
Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 200–204
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

YNU-HPCC at EmoInt-2017: Using a CNN-LSTM Model for Sentiment
Intensity Prediction

You Zhang, Hang Yuan, Jin Wang and Xuejie Zhang
School of Information Science and Engineering

Yunnan University
Kunming, P.R. China

xjzhang@ynu.edu.cn

Abstract

The sentiment analysis in this task aim-
s to indicate the sentiment intensity of
the four emotions (e.g. anger, fear, joy,
and sadness) expressed in tweets. Com-
pared to the polarity classification, such
intensity prediction can provide more fine-
grained sentiment analysis. In this paper,
we present a system that uses a convolu-
tional neural network with long short-term
memory (CNN-LSTM) model to complete
the task. The CNN-LSTM model has t-
wo combined parts: CNN extracts local
n-gram features within tweets and LST-
M composes the features to capture long-
distance dependency across tweets. Our
submission ranked tenth among twenty t-
wo teams by average correlation scores on
prediction intensity for all four types of e-
motions.

1 Introduction

Advanced Social Network Services (SNSs) such
as Twitter, Facebook, and Weibo provide an on-
line platform, where people share their personal
interests, activities, thoughts, and emotions. Senti-
ment analysis technology is used to automatically
draw affective information from text. In recent re-
searches, the majority of existing approaches and
works on sentiment analysis aim to complete clas-
sification tasks. In contrast, it is often useful to
know the degree of an emotion expressed in text
for applications such as movies, products, public
sentiments and politics.

Such attractive applications provide the motiva-
tion for the WASSA-2017 shared task on Emo-
tion Intensity (EmoInt) (Mohammad and Bravo-
Marquez, 2017), which is a competition focused
on automatically determining the intensity of emo-

tions in tweets. The task involves one-dimensional
sentiment analysis, which requires a system for
determining the strength (with a real-value score
between 0 and 1) of an emotion expressed in a
tweet. All tweets are divided into four dataset-
s, each of which expresses an emotion including
anger, fear, joy, and sadness. The tweets with
higher scores correspond to a greater degree of e-
motion.

In the relevant research field of sentiment analy-
sis, it has been shown that many models are avail-
able for both categorical approaches and dimen-
sional approaches. A categorical approach focus-
es on sentiment classification, while a dimensional
approach aims to predict the intensity of emotion-
s. Recently, many methods have been successfully
introduced for categorical sentiment analysis, such
as word embedding (Liu et al., 2015), convolu-
tional neural networks (CNN) (Kim, 2014; Jiang
et al., 2016; Ouyang et al., 2015), recurrent neu-
ral networks (RNN) (Liu et al., 2015; Irsoy and
Cardie, 2014), long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997; Li and Qian.,
2016; Sainath et al., 2015), and bi-directional L-
STM (BiLSTM) (Brueckner and Schulter, 2014).
We have aimed to employ those methods for di-
mensional sentiment analysis, and the results show
that our approach is feasible. In general, CNN can
extract local n-gram features within texts but may
fail to capture long-distance dependency. LSTM
can address this problem by sequentially model-
ing texts cross messages (Wang et al., 2016).

In this paper (and for this competition), we pri-
marily introduce a CNN-LSTM model combining
CNN and LSTM. First, we construct word vectors
from pre-trained word vectors using word embed-
ding. The CNN applies convolutional and max-
pooling layers, which are then used to extract n-
gram features. Finally, LSTM composes those
features and outputs the result. By combining CN-

200



Figure 1: The architecture of CNN-LSTM model.

N and LSTM, the model can extract both local in-
formation within tweets and long-distance depen-
dency across tweets. Our experiment reveals that
the proposed model has the highest performance
with data for anger and joy, while a simple CNN
performs best for fear and sadness.

The remainder of this paper is organized as fol-
lows. In section 2, we described CNN, LSTM and
their combination. The comparative experimental
results are presented in section 3. Finally, a con-
clusion is drawn in section 4.

2 The CNN-LSTM model for Sentiment
Intensity Prediction

The dimensional sentiment analysis in this task is
intended at producing continues numerical values
according to sentiment intensity. Figure 1 shows
the overall framework of our model. First, a sim-
ple tokenizer is used to transform tweets into an
array of tokens, which are the input of the mod-
el, and are then mapped in a feature matrix or
sentence matrix by an embedding layer. Then,
n-gram features are extracted when the feature
matrix passes through the convolutional and max
pooling layers. LSTM finally composes these use-
ful features to output the final regression results by
linear decoder.

2.1 Convolutional Neural Network
In our model, the CNN outputs are used as the in-
puts for the LSTM. Additionally, a simple CNN
model can be produced for our task by directly us-
ing a linear regression layer as the output layer.
The CNN architecture for the task is described be-
low.
Embedding layer. The embedding layer is the
first layer of the model. In this technique, word-
s are encoded as real-valued vectors in a high di-
mensional space. The layer allows for the initial-
ization of vocabulary words vectors through the

pre-trained word vectors matrix. A tweet used as
an input is transformed into a sequence of numer-
ical word tokens such as t1, t2, ..., tN , where tN
is a number representing a real word and N is the
length of the token vector. To keep the size of the
results identical for tweets with varying lengths,
we limit the maximum value of N to the max-
imum length of the tweet from all tweets. Any
tweet shorter than N will be padded to N using
zero.

Convolutional Layer. In a convolutional layer,
m filters are used to extract local n-gram features
from the matrix of the previous embedding layer.
In a sliding window of width w indicating a w-
gram feature can be extracted, a filter Fl(1 ≤ l ≤
m) learns the feature map yl

i as follows:

yl
i = f(Ti;i+w−1 ◦W l + bl) (1)

Where ◦ denotes a convolution operation, W ∈
Rw×d is the weight matrix from the output of
the previous layer, b is a bias, and Ti:i+w−1 de-
notes the token vectors ti, ti+1, ..., ti+w−1(ifk >
0, tk = 0). The result of filter Fl will be yl ∈ Rd,
where yl

i is the i-th element of yl. Here we use Re-
LU as the activation function for fast calculation.

Max-pooling and Dropout layer. The max-
pooling layer is used to down-sample and con-
solidate the features learned in the previous layer
with a common method that takes the maximum of
the input value from each filter. First, eliminating
non-maximal values can reduce the computation
for upper layers. Second, we choose a maximum
value, because the salient feature is the most dis-
tinguishable trait of a tweet.

CNNs have a habit of overfitting, even with
pooling layers. Thus, we introduce a dropout layer
(Tobergte and Curtis, 2013) after both a convolu-
tion and max-pooling layer.

201



Figure 2: Architecture of LSTM cell.

2.2 Long Short-Term Memory
Recurrent Neural Networks (RNN) are a special
type of neural network suitably designed for pro-
cessing sequence problems. However, in a simple
RNN, the gradients can produce very small num-
bers, which is referred to as the vanishing gradient
problem (Bengio et al., 2002). The LSTM network
is trained using back propagation (BP) over time
and can effectively address this problem. Thus, we
consider it to be the second part of our model. In
addition, we could use the output of the word em-
bedding layer as an input to the LSTM to obtain a
simple LSTM model.
LSTM layer. The LSTM has memory blocks
(cells) that contains outputs and gates that man-
age the blocks for the memory updates. In figure
2, we show how a memory block calculates hid-
den states ht and outputs Ct using the following
equations:

• Gate
ft = σ(Wf · [ht−1, xt] + bf )
it = σ(Wi · [ht−1, xt] + bi)
ot = σ(Wo · [ht−1, xt] + bo)

(2)

• Transformation

C̃t = tanh(Wc · [ht−1, xt] + bC) (3)

• State update

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)
(4)

Where xt is the input vector; Ct is the cell state
vector; W and b are cell parameters; ft, it, and ot

are gate vectors; and σ denotes the sigmoid func-
tion.
Output Layer. This layer outputs the final regres-
sion result, which could be a CNN or CNN-LSTM
model. It is a fully connected layer using a linear
decoder. A layer output vector defined as,

Content Example Pattern
User starts with @ @Bob <user>
ULRs http://ie.com <url>
Numbers 12,345 <number>
Hashtags #emotions hashtag

Table 1: The example of pre-processing pattern.

y = h(x) = Wdx+ bd (5)

Where x is the text token vector, y is the predicted
sentiment intensity of the tweet, and Wd and bd
respectively denote the weights and bias.

The model is trained by the mean absolute er-
ror (MAE) between the predicted y and actual
y. Given the training set of token matrix X =
{x1, x2, ..., xn}, and their actual degree of the e-
motion is y = {y1, y2, ..., yn}, so the loss function
is defined as,

L(X, y) =
1
2n

n∑
i=1

‖h(xi)− yi‖2 (6)

3 Experiments and Evaluation

Data pre-processing. The organizers of the com-
petition provided four corpora, each of which cor-
responds to an emotion (anger, fear, joy and sad-
ness). The training datasets contain tweets along
with a real-valued score (between 0 and 1) indi-
cating the degree of the emotion felt by the speak-
er. Dev sets were provided to help us tune the pa-
rameters of the model. Here, we used the Stanford
tokenizer to process tweets into an array of token-
s. Since the tweets in this task primarily contain
English text, all punctuations are ignored and all
non-English letters are treated as unknown words.
A small part of text contains emojis or emoticon-
s, which perfectly match the conditions for emo-
tional intensity. Therefore, these emojis or emoti-
cons are processed into related words with similar
meanings. Patterns are applied to every tweet p-
resented in Table 1. We applied the four patterns
and lowed all words to map the known pre-trained
tokens. Some words that do not exist in the known
tokens are treated as unknown words. In the word
vectors, unknown word vectors randomly generat-
ed from a uniform distribution U(−0.25, 0.25).

In this experiment, we used pre-trained word
vectors including GoogleNews1 trained by the
word2vec toolkit and another one trained by
GloVe2 (Pennington et al., 2014). These programs

1https://code.google.com/archive/p/word2vec/
2https://nlp.stanford.edu/projects/glove/

202



Model
Metrics

Pearson correlation coefficient (r) Spearman rank coefficient (s)
Anger Fear Joy Sadness Anger Fear Joy Sadness

CNNword2vec 0.628 0.714 0.710 0.630 0.600 0.673 0.716 0.634
CNN-LSTMword2vec 0.591 0.591 0.657 0.551 0.586 0.555 0.662 0.566
LSTMword2vec 0.608 0.554 0.603 0.503 0.569 0.497 0.592 0.498
BiLSTMword2vec 0.544 0.551 0.536 0.500 0.499 0.510 0.511 0.484
CNNGloV e 0.621 0.687 0.721 0.630 0.623 0.686 0.726 0.639
CNN-LSTMGloV e 0.661 0.644 0.797 0.542 0.627 0.607 0.728 0.532
LSTMGloV e 0.642 0.614 0.755 0.539 0.689 0.695 0.772 0.519
BiLSTMGloV e 0.623 0.657 0.731 0.533 0.598 0.625 0.747 0.544

Table 3: The development data experimentation results on WASSA-2017 shard task on Emotion Intensity
(EmoInt).

Parameters Emotions
Anger Fear Joy Sadness

m 64 32 16 32
l 3 3 2 -
n 2 2 2 -
p 0.1 0.8 0.6 0.3
c 2 2 2 -
d 300 100 300 300
b 100 50 60 100
e 30 20 50 30

Table 2: The best-tuned parameters on each
dataset.

were used to initialize the weight of the embed-
ding layer in order to build 300-dimension word
vectors for all tweets. GloVe is an unsupervised
learning algorithm for obtaining vector represen-
tations of words.
Implementation. This experiment used Keras
with a TensorFlow backend. We use two differ-
ent pre-trained word vectors and four differen-
t datasets. We introduce three other models (C-
NN, LSTM and BiLSTM) as baseline algorithm-
s. Details of those three models can respective-
ly be found in (Kim, 2014; Jiang et al., 2016;
Ouyang et al., 2015), (Hochreiter and Schmidhu-
ber, 1997; Li and Qian., 2016; Sainath et al., 2015)
and (Brueckner and Schulter, 2014).

The hyper-parameters were tuned to the perfor-
mance of training and dev data using the sklearn
grid search function (Pedregosa et al., 2012),
which can search all possible parameter combi-
nations to evaluate models and find the best one.
Different models for different data may have their
own optimization parameters. For anger emotion
data, the CNN-LSTMs best-tuned parameters are
as follows. The number of filters (m) is 64; the
length of the filter (l) is 3; the pool length (n) is 2;
the dropout rate (p) is 0.1; the LSTM layer coun-
t (c) is 2, and the dimension of the LSTM hidden
layer (d) is 300. The training runs with a batch size
(b) of 100 and 30 epochs (e). The other three emo-

tions shown in Table 2. The results also reveal that
the models using pre-trained GloVe vectors and an
Adam optimizer achieved the best performance.
Evaluation Metrics. The system is evaluated by
calculating the Pearson correlation coefficient (r)
and Spearman rank coefficient (s) with gold rat-
ings. Higher r and s values indicate better perfor-
mance on model prediction.
Results and Discussion. A total of twenty two
teams took part in the task. Table 3 shows the de-
tailed results of the proposed CNN-LSTM mod-
el against the three baseline models. The aver-
aged r from the four emotions is needed to deter-
mine the bottom-line competition metric by witch
the submissions will be ranked. Therefore, r is
more worth considering for performance than s.
The proposed CNN-LSTM model outperformed
the baseline models for anger and joy data. There-
fore, we chose the CNN-LSTM to create the final
system to complete the subtasks of anger and joy,
and ranked ninth for both r and s on anger da-
ta, eleventh for r, and thirteenth for s on joy data.
In contrary, a simple CNN yielded better perfor-
mance on fear and sadness data from the experi-
mental results. Therefore, for the fear and sadness
subtasks, we used a simple CNN that ranked sev-
enth for r and eighth for s on fear data, and sixth
for both r and s on sadness data.

4 Conclusion

In this paper, we described the system we submit-
ted to WASSA-2017 Shared Task on Emotion In-
tensity (EmoInt). The proposed model combines
CNN and LSTM to extract both local informa-
tion within tweets and long-distance dependency
across tweets in the regression process. Our intro-
duced model showed good performance in the ex-
perimental results. In future work, we will attempt
to introduce attention or memory mechanisms, in
order to draw more useful sentiment information.

203



References
Yoshua Bengio, Patrice Simard, and Paolo Fras-

coni. 2002. Learning long-term dependencies
with gradient descent is difficult. IEEE Trans-
actions on Neural Networks 5(2):157–166. http-
s://doi.org/10.1109/72.279181.

Raymond Brueckner and Bjorn Schulter. 2014. So-
cial signal classification using deep blstm recur-
rent neural networks. In 2014 IEEE Interna-
tional Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). pages 4823–4827. http-
s://doi.org/10.1109/ICASSP.2014.6854518.

Sepp Hochreiter and Jrgex Schmidhuber.
1997. Long short-term memory. Neu-
ral Computation 9(8):1735–1780. http-
s://doi.org/10.1162/neco.1997.9.8.1735.

Ozan Irsoy and Claire Cardie. 2014. Opinion min-
ing with deep recurrent neural networks. In Con-
ference on Empirical Methods in Natural Language
Processing. pages 720–728.

Ming Jiang, Liqiang Jin, Feiwei Qin, Min Zhang, and
Ziyang Li. 2016. Network public comments sen-
timent analysis based on multilayer convolutional
neural network. In 2016 IEEE International Con-
ference on Internet of Things (iThings) and IEEE
Green Computing and Communications (Green-
Com) and IEEE Cyber, Physical and Social Comput-
ing (CPSCom) and IEEE Smart Data (SmartData).
pages 777–781. https://doi.org/10.1109/iThings-
GreenCom-CPSCom-SmartData.2016.164.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. Eprint Arxiv pages 1746–
1751. https://doi.org/10.3115/v1/D14-1181.

Dan Li and Jiang Qian. 2016. Text sentiment analy-
sis based on long short-term memory. In 2016 First
IEEE International Conference on Computer Com-
munication and the Internet (ICCCI). pages 471–
475. https://doi.org/10.1109/CCI.2016.7778967.

Pengfei Liu, Shafiq Joty, and Helen Meng. 2015. Fine-
grained opinion mining with recurrent neural net-
works and word embeddings. In Conference on Em-
pirical Methods in Natural Language Processing.
pages 1433–1443.

Saif M. Mohammad and Felipe Bravo-Marquez. 2017.
WASSA-2017 shared task on emotion intensity. In
Proceedings of the Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis (WASSA). Copenhagen, Denmark.

Xi Ouyang, Pan Zhou, Cheng Hua Li, and Lijun Liu.
2015. Sentiment analysis using convolutional neural
network. In 2015 IEEE International Conference on
Computer and Information Technology; Ubiquitous
Computing and Communications; Dependable,
Autonomic and Secure Computing; Pervasive In-
telligence and Computing. pages 2359–2364. http-
s://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.349.

Fabian Pedregosa, Gael Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron-
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Bruch-
er, Matthieu Perrot, and Edouard Duchesnay. 2012.
Scikit-learn: Machine learning in python. Journal
of Machine Learning Research 12(10):2825–2830.
https://doi.org/10.1007/s13398-014-0173-7.2.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In Conference on Empirical Meth-
ods in Natural Language Processing. pages 1532–
1543. https://doi.org/10.3115/v1/D14-1162.

Tara N. Sainath, Oriol Vinyals, Andrew Senior,
and Hasim Sak. 2015. Convolutional, long
short-term memory, fully connected deep neu-
ral networks. In 2015 IEEE International Con-
ference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). pages 4580–4584. http-
s://doi.org/10.1109/ICASSP.2015.7178838.

David R. Tobergte and Shirley Curtis. 2013. Improving
neural networks with dropout. Journal of Chemical
Information and Modeling 5(13):1689–1699. http-
s://doi.org/10.1017/CBO9781107415324.004.

Jin Wang, Liang-Chih Yu, K. Robert Lai, and Xuejie
Zhang. 2016. Dimensional sentiment analysis using
a regional cnn-lstm model. In Meeting of the Asso-
ciation for Computational Linguistics. pages 225–
230. https://doi.org/18653/v1/P16-2037.

204


