywhere
near their head Muqtada, mistakenly leaving them
till the end of the sentence where they contribute to
a much higher total dependency length than in the

gold sentence (Gold) or the realization using the
full model (Dev). Note that the full model does
not correctly order the name Muqtada al-Sadr ei-
ther, but the realization is still much easier to in-
terpret as intended. As an aside, the realization
also includes another local ordering error, before
only three months; we expect that incorporating a
neural language model in future work will resolve
many problems of this kind.

Turning now to non-projectivity, we found that
sentences with extraposed phrases like those in the
gold sentences were sometimes successfully gen-
erated. Table 6 shows that the percentage of sen-
tences in the development set with at least one
non-projective dependency ranged from a low of
2.5% for English to over 12% for Czech.3 Re-
call of the gold non-projective dependencies was
generally low, while precision was generally more
reasonable, reaching 62% for Czech. Restricting
outputs to be projective generally led to small de-
creases in BLEU scores on the development set,
with English and Czech seeing the largest drops
of 1.5 and 3.3 points, respectively, though Finnish
and Russian witnessed improvements of nearly 1
BLEU point. An example illustrating the success-
ful realization of a non-projective dependency ap-
pears in Figure 4; by contrast, if only projective
dependencies are allowed, the best possible real-
ization would still be the quite unnatural . . . at a

3A dependency between a head and its dependent was
considered projective if all the intervening words (ignoring
punctuation tokens) in the linearized sequence were descen-
dants of the head.

45

Gold: the Coalition decision to provoke a fight
with Muqtada al - Sadr ’s movement only three
months before the Coaliti on Provisional Au-
thority goes out of business has to be seen as
a form of gross incompetence in governance .
(deplen 84)
NoLoc: the Coalition decision to pro-
voke a fight with Muqtada movement be-
fore three months only the Provisional Coali-
tion Authority goes out of business has to
be seen as a form of gross incompetence
in governance . al Sadr - ’s (deplen 144)
Dev: the Coalition decision to provoke a
fight with Muqtada - Sadr al ’s movement be-
fore only three months the Coalition Provisional
Authority goes out of business has to be seen as
a form of gross incompetence in governance .
(deplen 90)

Table 7: Example from the development set show-
ing how locality-based features help ameliorate
search errors (with total dependency length in
parentheses).

ridiculously high price such that

7 Conclusion

We have shown surprisingly competitive results by
modeling realization as a two-stage process where
we first generate morphologically inflected word-
forms using a neural sequence-to-sequence model
and then incrementally linearize those wordforms
using a global linear model. We additionally show
that NMT systems, which have been producing
state-of-the-art results in morphological reinflec-
tion, can be generalized and integrated into other
tasks. We also find that dependency structure and
dependency locality are highly informative in the
linearization step and allow us to also generate
some cases of non-projectivity. In future work,
we intend to pursue coupling the learning of mor-
phological inflection and linearization into a single
process and using a neural language model to help
with linearization choices.

Acknowledgments

We thank Micha Elsner for helpful comments and
discussion. This work was supported in part by
NSF grants IIS-1319318 and IIS-1618336. The

work was also supported by an allocation of com-
puting time from the Ohio Supercomputer Center.

References
Farrell Ackerman, James P Blevins, and Robert Mal-

ouf. 2009. Parts and wholes: Implicative patterns in
inflectional paradigms. Analogy in grammar: Form
and acquisition, pages 54–82.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Srinivas Bangalore and Owen Rambow. 2000. Exploit-
ing a probabilistic hierarchical model for generation.
In Proc. COLING-00.

Otto Behaghel. 1932. Deutsche Syntax: eine
geschichtliche Darstellung. Band IV. Wortstellung.
Periodenbau. Heidelberg: Carl Universitatsbuch-
handlung, Germany.

Bernd Bohnet, Simon Mille, Benoı̂t Favre, and Leo
Wanner. 2011. Stumaba : From deep representa-
tion to surface. In Proceedings of the 13th Euro-
pean Workshop on Natural Language Generation,
pages 232–235. Association for Computational Lin-
guistics.

Bernd Bohnet, Leo Wanner, Simon Mill, and Alicia
Burga. 2010. Broad coverage multilingual deep sen-
tence generation with a stochastic multi-level re-
alizer. In Proceedings of the 23rd International
Conference on Computational Linguistics (Coling
2010), pages 98–106. Coling 2010 Organizing Com-
mittee.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2015. Gated feedback recur-
rent neural networks. In International Conference
on Machine Learning, pages 2067–2075.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden. 2017.
CoNLL-SIGMORPHON 2017 Shared Task: Uni-
versal morphological reinflection in 52 languages.
CoRR, abs/1706.09031.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 Shared Task—
Morphological Reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON, Berlin, Germany.
Association for Computational Linguistics.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. Online
passive-aggressive algorithms. Journal of Machine
Learning Research, 7:551–585.

46

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
HLT-NAACL, pages 1185–1195.

Ondřej Dušek and Filip Jurcicek. 2016. Sequence-to-
sequence generation for spoken dialogue via deep
syntax trees and strings. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
45–51. Association for Computational Linguistics.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning.
In Proc. of NAACL.

Katja Filippova and Michael Strube. 2007. Generating
constituent order in German clauses. In ACL 2007,
Proceedings of the 45th Annual Meeting of the Asso-
ciation for Computational Linguistics, June 23-30,
2007, Prague, Czech Republic. The Association for
Computer Linguistics.

Katja Filippova and Michael Strube. 2009. Tree lin-
earization in English: Improving language model
based approaches. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, Companion Volume:
Short Papers, pages 225–228, Boulder, Colorado.
Association for Computational Linguistics.

Edward Gibson. 2000. Dependency locality theory:
A distance-based theory of linguistic complexity.
In Alec Marantz, Yasushi Miyashita, and Wayne
O’Neil, editors, Image, Language, brain: Papers
from the First Mind Articulation Project Symposium.
MIT Press, Cambridge, MA.

Daniel Gildea and David Temperley. 2010. Do gram-
mars minimize dependency length? Cognitive Sci-
ence, 34(2):286–310.

Yuqing Guo, Josef van Genabith, and Haifeng Wang.
2008. Dependency-based n-gram models for
general purpose sentence realisation. In Proc.
COLING-08.

Yuqing Guo, Deirdre Hogan, and Josef van Genabith.
2011. Dcu at generation challenges 2011 surface
realisation track. In Proceedings of the 13th Eu-
ropean Workshop on Natural Language Generation,
pages 227–229. Association for Computational Lin-
guistics.

John A. Hawkins. 1994. A Performance Theory of Or-
der and Constituency. Cambridge University Press,
New York.

John A. Hawkins. 2004. Efficiency and Complexity in
Grammars. Oxford University Press.

Katharina Kann and Hinrich Schütze. 2016. MED: The
LMU system for the SIGMORPHON 2016 shared
task on morphological reinflection. ACL 2016,
page 62.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural amr:
Sequence-to-sequence models for parsing and gen-
eration. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 146–157. Associa-
tion for Computational Linguistics.

Haitao Liu. 2008. Dependency distance as a metric of
language comprehension difficulty. Journal of Cog-
nitive Science, 9(2):159–191.

Yijia Liu, Yue Zhang, Wanxiang Che, and Bing Qin.
2015. Transition-based syntactic linearization. In
Proceedings of NAACL, Denver, Colorado, USA.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018. The
First Multilingual Surface Realisation Shared Task
(SR’18): Overview and Evaluation Results. In Pro-
ceedings of the 1st Workshop on Multilingual Sur-
face Realisation (MSR), 56th Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 1–10, Melbourne, Australia.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 922–931. Association for
Computational Linguistics.

Ratish Puduppully, Yue Zhang, and Manish Shrivas-
tava. 2016. Transition-based syntactic linearization
with lookahead features. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 488–493, San Diego,
California. Association for Computational Linguis-
tics.

Rajakrishnan Rajkumar, Marten van Schijndel,
Michael White, and William Schuler. 2016. In-
vestigating locality effects and surprisal in written
English syntactic choice phenomena. Cognition,
155:204–232.

David Temperley. 2007. Minimization of dependency
length in written English. Cognition, 105(2):300–
333.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1711–1721. Association for Computational Linguis-
tics.

Michael White and Rajakrishnan Rajkumar. 2012.
Minimal dependency length in realization ranking.
In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,

47

pages 244–255, Jeju Island, Korea. Association for
Computational Linguistics.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701.

Yue Zhang and Stephen Clark. 2015. Syntax-based
word ordering using learning-guided search. Com-
putational Linguistics, 41(3).

48

Proceedings of the First Workshop on Multilingual Surface Realisation, pages 49–53
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

Generating High-Quality Surface Realizations Using Data Augmentation
and Factored Sequence Models

Henry Elder
ADAPT Centre,

Dublin City University, Ireland
henry.elder@adaptcentre.ie

Chris Hokamp
Aylien Ltd.

Dublin, Ireland
chris@aylien.com

Abstract

This work presents state of the art re-
sults in reconstruction of surface realiza-
tions from obfuscated text. We identify
the lack of sufficient training data as the
major obstacle to training high-performing
models, and solve this issue by gener-
ating large amounts of synthetic training
data. We also propose preprocessing tech-
niques which make the structure contained
in the input features more accessible to se-
quence models. Our models were ranked
first on all evaluation metrics in the En-
glish portion of the 2018 Surface Realiza-
tion shared task.

1 Introduction

Contextualized Natural Language Generation
(NLG) is a long-standing goal of Natural Lan-
guage Processing (NLP) research. The task of
generating text, conditioned on knowledge about
the world, is applicable to almost any domain.
However, despite recent advances on some tasks,
NLG models still produce relatively low quality
outputs in many settings. Representing the context
in a consistent manner is still a challenge: how can
we condition output on a stateful structure such as
a graph or a tree?

Several shared tasks have recently explored
NLG from inputs with graph-like structures; RDF
triples (Colin et al., 2016), dialogue act-based
meaning representations (Novikova et al., 2017)
and abstract meaning representations (May and
Priyadarshi, 2017). In each of these challenges,
the input has structure beyond simple linear se-
quences; however, to date, the top results in these
tasks have consistently been achieved using rela-
tively standard sequence-to-sequence models.

The surface realization task (Mille et al., 2018)
is a conceptually simple challenge: given shuffled
input, where tokens are represented by their lem-
mas, parts of speech, and dependency features, can
we train a model to reconstruct the original text?
A model that performs well at this task is likely
to be a good starting point for solving more com-
plex tasks, such as NLG from Resource Descrip-
tion Framework (RDF) graphs or Abstract Mean-
ing Representation (AMR) structures. In addition,
training data for the surface realization task can
also be generated in a fully-automated manner.

In this work, we show that training dataset
size may be the major obstacle preventing current
sequence-to-sequence models from doing well at
NLG from structured inputs. Although inputting
the structures themselves is theoretically appeal-
ing (Tai et al., 2015), for some tasks it may be
enough to use sequential inputs by flattening struc-
tures, and providing structural information via in-
put factors, as long as the training dataset is suffi-
ciently large. By augmenting training data using a
large corpus of unannotated data, we obtain a new
state of the art in the surface realization task using
off-the-shelf sequence to sequence models.

In addition, we show that information about
the output word order, implicitly available in the
universal dependency fields, provides essential in-
formation about the word order of correct output
sequences, confirming that structural information
cannot be discarded without a large drop in perfor-
mance.

The main contributions of this work are:

1. We show how training datasets can be aug-
mented with synthetic data

2. We apply preprocessing steps to simplify the
universal dependency structures, making the
structure more explicit

49

3. We evaluate copy attention models for the
surface realization task

2 The Surface Realization Shared Task

In the shallow track of the 2018 surface realization
(SR) shared task, inputs consist of tokens from a
universal dependency (UD) tree provided in the
form of lemmas. The original order of the se-
quence is obfuscated by random shuffling1.

Models are evaluated on their ability to recon-
struct the original, unshuffled input which gener-
ated the features. In order to do this, models must
make use of structural information in order to re-
order the tokens correctly as well as part-of-speech
and/or dependency parse labels in order to restore
the correct surface realization of lemmas. Note
that we focus upon the English sub-task, where
word order is critical because of the typologically
analytic nature of English, however, for other lan-
guages, restoring word order may be less impor-
tant, while deriving surface realizations from lem-
mas may be much more challenging.

3 Datasets

3.1 Augmenting Training with Synthetic
Datasets

To augment the SR training data, we used sen-
tences from the WikiText corpus (Merity et al.,
2016). Each of these sentences was parsed us-
ing UDPipe (Straka and Straková, 2017) to ob-
tain the same features provided by the SR organiz-
ers. We then filtered this data, keeping only sen-
tences with at least 95% vocabulary overlap with
the in-domain SR training data. Note that the in-
put vocabulary for this task is word lemmas, so at
least 95% of the tokens in each instance in our ad-
ditional training data are lemmas which are also
found in the in-domain data. The order of tokens
in each instance of this additional dataset is then
randomly shuffled to simulate the random input
order in the SR data.

We thus obtain 642,960 additional training in-
stances, which are added to the 12,375 instances
supplied by the SR shared task organizers.

1The task organizers also introduced a deep task, but since
ours was the only submission to the deep task, we save our
discussion of this task for future work.

4 Features

4.1 Leveraging Structured Features

Because we have the dependency parse features
for each input, some (noisy) information about
word order is implicitly available from the parse
information; however, discovering the structural
relationship between the dependency parse fea-
tures and the order of words in the output se-
quence is likely to be challenging for our sequence
to sequence model. Therefore, we re-construct
the original parse tree from the dependency fea-
tures, and perform a depth-first search to sort and
reorder the lemmas. This is similar to the lin-
earization step performed by Konstas et al. (2017),
the main difference being we randomly choose
between child nodes instead of using a predeter-
mined order based on edge types.

In order to further augment the available con-
text, we experiment with adding potential delem-
matized forms for each input lemma. The possible
forms for each lemma were found by creating a
map from (lemma,xpos) → form, using the
WikiText dataset. For each input lemma and xpos,
we then check for the pair in the map – if it ex-
ists, the corresponding form is appended to the se-
quence. This makes forms available to the model
for copying.

For some (lemma,xpos) pairs there are mul-
tiple potential forms. When this occurs we add all
potential forms to the input sequence. The map-
ping was found to cover 98.9% of cases in the de-
velopment set.

4.2 Factored Inputs

Factored models were introduced by Alexan-
drescu et al. (2006) as a means of including ad-
ditional features beyond word tokens into neural
language models. The key idea is to create a sep-
arate embedding representation for each feature
type, and to concatenate the embeddings for each
input token to create its dense representation. Sen-
nrich et al. (2016) showed that this technique is
quite effective for neural machine translation, and
some recent work, such as Hokamp (2017) has
successfully applied this technique to related se-
quence generation tasks.

The embedding ej for each input token xj with

50

FEATURE DESCRIPTION VOCABULARY

SIZE

EMBEDDING

SIZE

lemma the lemma of the surface word 30004 300
XPOS the English part-of-speech label 53 16
position the position in the sequence 103 25
UPOS the universal part-of-speech label 20 8
head position the position of the head word according to the

dependency parser
100 25

deprel the dependency relation label according to the
dependency parser

51 15

Table 1: The features used in the factored models, along with the number of possible values the feature
may take, and the respective embedding size.

POSITION LEMMA XPOS UPOS HEAD POSITION DEPREL

1 learn VERB VB 2 acl
2 lot NOUN NN 4 nsubj
3 there PRON EX 4 expl
4 be VERB VBZ 0 root
5 about ADP IN 8 case
6 a DET DT 2 det
7 . PUNCT . 4 punct
8 Chernobyl PROPN NNP 1 obl
9 to PART TO 1 mark

Table 2: An example from the training data, containing all features we use as input factors.

factors F is created as in Eq. 1:

ej =

|F |n

k=1

Ekxjk (1)

where
f

indicates vector concatenation, Ek is the
embedding matrix of factor k, and xjk is a one
hot vector for the k-th input factor. Table 1 lists
each of the factors used in our models, along with
its corresponding embedding size. The embedding
size of 300 for the lemma is set in configuration,
while the embedding sizes of the other features
are set heuristically by OpenNMT-py, using the
heuristic |embeddingk| = |Vk|0.7, where |Vk| is
the vocabulary size of feature k. Table 2 gives an
example from the training data with actual instan-
tiations of each of the features.

5 Model

Models were trained using the OpenNMT-py
toolkit (Klein et al., 2017). The model archi-
tecture is a 1 layer bidirectional recurrent neu-
ral network (RNN) with long short-term memory

(LSTM) cells (Hochreiter and Urgen Schmidhu-
ber, 1997) and attention (Luong et al., 2015). The
model has 450 hidden units in the encoder and de-
coder layers, and 300 hidden units in the word
embeddings which are learned jointly across the
whole model. Dropout of 0.3 is applied between
the LSTM stacks. We use a coverage attention
layer (Tu et al., 2016) with lambda value of 1.

The models are trained using stochastic gradi-
ent descent with learning rate 1. A learning rate
decay of 0.5 is applied at each epoch once perplex-
ity does not decrease on the validation set. Models
were trained for 20 epochs. Output was decoded
using beam search with beam size 5. Unknown to-
kens were replaced with the input token that had
the highest attention value at that time step. The
approach of copying input tokens using attention
is commonly known as a pointer network (Vinyals
et al., 2015). Output from the epoch checkpoint
which performed best on the development set was
chosen for test set submission.

The exploration and choice of hyperparameters
was aided by the use of Bayesian hyperparameter

51

optimization platform SigOpt2.

6 Experiments

We experiment with many different combinations
of input features and training data, in order to
understand which elements of the representation
have the largest impact upon performance.

We limit vocabulary size during training to en-
able the network to generalize to unknown tokens
at test time. When using just the SR training data
we train word embeddings for the 15,000 most
frequent tokens from a possible 23,650 unique to-
kens. When using the combined SR training data
and filtered WikiText dataset we use the 30,000
most frequent tokens from a possible 106,367
unique tokens.

We trained on a single Tesla K40 GPU. Training
time was approximately 1 minute per epoch for the
SR data and 1 hour per epoch for the combined SR
data and filtered WikiText.

7 Results

We report results using automated evaluation met-
ric BLEU (Papineni et al., 2002). On the test
set we additionally report the NIST (Przybocki
et al., 2009) score and the normalized edit distance
(DIST).

SYSTEM BLEU

SR Baseline 21.27
SR + delemma suggestions 23.75
SR + delemma suggestions +
linearization

43.11

SR + delemma suggestions +
linearization + additional data

68.86

Table 3: Ablation study with BLEU scores for dif-
ferent configurations on the shallow task develop-
ment set

Table 3 presents the results of the surface real-
ization experiments. We observe three main com-
ponents that drastically improve performance over
the baseline model:

1. augmenting the training set with more data

2. reordering the input using the dependency
parse features

2https://sigopt.com/

3. providing potential forms via the delemmati-
zation map

Table 4 gives the official SR 2018 results from
task organizers. Our system, which corresponds
to the best configuration from Table 3 was ranked
first across all metrics.

TEAM ID BLEU DIST NIST

1 (Ours) 69.14 80.42 12.02
2 28.09 70.01 9.51
3 8.04 47.63 7.71
4 66.33 70.22 12.02
5 50.74 77.56 10.62
6 55.29 79.29 10.86
7 23.2 51.87 8.86
8 29.6 65.9 9.58

AVG 41.3 67.86 10.15

Table 4: Official results of the surface realization
shared task using BLEU, DIST and NIST as eval-
uation metrics.

8 Related Work

The surface realization task bears the closest re-
semblance to the SemEval 2017 shared task AMR-
to-text (May and Priyadarshi, 2017). Our ap-
proach to data augmentation and preprocessing
uses many insights from Neural AMR (Konstas
et al., 2017). Traditional data-to-text systems use
a rule based approach (Reiter and Dale, 2000).

9 Conclusion

The main takeaway from this work is that data
augmentation improves performance on the sur-
face realization task. Although unsurprising, this
result confirms that sufficient data is needed to
achieve reasonable performance, and that flattened
structural information such as dependency parse
features is insufficient without additional prepro-
cessing to reduce the complexity of the input. The
surface realization task is ostensibly quite simple,
thus it is surprising that baseline sequence to se-
quence models, which perform well in other tasks
such as machine translation, cannot solve this task.
We hypothesize that the lemmatization and shuf-
fling of the input does not provide sufficient in-
formation to reconstruct the input. In sequences
longer than a few words, there is likely to be sig-
nificant ambiguity without additional structural in-

52

formation such as parse features. However, recon-
structing the original sequence from unprocessed,
flattened parse information alone is unrealistic us-
ing standard encoder-decoder models.

In future work, we plan to explore more chal-
lenging variants of this task, while also experi-
menting with models that do not require feature-
specific preprocessing to make use of rich struc-
tural information in the input.

References
Andrei Alexandrescu and Katrin Kirchhoff. 2006.

Factored neural language models. In Proceedings
of the Human Language Technology Conference
of the NAACL, Companion Volume: Short Papers.
Association for Computational Linguistics, Strouds-
burg, PA, USA, NAACL-Short ’06, pages 1–4.
http://dl.acm.org/citation.cfm?id=1614049.1614050.

Emilie Colin, Claire Gardent, M Yassine, and Shashi
Narayan. 2016. The WebNLG Challenge : Generat-
ing Text from DBPedia Data. The 9th International
Conference on Natural Language Generation .

Sepp Hochreiter and J Urgen Schmidhu-
ber. 1997. Long Short-Term Mem-
ory. Neural Computation 9(8):1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735.

Chris Hokamp. 2017. Ensembling factored neural ma-
chine translation models for automatic post-editing
and quality estimation. In Proceedings of the Sec-
ond Conference on Machine Translation. Associa-
tion for Computational Linguistics, pages 647–654.
http://aclweb.org/anthology/W17-4775.

Guillaume Klein, Yoon Kim, Yuntian Deng,
Josep Crego, Jean Senellart, and Alexander M.
Rush. 2017. OpenNMT: Open-source Toolkit
for Neural Machine Translation pages 67–72.
https://doi.org/10.18653/v1/P17-4012.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-Sequence Models for Parsing and Gen-
eration https://doi.org/10.1145/nnnnnnn.nnnnnnn.

Minh-Thang Luong, Hieu Pham, and Christo-
pher D. Manning. 2015. Effective Approaches
to Attention-based Neural Machine Translation
https://doi.org/10.18653/v1/D15-1166.

Jonathan May and Jay Priyadarshi. 2017. SemEval-
2017 Task 9: Abstract Meaning Representa-
tion Parsing and Generation. SemEval pages
536–545. http://nlp.arizona.edu/SemEval-
2017/pdf/SemEval090.pdf.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer Sentinel Mixture
Models http://arxiv.org/abs/1609.07843.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018. The
First Multilingual Surface Realisation Shared Task
(SR’18): Overview and Evaluation Results. In Pro-
ceedings of the 1st Workshop on Multilingual Sur-
face Realisation (MSR), 56th Annual Meeting of the
Association for Computational Linguistics ({ACL}).
Melbourne, Australia, pages 1–10.

Jekaterina Novikova, OndÅŹej Dušek, and Verena
Rieser. 2017. The E2E Dataset: New Chal-
lenges For End-to-End Generation (August):201–
206. http://arxiv.org/abs/1706.09254.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. BLEU: A Method for Au-
tomatic Evaluation of Machine Translation. In
Proceedings of the 40th Annual Meeting on As-
sociation for Computational Linguistics. Asso-
ciation for Computational Linguistics, Strouds-
burg, PA, USA, ACL ’02, pages 311–318.
https://doi.org/10.3115/1073083.1073135.

Mark Przybocki, Kay Peterson, SÃl’bastien
Bronsart, and Gregory Sanders. 2009. The
NIST 2008 Metrics for machine translation
challenge—overview, methodology, metrics, and
results. Machine Translation 23(2):71–103.
https://doi.org/10.1007/s10590-009-9065-6.

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems. Cambridge Univer-
sity Press, New York, NY, USA.

Rico Sennrich and Barry Haddow. 2016. Linguis-
tic input features improve neural machine transla-
tion. In Proceedings of the First Conference on
Machine Translation, WMT 2016, colocated with
ACL 2016, August 11-12, Berlin, Germany. pages
83–91. http://aclweb.org/anthology/W/W16/W16-
2209.pdf.

Milan Straka and Jana Straková. 2017. Tokenizing,
POS Tagging, Lemmatizing and Parsing UD 2.0
with UDPipe. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies. Association for Compu-
tational Linguistics, Vancouver, Canada, pages 88–
99. http://www.aclweb.org/anthology/K/K17/K17-
3009.pdf.

Kai Sheng Tai, Richard Socher, and Christo-
pher D. Manning. 2015. Improved Seman-
tic Representations From Tree-Structured Long
Short-Term Memory Networks pages 1556–1566.
https://doi.org/10.1515/popets-2015-0023.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xi-
aohua Liu, and Hang Li. 2016. Model-
ing Coverage for Neural Machine Translation
https://doi.org/10.1145/2856767.2856776.

Oriol Vinyals, Meire Fortunato, and
Navdeep Jaitly. 2015. Pointer Networks
http://arxiv.org/abs/1506.03134.

53

Proceedings of the First Workshop on Multilingual Surface Realisation, pages 54–57
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

AX Semantics’ Submission to the Surface Realization Shared Task 2018

Andreas Madsack, Johanna Heininger, Nyamsuren Davaasambuu,

Vitaliia Voronik, Michael Käufl, and Robert Weißgraeber

AX Semantics, Stuttgart, Germany
{firstname.lastname}@ax-semantics.com

Abstract

In this paper we describe our system and
experimental results on the development
set of the Surface Realisation Shared Task
(Mille et al., 2017). Our system is an entry
for Shallow-Task, with two different mod-
els based on deep-learning implementa-
tions for building the sentences combined
with a rule-based morphology component.
We trained our systems on all 10 given lan-
guages.

1 Introduction

This paper describes our approach for the First
Multilingual Surface Realisation Shared Task
(Mille et al., 2018). For the surface task the de-
pendency parse trees were given unordered and the
words lemmatized. The objective was to order the
words in the sentences and to inflect the given lem-
mas. The data was provided in 10 languages: En-
glish, Spanish, French, Portuguese, Italian, Dutch,
Czech, Russian, Arabic, and Finnish.

Our aim was to build new deep learning based
ordering systems, augmented by using our already
implemented (rule-based) morphology for the in-
flection part. System 1 implemented the initial
idea and system 2 followed after mediocre results
in system 1.

Final scoring for the MSR shared task was using
System 2.

2 Linearization

Here we propose two systems: both are imple-
mented using Keras (Chollet et al., 2015) and Ten-
sorflow (Abadi et al., 2016), are trained using each
language from the CoNLL data sets separately and
finally also trained with all languages combined.
These two systems, however, differ in their inter-
nal models (see the following two sections).

To generate training data the given training
CoNLL data sets were matched to their corre-
sponding original data using tree based match-
ing. Each node was compared based on deprel,
lemma/form, upostag, and number of chil-
dren in a recursive manner traversing the tree from
top to bottom.

2.1 System 1: Sequence-to-Sequence Model

System 1 is a new approach using sequence-to-
sequence models (Vinyals et al., 2016), encoder-
decoder, and attention as described in Bahdanau
et al. (2014) for machine translation. Instead of us-
ing LSTM cells, we used bidirectional GRU cells
(Cho et al., 2014). Some early stage evaluations
showed GRU converges better than LSTM for this
task.

The input sequence is an unordered list of words
and their features; the features for each word
consist of: id, upostag, deprel, head-id,
head-upostag, head-deprel, and level
in the syntax-tree. All features are encoded in
embeddings. The embeddings are shared be-
tween the two matching fields (i.e. deprel and
head-deprel). Figure 1 shows a visualization
of the model.

The result of the sequence model is a sequence
of correct positions of the words for a complete
sentence. This order, together with the given
lemma and features from the data set, is then pro-
cessed by a morphology component, which also
takes care of building the “final readable sentence”
including e.g. capitalization.

We trained two sub-models for each language
with the sequence lengths of 25 and 400. We
chose these values based on the length of the sen-
tences in the training data set – the 75% quantile
is at length 25 which includes most of the sen-
tences. 400 is the absolute maximal length of sen-
tences (the longest sentence has 398 words and is

54

I n p u t L a y e r

E m b e d d i n g

I n p u t L a y e r

E m b e d d i n g

I n p u t L a y e r I n p u t L a y e r

E m b e d d i n g

I n p u t L a y e r I n p u t L a y e r I n p u t L a y e r

E m b e d d i n g

D r o p o u t D r o p o u t D r o p o u t D r o p o u t D r o p o u t D r o p o u t D r o p o u t

C o n c a t e n a t e

Bidirect ional(GRU)

Repea tVec to r

Bidirect ional(GRU)

TimeDis t r ibu ted(Dense)

Act iva t ion

Figure 1: Sequence-to-Sequence Model
The inputs are: (id, head-id), (upos,
head-upos), (deprel, head-deprel),
(level)

in Arabic). We used 0 value padding for sequences
shorter than the maximum given by the model.

These two sub-models are then available for the
prediction phase, during which the model is cho-
sen by the length of input sentence being shorter
than that of the next fitting model. The predicted
sequence probabilities are selected so that every
word appears only once in the final sentence.

Automatic evaluation of the dev-set resulted in
BLEU scores and DIST scores given in table 1.
We used the evaluation code given by the shared
task organizers. This evaluation step includes the
morphology described in section 3. We used the
matching model for the language and a model
trained with all languages.

lang BLEU BLEU DIST DIST
(language) (ALL) (language) (ALL)

en 0.020 0.019 0.124 0.133
es 0.007 0.007 0.071 0.071
fr 0.009 0.009 0.094 0.096
pt 0.012 0.013 0.106 0.107
it 0.007 0.008 0.095 0.098
nl 0.010 0.013 0.099 0.102
cs 0.009 0.011 0.082 0.085
ru 0.009 0.007 0.073 0.076
ar 0.002 0.003 0.071 0.072
fi 0.010 0.012 0.083 0.084

Table 1: Scores for Sequence-to-Sequence Model
(development data)

2.2 System 2: Pairwise Classification
The second system is a classification model that
calculates the word ordering by estimating if
word1 is right of word2. Each word of a sen-

tence is calculated against every other word in
the same sentence. Features used in training for
each of the two words are upostag, deprel,
head-upostag, head-deprel and level
in the syntax-tree. Same as System 1 the embed-
dings are shared between the two matching fields.

The predicted word1-is-right-of-word2 proba-
bilities are used for each subtree to find the or-
der. On the next level the subtree is ordered by
the probability of the head node of the subtree.

The results show that particularly
upostag=PUNCT is now mostly at the end
of sentences even for commas and other punctu-
ations. Human inspection results in a positively
increased overall readability of the output com-
pared to the Sequence-to-Sequence Model (our
System 1). See table 2 for results on the given
dev-set.

Like the Sequence-to-Sequence model, we have
evaluated this model using the matching language
and a model trained on all languages.

lang BLEU BLEU DIST DIST
(language) (ALL) (language) (ALL)

en 0.205 0.175 0.430 0.354
es 0.100 0.139 0.182 0.273
fr 0.154 0.137 0.190 0.308
pt 0.153 0.137 0.314 0.308
it 0.105 0.106 0.309 0.258
nl 0.161 0.123 0.298 0.270
cs 0.099 0.110 0.279 0.235
ru 0.239 0.142 0.260 0.245
ar 0.044 0.059 0.163 0.199
fi 0.078 0.064 0.197 0.223

Table 2: Scores for Pairwise Classification Model
(development data)

I n p u t L a y e r

E m b e d d i n g

I n p u t L a y e r

E m b e d d i n g

I n p u t L a y e r I n p u t L a y e r I n p u t L a y e r

E m b e d d i n g

I n p u t L a y e r I n p u t L a y e rI n p u t L a y e r I n p u t L a y e r I n p u t L a y e r

D r o p o u t D r o p o u t D r o p o u t D r o p o u t D r o p o u t D r o p o u t D r o p o u t D r o p o u t D r o p o u t D r o p o u t

C o n c a t e n a t e

D e n s e

F l a t t e n

D e n s e

D r o p o u t

D e n s e

Figure 2: Pairwise Classification Model
The inputs are: (w1-upos, w1-head-upos,
w2-upos, w2-head-upos), (w1-deprel,
w1-head-upos, w2-deprel,
w2-head-upos), (w1-level, w2-level)

55

Reference From the AP comes this story:
System 1 Comes from story this AP the:
System 2 This story comes from the AP:
Reference I took my Mustang here and it looked amazing after they were done, they did a great job, I’m very satisfied

with the results.
System 1 With results job I my took satisfied it amazing here did very Mustang. great I, they were a are after looked

done the, and they
System 2 I took here Mustang my looked it amazing after they done were and they did a great job I are very satisfied

the with results,,.
Reference Lopulta saatiin halikuva otettua
System 1 Sadaan lopulta ottattua halikuva.
System 2 Lopulta sadaan ottattua halikuva.
Reference Pastrana begon een politiek offensief om de Copa voor Colombia te behouden.
System 1 Voor beginde. offensief te politiek een Pastrana Colombia Copa om behouden de
System 2 Pastrana om behouden te Copa de voor Colombia beginde offensief een politiek.

Table 3: Example outputs

3 Morphologization

The morphology step employs the NLG system
from AX Semantics (Weißgraeber and Madsack,
2017). That system is rule-based and for each in-
flection request it runs through a decision chain, in
which all parts of speech and corresponding gram-
matical features of the specific languages are im-
plemented.

For irregular words the AX Semantics NLG
system uses lexicon entries, which always su-
percede the rule-based inflection. Grammatical
features like number, case, animacy and tense are
implemented in a general way, then added to each
language alongside its individual configuration.

Since the CoNLL features differ from our usual
input parameters, some preprocessing was neces-
sary to map the terms accordingly. The words
were also cleaned with regard to special charac-
ters like hash tags or diacritics before they were
processed by the NLG morphology component.

The accuracy of the morphology component
was tested separately on the dev-set for each lan-
guage. Results are summarized in table 4. Most
of the languages show a decent accuracy score
of over 90%, whereas Arabic and Finnish with
their more complicated morphology still achieve
around 80%.

The table also shows that for some languages
the accuracy scores for verbs are significantly
lower than for nouns or adjectives. For example,
in case of Dutch this happens mainly because a
given lemma is not the infinitive form as expected
from our system but a finite verb form (3rd per-
son singular) and first has to be transformed to the
infinitive. This can largely be attributed to the spe-
cialization of the system for the language of com-
merce, which results in a partial under-coverage

language nouns adjectives verbs mean
en 0.90 0.92 0.93 0.94
es 0.94 0.96 0.86 0.94
fr 0.94 0.93 0.81 0.94
pt 0.91 0.95 0.79 0.95
it 0.94 0.95 0.77 0.93
nl 0.86 0.86 0.50 0.90
cs 0.82 0.91 0.88 0.91
ru 0.92 0.91 0.60 0.90
ar 0.73 0.69 0.40 0.81
fi 0.60 0.65 0.62 0.79

Table 4: Accuracy of the morphology step (exam-
ples for single POS categories and mean overall
accuracy)

of certain language features for edge cases. We
expect coverage to increase as usage expands to
more fields.

Furthermore, some of the errors are due to the
data being erroneous or incomplete (e.g., only case
is given, when number and animacy would also be
needed).

4 Conclusion and Future Work

On the whole, none of the systems solve the task
satisfactorily.

System 2 shows better scores and somewhat im-
proved readability in contrast to System 1. See ta-
ble 3 for illustration.

In both linearization systems, we use neither the
lemma nor an embedding of the lemma to allow a
comparison between the language models and the
ALL-language model. This serves as a baseline
for comparison against systems where language-
specific features can be added.

Our focus for this workshop was to build a lin-
earization system that is simple and does not re-
ceive any topic-specific or language-specific in-
put data nor configurations, and without building a

56

neuronal network for morphologization. For pure
morphologization tasks, especially for Finnish,
Arabic and Hungarian with a large list of very rare
cases, we will improve inflection by adding a NN-
based morphology component as well.

References
Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. Ten-
sorflow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 265–
283.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078.

François Chollet et al. 2015. Keras. https://
keras.io.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018. The
First Multilingual Surface Realisation Shared Task
(SR’18): Overview and Evaluation Results. In Pro-
ceedings of the 1st Workshop on Multilingual Sur-
face Realisation (MSR), 56th Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 1–10, Melbourne, Australia.

Simon Mille, Bernd Bohnet, Leo Wanner, and Anja
Belz. 2017. Shared task proposal: Multilingual sur-
face realization using universal dependency trees. In
Proceedings of the 10th International Conference on
Natural Language Generation, pages 120–123. As-
sociation for Computational Linguistics.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur.
2016. Order matters: Sequence to sequence for sets.
In International Conference on Learning Represen-
tations (ICLR).

Robert Weißgraeber and Andreas Madsack. 2017. A
working, non-trivial, topically indifferent nlg system
for 17 languages. In Proceedings of the 10th Inter-
national Conference on Natural Language Genera-
tion, pages 156–157. Association for Computational
Linguistics.

57

Proceedings of the First Workshop on Multilingual Surface Realisation, pages 58–64
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

NILC-SWORNEMO at the Surface Realization Shared Task: Exploring
Syntax-Based Word Ordering using Neural Models

Marco A. S. Cabezudo and Thiago A. S. Pardo
Interinstitutional Center for Computational Linguistics (NILC)

Institute of Mathematical and Computer Sciences, University of São Paulo
São Carlos - SP, Brazil

msobrevillac@usp.br, taspardo@icmc.usp.br

Abstract

This paper describes the submission
by the NILC Computational Linguis-
tics research group of the University
of São Paulo/Brazil to the Track 1
of the Surface Realization Shared Task
(SRST Track 1). We present a neural-
based method that works at the syntac-
tic level to order the words (which we
refer by NILC-SWORNEMO, standing
for “Syntax-based Word ORdering using
NEural MOdels”). Additionally, we ap-
ply a bottom-up approach to build the sen-
tence and, using language-specific lexi-
cons, we produce the proper word form of
each lemma in the sentence. The results
obtained by our method outperformed the
average of the results for English, Por-
tuguese and Spanish in the track.

1 Introduction

In recent years, Universal Dependencies1 (UD)
have gained interest from many researchers across
different areas of Natural Language Processing
(NLP). Currently, there are treebanks for about 50
languages that are freely available2.

UD treebanks have already proved useful in the
development of multilingual applications, becom-
ing an advantage for developers. Thus, the cre-
ation of an application for a specific language may
be replicable to other languages.

The Surface Realization Shared Task (Mille
et al., 2018) aims at continuing with the develop-
ment of natural language generation methods fo-
cused on the surface realization task. In this edi-
tion of the task, two tracks were proposed: (1)

1Available at http://universaldependencies.org/#en
2Available at https://lindat.mff.cuni.cz/repository/

xmlui/handle/11234/1-1983

Shallow Track, which aimed at ordering the words
in a sentence and recovering their correct forms,
and (2) Deep Track, which aimed at ordering the
words and introducing missing functional words
and morphological features.

For building the dataset for the Shallow Track,
the UD structures were processed as follows:

• the information on word ordering is removed
by randomly scrambling the words;

• the words are replaced by their lemmas.

An example of the input data to this track is
shown in Figure 1. In this example, we may see in-
formation about lemmas, grammatical categories,
inflection information and dependency relations.

Track 1 can be seen as word ordering and in-
flection generation tasks. Word ordering is a fun-
damental problem in Natural Language Genera-
tion (Reiter and Dale, 2000). This problem have
been widely studied, e.g., we may see the works
proposed for the Shared Task in Surface Realiza-
tion (Belz et al., 2011). In relation to this prob-
lem, this has been addressed using language mod-
eling (Schmaltz et al., 2016) and syntax-based
approaches (Zhang and Clark, 2015). Recently,
sequence-to-sequence models have also been used
to tackle this problem, obtaining good results
(Hasler et al., 2017).

In this paper, we present a neural-based method
that works at the syntactic level to order the words
(which we refer by NILC-SWORNEMO, standing
for “Syntax-based Word ORdering using NEural
MOdels”, developed by the NILC research group
on Computational Linguistics). Additionally, we
apply a bottom-up approach to build the sentence
and, using language-specific lexicons, we produce
the word forms of each lemma in the sentence.
Our system is described in Section 2. In Section 3,
the results of our proposal are presented. Finally,

58

Figure 1: Unordered sentence in CoNLL format - “Bush nominated Jennifer M. Anderson for a 15-year
term as associate judge of the Superior Court of the District of Columbia, replacing Steffen W. Graae.”

some conclusions and future work are discussed in
Section 4.

2 System Description

Our proposal was motivated by the works of
(Hasler et al., 2017) and (Zhang and Clark,
2015). Thus, we tackled the problem by apply-
ing a syntax-based word ordering strategy using
a sequence-to-sequence model (seq-2-seq). This
way, we could take advantage of the importance
of the syntactic information in the word ordering
process (in this case, dependency relations) and
the length of the sequence of words to be ordered.
Thus, we could try to order sub-trees and then ap-
ply a bottom-up approach to compose the original
sentence. We have to note that our approach have a
limitation related to non-projective tree structures,
because the allowed realizations will be generated
from the dependency structure.

Additionally, we could benefit from the abil-
ity of the seq-2-seq model to deal with short se-
quences (delimited by the length of words in a syn-
tactic level, i.e., a sub-tree generated by the depen-
dency relations), and the few number of hyperpa-
rameters to tune, facilitating the training.

2.1 Data Preparation

As we mentioned, we used a neural model to order
the words in the syntactic level, and this kind of
model requires several instances to learn. There-
fore, the first step was to generate and prepare our
dataset.

The dataset used to train our models was
composed by the training dataset provided by
the task and a portion of the Europarl corpus
(Koehn, 2005), comprising approximately 70,000
sentences for each language (English, Portuguese,
and Spanish).

As our neural model works on words of a sen-
tence according to their syntactic levels, we had to
preprocess the dataset to get the words of each sen-
tence by syntactic level. Thus, we run the UDPipe
tool (Straka and Straková, 2017) on the dataset
and obtained all the information about lemmas,
grammatical categories, and dependency relations.
Then, we got all the sub-trees (sub-root and chil-
dren, only via breadth search) and generated a se-
quence for each sub-tree.

Each sequence was composed by tokens in
the sub-tree and each token had the notation
“lemma|POS-Tag|dep”, where the POS-Tag is the
grammatical category and dep is the name of the
dependency relation. Besides, the first token in a
sequence contains the word “root” as its depen-

59

dency relation. We used the POS-Tags and the
dependency relations to bring more linguistic in-
formation into our models.

An example of a sub-tree may be seen in
Figure 2. The returned sequence of this sub-tree
was as follows: “term|NOUN|root for|ADP|case
judge|NOUN|nmod year|NOUN|compound
a|DET|det”.

Figure 2: Sub-tree of the sentence that includes
“term”, “for”, “judge”, “year”, and “a”

One problem related to the training dataset
generation was the possibility of the sub-tree’s
elements to appear in different ordering in
the CoNLL format. This would produce dif-
ferent instances, as we build the samples by
breadth search in a sub-tree. Thus, we could
get the sample “term|NOUN|root for|ADP|case
judge|NOUN|nmod year|NOUN|compound
a|DET|det” or “term|NOUN|root
judge|NOUN|nmod year|NOUN|compound
for|ADP|case a|DET|det”, depending on the
order in which they are presented in the CoNLL
format, and producing different outputs in our
model. This should not be a problem because
models have to generalize independently of the
order. However, we adopted a strategy to deal
with this problem. The strategy was to generate a
few permutations for each initial instance of the
dataset and join them to build the dataset. We
might generate all possible permutations for each
initial instance of the dataset, but this would not
be good in our case. Instead, we assumed that
few permutations would be enough to generalize.
Thus, we experimented generating 5, 10 and 15
instances for each instance in the dataset and
tested in the neural model. Experiments showed
that 5 permutations were enough to achieve a
good performance and incrementing to 10 or 15
did not bring improvements.

Finally, it is important to highlight that the lem-
mas of proper nouns were replaced by the expres-
sion “PROPN” in order to reduce data sparsity.

2.2 Word Ordering

The neural model that we used was a sequence-
to-sequence model (Encoder-Decoder) (Sutskever
et al., 2014) in which the input was composed by
a sequence of tokens in a sub-tree extracted by the
syntactic dependency relations (described in Sub-
section 2.1) and the output was composed by the
lemmas of the same sequence in the correct order.

In general, each token in the encoder was repre-
sented by embeddings composed by the concate-
nation of the word embedding, the embedding of
the grammatical category and the embedding of
the dependency relation. We used word embed-
dings of 300 dimensions provided by GloVe (Pen-
nington et al., 2014) for English3, Portuguese4

(Hartmann et al., 2017), and Spanish (built over
the corpus provided by Cardellino (2016)). In the
case of the other features, we used the number of
values that they may assume to generate the size
of the embedding.

The type of cells in the Recurrent Neural Net-
work (RNN) that we used was the Long Short-
Term Memory (LSTM). We used a Bidirectional
LSTM (Bi-LSTM) in the Encoder because it could
give us a general understanding of the sentence
(saving relations in two directions). In the case of
the Decoder, we used two layers and the attention
mechanism proposed by Bahdanau et al. (2014) in
order to consider all words in the contexts (due to
the unordered words). This proposal was similar
to the recurrent neural network language model
proposed in (Hasler et al., 2017).

Finally, we used a Adam Optimizer with a ini-
tial learning rate of 0.001, a dropout value of 0.3,
500 hidden units, 15 epochs, and, for the genera-
tion of the sequence, we applied beam search of
size 10. Let us mention that we used OpenNMT
(Klein et al., 2017) to train our model. These
parameters were effective during the training, ex-
cepting the number of epochs because we did not
try other settings.

2.3 Sentence Building

After the execution of the neural model, we got
the words of all sub-trees (obtained by the syntac-
tic levels) in the correct order. In order to build the
sentence, we applied a bottom-up approach. Thus,
we continuously started to join fragments (belong-

3Available at https://nlp.stanford.edu/projects/glove/
4Available at http://www.nilc.icmc.usp.br/nilc/index.php/

repositorio-de-word-embeddings-do-nilc

60

ing to sub-trees) with the sub-trees in an immedi-
ately higher level until the top of the tree. The
joining was performed using the token in common
in both sub-trees. For example, in Figure 3, it may
be seen the fragment “15 - year” in a sub-tree and
the fragment “for a year term judge” in an imme-
diate higher level, where the joining produced the
fragment “for a 15 - year term judge”.

Figure 3: Portion of the ordered sub-trees

As we may see in Figure 3, one of the fragments
contains the expression “PROPN”. In cases where
there was a “PROPN” symbol, our method simply
replaced it by the correct proper noun in the orig-
inal fragment. In other cases, our method had to
find the correct place for each proper noun in the
fragment. Additionally, there were several cases
where the neural model could not obtain all the
words in the fragment, mainly in situations where
the number of tokens in the input was too long.

To solve these problems, we used a 3-gram
language model for English (Chelba et al.,
2013), Portuguese (Cunha, 2016) and Spanish
(Cardellino, 2016) in order to find the correct posi-
tion of the words and the proper nouns. That moti-
vated us to follow a bottom-up approach to build a
sentence. Thus, the joining between two neighbor
syntactic levels makes more sense (as analyzing
from the lowest levels brings correct expressions
like “15 - year” or “as associate judge”, instead of
“for a year term judge”).

2.4 Inflection Generation
In order to recover the correct words included in
a sentence (and not lemmas), we created a lexicon
for each language (English, Portuguese and Span-
ish).

To do this, we ran the UDPipe tool5 on
the Europarl corpus for English, Portuguese
and Spanish (Koehn, 2005) in order to get the
lemmas and the inflection information. For
example, in the sentence “I ran all day”, we

5UDPipe is a trainable pipeline for tokenization, part of
speech tagging, lemmatization and dependency parsing of
CoNLL files. It contains models for several languages. It
is available at http://ufal.mff.cuni.cz/udpipe.

got the following information about “ran”: “run
Mood=Ind|Tense=Past|VerbForm=Fin”, which
means that “ran” is in indicative mood, in the
past tense and in its finite form, and the lemma is
“run”.

It is important to highlight that we only ex-
tracted the inflection information of words that
belong to some specific grammatical categories,
as auxiliary verbs, verbs, determiners, adjectives,
pronouns, and nouns, since these categories usu-
ally contain inflection information.

The lexicons generated for English, Portuguese
and Spanish contain 44,667, 143,058, and 155,482
entries, respectively. With these lexicons, we ex-
ecuted the last step of our process, the inflection
generation. Once the target sentence was ordered,
we analyzed each token of the sentence and found
its respective inflection word using the appropriate
lexicon. It should be noted that there was no pref-
erence in inflection selection because we used our
lexicon as a hash table, i.e., we were worried about
the occurrence of the lemma and the morphologi-
cal information to get the inflection.

Finally, we applied some rules to handle con-
tractions and other types of problems (as the use
of commas).

3 Results and Analysis

The performance of the methods in the Task 1 was
computed using the following four metrics:

• BLEU (Papineni et al., 2002): precision met-
ric that computes the geometric mean of the
n-gram precisions between the generated text
and reference texts, adding a brevity penalty
for shorter sentences. We use the smoothed
version and report results for n = 1, 2, 3, and
4;

• NIST (Doddington, 2002): related n-gram
similarity metric weighted in favor of less fre-
quent n-grams, which are taken to be more
informative;

• CIDEr (Vedantam et al., 2015): designed for
image description, and similar in spirit to
NIST (in that it assigns lower weights to n-
grams that are common to the reference texts)
(determined by using TF-IDF metric);

• Normalized edit distance (DIST): inverse,
normalized, character-based string-edit dis-
tance that starts by computing the minimum

61

number of character insertions, deletions and
substitutions (all at cost 1) required to turn
the system output into the (single) reference
text.

For now, only the results for BLEU, NIST and
DIST have been released. The results of our
method for the test data are shown in Table 1,
as well as the average results for all the systems
that participated in the track. One may see that
our method outperformed the average for each lan-
guage.

Some examples of the results obtained for En-
glish, Portuguese and Spanish are shown in Table
2. As we may see, in sentence 1 for English, Por-
tuguese and Spanish, the generated sentences were
exactly the same as the reference. This may be ex-
plained by the short size of the sentences (except-
ing for Spanish, whose sentence is not so short).

In sentence 3 for English and 2 and 3 for Span-
ish, we may see that, even though the results were
not correct (in relation to the ordering), some frag-
ments could make sense (“The stocking for my
150 gallon tank is here...” in sentence 3 for En-
glish) and, sometimes, texts are still understand-
able (like sentences 2 and 3 for Spanish), preserv-
ing the overall meaning of the sentence.

We could also realize some limitations in our
proposal. Firstly, we had some troubles with the
software for lexicon building and it was necessary
to review and correct some entries. For example,
the sentence 2 in English contains the word “v”
and the correct word was “have”, and the sentence
2 in Portuguese shows the word “levá” and the cor-
rect word should be “levar”.

Another limitation is related to the number of
children in each level of the syntactic tree. In
cases where the root of a sub-tree had several chil-
dren, the seq-to-seq model returned incomplete se-
quences and the post-processing had more work
to do, and, therefore, it usually performed poorly.
For example, in sentence 3 for Portuguese, the
syntactic tree has “Holland” as root in a level and
“Spain”, “Itália”, “Belgium”, “,”, “or”, and “em”
are its children, and the result was not in correct
order. Besides, a higher number of punctuations,
missing words and proper nouns produced some
mistakes in some cases, like sentence 2 for Span-
ish.

4 Conclusions and Future Work

In this paper, we presented a neural-based sur-
face generation method that works at the syntac-
tic level to order the words. Overall, our method
outperformed the average results for English, Por-
tuguese and Spanish. For Portuguese, the lan-
guage in which we are particularly interested, we
produced the best results for the NIST metric (al-
though there is no statistical difference in relation
to the system in the second place), and the second
best results for BLEU and DIST, which we con-
sider to be very good results.

Among the positive aspects, we noted that our
method works fine when the length of the sentence
is not too long. Furthermore, even though the re-
sults were not correct in some cases (in relation to
the ordering), some fragments could make sense
and, sometimes, texts were still understandable.

As future work, we may mention the review of
the lexicons and possibly the implementation of a
better inflection generator. Moreover, we would
like to explore algorithms to deal with punctua-
tions in order to improve the performance of our
method.

Acknowledgments

The authors are grateful to FAPESP, CAPES and
CNPq for supporting this work.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Anja Belz, Michael White, Dominic Espinosa, Eric
Kow, Deirdre Hogan, and Amanda Stent. 2011. The
first surface realisation shared task: Overview and
evaluation results. In Proceedings of the 13th Eu-
ropean Workshop on Natural Language Generation,
ENLG ’11, pages 217–226, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Cristian Cardellino. 2016. Spanish Billion Words Cor-
pus and Embeddings.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, and Phillipp Koehn. 2013. One bil-
lion word benchmark for measuring progress in sta-
tistical language modeling. CoRR, abs/1312.3005.

Andre Luiz Verucci da Cunha. 2016. Coh-Metrix-
Dementia: análise automática de distúrbios de lin-
guagem nas demências utilizando Processamento
de Lı́nguas Naturais. Master’s thesis, Instituto de

62

Language BLEU NIST DIST AVG BLEU AVG NIST AVG DIST
English 50.74 10.62 77.56 41.30 10.15 67.86
Portuguese 27.12 7.56 57.43 24.71 7.36 55.30
Spanish 51.58 11.17 53.78 33.66 9.01 35.65

Table 1: Achieved results

Language Reference Output

English
(1) Iran says it is creating nuclear energy
without wanting nuclear weapons.

(1) Iran says it is creating nuclear energy
without wanting nuclear weapons.

(2) You have to see these slides....they are
amazing.

(2) You v to saw these slides.... they’re
amazing.

(3) Here is the stocking for my 150 gallon
tank i upgraded it to 200 at the weekend
because of the clownloach A 200 gallon
with 6 pairs of Breeding Angel fish fire
mouth honey Gouramis 5 8 inch clown-
loach a Krib and 5 1 inch clown loach with
16 cory cats 5 Australian Rainbows

(3) The stocking for my 150 gallon tank is
here at the weekend because of the clown-
loach i upgraded it to 200 an 200 gallon
8 inch clownloach 5 with an krib pairs
fire mouth honey gourami 6 with 16 cory
cats 5 australian rainbow of breeding an-
gel fishes loach and 5 clown 1 inch

Portuguese
(1) “Vivo num Estado de Ironia”. (1) ”vivia num estado de ironia”.
(2) Gosto de levar a sério o meu papel de
consultor encartado.

(2) Gosto de levá a sério a seu papel con-
sultor de encartado.

(3) Na Holanda, Bélgica, Itália e Espanha,
os números oscilam entre 250 mil e 300
mil muçulmanos.

(3) , nas e Espanha Holanda Itália,
Bélgica, os números oscilam entre 250 mil
e 300 mil muçulmanos.

Spanish
(1) El IMIM sólo controla muestras remiti-
das por el COI y de competiciones extran-
jeras.

(1) El IMIM sólo controla muestras remiti-
das por el COI y de competiciones extran-
jeras.

(2) Tras la violación, la mujer fue a in-
terponer una denuncia en comisarı́a, ”pero
como sufrı́a hemorragias y pérdida de
conocimiento, la propia policı́a llamó a
una ambulancia y la envió al Hospital La
Paz”.

(2) La mujer fue a interponer una de-
nuncia en comisarı́a tras la violación,”.,
pero, como sufrirı́a hemorragias y pérdida
de conocimiento”la propia policı́a llamó a
una ambulancia y la envió al Hospital La
Paz

(3) El COI abrió ayer, por orden de su
presidente, el belga Jacques Rogge, una
investigación al descubrir, por casuali-
dad, material médico para realizar transfu-
siones, bolsas vacı́as de sangre y restos de
glucosa en una casa alquilada, en Soldier
Hollow, muy cerca de Salt Lake City, por
el equipo de fondo de la Federación Aus-
triaca de Esquı́ durante la disputa de los
recientes JJOO.

(3) El COI abrió ayer una investigación
por orden de su presidente, el belga
Jacques Rogge,, al descubrir, por casual-
idad, material médico, bolsas vacı́as de
sangre y restos de glucosa para transfu-
siones realizamos en una casa alquilado
por el equipo de fondo de la Federación
Austriaca de Esquı́ durante la disputa de
los recientes JJOO, en Soldier Hollow,
mucho cerca de Salt Lake City,.

Table 2: Examples of generation for English, Portuguese and Spanish

Ciências Matemáticas e de Computação - Universi-
dade de São Paulo, Brasil.

George Doddington. 2002. Automatic evaluation
of machine translation quality using n-gram co-
occurrence statistics. In Proceedings of the Sec-

ond International Conference on Human Language
Technology Research, HLT ’02, pages 138–145, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Nathan Hartmann, Erick Fonseca, Christopher Shulby,

63

Marcos Treviso, Jéssica Silva, and Sandra Aluı́sio.
2017. Portuguese word embeddings: Evaluating
on word analogies and natural language tasks. In
Proceedings of the 11th Brazilian Symposium in In-
formation and Human Language Technology, pages
122–131. Sociedade Brasileira de Computação.

Eva Hasler, Felix Stahlberg, Marcus Tomalin, Adrià
de Gispert, and Bill Byrne. 2017. A comparison of
neural models for word ordering. In Proceedings of
the 10th International Conference on Natural Lan-
guage Generation, INLG 2017, Santiago de Com-
postela, Spain, September 4-7, 2017, pages 208–
212.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
In Proceedings of ACL 2017, System Demonstra-
tions, pages 67–72. Association for Computational
Linguistics.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In Conference Pro-
ceedings: the tenth Machine Translation Summit,
pages 79–86, Phuket, Thailand. AAMT, AAMT.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018. The
First Multilingual Surface Realisation Shared Task
(SR’18): Overview and Evaluation Results. In Pro-
ceedings of the 1st Workshop on Multilingual Sur-
face Realisation (MSR), 56th Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 1–10, Melbourne, Australia.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, pages 311–318, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems. Cambridge Univer-
sity Press, New York, NY, USA.

Allen Schmaltz, Alexander M. Rush, and Stuart M.
Shieber. 2016. Word ordering without syntax. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
2319–2324. The Association for Computational Lin-
guistics.

Milan Straka and Jana Straková. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared

Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of the 27th International
Conference on Neural Information Processing Sys-
tems - Volume 2, NIPS’14, pages 3104–3112, Cam-
bridge, MA, USA. MIT Press.

Ramakrishna Vedantam, C. Lawrence Zitnick, and
Devi Parikh. 2015. Cider: Consensus-based im-
age description evaluation. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015, pages
4566–4575.

Yue Zhang and Stephen Clark. 2015. Discrimina-
tive syntax-based word ordering for text generation.
Computational Linguistics, 41(3):503–538.

64

Proceedings of the First Workshop on Multilingual Surface Realisation, pages 65–71
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

The DipInfo-UniTo System for SRST 2018

Valerio Basile
Dipartimento di Informatica

Università degli Studi di Torino
Corso Svizzera 185, 10153 Torino
valeriobasile@gmail.com

Alessandro Mazzei
Dipartimento di Informatica

Università degli Studi di Torino
Corso Svizzera 185, 10153 Torino

mazzei@di.unito.it

Abstract

This paper describes the system developed
by the DipInfo-UniTo team to participate
to the shallow track of the Surface Realiza-
tion Shared Task 2018 (Mille et al., 2018).
The system employs two separate neu-
ral networks with different architectures to
predict the word ordering and the morpho-
logical inflection independently from each
other. The UniTo realizer is language in-
dependent, and its simple architecture al-
lowed it to be scored in the central part of
the final ranking of the shared task.

1 Introduction

Natural Language Generation from formal struc-
tures, and in particular tree-like structures, has
been approached with a variety of methods in the
literature. For instance, SimpleNLG (Gatt and Re-
iter, 2009) takes as input a tree-like representation
(a sort of quasi-syntactic tree enriched with a se-
ries of features) and produces an English sentence.
SimpleNLG has is largely used in different NLG
systems and has been ported to a number of differ-
ent language (Italian among them (Mazzei et al.,
2016)).

In the PhD thesis of Basile (2015), the genera-
tion process starts from a recursive representation
of the semantics of a discourse (a Discourse Rep-
resentation Structure, from Discourse Representa-
tion Theory) and it is carried out by transforming
the original DRS into a directed graph (quite sim-
ilar to a tree) aligned with the surface form at the
word level. While the approach of Basile (2015)
is aimed towards generation from abstract repre-
sentations of meaning, in practice it is applicable
to similar structures encoding information at a dif-
ferent level of abstraction, such as the trees that
form the input of the present shared task.

We draw further inspiration from the aforemen-
tioned work in dividing the generation process into
the word ordering prediction and morphology in-
flection generation. We follow a simplified ap-
proach by considering these two subtasks as inde-
pendent from each other. We implement two mod-
ules based on neural networks that work in paral-
lel, and whose output is later combined to produce
the final surface form (cf. Figure 2).

In this paper we describe the the DipInfo-UniTo
realizer (hencefort UniTO realizer) participating
to the shallow track of the Surface Realization
Shared Task 2018 (Mille et al., 2018).

In Section 2 we describe the system imple-
mented from scratch for the word ordering sub-
task, and in Section 3 we briefly describe the deep
learning-based approach that we used for the mor-
phology inflection subtask. In Section 4 we de-
scribe the experimental pipelines used for train-
ing and testing the UniTo realizer and, moreover,
we report the results on the test set. Finally, Sec-
tion 5 closes the paper with some considerations
and points to future developments.

2 Word Ordering

We adopted a local ordering approach to the
task of predicting word ordering, as opposed to
global ordering. We reformulate the problem of
sentence-wise word ordering in terms of reorder-
ing its component subtrees, and subsequently re-
composing the ordering of the words at the sen-
tence level starting from the ordered subtrees.

The algorithm is composed of three steps: split-
ting the input unordered tree into single-level un-
ordered subtrees (Section 2.1); predicting the lo-
cal word order for each subtree (Section 2.2); re-
composing the single-level ordered subtrees into a
single multi-level ordered tree to obtain the global
word order (Section 2.3).

65

2.1 Extracting Lists of Items to Rank from
the Input Trees

In the first step, we split the original unordered
universal dependency multilevel tree into a num-
ber of single-level unordered trees, where each
subtree is composed by a head (the root) and all
its dependents (the children), in a way similar to
(Bohnet et al., 2012).

suo

opera

contenere

prodotto

ROOT

chimico tossico

.

numeroso

(a) Tree corresponding to the sentence in the Italian training set
“Numerose sue opere contengono prodotti chimici tossici.”

prodotto

contenere

. opera chimico

prodotto

tossicosuo

opera

numeroso

(b) Three subtrees extracted from the main tree.

contenere opera prodotto
prodotto suo chimico
. opera tossico
opera

(c) Three lists of items to order, corresponding to the three sub-
trees.

Figure 1: Illustration of the process of splitting the
input tree into subtrees and extracting lists of items
for learning to rank.

An example is shown in Figure 1: from the (un-
ordered) tree representing the sentence “Numerose
sue opere contengono prodotti chimici tossici.”
(1a), each of its component subtrees (limited to
one-level dependency) is considered separarately
(1b). The head and the dependents of each subtree
form a list of unordered items (1c). Crucially, we
leverage the flat structure of the subtrees in order
to extract structures that are suitable as input to the
learning to rank algorithm in the next step of the
process.

As a consequence of the design of our approach,
in some cases the correct word order cannot be
predicted. In particular, this is the case for non-
projective tree structures, because the only real-
izations allowed by the formalism are those deriv-

ing from the dependency structure. For instance,
the dependency tree representing the sentence He
gave a talk yesterday about generation cannot be
realized by the UniTo realizer since the tree itself
is not projective. In this case, the best realization
could be along the lines of He gave yesterday a
talk about generation.

2.2 Supervised Learning to Rank
In the second step of the word ordering predic-
tion algorithm, we predict the relative order of the
head and the dependents of each subtree with a
learning to rank approach. We employ the list-
wise learning to rank algorithm ListNet, proposed
in (Cao et al., 2007). The relatively small size of
the lists of items to rank allows us to use a list-
wise approach, as opposed to pairwise or point-
wise approaches, while keeping the computation
times manageable. Indeed, ListNet is a general-
ized version of the pairwise learning to rank algo-
rithm RankNet (Burges et al., 2005).

ListNet uses a list-wise loss function based on
top one probability, i.e., the probability of an el-
ement of being the first one in the ranking. The
top one probability model approximates the per-
mutation probability model that assigns a proba-
bility to each possible permutation of an ordered
list. This approximation is necessary to keep the
problem tractable by avoiding the exponential ex-
plosion of the number of permutations.

Formally, the top one probability of an object j
is defined as

Ps(j) =
∑

π(1)=j,π∈Ωn

Ps(π)

that is, the sum of the probabilities of all the
possible permutations of n objects (denoted as Ωn)
where j is the first element. s = (s1, ..., sn) is a
given list of scores, i.e., the position of elements
in the list. Considering two permutations of the
same list y and z (for instance, the predicted order
and the reference order) their distance is computed
using cross entropy. The distance measure and the
top one probabilities of the list elements are used
in the loss function:

L(y, z) = −
n∑

j=1

Py(j)log(Pz(j))

The list-wise loss function is plugged into a lin-
ear neural network model to provide a learning
environment. ListNet takes as input a sequence

66

of ordered lists of feature vectors (the features are
encoded as numeric vectors). The weights of the
network are iteratively adjusted by computing a
list-wise cost function that measure the distance
between the reference ranking and the prediction
of the model and passing its value to the gradient
descent algorithm for optimization of the parame-
ters.

We used an implementation of ListNet1 that
was previously applied in a surface realization task
with a similar supervised setting (Basile, 2015).
On top of the core ListNet algorithm, this imple-
mentation features a regularization parameter to
prevent overfitting.

The choice of features for the supervised learn-
ing to rank component is a critical point of our
solution. We use several word-level features en-
coded as one-hot vectors:

• The universal POS-tag.

• The treebank specific POS tag.

• The morphology features and the head-status
of the word (head of the single-level tree vs.
leaf).

Furthermore, we included word representations,
differentiating between content words and func-
tion words:

• For open-class word lemmas (content words)
we added to the feature vector the corre-
sponding specific language embedding from
the pre-trained multilingual model Poly-
glot (Al-Rfou’ et al., 2013).

• Closed-class word lemmas (function words)
are encoded as one-hot bags of words vectors.

An implementation of the feature encoding for
the word ordering module of our architecture is
available online2.

2.3 From Local Order to Global Order
We reconstruct the global (i.e. sentence-level) or-
der from the local order of the one-level trees un-
der the hypothesis of projectivity. If the local
reordering of the one-level tree T h1 with root h
and children c1...cM produces an order of nodes
n1n2...nM+1, the hypothesis of projectivity im-
plies that in the global word order the position of

1https://github.com/valeriobasile/
listnet

2https://github.com/alexmazzei/ud2ln

all the children of the node nj will be after the po-
sition of the node nj−1 and before the position of
the node nj+1. So, the node global order (O) of a
k-level tree T hk rooted by the node h and with chil-
dren c1...cM can be rewritten formally in terms of
the local order as:

O(T hk)=

h if k=0
Oln(h, c1, ..., cM) if k=1
Oln(h,O(T c1k−1), ..., O(T cMk−1)) if k>1

where Oln(h, c1, ..., cM) is the permutation
learned by the ListNet algorithm from the train-
ing set and parametrized over the feature set
F (h, c1, ..., cM) (cf. Section 2.2), that is

Oln(h, c1, ..., cM)
def
= P

F (h,c1,...,cM)
ListNet (h, c1, ..., cM)

3 Morphology Inflection

For the task of morphological inflection predic-
tion, we implemented a module to work in par-
allel with the word order module described pre-
viously. This component of the system considers
the morphology inflection as an alignment prob-
lem between characters that can be modeled with
the sequence to sequence paradigm.

We used a deep neural network architecture
based on a hard attention mechanism. The
model has been recently introduced by Aharoni
and Goldberg (2017) and showed state-of-the-art
performance on several morphological inflection
benchmarks. The model consists of a neural net-
work in an encoder-decoder setting. However, at
each step of the training, the model can either
write a symbol to the output sequence, or move the
attention pointer to the next state of the sequence.
This mechanism is meant to model the natural
monotonic alignment between the input and out-
put sequences, while allowing the freedom to con-
dition the output on the entire input sequence.

We trained the system3 on the SRST train-
ing data set with no particular parameter tun-
ing, that is, adopting an “off-the-shelf” approach.
Moreover, we used a straight approach by us-
ing all the morphological features provided by
the original UD treebank annotation and the de-
pendency relation binding the word to its head.
So, in the training pipeline (Figure 2), we

3An implementation of the model by Aha-
roni and Goldberg (2017) is freely available
as https://github.com/roeeaharoni/
morphological-reinflection

67

transform the training files into a set of struc-
tures ((lemma, features), form) in order to
learn the neural inflectional model associating a
(lemma, features) to the corresponding form.
The neural inflectional model is exploited in the
test pipeline in order to compute the form corre-
sponding to a specific (lemma, features) in the
test file.

4 Experiments

Since our approach does not rely on language spe-
cific procedures or hand-made rules, we have ini-
tially planned to train the UniTo realizer for all
the ten languages proposed by the SRST organiz-
ers. However, because of time constraints, we
decided to focus on four specific languages first:
English, Spanish, French and Italian (EN-ES-FR-
IT). In particular, for English, French and Italian
the learning time for word ordering and morphol-
ogy inflection was around 36 and 24 hours respec-
tively4. In contrast, for Spanish language, which
has a considerable larger learning file, the learning
time was approximatively doubled.

4.1 Pipelines
We designed two processing pipelines for the
training phase and testing phase as depicted in Fig-
ure 2. We applied separately four times both the
pipelines for the four tested languages EN-ES-FR-
IT.

In the training pipeline, we created two dis-
tinct files starting from the UD treebank training
files. The first file contains morphological infor-
mation (that is ((lemma, features), form), cf.
Section 3) and it is used to create the morpholog-
ical inflection model by using the deep learning
architecture described in Section 3. The second
file contains the vector representation of the tree
features (embeddings or function words, morpho-
logical features, etc., cf. Section 2.2) and it is used
to create the word order model by using the linear
neural network architecture described in Section 2.

In the testing pipeline, we created two distinct
files starting from the test files provided from the
organizers. Both files are created with the same
procedures of the training pipelines. The first file
was used to test the morphological neural model
and to create a mapping from the pair lemma-
features to the inflected form. The second file

4The experiments were run on two distinct multi-core PCs
with GNU/Linux operating systems and GPU computing ca-
pabilities

was used to test the word order neural model by
providing the local word orders for the subtrees
and the word order at the sentence level (cf. Sec-
tion 2.3). In a subsequent step, the information
from the morhological map and from the word or-
dered trees are merged into one single complete
and CONLL compliant tree structure. Finally, the
trees are detokenized (see 4.3) in order to produce
the sentences that are submitted as the final output
of the system.

4.2 Datasets

The rules of the shallow track for the SRST 2018
allowed to use any resource to train the surface
realizers. However, in order to investigate about
the syntactic information contained in the Univer-
sal Dependency format and its appropriateness for
NLG tasks, we decided to use mostly information
derived from the project Universal Dependency
(Nivre et al., 2016). Indeed, the only exception
regards the encoding of the open classes words in
terms of language specific pre-compiled embed-
dings for the word order model (Al-Rfou’ et al.,
2013) (cf. Section 2.2)).

The task organizers provided ten training and
ten development files derived from the version 2.1
of the UD dataset for the ten languages included in
the shallow track. Indeed, they provided a modi-
fied versions of the original treebanks in which the
information about the inflected word form was re-
moved and, the original word order was replaced
with a random order. Additionally, the organizers
provided ten text files containing the sentences of
the treebank in their original form.

However, we noted that the training files pro-
vided by the organizers had an unresolvable ambi-
guity in the case of a sentence containing the same
lemma multiple times. As a consequence, we de-
cided to use the original versions 2.1 of the tree-
bank files since they contain both the gold word
order and the inflected forms of the word. Dur-
ing the conversion of the dependency trees into a
vector form (see Section 2), we ignored the infor-
mation about word ordering and inflected forms.

For English, Spanish and French, we used the
training files developed in the English, Spanish-
AnCora, and French main UD treebanks respec-
tively. In contrast, for Italian we built a new train-
ing file by merging together the training file of the
Italian main UD treebank with the training files
of the UD Italian treebanks Italian-PUD, Italian-

68

Word Embeddings

UD
Test file

Extract
Morphology

Features

Test
DeepNN-Model

for Inflection

Extract
Tree

Features

Test
ListNet-Model

for local
word ordering

Merge forms
into trees

Derive the global
tree structure

Detokenize

Result
Sentences

Word Embeddings

Extract
Morphology

Features

Train
DeepNN-Model

for Inflection

Extract
Tree

Features

Train
ListNet-Model

for local
word ordering

UD
Train file

Training pipeline Testing pipeline

Figure 2: The training and testing pipelines.

ParTUT and Italian-PoSTWITA.

4.3 Detokenization

In order to produce the final result of the realiza-
tion one needs to transform the UD tree produced
by the UniTo realizer into a single string contain-
ing the sentence. Since the final goal of the task
was to reproduce an output sentence close to the
original sentence used by the treebanks develop-
ers, we needed to post-process the tree with addi-
tional two phases, that are contraction and space
removal.

Contraction In this phase the sentence was
modified in order to produce the contracted form
for some specific multi-word constructions. In
particular, for Spanish, French and Italian, there
are two linguistic phenomena to account for, that
are articulated preposition and clitics.

For instance, Italian provides a morphological
mechanism to contract prepositions and articles
into articulated prepositions. Indeed, there are
7 Italian simple prepositions (di (of), a (to), da
(from), in (in), con (with), su (on)) which contract
with the article. For instance, la casa della zia (the
house of-the aunt) = la + casa + della (di [prepo-
sition] + la [definite article feminine singular]) +
zia. In a similar way, clitics are pronouns which
in Italian in particular cases can be included in the
verb form, like in Dammi la mela (Give-me the ap-
ple) = Dammi (dai [verb] + me [pronoun]) + la +
mela.

Since they are special case of multiwords, both
articulated prepositions and clitics have a special

annotation status into UD treebanks. Indeed, there
is a line containing the multiword indexed with in-
teger ranges, like della 3-4, and additional lines
with single tokens annotation, like di 3 and la 4.
We exploit this annotation by automatically ex-
tracting from the EN-ES-FR-IT UD treebanks all
the regular expressions that are necessary to re-
compose the multiwords from the tokens (e.g. the
PERL regular expression s/ di la / della /gi).
By using the UD treebanks training files of EN-
ES-FR-IT we found 05, 923, 9, and 920 regular
expressions respectively.

Space Removal Each language has additional
specific rules for the treatment of space between
words and punctuations. In order to treat this spe-
cific cases we used the detokenizer script provided
in the moses project6: the detokenizer provides
specific rules for English, French and Italian7.

4.4 Results

In Table 1 we report the quantitative evaluation
provided by shared task organizers of the surface
realizer. With respect to the other teams, our re-
sults score in the middle-lower part of the final
ranking: 6th out of 8 according to the BLEU and
NE DIST score, and 5th out of 8 according to
NIST.

5English language does not have neither articulated
preposition and clitics.

6https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/detokenizer.perl

7As approximation, we used Italian configuration for
Spanish too.

69

EN ES FR IT Av.
BLUE 23.20 26.90 23.12 24.61 9.78
NE DIST 51.87 24.53 18.04 36.11 13.06
NIST 8.86 9.58 7.72 8.25 3.44

Table 1: The performance in terms of BLUE,
DIST and NIST scores of the UniTo Realizer. The
average is computed by considering the mean over
the ten languages proposed for the shallow track.

The BLUE scores obtained suggest that the
UniTo realizer have the same performances for all
four languages. In contrast, the NE DIST results
shows a better performance on the English lan-
guage with respect to the other languages. Since
BLEU and NIST give stronger weight to word or-
der and lexical choice respectively (Zhang et al.,
2004), these results suggest that our word order
and morphology inflection modules equally con-
tribute to the result. The difference in the NE
DIST performance across languages has been ob-
served in the other participants’ results, and it
could be due to the different morphological pro-
file of the English with respect to the romance lan-
guages (ES-FR-IT).

5 Conclusion and Future Work

In this paper, we described the main features of the
UniTo realizer, the system adopted by the DipInfo-
UniTo team to participate to the shallow track of
the Surface Realization Shared Task 2018. We de-
scribed the two main components of the realizer:
a linear neural network used to solve the word or-
dering subtask, and a deep neural network used to
solve the morphological inflection subtask.

A number of possible improvements could be
applied to the architecture. For instance, the mor-
phological inflection could consider features de-
riving from sequences of words, i.e., having the
word ordering module to inform the morphology
module, or the other way around. Moreover, addi-
tional experiments are necessary in order to obtain
the best tuning of the hyperparameters involved in
the training phase.

References
Roee Aharoni and Yoav Goldberg. 2017. Morphologi-

cal inflection generation with hard monotonic atten-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL
2017, pages 2004–2015.

Rami Al-Rfou’, Bryan Perozzi, and Steven Skiena.
2013. Polyglot: Distributed word representations
for multilingual nlp. In CoNLL, pages 183–192.
ACL.

Valerio Basile. 2015. From Logic to Language :
Natural Language Generation from Logical Forms.
Ph.D. thesis, University of Groningen, Netherlands.

Bernd Bohnet, Anders Björkelund, Jonas Kuhn, Wolf-
gang Seeker, and Sina Zarrieß. 2012. Generating
non-projective word order in statistical linearization.
In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 928–939. Association for Computational Lin-
guistics.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,
Matt Deeds, Nicole Hamilton, and Greg Hullender.
2005. Learning to rank using gradient descent. In
Proceedings of the 22Nd International Conference
on Machine Learning, ICML ’05, pages 89–96, New
York, NY, USA. ACM.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007. Learning to rank: From pairwise ap-
proach to listwise approach. In Proceedings of the
24th International Conference on Machine Learn-
ing, ICML ’07, pages 129–136, New York, NY,
USA. ACM.

Albert Gatt and Ehud Reiter. 2009. Simplenlg: A re-
alisation engine for practical applications. In Pro-
ceedings of the 12th European Workshop on Natu-
ral Language Generation, ENLG ’09, pages 90–93,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Alessandro Mazzei, Cristina Battaglino, and Cristina
Bosco. 2016. Simplenlg-it: adapting simplenlg to
italian. In INLG 2016 - Proceedings of the Ninth
International Natural Language Generation Confer-
ence, September 5-8, 2016, Edinburgh, UK, pages
184–192.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018. The
First Multilingual Surface Realisation Shared Task
(SR’18): Overview and Evaluation Results. In Pro-
ceedings of the 1st Workshop on Multilingual Sur-
face Realisation (MSR), 56th Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 1–10, Melbourne, Australia.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajic, Christopher D.
Manning, Ryan T. McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel
Zeman. 2016. Universal dependencies v1: A mul-
tilingual treebank collection. In Proceedings of
the Tenth International Conference on Language
Resources and Evaluation LREC 2016, Portorož,
Slovenia, May 23-28, 2016.

70

Ying Zhang, Stephan Vogel, and Alex Waibel. 2004.
Interpreting bleu/nist scores: How much improve-
ment do we need to have a better system. In In Pro-
ceedings of Proceedings of Language Resources and
Evaluation (LREC-2004, pages 2051–2054.

71

Author Index

Basile, Valerio, 65
Belz, Anja, 1
Bohnet, Bernd, 1

Castro Ferreira, Thiago, 35
Chawla, Avi, 29

Davaasambuu, Nyamsuren, 54

Elder, Henry, 49

Graham, Yvette, 1
Gurevych, Iryna, 13

Heininger, Johanna, 54
Hokamp, Chris, 49

Käufl, Michael, 54
King, David, 39
Krahmer, Emiel, 35

Madsack, Andreas, 54
Mazzei, Alessandro, 65
Mille, Simon, 1

Pardo, Thiago, 58
Pitler, Emily, 1
Puzikov, Yevgeniy, 13

Sharma, Ayush, 29
Singh, A.K., 29
Singh, Shreyansh, 29
Sobrevilla Cabezudo, Marco Antonio, 58

Voronik, Vitaliia, 54

Wanner, Leo, 1
Weißgraeber, Robert, 54
White, Michael, 39
Wubben, Sander, 35

73

	Program
	The First Multilingual Surface Realisation Shared Task (SR’18): Overview and Evaluation Results
	BinLin: A Simple Method of Dependency Tree Linearization
	IIT (BHU) Varanasi at MSR-SRST 2018: A Language Model Based Approach for Natural Language Generation
	Surface Realization Shared Task 2018 (SR18): The Tilburg University Approach
	The OSU Realizer for SRST '18: Neural Sequence-to-Sequence Inflection and Incremental Locality-Based Linearization
	Generating High-Quality Surface Realizations Using Data Augmentation and Factored Sequence Models
	AX Semantics' Submission to the Surface Realization Shared Task 2018
	NILC-SWORNEMO at the Surface Realization Shared Task: Exploring Syntax-Based Word Ordering using Neural Models
	The DipInfo-UniTo system for SRST 2018

