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Biomedical natural language processing in 2017:
The view from computational linguistics

Kevin Bretonnel Cohen, Dina Demner-Fushman,
Sophia Ananiadou, and Jun-ichi Tsujii

According to the Association for Computational Linguistics guidelines on special interest groups (SIGs),
The function of a SIG is to encourage interest and activity in specific areas within the ACL’s field[1]. Is
the SIGBioMed special interest group “within the ACL’s field”? The titles of this year’s papers suggest
that it is, in that the current interest in deep learning in its many and varied manifestations is mirrored in
those titles. Do those papers cover a specific area? They do, and in doing so, they demonstrate one of
the great satisfactions of working in biomedical natural language processing.

One of the joys of involvement in the biomedical natural language processing community is seeing
the development of research with clinical applications. As examples of such work being presented at
BioNLP 2017, we would like to point out the two papers that discuss the application of natural language
processing to the diagnosis of neurological disorders. Bhatia et al.[2] describe an approach to using
speech processing in the assessment of patients with amyotrophic lateral sclerosis (also known as Lou
Gehrig’s disease), one of the more horrific motor neuron diseases. Good assessment of amyotrophic
lateral sclerosis patients is important for a number of reasons, including the fact that accurate tracking
of the inevitable deterioration that is a hallmark of this disease gives patients and their families the
possibility of purposeful planning for the attendant disability and death. However, current methodologies
for evaluating the status of amyotrophic lateral sclerosis patients necessarily involve expensive equipment
and highly trained personnel; when further developed, this methodology could make such evaluation
much more, and more frequently, available to ALS patients. The fact that the work reported here involves
a speech modality is especially exciting, as speech-related indicators of future ALS can be present long
before diagnosis. The paper uses measurements of phonological features of speech and their divergence
from a baseline, and demonstrates correlation with physiological measures.

Adams et al.[3] describe work on detecting and categorizing word production errors associated with
anomia, a particular kind of inability to find words. Screening for anomia is important because anomia
is a symptom of stroke, but it is difficult and time-consuming to do, and therefore is not done as often
as it should be. Automatic detection of anomia could be a nice enabler of improved care for stroke
victims, but it is made difficult due to the subtlety of the phonological and semantic judgments that have
to be made when assessing the phenomenon. The paper uses a combination of language modeling and
phonologically-based edit distance calculation to approach the task, applying these techniques to data
from the AphasiaBank collection of transcribed aphasic and healthy speech.

Although we have summarized only these two examples that address neurological disorders, there are
several other papers on the use of natural language processing in clinical applications: patient-produced
content in dementia [4], and health records ([5] on sepsis, [6] on e-cig use, [7] on pain and confusion);
in the aggregate, these papers illustrate very nicely the potential for natural language processing to
contribute to human well-being. Additionally, the current interest in the potential of natural language
processing for social media is reflected in papers on studying medication intake via Twitter [8] and on
monitoring dementia via blog posts [9]. Linguistics and language resources are represented in this year’s
papers, as well, including work on comparative structures [10] and a corpus construction effort [11].

The work in biomedical NLP was dominated by applications of deep learning to: punctuation restoration
[12], text classification [13], relation extraction [14], [15], [16], information retrieval [17], and similarity
judgments [18], among other exciting progress in biomedical language processing.

These are just a few examples of the high-quality research presented in BioNLP 2017.
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In addition to the excellent submissions to the BioNLP workshop, this year features equally strong
submissions to BioASQ challenge on large-scale biomedical semantic indexing and question answering,
a shared task affiliated with BioNLP 2017. This year, the BioASQ challenge, which started in 2013, had
three tasks:

• Large-Scale Online Biomedical Semantic Indexing
• Biomedical Semantic Question Answering
• Funding Information Extraction From Biomedical Literature

An overview of the tasks and the results of the challenge [19] are presented in an invited talk. The
invited speaker, George Paliouras, is a senior researcher and head of the Intelligent Information Systems
division of the Institute of Informatics and Telecommunications at NCSR “Demokritos”, Greece. He
holds a PhD in Machine Learning and has performed basic and applied research in Artificial Intelligence
for the last 20 years. He is interested in the development of novel methods for addressing challenging
big and small data analysis problems, such as learning complex models from structured relational data,
learning from noisy and sparse data, learning from multiple heterogeneous data streams, and discovering
patterns in hypergraphs. His research is motivated by the real-world problems. George has contributed to
solving a variety of such problems, ranging from spam filtering and Web personalization to biomedical
information retrieval. He has co-founded the spin-off company em i-sieve Technologies, which provides
online reputation monitoring services.

Among various contributions to the research community, George Paliouras has served as board member
in national and international scientific societies; he is serving on the editorial boards of international
journals, and has chaired international conferences. He is involved in several research projects, in the
role of scientific coordinator/principal investigator in some of them. In particular, he has coordinated and
provided the infrastructure for the BioASQ project that was funded by the European Commission. He is
currently coordinating iASiS, another project funded by the European Commission to develop big data
integration and analysis methods that will provide insight to public health policy-making for personalized
medicine.
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Abstract

We present a system for automatically
detecting and classifying phonologically
anomalous productions in the speech of
individuals with aphasia. Working from
transcribed discourse samples, our system
identifies neologisms, and uses a combina-
tion of string alignment and language mod-
els to produce a lattice of plausible words
that the speaker may have intended to pro-
duce. We then score this lattice accord-
ing to various features, and attempt to de-
termine whether the anomalous production
represented a phonemic error or a genuine
neologism. This approach has the potential
to be expanded to consider other types of
paraphasic errors, and could be applied to
a wide variety of screening and therapeutic
applications.

1 Introduction

Aphasia is an acquired neurogenic language dis-
order in which an individual’s ability to produce
or comprehend language is compromised. It can
be caused by a number of different underlying
pathologies, but can generally be traced back to
physical damage to the individual’s brain: tissue
damage following ischemic or hemorrhagic stroke,
lesions caused by a traumatic brain injury or infec-
tion, etc. It can also be associated with various neu-
rodegenerative diseases, as in the case of Primary
Progressive Aphasia. According to the National
Institute of Neurological Disorders and Stroke, ap-
proximately 1,000,000 people in the United States
suffer from aphasia, and aphasia is a common con-
sequence of strokes (prevalence estimates for apha-
sia among stroke patients vary, but are typically in
the neighborhood of 30% (Engelter et al., 2006)).

Anomia is a the inability to access and re-
trieve words during language production, and is a
common manifestation of aphasia (Goodglass and
Wingfield, 1997). An anomic individual will ex-
perience difficulty producing words and naming
items, which can cause substantial difficulties in
day-to-day communication.
The process of screening for, diagnosing, and

assessing anomia is typically manual in nature,
and requires substantial time, labor, and exper-
tise. Compared to other neuropsychological as-
sessment instruments, aphasia-related assessments
are particularly difficult to computerize, as they
typically depend on subtle and complex linguis-
tic judgments about the phonological and semantic
similarity of words, and also require the examiner
to interpret phonologically disordered speech. Fur-
thermore, themost commonly used assessments fo-
cus for practical reasons on relatively constrained
tasks such as picture naming, which may lack eco-
logical validity (Mayer and Murray, 2003).
In this work, we describe an approach to au-

tomatically detecting and analyzing certain cate-
gories of word production errors characteristic of
anomia in connected speech. Our approach is a
first step towards an automated anomia assessment
tool that could be used cost effectively in both
clinical and research settings,1 and could also be
applied to other disorders of speech production.
The method we propose uses statistical language
models to identify possible errors, and employs a
phonologically-informed edit distancemodel to de-
termine phonological similarity between the sub-
ject’s utterance and a set of plausible “intended
words.” We then apply machine learning tech-
niques to determine which of several categories
a given erroneous production may fall into. We

1As in the computer-administered (but manually-scored)
assessments developed by Fergadiotis and colleagues (Ferga-
diotis et al., 2015; Hula et al., 2015).
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show results on intrinsic evaluations comparable
to state-of-the-art sentence completion, as well as
an extrinsic measure of classification well above a
“most-frequent” baseline strategy.

1.1 Anomia and Paraphasias

Anomia can take several different forms, but in this
work we are concerned with paraphasias, which
are unintended errors in word production.2
There are several categories of paraphasic error.

Semantic errors arise when an individual uninten-
tionally produces a semantically-related word to
their original, intended word (their “target word”).
A classic semantic error would be saying “cat”
when one intended to say “dog.”

Phonemic (sometimes called “formal”) errors
occur when the speaker produces an unrelated
word that is phonemically related to their target:
“mat” for “cat”, for example. It is also possible for
an erroneous production to be mixed, that is both
semantically and phonemically related to the tar-
get word: “rat” for “cat.” Individuals with anomia
also produce unrelated errors, which are words
that are neither semantically or phonemically re-
lated to their intended target word: for example,
producing “skis” instead of “zipper.”
Each of these categories shares the commonal-

ity that the word produced by the individual is a
“real” word. There is another family of anomic er-
rors, neologisms, in which the individual produces
non-word productions. A neologistic production
may be phonemically related to the target, but con-
taining phonological errors: “[dɑɪnoʊsɔɹ]” for “di-
nosaur.” These are often referred to as phonologi-
cal paraphasias. Alternatively, the individual may
produce abstruse neologisms, in which the pro-
duced phonemes bear no discernable similarity to
any “real” lexical item (“[æpməl]” for “comb”3).
The present work focuses exclusively on neol-

ogisms, both of the phonological variety as well
as the abstruse variety. However, our fundamental
approach can be extended to include other forms,

2Note that individuals without any sort of language dis-
order do occasionally produce errors in their speech; this
fact has led to a truly shocking amount of study by linguists.
Frisch &Wright (2002) provide a reasonable overview of the
background and phonology of the phenomenon.

3This example was taken from a corpus of responses to a
confrontation naming test (Mirman et al., 2010), in which the
subject is shown a picture and required to name its contents.
As such, in the case of this specific error, we have a priori
knowledge of what the target word “should” have been. Ob-
viously, in a more naturalistic task or setting, we would not
have this advantage.

as described in section 6.
Typical methods of diagnosing, staging, and oth-

erwise characterizing anomia involve determining
the number and kinds of paraphasias produced by
an individual while undergoing some structured
language elicitation process, for example a con-
frontation naming test (see (Kendall et al., 2013)
and (Brookshire et al., 2014) for examples of such
a study). As alluded to previously, producing these
counts and classifications is a complex and labori-
ous process. Furthermore, it is also often an in-
herently subjective process: are “carrot” and “ba-
nana” semantically related? What about “hose”
and “rope”?
Reliability estimates of expert human perfor-

mance at paraphasia classification in confronta-
tion naming scenarios reflect the difficulty in this
task. One recent study reported a kappa-equivalent
score of 0.76 — a score that that is certainly ac-
ceptable, but that leaves much room for disagree-
ment on the status of specific erroneous produc-
tions (Minkina et al., 2015). Other reported scores
fall in a similar range (Kristensson et al., 2015), in-
cluding when the productions are from neurotyp-
ical individuals (Nicholas et al., 1989). Automat-
ing this aspect of the task would not only improve
efficiency, but would also decrease scoring vari-
ability. Having a reliable, automated method to
analyze paraphasic errors would also expand the
scope of what is currently possible in terms of as-
sessment methodologies.
Notably, the approach we outline in this paper is

explicitly designed to work on samples of natural,
connected speech. It builds upon previous work by
Fergadiotis et al. (2016) on automated analysis of
errors produced in confrontation naming tests, and
extends it into the realm of naturalistic discourse.
It is our hope that, by enabling automated calcu-
lation of error frequencies and types on narrative
speech, we might make using such material far eas-
ier in practice than it is today.

2 Data

For this work, we use the data set provided by the
AphasiaBank project (MacWhinney et al., 2011),
which has assembled a large database of tran-
scribed interactions between examiners and people
with aphasia, nearly all of whom have suffered a
stroke. Notably, AphasiaBank also includes tran-
scribed sessions with neurotypical controls. Each
interaction follows a common protocol and script,

2



and is transcribed in great detail using a standard-
ized set of annotation guidelines. The transcripts
include word-level error codes, according to a de-
tailed taxonomy of errors and associated annota-
tions. In the case of semantic, formal, and phone-
mic errors, the word-level annotations include a
“best guess” on the part of the transcriber as to what
the speaker’s intended production may have been.
Each transcribed session consists of a prescribed

sequence of language elicitation activities, includ-
ing a set of personal narratives (e.g.,“Do you re-
member when you had your stroke? Please tell me
about it.”), standardized picture description tasks,
a story retelling task (involving the story of Cin-
derella), and a procedural discourse task.
We noted that the distribution of errors within

sentences seems to obey the power law , with the
majority of error-containing sentences containg-
ing a single error, followed somewhat distantly by
sentences containing two errors, with a relatively
steep dropoff thereafter. For the present study, we
restricted our analysis to sentences that contained
a single error. Our reasoning for this restriction
was that we do not presently have a theoretically-
informed model of what, if any, relationship there
may be between multiple errors within a sentence.
However, it seems quite likely that the errors oc-
curring in a sentence containing (for instance) five
paraphasic errors might be somehow related to one
another. We anticipate exploring this phenomenon
in the future (see section 6).
We chose to restrict our data to the story retelling

task due to the constrained and focused vocabulary
of the Cinderella story. This resulted in ≈ 1000
sentences from 385 individuals. We then identi-
fied sentences containing instances of our errors of
interest: phonological paraphasia (AphasiaBank
codes “p:n”, “p:m”) or abstruse neologism (“n:uk”
and “n:k”).

3 Methods

We first tokenized the AphasiaBank data using a
modified version of the Penn Treebank tokenizer
which left contractions as a single word and simply
removed the connecting apostrophe, as these occa-
sionally appear as target words and thus we needed
to treat them as a single token. We left stopwords
intact, and case-folded all sentences to upper-case.
Cardinal numbers were collapsed into a category
token, as were ordinal numbers and dates (each
category was given its own token). The Aphasia-

Bank transcripts include detailed IPA-encoded rep-
resentations of neologistic productions, but any
“real-world” usage scenario for our algorithm is
unlikely to benefit from such high-quality tran-
scription. We therefore translated the non-lexical
productions into a simulated “best-guess” ortho-
graphic representation of the subject’s non-lexical
productions.
We next turned to the question of identifying ne-

ologisms in our sentences. Simply using a stan-
dard dictionary to determine lexicality could re-
sult in numerous “false positives,” driven largely
by proper names of people, brands, etc. To
avoid this, we used the SUBTLEX-US corpus
(Brysbaert and New, 2009) to identify neologisms.
SUBTLEX-US was build using subtitles from
English-language television shows and movies,
and Brysbaert and New have demonstrated that it
correlates with a number of psycholinguistic be-
havior measures (most notably, naming latencies)
better than better-known frequency norms such as
those derived from the Brown corpus or CELEX-
2.
Upon identifying a possible non-word produc-

tion, recall that our next goal is to determine
whether it represents a phonemic error (substi-
tuting “[dɑɪnoʊsɔɹ]” for “dinosaur”) or an ab-
struse neologism (a completely novel sequence of
phonemes that does not correspond to an actual
word). To help accomplish this, we train a lan-
guage model to identify plausible words that could
fit in the slot occupied by the erroneous produc-
tion, and produce a lattice of these candidate target
words (i.e., words that the subject may have been
intending to produce, given what we know about
the context in which they were speaking).
Our languagemodels for this studywere built us-

ing the New York Times section of the Gigaword
newswire corpus (Parker et al., 2011). After suc-
cess in preliminary experiments, we filtered this
corpus by first training a Latent Dirichlet Alloca-
tion (LDA) topic model on the corpus using Gen-
sim (Řehůřek and Sojka, 2010) over 20 topics. We
then projected the text of each of the Cinderella nar-
rative samples into the resulting topic space, and
calculated the centroids for the narrative task. This
yielded a subset of the larger corpus of New York
Times articles that was “most similar” to the Cin-
derella retellings, and we used these to build our
language models.
We investigated two different language model-
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ing approaches: a traditional FST-encoded ngram
language model, and a neural-net based log-
bilinear (LBL) language model. For the FST rep-
resentation, we used the the OpenGrm-NGram
language modeling toolkit (Roark et al., 2012)
and used an n-gram order of 4, with Kneser-Ney
smoothing (Kneser and Ney, 1995). For the LBL
approach, we used a Python implementation4 of
the language model described by Mnih and Teh
(Mnih and Teh, 2012). We used word embeddings
of dimension 100, and a 5-gram context window.
In both cases we trained two language models: one
trained on the “task-specific” subset of Gigaword,
and another trained on the AphasiaBank control
data. We combined these with a simple mixing co-
efficient, λ as shown in Equation 1 where PGW(w)
is the language model probability of word w com-
puted against the Gigaword corpus and the PAB(w)
is the language model probability trained on the
AphasiaBank controls.

P(w) = λ · PAB(w) + (1− λ) · PGW(w) (1)

We evaluate non-lexical productions as fol-
lows. First, we use the Phonetisaurus grapheme-
to-phoneme toolkit (Novak et al., 2012) to trans-
late our orthographic representation into an esti-
mated phoneme sequence. We then calculate a
phonologically-aware edit distance between each
non-word production and every word in our lexi-
con up to somemaximum edit distance (in our case
4.0). Phonemes from a related class (e.g. vowels)
are considered lower cost replacements than those
from another class (e.g. unvoiced fricatives). This
gives us a set of candidates which are phonologi-
cally similar to the production.
We next used our language models to produce

lattices representing a set of possible sentences that
the subject could plausibly have been intending to
produce. At the point in the produced sentence
where our error detection system indicated that a
non-word production occurred, we represent the
anomaly by the union of all possible words in our
edit-distance constrained lexicon (see figure 3 for
an example sentence lattice). Finally, we use the
languagemodels to score the resulting sentence lat-
tice so as to be able to rank the candidate words,
and use the estimated sentence-level probability
for each candidate word (i.e., the hypothesized in-
tended utterance featuring that word). Put simply,

4https://github.com/ddahlmeier/neural_lm
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Figure 1: An example candidate word lattice for
the production “I can’t move my [vɑɪ] hand.”

for each candidate intended word, we produce a
version of the subject’s utterance with that hypoth-
esized word in place of the anomalous utterance,
and score this hypothesized utterance with the lan-
guage model.
At this point in the process, we have the follow-

ing information about each erroneous production:
a best-guess orthographic transcription of what the
individual actually produced, and a ranked list of
plausible words that they could potentially have
been attempting to produce, together with proba-
bility estimates for each hypothesized production.
To determine the category of our error

productions— again, between productions repre-
senting phonological errors such as “[dɑɪnoʊsɔɹ]”
for “dinosaur”, and productions representing ab-
struse neologisms— we trained a binary classifier
using features representing the characteristics
of the candidate word space surrounding the
erroneous production. Our intuition is that phone-
mic errors were much more likely than abstruse
neologisms to have highly-ranked candidate target
words that were also phonologically similar to the
subject’s actual production.
To capture this, we performed the following pro-

cedure for each error-containing utterance. We
first divide our list of candidate intended words
into buckets by edit distance (0.5, 1.0, 1.5, etc.5).
Each bucket can now be thought of as a ranked
list of probabilities, each representing a possible
hypothesized intended utterance featuring a word
within that bucket’s edit distance of the actual
(anomalous) utterance.
We next represent each bucket with a feature

vector consisting of the count of words in that

5Recall that our phonological edit distance metric allows
for partial costs for related phonological substitutions.
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bucket, as well as descriptive statistics regard-
ing the distribution of language model probabil-
ities in that bucket (min, max, etc.). We then
concatenate each bucket’s features together into a
master feature vector for the utterance. Our ex-
pectation is that these features will be relatively
evenly distributed across buckets in the case of ut-
terances containing abstruse neologisms, whereas
utterances featuring phonological paraphasias will
vary according to phonological edit distance.
Oncewe have computed feature vectors for each

utterance, we used the Scikit-learn Python ma-
chine learning library (Pedregosa et al., 2011) to
train a Support Vector Machine classifier to dis-
tinguish between utterances phonological and ab-
struse neologisms. We evaluate its performance
using leave-one-out cross-validation.

4 Results

We perform two evaluations of our model: an in-
trinsic evaluation of how often our system includes
the target word in the top-n ranked candidates, and
an extrinsic evaluation where we attempt to clas-
sify a paraphasia between phonological errors and
abstruse neologisms.
Our motivation for evaluating our system’s per-

formance on target word prediction is tied to our
classification assumptions. In an ideal case for
a phonological error, the target word should fall
within one of the buckets representing a low edit
distance. If our language model successfully rates
the target as likely, we would see an high maxi-
mum probability within that bucket, which is a fea-
ture in our classifier.
The performance of our language models on

the top-n ranked evaluation can be seen in Table
1. The log-bilinear model outperformed the FST
in all cases. This finding is similar to state of
the art results for automatic sentence completion
systems–particularly for phonemic errors–as we’ll
discuss in greater detail in Section 5. Both systems
did a better job of predicting the target word for
phonemic errors than they did for abstruse neolo-
gisms. It’s not immediately clear what the reason
for this is. However, anecdotally, sentences includ-
ing abstruse neologisms are also often agrammati-
cal.
For the evaluation of our classification, we cre-

ated a simple majority class baseline classifier that
always chooses the largest class of errors (phone-
mic errors in this case). This baseline classifier has

Error n FST LBL
Phonemic 1 .43 .52
Phonemic 5 .54 .66
Phonemic 10 .59 .69
Phonemic 20 .67 .77
Phonemic 50 .72 .81
Abstruse Neo. 1 .29 .35
Abstruse Neo. 5 .41 .49
Abstruse Neo. 10 .44 .51
Abstruse Neo. 20 .51 .59
Abstruse Neo. 50 .54 .60

Table 1: Accuracy of language model predicting
the correct target word within the first n results.

Features FST LBL
count, mean .612 .661
count, mean, max .621 .680
count, mean, max, min .610 .659
count, mean, max, dist. .610 .659

Table 2: Classification accuracy by model. Base-
line accuracy of choosing the most common error
type is .510.

a classification accuracy of .51. The results of clas-
sification can be seen in Table 2. Both of our sys-
tems handily outperformed baseline: the FST by
a relative 20% improvement, and the LBL nearly
33%. Aswe expected from the top-n results, classi-
fication based on the LBL outperformed that based
on the FST.
The “dist” feature listed in table 2 is the edit

distance of a given bucket normalized by the num-
ber of phonemes in the actual error production. It
was not found to be productive as a feature, nor
was the minimum language model probability of
words in a given bucket (“min” in the table). The
best results for both systems were a combination of
count of candidate terms per bucket (“count”) con-
catenated with the maximum and mean language
model probabilities within a bucket (“max” and
“min”, respectively).

We varied the mixing-coefficient (λ) from Equa-
tion 1 in both the FST and LBL approaches. As
long as the resulting model includes a non-trivial
weighting of the Cinderella corpus (typically any-
thing better than λ = 3), the actual value of the
mixing coefficient was irrelevant to either of our
evaluations. In this, it appears to work as designed,
with the Gigaword corpus providing background
probabilities, and the AphasiaBank Cinderella con-
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trol retellings increasing the weight of topically im-
portant words that are otherwise rare (like “Cin-
derella” and “carriage”).

5 Related Work & Discussion

As far back as Shannon’s word-guessing game
(Shannon, 1951), researchers have sought to lever-
age the statistical regularities in natural language to
predict missing or subsequent words. In practice,
however, this proves to be a surprisingly challeng-
ing problem. Language occurs at levels beyond
simply choosing lexical items, and local statisti-
cal characteristics of language often fail to capture
syntactic and semantic patterns. Zweig & Burges
(2012) provide an enlightening discussion on the
limitations of relying on n-gram guessing for syn-
tactically complex tasks such as “identify the miss-
ing word in the sentence,” and also describe a very
challenging language model evaluation task built
around this problem. They tested a variety of lan-
guage modeling approaches using their task, and
report that well-trained generative n-gram models
achieve correct predictions ≈ 30% of the time.
State-of-the-art performance on the their word pre-
diction task using recurrent neural network lan-
gage models,6 report highest scores are in the mid-
50% range (Mirowski and Vlachos, 2015; Mnih
and Kavukcuoglu, 2013).
In our case, the nature of our data renders this

task even more challenging. Our sentences are of-
ten short and agrammatical (often missing or mis-
using determiners, for example), and are produced
by individuals with impaired language ability.
As such, our results are actually quite similar to

those reported in recent literature. Our average ac-
curacy of our FST n-gram (over both classes of
errors) selecting the appropriate word is ≈ 35%
while our LBL model’s performance of ≈ 43%
is comparable to the 5-gram LBL performance
of 49.3 reported by Mnih and Teh on the MSR
Sentence Completion Challenge dataset (Mnih and
Teh, 2012).

6 Conclusion & Future Work

While the system’s performance is quite good on
both intrinsic and extrinsic evaluation, there re-
mains much interesting work left to do on the prob-
lem.

6See De Mulder et al. (2015) for a recent review on this
subject.

We currently only evaluate sentences with a sin-
gle error, and more generally have not investigated
whether sentences with multiple errors are differ-
ent from mono-error sentences in terms of error
distribution or structure. However, our approach
should be able to generalize to sentences with ad-
ditional errors, and we will be investigating this in
future work.

Additionally, the AphasiaBank transcripts in-
clude phrasal dependency and part-of-speech tags
which we are currently not using. In future work
we will investigate including these as features in
language modelling, as there is some evidence that
this improves the conceptually related task of con-
textual spellcheck(Fossati and Di Eugenio, 2008).

There is quite a bit of work that can be done
on the language models as well. A more nuanced
approach to topic adaptation is worth investigat-
ing, and we plan to experiment with using non-
newswire corpora. Despite our attempts to focus
the corpus via LDA, there is a major difference be-
tween the written language of the NewYork Times,
and the spoken dialogue between the aphasic sub-
jects and their clinicians.

The most exciting area for further research is the
inclusion of semantic information in our classifica-
tion. While our topic-specific language model pro-
vides our model with some implicit semantic infor-
mation, amore principled approach to semantic rel-
evance could potentially improve the classification
of phonemic errors versus abstruse neologisms by
determining whether a given candidate word is se-
mantically relevant in context. More intriguingly,
it would give us a way to start investigating se-
mantic errors, and those errors that include “real”
words (for example, the previously discussed error
of replacing “dog” with “cat”).

One major limitation of our current system is
its reliance on human-produced transcriptions of
speech samples. In practice, transcription is rarely
feasible in clinical settings, and even in research
settings is often challenging, which may seem
to limit the applicability of our approach. No-
tably, however, our system does not require de-
tailed phonetic transcription, and merely requires
“best-guess” orthographic transcription of neolo-
gisms. As such, one could in principle use au-
tomatic speech recognition (ASR) to analyze a
recording of a patient or research subject, and pro-
duce a transcript on which our methods could be
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run.7 Fraser et al. (2015) have had some success
at applying ASR to samples of aphasic speech and
performing downstream analysis on the resulting
transcripts, and we anticipate experimenting with
similar techniques in the future.
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Abstract

We propose a novel attention mecha-
nism for a Convolutional Neural Net-
work (CNN)-based Drug-Drug Interaction
(DDI) extraction model. CNNs have been
shown to have a great potential on DDI ex-
traction tasks; however, attention mecha-
nisms, which emphasize important words
in the sentence of a target-entity pair, have
not been investigated with the CNNs de-
spite the fact that attention mechanisms
are shown to be effective for a general do-
main relation classification task. We eval-
uated our model on the Task 9.2 of the
DDIExtraction-2013 shared task. As a re-
sult, our attention mechanism improved
the performance of our base CNN-based
DDI model, and the model achieved an
F-score of 69.12%, which is competitive
with the state-of-the-art models.

1 Introduction

When drugs are concomitantly administered to
patients, the effects of the drugs may be en-
hanced or weakened, which may cause side ef-
fects. These kinds of interactions are called Drug-
Drug Interactions (DDIs). Several drug databases,
such as DrugBank (Law et al., 2014), Therapeu-
tic Target Database (Yang et al., 2016), and Phar-
mGKB (Thorn et al., 2013), have been provided
to summarize drug and DDI information for re-
searchers and professionals; however, many newly
discovered or rarely reported interactions are not
covered in the databases, and they are still buried
in biomedical texts. Therefore, studies on auto-
matic DDI extraction that extract DDIs from texts
are expected to support maintenance of databases
with high coverage and quick update to help med-
ical experts deepen their understanding of DDIs.

For the DDI extraction, deep neural network-
based methods have recently drawn a considerable

attention (Liu et al., 2016; Zhao et al., 2016; Sahu
and Anand, 2017). Deep neural networks have
been widely used in the NLP field. They show
high performance on several NLP tasks without
requiring manual feature engineering. Convolu-
tional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) are often employed for
the network architectures. Among these, CNNs
have an advantage that they can be easily paral-
lelized and the calculation is thus fast with recent
Graphical Processing Units (GPUs).

Liu et al. (2016) showed that CNN-based model
can achieve a high accuracy on the task of DDI
extraction. Sahu and Anand (2017) proposed an
RNN-based model with attention mechanism to
tackle the DDI extraction task and show the state-
of-the-art performance. The integration of an at-
tention mechanism into a CNN-based relation ex-
traction is proposed by Wang et al. (2016). This
is applied to a general domain relation extrac-
tion task SemEval 2010 Task 8 (Hendrickx et al.,
2009). Their model showed the state-of-the-art
performance on the task. CNNs with attention
mechanisms, however, are not evaluated on the
task of DDI extraction.

In this study, we propose a novel attention
mechanism that is integrated into a CNN-based
DDI extraction model. The attention mecha-
nism extends attention mechanism by Wang et al.
(2016) in that it deals with anonymized entities
separately from other words and incorporates a
smoothing parameter. We implement a CNN-
based relation extraction model and integrate the
novel mechanism into the model. We evaluate our
model on the Task 9.2 of the DDIExtraction-2013
shared task (Segura Bedmar et al., 2013).

The contribution of this paper is as follows.
First, this paper proposes a novel attention mech-
anism that can boost the performance on CNN-
based DDI extraction. Second, the DDI extrac-
tion model with the attention mechanism achieves
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Figure 1: Overview of our model

the performance with an F-score of 69.12% that is
competitive with other state-of-the-art DDI extrac-
tion models when we compare the performance
without negative instance filtering (Chowdhury
and Lavelli, 2013).

2 Methods

We propose a novel attention mechanism for a
CNN-based DDI extraction model. We illus-
trate the overview of the proposed DDI extraction
model in Figure 1. The model extracts interactions
from sentences with drugs are given. In this sec-
tion, we first present preprocessing of input sen-
tences. We then introduce the base CNN model
and explain the attention mechanism. Finally, we
explain the training method.

2.1 Preprocessing

Before processing a drug pair in a sentence, we re-
place the mentions of the target drugs in the pair
with “DRUG1” and “DRUG2” according to their
order of appearance. We also replace other men-
tions of drugs with “DRUGOTHER”.

Table 1 shows an example of preprocessing
when an input sentence Exposure to oral S-
ketamine is unaffected by itraconazole but greatly
increased by ticlopidine is given with a target en-
tity pair. By performing preprocessing, it is pos-
sible to prevent the DDI extraction model to be

specialized for the surface forms of the drugs in
a training data set and to perform DDI extraction
using the information of the whole context.

2.2 Base CNN model
The base CNN model for extracting DDIs is one
by Zeng et al. (2014). In addition to their original
objective function, we employ an ranking-based
objective function by dos Santos et al. (2015). The
model consists of four layers: embedding, convo-
lution, pooling, and prediction layers. We show
the CNN model at the bottom half of Figure 1.

2.2.1 Embedding layer
In the embedding layer, each word in the input
sentence is mapped to a real-valued vector repre-
sentation using an embedding matrix that is ini-
tialized with pre-trained embeddings. Given an
input sentence S = (w1, · · · , wn) with drug en-
tities e1 and e2, we first convert each word wi into
a real-valued vector ww

i by an embedding matrix
W emb ∈ Rdw×|V | as follows:

ww
i = W embvwi , (1)

where dw is the number of dimensions of the word
embeddings, V is the vocabulary in the training
data set and the pre-trained word embeddings, and
vwi is a one hot vector that represents the index
of word embedding in W emb. vwi thus extracts
the corresponding word embedding from W emb.
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Entity1 Entity2 Preprocessed input sentence
S-ketamine itraconazole Exposure to oral DRUG1 is unaffected by DRUG2 but greatly

increased by DRUGOTHER.
S-ketamine ticlopidine Exposure to oral DRUG1 is unaffected by DRUGOTHER but

greatly increased by DRUG2.
itraconazole ticlopidine Exposure to oral DRUGOTHER is unaffected by DRUG1 but

greatly increased by DRUG2.

Table 1: An example of preprocessing on the sentence “Exposure to oral S-ketamine is unaffected by
itraconazole but greatly increased by ticlopidine” for each target pair.

The word embedding matrix W emb is fine-tuned
during training.

We also prepare dwp-dimensional word position
embeddings wp

i,1 and wp
i,2 that correspond to the

relative positions from first and second target en-
tities, respectively. We concatenate the word em-
bedding ww

i and these word position embeddings
wp
i,1 and wp

i,2 as in the following Equation (2), and
we use the resulting vector as the input to the sub-
sequent convolution layer:

wi = [ww
i ; wp

i,1; w
p
i,2]. (2)

2.2.2 Convolution layer
We define a weight tensor for convolution as
W conv

k ∈Rdc×(dw+2dwp)×k and we represent the j-
th column of W conv

k as W conv
k,j ∈R(dw+2dwp)×k.

Here, dc denotes the number of filters for each
window size, k is a window size, and K is a set
of the window sizes of the filters. We also intro-
duce zi,k that is concatenated k word embeddings:

zi,k = [wT
bi−(k−1)/2c; . . . ; w

T
bi−(k+1)/2c]

T. (3)

We apply the convolution to the embedding matrix
as follows:

mi,j,k = f(W conv
k,j � zi,k + b), (4)

where � is an element-wise product, b is the bias
term, and f is the ReLU function defined as:

f(x) =

{
x, if x > 0
0, otherwise.

(5)

2.2.3 Pooling layer
We employ the max pooling (Boureau et al., 2010)
to convert the output of each filter in the convolu-
tion layer into a fixed-size vector as follows:

ck = [c1,k, · · · , cdc,k], cj,k = max
i
mi,j,k. (6)

We then obtain the dp-dimensional output of this
pooling layer, where dp equals to dc×|K|, by con-
catenating the obtained outputs ck for all the win-
dow sizes k1, · · · , kK(∈ K):

c = [ck1 ; . . . ; cki
; . . . ; ckK

]. (7)

2.2.4 Prediction layer
We predict the relation types using the output of
the pooling layer. We first convert c into scores
using a weight matrix W pred ∈ Ro×dp :

s = W predc, (8)

where o is the total number of relationships to be
classified and s = [s1, · · · , so]. We then employ
the following two different objective functions for
prediction.

Softmax We convert s into the probability of
possible relations p by a softmax function:

p = [p1, · · · , po], pj =
exp (sj)∑o
l=1 exp (sl)

. (9)

The loss function Lsoftmax is defined as in the
Equation (10) when the gold type distribution y
is given. y is a one-hot vector where the proba-
bility of the gold label is 1 and the others are 0.

Lsoftmax = −
∑

y log p (10)

Ranking We employ the ranking-based objec-
tive function following dos Santos et al. (2015).
Using the scores s in the Equation (8), the loss is
calculated as follows:

Lranking = log(1 + exp(γ(m+ − sy))
+ log(1 + exp(γ(m− + sc)), (11)

where m+ and m− are margins, γ is a scaling fac-
tor, y is a gold label, and c ( 6= y) is a negative la-
bel with the highest score in s. We set γ to 2, m+

to 2.5 and m− to 0.5 following dos Santos et al.
(2015).
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Figure 2: Workflow of DDI extraction

2.3 Attention mechanism
Our attention mechanism is based on the input at-
tention by Wang et al. (2016)1. The proposed at-
tention mechanism is different from the base one
in that we prepare separate attentions for enti-
ties and we incorporate a bias term to adjust the
smoothness of attentions. We illustrate the atten-
tion mechanism at the upper half of Figure 1.

We define the word index of the first and second
target drug entities in the sentence as e1 and e2,
respectively. We also denote by E = {e1, e2} the
set of indices and by j ∈ {1, 2} the index of the
entities. We calculate our attentions using these:

βi,j = wej ·wi (12)

αi,j =

{
exp (βi,j)∑

1≤l≤n,l/∈E exp (βl,j)
, if i /∈ E

adrug, otherwise
(13)

αi =
αi,1 + αi,2

2
+ bα. (14)

Here, adrug is an attention parameter for entities
and bα is the bias term. adrug and bα are tuned
during training. If we set E to empty and bα to
zero, the attention will be the same as one by Wang
et al. (2016). We incorporate the attentions αi into
the CNN model by replacing the Equation (4) with
the following equation:

mi,j,k = f(W conv
j � zi,kαi + b). (15)

2.4 Training method
We use L2 regularization to avoid over-fitting.
We use the following objective functions L′∗
(L′softmax or L′ranking) by incorporating the L2
regularization on weights to the Equation (10).

L′∗ = L∗ + λ(||W emb||2F + ||W conv||2F (16)

+||W pred||2F )
1We do not incorporate the attention-based pooling in

Wang et al. (2016). We leave this for future work.

Here, λ is a regularization parameter and || · ||F
denotes the Frobenius norm. We update all the
parameters including the weights W emb, W conv,
and W pred, biases b and bα, and the attention pa-
rameter adrug to minimize L′∗. We use the adap-
tive moment estimation (Adam) (Kingma and Ba,
2015) for the optimizer. We randomly shuffle
training data set and divide them into mini-batch
samples in each epoch.

3 Experimental settings

We illustrate the workflow of the DDI extraction
in Figure 2. As preprocessing, we performed word
segmentation of the input sentences using the GE-
NIA tagger (Tsuruoka et al., 2005). In this section,
we explain the settings for the data sets, tasks, ini-
tial embeddings, and hyper-parameter tuning.

3.1 Data set

We used the data set from the DDIExtraction-2013
shared task (SemEval-2013 Task 9) (Segura Bed-
mar et al., 2013; Herrero-Zazo et al., 2013) for the
evaluation. This data set is composed of docu-
ments annotated with drug mentions and their re-
lationships. The data set consists of two parts:
MEDLINE and DrugBank. MEDLINE consists of
abstracts in PubMed articles, and DrugBank con-
sists of the descriptions of drug interactions in the
DrugBank database. This data set annotates the
following four types of interactions.

• Mechanism: A sentence describes phar-
macokinetic mechanisms of a DDI, e.g.,
“Grepafloxacine may inhibit the metabolism
of theobromine.”

• Effect: A sentence represents the effect of a
DDI, e.g., “Methionine may protect against
the ototoxic effects of gentamicin.”
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Train Test
DrugBank MEDLINE DrugBank MEDLINE

No. of documents 572 142 158 33
No. of sentences 5,675 1,301 973 326
No. of pairs 26,005 1,787 5,265 451
No. of positive DDIs 3,789 232 884 95
No. of negative DDIs 22,216 1,555 4,381 356
No. of Mechanism pairs 1,257 62 278 24
No. of Effect pairs 1,535 152 298 62
No. of Advice pairs 818 8 214 7
No. of Int pairs 179 10 94 2

Table 2: Statistics for the DDIExtraction-2013 shared task data set

Parameter Value
Word embedding size 200
Word position embeddings size 20
Convolutional window size [3, 4, 5]
Convolutional filter size 100
Initial learning rate 0.001
Mini-batch size 100
L2 regularization parameter 0.0001

Table 3: Hyperparamters

Counts
Sentences 1,404
Pairs 4,998
Mechanism pairs 232
Effect pairs 339
Advice pairs 132
Int pairs 48

Table 4: Statistics of the development data set

• Advice: A sentence represents a recommen-
dation or advice on the concomitant use of
two drugs, e.g., “Alpha-blockers should not
be combined with uroxatral.”

• Int: A sentence simply represents the occur-
rence of a DDI without any information about
the DDI, e.g., “The interaction of omeprazole
and ketoconazole has established.”

The statistics of the data set is shown in Table 2.
As shown in this table, the number of pairs that
have no interaction (negative pairs) is larger than
that of pairs that have interactions (positive pairs).

3.2 Task settings
We followed the task setting of Task 9.2 in the
DDIExtraction-2013 shared task (SemEval task

9). The task is to classify a given pair of drugs
into the four interaction types or no interaction.
We evaluated the performance with precision (P),
recall (R), and F-score (F) on each interaction type
as well as micro-averaged precision, recall, and F-
score on all the interaction types. We used the of-
ficial evaluation script provided by the task orga-
nizers and report the averages of 10 runs. Please
note that we took averages of precision, recall and
F-scores individually, so F-scores cannot be calcu-
lated from precision and recall.

3.3 Initializing embeddings
Skip-gram (Mikolov et al., 2013) was employed
for the pre-training of word embeddings. We used
2014 MEDLINE/PubMed baseline distribution,
and the size of vocabulary was 1,630,978. The em-
bedding of the drugs, i.e., “DRUG1”, “DRUG2”
and “DRUGOTHER” are initialized with the pre-
trained embedding of the word “drug”. The em-
beddings of training words that did not appear in
the pre-trained embeddings, as well as the word
position embeddings, are initialized with the ran-
dom values drawn from a uniform distribution and
normalized to unit vectors. Words whose frequen-
cies are one in the training data were replaced with
an “UNK” word during training, and the embed-
ding of words in the test data set that did not ap-
pear in both training and pre-trained embeddings
were set to the embedding of the “UNK” word.

3.4 Hyperparameter tuning
We split the official training data set into two parts:
training and development data sets. We tuned the
hyper-parameters on the development data set on
the softmax model without attentions. Table 3
shows the best hyperparameters on the softmax
model without attentions. We applied the same
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Type P (%) R (%) F (%)
Softmax without attention

Mechanism 76.24 (±4.48) 57.58 (±4.41) 65.31 (±1.76)
Effect 67.84 (±3.56) 63.61 (±4.95) 65.39 (±1.38)
Advice 82.26 (±7.04) 66.65 (±9.07) 72.75 (±2.72)
Int 78.99 (±6.87) 33.55 (±2.62) 47.05 (±1.71)
All (micro) 73.69 (±3.00) 59.92 (±3.73) 65.93 (±1.21)

Softmax with attention
Mechanism 76.34 (±4.20) 64.43 (±5.72) 67.86 (±4.10)
Effect 66.84 (±3.12) 65.98 (±2.63) 65.58 (±2.09)
Advice 80.98 (±6.14) 70.83 (±2.72) 76.28 (±1.40)
Int 73.21 (±6.30) 38.44 (±9.82) 46.11 (±3.96)
All (micro) 73.74 (±1.88) 63.05 (±1.39) 67.94 (±0.70)

Ranking without attention
Mechanism 78.41 (±3.99) 58.17 (±5.10) 66.51 (±2.61)
Effect 68.16 (±3.30) 65.75 (±3.22) 66.80 (±1.46)
Advice 84.49 (±3.55) 67.14 (±4.68) 74.61 (±1.82)
Int 73.95 (±7.09) 33.43 (±1.18) 45.91 (±1.23)
All (micro) 74.79 (±2.41) 60.99 (±2.65) 67.10 (±1.09)

Ranking with attention
Mechanism 80.75 (±2.76) 61.09 (±3.03) 69.45 (±1.45)
Effect 69.73 (±2.64) 66.63 (±2.93) 68.05 (±1.29)
Advice 83.86 (±2.29) 71.81 (±2.61) 77.30 (±1.13)
Int 74.20 (±8.95) 33.02 (±1.40) 45.50 (±1.51)
All (micro) 76.30 (±2.18) 63.25 (±1.71) 69.12 (±0.71)

Table 5: Performance of softmax/ranking CNN models with and without our attention mechanism. The
highest scores are shown in bold.

hyperparameters to the other models. The statis-
tics of our development data set is shown in Ta-
ble 4. We set the sizes of the convolution windows
to [3, 4, 5] that are the same as in Kim (2014). We
chose the word position embedding size from {10,
20, 30, 40, 50}, the convolutional filter size from
{10, 50, 100, 200}, the learning rate of Adam from
{0.01, 0.001, 0.0001}, the mini-batch size from
{10, 20, 50, 100, 200}, and the L2 regularization
parameter λ from {0.01, 0.001, 0.0001, 0.00001}.

4 Results

In this section, we first summarize the perfor-
mance of the proposed models and compare the
performance with existing models. We then com-
pare attention mechanisms and finally illustrate
some results for the analysis of the attentions.

4.1 Performance analysis

The performance of the base CNN models with
two objective functions, as well as with or with-
out the proposed attention mechanism, is summa-

rized in Table 5. The incorporation of the atten-
tion mechanism improved the F-scores by about
2 percent points (pp) on models with both ob-
jective functions. Both improvements were sta-
tistically significant (p < 0.01) with t-test. This
shows that the attention mechanism is effective
for both models. The improvement of F-scores
from the least performing model (softmax objec-
tive function without our attention mechanism)
to the best performing model (ranking objective
function with our attention mechanism) is 3.19 pp
(69.12% versus 65.93%), and this shows both ob-
jective function and attention mechanism are key
to improve the performance. When looking into
the individual types, ranking function with our at-
tention mechanism archived the best F-scores on
Mechanism, Effect, Advice, while the base CNN
model achieved the best F-score on Int.

4.2 Comparison with existing models

We show comparison with the existing state-of-
the-art models in Table 6. We mainly compare
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Methods P (%) R (%) F (%)
No negative instance filtering

CNN (Liu et al., 2016) 75.29 60.37 67.01
MCCNN (Quan et al., 2016) - - 67.80
SCNN (Zhao et al., 2016) 68.5 61.0 64.5
Joint AB-LSTM (Sahu and Anand, 2017) 71.82 66.90 69.27
Proposed model 76.30 63.25 69.12

With negative instance filtering
FBK-irst (Chowdhury and Lavelli, 2013) 64.6 65.6 65.1
Kim et al. (2015) - - 67.0
CNN (Liu et al., 2016) 75.72 64.66 69.75
MCCNN (Quan et al., 2016) 75.99 65.25 70.21
SCNN (Zhao et al., 2016) 72.5 65.1 68.6
Joint AB-LSTM (Sahu and Anand, 2017) 73.41 69.66 71.48

Table 6: Comparison with existing models

P (%) R (%) F (%)
No attention 74.79 (±2.41) 60.99 (±2.65) 67.10 (±1.09)
Input attention by Wang et al. (2016) 73.48 (±1.96) 59.58 (±1.51) 65.77 (±0.80)
Our attention 76.30 (±2.66) 63.25 (±2.59) 69.12 (±0.71)
Our attention without separate attentions adrug 74.03 (±2.11) 63.30 (±2.41) 68.17 (±0.71)
Our attention without the bias term bα 71.56 (±2.18) 64.19 (±2.21) 67.62 (±0.96)

Table 7: Comparison of attention mechanisms on CNN models with ranking objective function

the performance without negative instance filter-
ing, which omits some apparent negative instance
pairs with rules (Chowdhury and Lavelli, 2013),
since we did not incorporate it. We also show the
performance of the existing models with negative
instance filtering for reference.

In the comparison without negative instance fil-
tering, our model outperformed the existing CNN
models (Liu et al., 2016; Quan et al., 2016; Zhao
et al., 2016). The model was competitive with
Joint AB-LSTM model (Sahu and Anand, 2017)
that was composed of multiple RNN models.

When considering negative instance filtering,
our model showed lower performance than the
state-of-the-art. However we believe we can get
similar performance with theirs if we incorporate
negative instance filtering. Still, the model outper-
formed several models such as Kim et al. (2015),
Chowdhury and Lavelli (2013) and SCNN model
even if we consider negative instance filtering.

4.3 Comparison of attention mechanisms

We compare the proposed attention mechanism
with the input attention of Wang et al. (2016) to
show the effectiveness of our attention mecha-
nism. Table 7 shows the comparison of the atten-

tion mechanisms. We also show the base CNN-
based model with ranking loss for reference, and
the results of ablation tests. As is shown in the ta-
ble, the attention mechanism by Wang et al. (2016)
did not work in DDI extraction. However, our
attention improved the performance. This result
shows that the proposed extensions are crucial for
modeling attentions in DDI extraction. The abla-
tion test results show that both extensions to our
attention mechanism, i.e., separate attentions for
entities and incorporation of the bias term, are ef-
fective for the task.

4.4 Visual analysis

Figure 3 shows visualization of attentions on
some sentences with DDI pairs using our atten-
tion mechanism. In the first sentence, “DRUG1”
and “DRUG2” have a Mechanism interaction. The
attention mechanism successfully highlights the
keyword “concentration”. In the second sentence,
which have an Effect interaction, the attention
mechanism put high weights on “increase” and
“effects”. The word “necessary” has a high weight
on the third sentence with an Advice interaction.
For an Int interaction in the last sentence, the word
“interaction” is most highlighted.
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Figure 3: Visualization of attention

5 Related work

Various feature-based methods have been pro-
posed during and after the DDIExtraction-2013
shared task (Segura Bedmar et al., 2013). Björne
et al. (2013) tackled with DDI extraction using
Turku Event Extraction System (TEES), which is
an event extraction system based on the Support
Vector Machines (SVMs). Thomas et al. (2013)
and Chowdhury and Lavelli (2013) proposed two-
phase processing models that first detected DDIs
and then classified the extracted DDIs into one of
the four proposed types. Thomas et al. (2013) used
the ensembles of several kernel methods, while
Chowdhury and Lavelli (2013) proposed hybrid
kernel-based approach with negative instance fil-
tering. The negative instance filtering is employed
by all the subsequent models except for ours. Kim
et al. (2015) proposed a two-phase SVM-based
approach that employed a linear SVM with rich
features including word features, word pairs, de-
pendency relations, parse tree structures, and noun
phrase-based constraint features. Our model does
not use features and instead employs CNNs.

Deep learning-based models recently domi-
nated the DDI extraction task. Among these,
CNN-based models have been often employed and
RNNs has received less attention. Liu et al. (2016)
built a CNN-based model on word embedding and
word position embeddings. Zhao et al. (2016) pro-
posed Syntax CNN (SCNN) that employs syntax
word embeddings with the syntactic information
of a sentence as well as features of POS tags and
dependency trees. Liu et al. (2016) tackled DDI
extraction using Multi-Channel CNN (MCCNN)
that enables the fusion of multiple word embed-
dings. Our work is different from theirs in that we
employed an attention mechanism.

As for RNN-based approach, Sahu and Anand
(2017) proposed an RNN-based model named
Joint AB-LSTM (Long Short-Term Memory).

Joint AB-LSTM is composed of the concatenation
of two RNN-based models: bidirectional LSTM
(Bi-LSTM) and attentive pooling Bi-LSTM. The
model showed the state-of-the-art performance on
the DDIExtraction-2013 shared task data set. Our
model is a single model with a CNN and attention
mechanism, and it performed comparable to theirs
as shown in Table 6.

Wang et al. (2016) proposed muli-level atten-
tion CNNs and applied it to a general domain rela-
tion classification task SemEval 2010 Task 8 (Hen-
drickx et al., 2009). Their attention mechanism
improved the macro F1 score by 1.9pp (from
86.1% to 88.0%), and their model achieved the
state-of-the-art performance on the task.

6 Conclusions

In this paper, we proposed a novel attention mech-
anism for the extraction of DDIs. We built base
CNN-based DDI extraction models with two dif-
ferent objective functions, softmax and ranking,
and we incorporated the attention mechanism into
the models. We evaluated the performance on the
Task 9.2 of the DDIExtraction-2013 shared task,
and we showed that both attention mechanism and
ranking-based objective function are effective for
the extraction of DDIs. Our final model achieved
an F-score of 69.12% that is competitive with the
state-of-the-art model when we compared the per-
formance without negative instance filtering.

As future work, we would like to incorporate an
attention mechanism in the pooling layer (Wang
et al., 2016) and adopt negative instance filter-
ing (Chowdhury and Lavelli, 2013) for the fur-
ther performance improvement and fair compari-
son with the state-of-the-art methods.
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Abstract

Analogy completion has been a popular
task in recent years for evaluating the se-
mantic properties of word embeddings,
but the standard methodology makes a
number of assumptions about analogies
that do not always hold, either in recent
benchmark datasets or when expanding
into other domains. Through an analy-
sis of analogies in the biomedical domain,
we identify three assumptions: that of a
Single Answer for any given analogy, that
the pairs involved describe the Same Re-
lationship, and that each pair is Informa-
tive with respect to the other. We pro-
pose modifying the standard methodology
to relax these assumptions by allowing for
multiple correct answers, reporting MAP
and MRR in addition to accuracy, and us-
ing multiple example pairs. We further
present BMASS, a novel dataset for eval-
uating linguistic regularities in biomedical
embeddings, and demonstrate that the re-
lationships described in the dataset pose
significant semantic challenges to current
word embedding methods.

1 Introduction

Analogical reasoning has long been a staple of
computational semantics research, as it allows
for evaluating how well implicit semantic re-
lations between pairs of terms are represented
in a semantic model. In particular, the recent
boom of research on learning vector space mod-
els (VSMs) for text (Turney and Pantel, 2010)
has leveraged analogy completion as a standalone
method for evaluating VSMs without using a full
NLP system. This is due largely to the obser-
vations of “linguistic regularities” as linear off-

sets in context-based semantic models (Mikolov
et al., 2013c; Levy and Goldberg, 2014; Penning-
ton et al., 2014).

In the analogy completion task, a system is pre-
sented with an example term pair and a query, e.g.,
London:England::Paris: , and the task is to
correctly fill in the blank. Recent methods con-
sider the vector difference between related terms
as representative of the relationship between them,
and use this to find the closest vocabulary term
for a target analogy, e.g., England - London +
Paris ≈ France. However, recent analyses re-
veal weaknesses of such offset-based methods, in-
cluding that the use of cosine similarity often re-
duces to just reflecting nearest neighbor structure
(Linzen, 2016), and that there is significant vari-
ance in performance between different kinds of re-
lations (Köper et al., 2015; Gladkova et al., 2016;
Drozd et al., 2016).

We identify three key assumptions encoded in
the standard offset-based methodology for anal-
ogy completion: that a given analogy has only
one correct answer, that all relationships between
the example pair and the query-target pair are the
same, and that the example pair is sufficiently in-
formative with respect to the query-target pair. We
demonstrate that these assumptions are violated
in real-world data, including in existing analogy
datasets. We then propose several modifications
to the standard methodology to relax these as-
sumptions, including allowing for multiple correct
answers, making use of multiple examples when
available, and reporting mean average precision
(MAP) and mean reciprocal rank (MRR) to give
a more complete picture of the implicit ranking
used in finding the best candidate for completing
a given analogy.

Furthermore, we present the BioMedical Ana-
logic Similarity Set (BMASS), a novel dataset for
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analogical reasoning in the biomedical domain.
This new resource presents real-world examples
of semantic relations of interest for biomedi-
cal natural language processing research, and we
hope it will support further research into biomed-
ical VSMs (Chiu et al., 2016; Choi et al., 2016).1

2 Related work

Analogical reasoning has been studied both on its
own and as a component of downstream tasks,
using a range of systems. Early work used
rule-based systems for world knowledge (Reit-
man, 1965) and syntactic (Federici and Pirelli,
1997) relationships. Supervised models were
used for SAT (Scholastic Aptitude Test) analo-
gies (Veale, 2004), and later for synonymy,
antonymy, and some world knowledge (Turney,
2008; Herdağdelen and Baroni, 2009). Analog-
ical reasoning has also been used in support of
downstream tasks, including word sense disam-
biguation (Federici et al., 1997) and morphologi-
cal analysis (Lepage and Goh, 2009; Lavallée and
Langlais, 2010; Soricut and Och, 2015).

Recent work on analogies has largely focused
on their use as an intrinsic evaluation of the prop-
erties of a VSM. The analogy dataset of Mikolov
et al. (2013a), often referred to as the Google
dataset, has become a standard evaluation for
general-domain word embedding models (Pen-
nington et al., 2014; Levy and Goldberg, 2014;
Schnabel et al., 2015; Faruqui et al., 2015), and
includes both world knowledge and morphosyn-
tactic relations. Other datasets include the MSR
analogies (Mikolov et al., 2013c), which describe
morphological relations only; and BATS (Glad-
kova et al., 2016), which includes both morpho-
logical and semantic relations. The semantic rela-
tions from SemEval-2012 Task 2 (Jurgens et al.,
2012) have also been used to derive analogies;
however, as with the lexical Sem-Para dataset
of Köper et al. (2015), the semantic relation-
ships tend to be significantly more challenging for
embedding-based methods (Drozd et al., 2016).
Additionally, Levy et al. (2015b) demonstrate that
even for some lexical relations where embeddings
appear to perform well, they are actually learning
prototypicality as opposed to relatedness.

1The dataset, and all code used for
our experiments, is available online at
https://github.com/OSU-slatelab/BMASS.

3 Analogy completion task

3.1 Standard methodology

Given an analogy a:b::c:d, the evaluation task is
to guess d out of the vocabulary, given a, b, c as
evidence. Recent methods for this involve using
the vector difference between embedded represen-
tations of the related pairs to rank all terms in the
vocabulary by how well they complete the anal-
ogy, and choosing the best fit. The vector differ-
ence is most commonly used in one of three ways,
where cos is cosine similarity:

argmaxd∈V
(
cos(d, b− a+ c)

)
(1)

argmaxd∈V
(
cos(d− c, b− a)) (2)

argmaxd∈V
cos(d, b)cos(d, c)
cos(d, a) + ε

(3)

Following the terminology of Levy and Goldberg
(2014), we refer to Equation 1 as 3COSADD,
Equation 2 as PAIRWISEDISTANCE, and Equa-
tion 3 (which is equivalent to 3COSADD with log
cosine similarities) as 3COSMUL.

In order to generate analogy data for this task,
recent datasets have followed a similar process
(Mikolov et al., 2013a,c; Köper et al., 2015; Glad-
kova et al., 2016). First, relations of interest were
manually selected for the target domains: syntac-
tic/morphological, lexical (e.g., hypernymy, syn-
onymy), or semantic (e.g., CapitalOf). Then, for
each relation, example word pairs were manually
selected or automatically generated from existing
resources (e.g., WordNet). The final analogies
were then generated by exhaustively combining
the sets of word pairs within each relation.

3.2 Assumptions

Several key assumptions are inherent in this stan-
dard methodology that are not reflected in recent
benchmark analogy datasets. The first we refer
to as the Single-Target assumption: namely, that
there is a single correct answer for any given anal-
ogy. Since the target d is chosen via argmax, if we
consider the following two analogies:

flu:nausea::fever:?cough
flu:nausea::fever:?light-headedness

we must necessarily get at least one answer
wrong. Gladkova et al. (2016) convert these
analogies into a single case:

flu:nausea::fever:?[cough, light-headedness]
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Pair Relations

brother:sister
FemaleCounterpart

SiblingOf

husband:wife
FemaleCounterpart

MarriedTo

Table 1: Binary semantic relations in “brother is to
sister as husband is to wife.” The target common
relation is shown in bold.

where either cough or lightheadedness is a cor-
rect guess. However, this still misses our desire
to get both correct answers, if possible. Relations
with multiple correct targets are present in all of
Google, BATS, and Sem-Para.

The second key assumption is that all the infor-
mation relating a to b also relates c to d. While the
pairs are chosen based on a single common rela-
tionship, each pair may actually pertain to multi-
ple relationships. An example from the Google
dataset is brother:sister::husband:wife; Table 1
shows the semantic relations involved in this anal-
ogy. While the target relation FemaleCounterpart
is present in both pairs, by comparing the offsets
sister − brother and wife − husband, we as-
sume that either all ways in which each pair is
related are present in both, or that FemaleCoun-
terpart dominates the offset. We refer to this as
the Same-Relationship assumption.

Finally, it is not sufficient for two pairs to
share a common relationship label; that relation-
ship must be both representative and informa-
tive for analogies to make sense (the Informa-
tivity assumption). Relation labels may be suf-
ficiently broad as to be meaningless, as we en-
countered when drawing unfiltered binary rela-
tions from the Unified Medical Language Sys-
tem (UMLS) Metathesaurus. One sample analogy
from the RO:Null relation (indicating “related in
some way”) was socks:stockings::Finns:Finnish
language. While both pairs are of related terms,
they are in no way related to one another.

Furthermore, even when two pairs are exam-
ples of the same kind of clearly-defined relation,
they may still be relatively uninformative. For ex-
ample, in the Sem-Para Meronym analogy apri-
cot:stone::trumpet:mouthpiece the meronymic re-
lationship between apricot and stone could plau-
sibly identify a number of parts of a trumpet:
mouthpiece, valves, slide, etc.2 The extremely

2While this is similar to the Single-Target assumption, it

high-level nature of several of the Sem-Para re-
lations (hypernymy, antonymy, and synonymy)
suggests that some of the difficulty observed by
Köper et al. (2015) is due to violations of Infor-
mativity.

4 BMASS

We present BMASS (the BioMedical Analogic
Similarity Set), a dataset of biomedical analogies,
generated using the expert-curated knowledge in
the Unified Medical Language System (UMLS)3

(Bodenreider, 2004) in order to identify medical
term pairs sharing the same relationships. We fol-
lowed the standard process for dataset generation
outlined in Section 3.1, with some adjustments for
the assumptions in Section 3.2.

The UMLS Metathesaurus is centered around
normalized concepts, represented by Concept
Unique Identifiers (CUIs). Each concept can be
represented in textual form by one or more terms
(e.g., C0009443→ “Common cold”, “acute rhini-
tis”). These terms may be multi-word expressions
(MWEs); in fact, many concepts in the UMLS
have no unigram terms.

The Metathesaurus also contains 〈subject, re-
lation, object〉 triples describing binary relation-
ships between concepts. These relationships are
specified at two levels: relationship types (RELs),
such as broader-than and qualified-by, and spe-
cific relationships (RELAs) within each type, e.g.,
tradename-of and has-finding-site. For this work,
we used the 721 unique REL/RELA pairings as
our source relationships, and treated the 〈subject,
object〉 pairs linked within each of these relation-
ships as candidates for generating analogies.

To enable a word embedding–based evaluation,
we first identified terms that appeared at least 25
times in the 2016 PubMed baseline collection of
biomedical abstracts,4 and removed all 〈subject,
object〉 pairs involving concepts that did not corre-
spond to these frequent terms. Most relationships
in the Metathesaurus are many-to-many (i.e., each
subject can be paired with multiple objects and

bears separate consideration in that Single-Target refers to
multiple valid objects of a specific relationship, while this is
an issue of multiple valid relationships being described.

3We use the 2016AA release of the UMLS.
4We chose 25 as our minimum frequency to ensure that

each term appeared often enough to learn reasonable embed-
dings for its component words. To determine term frequency,
we first lowercased and stripped punctuation from both the
PubMed corpus and the term list extracted from UMLS, then
searched the corpus for exact term matches.
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vice versa), and thus may challenge Single-Target
and Informativity assumptions; we therefore next
identified relations that had at least 50 1:1 in-
stances, i.e., a subject and object that are only
paired with one another within a specific relation-
ship. Since 1:1 instances are not sufficient to guar-
antee Informativity, we then manually reviewed
the remaining relations to identify those those that
we deemed to satisfy Informativity constraints.
For example, the is-a relationship between tongue
muscles and head muscle is not specific enough to
suggest that carbon monoxide should elicit gaso-
transmitters as its corresponding answer. How-
ever, for associated-with, sampled pairs such as
leg injuries : leg and histamine release : histamine
were sufficiently consistent that we deemed it In-
formative. This gave us a final set of 25 binary
relations, listed in Table 2.5

We follow Gladkova et al. (2016) in generating
a balanced dataset, to enable a more robust com-
parative analysis between relations. We randomly
sampled 50 〈subject, object〉 pairs from each re-
lation, again restricting to concepts with strings
appearing frequently in PubMed. For each sub-
ject concept that we sampled, we collected all
valid object concepts and bundled them as a sin-
gle 〈subject, objects〉 pair. We then exhaustively
combined each concept pair with the others in its
relation to create 2,450 analogies, giving us a to-
tal dataset size of 61,250 analogies. Finally, for
each concept, we chose a single frequent term to
represent it, giving us both CUI and string repre-
sentations of each analogy.

5 Evaluation

We assess how well biomedical word embeddings
can perform on our dataset, and explore modi-
fications to the standard evaluation methodology
to relax the assumptions described in Section 3.2.
We use the skip-gram embeddings trained by Chiu
et al. (2016) on the PubMed citation database,
one set using a window size of 2 (PM-2) and an-
other set with window size 30 (PM-30). All other
word2vec hyperparameters were tuned by Chiu et
al. on a combination of similarity and relatedness
and named entity recognition tasks.

Additionally, we use the hyperparameters they
identified (minimum frequency=5, vector dimen-
sion=200, negative samples=10, sample=1e-4,

5Examples of each relation, along with their mappings to
UMLS REL/RELA values, are available online.

ID Name Amb
Lab/Rx
L1 form-of 1.0
L2 has-lab-number 1.1
L3 has-tradename 1.5
L4 tradename-of 1.3
L5 associated-substance 1.6
L6 has-free-acid-or-base-form 1.0
L7 has-salt-form 1.1
L8 measured-component-of 1.3
Hierarchical
H1 refers-to 1.0
H2 same-type 10.4
Morphological
M1 adjectival-form-of 1.1
M2 noun-form-of 1.0
Clinical
C1 associated-with-malfunction-of-

gene-product
2.6

C2 gene-product-malfunction-
associated-with-disease

1.5

C3 causative-agent-of 4.6
C4 has-causative-agent 2.0
C5 has-finding-site 1.9
C6 associated-with 1.2
Anatomy
A1 anatomic-structure-is-part-of 1.6
A2 anatomic-structure-has-part 5.4
A3 is-located-in 1.4
Biology
B1 regulated-by 1.0
B2 regulates 1.0
B3 gene-encodes-product 1.1
B4 gene-product-encoded-by 2.4

Table 2: List of the relations kept after manual
filtering; Amb is the average ambiguity, i.e., the
average number of correct answers per analogy.

α=0.05, window size=2) to train our own embed-
dings on a subset of the 2016 PubMed Baseline
(14.7 million documents, 2.7 billion tokens). We
train word2vec (Mikolov et al., 2013a) samples
with the continuous bag-of-words (CBOW) and
skip-gram (SGNS) models, trained for 10 itera-
tions, and GloVe (Pennington et al., 2014) sam-
ples, trained for 50 iterations.

We performed our evaluation with each of
3COSADD, PAIRWISEDISTANCE, and 3COS-
MUL as the scoring function over the vocabulary.
In contrast to the prior findings of Levy and Gold-
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berg (2014) on the Google dataset, performance
on BMASS is roughly equivalent among the three
methods, often differing by only one or two cor-
rect answers. We therefore only report results with
3COSADD, since it is the most familiar method.

5.1 Modifications to the standard method

We consider 3COSADD under three settings of
the analogies in our dataset. For a given analogy
a:b::c:?d, we refer to 〈a, b〉 as the exemplar pair
and 〈c, d〉 as the query pair; ?d signifies the target
answer.

Single-Answer puts analogies in a:b::c:d for-
mat, with a single example object b and a single
correct object d, by taking the first object listed for
each term pair. This enforces the Single-Answer
assumption.

Multi-Answer takes the first object listed for
the exemplar term pair, but keeps all valid an-
swers, i.e. a:b::c:[d1,d2,. . . ]; this is similar to
the approach of Gladkova et al. (2016). There are
approximately 16k analogies in our dataset with
multiple valid answers.

All-Info keeps all valid objects for both the ex-
emplar and query pairs. The exemplar offset is
then calculated over B = [b1, b2, . . . ] as

a−B =
1
|B|

∑
i

a− bi

Though this is superficially similar to 3COSAVG

(Drozd et al., 2016), we average over objects for a
specific subject, as opposed to averaging over all
subject-object pairs.

We report a relaxed accuracy (denoted AccR),
in which the guess is correct if it is in the set of
correct answers. (In the Single-Answer case, this
reduces to standard accuracy.) AccR, as with stan-
dard accuracy, necessitates ignoring a, b, or c if
they are the top results (Linzen, 2016).

In order to capture information about all cor-
rect answers, we also report Mean Average Pre-
cision (MAP) and Mean Reciprocal Rank (MRR)
over the set of correct answers in the vocabulary,
as ranked by Equation 1. Since MAP and MRR do
not have a cutoff in terms of searching for the cor-
rect answer in the ranked vocabulary, they can be
used without the adjustment of ignoring a, b, and
c; thus, they can give a more accurate picture of
how close the correct terms are to the calculated
guesses.

5.2 MWEs and candidate answers
As noted in Section 4, the terms in our analogy
dataset may be multi-word expressions (MWEs).
We follow the common baseline approach of rep-
resenting an MWE as the average of its compo-
nent words (Mikolov et al., 2013b; Chen et al.,
2013; Wieting et al., 2016). For phrasal terms
containing one or more words that are out of our
embedding vocabulary, we only consider the in-
vocabulary words: thus, if “parathyroid” is not in
the vocabulary, then the embedding of parathyroid
hypertensive factor will be

hypertensive+ factor

2
For any individual analogy a:b::c:?d, the vo-

cabulary of candidate phrases to complete the
analogy is derived by calculating averaged word
embeddings for each UMLS term appearing in
PubMed abstracts at least 25 times. Terms for
which none of the component words are in vocab-
ulary are discarded. This yields a candidate set
of 229,898 phrases for the PM-2 and PM-30, and
263,316 for our CBOW, SGNS, and GloVe sam-
ples.

Since prior work on analogies has primarily
been concerned with unigram data, we also iden-
tified a subset of our data for which we could
find single-word string realizations for all con-
cepts in an analogy, using the full vocabulary of
our trained embeddings. Even in the All-Info set-
ting, we could only identify 606 such analogies;
Table 3 shows MAP results for PM-2 and CBOW
embeddings on the three relations with at least
100 unigram analogies. The unigram analogies
are slightly better captured than the full MWE
data for has-lab-number (L2) and has-tradename
(L3); however, lower performance on the unigram
subset in tradename-of (L4) shows that unigram
analogies are not always easier. We see a small
effect from the much larger set of candidate an-
swers in the unigram case (>1m unigrams), as
shown by the slightly higher MAP numbers in the
UniM case. In general, it is clear that the difficulty
of some of the relations in our dataset is not due
solely to using MWEs in the analogies.

5.3 Metric comparison
Figure 1 shows AccR, MAP, and MRR results
for each relation in BMASS, using PM-2 embed-
dings in the Multi-Answer setting. Overall, per-
formance varies widely between relations, with all
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Figure 1: AccR, MAP, and MRR for each relation, using PM-2 embeddings under the Multi-Answer
setting. Note that MAP is calculated using the position of all correct answers in the ranked list, while
MRR reflects only the position of the first correct answer found in the ranked list for each individual
query.

Figure 2: AccR per relation for PM-2 on BMASS, under Single-Answer, Multi-Answer, and All-Info
settings.

Figure 3: Per-relation MAP for all embeddings under the Multi-Answer setting.

three metrics staying under 0.1 in the majority of
cases; this mirrors previous findings on other anal-
ogy datasets (Levy and Goldberg, 2014; Gladkova
et al., 2016; Drozd et al., 2016).

MAP further fleshes out these differences by re-
porting performance over all correct answers for a
given analogy. This lets us distinguish between re-
lations like has-salt-form (L7), where noticeably
lower MAP numbers reflect a wider distribution
of the multiple correct answers, and relations like
regulates (B2) or associated-with (C6), where a
low AccR reflects many incorrect answers, but a
higher MAP indicates that the correct answers are
relatively near the guess.

MRR, on the other hand, more optimistically
reports how close we got to finding any correct
answer. Thus, for the has-causative-agent (C4) re-
lation, low AccR is belied by a noticeably higher
MRR, suggesting that even when we guess wrong,
the correct answer is close. This contrasts with
relations like refers-to (H1) or causative-agent-
of (C3), where MRR is more consistent with
AccR, indicating that wrong guesses tend to be
farther from the truth. Since most of our analo-
gies (45,178 samples, or about 74%) have only a
single correct answer, MAP and MRR tend to be
highly similar. However, in high-ambiguity rela-
tions like same-type (H2), higher MRR numbers
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give a better sense of our best case performance.

5.4 Analogy settings

To compare across the Single-Answer, Multi-
Answer, and All-Info settings, we first look at
AccR for each relation in BMASS, shown for PM-
2 embeddings in Figure 2 (the observed patterns
are similar with the other embeddings). Unsur-
prisingly, allowing for multiple answers in Multi-
Answer and All-Info slightly raises AccR in most
cases. What is surprising, however, is that includ-
ing more sample exemplar objects in the All-Info
setting had widely varying results. In some cases,
such as same-type (H2), associated-substance
(L5), and gene-product-encoded-by (B4), the ad-
ditional exemplars gave a noticeable improvement
in accuracy. In others, accuracy actually went
down: form-of (L1) and has-free-acid-or-base-
form (L6) are the most striking examples, with
absolute decreases of 4% and 8% respectively
from the Multi-Answer case for PM-2 (the de-
creases are similar with other embeddings). Thus,
it seems that multiple examples may help with In-
formativity in some cases, but confuse it in oth-
ers. Taken together with the improvements seen
in Drozd et al. (2016) from using 3COSAVG, this
is another indication that any single subject-object
pair may not be sufficiently representative of the
target relationship.

5.5 Embedding methods

Averaging over all relations, the five embedding
settings we tested behaved roughly the same, with
our trained embeddings slightly outperforming the
pretrained embeddings of Chiu et al. (2016); sum-
mary AccR, MAP, and MRR performances are
given in Table 4. At the level of individual re-
lations, Figure 3 shows MAP performance in the
Multi-Answer setting. The four word2vec sam-

Rel PM-2 CBOW
Uni UniM MWE Uni UniM MWE

L2 0.05 0.04 0.03 0.11 0.13 0.06
L3 0.10 0.12 0.04 0.12 0.17 0.06
L4 0.00 0.00 0.01 0.04 0.05 0.07

Table 3: MAP performance on the three BMASS
relations with≥100 unigram analogies. Uni is us-
ing unigram embeddings on unigram data, UniM
is using MWE embeddings on unigram data, and
MWE is performance with MWE embeddings
over the full MWE data.

ples tend to behave similarly, with some incon-
sistent variations. Interestingly, CBOW outper-
forms the other embeddings by a large margin in
several relations, including regulated-by (B1) and
has-tradename (L3).

GloVe varies much more widely across the re-
lations, as reflected in the higher standard devia-
tions in Table 4. While GloVe consistently outper-
forms word2vec embeddings on has-free-acid-or-
base-form (L6) and has-salt-form (L7), it signif-
icantly underperforms on the morphological and
hierarchical relations, among others. Most no-
tably, while the word2vec embeddings show mi-
nor differences in performance between the Multi-
Answer and All-Info settings, GloVe AccR perfor-
mance falls drastically on form-of (L1) and has-
free-acid-or-base-form (L6), as shown in Table 5.
However, its MAP and MRR numbers stay simi-
lar, suggesting that there is only a reshuffling of
results closest to the guess.

5.6 Error analysis

Several interesting patterns emerge in review-
ing individual a:b::c:?d predictions. A num-
ber of errors follow directly from our word av-
eraging approach to MWEs: words that ap-
pear in b or c often appear in the predictions,
as in gosorelin:ici 118630::letrozole:*ici 164384.
Prefix substitutions also occurred, as with
mianserin hydrochloride:mianserin::scopolamine
hydrobromide:*scopolamine methylbromide.

Often, the b term(s) would outweigh c,
leading to many of the top guesses be-
ing variants on b. In one analogy, sodium
acetylsalicyclate:aspirin::intravenous im-
munoglobulins:?immunoglobulin g, the top
guesses were: *aspirin prophylaxis, *aspirin,
*aspirin antiplatelet, and *low-dose aspirin.

In other cases, related to the nearest neighbor-
hood over-reporting observed by Linzen (2016),
we saw guesses very similar to c, regardless
of a or b, as with acute inflammations:acutely
inflamed::endoderm:*embryonic endoderm; other
near guesses included *endoderm cell and epi-
blast.

Finally, we found several analogies where
the incorrect guesses made were highly related
to the correct answer, despite not matching.
One such analogy was oropharyngeal suction-
ing:substances::thallium scan:?radioisotopes;
the top guess was *radioactive substances, and
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Setting Single-Answer Multi-Answer All-Info
AccR MAP MRR AccR MAP MRR AccR MAP MRR

PM-2 .08 (.16) .07 (.13) .07 (.13) .08 (.15) .07 (.12) .08 (.11) .07 (.13) .07 (.11) .07 (.11)
PM-30 .08 (.16) .08 (.13) .08 (.13) .09 (.16) .08 (.13) .09 (.13) .08 (.13) .08 (.12) .09 (.12)
GloVe .11 (.22) .09 (.16) .09 (.16) .11 (.22) .09 (.16) .10 (.15) .10 (.18) .09 (.16) .10 (.15)

CBOW .11 (.18) .11 (.14) .11 (.14) .12 (.18) .12 (.14) .12 (.14) .11 (.17) .12 (.14) .13 (.14)
SGNS .11 (.18) .11 (.14) .11 (.14) .11 (.18) .11 (.14) .12 (.13) .11 (.17) .12 (.14) .12 (.14)

Table 4: Average performance over all relations in the dataset, for each set of embeddings. Results are
reported as “Mean (Standard deviation)” for each metric.

Metric L1 L6
SA MA AI SA MA AI

AccR 0.49 0.49 0.24 0.62 0.62 0.39
MAP 0.28 0.28 0.28 0.39 0.39 0.39
MRR 0.28 0.28 0.28 0.39 0.39 0.39

Table 5: AccR, MAP, and MRR performance
variation between Single-Answer (SA), Multi-
Answer (MA), and All-Info (AI) settings for
GloVe embeddings on form-of (L1) and has-free-
acid-or-base-form (L6)

*gallium compounds was two guesses farther
down. Showing some mixed effect from the
neighborhood of b, *performance-enhancing
substances was the next-ranked candidate.

6 Discussion

Relaxing the Single-Answer, Same-Relationship,
and Informativity assumptions by including mul-
tiple correct answers and multiple exemplar pairs
and by reporting MAP and MRR in addition to
accuracy paints a more complete picture of how
well word embeddings are performing on anal-
ogy completion, but leaves a number of ques-
tions unanswered. While we can more clearly see
the relations where we correctly complete analo-
gies (or come close), and contrast with relations
where a vector arithmetic approach completely
misses the mark, what distinguishes these cases
remains unclear. Some more straightforward rela-
tionships, such as gene-encodes-product (B3) and
its inverse gene-product-encoded-by (B4), show
surprisingly poor results, while the very broad
synonymy of refers-to (H1) is captured compar-
atively well. Additionally, in contrast to prior
work with morphological relations, adjectival-
form-of (M1) and noun-form-of (M2) are much
more challenging in the biomedical domain, as
we see non-morphological related pairs such as
predisposed:disease susceptibility and venous lu-
men:endovenous, in addition to more normal pairs
like sweating:sweaty and muscular:muscle. Fur-

ther analysis may provide some insight into spe-
cific challenges posed by the relations in our
dataset, as well as why performance with PAIR-
WISEDISTANCE and 3COSMUL did not notice-
ably differ from 3COSADD.

In terms of specific model errors, we did not
evaluate the effects of any embedding hyperpa-
rameters on performance in BMASS, opting to
use hyperparameter settings tuned for general-
purpose use in the biomedical domain. Levy et al.
(2015a) and Chiu et al. (2016), among others,
show significant impact of embedding hyperpa-
rameters on downstream performance. Exploring
different settings may be one way to get a bet-
ter sense of exactly what incorrect answers are
being highly-ranked, and why those are emerg-
ing from the affine organization of the embedding
space. Additionally, the higher variance in per-
relation performance we observed with GloVe em-
beddings suggests that there is more to unpack as
to what the GloVe model is capturing or failing to
capture compared to word2vec approaches.

Finally, while we considered Informativity dur-
ing the generation of BMASS, and relaxed the
Single-Answer assumption in our evaluation, we
have not really addressed the Same-Relationship
assumption. Using multiple exemplar pairs is one
attempt to reduce the impact of confusing extrane-
ous relationships, but in practice this helps some
relations and harms others. Drozd et al. (2016)
tackle this problem with the LRCos method; how-
ever, their findings of mis-applied features and
errors due to very slight mis-rankings show that
there is still room for improvement. One question
is whether this problem can be addressed at all
with non-parametric models like the vector offset
approaches, to retain the advantages of evaluating
directly from the word embedding space, or if a
learned model (like LRCos) is necessary to sepa-
rate out the different aspects of a related term pair.
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7 Conclusions

We identified three key assumptions in the stan-
dard methodology for analogy-based evaluations
of word embeddings: Single-Answer (that there
is a single correct answer for an analogy), Same-
Relationship (that the exemplar and query pairs
are related in the same way), and Informativity
(that the exemplar pair is informative with respect
to the query pair). We showed that these assump-
tions do not hold in recent benchmark datasets or
in biomedical data. Therefore, to relax these as-
sumptions, we modified analogy evaluation to al-
low for multiple correct answers and multiple ex-
emplar pairs, and reported Mean Average Preci-
sion and Mean Reciprocal Recall over the ranked
vocabulary, in addition to accuracy of the highest-
ranked choice.

We also presented the BioMedical Analogic
Similarity Set (BMASS), a novel analogy comple-
tion dataset for the biomedical domain. In contrast
to existing datasets, BMASS was automatically
generated from a large-scale database of 〈subject,
relation, object〉 triples in the UMLS Metathe-
saurus, and represents a number of challenging
real-world relationships. Similar to prior results,
we find wide variation in word embedding perfor-
mance on this dataset, with accuracies above 50%
on some relationships such as has-salt-form and
regulated-by, and numbers below 5% on others,
e.g., anatomic-structure-is-part-of and measured-
component-of.

Finally, we are able to address the Single-
Answer assumption by modifying the analogy
evaluation to accommodate multiple correct an-
swers, and we consider Informativity in generat-
ing our dataset and using multiple example pairs.
However, the Same-Relationship assumption re-
mains a challenge, as does a more automated ap-
proach to either evaluating or relaxing Informa-
tivity. These offer promising directions for future
work in analogy-based evaluations.
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Abstract

State-of-the-art methods for protein-
protein interaction (PPI) extraction are
primarily feature-based or kernel-based
by leveraging lexical and syntactic in-
formation. But how to incorporate such
knowledge in the recent deep learning
methods remains an open question. In
this paper, we propose a multichannel
dependency-based convolutional neu-
ral network model (McDepCNN). It
applies one channel to the embedding
vector of each word in the sentence,
and another channel to the embedding
vector of the head of the corresponding
word. Therefore, the model can use
richer information obtained from different
channels. Experiments on two public
benchmarking datasets, AIMed and
BioInfer, demonstrate that McDepCNN
compares favorably to the state-of-the-art
rich-feature and single-kernel based meth-
ods. In addition, McDepCNN achieves
24.4% relative improvement in F1-score
over the state-of-the-art methods on cross-
corpus evaluation and 12% improvement
in F1-score over kernel-based methods on
“difficult” instances. These results suggest
that McDepCNN generalizes more easily
over different corpora, and is capable of
capturing long distance features in the
sentences.

1 Introduction

With the growing amount of biomedical infor-
mation available in the textual form, there has
been considerable interest in applying natural lan-
guage processing (NLP) techniques and machine
learning (ML) methods to the biomedical litera-

ture (Huang and Lu, 2015; Leaman and Lu, 2016;
Singhal et al., 2016; Peng et al., 2016). One of the
most important tasks is to extract protein-protein
interaction relations (Krallinger et al., 2008).

Protein-protein interaction (PPI) extraction is a
task to identify interaction relations between pro-
tein entities mentioned within a document. While
PPI relations can span over sentences and even
cross documents, current works mostly focus on
PPI in individual sentences (Pyysalo et al., 2008;
Tikk et al., 2010). For example, “ARFTS” and
“XIAP-BIR3” are in a PPI relation in the sentence
“ARFTSPROT1 specifically binds to a distinct do-
main in XIAP-BIR3PROT2”.

Recently, deep learning methods have achieved
notable results in various NLP tasks (Manning,
2015). For PPI extraction, convolutional neural
networks (CNN) have been adopted and applied
effectively (Zeng et al., 2014; Quan et al., 2016;
Hua and Quan, 2016). Compared with traditional
supervised ML methods, the CNN model is more
generalizable and does not require tedious feature
engineering efforts. However, how to incorporate
linguistic and semantic information into the CNN
model remains an open question. Thus previous
CNN-based methods have not achieved state-of-
the-art performance in the PPI task (Zhao et al.,
2016a).

In this paper, we propose a multichannel
dependency-based convolutional neural network,
McDepCNN, to provide a new way to model
the syntactic sentence structure in CNN mod-
els. Compared with the widely-used one-hot CNN
model (e.g., the shortest-path information is firstly
transformed into a binary vector which is zero in
all positions except at this shortest-path’s index,
and then applied to CNN), McDepCNN utilizes
a separate channel to capture the dependencies of
the sentence syntactic structure.

To assess McDepCNN, we evaluated our
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model on two benchmarking PPI corpora,
AIMed (Bunescu et al., 2005) and BioIn-
fer (Pyysalo et al., 2007). Our results show that
McDepCNN performs better than the state-of-the-
art feature- and kernel-based methods.

We further examined McDepCNN in two exper-
imental settings: a cross-corpus evaluation and an
evaluation on a subset of “difficult” PPI instances
previously reported (Tikk et al., 2013). Our re-
sults suggest that McDepCNN is more generaliz-
able and capable of capturing long distance infor-
mation than kernel methods.

The rest of the manuscript is organized as fol-
lows. We first present related work. Then, we
describe our model in Section 3, followed by an
extensive evaluation and discussion in Section 4.
We conclude in the last section.

2 Related work

From the ML perspective, we formulate the PPI
task as a binary classification problem where dis-
criminative classifiers are trained with a set of pos-
itive and negative relation instances. In the last
decade, ML-based methods for the PPI tasks have
been dominated by two main types: the feature-
based vs. kernel based method. The common
characteristic of these methods is to transform re-
lation instances into a set of features or rich struc-
tural representations like trees or graphs, by lever-
aging linguistic analysis and knowledge resources.
Then a discriminative classifier is used, such as
support vector machines (Vapnik, 1995) or condi-
tional random fields (Lafferty et al., 2001).

While these methods allow the relation extrac-
tion systems to inherit the knowledge discovered
by the NLP community for the pre-processing
tasks, they are highly dependent on feature en-
gineering (Fundel et al., 2007; Van Landeghem
et al., 2008; Miwa et al., 2009b; Bui et al., 2011).
The difficulty with feature-based methods is that
data cannot always be easily represented by ex-
plicit feature vectors.

Since natural language processing applica-
tions involve structured representations of the
input data, deriving good features is difficult,
time-consuming, and requires expert knowledge.
Kernel-based methods attempt to solve this prob-
lem by implicitly calculating dot products for ev-
ery pair of examples (Erkan et al., 2007; Airola
et al., 2008; Miwa et al., 2009a; Kim et al., 2010;
Chowdhury et al., 2011). Instead of extracting fea-

ture vectors from examples, they apply a similar-
ity function between examples and use a discrim-
inative method to label new examples (Tikk et al.,
2010). However, this method also requires manual
effort to design a similarity function which can not
only encode linguistic and semantic information in
the complex structures but also successfully dis-
criminate between examples. Kernel-based meth-
ods are also criticized for having higher computa-
tional complexity (Collins and Duffy, 2002).

Convolutional neural networks (CNN) have
recently achieved promising results in the PPI
task (Zeng et al., 2014; Hua and Quan, 2016).
CNNs are a type of feed-forward artificial neu-
ral network whose layers are formed by a con-
volution operation followed by a pooling opera-
tion (LeCun et al., 1998). Unlike feature- and
kernel-based methods which have been well stud-
ied for decades, few studies investigated how to in-
corporate syntactic and semantic information into
the CNN model. To this end, we propose a neu-
ral network model that makes use of automati-
cally learned features (by different CNN layers)
together with manually crafted ones (via domain
knowledge), such as words, part-of-speech tags,
chunks, named entities, and dependency graph of
sentences. Such a combination in feature engi-
neering has been shown to be effective in other
NLP tasks also (e.g. (Shimaoka et al., 2017)).

Furthermore, we propose a multichannel CNN,
a model that was suggested to capture different
“views” of input data. In the image processing,
(Krizhevsky et al., 2012) applied different RGB
(red, green, blue) channels to color images. In
NLP research, such models often use separate
channels for different word embeddings (Yin and
Schütze, 2015; Shi et al., 2016). For example, one
could have separate channels for different word
embeddings (Quan et al., 2016), or have one chan-
nel that is kept static throughout training and the
other that is fine-tuned via backpropagation (Kim,
2014). Unlike these studies, we utilize the head of
the word in a sentence as a separate channel.

3 CNN Model

3.1 Model Architecture Overview

Figure 1 illustrates the overview of our model,
which takes a complete sentence with mentioned
entities as input and outputs a probability vector
(two elements) corresponding to whether there is
a relation between the two entities. Our model
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mainly consists of three layers: a multichannel
embedding layer, a convolution layer, and a fully-
connected layer.

3.2 Embedding Layer

In our model, as shown in Figure 1, each word in a
sentence is represented by concatenating its word
embedding, part-of-speech, chunk, named entity,
dependency, and position features.

3.2.1 Word embedding
Word embedding is a language modeling tech-
niques where words from the vocabulary are
mapped to vectors of real numbers. It has been
shown to boost the performance in NLP tasks. In
this paper, we used pre-trained word embedding
vectors (Pyysalo et al., 2013) learned on PubMed
articles using the word2vec tool (Mikolov et al.,
2013). The dimensionality of word vectors is 200.

3.2.2 Part-of-speech
We used the part-of-speech (POS) feature to ex-
tend the word embedding. Similar to (Zhao et al.,
2016b), we divided POS into eight groups. Then
each group is mapped to an eight-bit binary vector.
In this way, the dimensionality of the POS feature
is 8.

3.2.3 Chunk
We used the chunk tags obtained from Genia Tag-
ger for each word (Tsuruoka and Tsujii, 2005).
We encoded the chunk features using a one-hot
scheme. The dimensionality of chunk tags is 18.

3.2.4 Named entity
To generalize the model, we used four types of
named entity encodings for each word. The named
entities were provided as input by the task data. In
one PPI instance, the types of two proteins of inter-
est are PROT1 and PROT2 respectively. The type
of other proteins is PROT, and the type of other
words is O. If a protein mention spans multiple
words, we marked each word with the same type
(we did not use a scheme such as IOB). The di-
mensionality of named entity is thus 4.

3.2.5 Dependency
To add the dependency information of each word,
we used the label of “incoming” edge of that
word in the dependency graph. Take the sen-
tence from Figure 2 as an example, the depen-
dency of “ARFTS” is “nsubj” and the dependency

of “binds” is “ROOT”. We encoded the depen-
dency features using a one-hot scheme, and their
dimensionality is 101.

3.2.6 Position feature
In this work, we consider the relationship of two
protein mentions in a sentence. Thus, we used the
position feature proposed in (Sahu et al., 2016),
which consists of two relative distances, d1 and
d2, for representing the distances of the current
word to PROT1 and PROT2 respectively. For ex-
ample in Figure 2, the relative distances of the
word “binds” to PROT1 (“ARFTs”) and PROT2
(“XIAP-BIR3”) are 2 and -6, respectively. Same
as in Table S4 of (Zhao et al., 2016b), both d1 and
d2 are non-linearly mapped to a ten-bit binary vec-
tor, where the first bit stands for the sign and the
remaining bits for the distance.

3.3 Multichannel Embedding Layer

A novel aspect of McDepCNN is to add the “head”
word representation of each word as the second
channel of the embedding layer. For example,
the second channel of the sentence in Figure 2 is
“binds binds ROOT binds domain domain binds
domain” as shown in Figure 1. There are several
advantages of using the “head” of a word as a sep-
arate channel.

First, it intuitively incorporates the dependency
graph structure into the CNN model. Compared
with (Hua and Quan, 2016) which used the short-
est path between two entities as the sole input
for CNN, our model does not discard informa-
tion outside the scope of two entities. Such in-
formation was reported to be useful (Zhou et al.,
2007). Compared with (Zhao et al., 2016b) which
used the shortest path as a bag-of-word sparse 0-1
vector, our model intuitively reflects the syntac-
tic structure of the dependencies of the input sen-
tence.

Second, together with convolution, our model
can better capture longer distance dependencies
than the sliding window size. As shown in Fig-
ure 2, the second channel of McDepCNN breaks
the dependency graph structure into structural
<head word, child word> pairs where each word
is a modifier of its previous word. In this way,
it reflects the skeleton of a constituent where the
second channel shadows the detailed information
of all sub-constituents in the first channel. From
the perspective of the sentence string, the second
channel is similar to a gapped n-gram or a skipped
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n-gram where the skipped words are based on the
structure of the sentence.

3.4 Convolution
We applied convolution to input sentences to com-
bine two channels and get local features (Col-
lobert et al., 2011). Consider x1, . . . , xn to be
the sequence of word representations in a sentence
where

xi = Eword ⊕ · · · ⊕ Epoistion, i = 1, . . . , n (1)

Here ⊕ is concatenation operation so xi ∈ Rd is
the embedding vector for the ith word with the di-
mensionality d. Let xci:i+k−1 represent a window
of size k in the sentence for channel c. Then the
output sequence of the convolution layer is

coni = f(
∑
c

wckx
c
i:i+k−1 + bk) (2)

where f is a rectify linear unit (ReLU) function
and bk is the biased term. Both wck and bk are the
learning parameters.

1-max pooling was then performed over each
map, i.e., the largest number from each feature
map was recorded. In this way, we obtained fixed
length global features for the whole sentence. The
underlying intuition is to consider only the most
useful feature from the entire sentence.

mk = max
1≤i≤n−k+1

(coni) (3)

3.5 Fully Connected Layer with Softmax
To make a classifier over extracted global features,
we first applied a fully connected layer to the fea-
ture vectors of multichannel obtained above.

O = wo(m3 ⊕m5 ⊕m7) + bo (4)

The final softmax then receives this vector O
as input and uses it to classify the PPI; here we
assume binary classification for the PPI task and
hence depict two possible output states.

p(ppi|x, θ) =
eOppi

eOppi + eOother
(5)

Here, θ is a vector of the hyper-parameters of the
model, such as wck, bk, wo, and bo. Further, we
used dropout technique in the output of the max
pooling layer for regularization (Srivastava et al.,
2014). This prevented our method from overfitting
by randomly “dropping” with probability (1 − p)
neurons during each forward/backward pass while
training.
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3.6 Training

To train the parameters, we used the log-likelihood
of parameters on a mini-batch training with a
batch size of m. We use the Adam algorithm to
optimize the loss function (Kingma and Ba, 2015).

J(θ) =
∑
m

p(ppi(m)|x(m), θ) (6)

3.7 Experimental setup

For our experiments, we used the Genia Tagger to
obtain the part-of-speech, chunk tags, and named
entities of each word (Tsuruoka and Tsujii, 2005).
We parsed each sentence using the Bllip parser
with the biomedical model (Charniak, 2000; Mc-
Closky, 2009). The universal dependencies were
then obtained by applying the Stanford dependen-
cies converter on the parse tree with the CCPro-
cessed and Universal options (De Marneffe et al.,
2014).

We implemented the model using Tensor-
Flow (Abadi et al., 2016). All trainable variables
were initialized using the Xavier algorithm (Glo-
rot and Bengio, 2010). We set the maximum sen-
tence length to 160. That is, longer sentences were
pruned, and shorter sentences were padded with
zeros. We set the learning rate to be 0.0007 and the
dropping probability 0.5. During the training, we
ran 250 epochs of all the training examples. For
each epoch, we randomized the training examples
and conducted a mini-batch training with a batch
size of 128 (m = 128).

In this paper, we experimented with three win-
dow sizes: 3, 5 and 7, each of which has 400 fil-
ters. Every filter performs convolution on the sen-
tence matrix and generates variable-length feature
maps. We got the best results using the single win-
dow of size 3 (see Section 4.2)

4 Results and Discussion

4.1 Data

We evaluated McDepCNN on two benchmarking
PPI corpora, AIMed (Bunescu et al., 2005) and
BioInfer (Pyysalo et al., 2007). These two corpora
have different sizes (Table 1) and vary slightly in
their definition of PPI (Pyysalo et al., 2008).

Tikk et al. (2010) conducted a comparison of
a variety of PPI extraction systems on these two
corpora1. In order to compare, we followed their

1http://mars.cs.utu.fi/PPICorpora

Table 1: Statistics of the corpora.
Corpus Sentences # Positives # Negatives
AIMed 1,955 1,000 4,834
BioInfer 1,100 2,534 7,132

experimental setup to evaluate our methods: self-
interactions were excluded from the corpora and
10-fold cross-validation (CV) was performed.

4.2 Results and discussion

Our system performance, as measured by Preci-
sion, Recall, and F1-score, is shown in Table 2.
To compare, we also include the results published
in (Tikk et al., 2010; Peng et al., 2015; Van Lan-
deghem et al., 2008; Fundel et al., 2007). Row
2 reports the results of the previous best deep
learning system on these two corpora. Rows 3
and 4 report the results of two previous best sin-
gle kernel-based methods, an APG kernel (Airola
et al., 2008; Tikk et al., 2010) and an edit ker-
nel (Peng et al., 2015). Rows 5-6 report the re-
sults of two rule-based systems. As can be seen,
McDepCNN achieved the highest results in both
precision and overall F1-score on both datasets.

Note that we did not compare our results with
two recent deep-learning approaches (Hua and
Quan, 2016; Quan et al., 2016). This is because
unlike other previous studies, they artificially re-
moved sentences that cannot be parsed and dis-
carded pairs which are in a coordinate struc-
ture. Thus, our results are not directly comparable
with theirs. Neither did we compare our method
with (Miwa et al., 2009b) because they combined,
in a rich vector, analysis from different parsers and
the output of multiple kernels.

To further test the generalizability of our
method, we conducted the cross-corpus experi-
ments where we trained the model on one corpus
and tested it on the other (Table 3). Here we com-
pared our results with the shallow linguistic model
which is reported as the best kernel-based method
in (Tikk et al., 2013).

The cross-corpus results show that McDepCNN
achieved 24.4% improvement in F-score when
trained on BioInfer and tested on AIMed, and
18.2% vice versa.

To better understand the advantages of McDe-
pCNN over kernel-based methods, we followed
the lead of (Tikk et al., 2013) to compare the
method performance on some known “difficult”
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Table 2: Evaluation results. Performance is reported in terms of Precision, Recall, and F1-score.
AIMed BioInfer

Method P R F P R F
1 McDepCNN 67.3 60.1 63.5 62.7 68.2 65.3
2 Deep neutral network (Zhao et al., 2016a) 51.5 63.4 56.1 53.9 72.9 61.6
3 All-path graph kernel (Tikk et al., 2010) 49.2 64.6 55.3 53.3 70.1 60.0
4 Edit kernel (Peng et al., 2015) 65.3 57.3 61.1 59.9 57.6 58.7
5 Rich-feature (Van Landeghem et al., 2008) 49.0 44.0 46.0 – – –
6 RelEx (Fundel et al., 2007) 40.0 50.0 44.0 39.0 45.0 41.0

Table 3: Cross-corpus results. Performance is reported in terms of Precision, Recall, and F1-score.
AIMed BioInfer

Method Training corpus P R F P R F
McDepCNN AIMed – – – 39.5 61.4 48.0

BioInfer 40.1 65.9 49.9 – – –
Shallow linguistic (Tikk et al., 2010) AIMed – – – 29.2 66.8 40.6

BioInfer 76.8 27.2 41.5 – – –

Table 4: Instances that are the most difficult to
classify correctly by the collection of kernels us-
ing cross-validation (Tikk et al., 2013).

Corpus Positive difficult Negative difficult
AIMed 61 184
BioInfer 111 295

instances in AIMed and BioInfer. This subset of
difficult instances is defined as 10% of all pairs
with the least number of 14 kernels being able to
classify correctly (Table 4).

Table 5 shows the comparisons between McDe-
pCNN and kernel-based methods on difficult in-
stances. The results of McDepCNN were ob-
tained from the difficult instances combined from
AIMed and BioInfer (172 positives and 479 nega-
tives). And the results of APG, Edit, and SL were
obtained from AIMed, BioInfer, HPRD50, IEPA,
and LLL (190 positives and 521 negatives) (Tikk
et al., 2013). While the input datasets are dif-
ferent, our outcomes are remarkably higher than
the prior studies. The results show that McDe-
pCNN achieves 17.3% in F1-score on difficult in-
stances which is more than three times better than
other kernels. Since there are no examples of diffi-
cult instances that could not be classified correctly
by at least one of the 14 kernel methods, below,
we only list some examples that McDepCNN can
classify correctly.

1. Immunoprecipitation experiments further re-

veal that the fully assembled receptor com-
plex is composed of two IL-6PROT1, two IL-
6R alphaPROT2, and two gp130 molecules.

2. The phagocyte NADPH oxidase is a complex
of membrane cytochrome b558 (comprised
of subunits p22-phox and gp91-phox) and
three cytosol proteins (p47-phoxPROT1, p67-
phox, and p21rac) that translocate to mem-
brane and bind to cytochrome b558PROT2.

Together with the conclusions in (Tikk et al.,
2013), “positive pairs are more difficult to classify
in longer sentences” and “most of the analyzed
classifiers fail to capture the characteristics of rare
positive pairs in longer sentences”, this compari-
son suggests that McDepCNN is probably capable
of better capturing long distance features from the
sentence and are more generalizable than kernel
methods.

Finally, Table 6 compares the effects of differ-
ent parts in McDepCNN. Here we tested McDe-
pCNN using 10-fold of AIMed. Row 1 used a sin-
gle window with the length of 3, row 2 used two
windows, and row 3 used three windows. The re-
duced performance indicate that adding more win-
dows did not improve the model. This is par-
tially because the multichannel in McDepCNN
has captured good context features for PPI. Sec-
ond, we used the single channel and retrained the
model with window size 3. The performance then
dropped 1.1%. The results underscore the effec-
tiveness of using the head word as a separate chan-
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Table 5: Comparisons on the difficult instances
with CV evaluation. Performance is reported in
terms of Precision, Recall, and F1-score∗.

Method P R F
McDepCNN 14.0 22.7 17.3
All-path graph kernel 4.3 7.9 5.5
Edit kernel 4.8 5.8 5.3
Shallow linguistic 3.6 7.9 4.9

∗ The results of McDepCNN were obtained on the difficult
instances combined from AIMed and BioInfer (172 positives
and 479 negatives). The results of others (Tikk et al., 2013)
were obtained from AIMed, BioInfer, HPRD50, IEPA, and
LLL (190 positives and 521 negatives).

Table 6: Contributions of different parts in McDe-
pCNN. Performance is reported in terms of Preci-
sion, Recall, and F1-score.

Method P R F ∆
window = 3 67.3 60.1 63.5
window = [3,5] 60.9 62.4 61.6 (1.9)
window = [3,5,7] 61.7 61.9 61.8 (1.7)
Single channel 62.8 62.3 62.6 (1.1)

nel in CNN.

5 Conclusion

In this paper, we describe a multichannel
dependency-based convolutional neural network
for the sentence-based PPI task. Experiments on
two benchmarking corpora demonstrate that the
proposed model outperformed the current deep
learning model and single feature-based or kernel-
based models. Further analysis suggests that our
model is substantially more generalizable across
different datasets. Utilizing the dependency struc-
ture of sentences as a separated channel also en-
ables the model to capture global information
more effectively.

In the future, we would like to investigate how
to assemble different resources into our model,
similar to what has been done to rich-feature-
based methods (Miwa et al., 2009b) where the
current best performance was reported (F-score of
64.0% (AIMed) and 66.7% (BioInfer)). We are
also interested in extending the method to PPIs be-
yond the sentence boundary. Finally, we would
like to test and generalize this approach to other
biomedical relations such as chemical-disease re-
lations (Wei et al., 2016).
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Abstract

Linking spans of natural language text to
concepts in a structured source is an im-
portant task for many problems. It allows
intelligent systems to leverage rich knowl-
edge available in those sources (such as
concept properties and relations) to en-
hance the semantics of the mentions of
these concepts in text. In the medi-
cal domain, it is common to link text
spans to medical concepts in large, cu-
rated knowledge repositories such as the
Unified Medical Language System. Dif-
ferent approaches have different strengths:
some are precision-oriented, some recall-
oriented; some better at considering con-
text but more prone to hallucination. The
variety of techniques suggests that ensem-
bling could outperform component tech-
nologies at this task. In this paper, we de-
scribe our process for building a Stacking
ensemble using additional, auxiliary fea-
tures for Entity Linking in the medical do-
main. Our best model beats several base-
lines and produces state-of-the-art results
on several medical datasets.

1 Introduction

Entity Linking is the task of mapping phrases in
text (mention spans) to concepts in a structured
source, such as a knowledge base. The mention
span is usually a word or short phrase describing
a single, coherent concept. For example, “back
pain” may be a mention span for a Dorsalgia con-
cept in a knowledge base. The span context is a
window of text surrounding the mention span that
may be useful for disambiguating it. For example,
the sentence “The patient reports suffering from
back pain for several years prior to treatment” may

be useful for determining that “back pain” refers
to the concept Chronic Dorsalgia in this context.
In the medical domain, it is common to map men-
tion spans to concepts in the Unified Medical Lan-
guage System (UMLS)1. Concepts in UMLS have
unique identifiers called CUIs (Concept Unique
Identifiers). For example, the CUI for the concept
Dorsalgia is C0004604.

The concepts in UMLS come from merging
concepts from many disparate contributing vo-
cabularies. Since automatic merging is imper-
fect, UMLS often contains multiple distinct CUIs
for what amounts to the same semantic concept.
For example, the three distinct CUIs C0425687,
C1167958 and C3263244 are all Jugular Ve-
nous Distension. An Entity Linking system at-
tempting to link a span such as “engorgement of
the jugular vein” should be required to return all
three CUIs. A ground truth dataset should include
all the three mappings as well. UMLS also con-
tains multiple textual labels for each CUI (called
“variants”) and semantic relations between CUIs,
such as Acetaminophen may treat: Pain.

Ensembling multiple systems is a well known
standard approach to improving accuracy in ma-
chine learning (Dietterich, 2000). Ensembles have
been applied to a wide variety of problems in all
domains of artificial intelligence including natu-
ral language processing (NLP). However, these
techniques do not learn to discriminate adequately
across the component systems and thus are unable
to integrate them optimally. Combining systems
intelligently is crucial for improving the overall
performance. In this paper, we use an approach
called Stacking with Auxiliary Features (SWAF)
(Rajani and Mooney, 2017) for combining multi-
ple diverse models. Stacking (Wolpert, 1992) uses
supervised learning to train a meta-classifier to

1UMLS: http://www.nlm.nih.gov/research/
umls/
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combine multiple system outputs. SWAF enables
the stacker to fuse additional relevant knowledge
from multiple systems and thus leverage them to
improve prediction. The idea behind using auxil-
iary features is that an output is more reliable if
not just multiple systems produce it but also agree
on its provenance and there is sufficient support-
ing evidence. We are the first to use ensembling
for entity linking in the medical domain that lacks
labeled data. All the publicly available datasets are
very small and thus learning is a problem. Our ap-
proach is designed to overcome these challenges
in the medical domain by using auxiliary features
that are precision-focused and can be used to form
a classification boundary from small amounts of
data.

2 Component Entity Linking Systems

The entity linking ensemble we have built includes
eight component systems. Given a span of text,
each component links the entities in text to zero
or more matching concepts in UMLS. The ensem-
ble examines all concepts produced by each com-
ponent system for the given span and determines
the final entity linking outcome. All the compo-
nent systems use traditional rule-based methods
and thus only perform well on certain types of con-
cepts. The errors produced by these base systems
are de-correlated and our goal is to leverage the
systems to the fullest by using carefully designed
auxiliary features. We used the following compo-
nent systems in our ensemble.

Medical Concept Resolution: Three of the
components systems are variations of the Medical
Concept Resolution (MCR) approach introduced
in (Aggarwal et al., 2015). The MCR systems find
UMLS concepts that best capture the meaning of
the input span as expressed in the textual context
where the span appears. The algorithms consist
of two main steps: candidate overgeneration and
candidate ranking. Candidate overgeneration finds
all concepts having any variant containing any of
the tokens in the mention text. This step results
in a large number of candidate concepts, many
of them irrelevant. In the second step, the can-
didate concepts are ranked by measuring the simi-
larity between mention context and candidate con-
text. The mention context is a window of text sur-
rounding the span. The candidate context is gen-
erated differently by each of the three MCR sys-
tems. Both the span context and the candidate con-

text are treated as IDF-weighted bags-of-words for
computing their cosine similarity. The higher the
cosine similarity, the higher the rank of the candi-
date concept for the given span. The three varia-
tions of the MCR systems used are:

• Gloss-Based MCR (GBMCR): generates the
candidate context from the concept defini-
tions in UMLS. In GBMCR, candidates are
ranked according to the similarity between
the words in the span mention (and its con-
text) and the words in the UMLS definitions
of the candidate.

• Neighbor-Based MCR (NBMCR): generates
the candidate context from the set of vari-
ants of the candidate’s neighbors in UMLS.
Neighbors are CUIs related to the candiate
CUI by any of a select set of UMLS semantic
relations. In NBMCR, candidates are ranked
according to the similarity between the words
in the span+context and the words in the vari-
ants of the candidate’s neighbors.

• Variants-Based MCR (VBMCR): generates
the candidate context from the candidate’s
variants in UMLS. In VBMCR, candidates
are ranked according to the similarity be-
tween the words in the span+context and the
words in the candidate’s variants.

Concept Mapper: Apache Concept Mapper
matches text to dictionary entries. The dictionary
contains surface forms and the concept identifiers
those surface forms map to. The system included
in the ensemble is based on a dictionary derived
from the complete set of UMLS variants. Prepro-
cessing of UMLS variants removes some supreflu-
ous acronyms (e.g. “nos” = “not otherwise spec-
ified”; “nec” = “not elsewhere classified”). The
dictionary is also expanded beyond the UMLS
variants by including adjective-to-noun and plural-
to-singular transformations, as well as additional
spelling variants and synonymous phrases derived
from wikipedia redirect pages.

CUI Finder Verbatim (CFV): CFV (Aggar-
wal et al., 2015) is a dictionary-based system sim-
ilar to ConceptMapper with advanced matching
algorithms and synonym expansion. If no con-
cept is found when matching the dictionary us-
ing the entire span, CFV attempts to find concepts
for smaller windows by removing words from the
span iteratively. The algorithm considers both left-
to-right and right-to-left shrinking of the span. If
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no concepts are found, it reduces the window size
further. As soon as any concept is found, the algo-
rithm stops, returning all concepts found for sub-
spans of the given window size at any position
within the original span.

MetaMap: This system is provided by the Na-
tional Library of Medicine for detecting UMLS
concepts in medical text.2 It is NLP-based and
uses domain-specific knowledge to map text to
concepts. The ensemble includes MetaMap con-
figured with the default settings.

cTAKES: Apache cTAKES3 is an open source
entity recognition system, originally developed at
Mayo Clinic for identifying UMLS concepts in
electronic medical records. cTAKES implements
a terminology-agnostic dictionary lookup algo-
rithm. Through the dictionary lookup, each named
entity is mapped to a concept from the terminol-
ogy. The dictionary lookup includes permutation
of words in the spans, exact matches of the span
and canonical forms of the words.

Structured Term Recognizer (STR): This sys-
tem takes a span of text as input and produces
a list of possible UMLS concepts for that span,
as well as semantic types, if desired. Concept
recognition proceeds in two phases: UMLS candi-
date generation and scoring of the candidate con-
cepts. The candidate UMLS concepts are found
by an inverted index, mapping tokens in the con-
cepts to the concepts themselves. Once the can-
didate UMLS concepts are found, they are scored
for similarity with the input span based on shared
tokens and shared stems.

3 Stacking With Auxiliary Features

In this section we describe our algorithm and the
auxiliary features used for classification. Figure 1
shows an overview of our ensembling approach.

3.1 Stacking

Stacking uses a meta-classifier to combine the out-
puts of multiple underlying systems. The stacker
learns a classification boundary based on the con-
fidence scores provided by individual systems for
each possible output. Stacking has been shown to
improve performance on tasks such as slot filling
and tri-lingual entity linking (Viswanathan et al.,
2015; Rajani and Mooney, 2016).

2MetaMap: http://metamap.nlm.nih.gov/
3cTAKES: https://ctakes.apache.org/

Figure 1: Ensemble Architecture using Stacking
with Auxiliary Features. Given an input span, the
ensemble judges every possible concept produced
by the component systems and determines the final
entity linking output.

3.2 Auxiliary Features

Stacking relies on systems producing a confidence
score for every output. However, many times
systems do not produce confidence scores or the
scores produced are not probabilities or well cali-
brated and cannot be meaningfully compared. In
such circumstances, it is beneficial to have other
reliable auxiliary features. Auxiliary features en-
able the stacker to learn to rely on systems that not
just agree on an output but also the provenance or
the source of the output and other supporting evi-
dence. We used four types of auxiliary features as
part of our ensembling approach, described below.

3.2.1 CUI type
Every CUI in UMLS is associated with one or
more semantic types (out of roughly 130 types).
For example, the types associated with the CUI
C0000970 (acetaminophen) are T109 (Organic
chemical) and T121 (Pharmacologic substance).

The CUI type is represented by a binary vector
of size 130. The CUI type vector has ones for each
associated semantic type of the CUI under consid-
eration and zeros elsewhere. This CUI type vector
is used as an auxiliary feature for ensembling. The
CUI type enables the stacker to learn to rely on
systems that perform better for certain CUI types.

3.2.2 Span-CUI document similarity
The second auxiliary feature is the cosine similar-
ity between the tf-idf vectors of the words in the
mention span and the words in the candidate CUI
documents. For each CUI in UMLS, we created
a pseudo document which we call the CUI docu-
ment. The CUI document is a concatenation of the
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following information from UMLS:

1. CUI ID and label; for example, C0000970
(acetaminophen)

2. Names of the types of the CUI; e.g., Organic
Chemical; Pharmacologic Substance

3. Definition text for the CUI; e.g., analgesic
antipyretic derivative of acetanilide; weak
antiinflammatory properties and is used as
a common analgesic, but may cause liver,
blood cell, and kidney damage.

4. All variants for the CUI; e.g., Ac-
etaminophen, Paracetamol

5. Select semantic relations between the CUI
under consideration and other CUIs; for ex-
ample, (may treat: fever), (may treat: pain).

The intuition behind using this feature is that the
span would have a greater lexical overlap with
a CUI document that it links to and thus have a
higher similarity score.

3.2.3 Context-CUI document similarity
This auxiliary feature is very much like the span-
CUI document similarity feature. For this feature
as well, we use the pseudo CUI documents cre-
ated using UMLS. However, instead of using the
span for calculating the similarity we use the entire
context surrounding the span. In the earlier exam-
ple, the entire sentence “The patient reports suffer-
ing from back pain for several years prior to treat-
ment” is the context. We note that for short docu-
ments, the context may be the entire document that
contains the span to be linked. This means that
some unique spans could have the same context.
The context-CUI document similarity is the cosine
similarity between the tf-idf vectors of words in the
context and words in the CUI document.

3.2.4 Word embeddings
The auxiliary features discussed so far only cap-
ture the superficial lexical aspects of the data
used for ensembling. The word embeddings fea-
tures capture the semantic dimension of the data.
We trained the continuous bag of words model
(Mikolov et al., 2013) on the entire UMLS knowl-
edge base with word vector dimension of 200 and
window-size of 10. Ling et al. (2015) show that
these parameters enable capturing long range de-
pendencies. In this way we obtain a vector repre-
sentation for every word in UMLS. We note that

we chose the UMLS corpus as opposed to medical
documents so as to have better CUI coverage.

We used these word vectors to create the CUI
document vector representation in the following
way. Recall that the CUI document is a pseudo
document made up of information about the CUI
in UMLS. In order to obtain the embedding for a
context, span or document, we use the technique
described in (Le and Mikolov, 2014). We add up
all the embedding vectors representing the words
in the CUI document and normalize the sum by
the number of words. The resultant vector repre-
sents the CUI document embedding. Similarly, we
also obtain the span and the context embeddings
by adding and normalizing the vectors represent-
ing the words in the span and context respectively.
Note that if a word in the span or context does
not have a vector representation then we just ig-
nore it. Finally, we measure the cosine similarity
between the span-CUI document and context-CUI
document embedding vectors and use it as a fea-
ture for our classifier. Representing the concepts
in vector space enables the stacker to learn deep
semantic patterns for cases where just lexical in-
formation is not sufficient.

4 Experimental Results

4.1 Baselines

We compare our approach to several supervised
and unsupervised baselines. The first is Union
which accepts all predictions for all systems to
maximize recall. It classifies all span-CUI links
as correct and always includes them.

The second baseline is Voting. For this ap-
proach, we vary the threshold on the number of
systems that must agree on a span-CUI link from
one to all. This gradually changes the system be-
havior from union to intersection of the links. We
identify the threshold that results in the highest F1
score on the training dataset. We use this threshold
for the voting baseline on the test dataset.

The third baseline is an oracle threshold version
of Voting. Since the best threshold on the training
data may not necessarily be the best threshold for
the test data, we identify the best threshold for the
test data by plotting a precision-recall curve and
finding the best F1 score for the voting baseline.
Note that this gives an upper bound on the best
results that can be achieved with voting, assuming
an optimal threshold is chosen. Since the upper
bound can not be predicted without using the test
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dataset, this baseline has an unfair advantage.
In addition to the above common baselines, we

also compare our approach to a state-of-the-art en-
sembling system, Bipartite Graph based Consen-
sus Maximization (BGCM) (Gao et al. (2009)). In
addition to the output of supervised models, this
ensembling technique uses unsupervised models
to provide additional constraints and evidence to
the classification algorithm. The rationale behind
this approach is that objects that are in the same
cluster should be more likely to receive the same
class label compared to the objects in different
clusters. The objective is to predict the class la-
bel of an instance in a way that favors agreement
between supervised components and at the same
time satisfies the constraints enforced by the clus-
tering models. BGCM ensembles multiple mod-
els by performing an optimization over a bipartite
graph of systems and outputs.

4.2 Dataset Description

All systems and baselines were evaluated on three
datasets. Scores reflect the quality of concepts as-
signed to text spans, as decided by human judges.
Detecting span boundaries is not part of this eval-
uation – all systems are given the same span as
input. Annotations were performed by several hu-
man judges. For scoring, each text span was paired
with a list of concepts produced by all component
systems. Annotators marked each span-concept
pair correct or incorrect.

The MCR dataset (Aggarwal et al., 2015) re-
sulted from running a CRF-based entity recog-
nition system that extracted 1,570 clinical fac-
tors from 100 short descriptions (averaging 8 sen-
tences, 100 words) of patient scenarios. The an-
notated dataset contains a subset of 400 spans re-
sulting in 6,139 annotated span-CUI pairs. The
average of the pairwise kappa scores for annotator
agreement on the MCR dataset was 0.56.

The i2b2 dataset (Uzuner et al., 2011) is based
on the annotated patient discharge summaries re-
leased with the 2010 i2b2/VA challenge. The con-
cept extraction task was to identify and extract the
text span corresponding to patient medical prob-
lems, treatments and tests in unannotated patient
record text. We created an entity linking dataset
from a random subset of 100 annotated text spans.
We ran all available entity linking systems and
produced 2,224 annotated span-CUI pairs. The
average pairwise kappa score for annotator agree-

ment on the i2b2 dataset was 0.52.
The Electronic Medical Record dataset (EMR)

is a private dataset containing spans of medical
terms identified in doctors’ notes within patient
medical records. This dataset has 350 text spans
with 3,991 annotated span-CUI pairs. Annotators
for the EMR dataset reconciled their annotations
to build the ground truth.

4.3 Evaluation Metrics

As noted in section 1, UMLS often has multiple
distinct CUIs for the same semantic concept. So
for a given span from a dataset, there may be many
true positive concepts in the ground truth. This
leads to two possible scoring schemes: CUI level
and Span level. For CUI level scoring, every CUI
in the ground truth is a ground truth positive in-
stance. A CUI produced by the Entity Linking
system for a given span is a true positive if it is in
the ground truth for that span and a false positive
if it is not. CUIs in the ground truth for the span
that are not produced by the system are counted
as false negatives. Spans that have many CUIs in
the ground truth, therefore, will have more weight
in the precision and recall than spans with fewer
CUIs. But since the number of appropriate CUIs
for a span is often a side effect of the imperfect
automatic merging of concepts in building UMLS,
the bias is unnatural.

An alternative scoring scheme awards only one
true positive, false positive or false negative for
each span, not each CUI. For this span level scor-
ing, we report two versions of the metrics. The
first version, which we call “Factor Level” in
the reported results, aggregates CUI scores using
MAX. The system scores a true positive if any of
the CUIs it produces are in the ground truth for the
span. It scores a false positive if none of its CUIs
are in the ground truth. It scores a false negative if
it produces no CUIs and there is at least one CUI
in the ground truth.

The second version of span level scoring ac-
counts for the fact that the system may produce
a mixture of correct and incorrect CUIs for the
same span. Each span still has a weight of one in
the overall precision and recall, but the system’s
score for “true positiveness” and “false positive-
ness” can be a real number between 0 and 1. We
call this scoring scheme “Quantum”. The quan-
tum true positive score for a span is the number
of CUIs produced by the system that are in the
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Approach CUI Level Factor Level Quantum

P R F1 P R F1 P R F1

GBMCR 0.349 0.242 0.286 0.395 0.437 0.415 0.357 0.268 0.306
NBMCR 0.414 0.179 0.250 0.463 0.511 0.486 0.423 0.163 0.236
VBMCR 0.496 0.215 0.300 0.548 0.605 0.575 0.513 0.198 0.285

CFV 0.587 0.405 0.479 0.903 0.461 0.611 0.716 0.188 0.298
CTakes 0.384 0.245 0.299 0.711 0.577 0.637 0.498 0.202 0.287

MetaMap 0.447 0.219 0.293 0.623 0.652 0.637 0.535 0.215 0.306
CMap 0.179 0.549 0.270 0.802 0.870 0.834 0.305 0.461 0.367
STR 0.623 0.217 0.322 0.623 0.688 0.654 0.623 0.217 0.322

Union 0.207 0.797 0.329 0.888 0.981 0.932 0.278 0.765 0.408
Majority Voting 0.746 0.182 0.293 0.768 0.522 0.622 0.745 0.169 0.275
Oracle Voting 0.626 0.290 0.396 0.723 0.707 0.715 0.629 0.251 0.359

BGCM 0.481 0.430 0.454 0.753 0.822 0.786 0.525 0.368 0.433

Stacking 0.481 0.508 0.494 0.785 0.848 0.815 0.501 0.412 0.452
+ CUI Type 0.474 0.573 0.519 0.816 0.889 0.851 0.484 0.502 0.493

+ Span & Context Similarity 0.472 0.575 0.519 0.811 0.886 0.847 0.485 0.508 0.496
+ CBOW embedding 0.567 0.500 0.532 0.824 0.892 0.857 0.491 0.507 0.499

Table 1: Results on the MCR dataset.

ground truth for the span divided by the total num-
ber of CUIs produced by the system (i.e., the span-
level Precision). Quantum false positive score is
the number of incorrect CUIs produced by the sys-
tem divided by the total number of CUIs produced.

4.4 Results

We present results for entity linking in the medical
domain on the three datasets described in section
4.2 using the evaluation metrics defined in section
4.3. The results include the performance of the
individual models, several baselines and various
ablations of the auxiliary features using stacking.
Tables 1, 2 and 3 show performance on the MCR,
i2b2 and EMR datasets respectively.

Although we observe similar trends across all
the datasets, no single individual model performs
better than others across all the evaluation met-
rics. This led us to conclude that each individual
model is optimized for a particular type of entity
or data. For example, a model that is good at link-
ing medical drugs might not perform as well on
linking medical diseases. In order to leverage the
strengths of each individual model, we ensemble
them into one powerful model that works across
all datasets as well as different evaluation metrics.

As expected, the Union baseline obtains the best
recall and Majority Voting has the highest preci-
sion across all datasets. Oracle Voting is optimized
for F1 and thus obtains an F1 higher than Majority
Voting. Vanilla stacking beats the best component
and baseline systems’ F1 scores for CUI level and
quantum metrics on all datasets. Adding each aux-

Figure 2: Ablation on the component systems in
the ensemble for the MCR dataset using the CUI
level metric. The systems are arranged in decreas-
ing order of F1 score.

iliary feature further boosts the performance and
we obtain the highest F1 for all datasets using all
the features combined. Stacking outperforms the
BGCM ensembling baseline on all datasets.

For a deeper understanding of the results, we
performed ablation tests on the systems used in the
final ensemble. Figure 2 shows the performance
of the ensemble with each component ablated in
turn. This experiment shows that every component
system contributes to the ensemble in either preci-
sion, recall or both. While each component con-
tributes to the overall performance, the strength of
the ensemble is determined by the combination of
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Approach CUI Level Factor Level Quantum

P R F1 P R F1 P R F1

GBMCR 0.507 0.375 0.431 0.790 0.807 0.798 0.515 0.427 0.467
NBMCR 0.478 0.356 0.408 0.779 0.796 0.787 0.486 0.403 0.441
VBMCR 0.554 0.404 0.467 0.800 0.817 0.809 0.564 0.468 0.511

CFV 0.173 0.457 0.251 0.884 0.903 0.894 0.577 0.327 0.417
CTakes 0.564 0.213 0.309 0.861 0.731 0.791 0.677 0.195 0.303

MetaMap 0.565 0.154 0.242 0.750 0.742 0.746 0.647 0.153 0.248
CMap 0.216 0.360 0.270 0.894 0.903 0.898 0.410 0.260 0.318
STR 0.825 0.176 0.290 0.833 0.860 0.847 0.566 0.236 0.333

Union 0.191 0.855 0.312 0.969 1.000 0.984 0.352 0.849 0.498
Majority Voting 0.705 0.189 0.298 0.846 0.828 0.837 0.766 0.176 0.286
Oracle Voting 0.624 0.270 0.373 0.874 0.893 0.883 0.709 0.227 0.344

BGCM 0.469 0.406 0.435 0.938 0.968 0.952 0.509 0.386 0.439

Stacking 0.434 0.697 0.535 0.958 0.989 0.974 0.481 0.655 0.555
+ CUI Type 0.525 0.730 0.611 0.927 0.957 0.942 0.547 0.563 0.555

+ Span & Context Similarity 0.528 0.756 0.622 0.927 0.957 0.942 0.544 0.639 0.588
+ CBOW embedding 0.528 0.756 0.622 0.938 0.968 0.952 0.546 0.700 0.607

Table 2: Results on the i2b2 dataset.

Approach CUI Level Factor Level Quantum

P R F1 P R F1 P R F1

GBMCR 0.338 0.134 0.192 0.369 0.351 0.36 0.360 0.315 0.196
NBMCR 0.381 0.151 0.217 0.410 0.390 0.400 0.396 0.148 0.216
VBMCR 0.564 0.224 0.321 0.618 0.589 0.603 0.600 0.225 0.327

CFV 0.510 0.353 0.417 0.914 0.607 0.729 0.692 0.249 0.366
CTakes 0.403 0.321 0.357 0.706 0.628 0.665 0.527 0.268 0.355

MetaMap 0.460 0.220 0.298 0.575 0.568 0.571 0.527 0.223 0.313
CMap 0.205 0.597 0.305 0.761 0.766 0.763 0.334 0.597 0.428
STR 0.714 0.284 0.406 0.714 0.748 0.730 0.714 0.284 0.406

Union 0.187 0.739 0.299 0.857 0.852 0.854 0.272 0.676 0.388
Majority Voting 0.879 0.225 0.359 0.912 0.561 0.695 0.894 0.220 0.353
Oracle Voting 0.668 0.297 0.412 0.820 0.661 0.732 0.719 0.276 0.399

BGCM 0.453 0.419 0.435 0.801 0.809 0.805 0.482 0.409 0.442

Stacking 0.443 0.517 0.477 0.794 0.832 0.812 0.488 0.463 0.475
+ CUI Type 0.559 0.548 0.554 0.807 0.778 0.792 0.571 0.436 0.495

+ Span & Context Similarity 0.593 0.554 0.573 0.820 0.781 0.800 0.616 0.443 0.515
+ CBOW embedding 0.667 0.549 0.602 0.830 0.775 0.801 0.669 0.439 0.530

Table 3: Results on the EMR dataset.

the component systems. The ablation of the CMap
system has the highest impact on the ensemble, re-
ducing the F1 score by 5.2%. We obtained similar
plots for the factor level and quantum metrics and
we expect to see similar trends for the i2b2 and the
EMR datasets as well.

5 Discussion

The experimental results presented in section 4.4
confirm that the different component systems
show significantly different behavior on different
metrics for different datasets. No individual sys-
tem was universally the best. CMap had consis-
tently good Recall but low Precision. CFV scored
well in certain circumstances on precision, re-
call and F1 score, but this varied from dataset to

dataset and metric to metric. STR usually had rel-
atively high precision, but low recall, and VBMCR
had very good F1 scores on i2b2, but was less im-
pressive on the other datasets.

These observations imply good conditions for
ensembling to make a difference. Even so, the
best baseline ensemble only outperforms the best
component system on F1 in four of the nine ex-
periments (metric-dataset combinations). Stack-
ing outperforms the best component system in all
nine, and outperforms the best ensembling base-
line for six of the nine – all of the CUI level met-
rics and quantum, but never at the factor level. The
factor level scoring is much more generous, but it
is not immediately clear why this would benefit
naı̈ve ensembling over stacking.
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Auxiliary features almost always improve
stacking. Again the exception is with factor level
scoring. Interestingly, auxiliary features almost
universally improve precision significantly with-
out too damaging an effect on recall. This result
suggests that it would be worthwhile experiment-
ing with the precision-vs-recall bias of component
systems to see if Stacking with auxiliary features
could be used, for example, to recover precision
with recall-biased components.

6 Related Work

The problem of entity linking has received con-
siderable attention in the research community.
Several community tasks are focused specifically
on the medical domain and are addressing the
problem of linking disease/disorder entities to
SNOMED CT.4 SNOMED CT concepts are also
included in UMLS.

The ShARe/CLEF eHealth Evaluation Lab
2013 (Suominen et al., 2013) consists of a collec-
tion of tasks focused on facilitating patients’ un-
derstanding of their medical discharge summaries.
The assumption is that an improved understand-
ing of medical concepts in such documents can be
achieved by normalizing all health conditions to
standardized SNOMED CT concepts. Using these
concepts, the medical documents can further be
connected to other patient friendly sources.

The Open Biomedical Annotator (OBA) (Jon-
quet et al., 2009) is an ontology-based Web service
that annotates public datasets with biomedical on-
tology concepts, including concepts from UMLS.
The OBA is based on dictionary matching. The
dictionary is a list of strings that identify ontology
concepts. The dictionary is constructed by access-
ing biomedical ontologies and extracting all con-
cept names, their synonyms or labels. The web
service takes as input the user’s free text. The tool
recognizes concepts using string matching on the
dictionary and outputs the concept annotations.

There are several notable approaches to perform
entity linking in the open domain. These open
domain approaches often deal with named enti-
ties. The linking targets in this case are often sin-
gle, unambiguous, specific concepts. The problem
of finding domain-specific concepts, on the other
hand, can be more challenging as there may be
appropriate concepts at different levels of speci-
ficity, and concepts are more compositional and

4SNOMED CT: http://www.snomed.org/

contextual. Approaches such as DBPedia Spot-
light (Mendes et al., 2011) and AIDA (Hoffart
et al., 2011) use Wikipedia to find the links of rec-
ognized entity mentions.

To overcome challenges of obtaining labeled
medical datasets, Zheng et al. (2015) proposed an
unsupervised approach for entity linking. More
traditional sieve-based techniques have been used
for this task recently (D’Souza and Ng, 2015).

Using ensembling techniques for open domain
entity linking has shown good performance in
the past (Rajani and Mooney, 2017) on the Tri-
lingual Entity Discovery and Linking (TEDL)
task. TEDL is an entity linking task conducted by
NIST. The goal of this task is to discover entities
in the three included languages (English, Span-
ish and Chinese) from a supplied text corpus and
link these entities to an existing English knowl-
edge base (a reduced version of FreeBase).

Rajani and Mooney (2016) proposed an ap-
proach for combining multiple supervised and un-
supervised models for entity linking. Their tech-
nique improves the previous result on the TEDL
task. Another ensembling approach is Mixtures
of Experts (Jacobs et al., 1991) which employs
divide-and-conquer principle to soft switch be-
tween learners covering different sub-spaces of the
input using Expectation-Maximization (EM). Our
work is the first we know of to use ensembling for
entity linking in the medical domain.

7 Conclusion

We have identified an entity linking task in the
medical domain for which existing technologies
perform differently on different metrics for differ-
ent datasets. Such an environment presents an ob-
vious opportunity for ensembling techniques.

We have built a stacking ensembler using mul-
tiple diverse entity linking systems. The auxiliary
features further boost the stacker’s performance.
Experiments confirm that naı̈ve ensembling does
not always outperform component entity linking
systems, but that vanilla stacking does. Adding
auxiliary features to the stacker almost universally
improves its precision without harming recall, giv-
ing it generally the best F1 scores overall.

Our model is able to fuse additional relevant
knowledge from multiple systems and leverage
them to improve prediction.
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Abstract
The goal of the BioASQ challenge is to
engage researchers into creating cutting-
edge biomedical information systems.
Specifically, it aims at the promotion
of systems and methodologies that are
able to deal with a plethora of different
tasks in the biomedical domain. This is
achieved through the organization of chal-
lenges. The fifth challenge consisted of
three tasks: semantic indexing, question
answering and a new task on information
extraction. In total, 29 teams with more
than 95 systems participated in the chal-
lenge. Overall, as in previous years, the
best systems were able to outperform the
strong baselines. This suggests that state-
of-the art systems are continuously im-
proving, pushing the frontier of research.

1 Introduction

The aim of this paper is twofold. First, we aim
to give an overview of the data issued during the
BioASQ challenge in 2017. In addition, we aim to
present the systems that participated in the chal-
lenge and evaluate their performance. To achieve
these goals, we begin by giving a brief overview of
the tasks, which took place from February to May
2017, and the challenge’s data. Thereafter, we pro-
vide an overview of the systems that participated
in the challenge. Detailed descriptions of some
of the systems are given in workshop proceedings.
The evaluation of the systems, which was carried
out using state-of-the-art measures or manual as-
sessment, is the last focal point of this paper, with
remarks regarding the results of each task. The
conclusions sum up this year’s challenge.

2 Overview of the Tasks

The challenge comprised three tasks: (1) a large-
scale semantic indexing task (Task 5a), (2) a ques-

tion answering task (Task 5b) and (3) a funding
information extraction task (Task 5c), described in
more detail in the following sections.

2.1 Large-scale semantic indexing - 5a

In Task 5a the goal is to classify documents from
the PubMed digital library into concepts of the
MeSH hierarchy. Here, new PubMed articles that
are not yet annotated by MEDLINE indexers are
collected and used as test sets for the evaluation of
the participating systems. In contrast to previous
years, articles from all journals were included in
the test data sets of task 5a. As soon as the an-
notations are available from the MEDLINE index-
ers, the performance of each system is calculated
using standard flat information retrieval measures,
as well as, hierarchical ones. As in previous years,
an on-line and large-scale scenario was provided,
dividing the task into three independent batches of
5 weekly test sets each. Participants had 21 hours
to provide their answers for each test set. Table
1 shows the number of articles in each test set of
each batch of the challenge. 12,834,585 articles
with 27,773 labels were provided as training data
to the participants.

2.2 Biomedical semantic QA - 5b

The goal of Task 5b was to provide a large-
scale question answering challenge where the sys-
tems had to cope with all the stages of a ques-
tion answering task for four types of biomedi-
cal questions: yes/no, factoid, list and summary
questions (Balikas et al., 2013). As in previous
years, the task comprised two phases: In phase A,
BioASQ released 100 questions and participants
were asked to respond with relevant elements from
specific resources, including relevant MEDLINE
articles, relevant snippets extracted from the arti-
cles, relevant concepts and relevant RDF triples.
In phase B, the released questions were enhanced
with relevant articles and snippets selected manu-
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Batch Articles Annotated
Articles

Labels
per

Article

1

6,880 6,661 12.49
7,457 6,599 12.49
10,319 9,656 12.49
7,523 4,697 11.78
7,940 6,659 12.50

Total 40,119 34,272 12.39

2

7,431 7,080 12.40
6,746 6,357 12.62
5,944 5,479 12.87
6,986 6,526 12.65
6,055 5,492 12.41

Total 33,162 30,934 12.58

3

9,233 5,341 12.78
7,816 2,911 12.58
7,206 4,110 12.70
7,955 3,569 12.17
10,225 984 13.72

Total 42,435 21,323 12.68

Table 1: Statistics on test datasets for Task 5a.

ally and the participants had to respond with ex-
act answers, as well as with summaries in nat-
ural language (dubbed ideal answers). The task
was split into five independent batches and the two
phases for each batch were run with a time gap of
24 hours. In each phase, the participants received
100 questions and had 24 hours to submit their an-
swers. Table 2 presents the statistics of the train-
ing and test data provided to the participants. The
evaluation included five test batches.

Batch Size Documents Snippets
Train 1,799 11.86 20.38
Test 1 100 4.87 6.03
Test 2 100 3.93 5.13
Test 3 100 4.03 5.47
Test 4 100 3.23 4.52
Test 5 100 3.61 5.01
Total 2,299 10.14 17.09

Table 2: Statistics on the training and test datasets
of Task 5b. All the numbers for the documents and
snippets refer to averages.

2.3 Funding information extraction - 5c

Task 5c was introduced for the first time this year
and the challenge at hand was to extract grant in-

formation from Biomedical articles. Funding in-
formation can be very useful; in order to estimate,
for example, the impact of an agency’s funding in
the biomedical scientific literature or to identify
agencies actively supporting specific directions in
research. MEDLINE citations are annotated with
information about funding from specified agen-
cies1. This funding information is either provided
by the author manuscript submission systems or
extracted manually from the full text of articles
during the indexing process. In particular, NLM
human indexers identify the grant ID and the fund-
ing agencies can be extracted from the string of the
grant ID2. In some cases, only the funding agency
is mentioned in the article, without the grant ID.

In this task funding information from MED-
LINE was used, as golden data, in order to train
and evaluate systems. The systems were asked
to extract grant information mentioned in the full
text, but author-provided information is not nec-
essarily mentioned in the article. Therefore, grant
IDs not mentioned in the article were filtered out.
This filtering also excluded grant IDs deviating
from NLM’s general policy of storing grant IDs
as published, without any normalization. When
an agency was mentioned in the text without a
grant ID, it was kept only if it appeared in the list
of agencies and abbreviations provided by NLM.
Cases of misspellings or alternative naming of
agencies were removed. In addition, information
for funding agencies that are no longer indexed by
NLM was omitted. Consequently, the golden data
used in the task consisted of a subset of all funding
information mentioned in the articles.

During the challenge, a training and a test
dataset were prepared. The test set of MED-
LINE documents with their full-text available in
PubMed Central was released and the participants
were asked to extract grant IDs and grant agen-
cies mentioned in each test article. The participat-
ing systems were evaluated on (a) the extraction
of grant IDs, (b) the extraction of grant agencies
and (c) full-grant extraction, i.e. the combination
of grant ID and the corresponding funding agency.
Table 3 contains details regarding the datasets for
training and test.

1https://www.nlm.nih.gov/bsd/grant_
acronym.html

2https://www.nlm.nih.gov/bsd/mms/
medlineelements.html#gr
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Dataset Articles Grant
IDs Agencies Time

Period
Training 62,952 111,528 128,329 2005-13

Test 22,610 42,711 47,266 2015-17

Table 3: Dataset overview for Task 5c.

3 Overview of Participants

3.1 Task 5a

For this task, 10 teams participated and results
from 31 different systems were submitted. In the
following paragraphs we describe those systems
for which a description was obtained, stressing
their key characteristics. An overview of the sys-
tems and their approaches can be seen in Table 4.

System Approach

Search system
search engine, UIMA

ConceptMapper

MZ
tf-idf, LDA, BR

classification

Sequencer
recurrent neural

networks
DeepMesh d2v, tf-idf, MESHlabeler

AUTH
d2v, tf-idf, LLDA,
SVM, ensembles

Iria
bigrams, Luchene Index,

k-NN, ensembles,
UIMA ConceptMapper

Table 4: Systems and approaches for Task 5a. Sys-
tems for which no description was available at the
time of writing are omitted.

The “Search system” and its variants were de-
veloped as a UIMA-based text and data mining
workflow, where different search strategies were
adopted to automatically annotate documents with
MeSH terms. On the other hand, the “MZ” sys-
tems applied Binary Relevance (BR) classifica-
tion, using TF-IDF features, and Latent Dirich-
let allocation (LDA) models with label frequen-
cies per journal as prior frequencies, using regres-
sion for threshold prediction. A different approach
is adopted by the “Sequencer” systems, devel-
oped by the team from the Technical University of
Darmstadt, that considers the task as a sequence-
to-sequence prediction problem and use recurrent
neural networks based algorithm to cope with it.

The “DeepMeSH” systems implement docu-
ment to vector (d2v) and tf-idf feature embeddings

(Peng et al., 2016), alongside the MESHLabeler
system (Liu et al., 2015) that achieved the best
scores overall, integrating multiple evidence us-
ing learning to rank (LTR). A similar approach,
with regards to the d2v and tf-idf representations
of the text, is followed by the “AUTH” team. Re-
garding the learning algorithms they’ve extended
their previous system (Papagiannopoulou et al.,
2016), improving the Labeled LDA and SVM
base models, as well as introducing a new ensem-
ble methodology based on label frequencies and
multi-label stacking. Last but not least, the team
from the University of Vigo developed the “Iria”
systems. Building upon their previous approach
(Ribadas et al., 2014) that uses an Apache Lucene
Index to provide most similar citations, they de-
veloped two systems that follow a multilabel k-
NN approach. They also incorporated token bi-
grams and PMI scores to capture relevant mul-
tiword terms through a voting ensemble scheme
and the ConceptMapper annotator tool, from the
Apache UIMA project (Tanenblatt et al., 2010), to
match subject headings with the citation’s abstract
text.

Baselines: During the challenge, two systems
served as baselines. The first baseline is a state-
of-the-art method called Medical Text Indexer
(MTI) (Mork et al., 2014) with recent improve-
ments incorporated as described in (Zavorin et al.,
2016). MTI is developed by the National Library
of Medicine (NLM) and serves as a classification
system for articles of MEDLINE, assisting the in-
dexers in the annotation process. The second base-
line is an extension of the system MTI, incorpo-
rating features of the winning system of the first
BioASQ challenge (Tsoumakas et al., 2013).

3.2 Task 5b

The question answering task was tackled by 51
different systems, developed by 17 teams. In the
first phase, which concerns the retrieval of infor-
mation required to answer a question, 9 teams
with 25 systems participated. In the second phase,
where teams are requested to submit exact and
ideal answers, 10 teams with 29 different sys-
tems participated. Two of the teams participated
in both phases. An overview of the technologies
employed by each team can be seen in Table 5.

The “Basic QA pipeline” approach is one of
the two that participated in both Phases. It uses
MetaMap for query expansion, taking into account
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Systems Phase Approach
Basic QA
pipeline

A, B MetaMap, BM25

Olelo A, B
NER, UMLS, SAP

HANA, SRL

USTB A
sequential dependence

models, ensembles

fdu A
MESHLabeler,

Language model, word
similarity

UNCC A
Stanford Parser,

Semantic Indexing

MQU B
deep learning, neural

nets, regression

Oaqa B

agglomerative
clustering, tf-idf, word
embeddings, maximum

margin relevance

LabZhu B
PubTator, Standford
POS tool, ranking

DeepQA B FastQA, SQuAD

sarrouti B
UMLS, BM25,

dictionaries

Table 5: Systems and approaches for Task 5b. Sys-
tems for which no information was available at the
time of writing are omitted.

the text and the title of each article, and the BM25
probabilistic model (Robertson et al., 1995) in or-
der to match questions with documents, snippets
etc. The same goes for phase B, except for the
exact answers, where stop words were removed
and the top-k most frequent words were selected.
“Olelo” is the second approach that tackles both
phases of task B. It is built on top of the SAP
HANA database and uses various NLP compo-
nents, such as question processing, document and
passage retrieval, answer processing and multi-
document summarization based on previous ap-
proaches (Schulze et al., 2016) to develop a com-
prehensive system that retrieves relevant informa-
tion and provides both exact and ideal answers
for biomedical questions. Semantic role labeling
(SRL) based extensions were also investigated.

One of the teams that participated only in phase
A, is “USTB” who combined different strategies to
enrich query terms. Specifically, sequential depen-
dence models (Metzler and Croft, 2005), pseudo-
relevance feedback models, fielded sequential de-
pendence models and divergence from random-

ness models are used on the training data to cre-
ate better search queries. The “fdu” systems, as in
previous years (Peng et al., 2015), use a language
model in order to retrieve relevant documents and
keyword scoring with word similarity for snippet
extraction. The “UNCC” team on the other hand,
focused mainly on the retrieval of relevant con-
cepts and articles using the Stanford Parser (Chen
and Manning, 2014) and semantic indexing.

In Phase B, the Macquarie University (MQU)
team focused on ideal answers (Molla, 2017), sub-
mitting different models ranging from a “triv-
ial baseline” of relevant snippets to deep learn-
ing under regression settings (Malakasiotis et al.,
2015) and neural networks with word embeddings.
The Carnegie Mellon University team (“OAQA”),
focused also on ideal answer generation, build-
ing upon previous versions of the “OAQA” sys-
tem. They used extractive summarization tech-
niques and experimented with different biomedi-
cal ontologies and algorithms including agglom-
erative clustering, Maximum Marginal Relevance
and sentence compression. They also introduced
a novel similarity metric that incorporates both se-
mantic information (using word embeddings) and
tf-idf statistics for each sentence/question.

Many systems used a modular approach break-
ing the problem down to question analysis, candi-
date answer generation and answer ranking. The
“LabZhu” systems, followed this approach, based
on previous years’ methodologies (Peng et al.,
2015). In particular, they applied rule-based ques-
tion type analysis and used Standford POS tool
and PubTator for candidate answer generation.
They also used word frequencies for candidate an-
swer ranking. The “DeepQA” systems focused on
factoid and list questions, using an extractive QA
model, restricting the system to output substrings
of the provided text snippets. At the core of their
system stands a state-of-the-art neural QA system,
namely FastQA (Weissenborn et al., 2017), ex-
tended with biomedical word embeddings. The
model was pre-trained on a large-scale open-
domain QA dataset, SQuAD (Rajpurkar et al.,
2016), and then the parameters were fine-tuned on
the BioASQ training set. Finally, the “sarrouti”
system, from Morocco’s USMBA, uses among
others a dictionary approach, term frequencies of
UMLS metathesaurus’ concepts and the BM25
model.

Baselines: For this challenge the open source
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OAQA system proposed by (Yang et al., 2016) for
BioASQ4 was used as a strong baseline. This sys-
tem, as well as its previous version (Yang et al.,
2015) for BioASQ3, had achieved top perfor-
mance in producing exact answers. The system
uses an UIMA based framework to combine dif-
ferent components. Question and snippet pars-
ing is based on ClearNLP. MetaMap, TmTool, C-
Value and LingPipe are used for concept identi-
fication and UMLS Terminology Services (UTS)
for concept retrieval. In addition, identification of
concept, document and snippet relevance is based
on classifier components and scoring, ranking and
reranking techniques are also applied in the final
steps.

3.3 Task 5c

In this inaugural year for task c, 3 teams partici-
pated with a total of 11 systems. A brief outline of
the techniques used by the participating systems is
provided in table 6.

Systems Approach

Simple
regions of interest, SVM, regular

expressions, hand-made rules,
char-distances, ensemble

DZG
regions of interest, SVM, tf-idf of
bigrams, HMMs, MaxEnt, CRFs,

ensemble
AUTH regions of interest, regular expressions

Table 6: Overview of the methodologies used by
the participating systems in Task 5c.

The Fudan University team, participated with
a series of similar systems (“Simple” systems) as
well as their ensemble. The general approach
included the following steps: First, the articles
were parsed and some sections, such as affilia-
tion or references, were removed. Then, using
NLP techniques, alongside pre-defined rules, each
paragraph was split into sentences. These sen-
tences were classified as positive (i.e. contain-
ing grant information) or not, using a linear SVM.
The positive sentences were scanned for grant IDs
and agencies through the use of regular expres-
sions and hand-made rules. Finally, multiple clas-
sifiers were trained in order to merge grant IDs and
agencies into suitable pairs, based on a wide range
of features, such as character-level features of the
grant ID, the agency in the sentence and the dis-
tance between the grant ID and the agency in the

sentence.
The “DZG” systems followed a similar method-

ology, in order to classify snippets of text as pos-
sible grant information sources, implementing a
linear SVM with tf-idf vectors of bigrams as in-
put features. However, their methodology dif-
fered from that of Fudan in two ways. Firstly,
they used an in-house-created dataset consisting
of more than 1,600 articles with grant information
in order to train their systems. Secondly, the sys-
tems deployed were based on a variety of sequen-
tial learning models namely conditional random
fields (Finkel et al., 2005), hidden markov mod-
els (Collins, 2002) and maximum entropy models
(Ratnaparkhi, 1998). The final system deployed
was a pooling ensemble of these three approaches,
in order to maximize recall and exploit comple-
mentarity between predictions of different mod-
els. Likewise, the AUTH team, with systems “As-
clepius”, “Gallen” and “Hippocrates” emphasized
on specific sections of the text that could contain
grant support information and extracted grant IDs
and agencies using regular expressions.

Baselines: For this challenge a baseline was
provided by NLM (“BioASQ Filtering”) which is
based on a two-step procedure. First, the system
classifies snippets from the full-text, as possible
grant support “zones” based on the average prob-
ability ratio, generated separately by Naive Bayes
(Zhang et al., 2009) and SVM (Kim et al., 2009).
Then, the system identified grant IDs and agen-
cies in these selected grant support “zones”, using
mainly heuristic rules, such as regular expressions,
especially for detecting uncommon and irregularly
formatted grant IDs.

4 Results

4.1 Task 5a

Each of the three batches of task 5a was evaluated
independently. The classification performance of
the systems was measured using flat and hierar-
chical evaluation measures (Balikas et al., 2013).
The micro F-measure (MiF) and the Lowest Com-
mon Ancestor F-measure (LCA-F) were used to
choose the winners for each batch (Kosmopoulos
et al., 2013).

According to (Demsar, 2006) the appropriate
way to compare multiple classification systems
over multiple datasets is based on their average
rank across all the datasets. On each dataset the
system with the best performance gets rank 1.0,
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System Batch 1 Batch 2 Batch 3
MiF LCA-F MiF LCA-F MiF LCA-F

auth1 8.88 8.25 10.50 9.75 10.25 9.75
auth2 7.25 6.50 7.63 7.50 8.88 9.75
auth3 6.75 8.25 7.50 10.25 6.50 7.00
auth4 - - 7.38 8.25 9.63 9.75
auth5 - - 7.50 7.00 8.50 7.50

DeepMeSH1 1.88 1.88 1.00 2.00 1.00 1.50
DeepMeSH2 1.00 1.00 3.00 3.00 2.50 2.75
DeepMeSH3 4.00 4.63 4.00 4.00 4.00 4.13
DeepMeSH4 5.00 4.38 5.00 5.50 4.88 5.63
DeepMeSH5 2.63 2.63 1.75 1.00 2.25 1.25

iria-1 - - 13.75 13.75 12.75 12.75
iria-2 - - - - 11.75 11.75
MZ1 10.75 10.75 - - - -

Optimize Macro
AUC

- - - - 19.25 19.25

Optimize Micro
AUC

- - - - 15.75 18.25

Search system-1 12.25 12.25 - - 13.75 13.25
Search system-2 13.25 13.25 - - 14.75 14.25
Search system-3 16.25 16.25 - - 18.50 17.50
Search system-4 15.25 15.25 - - 16.75 16.25
Search system-5 14.25 14.25 - - 15.75 15.25

Default MTI 7.50 6.25 8.75 6.00 7.50 6.75
MTI First Line

Index
9.13 9.25 11.50 11.50 9.50 8.75

Table 7: Average system ranks across the batches of the Task 5a. A hyphenation symbol (-) is used when-
ever the system participated in fewer than 4 tests in the batch. Systems with fewer than 4 participations
in all batches are omitted.

the second best rank 2.0 and so on. In case two
or more systems tie, they all receive the average
rank. Table 7 presents the average rank (according
to MiF and LCA-F) of each system over all the test
sets for the corresponding batches. Note, that the
average ranks are calculated for the 4 best results
of each system in the batch according to the rules
of the challenge.

On both test batches and for both flat and hier-
archical measures, the DeepMeSH systems (Peng
et al., 2016) and the AUTH systems outperform
the strong baselines, indicating the importance of
the methodologies proposed, including d2v and
tf-idf transformations to generate feature embed-
dings, for semantic indexing. More detailed re-
sults can be found in the online results page 3.

3http://participants-area.bioasq.org/
results/5a/

4.2 Task 5b

Phase A: For phase A and for each of the four
types of annotations: documents, concepts, snip-
pets and RDF triples, we rank the systems accord-
ing to the Mean Average Precision (MAP) mea-
sure. The final ranking for each batch is calcu-
lated as the average of the individual rankings in
the different categories. In tables 8 and 9 some in-
dicative results from batch 3 are presented. Full
results are available in the online results page of
task 5b, phase A4.

It is worth noting that document and snippet re-
trieval for the given questions were the most pop-
ular part of the task. Moreover, for different evalu-
ation metrics, there are different systems perform-
ing best, indicating that different approaches to the
task may be preferable depending on the target

4http://participants-area.bioasq.org/
results/5b/phaseA/
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System Mean
Precision Mean Recall Mean

F-measure MAP GMAP

testtext 0.1255 0.1789 0.1331 0.0931 0.0017
ustb-prir1 0.1306 0.1838 0.1372 0.0935 0.0016
ustb-prir4 0.1323 0.2003 0.1412 0.1027 0.0016
ustb-prir3 0.1307 0.1846 0.1376 0.0982 0.0015
ustb-prir2 0.1270 0.1832 0.1340 0.0975 0.0013

fdu 0.1551 0.1401 0.1286 0.0650 0.0005
fdu2 0.1611 0.1296 0.1185 0.0653 0.0005
Olelo 0.0702 0.1135 0.0764 0.0386 0.0003

HPI-S1 0.0475 0.1032 0.0593 0.0367 0.0003
KNU-SG 0.0678 0.0980 0.0702 0.0465 0.0003

c-e-50 0.0493 0.0662 0.0488 0.0345 0.0001
c-50 0.0520 0.0772 0.0530 0.0360 0.0001

c-idf-qe-1 0.0414 0.0574 0.0427 0.0326 0.0001
c-f-200 0.0485 0.0685 0.0484 0.0299 0.0001

Table 8: Results for snippet retrieval in batch 3 of phase A of Task 5b.

System Mean
Precision Mean Recall Mean

F-measure MAP GMAP

ustb-prir4 0.1707 0.4787 0.2200 0.1143 0.0066
ustb-prir1 0.1680 0.4750 0.2155 0.1108 0.0060

fdu2 0.1645 0.4628 0.2135 0.0976 0.0059
ustb-prir2 0.1737 0.4754 0.2220 0.1134 0.0059
ustb-prir3 0.1620 0.4803 0.2111 0.1157 0.0050

fdu 0.1615 0.4475 0.2120 0.1021 0.0049
testtext 0.1610 0.4690 0.2087 0.1138 0.0048

fdu4 0.1420 0.4310 0.1856 0.0926 0.0044
fdu3 0.1390 0.4098 0.1809 0.0976 0.0031

UNCC System
1

0.2317 0.3340 0.2322 0.0825 0.0009

fdu5 0.1060 0.2461 0.1298 0.0737 0.0007
Olelo 0.1327 0.2444 0.1481 0.0658 0.0005

HPI-S1 0.0823 0.2152 0.0997 0.0464 0.0005
KNU-SG 0.0730 0.2149 0.0967 0.0521 0.0005

c-e-50 0.0720 0.1921 0.0861 0.0547 0.0003
c-50 0.0720 0.1921 0.0861 0.0547 0.0003

c-idf-qe-1 0.0720 0.1921 0.0861 0.0547 0.0003
c-f-200 0.0720 0.1921 0.0861 0.0547 0.0003

Table 9: Results for document retrieval in batch 3 of phase A of Task 5b.

outcome. For example, one can see that the UNCC
System 1 performed the best on some unordered
measures, namely mean precision and f-measure,
however using MAP or GMAP to consider the or-
der of retrieved elements, it is out preformed by
other systems, such as the ustb-prir. Additionally,
the combination of some of these approaches seem
like a promising direction for future research.

Phase B: In phase B of Task 5b the systems

were asked to produce exact and ideal answers.
For ideal answers, the systems will eventually
be ranked according to manual evaluation by the
BioASQ experts (Balikas et al., 2013). Regard-
ing exact answers5, the systems were ranked ac-
cording to accuracy for the yes/no questions, mean
reciprocal rank (MRR) for the factoids and mean

5For summary questions, no exact answers are required
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System Yes/No Factoid List

Accuracy
Strict
Acc.

Lenient
Acc.

MRR Precision Recall
F-

measure
Lab Zhu,Fudan

Univer
0.5517 0.1818 0.3030 0.2298 0.3608 0.4231 0.3752

LabZhu,FDU 0.5517 0.2424 0.3636 0.2904 0.3608 0.4231 0.3752
LabZhu-FDU 0.5517 0.2727 0.3939 0.3207 0.3608 0.4231 0.3752

Deep QA
(ensemble)

0.5517 0.3030 0.4545 0.3606 0.2833 0.3436 0.2927

Deep QA (single) 0.5517 0.2424 0.3939 0.2965 0.2254 0.3564 0.2419
Oaqa-5b 0.6552 0.1515 0.1818 0.1667 0.1252 0.5353 0.1909
Oaqa 5b 0.6207 0.0909 0.1212 0.1061 0.1165 0.4615 0.1792

Oaqa5b-tfidf 0.6207 0.0909 0.1212 0.1061 0.1165 0.4615 0.1792
LabZhu-FDU 0.5517 0.0909 0.1818 0.1313 0.1239 0.3077 0.1692
Lab Zhu ,Fdan

Univer
0.5517 0.1212 0.2121 0.1591 0.1143 0.3077 0.1599

sarrouti 0.6207 0.0909 0.1212 0.0970 0.1077 0.2013 0.1369
Basic QA pipline 0.5517 0.0606 0.1818 0.1035 0.0769 0.1462 0.0967

SemanticRole
Labeling

0.5517 0.0303 0.0606 0.0379 0.0846 0.1122 0.0943

fa1 0.5517 0.0909 0.1818 0.1187 0.0564 0.1333 0.0718
Olelo 0.5517 0.0000 0.0606 0.0253 0.0513 0.0513 0.0513

Olelo-GS 0.5172 - - - 0.0513 0.0513 0.0513
L2PS - Relations 0.5172 0.0303 0.0303 0.0303 0.0371 0.1667 0.0504
L2PS - DeepQA 0.5172 0.0000 0.0303 0.0061 0.0207 0.2423 0.0338

L2PS 0.5172 - - - 0.0192 0.0513 0.0280
Simple system 0.5517 - - - - - -

fa2 0.5517 0.0303 0.0606 0.0404 - - -
fa3 0.5517 0.0303 0.0909 0.0465 - - -

Using NNR 0.5517 - - - - - -
Using regression 0.5517 - - - - - -
Trivial baseline 0.5517 - - - - - -

BioASQ-Baseline 0.4828 0.0303 0.1212 0.0682 0.1624 0.4276 0.2180

Table 10: Results for batch 4 for exact answers in phase B of Task 5b.

F-measure for the list questions. Table 10 shows
the results for exact answers for the fourth batch
of task 5b. The symbol (-) is used when systems
don’t provide exact answers for a particular type
of question. The full results of phase B of task 5b
are available online6.

From the results presented in Table 10, it can be
seen that systems achieve high scores in the yes/no
questions. This was especially in the first batches,
where a high imbalance in yes-no classes leaded to
trivial baseline solutions being very strong. This
was amended in the later batches, as shown in the
table for batch 4, where the best systems outper-

6http://participants-area.bioasq.org/
results/5b/phaseB/

form baseline approaches.
On the other hand, the performance in factoid

and list questions indicates that there is more room
for improvement in these types of answer.

4.3 Task 5c

Regarding the evaluation of Task 5c and taking
into account the fact that only a subset of grant IDs
and agencies mentioned in the full text were in-
cluded in the ground truth data sets, both for train-
ing and testing, micro-recall was the evaluation
measure used for all three sub-tasks. This means
that each system was assigned a micro-recall score
for grant IDs, agencies and full-grants indepen-
dently and the top-two contenders for each sub-
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System Grant ID MR Grant Agency MR Full-Grant MR
Simple-ML2 0.9750 0.9900 0.9526
Simple-ML 0.9702 0.9907 0.9523

simpleSystem 0.9684 0.9890 0.9505
Simple-Regex2 0.9550 0.9847 0.9416

Gallen 0.9498 0.9862 0.9412
Hippocrates 0.9491 0.9859 0.9409

Simple-Regex 0.9530 0.9844 0.9397
Asclepius 0.9472 0.9859 0.9390

DZG1 0.9232 0.9122 0.8443
DZG-agency 0.0000 0.8829 0.0000
DZG-grants 0.9235 0.0000 0.0000

BIOASQ Filtering 0.8167 0.8312 0.7174

Table 11: Micro Recall (MR) results on the test set of Task 5c.

task were selected as winners.
The results of the participating systems can be

seen in Table 11. Firstly, it can be seen that the
grant ID extraction task is harder compared to the
agency extraction. Moreover, the overall perfor-
mance of the participants was very good, and cer-
tainly better than the baseline system. This indi-
cates that the currently deployed techniques can
be improved and as discussed in section 3.3, this
can be done through the use of multiple method-
ologies. Finally, these results, despite being ob-
tained on a filtered subset of the data available,
could serve as a springboard to enhance and re-
deploy the currently implemented systems.

5 Conclusion

In this paper, an overview of the fifth BioASQ
challenge is presented. The challenge consisted of
three tasks: semantic indexing, question answer-
ing and funding information extraction. Overall,
as in previous years, the best systems were able
to outperform the strong baselines provided by the
organizers. This suggests that advances over the
state of the art were achieved through the BioASQ
challenge but also that the benchmark in itself is
challenging. Consequently, we believe that the
challenge is successfully towards pushing the re-
search frontier in on biomedical information sys-
tems.

In future editions of the challenge, we aim to
provide even more benchmark data derived from
a community-driven acquisition process and de-
sign a multi-batch scenario for Task 5c similar
to the other tasks. Finally, as a concluding re-
mark, it is worth mentioning that the increase

in challenge participation this year7 highlights
the healthy growth of the BioASQ community,
gathering attention from different teams around
the globe and constituting a reference point for
biomedical semantic indexing and question an-
swering.
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Abstract

In this paper, we describe our participation
in phase B of task 5b of the fifth edition of
the annual BioASQ challenge, which in-
cludes answering factoid, list, yes-no and
summary questions from biomedical data.
We describe our techniques with an em-
phasis on ideal answer generation, where
the goal is to produce a relevant, pre-
cise, non-redundant, query-oriented sum-
mary from multiple relevant documents.
We make use of extractive summariza-
tion techniques to address this task and
experiment with different biomedical on-
tologies and various algorithms includ-
ing agglomerative clustering, Maximum
Marginal Relevance (MMR) and sentence
compression. We propose a novel word
embedding based tf-idf similarity metric
and a soft positional constraint which im-
prove our system performance. We eval-
uate our techniques on test batch 4 from
the fourth edition of the challenge. Our
best system achieves a ROUGE-2 score of
0.6534 and ROUGE-SU4 score of 0.6536.

1 Introduction

In recent years, there has been a huge surge
in the number of biomedical articles being de-
posited online. The National Library of Medicine
(NLM) provides MEDLINE, a gigantic database
of 23 million references to biomedical journal pa-
pers. Approximately 200,000 articles 1 from this
database have been cited since 2015. The rapid
growth of information in this centralized repos-
itory makes it difficult for medical researchers
to manually find an exact answer for a question

1https://www.nlm.nih.gov/bsd/medline_
lang_distr.html

or to summarize the enormous content to answer
a query. The problem of extracting exact an-
swers for factoid questions from this data is be-
ing studied extensively, resulting in the develop-
ment of several techniques including inferencing
(Moldovan et al., 2002), noisy-channel transfor-
mation (Echihabi and Marcu, 2003) and exploita-
tion of resources like WordNet (Lin and Hovy,
2003). However, recent times have also seen an in-
terest in developing ideal answer generation sys-
tems which can produce relevant, precise, non-
repetitive and readable summaries for biomedical
questions (Tsatsaronis et al., 2015). A query based
summarization system called “BioSQUASH” (Shi
et al., 2007) uses domain specific ontologies like
the Unified Medical Language System (UMLS)
(Schuyler et al., 1993) to create a conceptual
model for sentence ranking. Experiments with
biomedical ontology based concept expansion and
weighting techniques were conducted, where the
strength of the semantic relationships between
concepts was used as a similarity metric for sen-
tence ranking (Chen and Verma, 2006). Similar
methods (Yenala et al., 2015; Weissenborn et al.,
2013) are used for this task where the difference
lies in query similarity ranking methods.

This paper describes our efforts in creating a
system that can provide ideal answers for biomed-
ical questions. More specifically, we develop a
system which can answer the kinds of biomedical
questions present in the dataset for the BioASQ
challenge (Tsatsaronis et al., 2015), which is a
challenge on large-scale biomedical semantic in-
dexing and question answering. We participate
in Phase B of Task 5b (biomedical question-
answering) for the 2016 edition of this challenge
comprising of factoid, yes/no, list and summary
type questions. We develop a system for biomed-
ical summarization using MMR and clustering
based techniques. To answer factoid, list and
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yes/no questions, we use one of the winning sys-
tems (Yang et al., 2016) from the 2015 edition
of the BioASQ challenge, open-sourced after the
conclusion of the challenge 2.

We build on standard techniques such as Max-
imal Marginal Relevance (Carbonell and Gold-
stein, 1998) and Sentence Compression (Filip-
pova et al., 2015) and incorporate domain-specific
knowledge using biomedical ontologies such
as the UMLS metathesaurus and SNOMEDCT
(Stearns et al., 2001) to build an ideal answer gen-
erator for biomedical questions. We also experi-
ment with several similarity metrics such as jac-
card similarity and a novel word embedding based
tf-idf (w2v tf-idf) similarity metric within our sys-
tem. We evaluate the performance of our system
on the dataset for test batch 4 of the fourth edi-
tion of the challenge and report our system per-
formance on ROUGE-2 and ROUGE-SU4 (Lin
and Hovy, 2003), which are the standard metrics
used for official evaluation in the BioASQ chal-
lenge. Our best system achieves ROUGE-2 and
ROUGE-SU4 scores of 0.6534 and 0.6536 respec-
tively on test batch 4 for task 4b when evaluated on
BioASQ Oracle3. Various configurations and simi-
larity metrics, granularity and algorithms selection
enabled us to secure top 1,2,3 in test batch 4 and
top 1,2,3,4 in test batch 5 on automatic evaluation
metrics of ROUGE-2 and ROUGE-SU4, from our
participation in Task 5b of ideal answer genera-
tion.

The rest of the paper is organized as follows:
Section 2 describes the datasets used. In section
3, we describe our summarization pipeline, while
section 4 gives a brief overview of the system used
for factoid, list and yes-no questions. Section 5
presents the evaluation results of our summariza-
tion system and our observations about various
system configurations. Section 6 presents a com-
parative qualitative error analysis of some of our
system configurations. Section 7 concludes and
describes future work in this area.

2 Dataset

The training data for Phase B of task 5b pro-
vides biomedical questions, where each question
is associated with question type, urls of relevant
PubMed articles and relevant snippets from those
articles. This dataset consists of 1,799 questions.

2https://github.com/oaqa/bioasq
3http://participants-area.bioasq.org/oracle/

Though our ideal answer generation system is un-
supervised, we use a brief manual inspection of
the training data for this edition of the challenge
to make an informed choice of hyperparameters
for the algorithms used by our system.

To develop an ideal answer generator which can
produce query-oriented summaries for each ques-
tion, we can adopt one of two popular approaches:
extractive or abstractive. Extractive summariza-
tion techniques choose sentences from relevant
documents and combine them to form a summary.
Abstractive summarization methods use relevant
documents to create a semantic representation of
the knowledge from these documents and then
generate a summary using reasoning and natural
language generation techniques. Brief analysis on
a randomly sampled subset from the training data
shows us that most of the sentences in the gold
ideal answers are present either in the relevant
snippets or relevant abstracts of PubMed articles.
Hence we perform extractive summarization. We
also observe an interesting ordering trend among
relevant snippets which is used to develop a posi-
tional constraint. Adding this positional constraint
to our similarity metrics gives us a slight boost in
performance. We explain the intuition behind this
idea in more detail in section 3.1.2.

For evaluation, we use the dataset from test
batch 4 of the fourth edition of the BioASQ chal-
lenge which consists of 100 questions.

3 Summarization Pipeline

In this section, we describe our system pipeline
for the ideal answer generation task which mainly
comprises of three stages: question-sentence rel-
evance ranker, sentence selection and sentence
tiling. Each stage has multiple configurations de-
pending upon various choices for algorithms, con-
cept expansion and similarity metrics. Figure 1
shows the overall architecture of our system and
also briefly mentions various algorithms used in
each stage. We describe these stages and choices
in more detail in subsequent sections.

3.1 Question-Sentence Relevance ranker:

In this phase, we retrieve a list of candidate sen-
tences from gold abstracts and snippets provided
for each question and compute relevance scores
with respect to the question for these sentences.
We can choose from several similarity metrics,
biomedical ontologies and different granularities
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Figure 1: System pipeline for Ideal Answer Generation (with configuration choices)

for sentence scoring in this stage.

3.1.1 Granularity for Candidate Sentence
Extraction

The training data provided for the BioASQ task
contains a list of PubMed IDs of gold relevant
documents from NLM, along with gold relevant
snippets from these documents, for each question.
Since, the training data only contains PubMed IDs
of relevant documents, we extract complete ab-
stract text for these documents by first indexing all
Medline abstracts 4 via Lucene and then retrieving
relevant documents based on PubMed IDs.

We now have two choices of granularity for can-
didate sentence extraction: using entire abstract
texts from relevant documents or using only rel-
evant snippets. We experiment with both possi-
bilities. However, since relevant snippets for each
question are a subset of abstract texts, which are
highly relevant to the question, leveraging this in-
sight and using only snippets for candidate sen-
tence extraction gives us better performance, as we
see from the results in Section 5.

3.1.2 Similarity metrics
The performance of both, the relevance ranker and
the sentence selection phase (which is the follow-
ing phase in the pipeline), depends on the sim-
ilarity metrics used to capture question-sentence
relevance and sentence-sentence similarity. In

4https://www.nlm.nih.gov/databases/
download/pubmed_medline.html

this section, we describe various similarity metrics
which we experiment with.
Jaccard similarity: For each sentence, its rele-
vance with respect to the question is computed as
the Jaccard index between the sets containing all
words occurring in the question and the sentence.
This is the simplest metric which captures surface
(word-level) similarity between the question and
the sentence. Including related concepts obtained
by concept expansion in these word sets provides
some measure of semantic overlap, but this tech-
nique is not very effective as we show in section
5.
Tf-idf based similarity with word embeddings:
Using ontologies such as WordNet (for general
English) and UMLS/ SNOMEDCT (for biomed-
ical domain) for concept expansion to incorporate
some semantics while computing sentence simi-
larity, is not sufficient due to the unbounded nature
of such ontologies. Hence, to assimilate semantic
information in a more controlled manner, we use
a novel similarity metric inspired by the widely-
used tf-idf cosine similarity metric which incorpo-
rates semantic information by making use of word
embeddings (Mikolov et al., 2013).

Let W represent the symmetric word-to-word
similarity matrix and ~a, ~b represent tf-idf vectors
for the sentences. The similarity metric is defined
as:

sim(~a,~b) =
~aTW~b√

~aTW~a
√
~bTW~b

(1)
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The word-to-word similarity matrix W is com-
puted using cosine similarity between word em-
beddings for each word. We use word embed-
dings which have been pre-trained on PubMed,
PMC and Wikipedia articles to incorporate do-
main knowledge 5.
Similarity function with positional constraints:
As described in section 2, the data provided for
each question contains a list of relevant abstracts
of PubMed articles, as well as a list of relevant
snippets extracted from these abstracts. The ab-
stracts are ordered by relevance. Snippets on the
other hand, are not ordered by relevance, but are
ordered according to the abstracts that they are ex-
tracted from. Since the abstracts themselves are
ordered by relevance, this gives an inherent dis-
course structure to the snippets. This observa-
tion motivates us to incorporate information about
a snippet’s position in the list into the similarity
function to improve the summaries generated by
our system. We first test this hypothesis using
a simple baseline which gives the first snippet in
the list as the summary for every question. This
simple baseline is able to achieve good ROUGE
scores as shown in Table 1. We experiment with
two different ways of incorporating this constraint:·Hard positional constraint: In this method, we
enforce snippet position as a hard constraint. We
achieve this by restricting the algorithm to select
the first sentence of the summary from the first
snippet (most relevant snippet) in the list. Remain-
ing sentences can be selected from any snippet.
This method does not have much improvement on
our ROUGE scores as explained in section 5.· Soft positional constraint: This method in-
corporates snippet position as a soft constraint
by adding it to the similarity function. The
augmented similarity function after incorporating
snippet position is presented below:

positionalSim(q, s) = α ∗ sim(q, s)+
(1− α) ∗ rank(s) (2)

Here, q and s denote the question and sentence
respectively; sim(q, s) denotes a function which
computes similarity between question and sen-
tence (we experiment with Jaccard and tf-idf
based similarities); rank(s) denotes the boost

5 These pre-trained word vectors are pro-
vided by http://evexdb.org/pmresources/
vec-space-models/

given to the sentence based on the position of the
snippet to which it belongs and α is a weighting
parameter. The value of rank(s) for a sentence is
computed as follows:

rank(s) = 1− pos(s)
pos(s) = snippetPos(s)/#snippets

Here, snippetPos(s) denotes the position (index)
of the snippet, to which the sentence belongs, in
the list of relevant snippets. If a sentence belongs
to multiple snippets, we consider the lowest index.
#snippets denotes the number of relevant snip-
pets for the current question. This positional boost
gives higher weight to sentences with lower posi-
tion values (since they occur earlier in the list) and
returns a normalized value in the range 0-1, to en-
sure that it is comparable to the range of values
produced by the similarity function. Adding this
constraint boosts our ROUGE scores.

3.1.3 Biomedical Tools and Ontologies
We experiment with various biomedical tools and
ontologies for concept expansion, in order to in-
corporate relations between concepts while com-
puting similarity. To perform concept expansion,
the first step is to identify biomedical concepts
from a sentence. We choose the MetaMap con-
cept identification tool and use a python wrapper,
pymetamap6 for this purpose. This API identifies
biomedical concepts from a sentence and returns a
Concept Unique Identification (CUI) for each con-
cept. This CUI acts as a unique identifier for the
concept which is shared across ontologies, i.e it
can be used as an ID to retrieve the same concept
from the UMLS ontology. After biomedical con-
cepts are identified, we experiment with two on-
tologies for concept expansion: UMLS Metathe-
saurus and SNOMEDCT.

• UMLS Metathesaurus: The UMLS
Metathesarus contains many types of rela-
tions for each biomedical concept. For our
task, three relation types are of interest to us:
‘RB’ (broader relationship), ‘RL’ (similar
or alike relationship) and ‘RQ’ (related
and possibly synonymous relationship).
However, none of the biomedical concepts
identified from questions and sentences in

6https://github.com/AnthonyMRios/
pymetamap
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our training dataset contained relations of
the type ‘RL’ or ‘RQ’. Hence we perform
expansion for each biomedical concept by
collecting all concepts linked to it by the
‘RB’ relation.

• SNOMEDCT: The SNOMEDCT ontology
does not contain CUIs for biomedical con-
cepts. Hence, we need to use a different
technique to locate concepts in this ontol-
ogy. In addition to CUI, pymetamap also
provides a “preferred name” for each con-
cept. We use this preferred name to perform a
full-text search in the SNOMEDCT ontology.
All concepts returned by this search are then
considered to be related concepts and used
for expansion. Using this ontology for con-
cept expansion returns a much larger number
of related concepts, due to the nature of our
search (using fuzzy text search instead of pre-
cise identifiers).

We use these techniques to perform concept ex-
pansion on both questions and sentences from rel-
evant snippets. In Section 6, we present the results
of various system configurations with and without
domain specific concept expansion.

3.2 Sentence Selection

In this stage, we want to select sentences for the
final summary from candidate sentences extracted
by the previous stage. Since the BioASQ task
has a word limit of 200, we limit the number of
sentences selected for the final summary to five.
This sentence limit gives us good ROUGE scores
across multiple system configurations.

The simplest way of performing sentence selec-
tion is to continue selecting the sentence with the
highest relevance score with respect to the ques-
tion, till the sentence limit is reached. However,
sentences having high relevance with respect to
the question may be semantically similar, thus in-
troducing redundancy in the generated summary.
We use two algorithms to combat this issue: ag-
glomerative clustering based on sentence similar-
ity and Maximum Marginal Relevance (MMR)
(Carbonell and Goldstein, 1998). Both algorithms
require effective similarity metrics to compute se-
mantic similarity between sentences. We experi-
ment with various similarity metrics described in
section 3.1.2. We also experiment with concept
expansion using multiple biomedical ontologies.

3.2.1 Agglomerative Clustering
Redundancy reduction via clustering is one of
the techniques that was proposed for biomedical
query-oriented summarization (Chen and Verma,
2006). In this technique, we create all possible
sentence pairs from our set of candidate sentences
and compute pair-wise similarities. We then per-
form agglomerative clustering on the sentences us-
ing these pair-wise similarity scores. Finally, we
select one sentence from each cluster to generate
the final summary, in such a way that the sentence
having maximum question relevance score is se-
lected from every cluster. The number of clus-
ters is set to the maximum number of sentences
we need in the final summary (five in this case).
The intuition behind this technique is that agglom-
erative clustering forces semantically similar sen-
tences to fall into the same cluster. Since we only
select one sentence from each cluster in the end,
we discard sentences which are highly similar to
the selected ones.

3.2.2 Maximal Marginal Relevance
Maximal Marginal Relevance (Carbonell and
Goldstein, 1998) is a widely-used summarization
algorithm which was proposed to tackle the issue
of redundancy while maintaining query relevance
in summarization. This algorithm selects new sen-
tences based on a combination of relevance score
with respect to the question as well as similarity
score with respect to the sentences which have al-
ready been selected for the final summary. Thus,
this algorithm incorporates sentence similarity as
a constraint, instead of explicitly clustering sen-
tences.

3.3 Sentence Tiling
In the final stage, we combine all selected sen-
tences to produce the final summary. The simplest
way is to append all selected sentences while con-
straining summary length (because of the word-
limit constraint for this task). We also experi-
ment with an LSTM-based sentence compression
method. We train a neural network based on a
work done previously (Filippova et al., 2015) for
sentence compression. We generate training data
for this network by pairing sentences from abstract
texts with their full text versions. Given that this
dataset is too small to train the neural network,
we add in training instances from existing sen-
tence compression data-sets. Input to this model
includes the word vector representation for a word
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Experiment ROUGE-2 ROUGE-SU4
1 Clustering + Abstract texts (with average constraint) 0.2906 0.3138
2 Clustering + Snippets (with average constraint) 0.4314 0.4347
3 Clustering + Snippets (without average constraint) 0.5609 0.5632
4 Clustering + UMLS expansion 0.5488 0.5521
5 Clustering + SNOMEDCT expansion 0.5514 0.5586
6 Clustering + UMLS expansion + weighting 0.5402 0.5431
7 Clustering + SNOMEDCT expansion + weighting 0.5530 0.5588
8 Clustering + UMLS expansion + weighted normalization 0.5592 0.5632
9 Clustering + SNOMEDCT expansion + weighted normalization 0.5585 0.5650
10 MMR 0.6338 0.6296
11 MMR + w2v tf-idf similarity 0.6168 0.6126
12 First snippet baseline 0.3363 0.3308
13 MMR + Hard positional constraint + Jaccard similarity 0.6338 0.6296
14 MMR + Soft positional constraint + Jaccard similarity 0.6419 0.6410
15 Hard positional constraint + Jaccard similarity 0.6328 0.6254
16 Soft positional constraint + Jaccard similarity 0.6433 0.6429
17 Soft positional constraint + w2v tf-idf similarity 0.6534 0.6536
18 MMR + tf-idf similarity + LSTM compression 0.5689 0.5723

Table 1: ROUGE scores with different algorithms, ontologies and similarity metrics

and a binary value to indicate whether the previous
word was included in the output sentence. Based
on these inputs, the output of the model predicts
whether the word should be deleted or not. Sen-
tences generated after word deletion are concate-
nated together to generate the final summary. It is
to be noted that this model does not require any
linguistic features.

4 Overview of system for exact answer
generation

To answer factoid, list and yes/no questions, we
use the publicly available system (Yang et al.,
2016), which builds on participation in 2015
(Yang et al., 2015). This system uses TmTool
in place of UTS (unlike (Yang et al., 2015)) for
concept identification as some of the constituent
parsers of TmTool identify concepts based on mor-
phological features instead of previously coded
ontologies. Also, the c-value method is used to
mine frequent multi-word concepts that might not
have been identified by tools such as TmTool,
MetaMap and LingPipe. The idea of reranking a
candidate answer based on its similarity to other
candidate answers is introduced in this system for
list type questions. The intuition behind this ap-
proach is that all answers to a list type question
should have the same semantic type and therefore,
it is useful to increase the score of a low-ranked

candidate answer that has the same semantic type,
and vice-versa.

Yes/No questions are answered using the tech-
nique of question inversion. The last biomedical
concept present in the question is considered to be
the expected answer. The concept mentions and
tokens of the expected answer are removed from
the question, which is then converted to a factoid
type question. Candidate answers are generated
for this factoid question using the snippets for the
original question. The expected answer is then
compared to the ranked list of candidate answers
retrieved. The answer to the yes/no type question
will be yes if the expected answer is among the top
ranked candidate answers and no otherwise.

5 Evaluation and Discussion

We experiment with ideal answer generation using
various system configurations which differ in sim-
ilarity metrics, biomedical ontologies, sentence
selection algorithms(clustering/MMR) and tiling
algorithms used. The official evaluation for ideal
answers includes manual evaluation by biomedi-
cal experts in the BioASQ team as well as auto-
matic evaluation via ROUGE scores. To present
comparable and standardized results, we run our
system on the batch 4 dataset for Phase B of task
4b and get our results evaluated via the BioASQ
Oracle. These results are shown in Table 1. We
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Category Question/Summary

Question What is the effect that EZH2 has on chromatin?

Gold Ideal 
Answer

Ez that catalyzes di- and trimethylation of histone H3 lysine 27 (H3K37me2/3), marks repressive to transcription.[1] The mammalian 
homologs Ezh1 and Ezh2 form similar PRC2 complexes but exhibit contrasting repressive roles.[2] PRC2-Ezh2 catalyzes H3K27me2/3 and 
its knockdown affects global H3K27me2/3 levels.[3] EZH2 thus maintains chromatin in a repressive state.

Clustering + 
Snippets

During progenitor cell differentiation and ageing, PcG silencer EZH2 attenuates, causing loss of PRC binding and transcriptional activation of INK4b 
and INK4a Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity with reduced Foxp3(+) cells in non-lymphoid tissues and impaired 
resolution of experimental autoimmune encephalomyelitis We report that the mammalian homologs Ezh1 and Ezh2 form similar PRC2 complexes 
but exhibit contrasting repressive roles.[2] In this study, we found the inverse correlation between FOXP3 and Ezh2, an enzyme for histone H3K27 
trimethylation (H3K27me3) and a central epigenetic regulator in cancer the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter 
and muscle creatine kinase (mCK) enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter 
in post-mitotic myotubes.

Clustering + 
UMLS 
expansion + 
weighted 
normalization

During progenitor cell differentiation and ageing, PcG silencer EZH2 attenuates, causing loss of PRC binding and transcriptional activation of INK4b 
and INK4a. We report that the mammalian homologs Ezh1 and Ezh2 form similar PRC2 complexes but exhibit contrasting repressive roles. 
[2] Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity with reduced Foxp3(+) cells in non-lymphoid tissues and impaired resolution 
of experimental autoimmune encephalomyelitis Ez that catalyzes di- and trimethylation of histone H3 lysine 27 (H3K37me2/3) [3], marks 
repressive to transcription.[1] the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter and muscle creatine kinase (mCK) 
enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter in post-mitotic myotubes.

Clustering + 
SNOMEDCT 
expansion + 
weighted 
normalization

During progenitor cell differentiation and ageing, PcG silencer EZH2 attenuates, causing loss of PRC binding and transcriptional activation of INK4b 
and INK4a Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity with reduced Foxp3(+) cells in non-lymphoid tissues and impaired 
resolution of experimental autoimmune encephalomyelitis We report that the mammalian homologs Ezh1 and Ezh2 form similar PRC2 complexes 
but exhibit contrasting repressive roles.[2] Ez that catalyzes di- and trimethylation of histone H3 lysine 27 (H3K37me2/3), marks repressive 
to transcription.[1] the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter and muscle creatine kinase (mCK) enhancer in 
proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter in post-mitotic myotubes.

MMR Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms.[1] The chromatin-modifying enzyme Ezh2 is critical for the 
maintenance of regulatory T cell identity after activation. Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity with reduced Foxp3(+) 
cells in non-lymphoid tissues and impaired resolution of experimental autoimmune encephalomyelitis. the PRC2-Ezh2 complex, which is bound to the 
myogenin (MyoG) promoter and muscle creatine kinase (mCK) enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces 
PRC2-Ezh2 on MyoG promoter in post-mitotic myotubes. In this study, we found the inverse correlation between FOXP3 and Ezh2, an enzyme for 
histone H3K27 trimethylation (H3K27me3) and a central epigenetic regulator in cancer.

MMR + w2v
 tf-idf

Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms.[1] In this study, we found the inverse correlation between FOXP3 
and Ezh2, an enzyme for histone H3K27 trimethylation (H3K27me3) and a central epigenetic regulator in cancer. These studies reveal a critical role 
for Ezh2 in the maintenance of Treg cell identity during cellular activation. We report that the mammalian homologs Ezh1 and Ezh2 form similar 
PRC2 complexes but exhibit contrasting repressive roles.[2] The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T 
cell identity after activation.

Soft 
constraint + 
w2v tf-idf

Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms.[1] We report that the mammalian homologs Ezh1 and Ezh2 
form similar PRC2 complexes but exhibit contrasting repressive roles.[2] Ez that catalyzes di- and trimethylation of histone H3 lysine 27 
(H3K37me2/3), marks repressive to transcription. During progenitor cell differentiation and ageing, PcG silencer EZH2 attenuates, causing loss of 
PRC binding and transcriptional activation of INK4b and INK4a. the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter and 
muscle creatine kinase (mCK) enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter in 
post-mitotic myotubes.

MMR + w2v 
tf-idf + LSTM 
sentence 
compression

and ezh2 maintain repressive chromatin through different mechanisms.[1] this study , found the inverse correlation between foxp3 and ezh2 , an 
enzyme for histone h3k27 trimethylation (h3k27me3) and a central epigenetic regulator in cancer . prc2-ezh2 complex , which is bound to the 
myogenin (myog) promoter and muscle creatine kinase (mck) enhancer in proliferating myoblasts , and the prc2-ezh1 complex , which replaces 
prc2-ezh2 on myog promoter in post-mitotic myotubes .

Figure 2: Summaries generated with different techniques

obtain the best results among these configurations
by using soft positional constraint with tf-idf based
similarity on snippets.

The first three rows in Table 1 show our experi-
ments with different granularities for sentence ex-
traction. While using abstract texts for sentence
selection, we observe that our clustering technique
frequently puts sentences with low query rele-
vance into the same clusters. Since our selec-
tion method picks one sentence from each clus-
ter, some sentences with low query relevance from
these “bad” clusters are also selected for the final
summary. To solve this issue, we imposed a con-
straint which filtered out sentences having a lower-
than-average relevance score with respect to the
question before clustering. We also tried adding
this constraint while using relevant snippets, but
this reduced our scores, because sentences from
snippets are already relevant to the question and
we end up discarding important information by fil-

tering. We also observed that switching granular-
ity from abstract texts to relevant snippets signifi-
cantly boosted the ROUGE scores. Hence all sub-
sequent experiments (rows 4-18) use snippets for
sentence extraction.

Rows 4-9 show our experiments with concept
expansion using various biomedical ontologies
and weighting techniques. We use the following
weighting technique: while calculating similarity,
words from the original question and sentences
carry a weight of 1, while words obtained added
after concept expansion carry a weight of 0.5. We
do not observe significant gains using concept ex-
pansion. The unbounded nature of concept expan-
sion hurts our performance and so we refrain from
using this technique in further experiments. Row
10 shows our experiment using MMR for sentence
selection instead of clustering. MMR provides a
significant boost in ROUGE score. Row 11 shows
our experiment with the w2v tf-idf based similar-
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ity metric instead of Jaccard similarity, which de-
creases our ROUGE scores slightly, but is still
better than previous system configurations. Row
12 shows the scores of a baseline system which
returns the first snippet from the list, which is
quite high, validating our assumption that snip-
pet position is an important factor. Rows 13-
17 shows our experiments with different ways
of adding positional constraints described in sec-
tion 3.1.2. While using a hard constraint does
not show much improvement, soft positional con-
straint gives a slight boost. Results with and with-
out MMR for this metric are nearly comparable.
Soft constraint gives a huge boost when used with
w2v tf-idf based similarity. Row 18 shows our ex-
periment adding LSTM-based compression on top
of MMR with w2v tf-idf based similarity, which
reduces our scores. Row 17 is the system con-
figuration with the highest ROUGE score on our
dataset, which uses soft positional constraint with
w2v tf-idf similarity.

6 Comparative Qualitative Error
Analysis

Figure 2 presents ideal answers generated by some
of our system configurations for a randomly se-
lected summary question from Task 4b Phase B
data to provide a comparative qualitative error
analysis. Each sentence in the ideal gold answer
is indexed with a number as shown in the figure.
We perform a relative analysis of the extent of in-
formation captured by a selected subset of system
configurations from Table 1.

The sentence indexed [1] in the gold ideal
answer is present word-for-word in summaries
created by two configurations: Clustering +
SNOMEDCT expansion + weighted normaliza-
tion and Soft constraint + w2v tf-idf. Clustering +
UMLS expansion + weighted normalization con-
tains a longer version of this sentence. We also
observe that this sentence does not contain any of
the terms from the original question. Hence, sum-
maries generated by all configurations using only
Jaccard similarity (Clustering + Snippets, MMR)
do not contain this sentence since there is no
surface-level similarity. However, methods which
incorporate some semantic information via word
embeddings (w2v tf-idf similarity) or concept ex-
pansion (UMLS/ SNOMEDCT) include this sen-
tence in the final summary, which shows that in-
corporating semantic information is important to

bridge the vocabulary gap in some situations.
The sentence indexed [2] in the gold answer is

present in summaries generated by most of the
configurations as shown but with extra phrases
such as ‘We report that’ at the beginning of the
sentence. Though the presence of such words
does not have a major impact on automatic scores
like ROUGE, it influences the manual evaluation
which also judges summary readability. How-
ever, the LSTM-based compression method re-
moves these words via deletion. We observe that
this sentence contains the concept “Ezh2” which is
also present in the question. Hence, some configu-
rations which use surface-level similarity (Cluster-
ing+Snippets) also pick this sentence for the final
summary. But this sentence is not present in the
summary generated by the MMR + snippets con-
figuration. This happens because many sentences
selected by the algorithm already contain the con-
cept “Ezh2” and so this sentence is excluded due
to its similarity to already selected sentences.

7 Conclusion and Future Work

In this paper, we present a system for query-
oriented summary generation. Our comparison
of MMR and agglomerative clustering-based tech-
niques shows that while clustering selects distinct
sentences, it is unable to select sentences with
high query relevance. This can be improved by
learning hyperparameters like number of clusters
and number of sentences to be selected from each
cluster based on the type of question. We plan
to investigate this in the future. We find that
unbounded concept expansion hurts our system
scores. LSTM-based compression also hurts our
system scores and we need to investigate upon
this in the future to select the optimal parame-
ters for compression ratio in order to maximize
recall and precision. We also find that incorporat-
ing word embedding based tf-idf similarity along
with soft positional constraints outperforms sur-
face level word similarity with soft positional con-
straints. This is because the former captures both
semantic information of the content as well as rel-
evance to query based on sentence position.

Acknowledgments

This research was supported in parts by grants
from Accenture PLC (PI: Anatole Gershman),
NSF IIS 1546393 and NHLBI R01 HL122639.

65



References
Jaime Carbonell and Jade Goldstein. 1998. The use of

mmr, diversity-based reranking for reordering doc-
uments and producing summaries. In Proceedings
of the 21st annual international ACM SIGIR confer-
ence on Research and development in information
retrieval. ACM, pages 335–336.

Ping Chen and Rakesh Verma. 2006. A query-based
medical information summarization system using
ontology knowledge. In Computer-Based Medical
Systems, 2006. CBMS 2006. 19th IEEE Interna-
tional Symposium on. IEEE, pages 37–42.

Abdessamad Echihabi and Daniel Marcu. 2003. A
noisy-channel approach to question answering. In
Proceedings of the 41st Annual Meeting on Associa-
tion for Computational Linguistics-Volume 1. Asso-
ciation for Computational Linguistics, pages 16–23.

Katja Filippova, Enrique Alfonseca, Carlos A Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with lstms. In
EMNLP. pages 360–368.

Chin-Yew Lin and Eduard Hovy. 2003. Auto-
matic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Hu-
man Language Technology-Volume 1. Association
for Computational Linguistics, pages 71–78.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Dan I Moldovan, Sanda M Harabagiu, Roxana Girju,
Paul Morarescu, V Finley Lacatusu, Adrian Novis-
chi, Adriana Badulescu, and Orest Bolohan. 2002.
Lcc tools for question answering. In TREC.

Peri L Schuyler, William T Hole, Mark S Tuttle,
and David D Sherertz. 1993. The umls metathe-
saurus: representing different views of biomedical
concepts. Bulletin of the Medical Library Associa-
tion 81(2):217.

Zhongmin Shi, Gabor Melli, Yang Wang, Yudong Liu,
Baohua Gu, Mehdi M Kashani, Anoop Sarkar, and
Fred Popowich. 2007. Question answering sum-
marization of multiple biomedical documents. In
Advances in Artificial Intelligence, Springer, pages
284–295.

Michael Q Stearns, Colin Price, Kent A Spackman,
and Amy Y Wang. 2001. Snomed clinical terms:
overview of the development process and project
status. In Proceedings of the AMIA Symposium.
American Medical Informatics Association, page
662.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, et al. 2015. An overview of the bioasq
large-scale biomedical semantic indexing and ques-
tion answering competition. BMC bioinformatics
16(1):138.

Dirk Weissenborn, George Tsatsaronis, and Michael
Schroeder. 2013. Answering factoid questions in the
biomedical domain. BioASQ@ CLEF 1094.

Zi Yang, Niloy Gupta, Xiangyu Sun, Di Xu, Chi Zhang,
and Eric Nyberg. 2015. Learning to answer biomed-
ical factoid & list questions: Oaqa at bioasq 3b. In
CLEF (Working Notes).

Zi Yang, Yue Zhou, and Eric Nyberg. 2016. Learning
to answer biomedical questions: Oaqa at bioasq 4b.
ACL 2016 page 23.

Harish Yenala, Avinash Kamineni, Manish Shrivastava,
and Manoj Kumar Chinnakotla. 2015. Iiith at bioasq
challange 2015 task 3b: Bio-medical question an-
swering system. In CLEF (Working Notes).

66



Proceedings of the BioNLP 2017 workshop, pages 67–75,
Vancouver, Canada, August 4, 2017. c©2017 Association for Computational Linguistics

Macquarie University at BioASQ 5b – Query-based Summarisation
Techniques for Selecting the Ideal Answers

Diego Mollá
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Abstract

Macquarie University’s contribution to the
BioASQ challenge (Task 5b Phase B) fo-
cused on the use of query-based extractive
summarisation techniques for the genera-
tion of the ideal answers. Four runs were
submitted, with approaches ranging from
a trivial system that selected the first n
snippets, to the use of deep learning ap-
proaches under a regression framework.
Our experiments and the ROUGE results
of the five test batches of BioASQ indi-
cate surprisingly good results for the triv-
ial approach. Overall, most of our runs on
the first three test batches achieved the best
ROUGE-SU4 results in the challenge.

1 Introduction

The main goal of query-focused multi-document
summarisation is to summarise a collection of
documents from the point of view of a particu-
lar query. In this paper we compare the use of
various techniques for query-focused summarisa-
tion within the context of the BioASQ challenge.
The BioASQ challenge (Tsatsaronis et al., 2015)
started in 2013 and it comprises various tasks cen-
tred on biomedical semantic indexing and ques-
tion answering. The fifth run of the BioASQ chal-
lenge (Nentidis et al., 2017), in particular, had
three tasks:

• BioASQ 5a: Large-scale online biomedical
semantic indexing.

• BioASQ 5b: Biomedical semantic question
answering. This task had two phases:

– Phase A: Identification of relevant infor-
mation.

– Phase B: Question answering.

• BioASQ 5c: Funding information extraction
from biomedical literature.

The questions used in BioASQ 5b were of three
types: yes/no, factoid, list, and summary. Submis-
sions to the challenge needed to provide an exact
answer and an ideal answer. Figure 1 shows ex-
amples of exact and ideal answers for each type
of question. We can see that the ideal answers
are full sentences that expand the information pro-
vided by the exact answers. These ideal answers
could be seen as the result of query-focused multi-
document summarisation. We therefore focused
on Task 5b Phase B, and in that phase we did
not attempt to provide exact answers. Instead, our
runs provided the ideal answers only.

In this paper we will describe the techniques
and experiment results that were most relevant to
our final system runs. Some of our runs were
very simple, yet our preliminary experiments re-
vealed that they were very effective and, as ex-
pected, the simpler approaches were much faster
than the more complex approaches.

Each of the questions in the BioASQ test sets
contained the text of the question, the question
type, a list of source documents, and a list of rele-
vant snippets from the source documents. We used
this information, plus the source documents which
are PubMed abstracts accessible using the URL
provided in the test sets.

Overall, the summarisation process of our runs
consisted of the following two steps:

1. Split the input text (source documents or
snippets) into candidate sentences and score
each candidate sentence.

2. Return the n sentences with highest score.

The value of n was determined empirically and
it depended on the question type, as shown in Ta-
ble 1.
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yes/no Does Apolipoprotein E (ApoE) have anti-inflammatory activity?

• Exact answer: yes
• Ideal answer: Yes. ApoE has anti-inflammatory activity

factoid Which type of lung cancer is afatinib used for?

• Exact answer: EGFR-mutant non small cell lung carcinoma
• Ideal answer: Afatinib is a small molecule covalently binding and inhibiting the EGFR, HER2

and HER4 receptor tyrosine kinases. Trials showed promising efficacy in patients with EGFR-
mutant NSCLC or enriched for clinical benefit from EGFR tyrosine kinase inhibitors gefitinib
or erlotinib.

list Which are the Yamanaka factors?

• Exact answer: [OCT4, SOX2, MYC, KLF4]
• Ideal answer: The Yamanaka factors are the OCT4, SOX2, MYC, and KLF4 transcription

factors

summary What is the role of brain natriuretic peptide in traumatic brain injury patients ?

• Exact answer: N/A
• Ideal answer: Brain natriuretic peptide concentrations are elevated in patients with traumatic

brain during the acute phase and correlate with poor outcomes. In traumatic brain injury pa-
tients higher brain natriuretic peptide concentrations are associated with more extensive SAH,
elevated ICP and hyponatremia. Brain natriuretic peptide may play an adaptive role in recovery
through augmentation of cerebral blood flow.

Figure 1: Examples of questions with their exact and ideal answers in BioASQ 5b.
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Summary Factoid Yesno List

n 6 2 2 3

Table 1: Value of n (the number of sentences re-
turned as the ideal answer) for each question type.

2 Simple Runs

As a first baseline, we submitted a run labelled
trivial that simply returned the first n snippets of
each question. The reason for this choice was that,
in some of our initial experiments, we incorpo-
rated the position of the snippet as a feature for
a machine learning system. In those experiments,
the resulting system did not learn anything and
simply returned the input snippets verbatim. Sub-
sequent experiments revealed that a trivial base-
line that returned the first snippets of the question
was very hard to beat. In fact, for the task of
summarisation of other domains such as news, it
has been observed that a baseline that returns the
first sentences often outperformed other methods
(Brandow et al., 1995).

As a second baseline, we submitted a run la-
belled simple that selected the n snippets what
were most similar to the question. We used co-
sine similarity, and we tried two alternatives for
computing the question and snippet vectors:

tfidf-svd: First, generate the tf.idf vector of the
question and the snippets. We followed
the usual procedure, and the tf.idf vectors
of these sentences are bag-of-word vectors
where each dimension represents the tf.idf
of a word. Then, reduce the dimensionality of
the vectors by selecting the first 200 compo-
nents after applying Singular Value Decom-
position. In contrast with a traditional ap-
proach to generate the tf.idf (and SVD) vec-
tors where the statistics are based on the in-
put text solely (question and snippets in our
case), we used the text of the question and
the text of the ideal answers of the training
data.1 The reason for using this variant was
based on empirical results during our prelim-
inary experiments.

word2vec: Train Word2Vec (Mikolov et al.,
1In particular, we used the “TfidfVectorizer” module of

the sklearn toolkit (http://scikit-learn.org) and
fitted it with the list of questions and ideal answers. We then
used the “TruncatedSVD” module and fitted it with the tf.idf
vectors of the list of questions and ideal answers.

trivial simple
tfidf-svd word2vec

Mean F1 0.2157 0.1643 0.1715
Stdev F1 0.0209 0.0097 0.0128

Table 2: ROUGE-SU4 of the simple runs.

2013) using a set of over 10 million PubMed
abstracts provided by the organisers of
BioASQ. Using these pre-trained word em-
beddings, look up the word embeddings of
each word in the question and the snippet.
The vector representing a question (or snip-
pet) is the sum of embeddings of each word
in the question (or snippet). The dimension
of the word embeddings was set to 200.

Table 2 shows the F1 values of ROUGE-SU4
of the resulting summaries. The table shows the
mean and the standard deviation of the evalua-
tion results after splitting the training data set for
BioASQ 5b into 10 folds (for comparison with the
approaches presented in the following sections).

We observe that the trivial run has the best re-
sults, and that the run that uses word2vec is second
best. Our run labelled “simple” therefore used co-
sine similarity of the sum of word embeddings re-
turned by word2vec.

3 Regression Approaches

For our run labelled regression, we experimented
with the use of Support Vector Regression (SVR).
The regression setup and features are based on the
work by Malakasiotis et al. (2015), who reported
the best results in BioASQ 3b (2015).

The target scores used to train the SVR system
were the F1 ROUGE-SU4 score of each individual
candidate sentence.

In contrast with the simple approaches de-
scribed in Section 2, which used the snippets as
the input data, this time we used all the sentences
of the source abstracts. We also incorporated in-
formation about whether the sentence was in fact
a snippet as described below.

As features, we used:

• tf.idf vector of the candidate sentence. In
contrast with the approach described in Sec-
tion 2, The statistics used to determine the
tf.idf vectors were based on the text of the
question, the text of the ideal answers, and
the text of the snippets.
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• Cosine similarity between the tf.idf vector
of the question and the tf.idf vector of the
candidate sentence.

• The smallest cosine similarity between the
tf.idf vector of candidate sentence and the
tf.idf vector of each of the snippets related
to the question. Note that this feature was not
used by Malakasiotis et al. (2015).

• Cosine similarity between the sum of
word2vec embeddings of the words in the
question and the word2vec embeddings of the
words in the candidate sentence. As in our
run labelled “simple”, we used vectors of di-
mension 200.

• Pairwise cosine similarities between the
words of the question and the words of the
candidate sentence. As in the work by
Malakasiotis et al. (2015), we used word2vec
to compute the word vectors. These word
vectors were the same as used in Section 2.
We then computed the pairwise cosine simi-
larities and selected the following features:

– The mean, median, maximum, and min-
imum of all pairwise cosine similarities.

– The mean of the 2 highest, mean of the 3
highest, mean of the 2 lowest, and mean
of the 3 lowest.

• Weighted pairwise cosine similarities, also
based in the work by Malakasiotis et al.
(2015). In particular, now each word vec-
tor was multiplied by the tf.idf of the word,
we computed the pairwise cosine similarities,
and we used the mean, median, maximum,
minimum, mean of 2 highest, mean of 3 high-
est, mean of 2 lowest, and mean of 3 lowest.

Figure 2 shows the result of grid search by vary-
ing the gamma parameter of SVR, fixing C to
1.0, and using the RBF kernel.2 The figure shows
the result of an extrinsic evaluation that reports the
F1 ROUGE-SU4 of the final summary, and the re-
sult of an intrinsic evaluation that reports the Mean
Square Error (MSE) between the target and the
predicted SU4 of each individual candidate sen-
tence.

We can observe discrepancy between the results
of the intrinsic and the extrinsic evaluations. This

2We used the Scikit-learn Python package.

Figure 2: Grid search of the Gamma parameter
for the experiments using Support Vector Regres-
sion. The continuous lines indicate the mean of
10-fold cross-validation over the training data set
of BioASQ 5b. The dashed lines indicate 2 × the
standard deviation.

discrepancy could be due to the fact that the data
are highly imbalanced in the sense that most anno-
tated SU4 scores in the training data have low val-
ues. Consequently, the regressor would attempt to
minimise the errors in the low values of the train-
ing data at the expense of errors in the high values.
But the few sentences with high SU4 scores are
most important for the final summary, and these
have higher prediction error. This can be observed
in the scatter plot of Figure 3, which plots the tar-
get against the predicted SU4 in the SVR experi-
ments for each value of gamma. The SVR system
has learnt to predict the low SU4 scores to some
degree, but it does not appear to have learnt to dis-
criminate among SU4 scores over a value of 0.4.

Our run labelled “regression” used gamma =
0.1 since it gave the best MSE in our intrinsic eval-
uation, and Figure 3 appeared to indicate that the
system learnt best.

4 Deep Learning Approaches

For our run labelled nnr we experimented with the
use of deep learning approaches to predict the can-
didate sentence scores under a regression setup.
The regression setup is the same as in Section 3.

Figure 4 shows the general architecture of the
deep learning systems explored in our experi-
ments. In a pre-processing stage, and not shown in
the figure, the main text of the source PubMed ab-
stracts is split into sentences by using the default
NLTK3 sentence segmenter. The candidate sen-

3http://www.nltk.org
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Figure 3: Target vs. predicted SU4 in the SVR experiments for various values of gamma.
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Figure 4: Architecture of the regression system.
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tences and questions undergo a simple preprocess-
ing stage that removes punctuation characters, and
lowercases the string and splits on blank spaces.
Then, these are fed to the system as a sequence of
token identifiers. Figure 4 shows that the input to
the system is a candidate sentence and the question
(as sequences of token IDs). The input is first con-
verted to sequences of word embeddings by apply-
ing an embedding matrix. The word embedding
stage is followed by a sentence and question re-
duction stage that combines the word embeddings
of each sentence into a sentence embedding. Then,
the sentence embedding and the question embed-
ding are compared by applying a similarity opera-
tion, and the vector resulting from the comparison
is concatenated to the sentence embedding for a fi-
nal regression comprising of a hidden layer of rec-
tilinear units (relu) and a final linear combination.

The weights of all stages are optimised by back-
propagation in order to minimise the MSE of the
predicted score at training time. Our experiments
varied on the approach for sentence and ques-
tion reduction, and the approach to incorporate the
similarity between sentence and question, as de-
scribed below.

To produce word embeddings we use word2vec,
trained on a collection of over 10 million PubMed
abstracts as described in previous sections. The
resulting word embeddings are encoded in the em-
bedding matrix of Figure 4. We experimented with
the possibility of adjusting the weights of the em-
bedding matrix by backpropagation, but the results
did not improve. The results reported in this paper,
therefore, used a constant embedding matrix. We
experimented with various sizes of word embed-
dings and chose 100 for the experiments in this
paper.

After obtaining the word embeddings, we ex-
perimented with the following approaches to pro-
duce the sentence vectors:

Mean: The word embeddings provided by
word2vec map words into a dimensional
space that roughly represents the word
meanings, such that words that are similar
in meaning are also near in the embedded
space. This embedding space has the prop-
erty that some semantic relations between
words are also mapped in the embedded
space (Mikolov et al., 2013). It is therefore
natural to apply vector arithmetics such as
the sum or the mean of word embeddings

of a sentence in order to obtain the sentence
embedding. In fact, this approach has been
used in a range of applications, on its own,
or as a baseline against which to compare
other more sophisticated approaches to
obtain word embeddings, e.g. work by Yu
et al. (2014) and Kageback et al. (2014). To
accommodate for different sentence lengths,
in our experiments we use the mean of word
embeddings instead of the sum.

CNN: Convolutional Neural Nets (CNN) were
originally developed for image processing,
for tasks where the important information
may appear on arbitrary fragments of the im-
age (Fukushima, 1980). By applying a con-
volutional layer, the image is scanned for
salient information. When the convolutional
layer is followed by a maxpool layer, the
most salient information is kept for further
processing.

We follow the usual approach for the applica-
tion of CNN for word sequences, e.g. as de-
scribed by Kim (2014). In particular, the em-
beddings of the words in a sentence (or ques-
tion) are arranged in a matrix where each row
represents a word embedding. Then, a set of
convolutional filters are applied. Each con-
volutional filter uses a window of width the
total number of columns (that is, the entire
word embedding). Each convolutional filter
has a fixed height, ranging from 2 to 4 rows
in our experiments. These filters aim to cap-
ture salient ngrams. The convolutional filters
are then followed by a maxpool layer.

Our final sentence embedding concatenates
the output of 32 different convolutional fil-
ters, each at filter heights 2, 3, and 4. The
sentence embedding, therefore, has a size of
32× 3 = 96.

LSTM: The third approach that we have used
to obtain the sentence embeddings is recur-
rent networks, and in particular Long Short
Term Memory (LSTM). LSTM has been ap-
plied successfully to applications that pro-
cess sequences of samples (Hochreiter et al.,
1997). Our experiments use TensorFlow’s
implementation of LSTM cells as described
by Pham et al. (2013).

In order to incorporate the context on the left
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and right of each word we have used the bidi-
rectional variant that concatenates the output
of a forward and a backward LSTM chain.
As is usual practice, all the LSTM cells in the
forward chain share a set of weights, and all
the LSTM cells in the backward chain share
a different set of weights. This way the net-
work can generalise to an arbitrary position
of a word in the sentence. However, we ex-
pect that the words of the question behave
differently from the words of the candidate
sentence. He have therefore used four dis-
tinct sets of weights, two for the forward and
backward chains of the candidate sentences,
and two for the question sentences.

In our experiments, the size of the output of a
chain of LSTM cells is the same as the num-
ber of features in the input data, that is, the
size of the word embeddings. Accounting
for forward and backward chains, and given
word embeddings of size 100, the size of the
final sentence embedding is 200.

Figure 4 shows how we incorporated the simi-
larity between the question and the candidate sen-
tence. In particular, we calculated a weighted dot
product, where the weights wi can be learnt by
backpropagation:

sim(q, s) =
∑
i

wiqisi

Since the sum will be performed by the subse-
quent relu layer, our comparison between the sen-
tence and the question is implemented as a simple
element-wise product between the weights, sen-
tence embeddings, and question embeddings.

An alternative similarity metric that we have
also tried is as proposed by Yu et al. (2014). Their
similarity metric allows for interactions between
different components of the sentence vectors, by
applying a d× d weight matrix W , where d is the
sentence embedding size, and adding a bias term:

simY u(q, s) = qTWs + b

In both cases, the optimal weights and bias are
learnt by backpropagation as part of the complete
neural network model of the system.

Table 3 shows the average MSE of 10-
fold cross-validation over the training data of
BioASQ 5b. “Tf.idf” is a neural network with
a hidden layer of 50 relu cells, followed by a

Method Plain Sim SimYu

Tf.idf 0.00354

SVD 0.00345 0.00334 0.00342

Mean 0.00341 0.00330 0.00331
CNN 0.00350 0.00348 0.00349
LSTM 0.00344 0.00335 0.00336

Table 3: Average MSE of 10-fold cross-validation.

linear cell, where the inputs are the tf.idf of the
words. “SVD” computes the sentence vectors as
described in Section 2, with the only difference
being that now we chose 100 SVD components
(instead of 200) for comparison with the other ap-
proaches shown in Table 3.

We observe that all experiments perform better
than the Tf.idf baseline, but there are no major dif-
ferences between the use of SVD and the three ap-
proaches based on word embeddings. The systems
which integrated a sentence similarity performed
better than those not using it, though the differ-
ences when using CNN are negligible. Each cell
in Table 3 shows the best results after grid searches
varying the dropout rate and the number of epochs
during training.

For the “nnr” run, we chose the combination
“Mean” and “Sim” of Table 3, since they pro-
duced the best results in our experiments (although
only marginally better than some of the other ap-
proaches shown in the table).

5 Submission Results

At the time of writing, the human evaluations had
not been released, and only the ROUGE results of
all 5 batches were available. Table 4 shows the F1
score of ROUGE-SU4.

Figure 5 shows the same information as a plot
that includes our runs and all runs of other partic-
ipating systems with higher ROUGE scores. The
figure shows that, in the first three batches, only
one run by another participant was among our
results (shown as a dashed line in the figure).
Batches 4 and 5 show consistent results by our
runs, and improved results of runs of other en-
trants.

The results are consistent with our experiments,
though the absolute values are higher than those
in our experiments. This is probably because we
used the entire training set of BioASQ 5b for our
cross-validation results, and this data is the aggre-
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System Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

trivial 0.5498 0.4901 0.5832 0.5431 0.4950
simple 0.5068 0.5182 0.6186 0.5769 0.5840
regression 0.5186 0.4795 0.5785 0.5436 0.4784
nnr 0.4192 0.3920 0.5196 0.4445 0.4000

Table 4: ROUGE-SU4 of the 5 batches of BioASQ 2017.

Figure 5: Top ROUGE-SU4 scores of the 5
batches of BioASQ 2017.

gation of the training sets of the BioASQ tasks of
previous years. It is possible that the data of latter
years are of higher quality, and it might be useful
to devise learning approaches that would account
for this possibility.

6 Conclusions

At the time of writing, only the ROUGE scores
of BioASQ 5b were available. The conclusions
presented here, therefore, do not incorporate any
insights of the human judgements that are also part
of the final evaluation of BioASQ.

Our experiments show that a trivial baseline
system that returned the first n snippets appears
to be hard to beat. This implies that the order of
the snippets matters. Even though the judges were
not given specific instructions about the order of
the snippets, it would be interesting to study what
criteria they used to present the snippets.

Our runs using regression were not significantly
better than simpler approaches, and the runs using
deep learning reported the lowest results. Note,
however, that the input features used in the runs
using deep learning did not incorporate informa-
tion about the snippets. Table 3 shows that the re-
sults using deep learning are comparable to results
using tf.idf and using SVD, so it is possible that

an extension of the system that incorporates infor-
mation from the snippets would equal or better the
other systems.

Note that none of the experiments described in
this paper used information specific to the biomed-
ical domain and therefore the methods described
here could be applied to any other domain.
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Abstract

This paper describes our submission to the
2017 BioASQ challenge. We participated
in Task B, Phase B which is concerned
with biomedical question answering (QA).
We focus on factoid and list question, us-
ing an extractive QA model, that is, we
restrict our system to output substrings of
the provided text snippets. At the core
of our system, we use FastQA, a state-of-
the-art neural QA system. We extended
it with biomedical word embeddings and
changed its answer layer to be able to
answer list questions in addition to fac-
toid questions. We pre-trained the model
on a large-scale open-domain QA dataset,
SQuAD, and then fine-tuned the parame-
ters on the BioASQ training set. With our
approach, we achieve state-of-the-art re-
sults on factoid questions and competitive
results on list questions.

1 Introduction

BioASQ is a semantic indexing, question answer-
ing (QA) and information extraction challenge
(Tsatsaronis et al., 2015). We participated in
Task B of the challenge which is concerned with
biomedical QA. More specifically, our system par-
ticipated in Task B, Phase B: Given a question
and gold-standard snippets (i.e., pieces of text that
contain the answer(s) to the question), the system
is asked to return a list of answer candidates.

The fifth BioASQ challenge is taking place at
the time of writing. Five batches of 100 questions
each were released every two weeks. Participating
systems have 24 hours to submit their results. At
the time of writing, all batches had been released.

The questions are categorized into different
question types: factoid, list, summary and yes/no.

Our work concentrates on answering factoid and
list questions. For factoid questions, the system’s
responses are interpreted as a ranked list of an-
swer candidates. They are evaluated using mean-
reciprocal rank (MRR). For list questions, the sys-
tem’s responses are interpreted as a set of answers
to the list question. Precision and recall are com-
puted by comparing the given answers to the gold-
standard answers. F1 score, i.e., the harmonic
mean of precision and recall, is used as the offi-
cial evaluation measure 1.

Most existing biomedical QA systems employ
a traditional QA pipeline, similar in structure to
the baseline system by Weissenborn et al. (2013).
They consist of several discrete steps, e.g., named-
entity recognition, question classification, and
candidate answer scoring. These systems require a
large amount of resources and feature engineering
that is specific to the biomedical domain. For ex-
ample, OAQA (Zi et al., 2016), which has been
very successful in last year’s challenge, uses a
biomedical parser, entity tagger and a thesaurus to
retrieve synonyms.

Our system, on the other hand, is based on a
neural network QA architecture that is trained end-
to-end on the target task. We build upon FastQA
(Weissenborn et al., 2017), an extractive factoid
QA system which achieves state-of-the-art results
on QA benchmarks that provide large amounts of
training data. For example, SQuAD (Rajpurkar
et al., 2016) provides a dataset of ≈ 100, 000
questions on Wikipedia articles. Our approach
is to train FastQA (with some extensions) on the
SQuAD dataset and then fine-tune the model pa-
rameters on the BioASQ training set.

Note that by using an extractive QA network as
our central component, we restrict our system’s

1The details of the evaluation can be found at
http://participants-area.bioasq.org/
Tasks/b/eval_meas/
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Figure 1: Neural architecture of our system. Ques-
tion and context (i.e., the snippets) are mapped di-
rectly to start and end probabilities for each con-
text token. We use FastQA (Weissenborn et al.,
2017) with modified input vectors and an output
layer that supports list answers in addition to fac-
toid answers.

responses to substrings in the provided snippets.
This also implies that the network will not be able
to answer yes/no questions. We do, however, gen-
eralize the FastQA output layer in order to be able
to answer list questions in addition to factoid ques-
tions.

2 Model

Our system is a neural network which takes as in-
put a question and a context (i.e., the snippets) and
outputs start and end pointers to tokens in the con-
text. At its core, we use FastQA (Weissenborn
et al., 2017), a state-of-the-art neural QA system.
In the following, we describe our changes to the
architecture and how the network is trained.

2.1 Network architecture
In the input layer, the context and question to-
kens are mapped to high-dimensional word vec-
tors. Our word vectors consists of three compo-
nents, which are concatenated to form a single
vector:

• GloVe embedding: We use 300-dimensional
GloVe embeddings 2 (Pennington et al.,

2We use the 840B embeddings available here: https:
//nlp.stanford.edu/projects/glove/

2014) which have been trained on a large col-
lection of web documents.

• Character embedding: This embedding is
computed by a 1-dimensional convolutional
neural network from the characters of the
words, as introduced by Seo et al. (2016).

• Biomedical Word2Vec embeddings: We
use the biomedical word embeddings pro-
vided by Pavlopoulos et al. (2014). These
are 200-dimensional Word2Vec embeddings
(Mikolov et al., 2013) which were trained on
≈ 10 million PubMed abstracts.

To the embedding vectors, we concatenate a
one-hot encoding of the question type (list or fac-
toid). Note that these features are identical for all
tokens.

Following our embedding layer, we invoke
FastQA in order to compute start and end scores
for all context tokens. Because end scores are con-
ditioned on the chosen start, there are O(n2) end
scores where n is the number of context tokens.
We denote the start index by i ∈ [1, n], the end
index by j ∈ [i, n], the start scores by yistart, and
end scores by yi,jend.

In our output layer, the start, end, and span prob-
abilities are computed as:

pistart = σ(yistart) (1)

pi,·end = softmax(yi,·end) (2)

pi,jspan = pistart · pi,jend (3)

where σ denotes the sigmoid function. By com-
puting the start probability via the sigmoid rather
than softmax function (as used in FastQA), we en-
able the model to output multiple spans as likely
answer spans. This generalizes the factoid QA net-
work to list questions.

2.2 Training & decoding

Loss We define our loss as the cross-entropy of
the correct start and end indices. In the case of
multiple occurrences of the same answer, we only
minimize the span of the lowest loss.
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Factoid MRR List F1
Batch Single Ensemble Single Ensemble

1 52.0% (2/10) 57.1% (1/10) 33.6% (1/11) 33.5%(2/11)
2 38.3% (3/15) 42.6% (2/15) 29.0% (8/15) 26.2%(9/15)
3 43.1% (1/16) 42.1% (2/16) 41.5% (2/17) 49.5%(1/17)
4 30.0% (3/20) 36.1% (1/20) 24.2% (5/20) 29.3%(4/20)
5 39.2% (3/17) 35.1% (4/17) 36.1% (4/20) 39.1%(2/20)
Average 40.5% 42.6% 32.9% 35.1%

Table 1: Preliminary results for factoid and list questions for all five batches and for our single and
ensemble systems. We report MRR and F1 scores for factoid and list questions, respectively. In paren-
theses, we report the rank of the respective systems relative to all other systems in the challenge. The
last row averages the performance numbers of the respective system and question type across the five
batches.

Optimization We train the network in two steps:
First, the network is trained on SQuAD, following
the procedure by Weissenborn et al. (2017) (pre-
training phase). Second, we fine-tune the network
parameters on BioASQ (fine-tuning phase). For
both phases, we use the Adam optimizer (Kingma
and Ba, 2014) with an exponentially decaying
learning rate. We start with learning rates of
10−3 and 10−4 for the pre-training and fine-tuning
phases, respectively.

BioASQ dataset preparation During fine-
tuning, we extract answer spans from the BioASQ
training data by looking for occurrences of the
gold standard answer in the provided snippets.
Note that this approach is not perfect as it can pro-
duce false positives (e.g., the answer is mentioned
in a sentence which does not answer the question)
and false negatives (e.g., a sentence answers the
question, but the exact string used is not in the syn-
onym list).

Because BioASQ usually contains multiple
snippets for a given question, we process all snip-
pets independently and then aggregate the answer
spans, sorting globally according to their probabil-
ity pi,jspan.

Decoding During the inference phase, we re-
trieve the top 20 answers span via beam search
with beam size 20. From this sorted list of an-
swer strings, we remove all duplicate strings. For
factoid questions, we output the top five answer
strings as our ranked list of answer candidates. For
list questions, we use a probability cutoff threshold
t, such that {(i, j)|pi,jspan ≥ t} is the set of answers.
We set t to be the threshold for which the list F1
score on the development set is optimized.

Ensemble In order to further tweak the perfor-
mance of our systems, we built a model ensemble.
For this, we trained five single models using 5-fold
cross-validation on the entire training set. These
models are combined by averaging their start and
end scores before computing the span probabili-
ties (Equations 1-3). As a result, we submit two
systems to the challenge: The best single model
(according to its development set) and the model
ensemble.

Implementation We implemented our system
using TensorFlow (Abadi et al., 2016). It was
trained on an NVidia GForce Titan X GPU.

3 Results & discussion

We report the results for all five test batches of
BioASQ 5 (Task 5b, Phase B) in Table 1. Note
that the performance numbers are not final, as the
provided synonyms in the gold-standard answers
will be updated as a manual step, in order to reflect
valid responses by the participating systems. This
has not been done by the time of writing3. Note
also that – in contrast to previous BioASQ chal-
lenges – systems are no longer allowed to provide
an own list of synonyms in this year’s challenge.

In general, the single and ensemble system are
performing very similar relative to the rest of field:
Their ranks are almost always right next to each
other. Between the two, the ensemble model per-
formed slightly better on average.

On factoid questions, our system has been very
successful, winning three out of five batches. On

3The final results will be published at http:
//participants-area.bioasq.org/results/
5b/phaseB/
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list questions, however, the relative performance
varies significantly. We expect our system to per-
form better on factoid questions than list ques-
tions, because our pre-training dataset (SQuAD)
does not contain any list questions.

Starting with batch 3, we also submitted re-
sponses to yes/no questions by always answering
yes. Because of a very skewed class distribution
in the BioASQ dataset, this is a strong baseline.
Because this is done merely to have baseline per-
formance for this question type and because of the
naivety of the method, we do not list or discuss the
results here.

4 Conclusion

In this paper, we summarized the system design
of our BioASQ 5B submission for factoid and list
questions. We use a neural architecture which is
trained end-to-end on the QA task. This approach
has not been applied to BioASQ questions in pre-
vious challenges. Our results show that our ap-
proach achieves state-of-the art results on factoid
questions and competitive results on list questions.
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Abstract

We introduce an end-to-end system capa-
ble of named-entity detection, normaliza-
tion and relation extraction for extracting
information about bacteria and their habi-
tats from biomedical literature. Our sys-
tem is based on deep learning, CRF clas-
sifiers and vector space models. We train
and evaluate the system on the BioNLP
2016 Shared Task Bacteria Biotope data.
The official evaluation shows that the joint
performance of our entity detection and re-
lation extraction models outperforms the
winning team of the Shared Task by 19pp
on F-score, establishing a new top score
for the task. We also achieve state-of-
the-art results in the normalization task.
Our system is open source and freely
available at https://github.com/
TurkuNLP/BHE.

1 Introduction

Knowledge about habitats of bacteria is crucial for
the study of microbial communities, e.g. metage-
nomics, as well as for various applications such
as food processing and health sciences. Although
this type of information is available in the biomed-
ical literature, comprehensive resources accumu-
lating the knowledge do not exist (Deléger et al.,
2016).

The BioNLP Bacteria Biotope (BB) Shared
Tasks are organized to provide a common evalua-
tion platform for language technology researchers
interested in developing information extraction
methods adapted for the detection of bacteria and
their physical locations mentioned in the literature.
So far three BB shared tasks have been organized,
the latest in 2016 (BB3) consisting of three main

∗These authors contributed equally.

subtasks: named entity recognition and catego-
rization (BB3-cat and BB3-cat+ner), event extrac-
tion (BB3-event and BB3-event+ner) and knowl-
edge base extraction. The NER task includes three
relevant entity types: HABITAT, BACTERIA and
GEOGRAPHICAL, the categorization task focuses
on normalizing the mentions to established ontol-
ogy concepts, although GEOGRAPHICAL entities
are excluded from this task, whereas the event ex-
traction aims at finding the relations between these
entities, i.e. extracting in which locations certain
bacteria live in. The knowledge base extraction
task is centered upon aggregating this type of in-
formation from a large text corpus.

In this paper we revisit the BB3 subtasks of
NER, categorization and event extraction, all of
which are essential for building a real-world infor-
mation extraction pipeline. As a result, we present
a text mining pipeline which achieves state-of-the-
art results for the joint evaluation of NER and
event extraction as well as for the categorization
task using the official BB3 shared task datasets and
evaluation tools. Building such end-to-end sys-
tem is important for bringing the results from the
shared tasks to the actual intended users. To our
best knowledge, no such system is openly avail-
able for bacteria habitat extraction.

The pipeline utilizes deep neural networks, con-
ditional random field classifiers and vector space
models to solve the various subtasks and the code
is freely available at https://github.com/
TurkuNLP/BHE. In the following sections we
discuss our system, divided into three modules:
entity recognition, categorization and event ex-
traction. We then analyze the results and finally
discuss the potential future research directions.
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2 Method

2.1 Named entity detection

Detecting the BB3 HABITAT, BACTERIA and GE-
OGRAPHICAL mentions is a standard named entity
recognition task, evaluated based on the correct-
ness of the type and character offsets of the dis-
covered text spans. In our NER pipeline, all doc-
uments are preprocessed following the approach
of Hakala et al. (2016). In brief, we first con-
vert all documents and annotation files from UTF-
8 to ASCII encoding using a modified version
of publicly available tool designed for parsing
PubMed documents (Pyysalo et al., 2013) 1. Next
we split documents into sentences using the Ge-
nia Sentence Splitter (Sætre et al., 2007) and the
sentences are subsequently tokenized and part-of-
speech tagged using the tokenization and POS-
tagging modules in NERsuite 2, respectively.

To detect the entity mentions we use NERsuite,
a named entity recognition toolkit, as it is rela-
tively easy to train on new corpora, yet supports
adding novel user-defined features. In biomedical
NER, NERsuite has been a versatile tool achiev-
ing excellent performance for various entity types
(Ohta et al., 2012; Kaewphan et al., 2014, 2016),
however, it is not capable of dealing with overlap-
ping entities. Therefore, we only use the longest
spans of overlapping annotated entities as our
training data, ignoring embedded entities which
are substrings of the longest spans.

In biomedical NER, domain knowledge such
as controlled vocabularies has been crucial for
achieving high performance. In this work we pre-
pare 3 dictionaries, specific for each entity type.
For BACTERIA, we compile a dictionary of names
exclusively from the NCBI Taxonomy database3

by including all names under bacteria superking-
dom (NCBI taxonomy identifier 2). The scien-
tific names are expanded to include abbreviations
whose genus names are conventionally abbrevi-
ated with the first and/or second alphabet, whereas
the rest of the names, such as species epithet and
strains, remains unchanged. For HABITAT, we
combine all symbols from the OntoBiotope on-
tology 4 and use them without any further mod-
ifications. Similar to HABITAT, we also pre-
pare dictionary for GEOGRAPHICAL by taking all

1https://github.com/spyysalo/nxml2txt
2http://nersuite.nlplab.org/
3https://www.ncbi.nlm.nih.gov/taxonomy
4http://agroportal.lirmm.fr/ontologies/ONTOBIOTOPE

strings under the semantic type geographical area
from UMLS database (version 2016AA) (Boden-
reider, 2004). All dictionaries prepared in this
step are directly provided to NERsuite through the
dictionary-tagging module without any normaliza-
tion. The tagging provides additional features de-
scribing whether the tokens are present in some
semantic categories, such as bacteria names or ge-
ographical places. For GEOGRAPHICAL model,
we also add token-level tagging results for loca-
tion from Stanford NER (SNER) (Finkel et al.,
2005) as binary values to NERsuite; 1 and 0 for
location and non-location, respectively.

Although utilizing dictionary features is benefi-
cial for NER, strict string matching tends to lead
to low coverage, an issue which is also common in
the categorization task. To remedy this problem,
we also generate fuzzy matching features based
on our categorization system (see Section 2.2) by
measuring the maximum similarity of each token
against the NCBI Taxonomy and OntoBiotope on-
tologies for BACTERIA and HABITAT respectively.
Thus, instead of a binary feature denoting whether
a token is present in the ontology or not, a sim-
ilarity score ranging from 0 to 1 is assigned for
each token. This approach is similar to (Kaewphan
et al., 2014), but instead of using word embedding
similarities, our fuzzy matching relies on character
ngrams. We do not use these features for the GEO-
GRAPHICALentities, which are not categorized by
our system.

In the official BB3 evaluation, NER is jointly
evaluated with either categorization or event ex-
traction system. In BB3-cat+ner task, SER (Slot
Error Rate) is used as the main scoring metric,
whereas in BB3-event+ner, participating teams
are ranked based on F-score of extracted rela-
tions. Due to the lack of an official evaluation
on NER for all entities in BB3-event+ner and
for GEOGRAPHICAL in BB3-cat+ner, we use our
own implementation by calculating the F-score
using exact string matching criteria as our main
scoring metric. In this study, we consider BB3-
event+ner as our primary subtask and thus all
hyper-parameters in model selection are optimized
against F-score instead of SER.

2.2 Named entity categorization

In the BB3 categorization subtask each BACTE-
RIA and HABITAT mention has to be assigned to
the corresponding ontology concepts, specifically
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to NCBI Taxonomy and OntoBiotope identifiers
respectively. This task is commonly known as
named entity normalization or entity linking and
various approaches ranging from Levenshtein edit
distances to recurrent neural networks have been
suggested as the plausible solutions (Tiftikci et al.,
2016; Limsopatham and Collier, 2016).

Our categorization method is based on the com-
mon approach of TFIDF weighted sparse vector
space representations (Salton and Buckley, 1988;
Leaman et al., 2013; Hakala, 2015), i.e. the prob-
lem is seen as an information retrieval task where
each concept name in the ontology is considered
a document and the IDF weights are based on
these names. Consequently, each concept name
and each entity mention is represented with a
TFIDF weighted vector and the concept with the
highest cosine similarity is assigned for a given
entity. Whereas these representations are com-
monly formed in a bag-of-words fashion, in our
experiments using character-level ngrams resulted
in better outcome. In the final system we use
ngrams of length 1, 2 and 3 characters. These
ngram lengths produced the highest accuracy on
the official development set for both BACTERIA

and HABITAT entities, each entity type evaluated
separately. The TFIDF vectorization was imple-
mented using the scikit-learn library (Pedregosa
et al., 2011) and default parameter values except
for using the character level ngrams instead of
words.

For both included ontologies we use the pre-
ferred names as well as the listed synonyms to
represent the concepts. Since the task is restricted
to bacteria mentions instead of all organisms, we
also narrow down the NCBI Taxonomy ontology
to cover only the Bacteria superkingdom, i.e. the
categorization system is not allowed to assign tax-
onomy identifiers which do not belong to this su-
perkingdom. Otherwise all concepts from the used
ontologies are included.

As preprocessing steps we use three main ap-
proaches: abbreviation expansion, acronym ex-
pansion and stemming. For stemming we use the
Porter stemmer (Porter, 1980) and stem each to-
ken in the entities and concept names. Accord-
ing to our evaluation this is not beneficial for the
BACTERIA entities and is thus included only for
the HABITAT entities.

In biomedical literature the genus names in
BACTERIA mentions are commonly shortened af-

ter the first mention, e.g. Staphylococcus aureus
is abbreviated as S. aureus, but the NCBI Taxon-
omy ontology does not include these abbreviated
forms as synonyms for the corresponding con-
cepts. Thus, if an entity mention includes a token
with a period in it, we expand the given token by
finding the most common token with the same ini-
tial from all previously mentioned entities of the
same type within the same document.

Another commonly used naming convention for
BACTERIA mentions is forming acronyms, e.g.
lactic acid bacteria is often referred to as LAB.
Consequently, when we detect a BACTERIA men-
tion with less than five characters or written in
uppercase, we try to find the corresponding full
form by generating acronyms for all previously
mentioned BACTERIA entities by simply concate-
nating their initials. However, many BACTERIA

acronyms do not follow this format strictly, e.g
Lactobacillus casei strain Shirota should be short-
ened to LcS instead of LCSS and Francisella tu-
larensis Live Vaccine Strain as LVS instead of
FTLVS. Thus, instead of using strict matching
to find the corresponding full form, we utilize
the same character-level TFIDF representations
as used for the actual categorization for these
acronyms to find the most similar full form. In our
evaluation, using the same approach for HABITAT

entities dramatically decreased the performance
hence was thus not used for this entity type (see
Section 3.2).

Both of these expansion methods have similar
intentions as the preprocessing steps utilized by
the winning system in BB3 (BOUN) by Tiftikci
et al. (2016), but our system uses more relaxed
criteria for finding the full forms and should thus
result in better recall at the expense of precision.

2.3 Event extraction

The BB3-event and BB3-event+ner tasks demand
extraction of undirected binary associations of two
named entities: a BACTERIA entity and either a
HABITAT or a GEOGRAPHICAL entity; and these
relations represent the locations in which bacteria
live. We thus formulate this task as a binary clas-
sification task and assign the label positive if such
relation holds for a given entity pair and negative
otherwise.

To address this task, we present a deep learning-
based relation extraction system that generates
features along the shortest dependency path (SDP)

82



Train Devel Test
Total sentences 527 319 508
Sentences w/examples 158 117 158
Sentences w/o examples 369 202 350
Total examples 524 506 534
Positive examples 251 177 -
Negative examples 273 329 -

Table 1: BB3-event data statistics.

which connects the two candidate entities in the
syntactic parse graph. Many successful relation
extraction systems have been built utilizing SDP
(Cai et al., 2016; Mehryary et al., 2016; Xu et al.,
2015; Björne and Salakoski, 2013; Björne et al.,
2012; Bunescu and Mooney, 2005) since it is
known to contain most of the relevant words for
expressing the relation between the two entities
while excluding less relevant and uninformative
words. Since this approach focuses on a single
sentence parse graph at a time, it is unable to detect
plausible cross-sentence relations, i.e, the cases in
which the two candidate entities belong to differ-
ent sentences. As discussed by Kim et al. (2011),
detecting such relations is a major challenge for
relation extraction systems. We simply exclude
any cross-sentence relations from training, devel-
opment and test sets.5 Table 1 summarizes the
statistics of the data that is used for building our
relation extraction system after removing cross-
sentence relations.

2.3.1 Preprocessing
For preprocessing, we use the preprocessing
pipeline of the TEES system (Björne and
Salakoski, 2013) which automates tokenization,
part-of-speech tagging and sentence parsing.
TEES runs the BLLIP parser (Charniak and John-
son, 2005) with the biomedical domain model cre-
ated by McClosky (2010). The resulting phrase
structure trees are then converted to dependency
graphs (nonCollapsed variant of Stanford Depen-
dency) using the Stanford conversion tool (version
2.0.1) (de Marneffe et al., 2006).

2.3.2 Relation extraction system architecture
The architecture of our deep learning-based rela-
tion extraction system is centered around utiliz-
ing three separate convolutional neural networks
(CNN): for the sequence of words, the sequence of

5Official evaluation results on the development and test
data are of course comparable to those of other systems: any
cross-sentence relations in the development/test data count
against our submissions as false negatives.

POS tags, and the sequence of dependency types
(the edges of the parse graph), along the SDP con-
necting the two candidate entities (see Figure 1).
Even though the parse graph is directed, we re-
gard it as an undirected graph and always traverse
the SDP by starting the path from the BACTERIA

entity mention to the HABITAT/GEOGRAPHICAL,
regardless of the order of their occurrence in the
sentence. Evaluation against the development set
showed that this approach leads to better general-
ization in comparison with simply traversing the
path from the first occurring entity mention to the
second (with/without considering the direction of
the edges).

The structure of each CNN is similar: the words
(or POS tags or dependency types) in the sequence
are mapped into their corresponding vector repre-
sentations using an embedding lookup layer. The
resulting sequence of vectors is then forwarded
into a convolutional layer which creates a convo-
lution kernel that is applied on the layer input over
a single spatial dimension to produce a tensor of
outputs. These outputs are then forwarded to a
max-pooling layer that gathers information from
local features of the SDP. Hence, the three CNNs
produce three vector representations.

Subsequently, the output vectors of the CNNs
and two 1-hot-encoded entity-type vectors are
concatenated. The first entity-type vector repre-
sents the type of the first occurring entity in the
sentence (BACTERIA, HABITAT or GEOGRAPH-
ICAL), and the other is used for the second one.
The resulting vector is then forwarded into a fully
connected hidden layer and finally, the hidden
layer connects to a single-node binary classifica-
tion layer.

For the word features, we use a vector space
model with 200-dimensional word embeddings
pre-trained by Pyysalo et al. (2013). These are
fine-tuned during the training while the POS-tag
and dependency type embeddings are learned from
scratch after being randomly initialized.

Based on experiments on the development set,
we have set the dimensionality of the POS tag em-
beddings to 200, and for dependency types to 300.
For all convolutional layers, the number of filters
has been set to 100 and the window size (filter
length) to 4. Finally, dimensionality of the hid-
den layer has been set to 100.The ReLU activation
function is applied on the output of the convolu-
tional layers while we apply sigmoid activation to
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Figure 1: Proposed network architecture.

the output of the hidden layer.

2.3.3 Training and optimization

We use binary cross-entropy as the objective
function and the Adam optimization algorithm
(Kingma and Ba, 2014) for training the network.
Applying the dropout (Srivastava et al., 2014) with
rate of 50% on the output of the hidden layer is the
only network regularization method used to avoid
overfitting.

When the number of weights in a neural net-
work is high and the training set is very small (e.g.,
there are only 524 examples in the BB3-event
training set), the initial random state of the model
can have a significant impact on the final model
and its generalization performance. Mehryary
et al. (2016) have reported that the F-score on the
development set of BB3-event task can vary up to
9 percentage points based on the different initial
random state of the network.

To overcome this problem, we implement the
simple but effective strategy proposed by them,
which consists of training the neural network
model 15 times with different initial random
states, predicting the development/test set exam-
ples and aggregating the 15 classifiers’ predictions
using a simple voting algorithm.

For each development/test example, the voting
algorithm combines the predictions based on a
given threshold parameter t: the relation is voted

to be positive if at least t classifiers have predicted
it to be positive, otherwise, it will be considered as
a negative. Obviously, the lowest threshold value
(t = 1) produces the highest recall and lowest pre-
cision and the highest threshold (t = 15) produces
the highest precision and lowest recall and the aim
is to find be best threshold value which maximizes
the F-score.

Our experiments on the development set (us-
ing the proposed network architecture) showed
that for the BB3-event task the optimal results
are achieved when we train the networks for 2
epochs and set the threshold value to 4, and for the
BB3-event+ner task, when we train the networks
for 2 epochs and set the threshold value to 3.

3 Results and discussion

3.1 Named entity detection
For the named entity detection task, we obtain
the baseline performance by training NERsuite for
each entity-type independently. As shown in Ta-
ble 2, the F-scores for BACTERIA, GEOGRAPH-
ICAL and HABITAT are 0.713, 0.516 and 0.482
respectively. The baseline performance of HABI-
TAT and GEOGRAPHICAL models is significantly
lower than BACTERIA.

For all entities, adding dictionary features im-
proves the performance of the model. A substan-
tial improvement in F-score is found for GEO-
GRAPHICAL where the performance is increased
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Entity/Experiment Precision Recall F-score
Bacteria
BB3 0.787 0.652 0.713
BB3 + dict 0.833 0.697 0.759
BB3 + tfidf 0.793 0.660 0.720
BB3 + tfidf + dict 0.822 0.717 0.766
BB3 + BB2 + dict 0.902 0.713 0.796
BB3 + BB1 + dict 0.893 0.721 0.798
Habitat
BB3 0.589 0.407 0.482
BB3 + dict 0.649 0.465 0.541
BB3 + tfidf 0.697 0.482 0.570
BB3 + tfidf + dict 0.715 0.520 0.602
BB3 + BB2 + dict 0.560 0.500 0.529
Geographical
BB3 0.667 0.421 0.516
BB3 + dict 0.719 0.605 0.657
BB3 + SNER 0.694 0.658 0.676
BB3 + dict + SNER 0.788 0.684 0.732
BB3 + BB2 + dict 0.903 0.737 0.812

Table 2: The performance of our named entity de-
tection system on BACTERIA, HABITAT and GE-
OGRAPHICAL mentions using internal evaluation
system. The models are evaluated on the BB3 de-
velopment data.

by more than 14pp compared to 6pp and 5pp for
HABITAT and BACTERIA, respectively. Adding
fuzzy matching features further improves the F-
score for HABITAT by more than 12pp compared
to 8pp for BACTERIA. This result shows that hav-
ing both domain knowledge and relaxed matching
criteria can significantly enhance the model per-
formance.

We improve equally the baseline performance
for GEOGRAPHICAL by adding features from
SNER tagging. The increase in F-score, 0.657
versus 0.676, is about the same as independently
adding UMLS-geographical area dictionary fea-
tures. Further increase in F-score is achieved by
combining both features, likely due to the ex-
panded coverage of geographical names.

The BB3 corpus is relatively small in terms of
entity frequency and the number of unique entities.
We explore the possibility of increasing model
performance through adding additional training
data from previously organized BB Shared Tasks
(i.e, BB1 (Bossy et al., 2011) and BB2 (Bossy
et al., 2013)). Annotations for BACTERIA men-
tions are available in both BB1 and BB2 Shared
Tasks and we thus train NERsuite models by
adding these annotations to the training data. The
results show that the models, trained with addi-
tional datasets, achieve higher performance. BB1
provides a slightly better F-score than BB2, 0.798
vs 0.796.

For GEOGRAPHICAL and HABITAT entities,
compatible annotations are only available from
BB2 (Bossy et al., 2013), subtask 2. We thus train
NERsuite for both HABITAT and GEOGRAPHI-
CAL by using combined BB3 and BB2 data. The
result for GEOGRAPHICAL is similar to the one
observed with BACTERIA and additional data can
increase the model F-score by more than 15pp.
However, the result for HABITAT is different as
F-score slightly drops from 0541 to 0.529. The
best NER model for HABITAT thus remains un-
changed.

Finally, we train our final model by combining
training and development datasets and use hyper-
parameters obtained from the best performing sys-
tem on development dataset. The official evalua-
tion of the NER task jointly with either catego-
rization or event extraction system is discussed in
Section 3.2 and Section 3.3, respectively.

3.2 Categorization

To analyze our categorization approaches, we
evaluate their performance on the official develop-
ment set. During the development we used accu-
racy for evaluating the effects of different hyper-
parameters and preprocessing steps. To get com-
parable results to previous systems we, however,
report the results in this paper using the precision
scores from the official evaluation service. As the
used ontologies form hierarchical structures, the
official evaluation penalizes the incorrect predic-
tions based on the distance from the gold standard
annotations, whereas our internal accuracy evalua-
tion measures exact matches. Our accuracy scores
and the official evaluation seem to correlate to the
level that all improvements validated using the ac-
curacy score also improved the performance ac-
cording to the official evaluation.

The performance of our system and various pre-
processing steps are shown incrementally in Ta-
ble 3. As a baseline system we use TFIDF bag-
of-words representations without any of our pre-
processing steps. By simply switching to charac-
ter level representations the precision is increased
by 1.3pp for HABITAT and 14.1pp for BACTERIA

mentions.
Adding the abbreviation expansion step further

improves precision for BACTERIA by 14.1pp, but
does not influence HABITAT entities as most likely
there are no abbreviated mentions in this category.
The acronym expansion has a lesser, but still no-
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ticeable impact and improves precision for BAC-
TERIA by 4.9pp. However, applying this method
to HABITAT entities decreases the performance by
4.5pp and is thus left out in the final system for this
entity type. This is probably due to the fact that we
consider all tokens with less than 5 characters to
be acronyms, which seems to hold for BACTERIA

mentions, but is a bad assumption for HABITAT

entities. The final preprocessing step, stemming,
improves the performance on HABITAT entities by
mere 1.3pp, but has a negative impact on BACTE-
RIA and is left out for this entity type in the final
system.

The results on the official test set are consis-
tently lower than on the development set for both
entity types (see Table 4), suggesting that the
hyperparameters selected based on the develop-
ment set might have been slightly overfit on this
data. However, our system is able to outperform
BOUN (Tiftikci et al., 2016), the winning system
from the BioNLP’16 BB3 Shared Task, by 1pp,
1.5pp and 1.2pp on HABITAT, BACTERIA and all
entities respectively.

Since the BB3 tasks do not evaluate named en-
tity recognition independently, but only in con-
junction with either categorization or event ex-
traction, we also report the official numbers for
the BB-cat+ner task in Table 5. In this com-
bined evaluation our system is not able to reach
the performance level of the state-of-the-art sys-
tem TagIt (Cook et al., 2016), but does outperform
the other systems which participated in the given
subtask.

Our combined system is also performing clearly
worse on the test set than on the development set.
Unfortunately, due to the test set being blinded,
we are unable to specify the exact cause for this.
However, the official evaluation service does pro-
vide relaxed evaluation modes where e.g. entity
boundaries are ignored, i.e. the evaluation fo-
cuses on the categorization task. Based on these
evaluations our categorization system seems to
perform on the same level on both development
and test sets, but the performance of our NER
model drops, especially for the BACTERIA men-
tions. This might be simply due to overfitting on
the development set, but requires further investi-
gation.

Habitat Bacteria Overall
BOW TFIDF 0.634 0.531 0.568
Char TFIDF 0.647 0.672 0.656
+ abbreviations 0.647 0.813 0.705
+ acronyms 0.602 0.862 0.693
+ stemming 0.660 0.858 0.729
Final system 0.660 0.862 0.731

Table 3: Evaluation of our categorization sys-
tem with different preprocessing steps compared
to a baseline system with TFIDF weighted bag-
of-words (unigrams) representations. The scoring
is produced by the official evaluation service. Any
added processing step, which decreases the perfor-
mance is left out for the given entity type for the
following experiments.

Habitat Bacteria Overall
Our system 0.630 0.816 0.691
BOUN 0.620 0.801 0.679

Table 4: Comparison of our entity categoriza-
tion system and the best performing system in
BioNLP’16 BB3 Shared Task on the test set using
the official evaluation service.

Habitat Bacteria Overall
Development set

Our system 0.645 0.377 0.553
TagIt 0.511 0.303 0.439

Test set
Our system 0.804 0.706 0.766
TagIt 0.775 0.399 0.628

Table 5: Official results for the combined evalu-
ation of named entity recognition and categoriza-
tion compared against the state-of-the-art system.
The results are evaluated in slot error rate (SER),
i.e. a smaller value is better. The scores for the
TagIt system are as reported in their paper.

3.3 Event extraction
As discussed earlier, there are two tasks in the
BB3 which involve extracting the relations be-
tween BACTERIA and HABITAT/GEOGRAPHICAL

entities: (1) The BB3-event task, for which all
manually annotated entities are given (even for
the test set). This task aims to assess the per-
formance of relation extraction systems; (2) The
BB3-event+ner task, for which, entities for the test
set are hidden and the aim is assessing the joint
performance of the NER and the relation extrac-
tion systems.

It should be highlighted that the performance
of the NER system has a direct impact on the
relation extraction system and subsequently on
the performance of an end-to-end system for the
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BB3-event+ner task. On one hand, if the NER
system produces extremely low recall outputs, the
relation extraction system will fail to extract some
of the valid relations, simply because it only inves-
tigates the existence of possible relations among
the given entities. On the other hand, if the NER
system provides high recall but very low precision
predictions, this means that words mistakenly de-
tected as valid entities are given to the relation
extraction system. For each given entity, the re-
lation extraction system pairs it with other pro-
vided entities in the sentence and tries to classify
all candidate pairs. Hence, invalid entities will
lead to generation of candidate pairs in which one
or even both of the entities are actually invalid.
Since the relation extraction system is trained on
valid entity pairs, i.e., (BACTERIA,HABITAT) or
(BACTERIA,GEOGRAPHICAL), it can easily pro-
duce a plethora of false-positives and hence, its
precision will dramatically drop.

To summarize, if the NER system performance
is low (low precision and/or low recall), even a
very high-performance relation extraction system
will not be able to compensate. Thus, when build-
ing an end-to-end system, the joint performance
of NER and relation extraction should be assessed
since individual performances do not reflect how
efficiently the system will work in real-world ap-
plications.

The official performance of our relation extrac-
tion system alone when evaluated against the test
set of the BB3-event task is 0.512 measured in F-
score (0.444 recall and 0.605 precision), achieving
the third place among Shared Task participants for
this task.

Dataset Overall Habitat Geography
Development set
With sub-optimal
entities 0.423 0.390 0.576

With optimal
entities 0.429 0.395 0.604

Test set
With sub-optimal
entities 0.372 0.388 0.207

With optimal
entities 0.381 0.386 0.319

Table 6: Combined performance of our named en-
tity recognition and event extraction systems on
the event+ner task reported in F-score as measured
by the official evaluation service.

For the BB3-event+ner task, the official results
on the development and the test set are given in Ta-

ble 6. As discussed earlier, to increase the perfor-
mance of the NER system, we combine the BB3
with older BB datasets. This leads to the best pre-
diction performance (denoted as optimal). Thus,
we report and compare the overall performance
of the end-to-end system when we use these en-
tities. To establish a fair comparison with previ-
ously published systems we also report results for
models trained only on the BB3 (denoted as sub-
optimal). As Table 6 shows, using previous BB-
ST data for training the NER leads to 3pp increase
in F-score of (BACTERIA,GEOGRAPHICAL) rela-
tions on the development set and about 11pp for
the test set, probably due to the drastically in-
creased performance for GEOGRAPHICAL entity
detection. Unfortunately, since there are much
less (BACTERIA,GEOGRAPHICAL) relations than
(BACTERIA,HABITAT) relations in the data, our
approach increases the overall F-score only by 1pp
for the test set.

Table 7 compares the performance of our end-
to-end system with the winning team in the
BB3-event+ner task (LIMSI, developed by Grouin
(2016)). As it can be seen in the table, our sys-
tem outperforms the winning team by 19pp in F-
score, achieving the new state-of-the-art score for
the task. Even if we solely rely on BB3 data for the
NER system, the improvement is 18pp in F-score.
We emphasize that no other data than BB3 is used
for training/optimization of our relation extraction
system in any way.

Teams F-score Recall Precision SER
LIMSI 0.192 0.191 0.193 1.558
Our system 0.381 0.292 0.548 0.891

Table 7: Official evaluation results for BB3-
event+ner test data of our system compared to
LIMSI, the winning team in the Shared Task.

4 Conclusions and future work

In this work, we introduced an open-source end-
to-end system, capable of named-entity detec-
tion/normalization and relation extraction to ex-
tract information about bacteria and their habitats
from text. Our system is trained and evaluated on
the BioNLP Shared Task 2016 Bacteria Biotope
data.

According to the official evaluation, our entity
detection and categorization system would have
achieved the second place in BB3. Compared to
the best performing system on cat+ner, TagIt, we
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consider that our approach on NER can still be
improved, especially for HABITAT entities. First,
we consider employing a post-processing step in
order to recover embedded entities which are not
currently handled by NERsuite. An effective post-
processing step should have a substantial impact
on our NER system as the embedded entities ac-
counted for over 10% of all HABITAT mentions.

Our categorization system outperforms the best
performing system of BB3 by 1.2pp in the offi-
cial evaluation, constituting the new state-of-the-
art for this task. Our system also relies less on
rule-based or heuristic preprocessing steps and
uses the same general approach for both BACTE-
RIA and HABITAT mentions suggesting that it will
be more adaptable for new entity types.

As 9.6% of the HABITAT entities in the official
training set have more than one gold standard on-
tology annotation whereas our current system is
only assigning a single concept for each entity, one
future work direction is to assess different ways of
associating entities with multiple concepts. In the
simplest form this could be implemented by defin-
ing a similarity threshold instead of selecting only
the best matching concept.

Since the character level ngrams resulted in sig-
nificantly better performance than our word level
baseline, the exploration of character level neural
approaches is also warranted for the categorization
task and will be tested in the future.

Official evaluation shows that the joint perfor-
mance of entity detection and relation extraction
of our end-to-end system outperforms the winning
team by 19pp on F-score, establishing a new top
score for the event+ner task. In this work we did
not use previous BB Shared Task data for training
the relation extraction system. However, as a fu-
ture work we would like to investigate the effect
of utilizing previous BB Shared Task data.

As a future work, we would like to run our sys-
tem on large-scale, on all PubMed abstracts and
PubMed Central Open Access full articles to form
a publicly available knowledge base.

We highlight that the methods discussed and
used in this work are not only applicable for BB3
tasks and can be beneficial for other entity detec-
tion/normalization and relation extraction projects
as well.
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Abstract

Text mining automatically extracts infor-
mation from the literature with the goal
of making it available for further analy-
sis, for example by incorporating it into
biomedical databases. A key first step
towards this goal is to identify and nor-
malize the named entities, such as pro-
teins and species, which are mentioned in
text. Despite the large detrimental im-
pact that viruses have on human and agri-
cultural health, very little previous text-
mining work has focused on identifying
virus species and proteins in the literature.
Here, we present an improved dictionary-
based system for viral species and the
first dictionary for viral proteins, which
we benchmark on a new corpus of 300
manually annotated abstracts. We achieve
81.0% precision and 72.7% recall at the
task of recognizing and normalizing viral
species and 76.2% precision and 34.9% re-
call on viral proteins. These results are
achieved despite the many challenges in-
volved with the names of viral species and,
especially, proteins. This work provides a
foundation that can be used to extract more
complicated relations about viruses from
the literature.

1 Introduction

Viruses are major human and agricultural
pathogens. Influenza A in the US alone costs
billions of dollars each year in lost wages and
medical expenses (Molinari et al., 2007). World-
wide, Influenza, Human papilloma virus and
Hepatitis C virus are each responsible for at least
a quarter of a million deaths each year (WHO,
2014). At the same time, viruses such as Zika

virus are emerging as global health threats as
the habitats of their vectors are expanding due
to climate change (Mills et al., 2010; Fauci and
Morens, 2016). Such arboviruses are previously
neglected diseases, and as such vaccines and
antiviral drugs are not available for them, posing
a large health risk.

The impact of outbreaks in livestock can also be
immense. The 2001 Foot and mouth disease virus
outbreak in the UK cost an estimated 8 billion
(Knight-Jones and Rushton, 2013) and still today
much remains unknown about the virus, includ-
ing the mechanisms for persistent infection (Paul
et al., 2010), and the virus’ interactions with the
immune system that may aid cross serotype vac-
cine production (Paton and Taylor, 2011).

The study of viruses is aided by bioinformat-
ics resources such as protein–protein interaction
databases. Having a comprehensive picture of a
virus protein’s interaction partners is crucial to the
understanding of the viral lifecycle and aids in the
search for vaccines and antiviral drugs (Shah et al.,
2015). However, manually creating and maintain-
ing such resources is a cost, time and labour in-
tensive endeavour (Attwood et al., 2015). Text
mining provides a means to automatically iden-
tify relevant publications and the entities of inter-
est that are mentioned in them quickly and at low
cost. A first step towards building these resources
for viruses is the identification of viral species and
their proteins in text.

1.1 Background

Text mining for viruses presents several chal-
lenges over text mining for species of cellular or-
ganisms. Viruses are often known by many differ-
ent names, either because a virus was identified
in different countries and given different names
(e.g. Bovine pestivirus and Bovine viral diarrhoea
virus), or because the taxonomy has changed (e.g.
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polyomaviruses). Another source of synonyms is
the use of the disease that the virus causes in place
of the virus name.

Viral proteins are even more challenging to text
mine, as they are often referred to by one-letter
names such as E or M. Further, even if their names
are longer, they can be written in many different
orthographic variants e.g. U(S)11, Us11, or US11.
Viral proteins may also have many synonyms re-
lated to the gene name, position on a segment,
or may be referred to by their function e.g. “the
polymerase”. Some RNA viruses have polypro-
teins which complicates their analysis. Their vi-
ral mRNA codes for a single open reading frame
that is translated to a polypeptide product, which
is then post translationally cleaved into functional
protein products. Bioinformatics databases such
as UniProt (The UniProt Consortium, 2014) of-
ten give first class identifiers to the polyprotein but
not to the cleavage products, thus complicating the
process of referring to the functional protein prod-
uct.

These challenges can be mitigated by using a
dictionary approach to text mining. In such an ap-
proach, comprehensive dictionaries are created to
contain all the alternative names that are likely to
be referred to in a corpus. In this work, we have
chosen to use a dictionary based method based on
the success of this approach to identify bacteria
species and biotopes (Cook et al., 2016). We have
chosen to use curated databases (NCBI taxonomy
and UniProt) to populate the dictionary instead of
other approaches such as unsupervised methods to
learn which items are named entities (Neelakan-
tan and Collins, 2014), as the data available in
these databases is high quality and openly avail-
able. Furthermore, starting with a resource dra-
matically reduces the difficulty of normalization
of recognized entities.

Previous work in this field includes LINNAEUS
(Gerner et al., 2010), a dictionary-based system
that is also designed to recognize species in ab-
stracts. The SPECIES tagger (Pafilis et al., 2013)
is a newer and faster dictionary system that aims
to identify names of any species in biomedical ab-
stracts. SPECIES has achieved good performance
when tagging names of viruses species in abstracts
from virology journals. A more recent and spe-
cialized effort used the dictionary and template-
based ANDSystem to text mine the HCV interac-
tome (Saik et al., 2015).

Here, we improve on the SPECIES dictionary
for all virus species, and additionally tag names
of virus proteins for those proteins that have ref-
erence proteomes in UniProt. We have created
viral species and protein dictionaries, and a gold-
standard corpus that has been annotated by 4 hu-
man annotators.

2 Availability

The version of the dictionaries used
in this publication are available at
http://figshare.com/articles/
virus_entities_tsv/4721287 and
the most recent version will be available at
http://download.jensenlab.org/.
The V300 corpus and annotator guide-
lines is publicly available at http:
//www.tagtog.net/-corpora. The eval-
uation code is available at http://github.
com/bitmask/textmining-stats.
The tagger software used for this work is
available at http://bitbucket.org/
larsjuhljensen/tagger.

3 Methods

3.1 Dictionary creation and tagging
Virus names were taken from NCBI Taxonomy
(Sayers et al., 2009) and included all synonyms at
all taxonomic levels under the viruses superking-
dom. Disease names were taken from the Disease
Ontology (Kibbe et al., 2015) and were manually
mapped onto the correct virus taxid, giving an ad-
ditional 387 names for 102 species that are hu-
man pathogens. This resulted in a total of 173,367
names for 150,885 virus tax levels.

Virus species name acronyms were taken from
the ninth ICTV report on virus taxonomy (King
et al., 2012) by text mining the document and ex-
tracting any text in parentheses that appears to be
an acronym and that follows a match for a virus
name. This way we found 778 acronyms, more
than 500 of which were not found in the previous
sources, for 662 virus species.

Virus protein names were taken from UniProt
reference proteomes (The UniProt Consortium,
2014) as of Aug 31, 2015. Viruses that did not
have complete proteomes were not included in the
protein dictionary, although they are included in
the species dictionary. Protein names and syn-
onyms were taken from all fields in the UniProt
record, including the protein name, short name,
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gene, and chain entries if the protein is a polypro-
tein. Additionally, many variants of the protein
names were generated following a set of rules to
cover orthographic variation, such as “X protein”
is expanded to “protein X” and “X”. For a com-
plete list of rules, refer to the code. This resulted
in 16,580 proteins with 112,013 names from 397
virus species.

Stopwords were adapted from the text mining
done for the text-mining channel of the STRING
database (Szklarczyk et al., 2015). Additional
stopwords were found by running the dictionary
over all documents in PubMed and inspecting the
100 most frequent matches to determine if they
should be stopworded. Although normally consid-
ered to be stopwords by the tagging system, spe-
cific one and two letter names from the dictionary
were permitted to be matches to enable finding
very short protein names.

Automated tagging used the dictionaries de-
scribed above and the tagger text-mining system
developed for the SPECIES resource (Pafilis et al.,
2013).

3.2 Corpus creation and gold standard
creation

300 abstracts were selected randomly by filtering
abstracts mentioned in reviewed UniProt entries
for viral proteins for top virology journals as deter-
mined by impact factor. Documents were divided
among four annotators such that each pair of an-
notators shared 10 documents, implying that 20%
of the documents were annotated by two annota-
tors. These overlapping documents were used to
calculate inter-annotator agreement (IAA), and the
annotators were blind to which documents were in
this set throughout the project.

Annotation guidelines were agreed upon fol-
lowing the annotation of 10 documents in a pilot
set, which were not used in the evaluation of IAA
or to assess the performance of the tagger. All ab-
stracts were manually annotated using tagtog (Ce-
juela et al., 2014), an online system for text min-
ing. Species names were normalized to NCBI tax-
onomic identifiers. Protein names were normal-
ized to UniProt entry names, unless they were the
cleavage product of a polyprotein, in which case
they were normalized to their chain name.

3.3 Evaluation
The IAA among the human annotators was deter-
mined separately for viral species and proteins by

determining the number of annotations that over-
lap and contain the same normalization. Bound-
aries of annotations were considered to match if
the annotations overlapped.

Species normalizations were considered to
match if one was a parent of the other and if both
were at or below species level, or if both were be-
low species level and had a common parent. For
example, both of the following pairs were con-
sidered matches: “Influenza A” and “Influenza A
H1N1”, and “Influenza A H1N1” and “Influenza
A H7N9”. This allowed for an annotation to not
be penalized if the strain was annotated instead of
the species, or if two different strains of the same
species were annotated. Protein normalizations
were considered to match if they were within 90%
identity according to BLAST (Zhang et al., 2000).

IAA was measured by F-score, however since
we allow boundaries to overlap, this measure may
not be symmetric. If one annotator has annotated
“long form (short form)” as one annotation, and
another annotator has annotated it as two annota-
tions, then this will count as one true positive when
comparing the first annotator to the second, but as
two true positives when comparing the second an-
notator to the first. To avoid this asymmetry, we
counted all the true positives, false negatives and
false positives across both annotators.

The guidelines specify that if a span refers to
multiple entities, then it should be normalized to
each of them. Each normalization was treated as
contributing separately to the number of true or
false positives. A special case was established
for Adenovirus, which is a large genus containing
very many species of viruses that have a highly
conserved set of proteins. Adenovirus proteins are
often referred to in general in the literature, with-
out specifying a specific species. Manual anno-
tation of Adenovirus proteins required that only
one representative protein from one species be
tagged, thus effectively treating this genus as a sin-
gle species.

The recall and precision of the tagger was cal-
culated against the consensus of the human an-
notations. The consensus was determined as fol-
lows. If only one annotator annotated the doc-
ument, their annotations were taken as the gold
standard. The annotations were similarly accepted
as the gold standard if two annotators agreed on
position and normalization. However, if there was
a disagreement, then a third annotator was asked to
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resolve it. For positions that overlapped, the union
of the spans was used as the consensus.

The precision and recall were calculated in three
different ways. The first method required that
the boundaries and normalizations of the con-
sensus and tagger annotations match. The sec-
ond method, “boundaries only”, required only the
boundaries of the annotations to match. The last
method, “document level normalization”, com-
pared the lists of unique normalizations found in
the document, regardless of position and number
of occurrences.

4 Results and Discussion

4.1 Corpus and Inter-annotator agreement

The corpus consisted of 300 documents with 1,826
species and 2,540 protein annotations. There was
overall good agreement between annotators for
both species and proteins. The mean IAA F-score
for species was 87.3%, and considering bound-
aries only was 90.0%. For proteins, the mean IAA
F-score was 76.5%, which rose to 86.9% when
considering boundaries only. Detailed results are
shown in figure 1.

There was substantial agreement between anno-
tators regarding the location of species and protein
annotations, and there was also good agreement on
the normalization of species. However, there was
less agreement among protein normalizations than
those for species. 26% of these disagreements in-
volve one annotator normalizing a protein name to
a UniProt entry, and the second annotator report-
ing the normalization as unknown. An additional
20% of the disagreement is due to an annotator
normalizing a span to multiple entities and another
annotator normalizing it to fewer entities. Such
cases, in which an abstract discusses a protein
in one virus and compares it to a closely related
protein, can be ambiguous and refer to the pro-
tein without being completely clear about which
species is being referred to.

However, the largest part this disagreement
comes from instances in which annotators have
normalized to different proteins that are different
enough to not pass the 90% identity BLAST cri-
terion. Manual inspection of these proteins indi-
cate that the majority are correct, but that fast vi-
ral evolution has caused the protein sequences of
similar isolates to diverge. The set of documents
randomly chosen to calculate IAA was unlucky to
contain a few documents containing proteins that
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Figure 1: Inter-annotator agreement for viral
proteins and species. Above the diagonal both
normalization and boundaries are required to be
correct, below the diagonal only identification of
boundaries are required to be correct.

are quite divergent, but this is not representative of
the whole corpus. This can be seen by dropping
the BLAST identity criterion to 50%, which then
accounts for 29% of the difference between anno-
tators, but increases the tagger precision and recall
by only 1%.

4.2 Tagger performance for species
The automatic tagger achieved 81.5% precision
and 73.3% recall for the combined task of rec-
ognizing and normalizing viral species. When
requiring only the boundaries to be correct, i.e.
recognition but not normalization, the precision
and recall were 93.1% and 79.8% respectively. At
the document level, the normalization precision
was 74.9% and the recall was 85.4%. Results are
summarized in table 1. Combined, this shows that
if the tagger identifies a viral species, it is very
likely that a viral species is mentioned at the re-
ported position, and it is also likely that the tagger
has normalized it correctly. Also, the tagger cor-
rectly identifies most of the species that are men-
tioned in a document.

In 43% of the cases of incorrect species nor-
malization, the tagger has identified both the cor-
rect species normalization and additional normal-
izations with the same abbreviation. For example,
the tagger normalized SV40 to “Simian virus 40”,
which is correct, but also to “Polyomavirus sp.”
under unclassified Polyomaviridae because both
taxa have SV40 as an abbreviation in the NCBI
taxonomy. The abbreviation SV40 will thus count
as both a true positive and a false positive with re-
spect to normalization. If instead such partially
correct normalizations were counted only as true
positives, the precision would rise from 81.5% to
85.8%.
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The tagger does not attempt to correctly identify
all referenced entities in sentence constructs such
as “HSV types 1 and 2” although such normal-
izations are obvious to human annotators. More
ambiguously, papers that discuss Influenza pro-
teins or Adenovirus proteins, without specifying
the species (such as Influenza A, or Adenovirus
type 1) are not clear about what exactly is being
referred to.

In an additional 32% of the cases of incorrect
species normalization, an annotator identified the
virus as unclassified in which case it and the taxa
identified by the tagger joined the taxonomic tree
above the species level, and so was not considered
to be a match by the matching code. If the match is
relaxed to genus level, then the precision will rise
from 81.5% to 85.0% and to 86.3% if accepting
also partially correct normalizations as described
above.

Despite efforts to be comprehensive, some ab-
breviations are missing from the virus dictionary,
for example the abbreviations Ad2 and Ad5 for
Adenovirus type 2 and 5 respectively were not
included in the dictionary. The tagger does con-
tain logic to identify and expand acronyms on the
fly, but has very strict matching criteria to prevent
false positives (Pafilis et al., 2013). Further, syn-
onyms that are not present in NCBI taxonomy will
not be identified. For example “Blackberry yel-
low vein disease” was not identified as as synonym
for “Blackberry yellow vein virus” and so was not
found by the tagger. This could be improved with
more comprehensive synonym generation.

The tagger will tag all instances of entries in its
dictionary, even in contexts that are not appropri-
ate. The annotation guidelines state that viruses
that are used as vectors should not be tagged, since
the scientific work they are mentioned in is not pri-
marily about the virus. However, this is a matter
of opinion and the opposite case could also be ar-
gued. Regardless, the tagger cannot distinguish
the context in which viruses are mentioned, and
will blindly tag all occurrences of the virus name.

4.3 Tagger performance for proteins

For combined recognition and normalization of vi-
ral proteins, the precision and recall of the tagger
were 76.2% and 34.9% respectively. Observing
boundaries only, the precision and recall rose to
87.4% and 40.0% respectively. At the document
level, the normalization precision was 76.2% and

Precision Recall
Normalisation 81.5% 73.3%

Boundaries only 93.1% 79.8%
Doc level normalisation 74.9% 85.4%
Partially correct norm 85.8% 73.3%
Match at genus level 85.0% 73.5%
Previous two criteria 86.3% 73.5%

Table 1: Summary of species precision and re-
call for different evaluation criteria: Normaliza-
tion and recognition, recognition of boundaries
only, normalization at the document level, treating
entities that have been normalized to multiple en-
tities as correct if one of the normalizations is cor-
rect, relaxing the matching criterion to the genus
level, and finally allowing both of the previous two
criteria.

the recall was 38.1%. Results are summarized in
table 2.

Since viral protein names are so short and not
unique to one species, the tagger will only tag pro-
tein names for species that have already been iden-
tified. This means that the theoretical upper bound
for tagging proteins is equivalent to the species
document level normalization recall (85.4%) as-
suming that all the proteins are present in the dic-
tionary. However, the dictionary only contains
protein names for species that are contained in re-
viewed UniProt proteomes, a total of 348 species
and 88.1% of the proteins mentioned in the corpus.
This gives a maximum possible recall of 75.2% for
proteins. Conversely, since the tagger detects pro-
teins only after the species has been detected, the
normalization of the viral proteins that are found
is quite accurate.

Considering only annotation of the proteins in
the dictionary, the precision was 86.0% and the
recall 35.5%. Recall does not change significantly
from considering all proteins because there are 10
times more false negatives due to not locating the
protein compared to false negatives due to incor-
rectly normalizing the protein. At the document
level, the normalization precision of proteins that
were present in the dictionary is 77.1% and the re-
call is 50.7%.

Viral proteins are very hard for the tagger to
identify due to the diversity of names that are used
to refer to them. For example, the tagger has
missed 97% of names in which the protein is re-
ferred to by its molecular weight (e.g. “the 33K

95



protein”). Including these synonyms would in-
crease the recall by 4 percentage points. Similarly,
the tagger has tagged only 10% of the cases in
which the viral protein is referred to by its func-
tion (e.g. “the helicase”). Including these syn-
onyms would increase the recall by 6 percentage
points. As observed for species, the tagger does
not recognize novel abbreviations, such as “sGP”
for the Ebola virus nonstructural small glycopro-
tein, and such constructs are used quite frequently
in the literature. Better on-the-fly acronym identi-
fication in the tagger may help increase this recall
rate.

Another source of error is the ambiguity of
terms used in the text to refer to parts of the virus
that are also names of proteins such as “capsid”.
Although the frequently-named capsid protein is
the main constituent of the viral capsid, references
in the text to “capsid” are often ambiguous as to
whether they refer to the protein or to the assem-
bled virus part. The annotation guidelines state
that such terms should only be tagged if they re-
fer to the protein and should not be tagged if they
refer to part of the virus, but these cases are often
difficult to distinguish in practice.

The tagger identifies false positives at a much
lower rate than false negatives. Since very short
protein names are present in the dictionary, it is
much more likely for these names to appear in
places that are not in the context of a protein. For
example, Coronavirus infectious bronchitis virus
has a spike protein abbreviated S, however discus-
sion of the polyprotein cleavage site before a ser-
ine residue will be false positively tagged as serine
is also abbreviated S.

Normalization of protein names to multiple en-
tities can also be incorrect in instances where an
abstract discusses both a specific protein in one
species, and the same protein in many species. The
tagger will tag all instances of the protein name
with all species and will not be able to distinguish
the instances that refer only to the protein in a spe-
cific species, whereas human annotators are more
easily able to distinguish these cases.

4.4 Results in other corpora

Compared to the S800 virus corpus (Pafilis et al.,
2013), the improved dictionary finds over 100
more mentions, including new abbreviations, but
does not tag more general terms such as “infec-
tious virus” and “avian viruses” which refer to

Precision Recall
Normalisation 77.5% 35.5%

Boundaries only 87.4% 40.0%
Doc level normalisation 77.1% 50.7%
Theoretical max recall - 75.2%

Table 2: Summary of results for protein detec-
tion for different evaluation criteria: normalization
and recognition, recognition of boundaries only
and document level normalization. The theoretical
maximum recall based on requiring the species to
be recognized and present in the dictionary is also
listed.

more than one species. Measured against the S800
gold standard for only virus annotations in the
virus subset of the corpus, the improved tagger
has a precision and recall of 63.3% and 57.0%
respectively, compared to the initial results from
SPECIES of 63.2% and 53.0% respectively.

Running the tagger over all of Medline finds
over 53 million mentions of 8063 viral species
in more than 1.5M articles. Of these, we have
protein level detail for 348 species, and find over
10M mentions of 4668 unique proteins. The most
commonly mentioned species is HIV-1, making up
over 3% of species mentions.

5 Conclusions and Perspectives

As the biomedical literature continues to grow at
an exponential rate (Lu, 2011), automated tools,
such as text mining, are necessary to enable ex-
tracting information from the literature in a timely
and efficient manner. Text mining is a means to
automatically extract information from the litera-
ture without requiring manual curation of a large
number of documents. It can be used success-
fully to extract virus species and proteins from ab-
stracts that pertain to viruses with good precision
and also, in the case of species, good recall. There
is still much room to improve the recall of pro-
teins due to the abundance of alternative names
that are used to refer to them. Further, the tag-
ger does not recognize disjoint entities, and since
there has recently been progress in this field (Tang
et al., 2013), this could also be an area for future
improvement of the tagger.

These results can be used in future work to ex-
tract co-occurrences of virus and host proteins,
which could imply an interaction between these
proteins. Integrating virus-host protein-protein in-
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teractions into the larger host interaction network
may provide insight into viral mechanisms of dis-
ease. Work done specifically on EBV, HPV, and
Hepatitis C virus (Gulbahce et al., 2012; Mosca
et al., 2014) revealed that host proteins local to vi-
ral targets form network modules that are related
to the diseases caused by these viruses. With the
virus-agnostic tools presented here, such work can
be scaled up to easily enable investigation of all
viruses for which there is sufficient data.

The work presented here could also be used as
a foundation to identify viruses that are understud-
ied compared to their impact, and may reveal fu-
ture directions that are promising to study. The
interrelationship of proteins and diseases has been
explored recently using text mining to assess both
the strength of an interaction between a protein
and a disease, and also the scarceness of publica-
tions about a given protein target (Cannon et al.,
2017). This gives researchers an overview of un-
derstudied proteins that could be relevant for dis-
ease etiology. A similar approach could be taken
to reveal new directions in virus research.
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Abstract 

We propose in this paper a semi-

supervised method for labeling terms of 

texts with concepts of a domain ontology. 

The method generates continuous vector 

representations of complex terms in a se-

mantic space structured by the ontology. 

The proposed method relies on a distribu-

tional semantics approach, which gener-

ates initial vectors for each of the extracted 

terms. Then these vectors are embedded in 

the vector space constructed from the 

structure of the ontology. This embedding 

is carried out by training a linear model. 

Finally, we apply a cosine similarity to de-

termine the proximity between vectors of 

terms and vectors of concepts and thus to 

assign ontology labels to terms. We have 

evaluated the quality of these representa-

tions for a normalization task by using the 

concepts of an ontology as semantic la-

bels. Normalization of terms is an im-

portant step to extract a part of the infor-

mation contained in texts, but the vector 

space generated might find other applica-

tions. The performance of this method is 

comparable to that of the state of the art 

for this task of standardization, opening up 

encouraging prospects. 

1 Introduction 

A lot of biomedical or biological knowledge is 

in a non-structured form, such as that expressed 

in scientific articles (Kang et al., 2013). For ex-

perts from these fields, the substantial increase in 

the specialized literature has created a significant 

need for automatic methods of information ex-

traction (Ananiadou and McNaught, 2006). The 

task of normalization is one of the main tasks to 

respond to this need. 

Normalization consists in standardizing terms 

(single- or multi-word) extracted from texts by 

linking them to non-ambiguous references, such 

as entries from existing knowledge bases. Con-

cepts from an ontology can be used to represent 

these references in a formal and structured way. 

Term and their relationships carry a lot of the 

knowledge contained in texts, thus successful 

term identification is a key to getting access to 

the information (Krauthammer and Nenadic, 

2004).  

Standardization encounters several difficulties, 

such as the significant variability of the form of 

the terms, whether they are represented by one 

word (e.g. “child” / “kid” or “accommodation” / 

”home”, etc.) or by several (e.g. “child” / ”little 

boy” or “accommodation” / ”dwelling place”, 

etc.) (Nazarenko et al., 2006). Multiword terms, 

which have varied morphosyntactic structures 

and complex imbrications (mainly complex noun 

phrases), are particularly difficult to normalize 

(e.g. only with a different syntactic organization: 

“breast cancer” / “cancer of the breast”). In the 

literature, such as scientific articles in life sci-

ences, complex noun groups are abundant (Ma-

niez, 2007). An approach based on the similarity 

of form between term and semantic label appears 

limited to perform this task (Golik et al., 2011), 

because the form of the labels of the concepts is 

not necessarily close to the form of the terms to 

be annotated. Another difficulty arises from the 

large number of ontology concepts, making a su-

pervised classification approach costly in manual 

annotation (e.g. over 2,000 categories for exam-

ple in the ontology of bacterial habitats OntoBi-

otope (Bossy et al., 2015)). 

An alternative approach is to calculate the se-

mantic proximity between terms by distributional 

semantics. It is an approach based on the correla-

tion between the similarity of meaning and the 

distribution similarity of semantic units (word, 

combination of words, sentence, documents, ...) 

(Firth, 1957; Harris, 1954). A semantic unit can 

then be represented by a vector: it is constructed 

from the context information in which the se-

mantic unit is found. The proximity of vectors in 
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this space can be transposed to a semantic prox-

imity (Fabre and Lenci, 2015). Today, there are 

many methods for generating such vector spaces, 

such as Word2Vec (Mikolov et al., 2013), but 

they usually focus on massive data sets (Fabre et 

al., 2014) in which information is often repeated.  

The question is: how to use distributional se-

mantics to normalize terms by an ontology? In 

other words how to relate distributional infor-

mation to the categories of ontology? In the con-

text of specialized literature, we often deal with 

relatively small corpora and a large number of 

semantic categories. 

We propose an original method in which we 

represent complex terms based on word embed-

ding, embed the ontology in a vector space, and 

learn a transformation from term vectors to con-

cept vectors.  Then, this transformation is used to 

determine the most suitable concept for an input 

term. 

2 Material 

The data used are those of the Bacteria Biotope 

categorization task (Task 3) of the 2016 BioNLP 

Shared Task (Deléger et al., 2016). The documents 

are references from MEDLINE, composed of ti-

tles and abstracts of scientific articles in the field 

of biology. The task consists in assigning a cate-

gory from the OntoBiotope ontology to given cor-

pus terms related to bacterial habitats. The corpus 

is divided into three subparts: the training corpus, 

the development corpus and the test corpus. In the 

training and development corpus, the categories of 

terms are given: they have been used to train our 

method. The terms from the test corpus are those 

which categories have to be predicted: it is the 

corpus used to evaluate our method for the task of 

normalization. The entities of each of these corpo-

ra have been manually annotated. Table 1 pro-

vides a summary of their characteristics: 

 
  Train Dev. Test Total 

Documents 71 36 54 161 

Words 16,295 8,890 13,797 38,982 

Entities 747 454 720 1,921 

Distinct  

entities 

476 267 478 1,125 

Semantic cat. 825 535 861 2,221 

Distinct cat. 210 122 177 329 
 

Table 1: Descriptive statistics for the Bacteria Bi-

otope corpus (“cat.” = categories, “Dev.” = devel-

opment corpus) 

In addition to this corpus, an extended corpus 

of the same domain is used to generate vector 

representations of each word. It is composed of 

approximately 100,000 sentences (4,800,000 

words) from titles and abstracts of scientific arti-

cles in the field of biology available on PubMed. 

This represents a relatively small size corpus, 

which contains a majority of words with a low 

frequency of occurrence (cf. Table 2). Other cor-

pus, larger and/or more general could be used, 

also direct words embedding as the one released 

by BioASQ (Pavlopoulos et al., 2014). Neverthe-

less, the very accurate domain of the used ex-

tended corpus and its desired small size seemed 

to be more adapted.   

 

Repeated >2 72,412 35% 

Repeated 2 times 31,569 15% 

Not repeated 105,364 50% 

Words (without stopwords) 209,345 100% 
 

Table 2: Descriptive statistics of extended corpus 

3 Method 

 

Figure 1: A. Process to create word vectors.  

B. Process to create term vectors.  

3.1 Word vectors  

The vector space of the terms (VST) is ob-

tained by generating a vector for each word of 

the extended corpus and the Bacteria Biotope 

corpus. For this, we used the Word2Vec tool 
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(Mikolov et al., 2013), taking as context of a 

word, a list containing all the words of their sen-

tence. To have enough training data for the gen-

eration of meaningful word vectors, and also to 

avoid taking into account typos or errors, it is 

usually advisable to use Word2Vec without the 

infrequent words appearing only once or twice 

throughout the corpus. But our corpus contains 

many words of interest with a low frequency, so 

we choose not to apply this frequency threshold. 

After some performance tests, the dimension 200 

was selected for the output vectors (cf. Figure 

1A), which is of the same order of magnitude as 

what is usually advised (Mikolov et al., 2013). 

3.2 Term vectors 

To compute the vector representations of the 

multiword terms (cf. Figure 1B), segmenting 

them into words is the first step. For each word, 

which is not a stopword, the vector calculated by 

Word2Vec is used. Then the vector of the multi-

word term is obtained by averaging the vectors of 

the words which compose it: 

𝑣𝑡𝑘
=   ∑ 𝑣

𝑚𝑖
𝑘

𝑛𝑘
𝑖=1 𝑛𝑘⁄  (1)  

where 𝑣𝑡𝑘
 is the associated vector of the term 𝑡𝑘, 

𝑛𝑘 is the number of words (without stopwords) of 

the term 𝑡𝑘, 𝑣
𝑚𝑖

𝑘 is the vector of the word 𝑚𝑖
𝑘 

from our Word2Vec computation, and the term 𝑡𝑘 

is such that : 

∀𝑖 ∈ [1, 𝑛𝑘], 𝑚𝑖
𝑘  ∈  𝑡𝑘 (2) 

Even if it is not the aim of this paper, future 

works could test other methods.   

3.3 Concept vectors 

 

Figure 2: Process to create concept vector 

 

To construct the concept vectors and thus a vec-

tor space of an ontology (VSO), null vectors with 

as many dimensions as the number of concepts in 

the ontology are initialized. Each value of the vec-

tor is thus related to one of the concepts of the on-

tology, which is set to 1 for the considered con-

cept. The value is also 1 if the current axis is relat-

ed to a concept which is an ancestor of the consid-

ered concept, and 0 otherwise: 

𝑣𝑐𝑘
= ( 𝑤𝑐k

0 , … , 𝑤𝑐𝑘
𝑖 , … , 𝑤𝑐𝑘

𝑛 )          (3) 

where 𝑣𝑐𝑘
 is the vector related to the concept 𝑐𝑘, n 

is the number of concepts in the ontology and 𝑤𝑐𝑘
𝑖  

is the value of vector 𝑣𝑐𝑘
 for the axis i, such as: 

𝑤𝑐𝑘
𝑖 =  {

1, 𝑖𝑓 𝑖 = 𝑘
1, 𝑖𝑓 𝑐𝑖  𝑝𝑎𝑟𝑒𝑛𝑡 𝑜𝑓 𝑐𝑘 

0, otherwise
       (4) 

This representation has the advantage of pre-

serving the similarity arrangement (with cosine 

distance) expected between the concepts (cf. Fig-

ure 3 and Table 3): a concept is more similar to 

his children and his parents. 

 

Figure 3: Abstract ontology representation (dis-

played by Protégé) 

 

Concept 02 Similarity 

    Concept 02 1,0000 

    Concept 021 0,8165 

    Concept 022 0,8165 

    Concept 0 0,7071 

    Concept 01 0,5000 

    Concept 011 0,4082 
 

Table 3: Cosine distances between concepts of 

an abstract ontology (cf. Figure 3) 

 

We can notice that the dimension of the gener-

ated VSO is the number of concepts of the ontol-

ogy (e.g. more than 2,000 for the OntoBiotope on-

tology). It is a high dimension in comparison to 

the VST but concept vectors are very sparse (with 

a maximum of 13 non-zero values in a vector) and 

they only contain binary values. Therefore, to 

make them more comparable to term vectors, we 

experimented with reducing the VSO to denser 
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representations in a lower-dimension space (cf. 

Figure 2). Two methods have been tested: Princi-

pal Component Analysis (PCA) and Multi-

Dimensional Scaling (MDS). 

3.4 Training with general linear model 

 

Figure 4: Training process to determine a trans-

formation VST to VSO 

 

The objective of the training step is to deter-

mine a transformation from VST to VSO, which 

minimizes all the distances between the vectors of 

terms resulting from this transformation and the 

vectors of the associated concepts. In this paper, a 

linear transformation is studied with the aim of 

keeping a strong similarity between the distribu-

tion of term vectors in the VST and the distribu-

tion of the projections in the VSO. Indeed, a non-

linear transformation could strongly distort the re-

sulting distribution to fit better to training data. 

This training aims to obtain the best parameters 

to approximate this matrix equation: 

𝑌 = 𝑋. 𝐵 + 𝑈 (5)  

where Y is a matrix resulting in a series of concept 

vectors, X is a matrix resulting in a series of term 

vectors (where the ith line of X is the vector of a 

term which has for category a concept which has 

for vector the ith line of Y), B is a matrix contain-

ing parameters that are usually to be estimated and 

U is a matrix containing noise following a multi-

variate Gaussian distribution. This training is per-

formed on the training and development corpora 

(cf. Figure 4).  

The obtained matrix enables us to design a lin-

ear transformation function then make it possible 

to predict new vectors associated with the terms of 

the test corpus expressed in the VSO: 

𝑓: (
𝑉𝑆𝑇 → 𝑉𝑆𝑂

𝑣term  →  𝑣term
′ = 𝑓(𝑣term))          (6)  

where 𝑣term is a vector of term in the VST and 

𝑣term
′  is the resulting vector of the same term pro-

jected in the VSO. To satisfy the requirements of 

the evaluation task, the concept vector nearest to 

𝑣term
′  (as determined by cosine distance) is cho-

sen as category for the annotated term (cf. Figure 

5). 

 

 

Figure 5: Process of predicting semantic catego-

ries associated with extracted terms 

3.5 Evaluation  

We evaluate the performance of our normal-

ization method on the Bacteria Biotope normal-

ization task of the BioNLP Shared Task 2016. The 

dataset was presented in Section 2. The predicted 

concepts identifiers are compared to the gold 

standard concepts according to the similarity 

measure of (Wang et al., 2007), with the weight 

parameter set to 0.65. The evaluation was per-

formed by submitting our results to the evaluation 

server run at the BioNLP-ST 2016 challenge site. 

4 Results 

4.1 Normalization 

Team Similarity score 

BOUN 0.6200 

CONTES 0.5968 

LIMSI 0.4380 

Baseline 0.3217 
 

Table 4: Results on the normalization task of  

BioNLP-ST 2016 

 

We applied our concept normalization method 

to the test dataset of the Bacteria Biotope 2017 

Task 3. We computed baseline results by assigning 

all terms to the concept "bacteria habitat", which 

is the root of the OntoBiotope ontology hierarchy. 

We also compared these results to those of the two 

teams who participated in this task of BioNLP-ST 

2016. We report all results in Table 4. The base-

line obtains a score of 0.3217. Our method 
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(CONTES - CONcept-TErm System) obtained a 

score of 59.68%, much higher than the baseline, 

and close to that of the top team (Tiftikci et al., 

2016). This score is also significantly above the 

method of LIMSI (Grouin, 2016), which is based 

on a morphological approach. 

4.2 Term vectors 

In spite of the low frequency of occurrence of 

the words of the extended corpus (cf. Table 2), the 

resulting word vectors seem to have relatively sat-

isfactory proximities, from the point of view of 

the semantic similarity of the associated terms. 

Moreover, the method used to compute vectors for 

complex terms also seems satisfactory, as illus-

trated Table 5. 

 

cell Similarity 

     HCE cell 0.9999 

     13C-labeled cell 0.9998 

     parietal cell 0.9989 

     Schwann cell 0.9965 

     CD8+ T cell 0.9770 

     PMN cell 0.9669 

     macrophage cell 0.9473 
 

Table 5: Terms nearest to the term “cell” 

 

It also appears that lexical variation can be 

overcome (cf. Table 6 and Table 7), which was 

one of the desired properties. Although more gen-

erally, it seems that terms with similar lexical 

forms are closer (Table 5). 

Nevertheless, the co-occurrence of some words 

seems to cluster certain terms from different cate-

gories: two words appearing frequently in com-

mon contexts are then found close. This similarity 

persists when calculating multiword term vectors. 

This applies, for example, to the terms relating to 

fish and those relating to fish farms (cf. Table 8). 

These cases are less satisfactory because they do 

not differentiate between terms which should be 

annotated with different semantic categories (e.g. 

“fish” and “healthy fish” should be annotated by 

<OBT:001902: fish>, “fish farm” and “disease-free 

fish farm” by <OBT:000295: fish farm> and “fish 

farm sediments” by <OBT:000704: sediment>). 

 

younger ones  Similarity 

     children less than five years of age  0.8087 

     children less than 2 years of age  0.8060 

     children less than two years of age  0.7995 
 

Table 6: Terms nearest to the term  

‘younger ones’ 

seawater  Similarity 

     sediments  0.7696 

     sediment sample from a disease-free      

     fish farm  0.7499 

     fish farm sediments  0.7342 

     subterranean brine  0.7320 

     lagoon on the outskirts of the city  

     of Cagliari  0.7128 

     petroleum reservoir  0.7095 

     marine environments  0.7077 

     marine bivalves  0.6896 

     sediment samples from diseased  

     farms  0.6870 

     urine sediments  0.6819 

     petroleum  0.6576 

     subterranean environment  0.6497 

     fresh water  0.6494 

     fresh water supply  0.6395 

     Seafood  0.6390 

     marine  0.6366 
 

Table 7: Terms nearest to the term ‘seawater’ 

 

fish Similarity 

     fish farming 0.9875 

     fish farm 0.9170 

     disease-free fish farm 0.9124 

     fish farm sediments 0.8683 

     healthy fish 0.8145 
 

Table 8: Terms nearest to the term ‘fish’ 

4.3 Concept vectors 

<OBT:001922: algae> sans ACP Similarity 

<OBT:001777: aquatic plant> 0.9258 

<OBT:001895: submersed aquatic 

plant> 0.8571 

<OBT:001967: seaweed> 0.8018 
 

Table 9: Concepts nearest to the concept 

<OBT:001922: algae> 

 

We can estimate the quality of the created con-

cept vectors by observing the consistency between 

the proximity of two vectors and the similarity of 

their meanings. Table 9 and Figure 6 show the 

example of the 'algae' concept: the nearest neigh-

bors of its vector are its father in the ontology, its 

sibling and the immediate descendant of its sib-

ling. 
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Figure 6: Taxonomy of concepts around concept 

"algae"  (displayed by Protégé) 

 

By comparing several examples, it seems that 

PCA does not modify the order of proximity of 

the concepts, but an increase in vector density can 

be observed (cf. comparison between Table 9 and 

Table 10). 

 

<OBT:001922: algae> avec ACP Similarity 

<OBT:001777: aquatic plant> 0.9990 

<OBT:001895: submersed aquatic 

plant> 0.9982 

<OBT:001967: seaweed> 0.9943 

<OBT:000372: sponge>  0.9303 

<OBT:000269: marine eukaryotic spe-

cies>  0.9303  
 

Table 10: Concepts nearest to the concept 

<OBT:001922: algae> after a PCA with a final 

dimension of 100 

4.4 Impact of the size of the VST 

 

Figure 7: Comparison between CBOW and 

Skip-Gram architectures for the VST 

 

Word2Vec allows the use of 2 different archi-

tectures to generate word vectors from a corpus: 

Continuous Bag Of Words (CBOW) and Skip-

Gram. We tested the 2 architectures on different 

output vector sizes (cf. Figure 7). For vector spac-

es generated with a dimension between 100 and 

250, the final scores appear to be relatively stable, 

especially with CBOW. Similarly, the score dif-

ference between the two architectures remains be-

low 3%. Above a dimension of 250, there is a de-

crease in the score for the 2 architectures, with a 

greater slope for CBOW. 

4.5 Impact of a dimension reduction on the 

VSO 

 

Figure 8: Evolution of performance depending 

on the final size of the VSO after reduction 

(here with a VST with 100 dimensions) 

 

The VSO has a large dimension compared to 

the specific information that it contains (i.e. the 

ontology structure). This may present combinato-

rial but also theoretical difficulties: a linear projec-

tion of the VST on the VSO (with a higher dimen-

sion than the VST) should then only be performed 

on a subspace of the VSO. Thus, it theoretically 

limits the results. It was therefore interesting to 

study the impact of a reduction of the VSO size on 

the final score. We can then observe that a reduc-

tion PCA (with similar results with MDS) system-

atically decreases the score obtained when using a 

non-reduced VSO (cf. Figure 8).  

Nevertheless, there is a level with relatively 

high performance (less than 3% below the score 

without reduction) which collapses below a cer-

tain dimension. This threshold might have a link 

with the number of concepts that have at least 2 

distinct parents. 

5 Discussion 

To extend the interpretations derived from ex-

amples, it would be interesting to evaluate the 

overall quality of the generated vector spaces: 

vector spaces of words, terms, concepts as well as 

the final space containing the transformations of 

the vectors of the terms. We plan to perform this 

in further work. 
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One of the difficulties of the task is that in this 

normalization task, a term can be annotated by 

several distinct concepts of the ontology (e.g. 

"school age children with wheezing illness" 

should be annotated by the concept <OBT: 

002307: pediatric patient> as well as the concept 

<OBT: 002187: patient with disease>). This diffi-

culty is linked to the ontology of interest. In 2016, 

all participating systems of the task skip this diffi-

culty, which is not anecdotal among the extracted 

terms. 

6 Future work 

For future work, it would be relevant to apply 

methods of global evaluation of the quality of the 

generated vector spaces. In particular, this would 

make it possible to evaluate the intermediate pro-

cesses more thoroughly and to observe the impact 

of the modifications on their internal parameters 

more precisely. New methods could then be con-

sidered to improve outcomes. For example, it 

would certainly be positive to use a method of 

vector representation of an ontology that would 

generate a space with a smaller dimension while 

retaining the possibility of discerning the initial 

structure of the ontology. Similarly, the method 

used here to generate the VST vectors could be 

improved to take into account the syntactic con-

text of the terms. This could solve the semantic 

similarity problems between "fish" and "fish 

farm" (cf. Table 8). 

In the Bacteria Biotope normalization task, 

terms often have to be annotated with several con-

cepts of the target ontology (for example, "chil-

dren greater than 9 years of age who had lower 

respiratory illness" should be annotated by the 

concept <OBT: 002307: pediatric patient> and by 

the concept <OBT: 002187: patient with dis-

ease>). Having a completely defined ontology 

(i.e. containing all the concepts sufficient to anno-

tate uniquely each possible extracted term - for 

example, a concept 'pediatric patient with disease' 

which is a subset of <OBT: 002307: pediatric pa-

tient> and of <OBT: 002187: patient with dis-

ease>) should improve the results. If such ontolo-

gies seem to be relatively rare in the biological 

domain, it might be interesting to start by auto-

matically generating all the concepts equivalent to 

the intersection of the non-disjoint concepts to an-

swer this problem. Nevertheless, if the concepts 

share many intersections between them or the dis-

joint property has not been formalized, the size of 

the generated ontology may pose combinatorial 

difficulties. 

We addressed a task in which entities have al-

ready been detected in text. Since entity detection 

and terminology extraction methods have relative-

ly acceptable performance, it would be useful to 

use them to extend the current task to an end-to-

end concept detection and normalization system. 

Finally, despite the inherent limitation of nor-

malization methods based on word form similari-

ty, these could nevertheless be used to carry out a 

pre-normalization of the corpus. As a result, one 

might consider using these annotations to drive 

the training part of the method (cf. 3.4 Training 

with general linear model) instead of using a manu-

al annotation (i.e. a test corpora). Thus, this would 

transform this method into a fully unsupervised 

method. 

7 Conclusion 

The aim of this article was to propose an ap-

proach for the creation of vector representations 

for (complex or non-complex) terms in a semantic 

space. In addition, it aimed to propose a method 

capable of adapting to a small specialized corpus 

where the interest terms appear with a relatively 

low frequency. The most widely used methods 

currently generate vector spaces which meaning is 

difficult to interpret other than in terms of spatial 

proximity / semantic similarity. Our method 

seems to show that by combining relatively clas-

sical approaches, it is possible to use an ontology 

to generate vectors in a more interpretable vector 

space. The results are comparable to those of the 

state of the art, which seems to open up encourag-

ing prospects. Beyond the standardization task, 

new efficient methods of generating interpretable 

vector spaces could apply to a number of further 

tasks. 
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Abstract

Vector space methods that measure se-
mantic similarity and relatedness often
rely on distributional information such as
co–occurrence frequencies or statistical
measures of association to weight the im-
portance of particular co–occurrences. In
this paper, we extend these methods by
incorporating a measure of semantic sim-
ilarity based on a human curated taxon-
omy into a second–order vector represen-
tation. This results in a measure of seman-
tic relatedness that combines both the con-
textual information available in a corpus–
based vector space representation with the
semantic knowledge found in a biomedical
ontology. Our results show that incorpo-
rating semantic similarity into a second or-
der co–occurrence matrices improves cor-
relation with human judgments for both
similarity and relatedness, and that our
method compares favorably to various dif-
ferent word embedding methods that have
recently been evaluated on the same refer-
ence standards we have used.

1 Introduction

Measures of semantic similarity and relatedness
quantify the degree to which two concepts are
similar (e.g., lung–heart) or related (e.g., lung–
bronchitis). Semantic similarity can be viewed
as a special case of semantic relatedness – to be
similar is one of many ways that a pair of con-
cepts may be related. The automated discovery
of groups of semantically similar or related terms
is critical to improving the retrieval (Rada et al.,
1989) and clustering (Lin et al., 2007) of biomed-
ical and clinical documents, and the development

of biomedical terminologies and ontologies (Bo-
denreider and Burgun, 2004).

There is a long history in using distributional
methods to discover semantic similarity and re-
latedness (e.g., (Lin and Pantel, 2002; Reisinger
and Mooney, 2010; Radinsky et al., 2011; Yih and
Qazvinian, 2012)). These methods are all based on
the distributional hypothesis, which holds that two
terms that are distributionally similar (i.e., used in
the same context) will also be semantically similar
(Harris, 1954; Weeds et al., 2004). Recently word
embedding techniques such as word2vec (Mikolov
et al., 2013) have become very popular. Despite
the prominent role that neural networks play in
many of these approaches, at their core they re-
main distributional techniques that typically start
with a word by word co–occurrence matrix, much
like many of the more traditional approaches.

However, despite these successes distributional
methods do not perform well when data is very
sparse (which is common). One possible solu-
tion is to use second–order co–occurrence vec-
tors (Schütze, 1992; Schütze, 1998). In this ap-
proach the similarity between two words is not
strictly based on their co–occurrence frequencies,
but rather on the frequencies of the other words
which occur with both of them (i.e., second order
co–occurrences). This approach has been shown
to be successful in quantifying semantic related-
ness (Islam and Inkpen, 2006; Pedersen et al.,
2007). However, while more robust in the face of
sparsity, second–order methods can result in sig-
nificant amounts of noise, where contextual infor-
mation that is overly general is included and does
not contribute to quantifying the semantic related-
ness between the two concepts.

Our goal then is to discover methods that auto-
matically reduce the amount of noise in a second–
order co–occurrence vector. We achieve this by
incorporating pairwise semantic similarity scores
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derived from a taxonomy into our second–order
vectors, and then using these scores to select
only the most semantically similar co–occurrences
(thereby reducing noise).

We evaluate our method on two datasets that
have been annotated in multiple ways. One has
been annotated for both similarity and relatedness,
and the other has been annotated for relatedness
by two different types of experts (medical doctors
and medical coders). Our results show that in-
tegrating second order co–occurrences with mea-
sures of semantic similarity increases correlation
with our human reference standards. We also com-
pare our result to a number of other studies which
have applied various word embedding methods to
the same reference standards we have used. We
find that our method often performs at a compara-
ble or higher level than these approaches. These
results suggest that our methods of integrating se-
mantic similarity and relatedness values have the
potential to improve performance of purely distri-
butional methods.

2 Similarity and Relatedness Measures

This section describes the similarity and related-
ness measures we integrate in our second–order
co–occurrence vectors. We use two taxonomies in
this study, SNOMED–CT and MeSH. SNOMED–
CT (Systematized Nomenclature of Medicine Clin-
ical Terms) is a comprehensive clinical terminol-
ogy created for the electronic representation of
clinical health information. MeSH (Medical Sub-
ject Headings) is a taxonomy of biomedical terms
developed for indexing biomedical journal arti-
cles.

We obtain SNOMED–CT and MeSH via
the Unified Medical Language System (UMLS)
Metathesaurus (version 2016AA). The Metathe-
saurus contains approximately 2 million biomed-
ical and clinical concepts from over 150 different
terminologies that have been semi–automatically
integrated into a single source. Concepts in
the Metathesaurus are connected largely by two
types of hierarchical relations: parent/child
(PAR/CHD) and broader/narrower (RB/RN).

2.1 Similarity Measures

Measures of semantic similarity can be classified
into three broad categories : path–based, feature–
based and information content (IC). Path–based
similarity measures use the structure of a taxon-

omy to measure similarity – concepts positioned
close to each other are more similar than those
further apart. Feature–based methods rely on set
theoretic measures of overlap between features
(union and intersection). The information content
measures quantify the amount of information that
a concept provides – more specific concepts have
a higher amount of information content.

2.1.1 Path–based Measures
Rada et al. (1989) introduce the Conceptual Dis-
tance measure. This measure is simply the length
of the shortest path between two concepts (c1 and
c2) in the MeSH hierarchy. Paths are based on
broader than (RB) and narrower than (RN) rela-
tions. Caviedes and Cimino (2004) extends this
measure to use parent (PAR) and child (CHD) re-
lations. Our path measure is simply the recipro-
cal of this shortest path value (Equation 1), so that
larger values (approaching 1) indicate a high de-
gree of similarity.

path =
1

spath(c1, c2)
(1)

While the simplicity of path is appealing, it can
be misleading when concepts are at different lev-
els of specificity. Two very general concepts may
have the same path length as two very specific con-
cepts. Wu and Palmer (1994) introduce a correc-
tion to path that incorporates the depth of the con-
cepts, and the depth of their Least Common Sub-
sumer (LCS). This is the most specific ancestor
two concepts share. In this measure, similarity is
twice the depth of the two concept’s LCS divided
by the product of the depths of the individual con-
cepts (Equation 2). Note that if there are multiple
LCSs for a pair of concepts, the deepest of them is
used in this measure.

wup =
2 ∗ depth(lcs(c1, c2))
depth(c1) + depth(c2)

(2)

Zhong et al. (2002) take a very similar approach
and again scale the depth of the LCS by the sum of
the depths of the two concepts (Equation 3), where
m(c) = k−depth(c). The value of k was set to 2
based on their recommendations.

zhong =
2 ∗m(lcs(c1, c2))
m(c1) +m(c2)

(3)

Pekar and Staab (2002) offer another variation
on path, where the shortest path of the two con-
cepts to the LCS is used, in addition to the shortest
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bath between the LCS and the root of the taxon-
omy (Equation 4).

pks = − log
spath(lcs(c1, c2), root)∑

x=c1,c2,root
spath(lcs(c1, c2), x)

(4)

2.1.2 Feature–based Measures
Feature–based methods represent each concept as
a set of features and then measure the overlap or
sharing of features to measure similarity. In par-
ticular, each concept is represented as the set of
their ancestors, and similarity is a ratio of the in-
tersection and union of these features.

Maedche and Staab (2001) quantify the similar-
ity between two concepts as the ratio of the inter-
section over their union as shown in Equation 5.

cmatch =
|A(c1)

⋂
A(c2)|

|A(c1)
⋃
A(c2)| (5)

Batet et al. (2011) extend this by excluding any
shared features (in the numerator) as shown in
Equation 6.

batet = −log2( |A(c1)
⋃
A(c2)| − |A(c1)

⋂
A(c2)|

|A(c1)
⋃
A(c2)| )

(6)

2.1.3 Information Content Measures
Information content is formally defined as the neg-
ative log of the probability of a concept. The effect
of this is to assign rare (low probability) concepts
a high measure of information content, since the
underlying assumption is that more specific con-
cepts are less frequently used than more common
ones.

Resnik (1995) modified this notion of informa-
tion content in order to use it as a similarity mea-
sure. He defines the similarity of two concepts
to be the information content of their LCS (Equa-
tion 7).

res = IC(lcs(c1, c2) = − log(P (lcs(c1, c2)))
(7)

Jiang and Conrath (1997), Lin (1998), and Pirró
and Euzenat (2010) extend res by incorporating
the information content of the individual concepts
in various different ways. Lin (1998) defines the
similarity between two concepts as the ratio of in-
formation content of the LCS with the sum of the

individual concept’s information content (Equa-
tion 8). Note that lin has the same form as wup
and zhong, and is in effect using information con-
tent as a measure of specificity (rather than depth).
If there is more than one possible LCS, the LCS
with the greatest IC is chosen.

lin =
2 ∗ IC(lcs(c1, c2))
IC(c1) + IC(c2)

(8)

Jiang and Conrath (1997) define the distance be-
tween two concepts to be the sum of the infor-
mation content of the two concepts minus twice
the information content of the concepts’ LCS. We
modify this from a distance to a similarity mea-
sure by taking the reciprocal of the distance (Equa-
tion 9). Note that the denominator of jcn is very
similar to the numerator of batet.

jcn =
1

IC(c1) + IC(c2)− 2 ∗ IC(lcs(c1, c2))
(9)

Pirró and Euzenat (2010) define the similar-
ity between two concepts as the information con-
tent of the two concept’s LCS divided by the sum
of their individual information content values mi-
nus the information content of their LCS (Equa-
tion 10). Note that batet can be viewed as a set–
theoretic version of faith.

faith =
IC(lcs(c1, c2))

IC(c1) + IC(c2)− IC(lcs(c1, c2))
(10)

2.2 Information Content
The information content of a concept may be de-
rived from a corpus (corpus–based) or directly
from a taxonomy (intrinsic–based). In this work
we focus on corpus–based techniques.

For corpus–based information content, we esti-
mate the probability of a concept c by taking the
sum of the probability of the concept P (c) and the
probability its descendants P (d) (Equation 11).

P (c∗) = P (c) +
∑

d∈descendant(c)
P (d) (11)

The initial probabilities of a concept (P (c)) and
its descendants (P (d)) are obtained by dividing
the number of times each concept and descendant
occurs in the corpus, and dividing that by the total
numbers of concepts (N ).
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Ideally the corpus from which we are estimating
the probabilities of concepts will be sense–tagged.
However, sense–tagging is a challenging problem
in its own right, and it is not always possible to
carry out reliably on larger amounts of text. In fact
in this paper we did not use any sense–tagging of
the corpus we derived information content from.

Instead, we estimated the probability of a con-
cept by using the UMLSonMedline dataset. This
was created by the National Library of Medicine
and consists of concepts from the 2009AB UMLS
and the counts of the number of times they oc-
curred in a snapshot of Medline taken on 12 Jan-
uary, 2009. These counts were obtained by using
the Essie Search Engine (Ide et al., 2007) which
queried Medline with normalized strings from the
2009AB MRCONSO table in the UMLS. The fre-
quency of a CUI was obtained by aggregating the
frequency counts of the terms associated with the
CUI to provide a rough estimate of its frequency.
The information content measures then use this in-
formation to calculate the probability of a concept.

Another alternative is the use of Intrinsic In-
formation Content. It assess the informativeness
of concept based on its placement within a tax-
onomy by considering the number of incoming
(ancestors) relative to outgoing (descendant) links
(Sánchez et al., 2011) (Equation 12).

IC(c) = −log(
|leaves(c)|

|subsumers(c)| + 1

max leaves+ 1
) (12)

where leaves are the number of descendants of
concept c that are leaf nodes, subsumers are the
number of concept c’s ancestors and max leaves
are the total number of leaf nodes in the taxonomy.

2.3 Relatedness Measures
Lesk (1986) observed that concepts that are related
should share more words in their respective defi-
nitions than concepts that are less connected. He
was able to perform word sense disambiguation by
identifying the senses of words in a sentence with
the largest number of overlaps between their defi-
nitions. An overlap is the longest sequence of one
or more consecutive words that occur in both def-
initions. Banerjee and Pedersen (2003) extended
this idea to WordNet, but observed that WordNet
glosses are often very short, and did not contain
enough information to distinguish between mul-
tiple concepts. Therefore, they created a super–
gloss for each concept by adding the glosses of

related concepts to the gloss of the concept itself
(and then finding overlaps).

Patwardhan and Pedersen (2006) adapted this
measure to second–order co–occurrence vectors.
In this approach, a vector is created for each word
in a concept’s definition that shows which words
co–occur with it in a corpus. These word vec-
tors are averaged to create a single co-occurrence
vector for the concept. The similarity between
the concepts is calculated by taking the cosine
between the concepts second–order vectors. Liu
et al. (2012) modified and extended this measure
to be used to quantify the relatedness between
biomedical and clinical terms in the UMLS. The
work in this paper can be seen as a further exten-
sion of Patwardhan and Pedersen (2006) and Liu
et al. (2012).

3 Method

In this section, we describe our second–order simi-
larity vector measure. This incorporates both con-
textual information using the term pair’s defini-
tion and their pairwise semantic similarity scores
derived from a taxonomy. There are two stages
to our approach. First, a co–occurrence matrix
must be constructed. Second, this matrix is used
to construct a second–order co–occurrence vector
for each concept in a pair of concepts to be mea-
sured for relatedness.

3.1 Co–occurrence Matrix Construction

We build anm×n similarity matrix using an exter-
nal corpus where the rows and columns represent
words within the corpus and the element contains
the similarity score between the row word and col-
umn word using the similarity measures discussed
above. If a word maps to more than one possi-
ble sense, we use the sense that returns the highest
similarity score.

For this paper our external corpus was the NLM
2015 Medline baseline. Medline is a biblio-
graphic database containing over 23 million ci-
tations to journal articles in the biomedical do-
main and is maintained by National Library of
Medicine. The 2015 Medline Baseline encom-
passes approximately 5,600 journals starting from
1948 and contains 23,343,329 citations, of which
2,579,239 contain abstracts. In this work, we use
Medline titles and abstracts from 1975 to present
day. Prior to 1975, only 2% of the citations con-
tained an abstract. We then calculate the similarity
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for each bigram in this dataset and include those
that have a similarity score greater than a specified
threshold on these experiments.

3.2 Measure Term Pairs for Relatedness
We obtain definitions for each of the two terms we
wish to measure. Due to the sparsity and incon-
sistencies of the definitions in the UMLS, we not
only use the definition of the term (CUI) but also
include the definition of its related concepts. This
follows the method proposed by Patwardhan and
Pedersen (2006) for general English and Word-
Net, and which was adapted for the UMLS and the
medical domain by Liu et al. (2012). In particular
we add the definitions of any concepts connected
via a parent (PAR), child (CHD), RB (broader
than), RN (narrower than) or TERM (terms asso-
ciated with CUI) relation. All of the definitions for
a term are combined into a single super–gloss. At
the end of this process we should have two super–
glosses, one for each term to be measured for re-
latedness.

Next, we process each super–gloss as follows:

1. We extract a first–order co–occurrence vector
for each term in the super–gloss from the co–
occurrence matrix created previously.

2. We take the average of the first order co–
occurrence vectors associated with the terms
in a super–gloss and use that to represent the
meaning of the term. This is a second–order
co–occurrence vector.

3. After a second–order co–occurrence vector
has been constructed for each term, then we
calculate the cosine between these two vec-
tors to measure the relatedness of the terms.

4 Data

We use two reference standards to evaluate the
semantic similarity and relatedness measures 1.
UMNSRS was annotated for both similarity and
relatedness by medical residents. MiniMayoSRS
was annotated for relatedness by medical doctors
(MD) and medical coders (coder). In this section,
we describe these data sets and describe a few of
their differences.

MiniMayoSRS: The MayoSRS, developed by
Pakhomov et al. (2011), consists of 101 clinical
term pairs whose relatedness was determined by

1http://www.people.vcu.edu/ btmcinnes/downloads.html

nine medical coders and three physicians from
the Mayo Clinic. The relatedness of each term
pair was assessed based on a four point scale:
(4.0) practically synonymous, (3.0) related, (2.0)
marginally related and (1.0) unrelated. Mini-
MayoSRS is a subset of the MayoSRS and con-
sists of 30 term pairs on which a higher inter–
annotator agreement was achieved. The average
correlation between physicians is 0.68. The av-
erage correlation between medical coders is 0.78.
We evaluate our method on the mean of the physi-
cian scores, and the mean of the coders scores in
this subset in the same manner as reported by Ped-
ersen et al. (2007).

UMNSRS: The University of Minnesota Se-
mantic Relatedness Set (UMNSRS) was devel-
oped by Pakhomov et al. (2010), and consists of
725 clinical term pairs whose semantic similarity
and relatedness was determined independently by
four medical residents from the University of Min-
nesota Medical School. The similarity and relat-
edness of each term pair was annotated based on a
continuous scale by having the resident touch a bar
on a touch sensitive computer screen to indicate
the degree of similarity or relatedness. The Intr-
aclass Correlation Coefficient (ICC) for the refer-
ence standard tagged for similarity was 0.47, and
0.50 for relatedness. Therefore, as suggested by
Pakhomov and colleagues,we use a subset of the
ratings consisting of 401 pairs for the similarity
set and 430 pairs for the relatedness set which each
have an ICC of 0.73.

5 Experimental Framework

We conducted our experiments using the
freely available open source software package
UMLS::Similarity (McInnes et al., 2009) version
1.472. This package takes as input two terms
(or UMLS concepts) and returns their similarity
or relatedness using the measures discussed in
Section 2.

Correlation between the similarity measures
and human judgments were estimated using Spear-
man’s Rank Correlation (ρ). Spearman’s measures
the statistical dependence between two variables
to assess how well the relationship between the
rankings of the variables can be described using a
monotonic function. We used Fisher’s r-to-z trans-
formation (Fisher, 1915) to calculate the signifi-
cance between the correlation results.

2http://search.cpan.org/edist/UMLS-Similarity/
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6 Results and Discussion

Table 1 shows the Spearman’s Rank Correlation
between the human scores from the four reference
standards and the scores from the various mea-
sures of similarity introduced in Section 2. Each
class of measure is followed by the scores obtained
when integrating our second order vector approach
with these measures of semantic similarity.

6.1 Results Comparison

The results for UMNSRS tagged for similarity
(sim) and MiniMayoSRS tagged by coders show
that all of the second-order similarity vector mea-
sures (Integrated) except for vector-jcn obtain a
higher correlation than the original measures. We
found that vector-res and vector-faith obtain
the highest correlations of all these results with hu-
man judgments.

For the UMNSRS dataset tagged for relatedness
and MiniMayoSRS tagged by physicians (MD),
the original vector measure obtains a higher cor-
relation than our measure (Integrated) although
the difference is not statistically significant (p ≤
0.2).

In order to analyze and better understand these
results, we filtered the bigram pairs used to create
the initial similarity matrix based on the strength
of their similarity using the faith and the res
measures. Note that the faith measure holds to
a 0 to 1 scale, while res ranges from 0 to an un-
specified upper bound that is dependent on the size
of the corpus from which information content is
estimated. As such we use a different range of
threshold values for each measure. We discuss the
results of this filtering below.

6.2 Thresholding Experiments

Table 2 shows the results of applying the threshold
parameter on each of the reference standards using
the res measure. For example, a threshold of 0
indicates that all of the bigrams were included in
the similarity matrix; and a threshold of 1 indicates
that only the bigram pairs with a similarity score
greater than one were included.

These results show that using a threshold cutoff
of 2 obtains the highest correlation for the UMN-
SRS dataset, and that a threshold cutoff of 4 ob-
tains the highest correlation for the MiniMayoSRS
dataset. All of the results show an increase in
correlation with human judgments when incorpo-
rating a threshold cutoff over all of the original

Table 1: Spearman’s Correlation Results
UMNSRS MiniMayoSRS
Resident MD Coder

sim rel relatedness
Path

path 0.52 0.28 0.35 0.45
wup 0.50 0.24 0.39 0.51
pks 0.49 0.25 0.38 0.50
zhong 0.50 0.25 0.42 0.50

Integrated
vector-path 0.60 0.43 0.54 0.54
vector-wup 0.60 0.42 0.55 0.55
vector-pks 0.60 0.42 0.53 0.53
vector-zhong 0.58 0.41 0.54 0.53

Feature
batet 0.16 0.33 0.16 0.15
cmatch 0.33 0.17 0.35 0.35

Integrated
vector-batet 0.59 0.43 0.53 0.51
vector-cmatch 0.60 0.43 0.54 0.55

IC
res 0.49 0.26 0.36 0.47
lin 0.51 0.29 0.44 0.54
jcn 0.52 0.33 0.42 0.52
faith 0.51 0.29 0.43 0.54

Integrated
vector-res 0.57 0.41 0.58 0.65
vector-lin 0.57 0.41 0.59 0.64
vector-jcn 0.42 0.15 0.26 0.41
vector-faith 0.59 0.42 0.58 0.63

Intrinsic IC
ires 0.49 0.26 0.40 0.50
ilin 0.50 0.28 0.41 0.50
ijcn 0.51 0.29 0.39 0.50
ifaith 0.50 0.28 0.41 0.50

Integrated
vector-ires 0.57 0.41 0.50 0.52
vector-ilin 0.57 0.41 0.55 0.59
vector-ijcn 0.50 0.41 0.54 0.54
vector-ifaith 0.58 0.42 0.58 0.64
Relatedness

lesk 0.49 0.33 0.52 0.56
o1vector 0.47 0.36 0.43 0.54
o2vector 0.54 0.45 0.63 0.59
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Table 2: Threshold Correlation with vector-res
UMNSRS MiniMayoSRS

T # bigrams sim rel MD coder
0 850,959 0.58 0.41 0.58 0.65
1 166,003 0.56 0.39 0.60 0.67
2 65,502 0.64 0.47 0.56 0.62
3 27,744 0.60 0.46 0.62 0.71
4 10,991 0.56 0.43 0.75 0.76
5 3,305 0.26 0.16 0.36 0.36

Table 3: Threshold Correlation with vector-faith
# UMNSRS MiniMayoSRS

T bigrams sim rel MD coder
0 838,353 0.59 0.42 0.58 0.63

0.1 197,189 0.58 0.41 0.57 0.63
0.2 121,839 0.58 0.41 0.58 0.63
0.3 71,353 0.63 0.46 0.54 0.55
0.4 45,335 0.64 0.48 0.50 0.51
0.5 29,734 0.66 0.49 0.49 0.53
0.6 19,347 0.65 0.49 0.52 0.56
0.7 11,946 0.64 0.48 0.53 0.55
0.8 7,349 0.64 0.49 0.53 0.56
0.9 4,731 0.62 0.49 0.53 0.57

measures. The increase in the correlation for the
UMNSRS tagged for similarity is statistically sig-
nificant (p ≤ 0.05), however this is not the case
for the UMNSRS tagged for relatedness nor for
the MiniMayoSRS data.

Similarly, Table 3 shows the results of apply-
ing the threshold parameter (T) on each of the ref-
erence standards using the faith measure. Al-
though, unlike res whose scores are greater than
or equal to 0 without an upper limit, the faith
measure returns scores between 0 and 1 (inclu-
sive). Therefore, here a threshold of 0 indicates
that all of the bigrams were included in the sim-
ilarity matrix; and a threshold of 0.1 indicates
that only the bigram pairs with a similarity score
greater than 0.1 were included. The results show
an increase in accuracy for all of the datasets
except for the MiniMayoSRS tagged for physi-
cians. The increase in the results for the UMNSRS
tagged for similarity and the MayoSRS is statisti-
cally significant (p ≤ 0.05). This is not the case
for the UMNSRS tagged for relatedness nor the
MiniMayoSRS.

Overall, these results indicate that including
only those bigrams that have a sufficiently high

similarity score increases the correlation results
with human judgments, but what quantifies as suf-
ficiently high varies depending on the dataset and
measure.

6.3 Comparison with Previous Work

Recently, word embeddings (Mikolov et al., 2013)
have become a popular method for measuring se-
mantic relatedness in the biomedical domain. This
is a neural network based approach that learns a
representation of a word by word co–occurrence
matrix. The basic idea is that the neural net-
work learns a series of weights (the hidden layer
within the neural network) that either maximizes
the probability of a word given its context, referred
to as the continuous bag of words (CBOW) ap-
proach, or that maximizes the probability of the
context given a word, referred to as the Skip–gram
approach. These approaches have been used in nu-
merous recent papers.

Muneeb et al. (2015) trained both the Skip–
gram and CBOW models over the PubMed Cen-
tral Open Access (PMC) corpus of approximately
1.25 million articles. They evaluated the models
on a subset of the UMNSRS data, removing word
pairs that did not occur in their training corpus
more than ten times. Chiu et al. (2016) evaluated
both the the Skip–gram and CBOW models over
the PMC corpus and PubMed. They also evaluated
the models on a subset of the UMNSRS ignoring
those words that did not appear in their training
corpus. Pakhomov et al. (2016) trained CBOW
model over three different types of corpora: clin-
ical (clinical notes from the Fairview Health Sys-
tem), biomedical (PMC corpus), and general En-
glish (Wikipedia). They evaluated their method
using a subset of the UMNSRS restricting to sin-
gle word term pairs and removing those not found
within their training corpus. Sajadi et al. (2015)
trained the Skip–gram model over CUIs identified
by MetaMap on the OHSUMED corpus, a collec-
tion of 348,566 biomedical research articles. They
evaluated the method on the complete UMNSRS,
MiniMayoSRS and the MayoSRS datasets; any
subset information about the dataset was not ex-
plicitly stated therefore we believe a direct com-
parison may be possible.

In addition, a previous work very closely related
to ours is a retrofitting vector method proposed by
Yu et al. (2016) that incorporates ontological in-
formation into a vector representation by includ-
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Table 4: Comparison with Previous Work
Method UMNSRS MayoSRS MiniMayoSRS

Subsets Full (N=101) (N=29)
sim rel sim (N=566) rel (N=587) rel MD coder avg

vector–res (ours) 0.64 (N=401) 0.49 (N=430) 0.59 0.48 0.51 0.75 0.76 0.76
vector–faith (ours) 0.66 (N=401) 0.49 (N=430) 0.61 0.49 0.46 0.58 0.63 0.63
(Yu et al., 2016) 0.70 0.67
(Sajadi et al., 2015) 0.39 0.39 0.63 0.8
(Pakhomov et al., 2016) 0.62 (N=449) 0.58 (N=458)
(Muneeb et al., 2015) 0.52 (N=462) 0.45 (N=465)
(Chiu et al., 2016) 0.65 (N=UK) 0.60 (N=UK)

ing semantically related words. In their measure,
they first map a biomedical term to MeSH terms,
and second build a word vector based on the doc-
uments assigned to the respective MeSH term.
They then retrofit the vector by including seman-
tically related words found in the Unified Medical
Language System. They evaluate their method on
the MiniMayoSRS dataset.

Table 4 shows a comparison to the top corre-
lation scores reported by each of these works on
the respective datasets (or subsets) they evaluated
their methods on. N refers to the number of term
pairs in the dataset the authors report they eval-
uated their method. The table also includes our
top scoring results: the integrated vector-res and
vector-faith. The results show that integrating se-
mantic similarity measures into second–order co–
occurrence vectors obtains a higher or on–par cor-
relation with human judgments as the previous
works reported results with the exception of the
UMNSRS rel dataset. The results reported by
Pakhomov et al. (2016) and Chiu et al. (2016) ob-
tain a higher correlation although the results can
not be directly compared because both works used
different subsets of the term pairs from the UMN-
SRS dataset.

7 Conclusion and Future Work

We have presented a method for quantifying the
similarity and relatedness between two terms that
integrates pair–wise similarity scores into second–
order vectors. The goal of this approach is two–
fold. First, we restrict the context used by the
vector measure to words that exist in the biomed-
ical domain, and second, we apply larger weights
to those word pairs that are more similar to each
other. Our hypothesis was that this combination
would reduce the amount of noise in the vectors
and therefore increase their correlation with hu-
man judgments. We evaluated our method on

datasets that have been manually annotated for
relatedness and similarity and found evidence to
support this hypothesis. In particular we dis-
covered that guiding the creation of a second–
order context vector by selecting term pairs from
biomedical text based on their semantic similarity
led to improved levels of correlation with human
judgment.

We also explored using a threshold cutoff to in-
clude only those term pairs that obtained a suf-
ficiently large level of similarity. We found that
eliminating less similar pairs improved the over-
all results (to a point). In the future, we plan
to explore metrics to automatically determine the
threshold cutoff appropriate for a given dataset and
measure. We also plan to explore additional fea-
tures that can be integrated with a second–order
vector measure that will reduce the noise but still
provide sufficient information to quantify related-
ness. We are particularly interested in approaches
that learn word, phrase, and sentence embeddings
from structured corpora such as literature (Hill
et al., 2016a) and dictionary entries (Hill et al.,
2016b). Such embeddings could be integrated into
a second–order vector or be used on their own.

Finally, we compared our proposed method
to other distributional approaches, focusing on
those that used word embeddings. Our results
showed that integrating semantic similarity mea-
sures into second–order co–occurrence vectors ob-
tains the same or higher correlation with human
judgments as do various different word embed-
ding approaches. However, a direct comparison
was not possible due to variations in the subsets
of the UMNSRS evaluation dataset used. In the
future, we would not only like to conduct a direct
comparison but also explore integrating semantic
similarity into various kinds of word embeddings
by training on pair–wise values of semantic simi-
larity as well as co–occurrence statistics.
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Abstract

The goal of active learning is to minimise
the cost of producing an annotated dataset,
in which annotators are assumed to be per-
fect, i.e., they always choose the correct la-
bels. However, in practice, annotators are
not infallible, and they are likely to assign
incorrect labels to some instances. Proac-
tive learning is a generalisation of active
learning that can model different kinds of
annotators. Although proactive learning
has been applied to certain labelling tasks,
such as text classification, there is little
work on its application to named entity
(NE) tagging. In this paper, we propose
a proactive learning method for produc-
ing NE annotated corpora, using two an-
notators with different levels of expertise,
and who charge different amounts based
on their levels of experience. To opti-
mise both cost and annotation quality, we
also propose a mechanism to present mul-
tiple sentences to annotators at each itera-
tion. Experimental results for several cor-
pora show that our method facilitates the
construction of high-quality NE labelled
datasets at minimal cost.

1 Introduction

Manually annotating a dataset with NEs is both
time-consuming and costly. Active learning, a
semi-supervised machine learning algorithm, aims
to address such issues (Lewis, 1995; Settles,
2010). Instead of asking annotators to label the
whole dataset, active learning methods present
only representative and informative instances to
annotators. Through iterative application of this
process, a high-quality annotated corpus can be

produced in less time and at lower cost than tra-
ditional annotation methods.

There are two strong assumptions in active
learning: (1) instances are labelled by experts,
who always produce correct annotations and are
not affected by the tedious and repetitive nature
of the task; (2) all annotators are paid equally, re-
gardless of their annotation quality or level of ex-
pertise. However, in practice, it is highly unlikely
that all annotators will assign accurate labels all
of the time. For example, especially for complex
annotation tasks, some labels are likely to be as-
signed incorrectly (Donmez and Carbonell, 2008,
2010; Settles, 2010). Furthermore, if annotation is
carried out for long periods of time, tiredness and
reduced concentration may ensue (Settles, 2010),
which can lead to annotation errors. An additional
issue is that different annotators may have varying
levels of expertise, which could make them reluc-
tant to annotate certain cases, and they may assign
incorrect labels in other cases. It is also possible
that an inexperienced annotator may assign ran-
dom labels.

To address the above-mentioned assumptions,
proactive learning has been proposed to model dif-
ferent types of experts (Donmez and Carbonell,
2008, 2010). Proactive learning assumes that (1)
not all annotators are perfect, but that there is
at least one “perfect” expert and one less expe-
rienced or “fallible” annotator; (2) as the perfect
expert always provides correct answers, their time
is more expensive than that of the fallible annota-
tor. The annotation process in proactive learning
is similar to traditional active learning. At each
iteration, annotators will be asked to tag an unla-
belled instance, the result of which will be added
to the labelled dataset. However, the difference
with proactive learning is that, in order to reduce
annotation cost, an appropriate annotator is cho-
sen to label each selected instance. For example, if
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there is a high probability that the fallible annota-
tor will provide the correct label for an unlabelled
instance, then proactive learning will send this in-
stance to be annotated by fallible annotator. This
aims to ensure a simultaneous saving of costs and
maintenance of the quality of the data.

Proactive learning has been used for several
annotation tasks, such as binary and multi-class
text classification, and parsing (Donmez and Car-
bonell, 2008, 2010; Olsson, 2009). In contrast,
this paper proposes a proactive learning method
for NE tagging, i.e., a sequence labelling task.

Similarly to other efforts that have used proac-
tive learning, our method models two annotators:
a reliable one and a fallible one, who have differ-
ent probabilities of providing correct labels. The
reliable annotator is much more likely to produce
correct annotations, but their time is expensive.
In contrast, the fallible annotator is likely to as-
sign incorrect annotations more often, but charges
less for their services. It should be noted that the
characteristics of our reliable expert are different
from those proposed in previous work (Donmez
and Carbonell, 2008, 2010). Specifically, in the
conventional proactive learning, the reliable ex-
pert is assumed to be perfect, i.e., he/she always
provides correct annotations. However, in prac-
tice, such an assumption is too strong, especially
for NE annotation. Therefore, we assume that the
reliable expert is not perfect, but that he/she has
a higher expertise level in the target domain, and
has a very low error rate. In order to determine an
appropriate annotator for each sentence, we cal-
culate the probability that an annotator will assign
the correct sequence of labels in a selected unla-
belled sentence. Furthermore, at each iteration, we
use a batch sampling mechanism to select several
sentences for annotators to label (instead of select-
ing only a single sentence), which optimises both
cost and performance.

For evaluation purposes, we simulate the two
annotators by using two machine-learning based
NER methods, namely LSTM-CRF (Lample et al.,
2016) as the reliable expert, and CRF (Lafferty
et al., 2001) as the fallible expert. We then ap-
ply our method to three corpora from different do-
mains: ACE2005 (Walker et al., 2006) for general
language entities, COPIOUS—an in-house corpus
of biodiversity entities1, and GENIA (Kim et al.,
2003)—a corpus of biomedical entities. Our ex-

1The corpus is available upon request.

perimental results demonstrate that by using the
proposed method, we can obtain a high-quality la-
belled corpus at a lower cost than current baseline
methods.

The contributions of our work are as follows.
Firstly, we have modified the conventional proac-
tive learning method to ensure its suitability for
a sequence labelling task. Secondly, in con-
trast to previous work, which selects a single in-
stance for each annotator at each iteration (Don-
mez and Carbonell, 2008, 2010; Moon and Car-
bonell, 2014), our method selects multiple sen-
tences for presentation to annotators. Thirdly, by
applying our method to a number of different cor-
pora, we demonstrate that our method is general-
isable to different domains.

2 Methodology

The proposed proactive learning for NE tagging
is outlined in Algorithm 1. As an initial step,
the performance of each expert is estimated based
on a benchmark dataset (see Section 2.1). Sub-
sequently, at each iteration, all sentences in the
unlabelled dataset are sorted according to an ac-
tive learning criterion. The top-N most informa-
tive sentences are then used as input to the batch
sampling step. In this step, a batch of sentences
is divided into two sets to be distributed to the re-
liable and fallible experts, respectively. Sentences
distributed to the fallible experts are not only infor-
mative, but there is also a high probability that the
expert will provide correct labels for them. Mean-
while, only those sentences that are estimated to
be too difficult for the fallible expert to annotate
will be sent to the reliable expert. By applying
this process, annotation cost can be reduced. Fur-
ther details about the batch sampling algorithm are
presented in Section 2.2.

In Algorithm 1, ULr is the set of selected un-
labelled sentences assigned to the reliable expert
and ULf is the set assigned to the fallible expert.
Lr, Lf are the annotated results of ULr, ULf .

2.1 Expert performance estimation

As mentioned above, our method assumes that
there are two types of experts. One is reliable,
who has a higher probability of assigning the cor-
rect sequence of labels for a sentence, and has
a high cost for their time. The other expert is
fallible, meaning that they may assign a higher
proportion of incorrect labels for a sequence, but
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Algorithm 1: Proactive Learning for NER
Input: a labelled dataset L, an unlabelled dataset UL, a

test dataset T , a budget B, a reliable expert er

with cost Cr for each sentence, a fallible expert
ef with cost Cf , the current cost C

Output: a labelled dataset L
1 Estimate the performance of each expert as described in

Section 2.1;
2 while C < B do
3 Train a named entity recognition model M on L;
4 Sort all sentences in the unlabelled dataset

according to an active learning criterion;
5 Select the top N sentences;
6 ULr, ULf =

BatchSampling(M, top N sentences);
7 Lr, Lf ← er and ef annotate ULr and ULf

respectively;
8 L = L ∪ Lr ∪ Lf ;
9 UL = UL− ULr − ULf ;

10 C = C + Cr ∗ |Lr|+ Cf ∗ |Lf |;
11 end

charges less for their time. The likely anno-
tation quality of each expert is estimated based
on two different probabilities: the class probabil-
ity, p(label|expert, c) and the sentence probabil-
ity p(CorrectLabels|expert,x).

2.1.1 Class probability
The class probability, p(label|expert, c), is the
probability that an expert provides a correct la-
bel when annotating a named entity of class c.
This probability is obtained by asking both the re-
liable and fallible experts to annotate a benchmark
dataset and calculating F1 scores for each of them
against the gold standard annotations.

2.1.2 Sentence probability
The sentence probability is the probability that an
expert provides a sequence of correct labels for a
sentence x.

We firstly compute the probability for each to-
ken in the sentence by combining the class proba-
bility and the likelihood that an expert provides a
correct label for the token xi, as shown in Equa-
tion 1. The equation is inspired by Moon and Car-
bonell (2014), who used it for a classification task.

p(CorrectLabel|expert,xi) =
|C|∑
c

p(c|xi) ∗ p(label|expert, c) (1)

C is the set of all entity labels and the label O.
p(c|xi) is the probability that a token xi is an
entity of class c, which is predicted by an NER
model.

Algorithm 2: Batch Sampling
Input: a named entity recognition model M , top-N

sentences selected according to an active
learning criterion

Output: ULr , ULf

1 ULr = ∅;
2 ULf = ∅;
3 while Batch Size do

// Stage 1
4 foreach sentence x do
5 if p(CorrectLabels|fallible,x) > α then
6 ULf = ULf ∪ {x};
7 BatchSize = BatchSize - 1
8 end
9 end

// Stage 2
10 if Batch Size 6= 0 then
11 Sort the remaining sentences according to a

re-ranking criterion;
12 Calculate threshold β;
13 foreach sentence x do
14 if Batch Size 6= 0 then
15 if diff(reliable, fallible,x) < β

then
16 ULf = ULf ∪ {x};
17 else
18 ULr = ULr ∪ {x};
19 end
20 BatchSize = BatchSize - 1;
21 end
22 end
23 end
24 end

Given the probabilities that an expert will pro-
vide correct labels for each tokens in a sentence,
the sentence probability is calculated by averag-
ing all of these probabilities, as presented in Equa-
tion 2.

p(CorrectLabels|expert,x) =∑|x|
i p(CorrectLabel|expert,xi)

|x| (2)

|x| is the length of the sentence x.

2.2 Batch sampling

Instead of asking annotators to label only one sen-
tence at each iteration, it is more efficient to ask
them to annotate several sentences. To facilitate
this, we propose a batch sampling algorithm that
can select a set of sentences and assign them to
appropriate annotators (see Algorithm 2).

The input of the algorithm is a set of sentences
in the unlabelled dataset that are considered to
be the most informative ones, based on an active
learning criterion (as described in line 5 of Algo-
rithm 1).
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This batch sampling process is divided into two
stages. In the first stage, unlabelled sentences for
which the sentence probability for the fallible ex-
pert is higher than a threshold α, will be assigned
to the fallible expert. Otherwise, the sentence
will be passed to the second stage. In the second
stage, we firstly reorder sentences according to a
re-ranking criterion, as shown in Equation 3. The
intuition behind this re-ranking step is that in order
to save on annotation costs, we set a high priority
for sentences to be assigned to the fallible expert
in certain cases. Specifically, for sentences that are
informative and for which there is a small differ-
ence between the sentence probabilities for the re-
liable and fallible experts, we favour the selection
of the fallible one.

ReRankingCriterion =
ActiveLearningCriterion(x)
diff(reliable, fallible,x)

(3)

For an unlabelled sentence x, the difference be-
tween the sentence probabilities for the two ex-
perts is calculated as shown in Equation 4.

diff(reliable, fallible,x)
= |p(CorrectLabels|reliable,x)
− p(CorrectLabels|fallible,x)| (4)

If the above difference is not significant, i.e., it is
less than a threshold β, x will be distributed to the
fallible expert. Otherwise, x will be assigned to
the reliable expert.

Equations (5) - (7) describe the estimation of
the threshold β, in which xi is the ith sentence in
the top-N sentences selected by an active learn-
ing criterion. γ is a parameter that controls the
value of the threshold β. γ ranges from 0 to 1. If
γ = 0, no sentences will be given to the fallible ex-
pert to annotate. If γ = 1, the fallible expert will
label all the BatchSize sentences. It should be
noted that β is a dynamic threshold, which is recal-
culated based on the difference between diffmax
and diffmin at each iteration.

diffmin = minNi (diff(reliable, fallible,xi))
(5)

diffmax = maxNi (diff(reliable, fallible,xi))
(6)

β = diffmin + γ(diffmax − diffmin) (7)

3 Experiments

3.1 Dataset

We have applied our method to three different cor-
pora: (1) ACE2005 (Walker et al., 2006) which in-
cludes named entities for the general domain, e.g.,
person, location, and organisation; (2) COPIOUS
that includes five categories of biodiversity enti-
ties, such as taxon, habitat, and geographical loca-
tion; (3) GENIA (Kim et al., 2003), a biomedical
named entity corpus.

Table 1 shows the entity classes and the number
of entities of each class that are annotated in the
three corpora. As shown in the table, for the GE-
NIA corpus, we combined the DNA and RNA en-
tities into a single named entity class. Meanwhile,
for ACE2005, although top-level entity classes are
divided into a number of different subtypes, we
only considered the top-level classes, as shown in
the table.

For active and proactive learning experiments,
1% and 20% of sentences of each corpus were
used as the initial labelled set and the test set, re-
spectively. The remaining 79% of sentences were
regarded as unlabelled data.

3.2 Expert simulation

We simulated the reliable and fallible experts
by using two machine learning models: LSTM-
CRF (Lample et al., 2016)—a neural network
NER and CRF (Lafferty et al., 2001). To evaluate
the performance of the two models, we conducted
preliminary experiments, by firstly trained the two
models on 80% of the labelled corpora and subse-
quently testing them on the remaining 20% of the
data.

Word embeddings As the three corpora belong
to three different domains, we used three corre-
sponding pre-trained word embeddings as input to
the LSTM-CRF model.

• ACE2005: GoogleNews vectors2, which in-
clude approximately 100 billion words.

• COPIOUS: we applied word2vec to the En-
glish subset of the Biodiversity Heritage Li-
brary3 to learn vectors for biodiversity enti-
ties. The set has approximately 26 million
pages with more than 8 billion words.

2http://code.google.com/archive/p/word2vec/
3http://www.biodiversitylibrary.org/

120



Corpus Entity Labelled Unlabelled Test Total

ACE2005

Person (PER) 291 22853 5179 28323
Organization (ORG) 36 4554 690 5280
Geo-Political Entity (GPE) 21 5813 1360 7194
Location (LOC) 7 760 168 935
Facility (FAC) 5 1136 227 1368
Weapon (WEA) 8 609 178 795
Vehicle (VEH) 7 640 123 770

COPIOUS

Habitat 23 619 366 1008
Taxon 116 4485 1728 6329
Person 24 768 258 1050
Geographical Location (GeoLoc) 42 4373 1942 6357
Temporal Expression (TempExp) 20 904 358 1282

GENIA
DNA&RNA 88 6592 1757 8437
Cell 133 9623 2437 12193
Protein 316 24940 6402 31658

Table 1: Statistic information of the three corpora

• GENIA: word vectors trained on a combina-
tion of PubMed, PMC and English Wikipedia
texts (Pyysalo et al., 2013).

CRF features To train the CRF model, we used
CRF++4 and employed following features: word
base, lemma, part-of-speech tag and chunk tag of a
token. We also used unigram and bigram features
that combine the features of the previous, current
and following token.

As illustrated in Table 2, the LSTM-CRF model
is mostly more precise and achieves wider cover-
age than CRF. We therefore selected LSTM-CRF
to simulate the reliable expert and CRF to simulate
the fallible expert.

Corpus CRF LSTM-CRF
Pre. Re. F1 Pre. Re. F1

ACE2005 73.89 65.07 69.20 75.69 74.11 74.89
COPIOUS 81.01 48.58 60.74 77.18 74.77 75.96
GENIA 73.90 64.52 68.89 75.41 73.91 74.66

Table 2: Performance of CRF and LSTM-CRF on
the three corpora

The reliable expert (the LSTM-CRF model) was
trained on 80% of the labelled data, while the falli-
ble one (the CRF model) was trained on 60%. The
F1 scores of the reliable and fallible experts when
applied to the test dataset are presented in Table 3.

Corpus Fallible Reliable
ACE2005 61.19 74.89
COPIOUS 50.92 75.96
GENIA 57.67 74.66

Table 3: F1 scores of each expert on the three cor-
pora

4https://taku910.github.io/crfpp/

The class probability of each expert is pre-
calculated based on the the F1 score of each class
that an expert can achieve on the 1% initial la-
belled set. Meanwhile, the sentence probability of
each expert is estimated at each iteration.

3.3 Active learning criteria

Various active learning criteria were investigated
using the three corpora. We firstly estimated
the performance (F1 score) of a supervised NER
model by using CRF++ and the above-mentioned
features. We then compared the performance of
each active learning criterion with that of the su-
pervised model. If the performance of one crite-
rion approximates that of the supervised with the
least number of iterations, we consider the crite-
rion as the best one for proactive learning experi-
ments.

We experimented with the following criteria:
least confidence (Culotta and McCallum, 2005),
normalized entropy (Kim et al., 2006), MMR
(Maximal Marginal Relevance) (Kim et al., 2006),
density (Settles and Craven, 2008) when using fea-
ture vectors and word embeddings, and the com-
bination of least confidence and density criterion.
Equation 8 describes the combination criterion
used in our experiments. In this equation, UL is
the current unlabelled dataset, xu is the uth un-
labelled sentence in UL, the parameter λ = 0.8,
and the similarity score (Settles and Craven, 2008)
were calculated by using feature vectors.

x∗ = arg max
x

(λ ∗ Least Confidence(x)

+ (1− λ)
1
|UL|

|UL|∑
u=1

similarity(x,xu)) (8)
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Corpus Entity Class Best Criterion

ACE2005

PER Density (w2v)
ORG Density (f2v)
GPE Entropy
LOC Least Confidence
FAC Longest
WEA MMR
VEH Longest

(Overall) Entropy

COPIOUS

Habitat Density (f2v)
Taxon Entropy
Person Density (f2v)
GeoLoc Entropy

TempExp Least Confidence
(Overall) Entropy

GENIA

Protein Entropy
Cell LC+Density (f2v)

DNA&RNA Entropy
(Overall) Entropy

Table 4: The best active learning criteria on the
three corpora

We also implemented two baseline criteria. The
first one is random selection, in which a batch of
sentences is selected randomly at each iteration.
The second one, namely longest, is a criterion that
selects the longest sentences to be labelled.

Among these criteria, we selected the best crite-
rion for further experiments. The best criterion is
the one that produced competitive or better perfor-
mance (F-score) than that of a supervised learn-
ing method with the least number of training in-
stances. We report these criteria for each entity
class as well as for the overall corpus in Table 4.
In this table, Density (f2v) and Density (w2v) rep-
resent the density criteria when using feature and
word vectors, respectively. Entropy is the normal-
ized entropy. LC+Density is the combined crite-
rion, described in Equation 8. As shown in the
table, the best criteria at the level of individual
classes are diverse. However, overall, normalized
entropy is the best criterion for all three corpora.
We therefore selected this criterion in our proac-
tive learning experiments.

3.4 Proactive learning results

Our method was evaluated on the test datasets of
the three corpora mentioned in Section 3.1. For
all experiments with proactive learning, we used
the following settings: α = 0.975, γ = 0.05,
N = 200, and the annotation costs are 3 and 1
per sentence for the reliable and fallible experts,
respectively.

3.4.1 BatchSize

We investigated different values of BatchSize
including 20, 10, 5, and 1. The results when
BatchSize is 1 was not shown in Figure 1 as our
method always selects the fallible expert at ev-
ery iteration, which results in a performance that
is inferior to the baselines. For the GENIA cor-
pus, the F-scores are comparable, regardless of the
BatchSize used. Meanwhile, for the ACE2005
corpus, the F-scores are the highest when the batch
size is 20. In contrast, for the COPIOUS corpus,
the best scores are obtained with a batch size of
10.

3.4.2 Comparison with baselines
Figure 2 compares the experimental results of the
two baseline methods (Reliable andFallible) and
the best performance of the proposed proactive
learning method (PA) with batch sizes of 20, 10,
and 5, respectively, on the three corpora. Reliable
refers to a baseline in which we only select the re-
liable expert at each iteration. Similarly, only the
fallible expert was selected in the Fallible exper-
iments.

It can be seen that the performance of the three
models is comparable between ACE2005 and the
COPIOUS corpus. For these two corpora, PA
outperformed the two baselines. In most cases,
by using PA, better F-scores are obtained at the
same cost as the two baselines. Both PA and
Reliable performance is increased when the to-
tal cost is increased. Meanwhile, for the Fallible
model, the performance stabilises at a lower level
than the other methods when cost rises above a
certain level.

Regarding the GENIA corpus, PA acheived a
higher performance than Reliable, but a lower
performance than Fallible in the range of costs
from 0 to approximately 3,500. This can be partly
explained by the fact that there are only three NE
classes in this corpus. Hence, the annotation task
is simpler than for the the other corpora, even for
the fallible expert. However, when the cost is
greater than 3,500, the performance of Fallible
becomes stable, while the performance of PA
continues to increase.

We also investigated the number of times that
each expert was selected during the iterative pro-
cess of PA. The results are shown in Figure 3.
PA (Reliable) and PA (Fallible) correspond to
number of times that the reliable and fallible ex-
pert respectively, were selected in PA, while
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Figure 1: Pro-active learning results on the three corpora when using different BatchSize

Figure 2: The best pro-active learning results on the three corpora in comparison to the baselines

Reliable corresponds to the number of times that
the reliable expert was selected in Reliable base-
line experiment. The figure illustrates that the
number of times that the fallible expert is selected
grows continually as the number of iterations in-
creases. This shows that our method can effec-
tively distribute appropriate unlabelled sentences
to the fallible expert, in order to save on annota-
tion costs.

4 Related work

4.1 Active learning for NER

Active learning aims to decrease annotation cost,
whilst maintaining acceptable quality of annotated
data. To achieve this, the method iteratively se-
lects the most informative sentences to be anno-
tated from an unlabelled data set.

One of the most common selection criteria used
in applying active learning to the task of NE la-
belling is the uncertainty-based criterion. This cri-
terion assumes that the most uncertain sentence

is the most useful instance for learning an NER
model. There are several ways to implement this,
such as least confidence (Culotta and McCallum,
2005)–the lower the probability of a sequence of
labels, the less confidence the model, and en-
tropy (Kim et al., 2006) that can measure the un-
certainty of a probability distribution. Some other
criteria are a diversity measurement (Kim et al.,
2006) and a density criterion (Settles and Craven,
2008).

4.2 Cost-sensitive active learning

Cost-sensitive active learning is a type of active
learning method that considers the annotation cost,
e.g., budget, time or effort required to complete the
annotation process (Olsson, 2009). Since proac-
tive learning also models the reliability or exper-
tise of each annotator in addition to the annotation
cost, it can be considered as another case of cost-
sensitive active learning.

Donmez and Carbonell (2008, 2010) investi-
gated proactive learning for binary classification.
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Figure 3: Number of times that each expert is selected in PA and Reliable models

They predicted the probability that a reluctant or-
acle refuses to annotate an instance and the prob-
ability that a fallible oracle assigns a random la-
bel to an instance. Each oracle charges a dif-
ferent amount for their efforts. They also pro-
posed a model that assigns different costs to unla-
belled instances according to their annotation diffi-
culty. For the multi-class classification task, Moon
and Carbonell (2014) used the same approach but
they had multiple experts, each of whom is spe-
cialised for each class. Kapoor et al. (2007) pro-
posed a decision-theoretic method for the task of
voice mail classification. They defined a criterion
named “expected value-of-information” that com-
bines the misclassification risk with the labelling
cost.

Cost-sensitive active learning was also applied
to part-of-speech (POS) tagging (Haertel et al.,
2008). In this work, an hourly cost measurement
was determined and a linear regression model
was trained to predict the annotation cost. Hwa
(2000) aimed to reduce the manual effort for a
parsing task by using tree entropy cost. Mean-
while, Baldridge and Osborne (2004) measured
the total annotation cost to create a treebank by
using unit cost and discriminant cost.

5 Conclusion and future work

Our work constitutes the first attempt to use proac-
tive learning method for named entity labelling.
We simulated the behaviour of reliable and fal-
lible experts having different levels of expertise
and different costs. To save annotation costs and
to ensure acceptable quality of the resulting an-
notated data, the method favours the selection of
the fallible expert. In order to increase efficiency,
we also proposed a batch sampling algorithm to
select more than one sentence in each iteration.

Experimental results for three corpora belonging
to different domains demonstrate that the employ-
ment of non-perfect experts can help to build gold
standard dataset at reasonable cost. Moreover, our
method performed well across the three different
corpora, demonstrating the generality of our ap-
proach.

A potential limitation of our approach is that
the initial step is reliant on the availability of a
gold standard corpus to estimate the experts’ per-
formance. However, for some domains, it may be
difficult to obtain such a dataset. Therefore, as
future work, we will explore how we can assess
experts’ performance without the need for gold-
standard labelled data.

As a further extension to our work, we will
explore the deployment of our method on crowd
sourcing platforms, such as CrowdFlower5 and
Amazon Mechanical Turk6. These platforms al-
low annotations to be obtained from non-expert
annotators in a rapid and cost-effective man-
ner (Snow et al., 2008). These non-experts can be
treated as non-perfect annotators in our proposed
proactive learning method.
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Abstract

We propose a novel, Abstract Meaning
Representation (AMR) based approach to
identifying molecular events/interactions
in biomedical text. Our key contributions
are: (1) an empirical validation of our hy-
pothesis that an event is a subgraph of the
AMR graph, (2) a neural network-based
model that identifies such an event sub-
graph given an AMR, and (3) a distant su-
pervision based approach to gather addi-
tional training data. We evaluate our ap-
proach on the 2013 Genia Event Extrac-
tion dataset1 (Kim et al., 2013) and show
promising results.

1 Introduction

For several years now, the biomedical community
has been working towards the goal of creating a
curated knowledge base of biomolecule entity in-
teractions. The scientific literature in the biomed-
ical domain runs to millions of articles and is an
excellent source of such information. However,
automatically extracting information from text is
a challenge because natural language allows us
to express the same information in several differ-
ent ways. The series of Genia Event Extraction
shared tasks (Kim et al., 2009, 2011, 2013, 2016)
has resulted in various significant approaches to
biomolecule event extraction spanning methods
that use learnt patterns from annotated text (Bui
et al., 2013) to machine learning methods (Björne
and Salakoski, 2013) that use syntactic parses as
features. In this work, we find that a semantic
analysis of text that relies on Abstract Meaning
Representations (Banarescu et al., 2013) is highly
useful because it normalizes many lexical and syn-
tactic variations in text.

1This dataset is different from BioNLP 2016 GE dataset

Figure 1: AMR with sample event annotations for
sentence “This LPA-induced rapid phosphoryla-
tion of radixin was significantly suppressed in the
presence of C3 toxin, a potent inhibitor of Rho”

AMR is a rooted, directed acyclic graph (DAG)
that captures the notion of who did what to whom
in text, in a way that sentences that have the same
basic meaning often have the same AMR. The
nodes in the graph (also called concepts) map to
words in the sentence and the edges map to re-
lations between the words. In the recent past,
there have been several efforts towards parsing
a sentence into its AMR (Flanigan et al., 2014;
Wang et al., 2015; Pust et al., 2015; May, 2016).
AMR naturally captures hierarchical relations be-
tween entities in text making it favorable for com-
plex event detection. For example, consider the
following sentence from the biomedical litera-
ture: “This LPA-induced rapid phosphorylation of
radixin was significantly suppressed in the pres-
ence of C3 toxin, a potent inhibitor of Rho”. Fig-
ure 1 shows its Abstract Meaning Representation
(AMR). The subgraph rooted at phosphorylate-01
identifies the event E1 and the subgraph rooted at
induce-01 identifies the event E2 where

E1 = phosphorylation of radixin;
E2 = LPA induces E1.

We hypothesize that an event structure is a sub-
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Type Primary Args.
Gene expression T(P)
Transcription T(P)
Localization T(P)
Protein catabolism T(P)
Binding T(P)+
Phosphorylation T(P/Ev), C(P/Ev)
Regulation T(P/Ev), C(P/Ev)
Positive regulation T(P/Ev), C(P/Ev)
Negative regulation T(P/Ev), C(P/Ev)

Table 1: Event types and their arguments in the
2013 Genia Event Extraction task

graph of a DAG structure like AMR and under this
assumption, we cast the event extraction task as
a graph identification problem. Our first con-
tribution is the testing of the above hypothesis
that an event structure is a subgraph of an AMR
graph. Given a sentence, we automatically obtain
its AMR using an AMR parser (Pust et al., 2015)
and explain how an event can be defined as a sub-
graph of the AMR graph. Under the assumption
that we can correctly identify such an event sub-
graph from an AMR graph when it exists, we eval-
uate how good is our definition (Section 2).

Our second contribution is a supervised neural
network-based model that is trained to identify an
event subgraph given an AMR (Section 3). Our
model is built on the intuition that the path be-
tween an interaction term and an entity term in an
AMR graph contains important signal for identify-
ing the relation between them. For e.g. in figure 1
the path {‘induce-01’, ‘arg0’, ‘LPA’} suggests that
LPA is the cause of induce. We encode this path
using word embeddings pre-trained on millions of
biomedical text and develop two pipelined neural
network models: (a) to identify the theme of an
interaction; and (b) to identify the cause of the in-
teraction, if there exists one.

Experimental results show that our model, al-
though achieves a reasonable precision, suffers
from low recall. Our third contribution is a dis-
tant supervision (Mintz et al., 2009) based ap-
proach to collect additional annotated training
data. Distant supervision works on the assump-
tion that given a known relation between two enti-
ties, a sentence containing the two entities is likely
to express this relation and hence can serve as
training data for that relation. Data gathered us-
ing such a method can be noisy (Takamatsu et al.,
2012). Roth et al. (2013) have discussed several
prior work that address this issue. In our work, we
introduce a method based on AMR path heuristic

This LPA-induced rapid phosphorylation of radixin was sig-
nificantly suppressed in the presence of C3 toxin, a potent
inhibitor of Rho

T1 (Protein, LPA)
T2 (Protein, radixin)
T2 (Protein, C3)
T4 (Protein, Rho)
T5 (Phosphorylation, phosphorylate)
T6 (Positive regulation, induce)
T7 (Negative regulation, suppress)
T8 (Negative regulation, inhibit)
E1 (Type: T5, Theme: T2)
E2 (Type: T6, Theme: E1, Cause: T1)
E3 (Type: T7, Theme: E1)
E4 (Type: T8, Theme: T4, Cause: T3)

Table 2: Example event annotation. The protein anno-
tations T1- T4 are given as starting points. The task is to
identify the events E1-E4 with their interaction type and ar-
guments.

to selectively sample the sentences we obtain us-
ing distant supervision (Section 3) and show its ef-
fectiveness over our vanilla neural network model.

We evaluate our event extraction model on the
2013 Genia Event Extraction dataset and show
that our model achieves promising results when
compared to the state-of-the-art system. Given
that AMR parsing is still a young field, our
model, which currently uses a parser of 67% ac-
curacy, would perform better with improved AMR
parsers.

2 AMR based event extraction model

2.1 Task description
The biomedical event extraction task in this work
is adopted from the Genia Event Extraction sub-
task of the well-known BioNLP shared task ((Kim
et al., 2009), (Kim et al., 2011), (Kim et al.,
2013)). Table 2 shows a sample event annotation
for the sentence in Figure 1. The protein anno-
tations T1- T4 are given as starting points. The
task is to identify the events E1-E4 with their inter-
action type and arguments. Table 1 describes the
various event types and the arguments they accept.
The first four event types require only unary theme
argument. The binding event can take a variable
number of theme arguments. The last four events
take a theme argument and, when expressed, also
a cause argument. Their theme or cause may in
turn be another event, creating a nested event (For
e.g. event E2 in Table 2).

2.2 Model description
We cast this event extraction problem as a sub-
graph identification problem. Given a sentence we
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first obtain its AMR graph automatically using an
AMR parser (Pust et al., 2015). Next, we identify
protein nodes and interaction nodes in the graph.
Protein Node Identification: In both the training
and the test set, protein terms are pre-annotated
(e.g. T1 to T4 in Table 2). We then use the AMR
graph alignment information to identify nodes in
the AMR graph aligned to these protein terms to
get our protein nodes P .
Interaction Node Identification: In the training
data, interaction terms are pre-annotated (e.g. T5
to T8 in Table 2). To identify the interaction
terms in the test set we use the following heuristic:
any term that was annotated as an interaction term
more than once in the training data is considered
as an interaction term in the test data as well. We
then use the AMR graph alignment information to
identify nodes in the AMR graph aligned to the in-
teraction terms to get our interaction nodes T .
Given P and T , we identify an event sub-graph
using the following two-step process:
a. Theme Identification: Every pair (pi, tj)
where pi ∈ P and tj ∈ T , is a candidate for an
event em defined as em: (Type: tj , Theme: pi)
where Type is one of the nine event types in Ta-
ble 1. If em can take other events as arguments
(last four event types in Table 1) and if the short-
est path between tj and pi includes an interaction
term tk, such that the pair (pi, tk) is an event en
in itself, then we define the event em instead as
em: (Type: tj , Theme: en). For e.g. in Figure 1,
the path between induce-01 and radixin includes
phosphorylate-01 which is an event in itself (E1).
Hence event E2 is defined with E1 as its theme (in
Table 2).
b. Cause Identification: For events em: (Type:
tj: Theme: pi) that can take a cause argument,
we identify possible candidates for their cause by
again looking for all pairs (pl, tj) where pl ∈ P
and l 6= i and add cause to the event em as em:
(Type: tj , Theme: pi, Cause: pl). Since these
events can even take other events as their cause
argument, we identify additional candidates for
their cause by looking for all pairs (en, tj) where
en ∈ E and n 6= m and add cause to the event em
as em: (Type: tj , Theme: pi, Cause: en).

2.3 Upper bound using “event is a subgraph
of AMR” hypothesis

Before we learn to identify event sub-graphs from
an AMR graph, we first calculate the upper bound

Event Type R P F1 F1 ()
Gene expression 87.82 100.00 93.51

Transcription 65.31 100.00 79.01
Localization 86.80 100.00 92.93

Protein catabolism 90.00 100.00 94.74
==[SVT-TOTAL]== 82.48 100.00 90.04 76.59

Binding 67.83 95.83 79.43 42.88
Phosphorylation 60.62 80.14 69.03 65.37

Regulation 42.61 61.73 50.42
Positive regulation 41.93 65.43 51.11
Negative regulation 50.94 65.85 57.45
==[REG-TOTAL]== 45.16 64.33 53.00 38.41
==[ALL-TOTAL]== 65.98 85.44 74.18 50.97

Table 3: Upper bound on the dev set using our
“event is a subgraph of AMR” hypothesis

that we are setting for our model because we are
using an AMR parser instead of obtaining gold
AMRs. For calculating this upper bound, we first
obtain the AMR graph of a sentence using the
AMR parser and then assume that if an event is
a sub-graph of this AMR graph then we can iden-
tify it correctly. Table 3 shows the upper bound
we get on the dev set of the 2013 Genia Event Ex-
traction dataset (described in Section 5.1). The
last column in the table is the state-of-the-art F1
score obtained by the system EVEX (Hakala et al.,
2013) on the test set of the dataset2.

In case of simple events i.e. events that take
only proteins as theme arguments, an event is al-
ways a subgraph of the AMR unless there is an
alignment error causing the protein node or the
interaction node to be missing. Hence the upper
bound on our precision is 100% whereas the up-
per bound on our recall is 82.48% for these simple
events. In case of the other event types where an
event can take other events as arguments, an event
is correctly identified only if the path between the
pair (pi, tj) in the AMR graph includes all its sub-
events. Therefore we lose more on the precision
and recall in these cases due to AMR parsing er-
rors bringing our overall upper bound on precision
down to 85.44% and our overall upper bound on
recall down to 65.98%. These results give us fol-
lowing two important insights:

1. By using this hypothesis we have set an upper
bound of 74.18% F1-score for our learning
model.

2. As the accuracy of automatic AMR parsers
improve, our model will perform better at the
event extraction task.

2We compare our numbers on the dev set to the EVEX
numbers on test set since gold annotations for the test set are
not available for download

128



3 LSTM based learning model

In this section we will describe our model that
learns to identify an event sub-graph from an
AMR graph. The key idea is that the path between
the interaction node and the entity node (where the
term entity is used to denote both a protein and
a sub-event) contains information about how the
event is structured. We build on this idea to de-
velop a supervised model using Long Short Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) architecture that can learn to identify events
using the nodes and the edges in the AMR path
between the interaction term and the entity term.

3.1 Motivation

The input to our problem is a sequence of words
(wi) interwound with edge labels (ej) of the form:
w1, e1, w2, e2, ..., en−1, wn that exists in the path
between an interaction node and an entity node
in an AMR graph. Due to large semantic varia-
tions that exist in naturally occurring texts, tradi-
tional feature based methods suffer from sparsity
issues while learning from such a sequence. Neu-
ral network based models provide a framework for
learning from non-sparse representations. Specifi-
cally, LSTM is known to handle sequences of vari-
able length and capture long range dependencies
well. Since the input sequence in our case falls
into this category, we build our model using the
LSTM framework.

3.2 Event identification

We model the event identification task as a two-
step process: Theme Identification and Cause
Identification. For simple events, this process in-
cludes only theme identification (since they don’t
have cause). We describe the two LSTM models
corresponding to the two steps as follows:

3.2.1 Theme Identification
Given a pair of interaction node (tj) and protein
node (pi), the task is to identify if there exists
an event with tj as the interaction and pi as the
theme; and if yes, what is the type of the event.
We cast this problem as a multi-class classification
task with label set as L : {NULL ∪ Event types}
where Event types correspond to the nine event
types described in Table 1 and NULL corresponds
to no event. We train an LSTM model for this
task with the input layer as the embeddings cor-
responding to the sequence of words interwound

Figure 2: Theme identification and Cause identi-
fication stages

with edge labels in the shortest path between pi
and tj in the AMR graph. We use a hidden layer
of size 100 and an output layer of the size of our
label set L. For e.g. in Figure 2, the sequence
{‘phosphorylate-01’, ‘arg1’, ‘radixin’} is the in-
put sequence and the event type Phosphorylation
is its label.

3.2.2 Cause Identification
The last four event types in Table 1 can take pro-
teins or other events as cause argument. We cast
this problem as a binary classification task where
for an event we ask the question if a protein/event
is its cause argument or not for every protein and
every other event in that sentence. Let em be the
event identified as em : (Type : tj , Theme : pi)
that can take a cause argument. Let C = P ∪ E
where P is the set of all other proteins in the AMR
graph (except pi) and E is the set of all identified
events (except em). For every ck ∈ C, we get
the shortest path between ck and tj and combine
it with the shortest path between pi and tj and use
the words and edges in this combined path as the
input layer of our second LSTM model. We use
a hidden layer of size 100 and an output layer of
size one corresponding to the binary prediction of
whether ck is the cause of the event em or not.

3.3 Initialization of Embeddings

When initializing our model, we have two choices:
we can initialize the embeddings in the input layer
randomly or we can initialize them with values
that reflect the meanings of the word types. It
has been seen that using pre-defined word embed-
dings improves the performance of RNN models
over random initializations (Collobert and Weston,
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2008; Socher et al., 2011). We initialize the vec-
tors corresponding to words in our input layer with
100-dimensional vectors generated by a word2vec
(Mikolov et al., 2013) model trained on over one
million words from the PubMed central article
repository. Words not included in the pre-trained
model and the edges are initialized randomly using
uniform sampling from [-0.25, +0.25] to match the
embedding standard deviation.

3.4 Event Construction

During test time, we first make predictions us-
ing our LSTM model for Theme identification.
For every pair (pi, tj) with a non-zero label l,
we construct events as follows: For label l cor-
responding to interaction types that take only pro-
teins as theme arguments, we construct event as
em : (Type : tj , Theme : pi). For label l corre-
sponding to interaction types that can take another
event as its theme, we look at the path between
tj and pi in the AMR. If this path includes a pair
(tk, pi) that has a non-zero label, then we construct
an event en : (Type : tj , Theme : ep) where ep is
the event constructed from the pair (tk, pi). Oth-
erwise, we construct the event as en : (Type :
tj , Theme : pi).

For each of the predicted event em : (Type :
tj : Theme : pi) that can take a cause argument,
we run the second LSTM model for its Cause iden-
tification. If there is a pair (pi, ck) which has a
positive label, then we assign ck as the cause of
the event em.

4 Distant Supervision

An empirical evaluation of our LSTM-based
learning model (Section 5.4) shows that it can suf-
fer from low recall. Obtaining additional human
annotated data for our complex event extraction
task can be very costly. This motivates us to de-
velop an approach that can gather more training
data with minimal supervision.

4.1 Motivation

Distant supervision as a learning paradigm was in-
troduced by Mintz et al. (2009) for relation extrac-
tion in general domain. They use Freebase to get
a set of relation instances and entity pairs partici-
pating in those relations, extract all sentences con-
taining those two entity pairs from Wikipedia text
and use these sentences as their training data. This
work and many others show that distant supervi-

Figure 3: Distant Supervision: Sentences extracted from
PubMed Central articles using BioPax database relations

sion technique yields significant improvements in
relation extraction. Neural network models like
LSTM need to be trained on substantial amounts
of training data for them to be able to general-
ize well. However due to lack of labeled data in
biomedical domain, most work in relation extrac-
tion in this domain has been restricted to purely
supervised techniques. In this work we cope with
this problem by gathering additional training data
using distant supervision from a knowledge base.

4.2 Methodology
Relation extraction using distant supervision re-
quires two things: 1) A knowledge base contain-
ing relations between proteins, and 2) A large cor-
pus of unannotated text that contain protein men-
tions. We use the BioPax (Biological Pathway
Exchange) database (Demir et al., 2010) as our
knowledge base of protein relations and we use the
PubMed central articles as our unannotated text
corpus. Given a database entry of the form (‘Pro-
tein1’, ‘Protein2’, ‘relation’), we extract all sen-
tences from the PubMed central articles in which
the two proteins co-occur. For example, Figure
3 shows some sample sentences extracted for the
database entry (’DAG’, ’PKC’, increases). The
first two sentences in the figure indeed express
the relation in the database but the third sentence
just mentions the two proteins in a comma sepa-
rated list. We observe that a lot of the extracted
sentences fall into the category of the third sen-
tence. Hence as a first step, we filter such instances
by tagging the sentence with their parts-of-speech
and removing those in which the two proteins are
separated only by nouns (or punctuations).

4.3 AMR Path Based Selection
The traditional distant supervision approach says
that all the sentences extracted using the method
above can be used as additional training data un-

130



Event Type Biopax relation
Gene expression adds modification

Transcription adds modification
Localization adds modification

Protein catabolism adds modification
Binding binds

Phosphorylation adds modification
Regulation increases, increases activity

Positive regulation increases, increases activity
Negative regulation -

Table 4: Mapping between event types and
Biopax model relations

der the assumption that all sentences in which the
proteins co-occur express the relation mentioned
in the database. However Takamatsu et al. (2012)
note that this approach can often lead to a lot of
false positives. Roth et al. (2013) have discussed
several prior work that try to reduce such noise in
the data. In our work, we develop a novel selec-
tion technique for reducing such noise using AMR
path heuristic. We make the observation that given
two protein nodes in an AMR, if there is a relation
r between the two then the shortest path between
the two protein nodes in the AMR contains the in-
teraction term expressing the relation r.

For e.g. Figure 4 shows the AMR for the sen-
tence “DAG is important for the activation of
PKC, which phosphorylates tyrosinase, and can
also be released...” that was extracted using the
database entry {‘DAG’, ‘PKC’, ‘increases’}. The
interaction term ‘activate’ suggesting the relation
‘increases’ exists in the shortest path between the
proteins DAG and PKC. Figure 5 shows AMR
for the sentence “The sun-network links TCF3
with ZYX and HOXA9 via NEDD9 and CREBBP,
respectively.” extracted for the pair (‘TCF3’,
‘HOXA9’, increases). There is no interaction term
suggesting the relation ‘increases’ in the shortest
path between the proteins TCF3 and HOXA9.

Table 4 shows the mapping we define between
the event types and the relations found in the en-
tries (‘Protein1’, ‘Protein2’, ‘relation’) that we
extracted from the Biopax model. In each sentence
extracted for the database entry (‘P1’, ‘P2’, ‘r’) ,
we check if the shortest path between the two pro-
tein nodes P1 and P2 in the AMR of the sentence
contains one of the interaction terms correspond-
ing to the event type mapped to the relation r. We
discard all those sentences that do not satisfy this
constraint.

Figure 4: Interaction term ‘activate’ corresponding to the
relation ’increases’ exists in the shortest path between DAG
and PKC

Figure 5: No interaction term corresponding to the rela-
tion ‘increases’ exists in the shortest path between TCF3 and
HOXA9

4.4 Using Data for LSTM Model

We use these selected sentences as additional
training data for our two LSTM models as follows:
a. Theme identification: Let S be the sentence
extracted for the database entry (‘DAG’, ‘PKC’,
‘increases’) and let ‘activates′ be the interaction
term that exists in the shortest path between the
protein nodes. Since the database entry refers to
‘DAG’ as the cause and ‘PKC’ as the theme, we
assume these roles for the two proteins in the ex-
tracted sentence S as well. Therefore, we can now
use the path between the interaction term ‘acti-
vates’ and the theme ‘PKC’ as an input sequence
for our model with the label corresponding to the
event type of the interaction term ’activates’.
b. Cause identification: In case of cause identifi-
cation instead of using the path between the inter-
action term and the theme entity, we use the short-
est path between the cause entity and the theme
entity via the interaction term and use this as an
input sequence to our model with a positive label.
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5 Experiments

5.1 Dataset and task setting
The event extraction task described in this work
corresponds to the Task 1 of the Genia Event
Extraction task described by the BioNLP Shared
Task series (2009, 2011 and 2013). We train
a model on a combination of abstract collection
(from 2009 edition) and full text collection (from
2011 and 2013). We test our model on the dev set
of the 2013 edition (since the gold annotation is
publicly available only for the dev set and not the
test set).

5.2 Data prepraration
The dataset made available for the Shared Task is
in the form of sentences and event annotations as
shown in Table 2. We convert these event annota-
tions into input sequences and labels for our multi-
class classification task (theme identification) and
for our binary classification task (cause identifica-
tion) as follows
a. Theme identification: Given a sentence, we
define the set T as the set of interaction terms cor-
responding to all its event annotations. We de-
fine the set P as the set of all its protein men-
tions. For every pair (tj , pi) where pi ∈ P and
tj ∈ T , we create a training data of the form
{w1, e1, w2, e2, ..., en−1, wn, label} where the in-
put sequence corresponds to the words interwound
with edge labels in shortest path between tj and pi;
and the label is the event type of the event em if
there exists an event em : (Type : tj , Theme :
pi), NULL otherwise. We create the test data sim-
ilarly; except we do not use event annotations for
creating the set T but instead identify terms in the
sentence that was annotated as an interaction term
in the training data more than once.
b. Cause identification: For every pair (tj , pk)
where tj is part of some event annotation em :
(Type : tj , Theme : pi) of event type that can
take cause argument and pk ∈ P , we create a train-
ing data of the form {w1, e1, w2, e2, ..., en−1, wn,
label} where the input sequence corresponds to
the shortest path between pk and pi via tj ; and
the label is 1 if pk is the cause of the event em,
0 otherwise.

5.3 LSTM model setup
We implement our LSTM model using the lasagne
library. For the first LSTM model, we use softmax
as our non-linear function and optimize the cat-

egorical cross entropy loss using adam (Kingma
and Ba, 2014). For the second LSTM model, we
use a sigmoid non-linear function and optimize the
binary loss using adam. We use a dropout of 0.5,
batch size of 100 and a learning rate of 0.001.

5.4 Results and Discussion

Table 5 shows the results of our LSTM and dis-
tant supervision based event extraction model. We
compare our results with the state-of-the-art event
extraction system EVEX (Hakala et al., 2013). We
report the Approximate Span/Approximate Re-
cursive metric in all our tables (described in the
Shared Task (Kim et al., 2013)). The columns
to the left (with column heading LSTM) show
the performance of our model trained only on
the official training data. The columns to the
right (with column heading LSTM+Distant Super-
vision) show the performance of our model trained
on official training data plus the additional training
data of 11792 sentences we gather using our dis-
tant supervision strategy.

The table highlights some of our results. Firstly,
we note that, in cases where we obtain a large
number of extra sentences using distant supervi-
sion (highlighted in the column “DS Sents”), we
see a considerable gain in the recall values be-
tween “LSTM” and “LSTM+Distant Supervision”
models. On the contrary, in cases where we ex-
tract only a small number, we see a small gain
(or sometimes even a decrease in performance).
This suggests we explore further ways of selecting
our extra sentences. Secondly, although the over-
all performance of our model using the automatic
AMR parser is lower than the current state-of-the-
art system, the gap of 5% in the F1 score can hope-
fully be reduced with the ongoing improvements
in AMR parsing.

6 Related work

The biomedical event extraction task described
in this work was first introduced in the BioNLP
Shared Task in 2009 (Kim et al., 2009). This
task helped shift the focus of relation extrac-
tion efforts from identifying simple binary inter-
actions to identifying complex nested events that
better represent the biological interactions stated
frequently in text. Existing approaches to this
task include SVM (Björne and Salakoski, 2013)
other ML based approaches (Riedel and McCal-
lum, 2011; Miwa et al., 2010, 2012). Methods like
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LSTM LSTM + Distant Supervision EVEX
Event Type Recall Precision F1 Recall Precision F1 DS Sents Recall Precision F1

Gene expression 66.33 66.55 66.44 76.98 61.48 68.36 868
Transcription 55.10 28.57 37.63 57.14 26.92 36.60 807
Localization 36.55 63.72 46.45 38.07 85.06 52.60 96

Protein catabolism 73.33 84.62 78.57 60.00 94.74 73.47 7
==[SVT-TOTAL]== 57.82 60.86 57.27 56.35 68.05 57.60 73.83 79.56 76.59

Binding 27.61 25.94 26.75 28.57 26.12 27.29 139 41.14 44.77 42.88
Phosphorylation 49.21 53.75 51.38 73.45 45.55 56.23 3183

Regulation 16.30 29.18 20.92 26.07 21.00 23.26 2131
Positive regulation 25.98 35.16 29.88 37.41 29.17 32.78 4561
Negative regulation 23.17 30.50 26.33 22.97 29.44 25.81 0
==[REG-TOTAL]== 21.81 31.61 25.71 28.81 26.53 27.28 32.41 47.16 38.41
==[ALL-TOTAL]== 44.42 51.01 46.37 46.73 46.60 46.66 11792 45.44 58.03 50.97

Table 5: Evaluation results (Recall/Precision/F1) on the 2013 Genia Event Extraction dev set. LSTM
and LSTM + Distant Supervision are our models. The last column corresponds to the results of EVEX
(Hakala et al., 2013) model on the 2013 test set. Certain notable numbers are emphasized and discussed
under results 5.4.

(Liu et al., 2013; MacKinlay et al., 2013) learn
subgraph patterns from the event annotations in
the training data and cast the event detection as
subgraph matching problem. Non-feature based
approaches like graph kernels compare syntactic
structures directly (Airola et al., 2008; Bunescu
et al., 2005). Rule based methods that either
use manually crafted rules or generate rules from
training data (Cohen et al., 2009; Kaljurand et al.,
2009; Kilicoglu and Bergler, 2011; Bui et al.,
2013) have obtained high precision on these tasks.

In our work, we take inspiration from the
Turk Event Extraction System (TEES) (Björne
and Salakoski, 2013) (the event extraction system
for EVEX) that has consistently been the top per-
former in these series of tasks. They represent
events using a graph format and break the event
extraction task into separate multi-class classifica-
tion tasks using SVM as their classifier. In our
work we take a step further by making use of a
deeper semantic representation as a starting point
and identifying subgraphs in the AMR graph.

AMR has been successfully used for deeper se-
mantic tasks like entity linking (Pan et al., 2015)
and abstractive summarization (Mihalcea et al.,
2015). Work by Garg et al. (2015) is the first one
to make use of AMR representation for extracting
interactions from biomedical text. They use graph
kernel methods to answer the binary question of
whether a given AMR subgraph expresses an in-
teraction or not. Our work departs from theirs in
that they concentrate only on binary interactions
whereas we use AMR to identify complex nested
events. Also, our approach additionally makes use
of distant supervision to cope with the problem of

limited annotated data.
Distant supervision techniques have been suc-

cessfully used before for relation extraction
(Mintz et al., 2009) in general domain. Recent
work by (Liu et al., 2014) uses minimal supervi-
sion strategy for extracting relations particularly in
biomedical texts. Our work departs from theirs in
that we introduce a novel AMR path based heuris-
tic to selectively sample the sentences obtained
from distant supervision.

7 Conclusion

In this work, we show the effectiveness of using
a deep semantic representation based on Abstract
Meaning Representations for extracting complex
nested events expressed in biomedical text. We
hypothesize that an event structure is an AMR
subgraph and empirically validate our hypothesis.
For learning to extract such event subgraphs from
AMR automatically, we develop two Recurrent
Neural Network based models: one for identifying
the theme, and the other for identifying the cause
of the event. To overcome the dearth of manually
annotated data in biomedical domain, which ex-
plains the low recall of event extraction systems,
we train our model on additional training data
gathered automatically using a selective distant su-
pervision strategy. Our experiments strongly sug-
gest that AMR parsing improvements, which are
expected given the youth of this scientific field of
inquiry, and the exploitation of larger, manually
curated Biopax-like models and collections of bio-
molecular texts will be easy to capitalize on cata-
lysts for driving future improvements in this task.
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Abstract 

Social media sites (e.g., Twitter) have been 
used for surveillance of drug safety at the pop-
ulation level, but studies that focus on the ef-
fects of medications on specific sets of indi-
viduals have had to rely on other sources of 
data. Mining social media data for this infor-
mation would require the ability to distinguish 
indications of personal medication intake in 
this media. Towards that end, this paper pre-
sents an annotated corpus that can be used to 
train machine learning systems to determine 
whether a tweet that mentions a medication in-
dicates that the individual posting has taken 
that medication (at a specific time). To demon-
strate the utility of the corpus as a training set, 
we present baseline results of supervised clas-
sification.  

1 Introduction 

Social media allows researchers and public 
health professionals to obtain relevant infor-
mation in large amounts directly from populations 
and/or specific cohorts of interest, and it has 
evolved into a useful resource for performing pub-
lic health monitoring and surveillance. According 
to a Pew report (Greenwood et al., 2016), nearly 
half of adults worldwide and two-thirds of all 
American adults (65%) use social media, includ-
ing over 90% of 18-29 year olds. Recent studies 
have attempted to utilize social media data for 
tasks such as pharmacovigilance (Leaman et al., 
2010), identifying user behavioral patterns (Struik 
and Baskerville, 2014), analyzing social circles 
with common behaviors (Hanson et al., 2013b), 
and tracking infectious disease spread 
(Broniatowski et al., 2015).  

A large subset of the public health-related re-
search using social media data, including our prior 

work in the domain, focuses on mining infor-
mation (e.g., adverse drug reactions, medication 
abuse, and user sentiment) from posts mentioning 
medications (Korkontzelos et al., 2016; Hanson et 
al., 2013b; Nikfarjam et al., 2015). Typically, 
these and similar studies focus on information at 
the population level, but processing and deriving 
information from individual user posts poses sig-
nificant challenges from the natural language pro-
cessing (NLP) perspective. Researchers attempt 
to overcome the noise and inaccuracies in the data 
by relying on large amounts of data. For example, 
Hanson et al. (2013b; 2013a) attempted to esti-
mate the abuse of Adderall® using Twitter by de-
tecting the total number of mentions of the medi-
cation. The authors did not attempt to assess if a 
mention represented personal intake or not. 

While such a strategy may suffice for deriving 
estimates “by proxy” at the population level (e.g., 
higher volume of chatter means higher rates of 
use), it has at least two limitations: (i) the actual 
number of tweets representing personal intake 
within a given sample of tweets is unknown, and 
(ii) it is not possible to assess the effects of medi-
cation intake on subsets of users of interest who 
take the medication. Studies focusing on specific 
subsets of individuals rely on other sources of 
data, such as electronic health records and pub-
lished literature from clinical trials, where infor-
mation about the individuals’ medication intake is 
explicit (e.g., Akbarov et al., 2015; Zhou et al., 
2016; Romagnoli et al., 2017). Harnessing social 
media for studying the effects of medications on 
specific cohorts would require developing sys-
tems that can automatically distinguish posts that 
express personal intake from those that do not.  

Due to the very recent incorporation of social 
media data in healthcare systems, published re-
search on our target task of creating a corpus for 
automatic detection of personal medication intake 
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information is scarce. The study by Alvaro et al. 
(2015) is perhaps the most closely related work to 
ours. The authors annotated 1,548 tweets for 
whether they contain “first-hand experiences” of 
adverse drug reactions (ADRs) to prescription 
medications, and they used this annotated data in 
a supervised classification framework aimed at 
automatically identifying tweets that report per-
sonal usage. As far as we are aware, however, they 
have not made their annotated data public; none-
theless, we do not believe that it would have been 
exactly the right training set for our classification 
task. Because our focus is to help set the ground-
work for using social media data in medication-
related cohort studies, we included a subtle but 
key factor in our criteria for identifying personal 
intake: when the medication was taken. We will 
discuss this factor in more detail in the next sec-
tion. In this paper, we present (i) an analysis of 
medication-mentioning chatter on Twitter, (ii) a 
publicly available, annotated corpus of tweets that 
can be used to advance automatic systems, and 
(iii) baseline supervised classification results to 
validate the utility of the annotated data. 

2 Method 

We chose Twitter as the data source for this study 
because of its growing popularity in public health 
research, and its easy-to-use public APIs. We dis-
cuss the three primary tasks—data collection, an-
notation, and classification—in the following sub-
sections. 

2.1 Data Collection 

To build the corpus, we queried 73,800 Twitter 
user timelines (that we collected for related work) 
for 55 medication names, including both prescrip-
tion and over-the-counter medications, brand and 
generic names, and types of medications (e.g., 
steroid). Using a tool that was developed by 
Pimpalkhute et al. (2014), we generated frequent 
misspellings of the medications in order to expand 
the query. We then tokenized all of the tweets, us-
ing the ARK Twokenizer (O’Connor et al., 2010; 
Owoputi et al., 2013), and identified 35,075 
tweets containing a target medication. To account 
for the linguistic idiosyncrasies of how Twitter us-
ers might express their medication intake, we ran-
domly selected one medication tweet from the 
18,033 timelines that included such a tweet, and 
we prepared them for annotation. For this paper, 
                                                      
1 The annotation guidelines and a sample of the annotated 
data are available at: 
https://healthlanguageprocessing.org/twitter-med-intake/ 

10,260 tweets were annotated, with overlapping 
annotations for 1,026 (10%).  

2.2 Annotation 

 In order to control for studying the effects of med-
ication intake on subsets of individuals in a social 
media setting, we decided that tweets of interest 
should not only represent the author’s personal us-
age of the target medication in the tweet; they 
should also indicate the specific instance in which 
the user took the mentioned medication, since re-
searchers using social media data cannot physically 
observe and record when medications were taken. 
Only if the tweets provide this additional infor-
mation about the time of intake can we potentially 
use Twitter data to assess causal associations be-
tween users’ health information (also mined from 
social media data) and the usage of particular med-
ications. As we mentioned earlier, the way that time 
factors into our definition of “intake” marks an im-
portant distinction between our annotated data and 
Alvaro et al.’s (2015). 

We found that, under minimal guidance, intui-
tively agreeing on what constituted a personal in-
take of medication, given the above criteria, was 
very difficult. We attribute this difficulty to the 
wide range of linguistic patterns in which we found 
medication mentions occurring. In an effort to ob-
tain high inter-annotator agreement and address the 
human disagreement that Alvaro et al. seek to over-
come, we analyzed linguistic patterns in samples of 
the data and used this analysis to inform the devel-
opment of annotation guidelines;1 in addition, we 
limited the number of annotation classes to the 
three high-level classes that we thought were most 
directly relevant to the classification task at hand: 
intake, possible intake, and no intake.  

We will summarize our analysis of the three 
classes of tweets here. Intake tweets indicate that 
(i) the medication was actually taken, (ii) the author 
of the tweet personally took the medication, and 
(iii) the medication was taken at a specific time. To 
illustrate (i), consider the following tweets: 

 
(a) Migraine from hell… Took 6 Motrin and 

nothing’s touching it 
(b) I've been off adderall about a month now 

and I'm so much happier, but COM-
PLETELY useless. I'm like a child again. 

  
 
. 
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(c) A lot of people hate on prednisone but I feel 
better already. #stuffworksforme 

(d) this ibuprofen still ain't kicked in my head 
poundin 

 
While only (a) uses a verb phrase that explicitly 
indicates intake (took…), we can infer from fea-
tures of the other tweets that the medication was 
taken: (b) being off the medication, (c) experienc-
ing the effects of the medication, and (d) waiting 
for the medication to kick in all entail that the 
medication was taken.  

Moreover, intake tweets should indicate that 
the author of the tweet took the medication: 

 
(e) Sorry for this rant thingy, I took my 

Vyvanse today lol 
(f) Sick and only had a Tylenol PM at work so 

now i feel better but i am fighting sleep😂 
(g) Just threw back these Xanax 
(h) In soooo much pain tonight and Tylenol just 

isn't cutting it. Literally hurting all over 
 

Through the use of the first-person reference I, (e) 
explicitly states that the author took the medica-
tion, and (f) explicitly attributes the experiential 
effects of the medication (feel better, but fighting 
sleep) to the author. While (g) and (h) do not ex-
plicitly reveal that the author took the medication 
(threw back) or is (not) experiencing the effect of 
the medication (isn’t cutting it), respectively, the 
high degree of self-presentation in social media 
(e.g., Kaplan and Haenlein, 2010; Papacharissi, 
2012; Seidman, 2013) allows us to infer that the 
authors are writing about their own intake and ex-
periences.  

Finally, intake tweets also specify when the med-
ication was taken: 

 
(i) I've been sick for the last 3 days taking Ibu-

profen just feel better and to fight Infection 
"swelling" 

(j) Tylenol is my bestfriend at the moment 
(k) maybe i'm tired as had 2 tramadol my bk is 

sore sore sore... #scoliosis 
(l) Prednisone headache! Ahhhh 

 
Tweet (i) uses a temporal marker that explicitly 
specifies an instance of intake, and, similarly, (j) 
explicitly indicates when the effect of the intake 
occurred. Although (k) and (l) do not explicitly 
specify instances of intake, Twitter’s real-time na-

ture (Sakaki et al., 2010) gives us reason to be-
lieve that the author of (k) recently had the medi-
cation and that the effect in (l) is being currently 
experienced, which represents an intake in the re-
cent past (i.e., a specific instance).  

Unlike intake tweets, some tweets do not specify 
that the author actually took the medication or 
when the medication was taken, but, unlike no in-
take tweets, are generally about the author’s intake. 
Consider the following tweets: 

 
(m) I want to cry it's that painful 😭gonna take 

codeine this morning for sure 
(n) 800 mg of Advil cause this headache is 

real 
(o) I need a Xanax like right now 
(p) Codeine is one hell of a drug. 😴😴😴 
(q) 😭😭😭 I never understood why I get so an-

gryyyy omg I was so mellow on Xanax 🌚 
(r) I pretty much eat Advil like it's 

candy.💊🙆 
 
We consider a tweet to be a possible intake if it 
expresses the intake as a future event (m); it con-
tains merely a purpose for intake (n); it expresses 
a present-tense need for the medication (o); it ab-
stractly praises (or criticizes) the medication with-
out describing a concrete effect (p); it indicates 
that the author has used the medication in the past, 
but does not specify when (q); or, similarly, it in-
dicates that the author uses the medication fre-
quently, but does not specify an instance of intake 
(r). We decided to distinguish possible intake 
tweets because they can direct us to a user’s time-
line for manual probing, where we may find, for 
example, that a series of tweets aggregate to form 
a sort of composite intake tweet. 

In contrast to intake and possible intake tweets, 
no intake tweets are not about the author’s intake 
of the medication. While some no intake tweets are 
not about intake at all, some may be about the in-
take by others, not the author: 

 
(s) @[Username redacted] Mine hurt for days 

last year!! Take some paracetamol hun 😊 
(t) Gave James 2 ibuprofen pm and I'm being 

repaid by the sound of him snoring penetrat-
ing through my earplugs 

 
The act of suggesting a medication (s) or giving 
someone a medication (t) might be interpreted as 
implying that the author has taken the medication 
in the past (i.e., a possible intake), but, because the 
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tweets are not primarily about the author’s intake, 
we consider this inferential leap to be too large to 
warrant the same classification as other possible 
intake tweets.   

While (s) and (t) are explicitly not about the au-
thor’s intake, other tweets may not be as obvious, 
such as tweets that contain merely the name of a 
medication: 
 

(u) @[Username redacted] @[Username re-
dacted] @[Username redacted] 
@[Username redacted] methadone ! 

 
Although (u) also might be interpreted as indicat-
ing the author’s use of the medication, the textual 
evidence does not seem to favor this interpretation 
over other possible ones, such as mere question-
answering. We classify tweets that contain merely 
the name of a medication as no intake because, 
unlike intake and possible intake tweets, they do 
not contain enough information for us to conclude 
that they are about the author’s intake.  

The “addressivity” (Bakhtin, 1986) markers 
“@” in (u) reflect the “dialogic” (Bakhtin, 1981) 
space of social media, wherein the linguistic data 
that we are mining is not only textual, but “inter-
textual” (Kristeva, 1980)—that is, oriented to what 
has already been said by others. Tweets also mark 
this social orientation to others through features of 
“reported speech” (Voloshinov, 1973). Consider 
the following tweets: 

 
(v) @[Username redacted] "I don't either cause 

these Tylenol aren't doing crap!" Lol  
(w) I just wanna give a shoutout to adderall for 

helping me get through the semester - Flor-
ida State 

 
While (v) and (w) would otherwise be classified 
as intake tweets, the quotation marks in (v) and 
the hyphen in (w) mark that the authors are di-
rectly reporting the words of others—in (w), a stu-
dent at Florida State—not their own medication 
intake.  

Other cases of reported speech involve tweets 
that make cultural references about taking medica-
tions—for example, song lyrics or lines from mov-
ies. As our analysis of the three classes suggests, 
identifying indications of personal medication in-
take in social media required grappling with a num-
ber of annotation issues, which forecast the chal-
lenges of using this data to train classifiers.  
                                                      
2 Available at: http://www.cs.waikato.ac.nz/ml/weka/. Ac-
cessed: 5/25/2017. 

2.3 Classification 

We performed supervised classification experi-
ments using several algorithms. The goal for these 
experiments was not to identify the best perform-
ing classification strategy, but to (i) verify that au-
tomatic classifiers could be trained using this data, 
and (ii) generate baseline performance estimates.  

We used stratified 80-20 (training/test) split of 
the annotated set for the experiments. As features, 
we used only word n-grams (n = 1, 2, and 3) fol-
lowing standard preprocessing (e.g., stemming us-
ing the Porter stemmer (Porter, 1980) and lower-
casing). We experimented with four classifiers—
naïve bayes (NB), support vector machines (SVM), 
random forest (RF), logistic regression (LR), and a 
majority-voting based ensemble of the last three. 
Pairwise classification (i.e., 1-vs-1) is used to adapt 
the SVMs to the multiclass problem. Parameter op-
timization for the individual classifiers was per-
formed via 10-fold cross validation over the train-
ing set, with an objective function that maximizes 
the F-score for the intake class.  

Following the classification experiments, we 
performed brief error and feature analyses to iden-
tify common misclassification patterns and possi-
ble future approaches for improving classification 
performance. To identify informative n-grams for 
the intake class, we applied the Information Gain 
feature evaluation technique, which computes the 
importance of an attribute with respect to a class 
according to the following equation: 

 
,ݏݏ݈ܽܥሺܩܫ ሻ݁ݐݑܾ݅ݎݐݐܣ ൌ ሻݏݏ݈ܽܥሺܪ െ   ሻ݁ݐݑܾ݅ݎݐݐܣ|ݏݏ݈ܽܥሺܪ
 
 ሺሻ represents the information entropy for a givenܪ
state (Yang and Pedersen, 1997). We used the Weka 
3 tool2 for all machine learning and feature analysis 
experiments. We present the results for these exper-
iments in the next section. 

3 Results and Discussion 

In this section, we present and discuss the results of 
annotation and the baseline classification experi-
ments, including a brief error analysis of misclassi-
fied intake tweets and a feature analysis to identify 
informative n-grams. 

3.1 Annotation 

For the corpus that we present in this paper, two 
expert annotators have annotated 10,260 tweets, 
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with overlapping annotations for 1,026 (10%). 
Their inter-annotator agreement was κ = 0.88 (Co-
hen’s Kappa). They disagreed on 81 tweets, which 
the first author of this paper resolved through in-
dependent annotation. In total, 1,952 tweets 
(19%) were annotated as intake; 3,219 (31%) 
were annotated as possible intake; and 5,089 
(50%) were annotated as no intake. These fre-
quencies suggest that a minority of tweets that 
mention medications represent personal intake, 
which substantiates the need for this classification 
when mining large amounts of social media data 
for drug safety surveillance. 

3.2 Classification 

Table 1 presents the performances of the different 
classifiers. The overall accuracy (Acc) over the 
three classes and the F-scores (F) for each of the 
three classes are shown. The no intake (NI) class 
has the best F-score due to the larger number of 
training instances. SVMs, RF and LR classifiers 
have comparable accuracies, and they outperform 
the NB baseline. SVMs have the highest F-score 
for the intake (I) class, suggesting that it might be 
the most suitable classifier for this task.  

The voting-based ensemble of the three classifi-
ers does not improve performance over the SVMs. 
Post-classification analyses revealed that this is be-
cause the individual classifiers in the ensemble, 
particularly the LR and SVMs classifiers, make al-
most identical predictions given the feature set of 
n-grams. The confusion matrices for the classifiers’ 
predictions are also alike, with strong inter-classi-
fier agreements in terms of false and true positives 
and negatives. The results and the analyses suggest 
that incorporating/generating features that are more 
informative is more likely to improve performance 
on this task, rather than combining multiple classi-
fiers on the same feature vectors.  

Table 1: Class-specific F-scores and accuracies 
for four classifiers and ensemble 

 
The promising results obtained from automatic 
classification verify that our annotated dataset 
may indeed be used for training automated classi-

fication systems. Including more informative fea-
tures is likely to further improve performance, 
particularly for the smallest (intake) class. 

3.3 Error and Feature Analyses 

An analysis of the false negative results of the in-
take class from the SVM classifier suggests that the 
majority of the errors (62%) could be attributed to 
the implicit indication that (i) the medication was 
taken, (ii) the author of the tweet personally took 
the medication, or (iii) the medication was taken at 
a specific time. In 69% of these cases, the intake 
tweet did not explicitly state (i), that the medication 
was taken. The next largest set of misclassified in-
take tweets comprised instances where the intake 
tweets contain lexical features that seem to fre-
quently occur in the other classes (e.g., negation). 
Incorporating semantic features into the SVM clas-
sifier is likely to improve classification of the in-
take tweets.  

Table 2 presents the 15 most informative n-
grams for distinguishing the intake class from the 
others, as identified by the information gain meas-
ure. The table suggests that certain personal pro-
nouns and explicit markers of personal consump-
tion (e.g., I took), information about effectiveness 
(e.g., not working), and expressions indicating the 
need for a medication (e.g., need a) are useful n-
grams for the classification task.  

i not helping i ve taken 
took i need not working 

i took ve been taking still in 
took some took two need a 
to kick in i ve taken just took 
Table 2: Most informative n-grams that distin-

guish the intake class from the others 

4 Conclusion 

In this paper, we presented a brief analysis of what 
we consider to be linguistic representations of per-
sonal medication intake on Twitter. This linguistic 
analysis informed our manual annotation of 
10,260 tweets. We presented baseline supervised 
classification results that suggest that this anno-
tated corpus can be used for training automated 
classification systems to detect personal medica-
tion intake in large amounts of social media data, 
and we will seek to improve the performance of 
our classifiers in future work. We believe that this 
classification is an important step towards broad-
ening the use of social media for surveillance of 
drug safety. 
  

 I  
(F) 

PI  
(F) 

NI  
(F) 

Acc 
(%) 

95%  
CI 

NB 0.59 0.58 0.73 64.4 62.4-66.3 

SVM 0.67 0.69 0.80 73.4 71.5-75.1 

RF 0.60 0.68 0.80 72.2 70.4-74.0 

LR 0.65 0.68 0.79 72.5 70.7-74.3 

Ensemble 0.67 0.69 0.80 73.3 71.4-75.1 
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Abstract

We present an unsupervised context-
sensitive spelling correction method for
clinical free-text that uses word and char-
acter n-gram embeddings. Our method
generates misspelling replacement candi-
dates and ranks them according to their se-
mantic fit, by calculating a weighted co-
sine similarity between the vectorized rep-
resentation of a candidate and the mis-
spelling context. We greatly outperform
two baseline off-the-shelf spelling cor-
rection tools on a manually annotated
MIMIC-III test set, and counter the fre-
quency bias of an optimized noisy channel
model, showing that neural embeddings
can be successfully exploited to include
context-awareness in a spelling correction
model. Our source code, including a
script to extract the annotated test data, can
be found at https://github.com/
pieterfivez/bionlp2017.

1 Introduction

The genre of clinical free-text is notoriously noisy.
Corpora contain observed spelling error rates
which range from 0.1% (Liu et al., 2012) and 0.4%
(Lai et al., 2015) to 4% and 7% (Tolentino et al.,
2007), and even 10% (Ruch et al., 2003). This
high spelling error rate, combined with the vari-
able lexical characteristics of clinical text, can ren-
der traditional spell checkers ineffective (Patrick
et al., 2010).

Recently, Lai et al. (2015) have achieved nearly
80% correction accuracy on a test set of clinical
notes with their noisy channel model. However,
their model does not leverage any contextual in-
formation, while the context of a misspelling can
provide important clues for the spelling correction

process, for instance to counter the frequency bias
of a context-insensitive corpus frequency-based
system. Flor (2012) also pointed out that ignor-
ing contextual clues harms performance where a
specific misspelling maps to different corrections
in different contexts, e.g. iron deficiency due to
enemia → anemia vs. fluid injected with enemia
→ enema. A noisy channel model like the one by
Lai et al. will choose the same item for both cor-
rections.

Our proposed method exploits contextual clues
by using neural embeddings to rank misspelling
replacement candidates according to their seman-
tic fit in the misspelling context. Neural embed-
dings have recently proven useful for a variety of
related tasks, such as unsupervised normalization
(Sridhar, 2015) and reducing the candidate search
space for spelling correction (Pande, 2017).

We hypothesize that, by using neural embed-
dings, our method can counter the frequency bias
of a noisy channel model. We test our sys-
tem on manually annotated misspellings from the
MIMIC-III (Johnson et al., 2016) clinical notes. In
this paper, we focus on already detected non-word
misspellings, i.e. where the misspellings are not
real words, following Lai et al.

2 Approach

2.1 Candidate Generation
We generate replacement candidates in 2 phases.
First, we extract all items within a Damerau-
Levenshtein edit distance of 2 from a reference
lexicon. Secondly, to allow for candidates be-
yond that edit distance, we also apply the Dou-
ble Metaphone matching popularized by the open
source spell checker Aspell.1 This algorithm
converts lexical forms to an approximate pho-
netic consonant skeleton, and matches all Dou-

1http://aspell.net/metaphone/
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ble Metaphone representations within a Damerau-
Levenshtein edit distance of 1. As reference lexi-
con, we use a union of the UMLS R© SPECIALIST
lexicon2 and the general dictionary from Jazzy3, a
Java open source spell checker.

2.2 Candidate Ranking

Our setup computes the cosine similarity be-
tween the vector representation of a candidate and
the composed vector representations of the mis-
spelling context, weights this score with other pa-
rameters, and uses it as the ranking criterium. This
setup is similar to the contextual similarity score
by Kilicoglu et al. (2015), which proved unsuc-
cessful in their experiments. However, their ex-
periments were preliminary. They used a limited
context window of 2 tokens, could not account for
candidates which are not observed in the train-
ing data, and did not investigate whether a big-
ger training corpus leads to vector representations
which scale better to the complexity of the task.

We attempt a more thorough examination of the
applicability of neural embeddings to the spelling
correction task. To tune the parameters of our
unsupervised context-sensitive spelling correction
model, we generate tuning corpora with self-
induced spelling errors for three different scenar-
ios following the procedures described in section
3.2. These three corpora present increasingly dif-
ficult scenarios for the spelling correction task.
Setup 1 is generated from the same corpus which
is used to train the neural embeddings, and exclu-
sively contains corrections which are present in the
vocabulary of these neural embeddings. Setup 2 is
generated from a corpus in a different clinical sub-
domain, and also exclusively contains in-vector-
vocabulary corrections. Setup 3 presents the most
difficult scenario, where we use the same corpus as
for Setup 2, but only include corrections which are
not present in the embedding vocabulary (OOV).
In other words, here our model has to deal with
both domain change and data sparsity.

Correcting OOV tokens in Setup 3 is made pos-
sible by using a combination of word and char-
acter n-gram embeddings. We train these embed-
dings with the fastText model (Bojanowski et al.,
2016), an extension of the popular Word2Vec
model (Mikolov et al., 2013), which creates vec-

2https://lexsrv3.nlm.nih.gov/
LexSysGroup/Projects/lexicon/current/
web/index.html

3http://jazzy.sourceforge.net

Divide by OOV 
penalty

Is candidate OOV?Divide by edit 
distance

For each 
candidate

Cosine similarity

Vectorize misspelling 
context words

Rank by score

Vectorize candidate

No

Yes

Addition with 
reciprocal weighting

Figure 1: The final architecture of our model. It
vectorizes every context word on each side within
a specified scope if it is present in the vector vo-
cabulary, applies reciprocal weighting, and sums
the representations. It then calculates the cosine
similarity with each candidate vector, and divides
this score by the Damerau-Levenshtein edit dis-
tance between the candidate and misspelling. If
the candidate is OOV, the score is divided by an
OOV penalty.

tor representations for character n-grams and sums
these with word unigram vectors to create the final
word vectors. FastText allows for creating vector
representations for misspelling replacement can-
didates absent from the trained embedding space,
by only summing the vectors of the character n-
grams.

We report our tuning experiments with the dif-
ferent setups in 4.1. The final architecture of our
model is described in Figure 1. We evaluate this
model on our test data in section 4.2.

3 Materials

We tokenize all data with the Pattern tokenizer (De
Smedt and Daelemans, 2012). All text is lower-
cased, and we remove all tokens that include any-
thing different from alphabetic characters or hy-
phens.
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3.1 Neural embeddings

We train a fastText skipgram model on 425M
words from the MIMIC-III corpus, which contains
medical records from critical care units. We use
the default parameters, except for the dimension-
ality, which we raise to 300.

3.2 Tuning corpora

In order to tune our model parameters in an
unsupervised way, we automatically create self-
induced error corpora. We generate these tuning
corpora by randomly sampling lines from a refer-
ence corpus, randomly sampling a single word per
line if the word is present in our reference lexi-
con, transforming these words with either 1 (80%)
or 2 (20%) random Damerau-Levenshtein opera-
tions to a non-word, and then extracting these mis-
spelling instances with a context window of up to
10 tokens on each side, crossing sentence bound-
aries. For Setup 1, we perform this procedure
for MIMIC-III, the same corpus which we use to
train our neural embeddings, and exclusively sam-
ple words present in our vector vocabulary, re-
sulting in 5,000 instances. For Setup 2, we per-
form our procedure for the THYME (Styler IV
et al., 2014) corpus, which contains 1,254 clin-
ical notes on the topics of brain and colon can-
cer. We once again exclusively sample in-vector-
vocabulary words, resulting in 5,000 instances.
For Setup 3, we again perform our procedure for
the THYME corpus, but this time we exclusively
sample OOV words, resulting in 1,500 instances.

3.3 Test corpus

No benchmark test sets are publicly available for
clinical spelling correction. A straightforward an-
notation task is costly and can lead to small cor-
pora, such as the one by Lai et al., which con-
tains just 78 misspelling instances. Therefore, we
adopt a more cost-effective approach. We spot
misspellings in MIMIC-III by looking at items
with a frequency of 5 or lower which are ab-
sent from our lexicon. We then extract and an-
notate instances of these misspellings along with
their context, resulting in 873 contextually dif-
ferent instances of 357 unique error types. We
do not control for the different genres covered in
the MIMIC-III database (e.g. physician-generated
progress notes vs. nursing notes). However,
in all cases we make sure to annotate actual
spelling mistakes and typos as opposed to abbre-

viations and shorthand, resulting in instances such
as phebilitis → phlebitis and sympots → symp-
toms. We provide a script to extract this test set
from MIMIC-III at https://github.com/
pieterfivez/bionlp2017.

4 Results

For all experiments, we use accuracy as the metric
to evaluate the performance of models. Accuracy
is simply defined as the percentage of correct mis-
spelling replacements found by a model.

4.1 Parameter tuning
To tune our model, we investigate a variety of pa-
rameters:

Vector composition functions

(a) addition
(b) multiplication
(c) max embedding by Wu et al. (2015)

Context metrics

(a) Window size (1 to 10)
(b) Reciprocal weighting
(c) Removing stop words using the English stop

word list from scikit-learn (Pedregosa et al.,
2011)

(d) Including a vectorized representation of the
misspelling

Edit distance penalty

(a) Damerau-Levenshtein
(b) Double Metaphone
(c) Damerau-Levenshtein + Double Metaphone
(d) Spell score by Lai et al.

We perform a grid search for Setup 1 and Setup 2
to discover which parameter combination leads to
the highest accuracy averaged over both corpora.
In this setting, we only allow for candidates which
are present in the vector vocabulary. We then in-
troduce OOV candidates for Setup 1, 2 and 3, and
experiment with penalizing them, since their rep-
resentations are less reliable. As these representa-
tions are only composed out of character n-gram
vectors, with no word unigram vector, they are
susceptible to noise caused by the particular na-
ture of the n-grams. As a result, sometimes the
semantic similarity of OOV vectors to other vec-
tors can be inflated in cases of strong orthographic
overlap.
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Table 1: Correction accuracies for our 3 tuning
setups.

Setup 1 Setup 2 Setup 3

Context 90.24 88.20 57.00
Noisy Channel 85.02 85.86 39.73

Since OOV replacement candidates are more
often redundant than necessary, as the majority of
correct misspelling replacements will be present in
the trained vector space, we try to penalize OOV
representations to the extent that they do not cause
noise in cases where they are redundant, but still
rank first in cases where they are the correct re-
placement. We tune this OOV penalty by maxi-
mizing the accuracy for Setup 3 while minimizing
the performance drop for Setup 1 and 2, using a
weighted average of their correction accuracies.

All parameters used in our final model architec-
ture are described in Figure 1. The optimal con-
text window size is 9, whereas the optimal OOV
penalty is 1.5.

To compare our method against a reference
noisy channel model in the most direct and fair
way, we implement the ranking component of Lai
et al.’s model in our pipeline (Noisy Channel),
and optimize it with the same MIMIC-III materials
that we use to train our embeddings. We perform
the optimization by extracting corpus frequencies,
which are used to estimate the prior probabilities
in the ranking model, from this large data con-
taining 425M words. In comparison, Lai et al.’s
own implementation uses corpus frequencies ex-
tracted from data containing only 107K words,
which is a rather small amount to estimate reliable
prior probabilities for a noisy channel model. In
the optimized setting, our context-sensitive model
(Context) outperforms the noisy channel for each
corpus in our tuning phase, as shown in Table 1.

4.2 Test

Table 2 shows the correction accuracies for Con-
text and Noisy Channel, as compared to two base-
line off-the-shelf tools. The first tool is Hun-
Spell, a popular open source spell checker used by
Google Chrome and Firefox. The second tool is
the original implementation of Lai et al.’s model,
which they shared with us. The salient difference
in performance with our own implementation of
their noisy channel model highlights the influence

Figure 2: 2-dimensional t-SNE projection of the
context of the test misspelling “goint” and 4 re-
placement candidates in the trained vector space.
Dot size denotes corpus frequency, numbers de-
note cosine similarity. The misspelling context is
“new central line lower extremity bypass with sob
now [goint] to [be] intubated”. While the noisy
channel chooses the most frequent “point”, our
model correctly chooses the most semantically fit-
ting “going”.

of training resources and tuning decisions on the
general applicability of spelling correction mod-
els.

The performance of our model on the test set
is slightly held back by the incomplete coverage
of our reference lexicon. Missing corrections are
mostly highly specialized medical terms, or in-
flections of more common terminology. Table 2
shows the scenario where these corrections are
added to the reference lexicon, leading to a score
which is actually higher than those for the tuning
corpora.

To analyze whether our context-sensitive model
successfully counters the frequency bias of our op-
timized noisy channel model, we divide the in-
stances of the test set into three scenarios accord-
ing to the relative frequency of the correct replace-
ment compared to the other replacement candi-
dates. In cases where the correct replacement is
the most or second most frequent candidate, the
noisy channel scores slightly better. In all other
cases, however, our method is more stable. Figure
2 visualizes an example.

Nevertheless, some issues have to be raised.
First of all, for the cases with low relative fre-
quency of the correct replacement, the small sam-
ple size should be kept in mind: the difference be-
tween both models concerns 6 correct instances on
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Table 2: The correction accuracies for our test set, evaluated for two different scenarios. Off-the-shelf :
gives the accuracies of all off-the-shelf tools. With completed lexicon: gives the accuracies of our
implemented models for the scenario where correct replacements missing from the lexicon are included
in the lexicon before the experiment.

Evaluation HunSpell Lai et al. Context Noisy Channel

OFF-THE-SHELF 52.69 61.97 88.21 87.85
WITH COMPLETED LEXICON 93.02 92.66

a total of 243. While the difference is very pro-
nounced in the much larger tuning corpora, the
artificial nature of those corpora does not lead to
strong evidence. Moreover, considering the simi-
larity of the general performance of both models
on the test set, more test data is needed to make
a strong empirical claim about this specific aspect
of our model.

While we have optimized the prior probabilities
of Lai et al.’s ranking model, the posterior prob-
abilities are still estimated with Lai et al.’s rudi-
mentary spell score, which is a weighted combi-
nation of Damerau-Levenshtein and Double Meta-
phone edit distance. While this error model leads
to a noisy channel model which is robust in per-
formance, as shown by our test results, an empir-
ical error model derived from a large confusion
matrix can for example help correct the instance
described in Figure 2, by capturing that the word-
final transformation t → g is more probable than
the word-initial transformation g→ p. As of now,
however, such a resource is not available for the
clinical domain.

The errors that our model makes concern, pre-
dictably, misspellings for which the contextual
clues are too unspecific or misguiding. These
cases remain challenging for the concept of our
method. While our tuning experiments have ex-
plicitly tried to maximize the scope and efficiency
of our model, there is still room for improvement,
especially for OOV corrections, even as we han-
dle them more effectively than context-insensitive
frequency-based methods.

5 Conclusion and future research

In this article, we have proposed an unsupervised
context-sensitive model for clinical spelling cor-
rection which uses word and character n-gram em-
beddings. This simple ranking model, which can
be tuned to a specific domain by generating self-
induced error corpora, counters the frequency bias

of a noisy channel model by exploiting contextual
clues. As an implemented spelling correction tool,
our method greatly outperforms two baseline off-
the-shelf spelling correction tools, both a broadly
used and a domain-specific one, for empirically
observed misspellings in MIMIC-III.

Future research can investigate whether our
method transfers well to other genres and do-
mains. Secondly, handling corrections which are
not observed in any training data still proves to be
a tough task, which might benefit from new con-
ceptual insights. Lastly, it is worthwhile to investi-
gate how our model interacts with the misspelling
detection task compared to existing models.
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Abstract

Approximately 80% to 95% of patients
with Amyotrophic Lateral Sclerosis (ALS)
eventually develop speech impairments
(Beukelman et al., 2011), such as defective
articulation, slow laborious speech and hy-
pernasality (Duffy, 2013). The relation-
ship between impaired speech and asymp-
tomatic speech may be seen as a diver-
gence from a baseline. This relationship
can be characterized in terms of measur-
able combinations of phonological charac-
teristics that are indicative of the degree
to which the two diverge. We demon-
strate that divergence measurements based
on phonological characteristics of speech
correlate with physiological assessments
of ALS. Speech-based assessments offer
benefits over commonly-used physiologi-
cal assessments in that they are inexpen-
sive, non-intrusive, and do not require
trained clinical personnel for administer-
ing and interpreting the results.

1 Introduction
Amyotrophic lateral sclerosis (ALS) or Lou
Gehrig’s Disease, the most common form of mo-
tor neuron disease, is a rapidly progressive, neu-
rodegenerative condition. It is characterized by
muscle atrophy, muscle weakness, muscle spastic-
ity, hyperreflexia, difficulty speaking (dysarthria),
difficulty swallowing (dysphagia), and difficulty
breathing (dyspnea). Mean survival time for ALS
patients is three to five years from the time it
is diagnosed; however, death may occur within
months, or survival may last decades.

Most physiological assessments used to deter-
mine the functional status of patients with ALS are
invasive, involving the use of expensive equipment

and requiring trained clinical personnel to admin-
ister the tests and interpret the results. This is the
case for a number of standardized objective assess-
ments of bulbar function in ALS patients (Green
et al., 2013), for example: breathing patterns, ar-
ticulatory patterns, and voice loudness. These are
generally measured by technologies that record
chest wall movements, oral pressures and flows,
oral movement and strength, and speech acoustics.

This paper lays the foundation for the devel-
opment of less invasive phonologically-inspired
measures that correlate strongly with (more inva-
sive) physiological measures of ALS. Speech im-
pairments eventually affect 80% to 95% of pa-
tients with ALS (Beukelman et al., 2011). In
fact, Yorkston et al. (1993) noted that speech im-
pairments may be present up to 33 months prior
to diagnosis of ALS. Several previous studies
(Yunusova et al., 2016) have shown that speech
impairments correlate with physiological changes
associated with ALS. Thus, we focus on corre-
lating measures based on phonological features
with standard physiological measures, thus en-
abling new, non-invasive measures for assessing
the functionality of an ALS patient without signif-
icant overhead for personnel training and adminis-
tration.

To bring this about, we determine the degree of
divergence of symptomatic speech from asymp-
tomatic speech taken as a baseline.1 This determi-
nation is based on phonological features in speech,
most of which have been previously identified in
the literature as being associated with ALS, e.g.,
monoloudness, hypernasality and distorted vow-
els, see (Duffy, 2013). These are annotated, for
the current study, by specialists, i.e., a phonolo-

1As part of a longitudinal study, we are exploring indi-
vidual baselines for each ALS speaker: speech from each
speaker’s first visit is taken as an individual baseline for the
speaker.

149



gist and a speech therapist experienced in working
with ALS patients. The degree of divergence is
correlated with physiological assessments of ALS,
namely %FVC (Forced Vital Capacity) in sitting
(%FVC-SIT) as well as supine (%FVC-SUP) po-
sitions.2

The rest of the paper is organized as follows: In
Section 2 we discuss related work that motivates
and informs our research. Section 3 describes data
used for our experiments. A discussion of speech
divergence is presented in Section 4. Section 5
presents an assessment of the degree to which
divergent characteristics in the speech match the
level of progress of the ALS condition. This is
followed by a discussion of future work and con-
clusions in Section 6.

2 Related Work
A number of past studies have investigated the
utility of measuring the “voice signal” in order
to answer questions about a speaker’s state from
their speech (Schuller et al., 2015, 2011). One
such study attempts to distinguish classes of in-
dividuals with various speech impairments, such
as stuttering (Nöth et al., 2000), aphasia (Fraser
et al., 2014), and developmental language dis-
orders (Gorman et al., 2016). The recognition
of impaired speech has been employed to de-
tect Alzheimer’s (Rudzicz et al., 2014). Various
speech-related features have been employed to de-
tect whether the speech is affected by Parkinson’s
Disease (Bocklet et al., 2011). Relatedly, varia-
tions in speech properties under intoxicated and
sober conditions have also been conducted (Bi-
adsy et al., 2011).

Our work differs from prior approaches in that
we explore perceivable phonological characteris-
tics through the analysis of language divergences.
One of the motivations for using phonological fea-
tures exclusively rather than also using other fea-
tures employed in prior studies was that phono-
logical features did not require expensive equip-
ment to collect data from speakers as e.g., a fea-
ture like maximum subglottal pressure would re-
quire. Since the goal of this work is to develop
a measure that is completely based on speech fea-
tures that can be identified with a simple click on a

2%FVC-SUP refers to the percent value of the Forced
Vital Capacity while the person is in supine position, and
%FVC-SIT refers to the percent value of the Forced Vital Ca-
pacity while the person is in sitting position. See (Brinkmann
et al., 1997; Czaplinski et al., 2006) for additional informa-
tion about use of FVC in ALS assessments.

device such as a phone, we focused on phonologi-
cal features on which a machine can be trained to
analyze automatically. Our focus on correlations
with phonological features—tied to the notion of
divergence from a baseline—is a significant con-
tribution beyond what has been investigated previ-
ously.

The notion of divergence itself is not a new one
in natural language processing. The characteriza-
tion of divergence classes (Dorr, 1994) has been at
the heart of solutions to many different problems
ranging from word alignment (Dorr et al., 2002)
to machine translation (Habash and Dorr, 2002)
to acquisition of semantic lexicons (Olsen et al.,
1998). Finding the minimal primitive units—and
determining their possible combinations—was the
foundation for this earlier work. However, in these
earlier studies, primitives consisted of properties
that were syntactic, lexical, or semantic in nature,
whereas the primitives for the current work consist
of properties that are phonological in nature.

Beukelman et al. (2011), Duffy (2013), Green
et al. (2013), and Orimaye et al. (2014) have es-
tablished that pronunciation varies systematically
within categories of speech impairment. (Silber-
gleit et al., 1997; Carrow et al., 1974) have shown
that ALS speech shows deviant characteristics.
For example, (Ball et al., 2001) observe that ALS
speakers manifest altered voice quality. A num-
ber of speaker-level characteristics associated with
impaired speech studied in prior work have been
leveraged for our speech-related divergence detec-
tion. For example, Duffy (2013) specifically has
enumerated speaker-level characteristics, such as
monopitch and monoloudness.

Rong et al. (2015; 2016), and Yunusova et
al. (2016) have previously attempted to iden-
tify measures of speech motor function for ALS
speech. While certain components of speech such
as speaking rate, breathing patterns, and voice
loudness have proven too variable to provide a re-
liable marker (Green et al., 2013), we demonstrate
that divergence measurements based on phonolog-
ical characteristics of speech correlate with physi-
ological assessments of ALS.

In addition to speaker-level characteristics and
associated properties, our work defines divergence
in terms of speech/span-level characteristics, as
described in Section 3. Smaller vowel space ar-
eas have been found in ALS speech (Turner et al.,
1995; Weismer et al., 2001) which suggests that
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vowels may be distorted in ALS speech. Simi-
larly, Kent et al (Kent et al., 1990) found place
and manner of articulation for some consonants,
and regulation of tongue height for vowels to di-
verge from asymptomatic speech; these were ex-
pected to result in imprecise consonants and dis-
torted vowels. Caruso and Burton (1987) observed
that ALS speakers and asymptomatic speakers ex-
hibited significant differences in stop-gap dura-
tions as well as in vowel durations.

Yunusova et al. (2016) have also previously
shown a correlation between speaking rate and
physiological measures of ALS, specifically ALS
Functional Rating Scale (ALSFRS).3 Our own
work differs from this prior work in that we de-
fine divergence in terms of a wider range of speech
characteristics—beyond speaking rate—and then
demonstrate that divergence measures correlate
with physiological measures of ALS.

3 Data: Transcriptions and Phonological
Annotations

The data for our experiments consist of recorded
speech of 16 recruited subjects with ALS in a clin-
ical setting, collected quarterly for each subject.
The subjects range between 35-74 years of age.
Their age distribution is as follows: one subject
in the 30s, two subjects in their 40s, one subject
in their 50s, five subjects in their 60s, and seven
subjects in their 70s. Out of the 16 subjects, only
one of them is female, the other 15 subjects are
male. In terms of race of the subjects, we have
the following distribution: White (12), Asian (1),
African-American (1), Not reported (2).

The criteria for the recruitment of a particular
subject are that the subject: (1) has been diagnosed
with ALS; (2) is a native monolingual speaker
of American English; (3) has bulbar involvement
identified during initial ALS inpatient evaluation;
(4) has a forced vital capacity (FVC) of greater
than 50% of the expected value for age; and (5) has
an ALSFRS-R score4 of 40 or greater. Excluded
from the study are those who have received a diag-
nosis of dementia, FVC of less than 50%, inability
to speak, or inability to follow directions.

As part of their standard clinical care, each
ALS-diagnosed subject reports for a quarterly

3ALSFRS is a standard questionnaire-based scale to mea-
sure functionality of a person in carrying out daily activities,
see (Cedarbaum and Stambler, 1997; Brooks, 1997).

4ALSFRS-R is a revised ALSFRS that incorporates as-
sessments of respiratory function (Cedarbaum et al., 1999).

evaluation during which the following measures
are collected: Forced Vital Capacity (FVC;
(Brinkmann et al., 1997; Czaplinski et al.,
2006)), Penetration-Aspiration Scale (a paper-
pencil screen; (Rosenbek et al., 1996)), ALSFRS-
R (Cedarbaum and Stambler, 1997; Cedarbaum
et al., 1999), and Speech Intelligibility Test (SIT
(Beukelman et al., 2011; Yorkston et al., 2007)).

1. She held your dark suit in greasy wash water all year.
2. Don’t ask me to hold an oily rag like that.
3. The big dog loved to chew on the old rag doll.
4. Chocolate and roses never fail as a romantic gift.

Table 1: Four TIMIT Sentences

Speech recordings of the same four sentences,
that have been preselected, are made during each
(quarterly) visit of each of the patients.5 The four
sentences, presented in Table 1, are selected from
the Texas-Instrument/MIT (TIMIT) corpus (Garo-
folo et al., 1993) and were designed to be pho-
netically rich, thus providing solid coverage of the
phonetic space from each subject.6

The data also include recordings of four control
(asymptomatic) subjects, two of whom are female
and two are male, reading the same four TIMIT
sentences in the same setting as the symptomatic
subjects. These are used as the baseline speech
against which divergence scores (defined in the
next section) are calculated for the ALS symp-
tomatic speech.

Our hypothesis is that a higher divergence is in-
dicative of the progression of the ALS condition.
This study focuses on divergence with respect
to asymptomatic speech—taken as a baseline—
to determine whether the divergence is speaker
dependent or whether it is more generally in-
dicative of ALS progression. If the latter, this
would help diagnose patients for which no previ-
ous/longitudinal data is available.7

ALS speech data for the 16 subjects was tran-
scribed and annotated via speech-analysis soft-
ware called Praat (Boersma and van Heuven,
2001) for the 14 phonological characteristics
enumerated in Table 2. These characteristics

5All uses of these data as reported in this paper have been
approved by the relevant Institutional Review Board (IRB).

6Note the TIMIT sentences 1 and 2 are slightly different
from the original TIMIT sentences; the original TIMIT sen-
tences are as follows: (1) She had your dark suit in greasy
wash water all year; (2) Don’t ask me to carry an oily rag
like that.

7However, as longitudinal data becomes available to us
in our future work, we will also look at divergence based on
speaker dependent baselines.
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Speaker level characteristics
monopitch Voice lacks inflectional changes; pitch does not change much.
monoloudness Voice for which the volume/loudness does not change, hence lacking normal variations in loudness.

Speech/span related characteristics
harshness Voice seems harsh, rough and raspy—sometimes referred to as pressed voice—similar to what hap-

pens when a person talks while lifting a heavy load.
imprecise
consonants

Consonant sounds lack precision. There may be slurring, inadequate sharpness, distortions, lack of
crispness, and clumsiness in transitioning from one consonant to another. For example, a “w” may
be produced instead of a “b”.

distorted
vowels

Vowel sounds distorted throughout their total duration. For example, a “a” may be produced instead
of “i”.

prolonged
phonemes

A phoneme (i.e., a consonant or a vowel) is prolonged, i.e., its sound (when it is produced) continues
over an unusual period of time.

inappropriate
silences

Pauses that are produced not at syntactic or prosodic boundaries.

hypernasality Vowels that are supposed to be non-nasalized are instead nasalized in speech.
strained or
strangled
quality

Tenseness in voice (as with overall muscular tension). Perceived as increased effort, may seem tense
or harsh as if talking and lifting at the same time or as if talking with breath held.

breathiness Voice seems breathy, weak and thin. May seem like a sighing sound. There may be non-modulated
turbulence noise in the produced sound, i.e., audible air escape in voice or bursts of breathiness.

audible inspi-
ration/stridor

Noisy breathing and wheezing may accompany inhaling. There may be a harsh, crowing, or vibra-
tory sound of variable pitch resulting from turbulent air flow caused by partial obstruction of the
respiratory passages.

unusual stress Speech sounds where most important parts of a sentence may be de-stressed or all parts of a sentence
are stressed as if all are important or speech sounds may be perceived as robotic, with the same
stress—where there is no variation in stress throughout sentence/phrase/word/syllable.

hoarseness Abnormal voice changes, where voice may sound breathy, raspy, strained, or there may be changes
in volume (loudness) or pitch (how high or low the voice is).

vocal fry Popping or rattling sound of a very low frequency—also known as a creaky voice.

Table 2: Phonological characteristics annotated in symptomatic speech

were pre-identified mostly based on the clini-
cal research literature on ALS speech, e.g., see
Duffy (2013): p248. The phonological annota-
tions were made by two specialists: one of whom
was a phonologist and the other was a speech ther-
apist with experience working with ALS speakers.

Two classes of phonological characteristics
served as the basis of annotations, each with a set
of primitive phonological features: speaker level
characteristics and speech/span related character-
istics. Speaker level characteristics refer to fea-
tures in speech that are more characteristic of a
specific speaker’s voice—independent of individ-
ual sounds/spans, e.g., monopitch which indicates
the lack of inflectional changes in voice. These
were annotated only once for each speaker.

Speech/span related characteristics, on the
other hand, refer to features in speech that are
characteristic of a specific sound or are observed
for a portion of speech—as opposed to features
that are characteristic of the voice itself. For ex-
ample, the feature imprecise consonants refers to
the portion of speech where a specific consonant
is produced imprecisely, it may involve slurring
or inadequate sharpness, e.g., producing a “w”
instead of a “b”. For these annotations, spans
in speech were marked over which these features

were observed.

For each of these characteristics, the annotators
also assigned a 1-10 Likert scale (Likert, 1932)
rating to indicate the severity of the characteris-
tic when it is observed, where 10 indicates “very
severe” and 1 indicates “negligible.”

4 Divergence in Speech
Understanding the relationship between impaired
speech and asymptomatic speech is facilitated
by measuring the degree to which symptomatic
speech diverges from a baseline. For the cur-
rent study, asymptomatic speech—which serves
as a baseline—was created from a combination
of recordings from asymptomatic speakers as de-
scribed in Section 3. Simplistically, the degree of
divergence is defined as the sum of the changes in
a speech utterance from its asymptomatic equiv-
alent. For a correlation to be supported, a large
number of changes in speech (i.e., a strong diver-
gence from asymptomatic speech) would corre-
spond to advanced progression of the disease. The
relationship between impaired speech and asymp-
tomatic speech is characterized in terms of mea-
surable combinations of phonological characteris-
tics that are indicative of the degree to which the
two diverge. The degree of divergence can be used
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as a diagnostic tool at regular intervals for check-
ing the severity of physiological changes.

Multiple methods have been applied in order to
calculate divergence scores:
1. Feature count based divergence score: Fea-

ture count refers to the number of character-
istics observed in the speech samples.8 The
Feature count based divergence score for each
ALS speaker is the difference between the fea-
ture count for the ALS speech and the feature
count for the control asymptomatic speech.
Four variations of this score are used based on
how the feature count for the control asymp-
tomatic speech is obtained:
(a) Average feature count for controls: It is

assumed that asymptomatic speakers may
display characteristics identified in Table 2
but to a much smaller extent. Thus, taking
a simple average of the feature count for
control speakers is taken to be most rep-
resentative of all asymptomatic speakers.
The feature count for the control asymp-
tomatic speech is the average of the feature
count for all the control speakers.

(b) Minimum feature count for controls:
The control speaker with the minimum
number of characteristics in his/her speech
is assumed to be the most asymptomatic.
Hence, the feature count for the control
asymptomatic speech is the minimum of
the feature counts for all control speakers.

(c) Gender dependent average feature
count for controls: The presence (or
absence) of characteristics may be de-
pendent on the gender of the speaker. To
calculate divergence scores, it is best if
speakers of the same gender are compared.
Hence, the feature count for the control
asymptomatic speech is the average of the
feature count for all the control speakers
of the same gender as the ALS speaker.

(d) Gender dependent minimum feature
count for controls: It is assumed the con-
trol speaker with the minimum number
of characteristics in his/her speech is the
most asymptomatic, but the presence (or
absence) of characteristics may be gender
dependent. To calculate divergence scores,
it is best if speakers of the same gender

8The counts from the two annotators were combined to-
gether in five different ways described in Section 5.1.

are compared. Hence, the feature count
for the control asymptomatic speech is the
minimum of the feature count for all the
control speakers of the same gender as the
ALS speaker.

2. Total frequency based divergence score: For
each speaker, an observed frequency score is
computed as an aggregate of the frequencies
of all observed characteristics in the speech of
the speaker.9 The average of the observed fre-
quency score of both the annotators for a given
speaker is taken as the frequency score for the
speaker. The divergence score for an ALS
speaker is the difference between the frequency
score for the ALS speech and the frequency
score for the control asymptomatic speech.
The same four variations of this score are ex-
amined as described in the case of Feature
count based divergence score, depending on
how the frequency score for the control asymp-
tomatic speech is obtained.

3. Likert Scale rating based divergence score:
It is assumed that each of the characteristics
may be as indicative of the condition as other
characteristics in various ALS speakers. It is
also assumed that the severity of the charac-
teristics indicates progression of ALS. An ob-
served Likert score of the speech samples from
a speaker is taken to be an aggregate of the mul-
tiples of Likert Scale rating assigned by an an-
notator for each occurrence of a characteristic
with the weight of the characteristic (which is
uniformly taken to be 1 for all the character-
istics in the current analysis). A Likert score
for a speaker is calculated as an average of
the two annotators’ observed Likert scores of
the speech samples from the speaker. A Likert
Scale rating based divergence score for each
ALS speaker is then taken to be the difference
between the Likert score for the ALS speech
and the Likert score for the control asymp-
tomatic speech. The same four variations of
this score are examined as described in the case
of Feature count based divergence score, de-
pending on how the Likert score for the control
asymptomatic speech is obtained.
For each of the three divergence measures de-

fined above, a higher score indicates that the
patients speech diverges from an asymptomatic

9For example, if a characteristic, say distorted vowels, is
observed 6 times, the frequency for distorted vowels is 6.
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Spkr %FVC-
SUP

%FVC-
SIT

Feature
count

Total fre-
quency

Likert
scale

18 79 88 -0.75 -5 52.5
9 77 78 4.25 7 53.25
1 77 77 0.25 -2.5 37.75
6 75 79 0.5 0.5 29.5
14 66 41 4.5 10.25 83.5
10 53 64 7 13.75 98.75
5 52 56 7.5 22 127.25
4 51 44 8.75 29.5 189.75
8 50 56 5.75 13.75 53.25
17 50 52 4.25 16 150.25
2 38 78 9.25 87 593
11 32 26 6.25 7 82.75
13 29 46 9.25 36 263.46
19 29 40 3.5 1.25 52.5
7 29 29 6.75 36.5 297.25
12 25 26 4.75 12 123.25

Table 3: Physiological Scores (%FVC) and Di-
vergence Scores (D.S.) variant (d) for average of
all four utterances for ALS speakers. The feature
count was based on a union of features across the
two annotators. Total frequency and Likert scale
values were computed as a maximum across the
two annotators.

speech baseline more than would be indicated by
a lower score. Divergence scores are expected to
correlate with physiological measures of changes
associated with ALS. Increasing divergence scores
would thus serve as an indicator of the disease
progression, analogous to decreasing physiologi-
cal outputs (lower scores) associated with ALS—
thus, the two measures are expected to be nega-
tively correlated.

5 Results and Discussion
Table 3 presents two physiological assessment
scores (%FVC-SUP and %FVC-SIT) and three di-
vergence scores (defined above) for the 16 ALS
speakers.10 The scores are sorted by %FVC-SUP.
The table indicates that the %FVC scores tend to
drop as the divergence scores go up. As expected,
a decrease in %FVC scores indicates disease pro-
gression, and similarly, a higher divergence score
indicates disease progression.

5.1 Dealing with differences in Annotations
to Calculate Divergence Scores

Since the nature of the annotated phonological
characteristics was such that multiple characteris-
tics might share various aspects of speech, anno-
tators were asked to mark all characteristics that

10Only the variant (d) for each of the divergence scores
computed using the three methods is presented in the table
to maintain clarity. Note variant (d) refers to the divergence
scores calculated with Gender dependent minimum feature
count for controls setting, as described in Section 4 above.

Divergence Score Type Correlation p-value
Feature ct D.S.(d)-Union 0.65 0.007
Feature ct D.S.(d)-Avg 0.58 0.017
Feature ct D.S.(d)-Max 0.58 0.018
Feature ct D.S.(d)-Min 0.58 0.019
Feature ct D.S.(d)-
Intersection

0.51 0.045

Likert D.S.(a)-Max 0.49 0.055

Table 4: Correlations between the Physiological
Scores (%FVC) and Divergence Scores (D.S.) for
all four variants

seemed relevant to them. The general descriptions
provided in Table 2 were used as heuristics by the
annotators, providing additional help in identify-
ing the characteristics.11 In order to resolve dif-
ferences across annotations, we used five different
methods to combine the two sets of annotations.
Table 3 shows a representative combination of the
first case below for the feature count measure and
the third case below for both total frequency mea-
sure and Likert scale measure:
1. Union: The characteristics identified by both

the annotators were considered only once.
2. Intersection: Only the features annotated by

both the annotators were considered.
3. Max: The maximum of the two annotators’ fea-

ture counts was used.
4. Min: Minimum of the two annotators’ feature

counts was used.
5. Avg: An average of the two annotators’ feature

counts was used.

5.2 Association between Divergence Scores
and Physiological Scores

To determine whether there was an association be-
tween any or all of the divergence scores and the
physiological measures of ALS, we correlated the
divergence scores with the physiological assess-
ment scores, %FVC-SUP and %FVC-SIT, using
Pearson’s correlation coefficient. The results are
presented in Table 4. For simplicity, we report
the correlations in the table as−1∗〈correlation〉.
Refer Section A for correlations with all the diver-
gence scores.

We observe that while divergence scores do not
seem to correlate with the %FVC-SIT score, they
do show a moderate correlation with the %FVC-

11Although these descriptions were somewhat coarse-
grained, the idea was to start at this level and to learn more
precise features associated with acoustic inputs correspond-
ing to these characteristics. These precise features are ex-
pected to be critical for automatic classification of speech
samples with respect to ALS progression and, correspond-
ingly, predictive of the physiological scores for patients.
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SUP score (0.49 < r < 0.66) with moderate p-
values (p < 0.05). The stronger correlation effect
we observe with %FVC-SUP than with %FVC-
SIT may be due to higher difficulty in breathing
that a patient may experience when (s)he is in
supine position than in sitting position.

Consistent with the point above, patients with
other pulmonary conditions have also been re-
ported to experience higher difficulty in breathing
when in supine position than in sitting or standing
positions. Since the patients need to exert higher
effort to achieve the same result in supine position
than in sitting position, they may not be physio-
logically able to perform the same in the two po-
sitions, i.e., %FVC-SUP may be more sensitive
than %FVC-SIT to the condition’s progression.
Since speech symptoms have also been found to
be more readily apparent than other physiologi-
cal symptoms (Yorkston et al., 1993), this results
in a stronger correlation of the speech divergence
scores with %FVC-SUP than with %FVC-SIT.

The table also indicates that divergence scores
based on a simple measure—counts of features ob-
served in ALS speech—correlate even better with
%FVC-SUP scores than divergence scores that are
based on slightly more complicated measures such
as features’ frequency or the Likert Scale ratings.

6 Conclusion and Future Work
This paper has presented a case for viewing the
relationship between impaired speech and asymp-
tomatic speech as a divergence from a base-
line. Novel divergence measures have been devel-
oped for distinguishing asymptomatic speech from
symptomatic speech, and these have been tested
for correlations with physiological measures of
ALS progression.

These speech divergence measures are a first
step toward developing automated speech-based
assessments of progression of the ALS condition
that are both less expensive and less intrusive than
their physiological counterparts. The current ap-
proach has enabled the identification speech-based
measures that correlate well with other physiolog-
ical measures currently used to monitor the pro-
gression of the ALS condition. The next step is
to test if these measures can be used to predict the
values for the currently used physiological mea-
sures including %FVC.

Also, the current study is based on manual an-
notations provided by human specialist annota-
tors. Future research will involve exploration of

approaches that can be trained to produce such an-
notations automatically. These could, in turn, be
used to calculate divergence scores and eventually
to predict values for other physiological measures.

The theoretical groundwork for developing
speech-based measures defines speech diver-
gence in terms of clinically-informed phonolog-
ical speech characteristics associated with ALS
symptomatic speech. We presented three methods,
with four variants apiece, to compute speech di-
vergence scores for symptomatic speech. We also
showed that speech divergence scores are indeed
correlated with physiological assessment scores
for the progression of the disease.

Future research will investigate other methods
to compute divergence between the symptomatic
and asymptomatic speech that yield even stronger
correlations with the physiological assessments
measures. For example, it would be useful to ex-
plore whether the proportion of speech that is af-
fected by the characteristics listed in Table 2 has
any relation to the progression of the disease. Di-
vergence scores that incorporate characteristics re-
lated to a proportion of the span are expected to be
strongly correlated with the progression of ALS.

Two possible variants of how one may com-
pute divergence scores based on such proportion-
related information are as follows:

(1) Take proportion to be the proportion of
speech that is affected by any of the characteris-
tics.12 One may calculate a divergence score for
each ALS speaker as the difference between the
proportion of speech of the ALS speaker affected
by these characteristics and the proportion of con-
trols’ speech affected by these characteristics. An
average of the proportion in the annotators’ anno-
tations may be used for the calculation of the di-
vergence score.

(2) As a simple analytic, one may also con-
sider proportion-based divergence scores corre-
sponding to each of the characteristics for each
ALS speaker. This analytic may be useful for pro-
viding a direct relation between a specific charac-
teristic and the progression of the condition. How-
ever, it may also be useful to explore divergence
classes based on groupings of characteristics that
are similarly affected due to the progression of the
condition, if any.13

12Note there may be overlapping spans for more than one
characteristics.

13For the calculation of this variant, an average across the
portions of speech for which a characteristic is annotated may
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Some characteristics may be grouped to further
explore divergences. Green et al. (2013) grouped
features according to the speech subsystem in-
volved (e.g., respiratory, phonatory, resonatory
and articulatory). A reviewer also mentioned that
gender-specific degree of severity of certain fea-
tures would be interesting to explore. For ex-
ample, there seems to be evidence that voicing
control is more vulnerable in male patients (Kent
et al., 1994). Such findings suggest that character-
istics such as gender and possibly age may also
need to be considered while developing speech
divergence-based measures.

In addition, for the current study, each of the
characteristics was treated uniformly with respect
to ALS. Future work will explore the hypothesis
that certain characteristics are more indicative than
others with respect to the progression of ALS.

Finally, while prior studies indicate that
prosodic recognition is not affected in ALS speak-
ers (Zimmerman et al., 2007), articulatory or
phonatory deficits might alter the correct produc-
tion of interrogative, imperative, or declariative
sentences (Congia et al., 1987). These may be
found to be useful in the development of speech-
based measures of ALS. Thus, future work will in-
vestigate the extent to which these variables would
be more or less difficult to analyze automatically.
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A Supplemental Material
The correlation results between each of the three
types of speech divergence scores with all of their
variants and the %FVC-SUP are presented in Ta-
bles 5, 6, and 7. As mentioned before, for sim-
plicity, we report the correlations in the tables as
−1 ∗ 〈correlation〉.
Divergence Score Type Correlation p-value
Feature ct D.S.(a)-Max 0.58 0.018
Feature ct D.S.(a)-Min 0.58 0.019
Feature ct D.S.(a)-Ave 0.58 0.017
Feature ct D.S.(a)-Union 0.65 0.007
Feature ct D.S.(a)-Intersection 0.51 0.045
Feature ct D.S.(b)-Max 0.58 0.018
Feature ct D.S.(b)-Min 0.58 0.019
Feature ct D.S.(b)-Ave 0.58 0.017
Feature ct D.S.(b)-Union 0.65 0.007
Feature ct D.S.(b)-Intersection 0.51 0.045
Feature ct D.S.(c)-Max 0.58 0.018
Feature ct D.S.(c)-Min 0.58 0.019
Feature ct D.S.(c)-Ave 0.58 0.017
Feature ct D.S.(c)-Union 0.64 0.007
Feature ct D.S.(c)-Intersection 0.50 0.045
Feature ct D.S.(d)-Max 0.58 0.018
Feature ct D.S.(d)-Min 0.58 0.019
Feature ct D.S.(d)-Avg 0.58 0.017
Feature ct D.S.(d)-Union 0.65 0.007
Feature ct D.S.(d)-Intersection 0.51 0.045

Table 5: Correlations between the Physiological
Scores (%FVC) and Feature Count Based Diver-
gence Scores (D.S.) for all four variants

Divergence Score Type Correlation p-value
Feature freq D.S.(a)-Max 0.45 0.077
Feature freq D.S.(a)-Min 0.42 0.103
Feature freq D.S.(a)-Ave 0.44 0.085
Feature freq D.S.(b)-Max 0.45 0.077
Feature freq D.S.(b)-Min 0.42 0.103
Feature freq D.S.(b)-Ave 0.44 0.085
Feature freq D.S.(c)-Max 0.45 0.083
Feature freq D.S.(c)-Min 0.42 0.106
Feature freq D.S.(c)-Ave 0.44 0.09
Feature freq D.S.(d)-Max 0.46 0.075
Feature freq D.S.(d)-Min 0.42 0.103
Feature freq D.S.(d)-Avg 0.45 0.083

Table 6: Correlations between the Physiological
Scores (%FVC) and Feature Frequency Based Di-
vergence Scores (D.S.) for all four variants

Divergence Score Type Correlation p-value
Likert Scale D.S.(a)-Max 0.49 0.055
Likert Scale D.S.(a)-Min 0.44 0.089
Likert Scale D.S.(a)-Ave 0.47 0.068
Likert Scale D.S.(b)-Max 0.48 0.061
Likert Scale D.S.(b)-Min 0.43 0.095
Likert Scale D.S.(b)-Ave 0.46 0.074
Likert Scale D.S.(c)-Max 0.48 0.059
Likert Scale D.S.(c)-Min 0.43 0.094
Likert Scale D.S.(c)-Ave 0.46 0.071
Likert Scale D.S.(d)-Max 0.47 0.067
Likert Scale D.S.(d)-Min 0.43 0.094
Likert Scale D.S.(d)-Avg 0.46 0.076

Table 7: Correlations between the Physiological
Scores (%FVC) and Likert Scale Based Diver-
gence Scores (D.S.) for all four variants
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Abstract

In clinical dictation, speakers try to be as
concise as possible to save time, often re-
sulting in utterances without explicit punc-
tuation commands. Since the end product
of a dictated report, e.g. an out-patient let-
ter, does require correct orthography, in-
cluding exact punctuation, the latter need
to be restored, preferably by automated
means. This paper describes a method for
punctuation restoration based on a state-
of-the-art stack of NLP and machine learn-
ing techniques including B-RNNs with an
attention mechanism and late fusion, as
well as a feature extraction technique tai-
lored to the processing of medical termi-
nology using a novel vocabulary reduction
model. To the best of our knowledge, the
resulting performance is superior to that
reported in prior art on similar tasks.

1 Introduction

Medical dictation has been a major instrument
in clinical settings to minimize the administrative
burden on physicians (Johnson et al., 2014; Ham-
mana et al., 2015; Hodgson and Coiera, 2016).
Rather than having to fill forms in electronic med-
ical record systems (EMRs) or typing out-patient
letters, such labor is often outsourced to medical
transcription providers, many of which make use
of automated speech recognition (ASR), coupled
with a manual correction step, to increase effec-
tiveness and speed of transcription (Salloum et al.,
2017). Despite the fact that medical dictation re-
duces time physicians spend on clinical documen-
tation substantially, an average dictation still takes
about three minutes (Edwards et al., 2017). In an
attempt to dictate as efficiently as possible, often
physicians (a) speak extremely fast, (b) use pre-

dictated paragraphs (so-called physician normals),
(c) make massive use of abbreviations, and (d) in-
clude very limited (if any) instructions regarding
formatting and punctuation.

While the ASR system is in charge of turning
spoken words into their textual representation, a
sophisticated NLP unit, the post-processor, takes
care of formatting and structuring the output to
produce a draft resembling the out-patient letter
as well as possible. Among other responsibilities
(such as formatting numerical expressions, dates,
section headers, etc.), the post-processor is also
charged with restoring punctuation in the letter’s
narrative. This paper focuses on the automated
punctuation restoration in clinical reports, draw-
ing on the latest advances in the NLP sector.

To achieve best possible results in this study, we
paid particular attention to the specific challenges
faced in medical texts. Foremost among these is a
large domain-specific vocabulary, which makes it
difficult if not impossible to apply tools developed
for general-domain text. When building a system
from scratch, however, several factors conspire to
make it hard to obtain enough training data: the
large medical vocabulary increases problems re-
lated to data sparsity and the handling of out-of-
vocabulary (OOV) terms; the data often contain
sensitive information and have restricted access or
availability; and modern methods, such as neu-
ral networks as used here, typically require large
amounts of data.

We overcame these issues by developing a text
pre-processing strategy to reduce vocabulary size,
collapsing particular roots and exploiting the fact
that many medical terms are built from relatively
few morphemes. Our method, which we call the
vocabulary reduction model, effectively allows the
punctuation restoration neural network to focus
on morphosyntactic features of words rather than
their full semantic representation, as usually cap-
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Normalized Text Reduced Text
Set types OOVs tokens types tokens PERIOD COLON COMMA

Training 57,046 n/a 15,886,158 11,766 15,933,901 1,803,626 631,452 760,444
Dev 28,509 1,561 2,243,187 10,321 2,248,305 268,374 89,647 111,571
Blind Test 31,806 3,108 2,944,787 10,767 2,952,873 325,549 103,693 127,895

Table 1: Corpus statistics after normalization and vocabulary reduction. No OOVs are reported on the
reduced text since the vocabulary reduction algorithm will map OOVs to classes. The last three columns
show the counts of each punctuation tag per set.

tured by word embeddings, being less important
to the placement of punctuation.

After reviewing the prior art in the field of punc-
tuation restoration in Section 2, we describe the
corpus used in this study in Section 3. The sys-
tem’s general architecture based on bidirectional
recurrent neural networks with attention mecha-
nism and late fusion is discussed in Section 4, fol-
lowed by Section 5 providing details on the vo-
cabulary reduction model. Evaluation results are
covered in Section 6, and conclusion and future
outlook in Section 7.

2 Related Work

Early efforts in this field used hidden-event n-
gram language modeling to predict where punc-
tuation should be inserted (Stolcke et al., 1998;
Beeferman et al., 1998). Numerous other strate-
gies have also been devised: combining n-grams
with constituency parse information (Shieber and
Tao, 2003); maximum entropy using n-gram and
part-of-speech features (Huang and Zweig, 2002);
conditional random fields (CRFs) (Ueffing et al.,
2013); feed-forward neural networks and CRFs
on n-gram and lexical features (Cho et al., 2015);
even reframing the problem as monolingual ma-
chine translation (Peitz et al., 2011).

Most recently, it has been demonstrated that re-
current neural networks can restore punctuation
very effectively (Tilk and Alumäe, 2015, 2016).
Such methods are promising because they should
be able to handle long-distance dependencies that
are missed by other methods.

There has been little work on punctuation
restoration in the medical domain specifically.
While using pauses showed to help in punctua-
tion restoration for rehearsed speech such as TED
Talks (Tilk and Alumäe, 2016), Deoras and Fritsch
(2008) note that medical dictations pose a particu-
lar challenge because the speech is often delivered
rapidly and without typical prosodic cues, such as

pauses where one would write commas or other
punctuation. Thus, although acoustic information
has been successfully incorporated for other do-
mains (Huang and Zweig, 2002; Christensen et al.,
2001), the same may not be feasible for medical
text, so it is especially desirable to have a reliable
text-only method.

3 Corpus

The corpus we are using in this study is composed
of 32,275 medical reports (i.e., out-patient letters),
which we converted into a sequence of tokens with
punctuation as tags (since they are the most rel-
evant to medical dictations, we focused on three
punctuation marks: colon, comma, and period,
represented in the tag set {COLON, COMMA, PE-
RIOD}). We randomly split our corpus into train-
ing set, development set, and blind test set. De-
tailed corpus statistics are given in Table 1.

To reduce the size of the vocabulary, we per-
formed two layers of text preprocessing. First,
we performed several text normalization steps
such as converting all digits to “D”, normalizing
numbers, dates, and times into familiar formats
(e.g., “D.D”, “DD/DDDD”, “DD/DD”, “DD/D-
D/DDDD”, “DD:DD”), as well as other tokens of
the medical domain into normalized formats (e.g.,
“DDD/DD” for blood pressure, “lD-lD” for lum-
bar spinal discs, and “q.D+h” meaning “every D+
hours”). Normalization also included lowercasing,
unifying abbreviations (e.g., “p.r.n” and “p.r.n.”),
and performing simple segmentation (e.g., split-
ting “’s” from a word). Second, we ran a vo-
cabulary reduction algorithm, as detailed in Sec-
tion 5, that maps infrequent and OOV words to
word classes. The combination of these two lay-
ers dramatically reduced the vocabulary size, as
shown in Table 1.
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Figure 1: Neural network design for punctuation
restoration. The diagram shows an input context
for the word xt and the stack of layers that result
in the tag yt representing the punctuation decision
for xt.

4 The Neural Network Model

We define punctuation restoration as a tagging
problem. We try to tag every word in the input
sequence with one of four tags: {NONE, COLON,
COMMA, PERIOD}. Tagging a word by a punctua-
tion means that the punctuation should be inserted
after this word, while tagging with NONE means
that the word does not have a punctuation after it.
Our neural network approach is based on the work
of Tilk and Alumäe (2016). Inspired by Bahdanau
et al. (2016), our deep neural network model uses
a bidirectional recurrent neural network (B-RNN)
(Schuster and Paliwal, 1997) with gated recurrent
units (Cho et al., 2014). B-RNNs help in learn-
ing long range dependencies on the left and right
of the current input word. The B-RNN is com-
posed of a forward RNN and a backward RNN that
are preceded by the same word embedding layer.
A sliding window of 256 words are passed to the
shared embedding layer as one-hot vectors.

On top of the B-RNN, we stack a unidirec-

tional RNN with an attention mechanism (Bah-
danau et al., 2016) to assist in capturing relevant
contexts that support punctuation restoration de-
cisions. Finally, we use late fusion (Wang and
Cho, 2015) to combine the output of the atten-
tion mechanism with the current position in the
B-RNN without interfering with its memory.

5 The Vocabulary Reduction Model

To improve the modeling of rare words and to deal
with OOV words in the test and development sets,
we implemented a step that maps rare words to
common word classes, reducing the overall size
of the vocabulary. This vocabulary reduction al-
lows us to reduce the number of model parame-
ters, which is crucial for fast decoding in a live
recognizer.

Table 2 shows examples of prefixes and suffixes
that capture the semantic and morpho-syntactic in-
formation of infrequent words in our training data
such as medical terminology and proper names.
For every input word consisting of alphabetical
characters only, our vocabulary reduction algo-
rithm goes through the prefix and suffix lists start-
ing from the longer affixes to the shorter ones and
tries to match them to the beginning or end of
the word, while ensuring that the stem is at least
four letters long. If the word starts with a prefix
p+ of the prefix list we replace it with “pAAAA”
(where “AAAA” represents an alphabetical stem).
If it starts with a suffix +q, we replace it with
“AAAAq”. Finally, if the word matches a pre-
fix p+ and a suffix +q, we split it into two to-
kens “pAA+” and “+AAq”, respectively, to ensure
that the information in them gets modeled sepa-
rately. Every rare word consisting of alphabeti-
cal characters only that does not match any suffix
or prefix is replaced with a token that represents
its length range. The length range is computed
with a step of five characters resulting in tokens
like AAAA 5 for words shorter than five charac-
ters, AAAA 10 for words shorter than ten char-
acters, etc. For example, “angiotensinconvertin-
genzyme” is replaced with AAAA 30. All other
rare words (e.g., “t1cn0m0”) are replaced with the
token “RARE”. These handcrafted rare classes al-
low us to increase the threshold for considering a
word rare. This technique not only significantly
reduces the size of the vocabulary, but also allows
us to better model rare classes with a higher num-
ber of tokens.
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Size Prefix Suffix
4 inte+, anti+, post+, tran+, over+, intr+, peri+,

hype+, para+, neur+, hypo+, micr+, rein+,
mult+, card+, comp+, retr+, reco+, self+,
gran+, extr+, medi+, hemi+, well+, semi+,
endo+, radi+, hemo+, fibr+, oste+, elec+

+tion, +ions, +type, +ness, +ized, +date,
+able, +gery, +tive, +sult, +tomy, +ated,
+tory, +sion, +ates, +ular, +ical, +osis,
+ment, +nary, +rate, +ings, +arge, +onal,
+itis, +ents, +like, +lity, +ance, +berg

3 non+, pre+, per+, pro+, mar+, sub+, sch+,
str+, tri+, ben+

+ing, +ion, +ted, +ate, +lly, +ive, +tic, +ers,
+ble, +ies, +ity, +cal, +man, +sis, +son, +ial,
+ous, +ell, +ary, +lar, +tes, +ton, +dez

2 re+, de+, mc+, un+, le+, la+, vi+ +ed, +er, +es, +al, +ry, +te, +ic, +ly, +le

Table 2: Examples of affixes of medical terminology and proper names that capture the semantic and/or
morpho-syntactic information of infrequent words in our training data.

Punctuation Precision Recall F-Score
COLON 98.6% 98.6% 98.6%
COMMA 84.0% 82.2% 83.1%
PERIOD 96.1% 96.4% 96.3%
Overall 94.2% 94.0% 94.1%

Table 3: Evaluation of punctuation restoration per-
formance on the blind test set.

We replace a word with its rare class whenever
we find it 20 or fewer times in the training data,
and we perform the affix-based replacement de-
scribed above whenever the word occurred less
than 100 times. These thresholds were tuned on a
held-out development set. Running this algorithm
on top of the normalized text results in lowering
the vocabulary size in our training data to 11,766
types, meaning that four out of five types are re-
placed with a class.

6 Evaluation

For the present study, we used Keras with Tensor-
Flow backend (Chollet, 2015; Abadi et al., 2016;
Chollet, 2017). We evaluated on the blind test set
by passing the whole set to our system as a se-
quence of about three million tokens without any
indication of beginning or end of sentence, para-
graph, or report. All words were lowercased, as
described earlier, to avoid giving out any hint of
sentence or section header start or end. We report
the results in Table 3.

We achieve 96.3% F-Score on periods, which
we consider the most important as they define sen-
tence boundaries. The latter are crucial for vir-
tually any subsequent NLP process, such as au-
tomatic coding of medical reports (Suendermann-
Oeft et al., 2016).

The second most important punctuation type in
medical reports is colons, as they define section
headers and, thus, help format the report structure.
We achieve 98.6% F-Score on colons.

Finally, we get 83.1% F-Score on commas, the
hardest tag to predict due to human inconsistency
in using them. This inconsistency affects the ac-
curacy of the training data as well as the fairness
in the evaluation against the test set. The overall
performance of the system on all tags is 94.1% in
terms of F-Score. Refer to Table 4 for examples of
our system’s output.

7 Conclusion and Future Work

Although prior work on punctuation restoration
has used different corpora from the work pre-
sented in this paper, our result (F-Score 94.1%)
compares very favorably with previous publica-
tions. For example, Cho et al. (2015) achieve an
F-Score of 61.8% on a meeting and lecture corpus,
Tilk and Alumäe (2016) produce 64.4% on TED
talk transcripts, and Ueffing et al. (2013) report
an F-Score of 66.8% on one of Nuance’s in-house
dictation corpora.

While we have tested the performance of the
presented punctuation restoration algorithm on
naturalistic medical dictations, we have not yet
measured the impact the speech recognizer’s word
error rate has on the F-Score, a task we plan to
address in the near future. We are also inter-
ested to learn whether analyzing the speech wave-
form and characteristic pauses and prosodic pat-
terns in medical dictations can be exploited in a
hybrid speech/text punctuation restoration system
to enhance accuracy even further. We also plan
to replace the vocabulary reduction model by fus-
ing a morphology-aware neural network such as a
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Input ... review of systems general positive for fatigue excessive perspiration feeling sick ...
Gold ... review of systems: general: positive for fatigue, excessive perspiration, feeling sick. ...
Punctuated ... review of systems COLON general COLON positive for fatigue COMMA excessive perAA+ +AAtion COMMA

feeling sick PERIOD ...
Input ... chronic pruritus dermatology felt that this was neurodermatosis and neurotic excoriations ...
Gold ... chronic pruritus. dermatology felt that this was neurodermatosis and neurotic excoriations. ...
Punctuated ... chronic pruritus PERIOD deAAAA felt that this was neurAA+ +AAosis and neurAA+ +AAtic AAAAions

PERIOD ...
Input ... it is available review of systems positive for still some ongoing lower extremity weakness tremulousness and

unsteadiness otherwise review of ...
Gold ... it is available. review of systems: positive for still some ongoing lower extremity weakness, tremulousness

and unsteadiness. otherwise, review of ...
Punctuated ... it is available PERIOD review of systems COLON positive for still some ongoing lower extremity weakness

COMMA AAAAness and unAA+ +AAness PERIOD otherwise COMMA review of ...
Input ... severe clinical depression including hopelessness helplessness worthlessness difficulty focusing concentra-

tion and a lot of thoughts of death and dying ...
Gold ... severe clinical depression including hopelessness, helplessness, worthlessness, difficulty focusing, concen-

tration, and a lot of thoughts of death and dying. ...
Punctuated ... severe clinical depression including AAAAness COMMA AAAAness COMMA AAAAness COMMA diffi-

culty AAAAing COMMA concentration COMMA and a lot of thoughts of death and dying PERIOD ...
Input ... is reasonable we will optimize his medications by adding low dose angiotensinconvertingenzyme inhibitors

which he currently is not on if the ...
Gold ... is reasonable. we will optimize his medications by adding low dose angiotensinconvertingenzyme inhibitors,

which he currently is not on. if the ...
Punctuated ... is reasonable PERIOD we will optimize his medications by adding low dose AAAA 30 inhibitors COMMA

which he currently is not on PERIOD if the ...

Table 4: Examples of the output of our system on word sequences of the input. The first example
shows the correct handling of consecutive colons indicating a section header and a subsection header.
The second example shows the preprocessing of infrequent medical terminology like “neurodermato-
sis”, “neurotic”, and “excoriations” by capturing their semantic and part-of-speech information. The
third and fourth examples emphasize the case of parallelism captured by mapping “tremulousness and
unsteadiness” to “AAAAness and unAA+ +AAness” and “hopelessness helplessness worthlessness” to
“AAAAness AAAAness AAAAness”, thus predicting commas when needed since the meaning is ir-
relevant to the punctuation task. The fourth example also shows the correct prediction of coordinated
lists, separating them with commas. The final example presents the mapping of a very long word, “an-
giotensinconvertingenzyme”, into “AAAA 30”, which reduces the confusion of the network and results
in the correct prediction.

character-based convolutional network.
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Abstract

Detecting negated concepts in clinical texts
is an important part of NLP information
extraction systems. However, generaliz-
ability of negation systems is lacking, as
cross-domain experiments suffer dramatic
performance losses. We examine the per-
formance of multiple unsupervised domain
adaptation algorithms on clinical negation
detection, finding only modest gains that
fall well short of in-domain performance.

1 Introduction

Natural language processing applied to health-
related texts, including clinical reports, can be valu-
able for extracting information that does not exist
in any other form. One important NLP task for clin-
ical texts is concept extraction and normalization,
where text spans representing medical concepts
are found (e.g., colon cancer) and mapped to con-
trolled vocabularies such as the Unified Medical
Language System (UMLS) (Bodenreider and Mc-
Cray, 2003). However, clinical texts often refer
to concepts that are explicitly not present in the
patient, for example, to document the process of
ruling out a diagnosis. These negated concepts, if
not correctly recognized and extracted, can cause
problems in downstream use cases. For example, in
phenotyping, a concept for a disease (e.g., asthma)
is a strong feature for a classifier finding patients
with asthma. But if the text ruled out asthma occurs
and the negation is not detected, this text will give
the exact opposite signal that its inclusion intended.

There exist many systems for negation detection
in the clinical domain (Chapman et al., 2001, 2007;
Harkema et al., 2009; Sohn et al., 2012; Wu et al.,
2014; Mehrabi et al., 2015), and there are also a
variety of datasets available (Uzuner et al., 2011;
Albright et al., 2013). However generalizability of

negation systems is still lacking, as cross-domain
experiments suffer dramatic performance losses,
even while obtaining F1 scores over 90% in the
domain of the training data (Wu et al., 2014).

Prior work has shown that there is a problem
of generalizability in negation detection, but has
done little to address it. In this work, we describe
preliminary experiments to assess the difficulty of
the problem, and evaluate the efficacy of existing
domain adaptation algorithms on the problem. We
implement three unsupervised domain adaptation
methods from the machine learning literature, and
find that multiple methods obtain similarly modest
performance gains, falling well short of in-domain
performance. Our research has broader implica-
tions, as the general problem of generalizabiliy
applies to all clinical NLP problems. Research in
unsupervised domain adaptation can have a huge
impact on the adoption of machine learning-based
NLP methods for clinical applications.

2 Background

Domain adaptation is the task of using labeled data
from one domain (the source domain) to train a
classifier that will be applied to a new domain (the
target domain). When there is some labeled data
available in the target domain, this is referred to
as supervised domain adaptation, and when there
is no labeled data in the target domain, the task
is called unsupervised domain adaptation (UDA).
As the unsupervised version of the problem more
closely aligns to real-world clinical use cases, we
focus on that setting.

One common UDA method in natural language
processing is structural correspondence learning
(SCL; Blitzer et al. (2006)). SCL hypothesizes that
some features act consistently across domains (so-
called pivot features) while others are still informa-
tive but are domain-dependent. The SCL method
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combines source and target extracted feature sets,
and trains classifiers to predict the value of pivot
features, uses singular value decomposition to re-
duce the dimensionality of the pivot feature space,
and uses this reduced dimensionality space as an
additional set of features. This method has been
successful for part of speech tagging (Blitzer et al.,
2006), sentiment analysis (Blitzer et al., 2007), and
authorship attribution (Sapkota et al., 2015), among
others, but to our knowledge has not been applied
to negation detection (or any other biomedical NLP
tasks). One difficulty of SCL is in selecting the
pivot features, for which most existing approaches
use heuristics about what features are likely to be
domain independent.

Another approach to UDA, known as bootstrap-
ping or self-training, uses a classifier trained in the
source domain to label target instances, and adds
confidently predicted target instances to the train-
ing data with the predicted label. This method has
been successfully applied to POS tagging, spam
email classification, named entity classification,
and syntactic parsing (Jiang and Zhai, 2007; Mc-
Closky et al., 2006).

Clinical negation detection has a long history
because of its importance to clinical informa-
tion extraction. Rule-based systems such as
Negex (Chapman et al., 2001) and its successor,
ConText (Harkema et al., 2009) contain manually
curated lists of negation cue words and apply rules
about their scopes based on word distance and in-
tervening cues. While these methods do not learn,
the word distance parameter can be tuned by ex-
perts to apply to their own datasets. The DepNeg
system (Sohn et al., 2012) used manually curated
dependency path features in a rule-based system to
abstract away from surface features. The Deepen
algorithm (Mehrabi et al., 2015) algorithm also
uses dependency parses in a rule-based system, but
applies the rules as a post-process to Negex, and
only to the concepts marked as negated.

Machine learning approaches typically use su-
pervised classifiers such as logistic regression or
support vector machines to label individual con-
cepts based on features extracted from surround-
ing context. These features may include manually
curated lists, such as those from Negex and Con-
Text, as well as features intended to emulate the
rules of those systems, as well as more exhaustive
contextual features common to NLP classification
problems. The 2010 i2b2/VA Challenge (Uzuner

et al., 2011) had an “assertion classification” task,
where concepts had mutually exclusive present,
absent (negated), possible, conditional, hypotheti-
cal, and non-patient attributes, and this task had a
variety of approaches submitted that used some
kind of machine learning. The top-performing
system (de Bruijn et al., 2011) used a multi-level
ensemble classifier, classifying assertion status of
each word with three different machine learning
systems, then feeding those outputs into a concept-
level multi-class support vector machine classifier
for the final prediction. In addition to standard
bag of words features for representing context, this
system used Brown clusters to abstract away from
surface feature representations. The MITRE sys-
tem (Clark et al., 2011) used conditional random
fields to tag cues and their scopes, then incorpo-
rated cue information, section features, semantic
and syntactic class features, and lexical surface
features into a maximum entropy classifier. Fi-
nally, Wu et al. (2014) incorporated many of the
dependency features from rule-based DepNeg sys-
tem (Sohn et al., 2012) and the best features from
the i2b2 Challenge into a machine learning system.

3 Methods

In this work, we apply unsupervised domain adap-
tation algorithms to machine learning systems for
clinical negation detection, evaluating the extent to
which performance can be improved when systems
are trained on one domain and applied to a new
domain. We make use of the (Wu et al., 2014) sys-
tem in these experiments, as it is freely available as
part of the Apache cTAKES (Savova et al., 2010)1

clinical NLP software, and can be easily retrained.
Unsupervised domain adaptation (UDA) takes

place in the setting where there is a source dataset
Ds = {X, ~y}, and a target dataset Dt = {X},
where feature representations X ∈ RN×D for N
instances and D feature dimensions and labels
~y ∈ RN . Our goal is to build classifiers that will
perform well on instances from Ds as well as Dt,
despite having no gold labels from Dt to use at
training time. Here we describe a variety of ap-
proaches that we have implemented.

The baseline cTAKES system that we use is a
support vector machine-based system with L1 and
L2 regularization. Regularization is a penalty term
added to the classifier’s cost function during train-
ing that penalizes “more complex” hypotheses, and

1http://ctakes.apache.org
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is intended to reduce overfitting to the training data.
L2 regularization adds the L2 norm to the classi-
fier cost function as a penalty and tends to favor
smaller feature weights. L1 regularization adds
the L1 norm as a penalty and favors sparse feature
weights (i.e., setting many weights to zero).

Before attempting any explicit UDA methods,
we evaluate the simple method of increasing regu-
larization. While regularization is already intended
to reduce overfitting, it may still overfit on a tar-
get domain since its hyper-parameter is tuned on
the source domain. In a real unsupervised domain
adaptation scenario it is not possible to tune this
parameter on the target domain, so for this work
we use heuristic methods to set the adapted regu-
larization parameter. We first find the optimal regu-
larization hyperparameter C using cross-validation
on the source data, then increase it by an order
of magnitude and retrain before testing on target
data. For example, if we find that the best F1 score
occurs when C = 1 for a 5-fold cross-validation
experiment on the source data, we retrain the classi-
fier at C = 0.1 before applying to target test data.2

Changing this parameter by one order of magni-
tude is purely a heuristic approach, chosen because
that is how we (the authors) typically would vary
this parameter during tuning. Future work may ex-
plore whether this parameter on target data without
supervision, perhaps by using some information
about the data distribution in the target domain.

The first UDA algorithm we implement is struc-
tural correspondence learning (SCL) (Blitzer et al.,
2006). Following Blitzer et al. we select as pivot
features those features that occur more than 50
times in both the source and target data. Then, for
each data instance i in Xc = {Xs ∪ Xt}, and each
pivot feature p, we extract the non-pivot features of
i (non-pivot features are simply all features not se-
lected as pivot features), ~xi = Xc[i, non-pivots],
and a classification target, yi[p] = JXc[i, p] >
0.5K.3 For each pivot feature p, we train a linear
classifier on the (~xi, yi[p]) classification instances,
take the resulting feature weights, wp, and concate-
nate them into a matrix W . We decompose W
using singular value decomposition: W = UΣV T ,
and construct θ as the first d dimensions of U . This
matrix θ represents a projection from non-pivot
features to a reduced dimensionality version of the

2Note that since C is the cost of misclassifying training
instances, increasing regularization means lowering C.

3We use JexprK to denote the indicator function, which
returns 1 if expr is true and 0 otherwise.

Test corpus
Train corpus Seed Stratified Mipacq i2b2
Seed 0.88 0.76 0.65 0.79
Stratified 0.66 0.83 0.67 0.79
Mipacq 0.73 0.78 0.75 0.85
i2b2 0.65 0.59 0.64 0.93

Table 1: Results (F1 scores) of baseline cross-
domain experiments. Bold diagonals indicate
in-domain results, which were obtained with 5-
fold cross-validation. Off-diagonal elements were
trained on source data and tested on target data.

pivot-feature space. At training and test time, fea-
tures are extracted normally, and non-pivot feature
values are multiplied by θ to create correspondence
features in the reduced-dimensionality pivot space.
Following Sapkota et al. (2016), we experiment
with two methods of combining correspondence
features with the original features: All+New, which
combines all the original features with the corre-
spondence features, and Pivot+New which com-
bines only the pivot features from the original space
with the correspondence features.

The next UDA algorithm we implement is boot-
strapping. Jiang and Zhai (2007) introduced a va-
riety of methods for UDA, under the broad head-
ing of instance weighting, but the method they call
bootstrapping was the only one which does not rely
on any target domain labeled data. This method
creates pseudo-labels for a portion of the target data
by running a classifier trained only on source data
on the target data, and adding confidently classified
target instances to the training data, labeled with
whatever the classifier decided. Jiang and Zhai
experiment with the weights of these instances, ei-
ther giving higher weights to target instances or
weighting them the same as source instances. We
implemented a simpler version of bootstrapping
that does not modify instance weights, and adds
instances based on the initial classifier score (rather
than iteratively re-training and adding additional in-
stances). We allow up to 1% of the target instances
to be added.

In addition to adding the highest-scoring in-
stances, we also experiment with adding only high-
scoring instances from the minority class. In many
NLP tasks, including negation detection, the label
of interest has low prevalence, and there is a danger
that the classifier will be most confident on the ma-
jority class and only add target instances with that
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Source Target None 10xReg SCL A+N SCL P+N BS-All BS-Minority ISF
Seed (L1) Strat 0.76 0.8 0.8 0.69 0.79 0.79 0.8

Mipacq 0.65 0.66 0.69 0.6 0.69 0.7 0.69
i2b2 0.79 0.83 0.83 0.71 0.83 0.83 0.83

Strat (L1) Seed 0.66 0.66 0.66 0.58 0.66 0.67 0.66
Mipacq 0.67 0.68 0.68 0.65 0.68 0.66 0.68
i2b2 0.79 0.79 0.79 0.71 0.79 0.8 0.79

Mipacq (L2) Seed 0.73 0.59 0.73 0.71 0.73 0.71 0.73
Strat 0.78 0.76 0.78 0.71 0.78 0.79 0.78
i2b2 0.85 0.77 0.85 0.84 0.84 0.85 0.85

i2b2 (L1) Seed 0.65 0.72 0.72 0.67 0.72 0.72 0.72
Strat 0.59 0.68 0.69 0.62 0.68 0.68 0.68
Mipacq 0.64 0.69 0.69 0.68 0.69 0.69 0.69

Average 0.71 0.72 0.74 0.68 0.74 0.74 0.74

Table 2: Results of unsupervised domain adaptation algorithms (F1 scores). None=No adaptation,
10xReg=Regularization with 10x penalty, SCL A+N is structural correspondence learning with all features
in addition to projected (new) features, SCL P+N is SCL with pivot features and projected features,
BS-All=Bootstrapping with instances of all classes added to source, BS-Minority=Bootstrapping with
only instances of minority class added to source, ISF=Instance similarity features.

label. We therefore experiment with only adding
minority class instances, enriching the training data
to have a more even class distribution.

The final UDA algorithm we experiment with
uses instance similarity features (ISF) (Yu and
Jiang, 2015). This method extends the feature
space in the source domain with a set of similarity
features computed by comparison to features ex-
tracted from target domain instances. Formally, the
method selects a random subset of K exemplar in-
stances from Dt and normalizes them as ~̂e = ~e

||~e|| .
Similarity feature k for instance i in the source
data set is computed as the dot product Xt[i] · ~̂e[k].
Following Yu and Jiang, we set K = 50 and con-
catenate the similarity features to the full set of
extracted features for each source instance at train-
ing. These exemplar instances must be kept around
past training time, so that at test time similarity
features can be similarly created for test instances.

4 Evaluation

Our evaluation makes use of four corpora of clini-
cal notes with negation annotations – i2b2 (Uzuner
et al., 2011), Mipacq (Albright et al., 2013),
SHARP (Seed), and SHARP (Stratified). We first
perform cross-domain experiments in the no adap-
tation setting to replicate Wu et al.’s experiments.4

One difference to Wu et al. is that we evaluate on

4See that paper for an discussion of corpus differences.

the training split of the target domain – we made
this choice because the development and test sets
for some of the corpora are quite small and the
training data gives us a more stable estimate of per-
formance. We tune two hyperparameters, L1 vs.
L2 regularization and the values of regularization
parameter C, with five-fold cross validation on the
source corpus. We record results for training on all
four corpora, testing on all three target domains, as
well as a cross-validation experiment to measure
in-domain performance. Table 1 shows these re-
sults, which replicate Wu et al. in finding dramatic
performance declines across corpora.

In our domain adaptation experiments, we also
use all four corpora as source domains, and for each
source domain we perform experiments where the
other three corpora are target domains. This result
is reported in Table 2.

5 Discussion and Conclusion

These results show that unsupervised domain adap-
tation can provide, at best, a small improvement to
clinical negation detection systems.

Strong regularization, while not obtaining the
highest average performance, provides nominal im-
provements over no adaptation in all settings ex-
cept when the source corpus is Mipacq, in which
case performance suffers severely. Mipacq has two
unique aspects that might be relevant; first, it is
the largest training set, and second, it pulls docu-
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ments from a very diverse set of sources (clinical
notes, clinical questions, and medical encyclope-
dias), while the other corpora only contain clinical
notes. Perhaps because the within-corpus variation
is already quite high, the regularization parameter
that performs best during tuning is already suffi-
cient to prevent overfitting on any target corpus
with less variation, and increasing it leads to un-
derfitting and thus poor target domain performance.
Future work may explore this hypothesis, which
must include some attempt to relate the within- and
between-corpus variation.

Four different systems all obtain the highest aver-
age performance, with BS-All (standard bootstrap-
ping), BS-Minority (bootstrapping with minority
class enrichment), structural correspondence learn-
ing (SCL A+N), and instance similarity features
(ISF) all showing 3% gain in performance (71%
to 74%). While the presence of some improve-
ment is encouraging, the improvements within any
given technique are not consistent, so that without
labeled data from the target domain it would not be
possible to know which UDA technique to use. We
set aside the question of “statistical significance,”
as that is probably too low of a bar – whether or
not these results reach that threshold, they are still
disappointingly low and likely to cause issues if
applied to new data.

In summary, selecting a method is difficult, and
many of these methods have hyper-parameters (e.g.,
pivot selection for SCL, number of bootstrapping
instances, number of similarity features) that could
potentially be tuned, yet in the unsupervised set-
ting there are no clear metrics to use for tuning
performance. Future work will explore the use of
unsupervised performance metrics that can serve
as proxies to test set performance for optimizing
hyperparameters and selecting UDA techniques for
a given problem.
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Abstract 

The Precision Medicine Track in BioCrea-

tive VI aims to bring together the BioNLP 

community for a novel challenge focused 

on mining the biomedical literature in 

search of mutations and protein-protein in-

teractions (PPI). In order to support this 

track with an effective training dataset with 

limited curator time, the track organizers 

carefully reviewed PubMed articles from 

two different sources: curated public PPI 

databases, and the results of state-of-the-art 

public text mining tools. We detail here the 

data collection, manual review and annota-

tion process and describe this training cor-

pus characteristics. We also describe a cor-

pus performance baseline. This analysis 

will provide useful information to develop-

ers and researchers for comparing and de-

veloping innovative text mining ap-

proaches for the BioCreative VI challenge 

and other Precision Medicine related appli-

cations. 

1 Introduction 

Genomic technologies now make possible the 

routine sequencing of individual genomes and such 

data makes possible to understand how genetic var-

iations are distributed in healthy and sick popula-

tions. On the other hand, proteomics and metabo-

lomics approaches are charting the metabolic and 

interactions maps of the cell. Such data deluge has 

generated great expectations in the cure of human 

diseases. Nonetheless, it is still difficult to predict 

the phenotypic outcome of a specific genome and 

designing the most appropriate treatment or estab-

lishing preventive programs. Linking allelic varia-

tion and genomic mutations to protein-protein in-

teractions (PPI) is crucial to understand how cellu-

lar networks rewire and to support personalized 

medicine approaches.  

To date, no tool is available to facilitate the spe-

cific retrieval of such information that remains bur-

ied in the unstructured text within the biomedical 

literature. Our goal is to foster the development of 

text mining algorithms that specialize in scanning 

the published biomedical literature and to extract 

the reported discoveries of protein interactions 

changing in nature due to the presence of a ge-

nomic variations or artificial mutations.  

The Precision Medicine Track in BioCreative VI 

is a community challenge that addresses this prob-

lem in the form of two tasks:  

 Document Triage: Identification of relevant 

PubMed citations describing mutations af-

fecting protein-protein interactions 

 Relation Extraction: Extraction of experi-

mentally verified PPI pairs affected by the 

presence of a genetic mutation 

Traditionally biological database curators have 

contributed to the various BioCreative challenges 

(Hirschman, Yeh et al. 2005, Chatr-aryamontri, 

Kerrien et al. 2008, Krallinger, Morgan et al. 2008, 

Lu and Hirschman 2012) supporting the identifica-

tion of stages in the curation workflow suitable for 

text mining applications and manually annotating 

the training and test corpora. Because the manual 

curation of the current exponentially growing body 

of biomedical literature is an impossible task, the 

insertion of robust text mining tools in the curation 

pipeline represent a feasible and sustainable solu-

tion to this problem (Hirschman, Burns et al. 2012).  
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As we prepared to create our corpus we faced 

the common situation of limited reviewer time. We 

took two steps to maximize this limited, valuable 

resource: First, we reviewed annotations readily 

available from manually curated PPI databases 

(Orchard, Ammari et al. 2014) and marked the rel-

evant publications that could be used for the pur-

poses of this challenge; next, we expanded the 

training set using a set of publically available text 

mining tools (Kim, Kwon et al. 2012, Wei, Harris 

et al. 2013) specifically for the retrieval of literature 

reporting protein interaction and mutation data. 

Both of these sets were manually reviewed and 

categorized as: 1) Articles describing PPI and mu-

tations affecting those molecular interactions, 2) 

Articles describing mutations and molecular inter-

actions, with no affect or no relation between the 

two events, 3) Articles describing PPI, 4) Articles 

describing mutations or genetic variation, and 5) 

Articles not relevant for either molecular interac-

tion or mutation information. In addition, the data-

base extracted interactions were carefully reviewed 

and validated in two important aspects: 1) the an-

notated PPI were described in the PubMed abstract 

of the corresponding article, as opposed to the full 

text, and 2) the extracted interactions were affected 

by a mutation, and this was stated in the abstract.     

All manually selected, categorized and carefully 

reviewed articles make up a set of 4,082 PubMed 

abstracts. All of these articles can be used for build-

ing machine learning methods and other innovative 

applications for the Precision Medicine Track in 

BioCreative VI. Of these, 598 PubMed articles are 

annotated with specific interactions. This smaller 

set can be used to develop algorithms for the Rela-

tion Extraction task and other similar biomedical 

text mining problems.  

We provide here a detailed description of the as-

sembly of this dataset and report the on-going ef-

forts of building the test corpus.  

2 Training Corpus 

The Precision Medicine track training corpus 

was generated as a result of two data selection and 

validation methods:  

 Data repurposing 

 Text mining triage and manual validation 

These approaches are different and as noticed in 

the article composition resulting from each of 

them, they are both important contributors to this 

dataset. Here we describe the procedure followed 

in each of these approaches, starting with our anno-

tation guidelines and a detailed view of the corpus 

characteristics. Figure 1 shows an example article 

in our dataset. 

2.1 Annotation guidelines 

All selected articles were manually annotated to 

answer these questions: 

 Does this article describe experimentally 

verified protein-protein interactions?   

 Does this article describe a disease known 

mutation or a mutational analysis experi-

ment?  

 Are the database curated PPI pairs for this ar-

ticle mentioned in the abstract?  

 

Figure 1 A PubMed article describing a protein-protein interaction affected by mutation 
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 Is the PPI affected by the mutation?  

Then, based on the above annotations, articles 

are carefully categorized as 1) True Positives, for 

articles specifically describing PPI influenced by 

genetic mutations, 2) True Negatives, for articles 

describing both PPIs and genetic variation analysis 

with no inference of relation between them, 3) arti-

cles containing PPI but no mutations, 4) articles 

containing mutations but no PPI, and 5) articles 

mentioning neither. 

2.2 Curated Database article selection 

The IntAct Molecular Interaction Database 

(Orchard, Ammari et al. 2014) is a freely available, 

open source database system and analysis tool for 

molecular interaction data. It currently lists 14,584 

manually annotated PubMed full-text articles with 

720,711 molecular interactions for 98,289 different 

interactors. The curation of these molecular inter-

actions is captured at a required level of detail and 

frequent updates include mapping to binding re-

gions, point mutations and post-translational mod-

ifications to a specified sequence with a reference 

protein sequence database.  

A set of 2,852 articles, containing in-the-abstract 

information about binding interfaces and mutations 

influencing the interactions, was retrieved from In-

tAct and these articles went through a careful re-

view and validation round by an experienced cura-

tor. Each one of these articles was carefully consid-

ered for their suitability for the precision medicine 

task.  

A second manual validation round was then per-

formed on all positively annotated articles of the 

first round. As a result, 598 articles were identified 

as relevant for the Relation Extraction task, with 
                                                      
1 https://www.ncbi.nlm.nih.gov/CBBresearch/Wil-

bur/IRET/PIE/ 

experimentally verified interactions influenced by 

mutations and with explicit interactors in the ab-

stract. All of these interactors were expressed with 

both their UniProt ID and Gene Entrez ID. The 

non-relevant articles were further categorized into 

the more specific categories as described above.      

2.3 Text Mining based article selection  

The Text Mining approach used two well-known 

publically available text mining tools: PIE the 

search (Kim, Kwon et al. 2012) and tmVar (Wei, 

Harris et al. 2013). PIE1 the search is a web service 

that provides an alternate way of querying PubMed 

for biologists and database curators. The returned 

articles are ranked based on their probability of de-

scribing protein-protein interactions, using a very 

competitive algorithm and the winner of BioCrea-

tive III ACT competition (Krallinger, Vazquez et al. 

2011). tmVar2 is another text mining tool that is the 

current gold-standard for recognizing sequence 

variants in PubMed literature. An article marked by 

tmVar signals the presence of a sequence variant of 

a mutation in the title and abstract.  

These tools were used as follows:  

 Step 1: PIE the search was used to select the 

top scoring (for PPI) PubMed articles pub-

lished in the last 10 years. This method se-

lected over 13,000 articles.  

 Step 2. tmVar was used on the resulting set 

of Step 1 to select all articles which had a se-

quence variant in the title or abstract. This 

method selected around 1,200 articles.  

2 https://www.ncbi.nlm.nih.gov/CBBre-

search/Lu/Demo/tmTools/#tmVar 

Table 1 Training Set annotation and distribution amongst different categories 

Annotation Category 
Curated data-
base selected 

articles (PPI set) 

Text mining tools 
selected articles 

(TM set) 

Complete 
Training Set 

True positives 1079 651 1,730  42% 
True Negatives 55 322 377  9% 
Negative, Yes PPI, No Mutation 1538 82 1,620  40% 
Negative, No PPI, Yes Mutation 136 87 99  2.4% 
Negative, No PPI, No Mutation 12 120 256  6.3% 

Total 2820 1262 4082  100% 
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 Step 3. All articles in Step 2 were manually 

annotated as described in the annotation 

guidelines.  

3 Results and Discussion 

3.1 Precision Medicine Task Training Cor-

pus Characteristics   

The Precision Medicine Task training corpus 

contains 4,082 selected PubMed abstracts that 

come from two different sources: curated databases 

and text mining tool selection. It is important to see 

the dataset as a whole and to notice the different 

composition of classified articles coming from 

both sources as detailed in Table 1.  

In addition, we looked at the PIE score distribu-

tion of all articles in the dataset. We noticed that the 

PubMed articles selected via text mining tools had 

a higher PIE score average than the articles re-

trieved from curated databases. In particular, while 

the PIE scores of the articles selected from the cu-

rated databases form a normal distribution, the 

scores of the text mining selected articles are 

skewed towards high scores.  

On a different experiment, we ran the tmVar tool 

on all curated database selected articles. Interest-

ingly, only 311 out of 1079 positives articles were 

marked by tmVar.   

Thus, if novel algorithm developers only gave 

more importance to articles selected via text min-

ing tools, or only the text mining tools used in our 

experiment, they risk biasing curators to only a par-

ticular set of articles. Innovative text mining tools 

should make use of both sets of articles in order to 

ensure a better coverage of curatable articles.  

3.2 Benchmark results and corpus use 

A baseline SVM method was designed using 

unigram and bigram features from titles and ab-

stracts of the training corpus, as shown in the re-

sults in Table 2. A first experiment used articles 

from the curated database for training in a 10-fold 

cross validation (CV) setting, and tested on the text 

mining selected articles. And a second experiment 

mixed all articles in a 10-fold cross validation set-

ting. Results are detailed in Table 2.  

The test dataset for BioCreative VI Precision 

Medicine Track will be a set selected by database 

curators. First articles will be retrieved via text 

mining tools and then each article will be manually 

evaluated by four experienced curators.  

4 Conclusions and Public Availability 

A vast amount of precision medicine related in-

formation can be found in published literature and 

extracted by skilled domain expert curators. The 

BioCreative VI Precision Medicine Track corpus 

characteristics provide important insights on 1) un-

derstanding the structure of biological information 

and why it is relevant for precision medicine pur-

poses, and 2) the best practices for designing com-

putational automatic methods capable of extracting 

such information from unstructured text.  

By releasing this data we aim to facilitate the cu-

ration of precision medicine related information 

available in published literature. This corpus fos-

ters development of innovative text mining algo-

rithms that may help database curators in identify-

ing molecular interactions that differ based on the 

presence of a specific genetic variant, information 

which could be translated to clinical practice.  

This data comes from two realistic, important 

data sources: 1) articles retrieved from expert cu-

rated PPI databases, re-evaluated and found useful 

for precision medicine purposes, and 2) articles re-

trieved via state-of-the-art text mining tools trained 

to identify articles describing PPI and containing 

identifiable sequence variants. Both sets of data 

have slightly different, but useful characteristics 

and as such, novel text mining tools need to use 

both sources of information for best application in 

this new domain. 

The BioCreative VI Precision Medicine training 

corpus will be available to task participants from 

the BioCreative website and later to the whole sci-

entific community.  

Table 2 Document Triage Task results 

Methods  Avg. Prec. Precision Recall F1 Positive  Negative Ratio 

10-fold CV (PPI set) 0.7577 0.7184 0.6321 0.6725 1079 1741 38% 

Validation (TM set) 0.6551 0.6210 0.6897 0.6536 651 611 52% 

10-fold CV (all data) 0.7225 0.6891 0.6260 0.6561 1730 2352 42% 
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Abstract

Relation extraction methods are essential
for creating robust text mining tools to
help researchers find useful knowledge in
the vast published literature. Easy-to-
use and generalizable methods are needed
to encourage an ecosystem in which re-
searchers can easily use shared resources
and build upon each others’ methods. We
present the Kindred Python package1 for
relation extraction. It builds upon meth-
ods from the most successful tools in the
recent BioNLP Shared Task to predict
high-quality predictions with low com-
putational cost. It also integrates with
PubAnnotation, PubTator, and BioNLP
Shared Task data in order to allow easy de-
velopment and application of relation ex-
traction models.

1 Introduction

Modern biomedical research is beginning to rely
on text mining tools to help search and curate
the ever-growing published literature and to inter-
pret large numbers of electronic health records.
Many text mining tools employ information ex-
traction (IE) methods to translate knowledge dis-
cussed in free text into a form that can be eas-
ily searched, analyzed and used to build valuable
biomedical databases. Examples of applications
of IE methods include building protein-protein in-
teraction networks (Donaldson et al., 2003) and
automatically retrieving information about pro-
teins (Rebholz-Schuhmann et al., 2007).

Information extraction relies on several key
technologies including relation extraction. Rela-
tion extraction focuses on understanding the rela-
tion between two of more biomedical terms in a

1http://www.github.com/jakelever/kindred

stretch of text. This may be understanding how
one protein interacts with another protein, whether
a drug treats or causes a particular symptom and
many other uses. Most methods assume that en-
tities (e.g. gene and drug names) in the sen-
tence have already been identified, either through
a named entity recognition tools (e.g. BANNER
(Leaman et al., 2008)) or basic dictionary match-
ing against a word list. The method must then
use linguistic cues within the sentence to predict
whether or not a relation exists between each pair
or group of entities and exactly which type of re-
lation it is.

The BioNLP Shared Task has catalyzed re-
search in relation extraction tools by providing an
environment for friendly competition between dif-
ferent relation extraction approaches. The orga-
nizers of the relation extraction subtasks provide
text from published literature with entities and re-
lations annotated. The participating researchers
build relation extraction models and predicted re-
lations on a test set. The participants’ predictions
are then analyzed by the organizers and the re-
sults presented to all. The BioNLP Shared Task
has been held in 2009, 2011, 2013 and recently
in 2016. The recent 2016 relation extraction prob-
lems focused on two areas: bacteria biotopes (BB3
subtask) and seed development (SeeDev subtask).
The BB3 subtask required participants to predict
relations between bacteria and their habitats. The
SeeDev subtask involved prediction of over twenty
different relation types related to seed develop-
ment.

Two main approaches to relation extraction
have been taken, a rule-based method and a vector-
based method. A rule-based approach identifies
common patterns that capture a relation. For in-
stance, two gene names with the word ”regulates”
between them generally implies a regulation rela-
tion between the two entities. The BioSem method
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(Bui et al., 2013) identifies common patterns of
words and parts-of-speech between biomedical
terms and performed well in the BioNLP Shared
Task in 2013.

The vector-based approach transforms a span of
text and candidate relation into a numerical vector
that can be used in a traditional machine learning
classification approach. Support vector machines
(SVM) have commonly been used. The TEES
(Björne and Salakoski, 2013) and VERSE (Lever
and Jones, 2016) methods, which were success-
ful in many of the shared tasks, use this approach
with different approaches for creating the vectors
and selecting the parameters for classification.

Deep learning, already very popular in natural
language processing (LeCun et al., 2015), has be-
gun to be used in the biomedical text mining field
with one entry in the BioNLP Shared Task using
a recurrent neural network approach (Mehryary
et al., 2016). The paper examined the use of long
short-term memory (LSTM) networks for rela-
tion extraction, especially in situations with small
training dataset sizes. Given such a complicated
model, the problem of overfitting becomes very
large. They proposed approaches to reduce over-
fitting and the entry performed very well, coming
second in the competition.

The VERSE method came first in the BB3 event
subtask and third in the SeeDev binary subtask
in the BioNLP Shared Task 2016. An analysis
of the two systems that outperformed VERSE in
the SeeDev subtask points to interesting direc-
tions for further development. The SeeDev sub-
task differs greatly from the BB3 subtask as there
are 24 relation types compared to only 1 in BB3
and the training set size for each relation is drasti-
cally smaller. The LitWay approach, which came
first, uses a hybrid approach of rule-based and
vector-based (Li et al., 2016). For ”simpler” rela-
tions, defined using a custom list, a rule-based ap-
proach is used using a predefined set of patterns.
The UniMelb approach created individual classi-
fiers for each relation type and was able to predict
multiple relations for a candidate relation (Panyam
et al., 2016). This approach of treating relation
types differently suggests that there may be large
differences in how a relation should be treated in
terms of the linguistic cues used to identify it and
the best algorithm approach to identify it.

There are several shortcomings in the ap-
proaches to the BioNLP Shared Tasks, the great-

est of all is the poor number of participants that
provide code. It is also clear that the advantages
of some of the most successful tools are tailored
specifically to these datasets and may not be able
to generalize easily to other relation extraction
tasks. Some tools that do share code such as TEES
and VERSE have a large number of dependen-
cies, though TEES ameliorates this problem with
an excellent installing tool that manages depen-
dencies. These tools can also be computationally
costly, with both TEES and VERSE taking a pa-
rameter optimization strategy that requires a clus-
ter for reasonable performance.

The biomedical text mining community is en-
deavoring to improve consistency and ease-of-use
for text mining tools. In 2012, the Biocreative
BioC Interoperability Initiative (Comeau et al.,
2014) encouraged researchers to develop biomed-
ical text mining tools around the BioC file for-
mat (Comeau et al., 2013). More recently, one
of the Biocreative BeCalm tasks focuses on ”tech-
nical interoperability and performance of annota-
tion servers” for a named entity recognition sys-
tems. This initiative encourages an ecosystem of
tools and datasets that will make text mining a
more common tool in biology research. PubAn-
notation (Kim and Wang, 2012), which is part
of this approach, is a public resource for shar-
ing annotated biomedical texts. The hope of this
resource is to provide data to improve biomed-
ical text mining tools and as a launching point
for future shared tasks. The PubTator tool (Wei
et al., 2013b) provides PubMed abstracts with var-
ious biomedical entities annotated using several
named entity recognition tools including tmVar
(Wei et al., 2013a) and DNorm (Leaman et al.,
2013).

In order to overcome some of the challenges
in the relation extraction community in terms
of ease-of-use and integration, we present Kin-
dred. Kindred is an easy-to-install Python pack-
age for relation extraction using a vector-based ap-
proach. It abstracts away much of the underly-
ing algorithms in order to allow a user to easily
start extracting biomedical knowledge from sen-
tences. However, the user can easily use individual
components of Kindred in conjunction with other
parsers or machine learning algorithms. It inte-
grates seamlessly with PubAnnotation and PubTa-
tor to allow easy access to training data and text to
be applied to. Furthermore, we show that it per-
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Figure 1: An example of a relation between two entities in the same sentence and the representations of
the relation in four input/output formats that Kindred supports.

forms very well on the BioNLP Shared Task 2016
relation subtasks.

2 Methods

Kindred is a Python package that builds upon the
Stanford CoreNLP framework (Manning et al.,
2014) and the scikit-learn machine learning library
(Pedregosa et al., 2011). The decision to build a
package was based on the understanding that each
text mining problem is different. It seemed more
valuable to make the individual features of the re-
lation extraction system available to the commu-
nity than a bespoke tool that was designed to solve
a fixed type of biomedical text mining problem.
Python was selected due to the excellent support
for machine learning and the easy distribution of
Python packages.

The ethos of the design is based on the scikit-
learn API that allows complex operations to oc-
cur in very few lines of code, but also gives de-
tailed control of the individual components. In-
dividual computational units are encapsulated in
separate classes to improve modularity and allow
easier testing. Nevertheless, the main goal was

to allow the user to download annotated data and
build a relation extraction classifier in as few lines
of code as possible.

2.1 Package development

The package has been developed for ease-of-use
and reliability. The code for the package is hosted
on Github. It was also developed using the contin-
uous integration system Travis CI in order to im-
prove the robustness of the tool. This allows reg-
ular tests to be run whenever code is committed
to the repository. This will enable further devel-
opment of Kindred and ensure that it continues to
work with both Python 2 and Python 3. Coveralls
and the Python coverage tool are used to evaluate
code coverage and assist in test evaluation.

These approaches were in line with the recent
recommendations on improving research software
(Taschuk and Wilson, 2017). We hope these tech-
niques will allow for and encourage others to make
use of and contribute to the Kindred package.
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2.2 Data Formats

As illustrated in Figure 1, Kindred accepts data in
four different formats: the standoff format used by
BioNLP Shared Tasks, the JSON format used by
PubAnnotation, the BioC format (Comeau et al.,
2013) and a simple tag format. The standoff for-
mat uses three files, a TXT file that contains the
raw text, an A1 file that contains information on
the tagged entities and an A2 file that contains
information on the relations between the entities.
The JSON, BioC and simple tag formats integrate
this information into single files. The input text
in each of these formats must have already been
annotated for entities.

The simple tag format was implemented primar-
ily for simple illustrations of Kindred and for eas-
ier testing purposes. It is parsed using an XML
parser to identify all tags. A relation tag should
contain a ”type” attribute that denotes the relation
type (e.g. causes). All other attributes are assumed
to be arguments for the relation and their values
should be IDs for entities in the same text. A non-
relation tag is assumed to be describing an entity
and should have an ID attribute that is used for as-
sociating relations.

2.3 Parsing and Candidate Building

The text data is loaded, and where possible, the
annotations are checked for validity. In order to
prepare the data for classification, the first step is
sentence splitting and tokenization. We use the
Stanford CoreNLP toolkit for this which is also
used for dependency parsing for each sentence.

Once parsing has completed, the associated en-
tity information must then be matched with the
corresponding sentences. An entity can contain
non-contiguous tokens as was the case for the BB3
event dataset in the BioNLP 2016 Shared Task.
Therefore each token that overlaps with an anno-
tation for an entity is linked to that entity.

Any relations that occur entirely within a sen-
tence are associated with that sentence. The de-
cision to focus on relations contained within sen-
tence boundaries is based on the poor perfor-
mance of relation extraction systems in the past.
The VERSE tool explored predicting relations
that spanned sentence boundaries in the BioNLP
Shared Task and found that the false positive rate
was too high. The sentence is also parsed to
generate a dependency graph which is stored as
a set of triples (tokeni, tokenj , dependencyij)

where dependencyij is the type of edge in the
dependency graph between tokens i and j. The
edge types use the Universal Dependencies format
(Nivre et al., 2016).

Relation candidates are then created by find-
ing every possible pair of entities within each sen-
tence. The candidates that are annotated relations
are stored with a class number for use in the mul-
ticlass classifier. The class zero denotes no rela-
tion. All other classes denote relations of specific
types. The types of relations and therefore how
many classes are required for the multiclass clas-
sifier are based on the training data provided to
Kindred.

2.4 Vectorization
Each candidate is then vectorized in order to trans-
form the tokenized sentence and set of entity in-
formation into a numerical vector that can be pro-
cessed using the scikit-learn classifiers. In order to
keep Kindred simple and improve performance, it
only generates a small set of features as outlined
below.

• Entity types in the candidate relation

• Unigrams between entities

• Bigrams for the full sentence

• Edges in dependency path

• Edges in dependency path that are next to
each entity.

For the entity type and edge relations, they are
stored in a one-hot format. For the entity specific
relations, features are created for each entity. For
instance, if there are three relation types for rela-
tions between two arguments, then six binary fea-
tures would be required to capture the entity types.

The unigrams and bigrams use a bag-of-words
approach. Term-frequency inverse-document fre-
quency (TF-IDF) is used for all bag-of-words
based features. The dependency path, using the
same method as VERSE, is calculated as the min-
imum spanning tree between the nodes in the de-
pendency graph that are associated with the enti-
ties in the candidate relation.

2.5 Classification
Kindred has in-built support for the support vec-
tor machine (SVM) and logistic regression classi-
fiers implemented in scikit-learn. By default, the
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SVM classifier is used with the vectorized can-
didate relations. The linear kernel has shown to
give good performance and is substantially faster
to train than alternative SVM kernels such as ra-
dial basis function or exponential.

The success of the LitWay and UniMelb entries
to the SeeDev shared task suggested that individ-
ual classifiers for unique relation types may give
improved performance. This may be due to the
significant differences in complexity between dif-
ferent relation types. For instance, one relation
type may require information from across the sen-
tence for good classification, whereas another rela-
tion type may require only the neighboring word.

Using one classifier per relation type, instead
of a single multiclass classifier, means that a re-
lation candidate may be predicted to be multiple
relation types. Depending on the dataset, this may
be the appropriate decision as relations may over-
lap. Kindred offers this functionality of one clas-
sifier per relation type. However, for the SeeDev
dataset, we found that the best performance was
actually through a single multiclass classifier.

2.6 Filtering
The predicted set of relations is then filtered us-
ing the associated relation type and types of the
entities in the relation. Kindred uses the set of
relations in the training data to infer the possible
argument types for each relation.

2.7 Precision-recall tradeoff
The importance of precision and recall depends on
the specific text mining problem. The BioNLP
Shared Task has favored the F1-score, giving an
equal weighting to precision and recall. Other text
mining projects may prefer higher precision in or-
der to avoid biocurators having to manually filter
out spurious results. Alternatively, projects may
require higher recall in order to not miss any pos-
sibly important results. Kindred gives the user the
control of a threshold for making predictions. In
this case, the logistic regression classifier is used
as it allows for easier thresholding. This is be-
cause the underlying predicted values can be in-
terpreted as probabilities. We found that logistic
regression achieved performance very close to the
SVM classifier. By selecting a higher threshold,
the classifier will become more conservative, de-
crease the number of false positives and therefore
improve precision at the cost of recall. By us-
ing cross-validation, the user can get an idea of

Figure 2: The precision-recall tradeoff when
trained on the training set for the BB3 and SeeDev
results and evaluating on the development set us-
ing different thresholds. The numbers shown on
the plot are the thresholds.

the precision-recall tradeoff. The tradeoffs for the
BB3 and SeeDev tasks are shown in 2. This allows
the user to select the appropriate threshold for their
task.

2.8 Parameter optimization

TEES took a grid-search approach to parameter
optimization and focused on the parameters of the
SVM classifier. VERSE had a significantly larger
selection of parameters and grid search was not
computationally feasible so a stochastic approach
was used. Both approaches are computationally
expensive and generally need a computer cluster.

Kindred takes a much simpler approach to pa-
rameter optimization and can work out of the box
with default values. To improve performance, the
user can choose to do minor parameter optimiza-
tion. The only parameter optimized by Kindred
is the exact set of features used for classifica-
tion. This decision was made with the hypothesis
that some relations potentially require words from
across the sentence and other need only the infor-
mation from the dependency parse.

The feature choice optimization uses a greedy
algorithm. It calculates the F1-score using cross
validation for each feature type. It then selects
the best one and tries adding the remaining fea-
ture types to it. It continues growing the feature
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Figure 3: An illustration of the greedy approach to
selecting feature types for the BB3 dataset.

set until the cross-validated F1 score does not im-
prove.

Figure 3 illustrates the process for the BB3 sub-
task using the training set and evaluating on the de-
velopment set. At the first stage, the entity types
feature is selected. This is understandable as the
types of entity are highly predictive of whether
a candidate relation is reasonable for a particular
candidate type, e.g. two gene entities are unlikely
to be associated in a ’IS TREATMENT FOR’ re-
lation. At the next stage, the unigrams between
entities feature is selected. And on the third stage,
no improvement is made. Hence for this dataset,
two features are selected. We use this approach for
the BB3 dataset but found that the default feature
set performed best for the SeeDev dataset.

2.9 Dependencies
The main dependencies of Kindred are the scikit-
learn machine learning library and the Stanford
CoreNLP toolkit. Kindred will check for a locally
running CoreNLP server and connect if possible.
If none is found, then the CoreNLP archive file
will be downloaded. After checking the SHA256
checksum to confirm the file integrity, it is ex-

tracted. It will then launch CoreNLP as a back-
ground process and wait until the toolkit is ready
before proceeding to send parse requests to it. It
also makes sure to kill the CoreNLP process when
the Kindred package exits. Kindred also depends
on the wget package for easy downloading of files,
the IntervalTree python package for identifying
entity spans in text and NetworkX for generating
the dependency path (Schult and Swart, 2008).

2.10 PubAnnotation integration
In order to make use of existing resources in the
biomedical text mining community, Kindred in-
tegrates with PubAnnotation. This allows anno-
tated text to be downloaded from PubAnnotation
and used to train classifiers.

The PubAnnotation platform provides a REST-
ful API that allows easy download of annotations
from a given project. Kindred will initially down-
load the listing of all available text sources with
annotation for a given project. The listing is pro-
vided as a JSON data file. It will then download
the complete set of texts with annotations.

2.11 PubTator integration
Kindred can also download a set of annotated
PubMed abstracts that have already been anno-
tated with named entities through the PubTator
framework using the RESTful API. This requires
the user to provide a set of PubMed IDs which are
then requested from the PubTator server using the
JSON data format. The same loader used for Pub-
Annotation data is then used for the PubTator data.

2.12 BioNLP Shared Task integration
Kindred gives easy access to the data from the
most recent BioNLP Shared Task. By providing
the name of the test and specific data set (e.g.
training, development or testing), Kindred man-
ages the download of the appropriate archive, un-
zipping and loading of the data. As with the
CoreNLP dependency, the SHA256 checksum of
the downloaded archive is checked before unzip-
ping occurs.

2.13 API
One of the main goals of Kindred is to open up the
internal functionality of a relation extraction sys-
tem to other developers. The authors are keenly
aware that their specific interest in relation extrac-
tion, in order to build knowledge bases related to
cancer, differs from other researchers. With this
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Precision Recall F1 Score
Fold 1 0.319 0.715 0.441
Fold 2 0.460 0.684 0.550

Test Set 0.579 0.443 0.502
VERSE 0.510 0.615 0.558

Table 1: Cross-validated results (Fold1/Fold2) and
final test set results for Kindred predictions in Bac-
teria Biotope (BB3) event subtask with test set re-
sults for the top performing tool VERSE.

in mind, the API is designed to give easy access
to the different modules of Kindred that may be
used independently. For instance, the candidate
builder or vectorizer could easily be integrated
with functionality from other Python packages,
which would allow for other machine learning al-
gorithms or deep learning techniques to be tested.
Other parsers could easily be integrated and tested
with the other parts of the Kindred in order to un-
derstand how the parser performance affects the
overall performance of the system. We hope that
this ease-of-use will encourage others to use Kin-
dred as a baseline method for comparison in future
research.

3 Results and Discussion

In order to show the efficacy of Kindred, we eval-
uate the performance on the BioNLP 2016 Shared
Task data for the BB3 event extraction subtask and
the SeeDev binary relation subtask. Parameter op-
timization was used for BB3 subtask but not for
the SeeDev subtask which used the default set of
feature types. Both tasks used a single multiclass
classifier. Tables 1 and 2 shows both the cross-
validated results using the provided training/devel-
opment split as well as the final results for the test
set.

The results are in line with the best perform-
ing tools in the shared task. It is to be expected
that it does not achieve the best score in either
task. VERSE, which achieved the best score in the
BB3 subtask, utilized a computational cluster to
test out different parameter settings for vectoriza-
tion as well as classification. LitWay, the winner
of the SeeDev subtask, used hand-crafted rules for
a number of the relation types. Given the computa-
tional speed and simplicity of the system, Kindred
is a valuable contribution to the community.

These results suggest several possible exten-
sions of Kindred. Firstly, a hybrid system that

Precision Recall F1 Score
Fold 1 0.333 0.411 0.368
Fold 2 0.255 0.393 0.309

Test Set 0.344 0.479 0.400
LitWay 0.417 0.448 0.432

Table 2: Cross-validated results (Fold1/Fold2) and
final test set results for Kindred predictions in
Seed Development (SeeDev) binary subtask with
test set results for the top performing tool LitWay.

mixes a vector-based classifier with some hand-
crafted rules may improve system performance.
This would need to be implemented to allow cus-
tomization in order to support different biomedi-
cal tasks. Kindred is also geared towards PubMed
abstract text, especially given the integration with
PubTator. Using PubTator’s API to annotate other
text would allow Kindred to easily integrate other
text sources, including full-text articles where pos-
sible. Given the open nature of the API, we hope
that these improvements, if desired by the commu-
nity, could be easily developed and tested.

Kindred has several weaknesses that we hope to
improve. It does not properly handle entities that
lie within tokens. For example, a token ”HER2+”,
with ”HER” annotated as a gene name, denotes a
breast cancer subtype that is positive for the HER2
receptor. Kindred will currently associate the full
token as a gene entity and will not properly deal
the ”+”. This is not a concern for the BioNLP
Shared Task problem but may become important
in other text mining tasks.

4 Conclusion

We have presented the Kindred relation extraction
package. It is designed for ease-of-use to encour-
age more researchers to test out relation extrac-
tion in their research. By integrating a selection
of file formats and connecting to a set of exist-
ing resources including PubAnnotation and Pub-
Tator, Kindred will make the first steps for a re-
searcher must less cumbersome. We also hope that
the codebase will allow researchers to build upon
the methods to make further improvements in re-
lation extraction research.
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Abstract

Distant supervision has been applied to
automatically generate labeled data for
biomedical relation extraction. Noise ex-
ists in both positively and negatively-
labeled data and affects the performance of
supervised machine learning methods. In
this paper, we propose three novel heuris-
tics based on the notion of proximity, trig-
ger word and confidence of patterns to
leverage lexical and syntactic information
to reduce the level of noise in the distantly
labeled data. Experiments on three dif-
ferent tasks, extraction of protein-protein-
interaction, miRNA-gene regulation rela-
tion and protein-localization event, show
that the proposed methods can improve
the F-score over the baseline by 6, 10 and
14 points for the three tasks, respectively.
We also show that when the models are
configured to output high-confidence re-
sults, high precisions can be obtained us-
ing the proposed methods, making them
promising for facilitating manual curation
for databases.

1 Introduction

Biomedical relation extraction is a widely studied
field that is concerned with the detection of dif-
ferent kinds of relations between bio-entities men-
tioned in text. With the rapid growth of biomed-
ical literature, it has attracted much research in-
terest as it makes possible to automatically ex-
tract structured information from large amounts of
text. Biomedical relation extraction has helped
facilitate manual curation of many biomedical
databases as well as biological hypothesis gener-
ation.

Various tasks have been studied for biomedi-
cal relation extraction, e.g., extraction of protein-
protein interaction (Airola et al., 2008), drug-
drug interaction (Segura-Bedmar et al., 2013)
and mutation-disease association (Singhal et al.,
2016). In recent years, community-organized
events, such as BioNLP (Kim et al., 2012, 2013)
and BioCreative (Arighi et al., 2014; Wei et al.,
2015b), provide comprehensive evaluation for ex-
traction systems of a wide range of biomedical
relations and events. In these tasks, supervised
learning methods are commonly used and achieve
state-of-the-art results.

When applying supervised learning methods, a
training corpus is required to train the extraction
model. The creation of a training corpus usu-
ally requires curators with domain knowledge, and
is a time-consuming and labor-intensive process.
Thus, it is one of the main obstacles in the use of
supervised learning methods for relation extrac-
tion. To address this issue, recently researchers
have been using distant supervision to construct
training data automatically.

In distant supervision, a heuristic labeling pro-
cess is used to label a text corpus using known re-
lated entity pairs from a database. Text containing
these entity mentions or their different name varia-
tions are labeled as positive instances. To illustrate
the labeling process, we show two example sen-
tences labeled using interacting protein pairs from
the database IntAct (Orchard et al., 2014).

• 〈NgR, p75〉: NgR interacted with p75 in lipid
rafts

• 〈Mdm2, p53〉: As a consequence, N-
terminally truncated Mdm2 binds p53 and
promotes its stability.

The above sentences are labeled as positive in-
stances and express protein-protein interaction re-
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lation between the protein mention pair. When
a protein pair mentioned in a sentence is not
recorded by IntAct, the sentence is then labeled as
a negative instance. The positively and negatively-
labeled data generated by this process can poten-
tially be used by supervised learning algorithms
to train a model. Various existing biological
databases and the large amount of Medline ab-
stracts and PMC full-length articles can support
applying distant supervision for many biomedical
relation extraction tasks. However, the main draw-
back of distant supervision is that the created data
can be very noisy, due to the guideless heuristic
labeling process. Wrongly labeled instances ex-
ist in both positively and negatively-labeled data.
For example, consider the two labeled sentences
below for protein-protein interaction.

• 〈Mdm2, p53〉: Ribosomal protein S3: A
multi-functional protein that interacts with
both p53 and MDM2 through its KH domain.

• 〈LRAP35a, MYO18A〉: LRAP35a binds in-
dependently to MYO18A and MRCK.

In the first sentence, although the protein pair
〈Mdm2, p53〉 are interacting with each other ac-
cording to IntAct, no explicit description in the
sentence expresses such an interaction relation. It
is labeled as a positive instance by the heuristic la-
beling process, which is a wrong annotation. On
the other hand, if a related entity pair has not been
recorded in the database, all the sentences con-
taining their mentions will be labeled as negative
instances, which may also contain wrong annota-
tions. As an example, the protein pair 〈LRAP35a,
MYO18A〉 in the second sentence is not recorded
by IntAct. The sentence is labeled as negative,
while it expresses an interaction relation between
the two proteins. Thus, it is a wrong annotation in
the negatively-labeled data.

In this paper, we propose three novel heuristics
that attempt to reduce the noise in the positively-
labeled data set P as well as the negatively-labeled
data set N . First, noise can be removed from P us-
ing lexical and syntactic information of the entity
mention pairs. Next, high-confidence patterns can
be discovered using the purified P , which can then
be used to remove noise from N . Experiments on
three tasks, extraction of protein-protein interac-
tion, miRNA-gene regulation relation and protein-
localization event, show that our methods can im-
prove the F-score by 6, 10 and 14 points over the

baseline for the three tasks, respectively. Further-
more, we show that our methods obtain 0.71, 0.95
and 0.77 precision at recall level 0.30 for the three
tasks, respectively, making them promising for fa-
cilitating database curation.

In the rest of the paper, we first discuss the
related work in Section 2. Section 3 describes
the three tasks for experiments, as well as the
databases and text corpora used in our experiments
for applying distant supervision. In Section 4, we
describe the details of the proposed methods. Ex-
periments results will be reported in Section 5. We
conclude with future work in Section 6.

2 Related Work

Distant supervision for relation extraction was first
proposed by Craven and Kumlien (1999) to ex-
tract protein-localization relation. Mintz et al.
(2009) used Freebase relations to annotate arti-
cles in Wikipedia and trained a logistic regression
model to extract 102 different types of relations.
Riedel et al. (2010) proposed to use multi-instance
learning to tolerate noise in the positively-labeled
data. They relaxed the original assumption in dis-
tant supervision that all the positively-labeled sen-
tences of an entity pair express the relation of in-
terest and instead, they assume that at least one
of the sentences does. Hoffmann et al. (2011)
and Surdeanu et al. (2012) continued to augment
the multi-instance model with a multi-label clas-
sifier for each entity pair, to exploit correlations
and conflicts among different relations to improve
performance. In these approaches, researchers fo-
cus on developing models that can tolerate noise
and improve extraction performance on entity pair
level. However, it is important to note that the
noise is not explicitly removed from the labeled
data, and extraction on sentence level is not opti-
mized directly.

Focusing on explicitly reducing noise from
the distantly-labeled training data, Intxaurrondo
et al. (2013) proposed three simple heuristics to
remove noise from the positively-labeled data.
They tried to filter out positively-labeled instances
that appear too frequently or have a large dis-
tance from their cluster centroid, or positive en-
tity pairs that have a low partial mutual informa-
tion. Takamatsu et al. (2012) proposed a statisti-
cal model to estimate P (relation|pattern), and
removed positively-labeled instances that match
a low-probability pattern. Xu et al. (2013)
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used pseudo-relevance feedback to discover high-
confidence related entity pairs which do not exist
in the database, and removed negatively-labeled
instances of these entity pairs. Roller et al. (2015)
tried to reduce noise in the negatively-labeled data
by inferring new relations of a knowledge graph
using a random-walk algorithm. Roth et al. (2013)
gave a nice review of some of the above methods.

Distant supervision has also been applied to ex-
tract biomedical relation. Zheng and Blake (2015)
used a heuristic based on dependency path fre-
quency to reduce noise in the positively-labeled
data for extraction of protein-localization rela-
tions. Thomas et al. (2011) used a list of words
which are frequently employed to indicate protein
interaction to filter out noise for protein-protein in-
teraction extraction. Roller and Stevenson (2015)
tried to combine existing hand-labeled data with
distantly labeled data to improve the performance
for drug-condition relations. Multi-instance learn-
ing was used by Roller et al. (2015) to extract two
subsets of relations in UMLS database with re-
duced noise by a path ranking algorithm, and by
Lamurias et al. (2017) to extract miRNA-gene re-
lations.

3 Resources

3.1 Task Definition

In this paper, we use three tasks, extraction
of protein-protein interaction (PPI), miRNA-
gene regulation relation (MIRGENE) and protein-
localization event (PLOC), to evaluate our meth-
ods. Extraction of PPIs is a well-studied task
(Miwa et al., 2009; Peng et al., 2016). We aim
to extract interacting protein pairs from text us-
ing distant supervision, and evaluate it on one of
the public corpora used by previous work. Ex-
traction of miRNA-gene regulation relations have
attracted much interest recently because of the
rapid growth of miRNA-related literature (Bage-
wadi et al., 2014; Li et al., 2015). In a MIRGENE
relation, a miRNA regulates gene expression via
direct binding to the gene’s 3’ UTR or indirect
pathway effect. Extraction of protein-localization
event has been a subtask in BioNLP shared task
from 2009 to 2013 in the Genia track (Kim et al.,
2013). It describes the event that a protein is lo-
calized to a subcellular location. We only con-
sider extraction of such events when the sentence
mentions the protein and the location, same with
Zheng and Blake (2015). We list an example sen-

tence for each task below.

• PPI: Interaction of Shc with Grb2 regulates
association of Grb2 with mSOS.

• MIRGENE: MicroRNA-223 regulates
FOXO1 expression and cell proliferation.

• PLOC: The cyclin G1 protein was localized
in nucleus.

3.2 Training Data Construction

To construct the training set, we need a database
containing related entity pairs and a large amount
of text for the heuristic labeling. Table 1
lists the databases, text corpora and numbers of
positively/negatively-labeled instances produced
by the heuristic labeling process for the three
tasks.

Task Database Abstracts Positive / Negative
PPI IntAct 14,769 67,099 / 108,016
MIRGENE Tarbase, miRTarBase 30,000 75,632 / 97,118
PLOC UniProt 30,000 28,985 / 82,132

Table 1: Databases, text corpora and distantly la-
beled data for the three tasks.

From all the Medline abstracts, we randomly
sampled 30,000 abstracts with sentences men-
tioning a pair of miRNA and gene for miRNA-
gene regulation relation, and 30,000 abstracts
with sentences mentioning a pair of protein and
subcellular location for protein-localization event.
We tried sampling more abstracts but the ex-
periment results were not significantly different.
For protein-protein interaction, using Medline ab-
stracts leads to a skewed labeled data set (1:7.4
positive/negative ratio), we turned to use all the
abstracts that are curated by IntAct database as the
text corpus. Although this may result in less noise,
we will show that our proposed methods are still
able to improve performance over the baseline in
the experiments.

In the heuristic labeling process, we need to
recognize entity mentions in text and map them
to their database entry. For gene/protein, we use
the output from GenNorm++ (Wei et al., 2015a).
We use simple regular expressions to recognize
miRNA mentions, and map them to a miRNA en-
try in TarBase (Vlachos et al., 2014) or miRTar-
Base (Hsu et al., 2014) using the number in the
miRNA name. For subcellular location, similar to
Zheng and Blake (2015), we use a dictionary from
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UniProt (UniProt Consortium, 2014) and perform
string matching to find subcellular location men-
tions. The entry "secreted" is removed as it is
not a specific subcellular location. The dictionary
contains name variants for each location, and we
normalize a matched variant in text to its standard
name.

3.3 Test Data
We evaluate the baselines and proposed methods
on a test set directly for the three tasks. Note that
in the context of distant supervision, we should ex-
pect little or no hand-labeled data. Hence, we can
not assume the availability of a development set
for the purpose of parameter tuning. Thus, when
a method has multiple possible choices for a pa-
rameter, we will report the results using different
parameter values.

For the test set, we use the AIMed corpus
(Bunescu et al., 2005) for PPI extraction, same
with Bobic et al. (2012). We extend the corpus in
our work (Li et al., 2015) to include relation men-
tion annotations, and use the development set to
evaluate MIRGENE extraction. For PLOC extrac-
tion we use BioNLP 2011 Genia training and de-
velopment set, same with Zheng and Blake (2015).
Gold entity annotations in these corpora are used
except for subcellular location, we use the dictio-
nary from UniProt to recognize them, as BioNLP
Genia corpus only annotates subcellular locations
that participate in an event. The characteristics of
the three test corpora are listed in Table 2. We
ensure that the test sets do not overlap with the
training sets. Specifically, all the abstracts used by
the test sets are removed from the document pools
from where the training sets are sampled.

Task Documents Annotations (P/N)
PPI 225 1,000 / 4,611
MIRGENE 200 464 / 775
PLOC 1,167 125 / 1,783

Table 2: Test sets for the three tasks.

4 Methods

4.1 Model and Feature Set
Logistic regression (LR) model is used for all our
proposed methods in the experiments. An exam-
ple sentence with relevant dependency relations
and its extracted features are shown in Fig. 1 and
Table 3. E-walk and v-walk features are 〈edge,

stem, edge〉 and 〈stem, edge, stem〉 triples includ-
ing the direction extracted from the shortest de-
pendency path. They preserve partial structure in-
formation and are more generalizable than the full
dependency path.

Figure 1: Example sentence for feature extraction.

No. Feature
1 P1←nmod:of←→nmod:with→P2
2 nmod:of←interact→nmod:with
3 P1←nmod:of→interact

interact→nmod:with→P2
4 P1_with_P2

of_P2_with_P2_be
interact_of_P1_with_P2_be_confirm

5 2
6 1

Table 3: Features extracted from the example sen-
tence. P1 and P2 represent the two protein men-
tions. 1: unlexicalized shortest dependency path;
2: e-walk features; 3: v-walks features; 4: three
stem sequences, 5: number of edges on the short-
est dependency path; 6: number of stems on the
first stem sequence.

For all the lexical terms, we use their stems pro-
duced by Porter’s stemmer (Porter, 1980). Char-
niak parser (Charniak, 2000; Charniak and John-
son, 2005) with the biomedical model (Mcclosky,
2010) is used to produce constituency parse for
each sentence, which is converted to collapsed
dependency parse using Stanford CoreNLP con-
verter (Manning et al., 2014) with CCprocessed
setting. We remove features that only appear once
in the whole training set.

4.2 Baselines

The baseline is a LR model trained on the distantly
labeled set without any filtering of noise. We
also implement two previous methods for compar-
ison. First, we train a LR model on the distantly
labeled set filtered by a heuristic (DPFreq) pro-
posed by Zheng and Blake (2015), which removes
positively-labeled instances with a shortest depen-
dency path that appear less than k times in the pos-
itive set. They hypothesize that rare dependency
path is unlikely to express a relation. As we tried
different values of k and obtained similar F-scores
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for the three tasks, we only report the results for
k = 5 to save space. Note that since different
features, text corpus and named entity recognition
tool are used, we are not trying to reproduce the
exact results reported in Zheng and Blake (2015).
In addition, we implement a widely-used multi-
instance model described in Surdeanu et al. (2012)
and train it on unfiltered distantly labeled data.

4.3 Proposed Heuristics

We propose three novel filtering methods to re-
move noise from both positively and negatively-
labeled data. These methods are applied in a se-
quential manner so that each step removes more
noise based on the filtered data from the previous
step.

The first heuristic is concerned with multiple
mentions of an entity in a sentence. If the entity
is related to another entity mentioned in the sen-
tence, all the binary combinations of their men-
tions will be labeled as positive by the default
labeling process. This usually introduces noise,
since not all combinations are likely to be in the
relation. For example, consider the sentence be-
low.

Overexpression of miR-193b inhibited the ex-
pression of CCND1, and knock-down of CCND1
inhibited the proliferation of GC cells, suggesting
that miR-193b exerted its anti-tumorigenic role in
GC cells through targeting CCND1 gene.

miR-193b regulates CCND1 according to the
database TarBase. The six binary combinations
between miR-193b and CCND1 in the sentence
will be labeled as positive instances. However, the
sentence only expresses miRNA-gene regulation
relation for the first and the last combination. The
other four are wrongly labeled and hence consti-
tute noise in the positively-labeled data.

To remove such noise, we hypothesize that only
the closest pair of the entity mentions express the
relation. The closest pair is defined as follow-
ing: for a positively-labeled entity mention pair
〈e1, e2〉, if their shortest dependency path has the
smallest length among all the positively-labeled
instances that involve either e1 or e2, the pair
〈e1, e2〉 is considered as a closest pair. When com-
puting the dependency path length, we skip the ap-
pos relation. The heuristic is described as below.

Heuristic of closest pairs (CP): remove
positively-labeled instances that are not closest
pair, when multiple mentions of one or both en-

tities are present in the sentence.
For the three tasks and many other biomedical

text-mining tasks, the relation or event is often in-
dicated by a small set of trigger words (e.g., inter-
act/bind for PPI, regulate/target for MIRGENE,
and localize/translocate for PLOC). Following the
usage in the BioNLP Genia corpus, we can term
these words as trigger words. With knowledge of
a comprehensive set of trigger words, we can hy-
pothesize that sentences without a trigger word are
less likely to express the target relation or event.
We propose to automatically mine such trigger
words from the large distantly-labeled corpus, and
use them to remove noise from the positively-
labeled data.

Trigger words are usually verbs, or in their nom-
inal or adjectival form. Our target is then to iden-
tify stems of verb triggers, which can also be used
to match nominal or adjectival form of the verb.
A simple procedure is used: first, count all the
verb stems on the shortest dependency paths of
the positively-labeled instances generated by the
heuristic labeling process. As we want to choose
triggers that are strongly associated with the re-
lation, we only use dependency paths that con-
tain one token, excluding the two entity mentions.
These verb stems are then sorted by frequency and
the high-frequency stems are chosen for the trig-
ger list. We list the top 10 verb stems for the three
tasks in Table 4.

For each positively-labeled instance, we search
for trigger stems in the tokens on its shortest
dependency path or in the maximum dominat-
ing noun phrase. A maximum dominating noun
phrase is defined as the maximally-spanning noun
phrase that encloses the two entity mentions, with
only noun or prepositional phrases as descendants.
For example, in the text fragment "interaction be-
tween FAK and PP1 regulates a process", the
maximum dominating noun phrase is "interaction
between FAK with PP1" for this protein mention
pair. As sentences without a trigger word are less
likely to express the target relation or event, we
use the heuristic described below to remove noise.

Heuristic of trigger word (TW): remove
positively-labeled instances if a trigger stem is not
found on the shortest dependency path or in the
maximum dominating noun phrase of the entity
mention pair.

By using heuristic CP and TW, we can already
filter out a substantial part of the positively-labeled
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Task Verb stems Pattern and example sentence

PPI
interact, bind, associ, phosphoryl, re-
cruit, activ, coloc, coimmunoprecipit, co-
immunoprecipit, regul

PROTEIN1←nsubj←interact→nmod:with→PROTEIN2
mGrb10 interacts with Nedd4.

MIRGENE target, regul, inhibit, downregul, suppress,
repress, down-regul, correl, induc, promot

GENE←dobj←target←advcl←root→nsubj→MIRNA
MiR-429 play its role in PDAC by targeting TBK1.

PLOC local, transloc, express, associ, interact, de-
tect, coloc, find, co-loc, target

PROTEIN←nmod:of←transloc→amod→LOCATION
Importin beta mediates nuclear translocation of Smad 3.

Table 4: The top 10 verb stems and top pattern and example sentence for the three tasks.

data. Using heuristic CP+TW with 50 trigger
stems, 65% of the positively-labeled data can be
removed for PPI. For MIRGENE and PLOC, the
removal ratio is 38% and 59%, respectively. We
hypothesize that the remaining set will still con-
tain a large amount of data for training and more
importantly, it will be of high quality, and thus it
would be possible to discover high-confidence pat-
terns from it using pattern occurrence frequency.

Finally, we turn to the last heuristic that we
introduce. Recall noisy instances in negatively-
labeled data should be labeled as positive but are
negatively labeled because of incompleteness of
the database used for distant supervision. We try
to mine some high-confidence patterns from the
purified positively-labeled set after the application
of heuristic CP and TW. We define a pattern as a
shortest dependency path lexicalized by a trigger
stem between the entity mention pair. The pattern
frequencies in the positively-labeled data filtered
by heuristic CP and TW are counted. The most
frequent pattern and an example sentence for each
task are shown in Table 4.

Our hypothesis is that any entity mention pair
connected by a high-confidence pattern is likely
to be related and hence probably constitute noise
in the negatively-labeled data. Therefore, we con-
sider the next heuristic described below.

Heuristic of high-confidence patterns (HP):
remove negatively-labeled instances which match
a high-confidence pattern mined from positively-
labeled data.

Note that heuristic DPFreq, CP and TW re-
move instances from the positively-labeled data,
whereas HP is the only heuristic that removes in-
stances from the negatively-labeled data. Heuris-
tic TW depends on the number of trigger stems,
while heuristic HP depends on both the number
of trigger stems and high-confidence patterns, as
it needs the trigger stems to lexicalize the shortest
dependency path to form a pattern.

5 Results and Discussions

We use precision, recall and F-score to evaluate
the baselines and proposed methods. The top 50
trigger stems were used in heuristic TW, while the
top 50 trigger stems and the top 100 patterns were
used in heuristic HP. The results are presented in
Table 5. Specificity is also presented. We will dis-
cuss how different numbers of trigger stems and
patterns may affect the results later.

Table 5 shows that the multi-instance model
and the use of heuristic DPFreq or CP increased
precision compared to the baseline for all the
three tasks, indicating that they can effectively re-
move noise from the positively-labeled data. Us-
ing heuristic CP+TW further improved precisions
over heuristic CP for the three tasks. However, us-
ing heuristic DPFreq, CP or CP+TW did not im-
prove the F-score over the baseline for PPI and
MIRGENE, due the decreased recall. By remov-
ing noise from the negatively-labeled data using
heuristic HP in addition to CP and TW, the re-
calls can be improved with minor or no decrease
in precision, resulting in higher F-scores than the
baseline, the MI model and other heuristics for
all the three tasks. This suggests that the pro-
posed heuristics can effectively remove noise from
both positively and negatively-labeled data, and
to obtain better F-scores, it is important to filter
both positive and negative set to improve preci-
sion and recall simultaneously. Although PLOC
extraction did not obtain a good precision in all the
experiments, we will show that high precision can
be achieved for high-confidence PLOC extraction
later in this section.

By applying heuristic CP+TW+HP, the F-score
can be improved by 10 points for PPI extraction
compared to Bobic et al. (2012), and 11 points for
PLOC extraction compared to Zheng and Blake
(2015).

Different numbers of trigger stems: as differ-
ent numbers of trigger stems can be used in heuris-
tic TW and HP, we investigated how they affect
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PPI MIRGENE PLOC
Method P R F S P R F S P R F S
Bobic et al. (2012) 0.26 0.78 0.39 - - - - - - - - -
Zheng and Blake (2015) - - - - - - - - 0.43 0.25 0.31 -
Baseline 0.37 0.52 0.43 0.86 0.56 0.58 0.57 0.74 0.18 0.57 0.28 0.94
Multi-instance (MI) 0.57 0.35 0.43 0.91 0.64 0.56 0.59 0.78 0.22 0.38 0.29 0.94
DPFreq 0.42 0.41 0.41 0.87 0.63 0.50 0.56 0.78 0.21 0.39 0.29 0.94
CP 0.55 0.34 0.42 0.95 0.68 0.50 0.57 0.81 0.26 0.51 0.35 0.95
CP+TW 0.69 0.28 0.40 0.93 0.72 0.44 0.55 0.83 0.34 0.42 0.37 0.95
CP+TW+HP 0.65 0.39 0.49 0.93 0.73 0.61 0.67 0.84 0.35 0.53 0.42 0.95

Table 5: Precision, recall, F-score and specificity of all the methods for three extraction tasks.

the performance for the three tasks. In Fig. 2
(a)-(c), precisions, recalls and F-scores are shown
for applying heuristic CP+TW and CP+TW+HP
(using top 100 patterns) with different numbers
of trigger stems. PPI and MIRGENE extraction
maintained a stable precision with increasing re-
call when the number of trigger stem increased.
For PLOC extraction precision decreased with in-
creased recall when more trigger stems were used,
indicating that the quality of the trigger stems can
be improved. Using 100 patterns to remove noise
resulted in much better recalls and F-scores for all
the three tasks across different numbers of trig-
ger stems, further confirming that heuristic HP
is an effective method to remove noise from the
negatively-labeled data.

Different numbers of patterns: we investi-
gated how different numbers of patterns used by
heuristic HP affect the results. In Fig. 2 (d)-(f),
precisions, recalls and F-scores are shown for ap-
plying CP+TW+HP (using top 50 trigger stems)
with different number of patterns. The perfor-
mances using heuristic CP+TW with 50 trigger
stems are included for comparison. We can see
that recalls can be consistently improved when
more patterns were used, with minor or no de-
crease in precision. Compared to the results only
using heuristic CP+TW, even using small number
of patterns can achieve better performance.

A major use case of biomedical relation ex-
traction is to help identify high-confidence entity
pairs to facilitate manual curation for databases.
Thus, a desired property of a relation extractor is
to achieve high precision for such high-confidence
extractions. Logistic regression model outputs a
probability for each test instance, and high proba-
bility indicates high confidence to be positive.

To investigate the performance of the proposed
methods for the high-confidence extractions, we

draw precision-recall curves using the probability
produced by the logistic regression model. By def-
inition, logistic regression model predicts an in-
stance as positive if the probability is greater than
0.5. By varying the threshold, we can calculate
precisions at different recall levels. For example,
when the threshold is set to 0.9, the model only
predicts an instance with probability greater than
0.9 as positive. Ideally the model should achieve
better precision when the threshold is high.

For each task, six curves are drawn in Fig. 3.
We can see that using heuristic CP+TW+HP ob-
tained higher precisions than the baselines and
other heuristics on the left side of the figures,
which correspond to the performance for high-
confidence extractions. The multi-instance model
also obtained better precisions compared to the
baseline at lower recall levels. Specifically, by
using heuristic CP+TW+HP, PPI, MIRGENE and
PLOC extraction can achieve the highest preci-
sions among the six curves, which are 0.71, 0.95
and 0.77, respectively, at recall level 0.30.

6 Conclusion

In this paper, we proposed three novel heuristics
that use lexical and syntactic information to re-
move noise from labeled data generated by dis-
tant supervision. Experiments showed that the
proposed methods achieved significantly higher F-
scores than the baseline and previous works for
the three tasks, and high precision can be obtained
for high-confidence results. For future work, we
plan to improve the trigger stem list by asking cu-
rators to remove non-informative stems. Aggre-
gating evidences from all the sentences for entity
pair level extraction or incorporating direct super-
vision (Wallace et al., 2016) are two interesting di-
rections.

The code and data used in the experiments
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(a) PPI (b) MIRGENE (c) PLOC

(d) PPI (e) MIRGENE (f) PLOC

Figure 2: Results of using different numbers of trigger stems (a)-(c) and patterns (d)-(f). Markers:
precision (circle), recall (square), F-score (triangle). (a)-(c): CP+TW (solid) and CP+TW+HP (dashed).
(d)-(f): CP+TW (dashed) and CP+TW+HP (solid).

(a) PPI (b) MIRGENE (c) PLOC

Figure 3: Precision-recall curves for the three tasks. Y-axis represents precision and X-axis represents
recall. Markers: baseline (+), multi-instance (diamond), DPFreq (x), CP (square), CP+TW using 50
trigger stems (triangle), CP+TW+HP using 50 trigger stems and 100 patterns (circle).

of this paper are available at http://biotm.
cis.udel.edu/biotm/projects/ds.
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Abstract

Electronic medical records (EMR) have
largely replaced hand-written patient files
in healthcare. The growing pool of
EMR data presents a significant resource
in medical research, but the U.S. Health
Insurance Portability and Accountability
Act (HIPAA) mandates redacting medical
records before performing any analysis on
the same. This process complicates ob-
taining medical data and can remove much
useful information from the record. As
part of a larger project involving ontology-
driven medical processing, we employ a
method of recognizing protected health in-
formation (PHI) that maps to ontologi-
cal terms. We then use the relationships
defined in the ontology to redact medi-
cal texts so that roles and semantics of
terms are retained without compromising
anonymity. The method is evaluated by
clinical experts on several hundred med-
ical documents, achieving up to a 98.8%
f-score, and has already shown promise
for retaining semantic information in later
processing.

1 Introduction

Medical health records data has immense poten-
tial for research in furthering the field of auto-
mated healthcare. Unfortunately, one of the chal-
lenges facing medical informatics is the dissemi-
nation and sharing of digital records for research
and analysis due to strict regulations regarding pa-
tient confidentiality. Protecting protected health
information (PHI) is a critical responsibility of
health care providers, with the U.S. Health Insur-
ance Portability and Accountability Act (HIPAA)
outlining a number of principles. Removing PHI

can also mean removing critical parts of a record,
so building redaction techniques that preserve as
much information about the original data as possi-
ble while still retaining anonymity is an important
pre-processing step.

In this work, we discuss a redaction framework
for removing PHI from medical records through
de-identification. One of the primary goals of
this framework is to preserve valuable informa-
tion like roles, semantics, and time intervals as
much as possible. Because this forms the pre-
processing stage of future text processing, we
elected to model roles according to a formal on-
tology; this maintains relationships and enables
straightforward detection of ontological terms in
later phases.

2 Background

Knowledge buried in medical text is valuable, but
due to federal law protecting sensitive data, it must
be de-identified for distribution. Most existing
methods rely on rule-based systems that match
patterns and dictionaries of expressions that fre-
quently contain PHI. Sweeny’s Scrub tool uses
templates and a context window to replace PHI
(Sweeney, 1996). Datafly, also by Sweeny, offers
user-specific profiles, including a list of preferred
fields to be scrubbed (Sweeney, 1997). Thomas
developed a method that uses a lexicon of 1.8 mil-
lion names to identify people along with “Clin-
ical and Common Usage” words from the Uni-
fied Medical Language System (UMLS) (Thomas
et al., 2002). Miller developed a de-identification
system for cleaning proper names from records
of indexed surgical pathology reports at the Johns
Hopkins Hospital (Miller et al., 2001). Proper
names were identified from available lists of per-
sons, places and institutions, or by their proximity
to keywords, such as “Dr.” or “hospital.” The Perl
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tool Deid is a recent development which combines
several of these rule-based and lexical approaches
with some additional capabilities like better han-
dling of time (Neamatullah et al., 2008).

While identifying PHI for removal or
anonymization remains an open challenge,
simply redacting texts overlooks one of the
more fundamental aspects of recent biomedical
informatics, which has incorporated a focus on
ontology-driven development (Mortensen et al.,
2012; Ye et al., 2009; Tao et al., 2013; Sari
et al., 2013; Omran et al., 2009; Lumsden et al.,
2011; Pathak et al., 2009). In a domain like
healthcare – where information is dense, diverse,
and specialized – an ontology allows representing
knowledge in a usable manner, because it de-
scribes a framework for clearly defining known
terms and their relationships (Hakimpour and
Geppert, 2005; Lee et al., 2006; Pieterse and
Kourie, 2014; Strohmaier et al., 2013; Kapoor and
Sharma, 2010). Once the data has been formally
described via an ontology, new applications
become apparent. To provide several examples,
simply by formalizing electronic records as an
ontology, researchers have shared better ways to
represent patient care profiles (Riaño et al., 2012),
perform risk assessment (Draghici and Draghici,
2000), evaluate elderly care (Hsieh et al., 2015),
and more (Rector et al., 2009; Rajamani et al.,
2014). Perhaps the greatest promise lies in
ontology-driven computational models, where the
structure of an ontology makes the data accessible
to programmatic operations, and there have been
several applications to the problem of automated
diagnosis (Bertaud-Gounot et al., 2012; Haug
et al., 2013; Hoogendoorn et al., 2016).

Some of these ontology-driven techniques do
consider redaction as it relates to the ontology. Of
particular note is the extensive work by South et
al. in identifying the exact types of PHI present
throughout the medical record according to risk
(South et al., 2014). Dernoncourt applied recur-
rent neural networks to the task of identifying PHI
by type to remove the need for large dictionaries
on the i2b2 dataset (Dernoncourt et al., 2016). In
the future, we hope to share a more direct con-
trast between our role-labeling and South et al.’s,
but our goals remain distinct from either South et
al. or Dernoncourt. Because our ontology cen-
ters around the medical encounter, we must lever-
age the EMR’s dynamic list of patients, caregivers,

and providers to ensure roles are preserved accord-
ing to their specific encounter. In this way, our
work is more similar to Douglass’ MIMIC dataset,
which uses a patient list to assure role (Douglass
et al., 2004).

3 Methods

The core reasoning for our methodology is that
knowing the role of a redacted name can be vital,
and since we will be processing patient records at
the encounter-level, tying specific roles to single
encounters is necessary. For instance, was a con-
dition reported by the caregiver or by the clinician
and at what time? That is just a single question il-
lustrating the potential for confusion when names
are redacted without roles or ordering, yet, there
is no need to blindly attempt to extract roles from
free text. Nearly every EMR maintains structured
data like a patient’s name, family contact, and at-
tending physician. By leveraging this knowledge,
pseudonyms can be constructed that remove con-
fusion regarding roles in the final text.

To formally support role-preservation, we be-
gin by defining a very simple ontology to relate
key roles and terms. Patients are treated by clini-
cians and observed by caregivers. Treatments (or
interventions) are given on the basis of a medical
encounter, and, depending on the outcome, may
lead to more medical encounters or the end of the
record of care. This is a very basic means of mod-
eling roles in medical texts, but it supports cross-
domain redaction that preserves much of the se-
mantics and relationships after the anonymization
stage.

The redaction pipeline operates on data in two
stages to support better identification of roles in
the text. First, the structured data is used to extract
whatever knowledge is available, typically roles
like doctors and patients, to perform knowledge-
based redaction. Second, the unstructured text un-
dergoes entity recognition to clean missed terms.
While this approach requires some insight about
the data beforehand, it is a logical means of ensur-
ing we can remove all PHI without damaging roles
and relationships.

3.1 Structured

3.1.1 Patient-Centric Role Preservation
Our system initially builds a dictionary of known
individuals in each role. A person can have any
number of names of any length but all of them are
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Table 1: Sample dictionary of names
Patients Caregivers Providers

Original
Ira Jones Michael Jones Daniel Moore

Barbara Davis Mary Johnson
Redacted

Clark
ClarkCAREGIV ER1 ClarkPROV IDER1

ClarkCAREGIV ER2 ClarkPROV IDER2

drawn directly from the fields in the EMR. In ac-
cordance with the ontology, patients will be iden-
tified first as the subject of care, a unique field in
most systems. Depending on the domain, there
will be a personal doctor, an attending physician,
or some other clinician name given in a separate
field. Caregivers may be drawn from locations like
billing or family contacts. For this part, knowl-
edge of the data structure is necessary, but once
the source fields are identified, they will be con-
sistent across the other records.

Once the dictionary of names and roles is built,
patients are assigned a pseudonym randomly from
a list of non-matching family names to provide
anonymity and linked to the pseudonym in the
dictionary. Subsequently, all individuals associ-
ated with that patient are assigned a derivative
pseudonym denoting their role. Consider the ex-
ample shown in Table 1. For this small dictionary
of a single patient, we see more than one caregiver
and provider listed. The system first replaces the
patient’s name, Patricia Jones, with a false name,
Clark. This identifier then becomes the basis for
all subsequent individuals with a connection to the
patient.

After the dictionary has been constructed, the
system knows all the original names and their new
pseudonyms. The medical texts are scanned for
any occurrence of any known name, ignoring case
or modifiers like possessive forms. Full names
will be on file, but given names and family names
may appear separately in the record. Regular ex-
pressions are used to match variants of names
while enforcing order.

3.1.2 Date Offsets

It is worth emphasizing the importance of dates
in medical record data. One can simply remove
or replace dates to redact PHI, as with names, but
just like names, we wished to preserve more infor-
mation in support of the ontology. In particular,
intervals between encounters or patient ages un-
der 89 are compliant with HIPAA and useful for

tasks like association mining. A common solution
is to use offsets for dates because the original date
will be erased from the document without losing
intervals. However, an unconstrained random off-
set still loses information. For instance, intervals
given in the free text will be broken if a day of the
week is mentioned and then a date given. Our sys-
tem ensures intervals are undamaged by constrain-
ing date offsets in week-long intervals. Thus, even
if the dates are moved by years, there’s no loss in
day-granular intervals.

The date offset is applied across all records of a
single patient uniformly to maintain interval and
continuity of encounters. Furthermore, the sys-
tem is very flexible about handling dates in free
text, using as much knowledge as possible to piece
together correct, redacted dates. For example, a
snippet of a medical note may read: ”A surgery
was performed in 2005 to correct the issue; on
March 4, the patient...” Because the redaction sys-
tem makes use of the structured fields, it would
extract the date of entry for this medical note. As-
suming that date is March 7, 2006, the system will
move forward labeling unspecified years as 2006,
giving a means of differentiating the vague dates
2005 and March 7.

3.2 Unstructured

The second pass of de-identification also operates
over free text, but it does not make use of known
information such as the dictionary of names or the
dates of an entry. Instead, general attributes of po-
tential PHI are used to locate and remove sensitive
data. Email addresses, phone numbers, mailing
addresses, and medical case numbers are located
through common regular expressions. ZIP codes
are retained because they are not considered PHI
and can be useful for location-based operations.

Unknown entities appear frequently in the text
due to other names of people or places being writ-
ten that are not listed in the dictionary of names.
To account for these entities, Stanford’s CoreNLP
is used to detect any remaining entities in the text
which do not belong to a linked pseudonym (Man-
ning et al., 2014). All entities are redacted accord-
ing to their determined type, e.g. NAME1 for a
person or LOCATION1 for a place. Even in the
unstructured phase, sequential naming schemes
ensure unknown people and places do not become
confounded with any other entities.
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3.3 Complete Pipeline

By the time the pipeline has finished, the text has
been run through two rounds of de-identification.
First, any useful knowledge is pulled from the data
in the EMR to build a dictionary for rule-based
redaction that preserves roles. Second, operat-
ing without any knowledge, a set of regular ex-
pressions and more sophisticated entity recogni-
tion methods are employed to clear other sensi-
tive data without adding ambiguity or destroying
valuable non-PHI information. The inclusion of
CoreNLP in the final part supports more advanced
language models than simply using rules and regu-
lar expressions. This allows the complete pipeline
to capture almost any potential PHI while still rec-
ognizing known entities, particularly those rele-
vant to the ontology, or types of entities, such as
contact numbers of locations.

4 Evaluation

We worked with data sets from two different do-
mains – veterinary and hospice care. Fortunately,
due to the cross-domain design of our ontology,
there was little difficulty in identifying fields that
mapped to elements of the ontology. Upon defin-
ing this mapping, huge portions of text from both
domains were pushed through the full pipeline.
The resulting text included ontological terms and
other marked regions, e.g. ZIP codes, while re-
moving as little other information as possible.

Ideally, the final medical texts appear identical
to the original files with only the PHI removed. To
evaluate this, a team of clinical experts reviewed
hundreds of documents, marking missed PHI or
text that was unnecessarily redacted in each. From
the veterinarian domain, where we studied com-
plete discharge summaries (DS), two medical doc-
tors reviewed 122 cases. From the hospice do-
main, which operated on shorter clinical notes
(CN), the same experts reviewed 500 notes. To
provide a simple baseline for comparison, we also
tested a single rule-based approach for matching
patient names against a data set of 15 documents.

As we see in Table 2, the system performed
very well at correctly identifying PHI and non-
PHI, especially in contrast with the patient-names
baseline. In the discharge summaries, the ma-
jority of false negatives were due to previously-
unnamed doctors who were neither in the dictio-
nary nor detected during entity recognition. Only
one misspelling of a patient name was detected.

Table 2: Word-level metrics for baseline (BL), dis-
charge summaries (DS), and clinical notes (CN)

Count BL DS CN
False Negatives 498 76 4
False Positives 0 5 250
True Positives 63 3391 1655
True Negatives 17191 75694 50460

Table 3: Performance of baseline (BL), discharge
summaries (DS), and clinical notes (CN).

Metric BL DS CN
Specificity 100% 99.9% 99.5%
Sensitivity 11.2% 97.8% 99.8%
Precision 100% 99.9% 86.9%
F-Score 20.2% 98.8% 92.9%

In the clinical notes, there were a great deal more
false positives. Because the final step incorporates
CoreNLP, certain texts will include many entities
that are not PHI. Table 3 shows that specificity,
sensitivity/recall, and precision are high for both,
although the precision for clinical notes suffers
due to the many false positives. While the baseline
achieves high precision by matching only patient
names, the lower sensitivity and f-score demon-
strate the high number of PHI belonging to other
categories that the full system captures.

5 Conclusion and Ongoing Work

Medical records can provide a wealth of informa-
tion for data scientists but due to their sensitive
nature, are often limited in availability. Effective,
reliable redaction is the best known solution to the
problem, but most techniques will lose exact de-
tails like encounter-level roles. In this work, we
integrate knowledge and model-based approaches
to augment redaction. In future works, we seek to
share some of the benefits we have seen using roles
to create better semantic clusters and word models
than achieved through only pseudonyms. We hope
that such de-identification pipelines, highly cog-
nizant of the original data structure, will encour-
age a future of richer and more capable ontology-
driven analysis.
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Abstract

Pain and anesthesia information are cru-
cial elements to identifying surgery-
related processes and outcomes. How-
ever pain is not consistently recorded in
the electronic medical record. Even when
recorded, the rich complex granularity of
the pain experience may be lost. Simi-
larly, anesthesia information is recorded
using local electronic collection systems;
though the accuracy and completeness of
the information is unknown. We propose
an annotation schema to capture pain, pain
management, and anesthesia event infor-
mation.

1 Introduction

Post surgical pain continues to be a challenging
problem for the health system. Firstly, continued
pain after surgery, or chronic persistent postsurgi-
cal pain, is common with about 20% of patients
having pain long after the wounds have healed
(Neil and Macrae, 2009; Kehlet et al., 2006). Sec-
ondly, inadequate acute post operative pain con-
trol contributes to adverse events such as impaired
pulmonary function and impaired immune func-
tion (White and Kehlet, 2010). Finally, post surgi-
cal pain can be a gateway to addiction, which has
taken on increased urgency with the current opioid
crisis (Waljee et al., 2017). To improve these prob-
lems, it is crucial to have a clear understanding of
the patients’ pain and its treatments.

There is some evidence that different inter-
ventions such as the use of multi-modal pain
management and different anesthesia types, e.g.

use of regional anesthesia and nonsteroidal anti-
inflammatory drugs, can improve pain manage-
ment (Baratta et al., 2014). However, different
analgesic treatments have different side-effect pro-
files; moreover, some treatment combinations are
not appropriate for certain populations. Further-
more, genetics, age, prior exposure to surgery, and
social norms influences the experience of pain.
Therefore, there is a clear need to capture anes-
thesia and pain information and relate them to in-
dividual history, social, and genetic factors to im-
prove surgical outcomes.

Even with mandated collection, pain is not al-
ways recorded (Lorenz et al., 2009). Even when
recorded as structured data, there are a variety
of scales that are institution-dependent, e.g. a
site-specific 0-10 numeric rating scale or a multi-
dimensional questionnaire such as the Brief Pain
Inventory. Additionally, it is difficult to cap-
ture the rich complex characteristics of pain in
structured ways. Anesthesia type, on the other
hand, may be recorded or inferred from proce-
dures, medications, or structured input as part of
surgery documentation. However, such recording
practices differ by institution and local software.

In this work, we present annotation schemas
for pain, pain treatment, and anesthesia events for
text extraction, as well as report on inter-annotator
agreement and corpus statistics. The ultimate goal
is to build a new system or adapt an existing sys-
tem, using this annotated corpus, to automatically
extract such information from clinical free text.
The extracted data could then be used to comple-
ment missing structured information, facilitating
greater opportunities for longitudinal study of pa-
tients’ pain experience long after initial surgery.
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2 Related work

To our knowledge, there is no systematic creation
of a pain annotation schema for text extraction,
however we reference two extraction systems that
identify pain information based on their own tar-
geted needs. (Heintzelman et al., 2013) created
a system that extracted pain mentions, severity,
start date, end date. Their annotation was based
on a created 4-value severity of pain created by
the development team. Items were identified using
the Unified Medical Language System (UMLS)
vocabularies for dictionary look-up (Bodenreider,
2004). Dates and locations were extracted by de-
veloped contextual rules. In another work, (Redd
et al., 2016) used a series of regular expressions
to extract pain score in intensive care unit notes.
In contrast to previous works, our work provides
a more detailed set of annotations that include dif-
ferent clinical aspects of pain, as well as two other
event types (treatment and anesthesia) important
for studying outcomes. Similarly, there has not
been any work on anesthesia-specific annotation
and extraction.

Relating this work to a larger context, our
pain, treatment, and anesthesia event annotations
can be thought of as more specific reincarna-
tions of the CLEF corpus and i2b2 event annota-
tions (Roberts et al., 2008; Uzuner et al., 2011).
For example, under the CLEF annotation schema,
pain would fall under the condition entity, with
the pain’s location aligning to CLEF’s locus/sub-
location/locality schema. Drug, intervention, and
negation for conditions are also elements we cap-
ture in our annotation schema. Under the i2b2/VA
2010 concepts, assertions, and relations challenge
schema, pain would be considered a medical prob-
lem and pain treatments or anesthesia could be
identified treatments. Our annotation of status’ are
related to assertion and relations between pain and
treatment function similarly to their medical prob-
lem treatment relations. Pain and treatment an-
notation can also be compared to medication and
adverse drug events, where instead the focus of
events are on pain symptoms and treatment con-
cepts (Uzuner et al., 2010; Karimi et al., 2015).

3 Corpus creation

We drew data from two sources (1) Stanford Uni-
versity’s (SU) Clarity electronic medical record
database, a component of the Epic Systems soft-
ware, and (2) MTSamples.com, a online source of

anonymized dictated notes. With approval of an
institutional review board, we identified a cohort
of surgical patients that underwent 5 procedures
associated with high pain: distal radius fracture,
hernia replacement, knee replacement, mastec-
tomy, and thoracotomy. We focused on three
note types: anesthesia, operative, and outpatient
clinic visit notes. Anesthesia and operative notes
were sampled from the day of surgery, whereas
clinic notes were randomly sampled within 3
months prior and 1 year after the surgery. Because
of the variation in clinic notes, we performed
stratified random sampling per sub-note type and
per surgery category.

From MTsamples, we isolated operative
(surgery) and clinic visit notes. Clinic notes were
considered those not grouped into specialized
categories, e.g. surgery, autopsy, discharge.
Frequencies by type are shown in Table 1.

Corpus Anesthesia Clinic Operative
MTsamples - 90 75

SU 90 90 75
TOTAL 90 180 150

Table 1: Breakdown of note types

4 Guideline Creation

Annotation guidelines were created iteratively
with a medical general practitioner as well as a
biomedical informatics scientist. The initial pain
event schema was derived from existing literature
(Fink, 2000) and cues from Stanford Health Care’s
pain collection practices. Schemas were designed
and altered according to feedback from a surgical
attendee and an anesthesiologist.

Our annotation focuses on three event types:
pain, treatment, and anesthesia events. Below is
a description of the entities (in some cases phrasal
highlights) for each type of event. Those concepts
marked with a * are event heads for which other
entities may attach to.

Pain information:
Pain* - indication of pain including signs and
symptoms that denote pain or diseases definition-
ally characterized as pain, e.g. “myalgia”, with
attributes Goal:{binary} and Status:{Current,
Past, None, Unknown, Not Patient}
Description - descriptive characteristics of the
indicated pain, e.g. “burning”
Frequency - information regarding periodic oc-
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Figure 1: Example pain and treatment events

Figure 2: General and nerve block anesthesia text

Figure 3: MAC and local anesthesia text

curence of the indicated pain, e.g. “occasional”
Location - location of pain, with attributes Lat-
erality:{Bilateral, Left, Right, Unspecified} and
Type:{Abdomen, Ankle, Arm, Back, Back-lower,
Back-upper, Breast, Buttocks, ChestArea, Ear,
Elbow, Eye, Foot, Generalized, Groin, Hand,
Head, Hip, Incisional, Jaw, Knee, Leg, Mouth,
Neck, Nose, Pelvis, Shoulder, Throat, Wrist,
Other} (This attribute is useful for matching with
structured data that pre-specify locations)
Severity - severity of pain, with attribute Sever-
ityattribute: {0,1,..10, mild, moderate, severe }
Temporal - demarkations of time points at which
pain occurs, including time relative to events
Treatment - interventions used on patient (see
next section for more information)
Trend - trend of pain with attribute TrendAt-
tribute: {Increasing, Decreasing, No change}
Trigger - events that cause some
change in pain, with attribute TriggerAt-
tribute:{Increase,Decrease}
Treatment information:
Effectiveness - Effectiveness of treatment with
attributes EffectivenessAttribute: {Alleviates,
Worsens, No change}

Treatment* - possible treatments for pain
with attributes Type:{Acupuncture, Electrother-
apy, Heat/cold therapy, Medication, No further
action, Other, Physical Therapy, Steroid injection,
Surgical procedure} and Status:{Current, Past,
None, Planned, Requested, Recommended, Con-
ditionalRecommended, NotPatient}
Temporal - demarkations of time points at which
treatment occurs, including time relative to events

Anesthesia information:
Pre-incisional intervention* - anesthetic in-
tervention that occurs prior to incision, with
attributes Status:{Current, Past, None, Planned,
Requested, Recommended, NotPatient} and
Type:{General, Regional-unspecified, Nerve
block, Spinal block, Epidural, MAC (monitored
anesthesia care), Local infiltration}
Event heads, e.g. treatment, were always anno-
tated whereas event arguments, e.g. effective-
ness, were only annotated when an event head was
present. Only pain medications defined in a cu-
rated list (or its synonyms) were annotated as treat-
ment entities to avoid medical knowledge reliance.
To avoid annotation fatigue, Status attributes were
unmarked if Current.

5 Annotation

After development of an initial schema, a random
sample of documents from each SU and MTSam-
ples of anesthesia, operative, and clinical notes
were drawn to measure inter-annotator agreement
between a general practitioner and a biomedical
informatics scientist. Pain and treatment events
were annotated for clinical notes, whereas only
pre-incisional intervention events were annotated
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Field Set1 Set2 Set1+2 Full
Description 1.00 0.250 0.625 36
Effectiveness – 0.833 0.769 22
Frequency 0.889 0.909 0.900 36
Location 0.800 0.870 0.832 512
Pain 0.912 0.947 0.929 613
Severity 0.966 0.914 0.921 88
Temporal 0.500 0.698 0.628 200
Treatment 0.686 0.832 0.791 671
Trend 0.770 0.00 0.625 21
Trigger 0.884 0.851 0.839 128
ALL 0.797 0.858 0.831 2327

Table 2: IAA and counts for clinic note entities

Field Set1 Set2 Set1+2 Full
EffectivenessAttribute – 0.333 0.308 21
LateralityAttribute 0.758 0.804 0.774 101
LocationAttribute 0.737 0.716 0.700 457
Goal – 0.920 0.911 16
Pain:StatusAttribute 0.756 0.885 0.822 201
SeverityAttribute 0.966 0.778 0.843 87
Treatment:Type 0.647 0.773 0.744 654
Treatment:StatusAttribute 0.595 0.569 0.597 499
TrendAttribute 0.769 0.00 0.625 21
TriggerAttribute 0.465 0.766 0.602 126
ALL 0.697 0.766 0.749 2183

Table 3: IAA and counts for clinic note attributes

for anesthesia and surgery notes.
An initial set (Set1) included 15 clinic and 15

operative notes from MTSamples; and 30 anes-
thesia, 15 clinic, and 15 operative notes from SU.
Two rounds of revision and agreement were per-
formed on this set. Changes or adjustments to an-
notation guidelines were made as necessary during
annotator agreement cycles. Because clinic notes
presented more complexity, we drew another 15
documents from MTSamples and 15 from SU re-
sulting in a new subset (Set2). EffectivenessAt-
tribute and Goal attributes were added from the
second set onwards. Two rounds of revisions were
performed on this set. Finally, the combined set
was revised. The remaining corpus (60 anesthe-
sia, 120 clinic, 120 operative notes) was evenly
split and single-annotated by the two annotators.
We used brat, a web-based software, for our anno-
tation (Stenetorp et al., 2012).

Inter-annotator agreement (IAA) was evaluated
using F1 measure, the harmonic mean of positive
predictive value and sensitivity, for entities, re-
lations, and attributes (Hripcsak and Rothschild,
2005). All reported measures are based on par-
tial matches (text spans need only to overlap). For
this, relations require that corresponding entity ar-
guments overlap with accurate relation labels.

Field Set1 Set2 Set1+2 Full
Description-Arg 0.667 0.250 0.533 38
Effectiveness-Arg – 0.909 0.909 23
Frequency-Arg 0.923 0.769 0.846 37
Location-Arg 0.738 0.864 0.795 520
Severity-Arg 0.968 0.889 0.909 91
Temporal-Arg 0.449 0.738 0.620 221
Treatment-Arg 0.800 0.500 0.522 41
Trend-Arg 0.769 0.00 0.625 21
Trigger-Arg 0.883 0.773 0.800 131
ALL 0.744 0.797 0.760 1123

Table 4: IAA and counts for clinic note relations

Field Set1 Set2 Set1+2 Full
Type 0.906 – 0.906 257
StatusAttribute 0.898 – 0.898 40
ALL 0.902 – 0.902 297

Table 5: IAA and counts for anesthesia note at-
tributes

Field Set1 Set2 Set1+2 Full
Type 0.935 – 0.935 237
StatusAttribute 0.860 – 0.860 5
ALL 0.897 – 0.897 242

Table 6: IAA counts for operative note attributes

6 Results

Tables 2-6 show final agreement levels for the sep-
arate sets of inter-annotator documents and then
for the full inter-annotator corpus for the entities,
attributes, and relation levels. We also report the
frequencies of each field for the full corpus.

For clinic notes, 125 documents had at least one
entity, with 19 ± 19 entities, 10 ± 11 relations
per non-empty report. Table 7 shows the top 90%
of unique co-occurring relation combinations at-
tached to the same pain entity. Most pain enti-
ties appeared either without attached relations or
with a Location-Arg. For treatment entities not at-
tached to pain entities as an argument (632 enti-
ties), 74% had no attachments, 24% were attached
to a Temporal-Arg alone, the rest had either an
Effectiveness-Arg relation alone or both. Most re-
lations existed within a close context, however a
small number did appear at 2 or more sentences
away. This included 10% of Trigger-Arg, 7% of
Treatment-Arg, 2% of Severity-Arg, and 2% of
Temporal-Arg relations. The remaining relations
appeared on the same or one sentence away.

Identification of pain and treatment events for
clinical notes was relatively challenging. Ten enti-
ties with their related attributes, as well as 8 re-
lation types were involved. Moreover, clinical

203



Top co-occurring relations for same pain Count Fraction Cum. Fract.
{Location-Arg} 285 0.465 0.465
{} 45 0.073 0.538
{Trigger-Arg} 35 0.057 0.595
{Location-Arg, Trigger-Arg} 28 0.046 0.641
{Location-Arg, Temporal-Argv} 26 0.042 0.684
{Severity-Arg} 22 0.036 0.719
{Location-Arg, Severity-Arg} 18 0.029 0.749
{Description-Arg, Location-Arg} 16 0.026 0.775
{Frequency-Arg, Location-Arg} 16 0.026 0.801
{Severity-Arg, Trigger-Arg} 12 0.020 0.821
{Location-Arg, Treatment-Arg} 9 0.015 0.835
{Temporal-Arg} 9 0.015 0.850
{Treatment-Arg} 8 0.013 0.863
{Trend-Arg} 8 0.013 0.876
{Location-Arg, Severity-Arg, Trigger-Arg} 7 0.011 0.887
{Effectiveness-Arg, Treatment-Arg} 5 0.008 0.896
{Location-Arg, Trend-Arg} 5 0.008 0.904

Table 7: Frequency of relation-combinations con-
necting to same pain entity

notes tend to contain unpredictable expressions,
e.g. “pain [...] waxing and waning” or “worse
with hiking”, and narrative information that spans
over several sentences, the conclusion of which
could communicate a resolved status. Thirteen out
of 613 mentions of pain were attributed as past.
Out of 126 marked TriggerAttributes, 114 were
aggravating factors (Increase), with only 12 men-
tions of alleviating factors (Decrease). Interest-
ingly, many severity attributes were qualitative de-
scriptions with 22 for mild, 13 for moderate, and
23 for severe out of 87 total marked. For treatment
types, of 654 identified treatment types, 428 were
surgical procedures, 116 medication, 82 physical
therapy, 12 steroid injection. The remaining had
frequencies of 3-5 each.

Ideologically, there were nuances to annotating
pain information. While the easiest references to
pain were trivial, e.g. pain, some required ref-
erencing dictionaries, e.g. myalgia, or reading
context, e.g. discomfort. Distinguishing between
cause of and timing for pain was not always clear.
For example, in “pain is worse in the morning”
and “pain [...] when running”, both underlines
could be considered as either Trigger or Tempo-
ral. Our final decision was to mark as a Trig-
ger when believed to be causal of the pain rather
than delineating chronology. Some pain attributes
had multiple connotations. For example, “chronic
pain”, defined as presence of pain for longer than
3 months, has both a duration and frequency con-
text. We decided to assign chronic as a description
attribute. Extent of decisions were specified in an-
notation guidelines. Finally, there are unavoidable
limitations in text interpretation. For example, in
“patient is very tender to palpation”, very may be
normalized to moderate or severe based on anno-

tator subjectivity. Furthermore, pain may be sug-
gested but not explicitly stated, e.g. “woman [...]
with [...] debilitating abdominal wall hernias”
(most likely painful), and therefore not captured.

Anesthesia and operative note entity agreement
was at 0.923 F1 and 0.934 F1. There was a to-
tal of 235 and 254 entities for anesthesia and op-
erative notes. For anesthesia reports, 72 had at
least one entity, with 4 ± 5 entities each; oper-
ative reports, 130 had at least one entity, with 2
± 1 entities each. 15% of Pre-incisional inter-
vention entities were marked as Planned for anes-
thesia reports; 1% for operative reports. Agree-
ments for operative and anesthesia entities and at-
tributes were high (Table 5 and 6). This is due
to the focused nature of these domains. How-
ever, our annotation schema did not include im-
plicit references, e.g. “skin was anesthetized with
1% lidocaine solution” where lidocaine is often
used for local anesthesia.

To improve IAA, further annotation would ben-
efit from pre-annotation of entities trained on this
starting set. This would increase consistency and
throughput. Additional annotation of a larger cor-
pus would provide larger samples sizes to estimate
task challenge for less populated classes.

7 Conclusions and Future Work

In this work, we present a rich annotation schema
for pain and pain interventions, as well as an an-
notation categorization for anesthesia types. Al-
though this work was developed in the surgical
setting, the pain annotation schema presented here
can be adapted for other settings. Future work in-
cludes building our extraction system and apply-
ing these data to assess important patient outcomes
and health services research.

Annotation guidelines and the MTSamples por-
tion of our corpus is available through our group’s
website (med.stanford.edu/boussard-lab.html).
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Abstract

Comparison sentences are very commonly
used by authors in biomedical literature
to report results of experiments. In such
comparisons, authors typically make ob-
servations under two different scenarios.
In this paper, we present a system to au-
tomatically identify such comparative sen-
tences and their components i.e. the com-
pared entities, the scale of the comparison
and the aspect on which the entities are be-
ing compared. Our methodology is based
on dependencies obtained by applying a
parser to extract a wide range of compar-
ison structures. We evaluated our system
for its effectiveness in identifying compar-
isons and their components. The system
achieved a F-score of 0.87 for compari-
son sentence identification and 0.77-0.81
for identifying its components.

1 Introduction

Biomedical researchers conduct experiments to
validate their hypotheses and infer associations be-
tween biological concepts and entities, such as
mutation and disease or therapy and outcome. It
is often not enough to simply report the effects of
an intervention; instead, the most common way to
validate such observations is to perform compar-
isons. In such studies, researchers make observa-
tions under two different scenarios (e.g., disease
sample vs. control sample). When the differences
between the groups are statistically significant, as-
sociation can be inferred.

Comparative studies are prevalent in nearly ev-
ery field of biomedical/clinical research. For ex-
ample, in the experimental approach known as
“reverse genetics”, researchers draw inferences
about gene function by comparing the pheno-

type of a gene knockdown sample to that of a
sample expressing the gene at the normal level.
In clinical trial studies, researchers study the ef-
fectiveness or side-effects of a drug compared
to a placebo. A simple PubMed query “com-
pared[TIAB] OR than[TIAB] OR versus[TIAB]”
returned 3,149,702 citations, which provides a
rough estimate of the pervasive nature of compar-
isons in the biomedical literature. Thus, devel-
opment of automated techniques to identify such
statements would be highly useful.

Comparative sentences typically contain two (or
more) entities, which are being compared with re-
spect to some common aspect. Consider sentence
(1), which compares gene expression level in can-
cerous vs. non-cancerous tissues:

(1) The expression of GPC5 gene was lower in
lung cancer tissues compared with adjacent
noncancerous tissues.

Typically, the entities, which we will refer as
compared entities, are of the same type. In the ex-
ample, the entities being compared are two tissues:
“lung cancer tissues” and “adjacent noncancerous
issues”, which are separated by the phrase “com-
pared with”. “Expression of GPC5 gene”, which
we call the compared aspect, is the aspect on
which comparison between the two entities is be-
ing made. The word “lower” indicates the scale
of the comparison, thereby providing an ordering
of the compared entities with respect to the com-
pared aspect. These definitions are similar to those
described in (Park and Blake, 2012).

In this paper, we describe a system to au-
tomatically identify comparative structures from
text. We have developed patterns based on sen-
tence syntactic dependency information to identify
comparison sentences and also extract the various
components (compared aspect, compared entities
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and scale). The developed system identifies ex-
plicit comparative structures at the sentence level,
where all the components of the comparison are
present in the sentence. The main challenge is to
capture patterns at a sufficiently high level given
the sheer variety of comparative structures. In the
rest of the paper we will define the task, describe
our approach and comparison patterns and present
the results of our evaluation. We achieved a F-
score of 0.87 for identifying comparison sentences
and 0.78, 0.81, 0.77 for extracting the compared
aspect, scale indicator and compared entities, re-
spectively. Thus the major contributions of this
work are:
• Development of a general approach for iden-

tifying comparison sentences using syntactic
dependencies.
• Development of methods to extract all of the

components of the comparative structure.

2 Related Works

The sentence constructions used to make compar-
isons in English are complex and variable. Bres-
nan (1973) discussed the syntax of comparative
clause construction in English and noted its syn-
tactic complexity, ‘exhibiting a variety of gram-
matical processes’. Friedman (1989) reported a
general treatment of comparative structures based
on basic linguistic principles and noted that auto-
matically identifying them is computationally dif-
ficult. They also noted that comparative struc-
tures resemble and can be transformed into other
syntactic forms such as general coordinate con-
junctions, relative clauses, and certain subordinate
and adverbial clauses and thus ‘syntactically the
comparative is extraordinarily diverse’. In (Staab
and Hahn, 1997), the authors proposed a model of
comparative interpretation that abstracts from tex-
tual variations using descriptive logic representa-
tion.

The above studies provide an analysis of com-
parative sentences from a linguistic point of view.
Computational systems for identifying compar-
isons have also been developed. Jindal and Liu
(2006a) proposed a machine learning approach to
identify comparative sentences from text. The sys-
tem first categorizes comparative sentences into
different types, and then presents a pattern dis-
covery and supervised learning approach to clas-
sify each sentence into two classes: compara-
tive and non-comparative. Class sequential rules

based on words and part-of-speech tags automat-
ically generated while learning the model were
used as features in this work. The authors eval-
uated their classifier on product review sentences
containing comparison between products and re-
ported a precision of 79% and a recall of 81%.
The authors extended their work (Jindal and Liu,
2006b) to extract comparative relations i.e. the
compared entities and their features, and com-
parison keywords from the identified comparison
sentences. In (Xu et al., 2011), the authors de-
scribed a machine learning approach to extract
and visualize comparative relations between prod-
ucts from Amazon customer reviews. They de-
scribe a comparative relation as a 4-tuple, con-
taining the two compared products, the compared
aspect and a comparison direction (better, worse,
same). They reported a F-score of 38.81% using
multi-class SVM and 56.68% using Conditional
Random Fields (CRF). (Jindal and Liu, 2006b; Xu
et al., 2011) are the only works that extract the dif-
ferent components of the comparison. In (Ganap-
athibhotla and Liu, 2008), the authors focused on
mining opinions from comparative sentences from
product review sentences and extracting the pre-
ferred product. Yang and Ko (2009) proposed a
machine learning approach to identify compara-
tive sentences from Korean web-based text but did
not address the extraction of the comparison ar-
guments. They first constructed a set of compar-
ative keywords manually and extracted candidate
comparative sentences and then used Maximum
Entropy Model (MEM) and Naive Bayes (NB)
to eliminate non-comparative sentences from the
candidates.

Relatively few works on identifying com-
parative sentences and/or its components from
biomedical text have been developed. Park and
Blake (2012) reported a machine learning ap-
proach to identify comparative claims automati-
cally from full-text scientific articles. They in-
troduced a set of semantic and syntactic features
for classifications using three different classifiers:
Naive Bayes (NB), a Support Vector Machine
(SVM) and a Bayesian network (BN). They evalu-
ated their approach on full-text toxicology articles
and achieved F1 score of 0.76, 0.65, and 0.74 on
a validation set for the NB, SVM and BN, respec-
tively. The focus of this work was on identify-
ing comparison sentences and the extraction of its
components was not addressed.
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Fiszman et al. (2007) described a technique to
identify comparative constructions in MEDLINE
citations using under-specified semantic interpre-
tation. The authors used textual patterns com-
bined with semantic predications extracted from
the semantic processor SemRep (Rindflesch and
Fiszman, 2003; Rindflesch et al., 2005). The
predications extracted by SemRep are based on
the Unified Medical Language System (UMLS)
(Humphreys et al., 1998). Their system extracts
the compared entities (limited to drugs) and the
scale of the comparison. They reported an aver-
age F-score of 0.78 for identifying the compared
drug names, scale and scale position. To the best
of our knowledge, (Fiszman et al., 2007) is the
only reported work that goes beyond identification
of comparison sentences to identify the different
components of the comparison in biomedical text.
But unlike our work, theirs is limited to compari-
son between drugs, does not extract the compari-
son aspect and appears to be limited in their cov-
erage of comparison structures.

3 Method

3.1 Task Definition
Basic comparison sentences contain two or more
compared entities (CE) and a comparison as-
pect (CA) on which compared entities are being
compared. Additionally, there are two parts in
such sentences indicating the comparison. The
first is the presence of a word that indicates the
scale of the comparison and the other separates the
two compared entities. The former is often com-
parative adjectives or adverbs (such as “higher”,
“lower”, “better”, etc.), while the latter can be ex-
pressed with phrases or words (such as “than”,
“compared with”, “versus” etc.). We will refer to
the former comparative word indicating the scale
as the Scale Indicator (SI) and the latter, separat-
ing the entities, as the Entity Separator (ES). In
example (2) below the key parts of such a compar-
ison structure are highlighted.

(2) [Arteriolar sclerosis]CA was significantly
higherSI in addictsCE thanES controlsCE.

Jindal and Liu (2006b) categorized comparative
structures into four classes: (1) Non-Equal Grad-
able, (2) Equative, (3) Superlative and (4) Non-
Gradable. Non-Equal Gradable comparison indi-
cate relations of the type greater or less than, pro-
viding an ordering of the compared entities. Equa-

tive structures indicate equal relation between the
two entities with respect to the aspect. Com-
parisons where one entity is “ better” than all
other entities are termed as Superlative. Sentences
in which the compared entities are not explicitly
graded are called Non-Gradable.

Based on our previous discussion, we will be
addressing only the first two types: Non-Equal
Gradable and Equative comparison. First, we
consider processing at the sentence-level only.
While there are cases of comparisons, where the
context provided by a larger body of text might
provide the information about all the components,
they are not considered in this work. Thus most
of the superlative cases will not be considered be-
cause all the compared entities are rarely men-
tioned within a single sentence. It also rules out
cases such as in Example (3a), where the second
compared entity must be inferred from previous
sentences. Second, we consider only those sen-
tences where the authors mention the result or con-
clusion of an experiment/study. Thus, we will not
consider sentences such as in Example (3b), since
it only mentions the intention to perform a com-
parison but does not indicate the result of the ex-
periment. While such sentences can still be cap-
tured with minor changes to our existing patterns,
our goal here is to only consider sentences that in-
dicate the results of experiment by means of com-
parison. The patterns developed in this work iden-
tify explicit comparative structures at the sentence
level and extract all components of the comparison
relations, i.e., the compared aspect, entities and the
scale indicator.

(3) a. Mean procedure time was significantly
shorter for the percutaneous procedure.

b. We compared lesion growth between
placebo and tissue plasminogen activator-
treated patients.

3.2 Approach
The different steps of our system are depicted
in Figure 1. Given an input text, typically a
Medline abstract, we first tokenize and split the
text into sentences using the Stanford CoreNLP
toolkit (Manning et al., 2014). We then use the
Charniak-Johnson parser (Charniak, 2000; Char-
niak and Johnson, 2005) with David McClosky’s
adaptation to the biomedical domain (Mcclosky,
2010) to obtain constituency parse trees for each
sentence. Next we use the Stanford conversion
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tool (Manning et al., 2014; De Marneffe et al.,
2014) to convert the parse tree to into the syntac-
tic dependency graph (SDG). We use the “CCPro-
cessed” representation, which collapses and prop-
agates dependencies allowing for an appropriate
treatment of sentences that involve conjunctions.
Note that “CCProccessed” is helpful as dependen-
cies involving preposition, conjuncts, as well as
referent of relative clauses are “collapsed” to get
direct dependencies between context words. Thus,
as seen in Figure 2, which shows the “CCPro-
cessed” SDG, there is a direct edge from “lower”
to the cells in the Noun Phrase (NP) “Hep3B cells”
rather than a path with two edges where the first
reaches the preposition “in” and the second from
“in” word to the word “cells”. This simplifies the
pattern development in relation extraction.

Based on this syntactic dependencies represen-
tation, we have developed patterns to identify the
different arguments of the comparison relation.
Next we use Semgrex, which is a part of the Stan-
ford NLP Toolkit, to specify the translated patterns
as regular expressions based on lemmas, part-of-
speech tags, and dependency labels, which will au-
tomatically match with the sentence dependency
parse structure. We have developed a total of
35 and 8 patterns to identify Non-Equal Gradable
and Equative comparisons respectively. The de-
veloped Semgrex rules as well as the evaluation
test set can be found at the link below1. Each Sem-
grex rule/pattern identifies all components of the
comparison, specifically the head of the compar-
ison aspect, entities and scale. Since the compo-
nents are typically Noun Phrases (NPs), we look at
the outgoing edges from the head nouns to obtain
the NPs corresponding to the comparison compo-
nents. In the next subsection, we will discuss the
development of different comparison patterns.

3.3 Comparative Patterns

As discussed earlier in subsection 3.1, the two key
parts in a basic comparison sentence are a Scale
Indicator (SI), indicating the scale of the compar-
ison and a Entity Separator (ES), separating the
compared entities. We will use dependencies from
these SI and ES words to extract the compared
aspect and the compared entities. We have de-
veloped rules based on syntactic dependencies for
various combinations of the two keys parts. We
broadly categorize our comparison patterns based

1http://biotm.cis.udel.edu/biotm/projects/comparison/
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Figure 1: Comparison Pipeline.

miR-181a expression was lower in HepG2 cells than in Hep3B cells

nsubj
cop

nmod:in

nmod:in

case

Figure 2: Example SDG

on the Scale Indicator word indicating either Non-
Equal Gradable or Equative Comparison.

3.3.1 Non-Equal Gradable
Non-Equal Gradable comparison indicates a dif-
ference between the compared entities. Based on
three part-of-speech tags (POS) of the Scale In-
dicator, different syntactic structures are possible,
as described below. Note that in all the figures de-
picting the dependency graph the compared aspect
is highlighted in blue and the compared entities in
yellow.

Comparative Adjective: Starting with the most
frequent case for Scale Indicator, which is a com-
parative adjective(JJR) such as “better”, “higher”,
“lower” etc., there are two broad categories of syn-
tactic structures which we consider. The first cat-
egory involves copular structures, where the JJR
serves as the predicate of the comparison relation.
The compared aspect is typically the subject of the
JJR as shown in Figure 3a. Thus we follow the
nsubj edge from the JJR to get the head of com-
pared aspect. We use the nmod:than from JJR to
extract one of the compared entities. The second
entity will also have an edge from the JJR, which
can be prepositional edge (nmod:in as in Figure
3a). Thus we use nmod edges from the predicate
JJR to determine the second compared entity. Note
all prepositional edges such as “with”, “for”, “dur-
ing” etc. are considered. Additionally, the sec-
ond compared entity will be separated by an Entity
Separator (“than” in this case) from the first com-
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Arteriolar sclerosis was significantly higher in addicts than controls

amod

nsubj
cop

advmod
nmod:in

nmod:than

case

(a)

Etanercept is better than acitretin in the treatment of psoriasis

nsubj
cop

nmod:than

nmod:in

case

(b)

Figure 3: Comparative Adjective copular forms.

pared entity. Thus we further verify that the ex-
tracted compared entities are separated by an ES.

The position of the entity separator “than” is
critical for determining the second compared en-
tity as well as the first compared entity. As shown
in Figure 3b, despite the similar copular structure
to the sentence in Figure 3a, the subject of the JJR
(“better” in this case) is the compared entity rather
than the aspect. This is due to the fact that the JJR
is followed by the ES “than”. Thus ordering of
the words is an important clue when differentiat-
ing between these cases.

The second category involves sentences, where
the comparative adjective modifies a head noun
and this modified noun provides the compared as-
pect, as shown in Figures 4 and 5. Since the com-
pared aspect is modified by the JJR, we used the
amod edge to detect the aspect. In these cases,
the noun phrase containing the Scale Indicator will
be connected to a verb and typically serves as the
predicate of the comparison relation. The entity
separator in the sentence in Figure 4 is “compared
to” and we can extract one of the compared en-
tities (“intravenous morphine”) by following the
advcl:compared to edge from the predicate verb
(“offers”).

Note that in the first example (Figure 4), the
Verb Group (“offer”) is in the active form and in
the second example (Figure 5), it is in the pas-
sive form (“was observed in”). Due to the ac-
tive/passive form difference, the aspect is in the
object position and one of the compared entities
in the subject position in the first example, while
the reverse is true for the second example. In the
dependency representation, the nsubj edge and the
nmod:in edge provide the subjects in active and
passive cases and dobj and nsubjpass provide the
possible objects. Note that in certain cases, the au-
thor might use an adjective (JJ) instead of the com-
parative form (“high” instead of “higher”). We

treat such cases in the same way we treat the com-
parative adjective (JJR) form.

Note that the Semgrex patterns only identifies
the head words of the various components, which
are typically NPs. We follow outgoing depen-
dency edges from these head words to extract
phrases corresponding to each comparison compo-
nent. For example, in Figure 3a “sclerosis” is iden-
tified as the aspect head and we follow the edge
amod to extract the aspect phrase “Arteriolar scle-
rosis”. In Figure 5, we extract “TP expression” as
the aspect phrase and not “Higher TP expression”
as “higher” is the trigger of the comparison and
identified as the scale.

Comparative Adverb: In these sentences, the
comparison scale is indicated through comparative
adverbs (RBR) such as “more”, “less” etc.. Typi-
cally, the RBR modifies an adjective (JJ) as shown
in Figure 6, where the adjective is “effective”.
This adjective serves as the predicate of the com-
parison and dependency edges from it are used to
determine the aspect and entities. The syntactic
structure and our rules are very similar to the first
category of the Comparative Adjective case. Thus
we use the nsubj and advcl:compared to edges
from “effective” to determine the compared enti-
ties. Note that the compared aspect in this exam-
ple is a clause headed by a VBG (“reducing MCP-
1 levels”) and thus in addition to nmod edges, we
need to consider the adverbial clause modifier (ad-
vcl) edge to determine the aspect.

Verbs: Certain verbs such as “increased”, “de-
creased” as well as “improved” indicate differ-
ences and can be used as a SI. This verb serves
as the predicate of the comparison relation and
outgoing dependencies can be used to determine
the arguments of the comparison. We have ob-
served two categories based on the voice (passive
vs. active) of the Verb Group containing this verb.
The passive case is depicted in Figure 7a (“was in-
creased in”). In this case, we follow the nsubjpass
edge to determine the compared aspect. In Fig-
ure 7b, since the scale indicator “improved” is in
active voice, the direct object of the verb will in-
stead provide the aspect. Extraction and verifica-
tion of the compared entities is similar to the cases
described previously (e.g. nmod:in in Figure 7a;
dobj and advcl:compared with in Figure 7b).

Note that a verb in past participle tense (VBN)
can be used as an adjective and modify a noun
(e.g., Increased TP expression was found in . . . ).
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Epidural morphine offers better pain control compared to intravenous morphine

nsubj

dobj

advcl:compared to

amod
case

Figure 4: Comparative Adjective modifier form 1.

Higher TP expression was observed in ovarian cancers than in normal ovaries

amod
compound

nsubjpass
auxpass

nmod:in

nmod:in

case

Figure 5: Comparative Adjective modifier form 2.

We treat cases when the scale indicator verb is
used as a modifier of a NP like the second cate-
gory of Comparative Adjectives.

3.3.2 Equative

A sentence with Equative comparison corresponds
to cases, where the result of comparison indicates
no difference between the compared entities (as in
Figure 8). In these cases, it is very rare to find
the usual Entity Separator (ES) and instead words
such as conjuctions (“and”, “or”), “ between” and
“among” play the role of the ES. We have ob-
served three frequently occurring types of such
Equative comparative structures.

The first category involves the structure “X as
JJ as Y”, where JJ is an adjective. In these cases,
the adjective serves as the predicate of the com-
parison. Figure 8 depicts such a case, where the
adjective is “effective”. Here one of the compared
entity “botox” is the subject of the JJ “effective”.
The second compared entity “oral medication” is
preceded by the ES “as” and a nmod:as edge from
the JJ to the entity is present. The compared aspect
is typically attached to the second compared entity
through a nmod edge (nmod:for in this case). Note
that the ES “as” need not appear immediately af-
ter the JJ (e.g. “Botox is as effective for overactive
bladder as oral medication”). Due to the “CCPro-
cessed” representation of collapsing edges we can
still consider the nmod:as from “effective” to de-
termine the second compared entity. The only dif-
ference in this case is that the nmod:for edge used
to determine the aspect is from the predicate “ef-
fective”.

The second case involves the Scale Indicator
phrase “similar to” as shown in Figure 9. Here the
subject of the adjective “similar” is the compared

aspect. The nmod edges (nmod:in in this example)
from “similar” are used to determine the compared
entities. The entities in these cases are separated
through conjunctions. Note that the SI “similar”
can also modify the compared aspect (e.g. “Simi-
lar CA was observed in CE1 and CE2”). This case
closely resembles the second category of compar-
ative adjectives and similar rules are used.

The third category involves Scale Indicator
phrases such ‘‘no differences”, “no changes” etc.
Similar to the case of the second category com-
parative adjectives, here the SI “difference” is part
of a NP and hence is connected to a verb, which
serves as the predicate. Typically these verbs can
be “linking” verbs (‘is”, “was” etc.) in active form
or certain verbs indicating presence (“found in”,
“noted in”, “observed in”) in the passive form.
In active voice case, as shown in Figure 10, the
SI typically follows an existential such as “there”.
In these cases, the nmod:between from the pred-
icate verb ( “was” in this case) is used to deter-
mine the compared entities. Other nmod edges we
consider are nmod:among and nmod:in. The com-
pared aspect is attached to the second compared
entity though nmod edges (nmod:for in this exam-
ple). A large proportion of Equative structures do
not mention the compared entities explicitly, and
as per the definition of our task, we do not extract
the comparison components in these cases.

4 Evaluation

We evaluated our system for its effectiveness in
identifying comparative sentences and its compo-
nents on a test set of 189 comparisons from 125
abstracts annotated by a co-author, who was not
involved in the design and development of the sys-
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Compared to metformin , exenatide was more effective in reducing MCP-1 levels

case

advcl:compared to
nsubj

cop
advmod

advcl
mark

Figure 6: Comparative Adverb copular form.

PNPLA3 expression was increased in NAFLD than in NL

nsubjpass
auxpass

nmod:in

nmod:in

case

(a) Passive

Tiotropium significantly increased spirometry compared with placebo

nsubj
advmod dobj

advcl:compared with
case

(b) Active

Figure 7: Comparative Verb forms.

Botox is as effective as oral medication for overactive bladder

nsubj
cop

nmod:as
case

nmod:for

Figure 8: Equative Form 1.

tem. Note that the annotator also annotated an ad-
ditional 50 abstracts, which was used in the de-
velopment of the comparison patterns. Although
the work by Fiszman et al. (2007) attempts to
tackle the similar task of identifying comparison
sentences and its components, we do not directly
compare with their results. This is due to the fact
that their implementation is limited to “direct com-
parisons of the pharmacological actions of two
drugs”. We ran their system on our annotated test
data and only 8 out of the 189 comparisons were
identified by their system as their implementation
only detects comparison if the two compared en-
tities (CEs) are drugs. We also ran their system
on some artificially created sentences obtained by
replacing CEs with drugs and observed that their
system seemed limited in the coverage of compari-
son structures. In the subsequent sections, we will
describe the evaluation methodology, present the
results and provide an analysis of errors.

4.1 Experimental Setup

To evaluate our system’s performance, we have
created a test set of 125 abstracts. We selected
abstracts that usually draw conclusions by means
of comparing between two contrasting situations.
Randomized controlled trials (RCT), which com-
pare the outcome between two randomly selected

groups, fit this definition very well. For this rea-
son, we searched for RCTs in PubMed with the
query “(Randomized Controlled Trial[Publication
Type]). This query yielded 431,226 abstracts.
However, we noticed that this set lacked abstracts
concerning gene expression studies. Thus, we ap-
pended to our initial dataset with abstracts related
to the effect of differential expression of genes on
diseases. As we target to identify comparison sen-
tences, we chose abstracts tagged as “compara-
tive study” in PubMed because they tend to con-
tain comparisons. We used the PubMed query:
“(Comparative Study [Publication Type]) AND
expression[TIAB] AND (cancer[TI] OR carci-
noma[TI])”, restricting the comparative studies to
gene expressions and cancer related studies. This
query yielded 8,479 abstracts.

From this initial set of abstracts, we randomly
selected 125 abstracts for annotation by a biomed-
ical researcher expert who did not take part in the
development of the system. 150 sentences from
the 125 abstracts were annotated as comparison
sentences and included 189 comparisons. Our
guidelines required the annotation of the four com-
ponents for each comparison: the compared as-
pect (CA), the two compared entities (CE1 and
CE2) and a word or phrase that indicates the scale
of comparison (SI). Additionally, they (the guide-
lines) required annotation at a sentence level for
sentences which had a explicit conclusion i.e. in-
dicated the scale of comparison and is not a men-
tion of a planned investigation.

4.2 Results and Discussion

Annotations of the test set of 125 abstracts yielded
189 comparisons, each containing a compared as-
pect, a scale indicator and two compared entities.
We ran our system on the test set and evaluated its
performance on correctly identifying the (1) com-
parison sentences, (2) compared aspect, (3) scale
indicator and (4) compared entities. When com-
puting true positives, we compared the head word
of the annotated components with the head words
extracted by our system. A mismatch resulted
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Attrition at 24 weeks was similar in the MTX monotherapy and combination groups

nsubj

cop

nmod:in

nmod:in

cc

conj:and

Figure 9: Equative Form 2.

There was no difference between the control and sleep-deprived groups for learning of surgical tasks

nsubj
neg

nmod:between

cc
conj:and

case

nmod:for
nmod:of

Figure 10: Equative Form 3.

Table 1: Evaluation Results.

Type Precison Recall F-Score

Sentence 0.91 0.83 0.87
Comparison Aspect 0.85 0.72 0.78
Scale Indicator 0.87 0.75 0.81
Compared Entities 0.84 0.72 0.77

in both a false negative and false positive. We
computed Precision (P), Recall (R), and F-score
(F) measures for each evaluation type, results of
which are shown in Table 1.

We analyzed the errors made by our system
and majority of the errors (more than 80%) en-
countered were due to incorrect parsing of com-
plicated sentences. For example, in sentence (4),
the clause modifier edge acl to “compared” was
from “feed” instead of the aspect “palatable”. If
the clause “with significantly less consumption of
treated feed” is removed, thereby simplifying the
sentence, the parse is correct and we correctly ex-
tract the comparison.

(4) Pro-Dynam was significantly less palatable,
with significantly less consumption of treated
feed compared with either Equipalazone
Powder or Danilon Equidos

A second but rarer category of error involves
cases, where we did not consider certain Scale In-
dicators (SI) such as “superior”, “non-inferior”,
“extra” as in sentence (5). In such examples,
the parser tagged the SI as adjective (JJ) and not
a comparative adjective (JJR) even though these
words indicate a comparison. Since our treatment
of such patterns was limited to JJR scale indica-
tors, we missed these cases. It is important to note
that our system will identify such structures if we
replace such JJ scale indicators by a JJR.

(5) Moxifloxacin was non-inferior to ceftriax-
one/metronidazole in terms of clinical re-
sponse at test-of-cure in the PP population

The third category involved cases missed due
to missing patterns such as seen in sentences (6).
In sentence (6a), two set of patients are being
compared with respect to improvement extent,
while sentence (6b) compares the concentration
of “plasma F2-isoprostane” before and after drug
administration. These cases where a comparison
sentence was not detected due to missing patterns
were very few.

(6) a. Both paroxetine and placebo-treated pa-
tients improved to a similar extent on sel-
frated pain measures

b. Maximal plasma F2-isoprostane concen-
trations after IS + C (iron sucrose + vi-
tamin C) were significantly elevated from
baseline

More than 90% of the false positive cases,
where we detected a component of a comparison
incorrectly was due to parsing error. For example,
in sentence (7), the compared aspect is incorrectly
identified as “Sixty minutes” as the parser detects
it as the subject of “higher” rather than “FEV(1)%
increase”. If the phrase “Sixty minutes after” is re-
moved, the parse is correct and we correctly iden-
tify the aspect. We would like to emphasis that
most of the errors, either FN or FP, were due to
incorrect parsing of complicated sentences rather
than the incompleteness of our developed patterns.

(7) Sixty minutes after the bronchodilator inhala-
tion, the FEV(1)% increase was higher in
OXI groups than in the IB group.
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5 Conclusion

We have presented a system to identify compari-
son sentences and extract their components from
literature using syntactic dependencies. The sig-
nificance of developing a system to identify com-
parisons arises from the prevalent nature of com-
parative structures in the biomedical literature.
We have observed that in a sample of abstracts
describing randomized controlled trials or com-
parative studies, almost every abstract contained
at least one comparison. Moreover, other text-
mining applications might rely on extracting the
arguments of a comparison. For example, this
approach could be applied to mining reports of
differential expression experiments, which are in-
herently comparisons. In (Yang et al., 2010), the
authors defined seven comparative classes of dif-
ferential expression analyses relevant to the pro-
cesses of neoplastic transformation and progres-
sion, including cancer vs. normal tissue, high
grade vs. low grade samples, and metastasis vs.
primary cancer. Because comparative statements
are often used to summarize the results of a study,
these sentences are often of high interest to the
reader. To the best of our knowledge, ours is the
only work that attempts to cover a wide range of
comparisons, capture all comparison components,
and does not impose any restrictions on the type of
compared entities. Our system achieved F-scores
of 0.87, 0.78, 0.81 and 0.77 for identifying com-
parison sentences, aspects, scale and entities re-
spectively. We plan to extend this work to consider
situations, where one of the entities is implied and
needs to be extracted from context.
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Abstract

In this paper we present a solution for tag-
ging funding bodies and grants in scien-
tific articles using a combination of trained
sequential learning models, namely con-
ditional random fields (CRF), hidden
markov models (HMM) and maximum en-
tropy models (MaxEnt), on a benchmark
set created in-house. We apply the trained
models to address the BioASQ challenge
5c, which is a newly introduced task that
aims to solve the problem of funding infor-
mation extraction from scientific articles.
Results in the dry-run data set of BioASQ
task 5c show that the suggested approach
can achieve a micro-recall of more than
85% in tagging both funding bodies and
grants.

1 Introduction and Description of the
BioASQ Task 5c

The scientific research and development market is
a $136bn industry in the US alone, with a 5-year
growth of 2.3%, as recorded in 20171. Within
this economy, organizations which fund research
need to ensure that they are awarding funds to the
right research teams and topics so that they can
maximize the impact of the associated available
funds. As a result, institutions and researchers are
required to report on funded research outcomes,
and acknowledge the funding source and grants.
In parallel, funding bodies should be in a posi-
tion to trace back these acknowledgements and
justify the impact and results of their research al-
located funds to their stakeholders and the tax-
payers alike. Researchers should also be able to
have access to such information, which can help

1https://www.ibisworld.com/industry/
default.aspx?indid=1430

them make better educated decisions during their
careers, and help them discover appropriate fund-
ing opportunities for their scientific interests, ex-
perience and profile. This situation creates unique
opportunities for the affiliated industry, to coordi-
nate and develop low-cost, or cost-free, solutions
that can serve funding agencies and researchers. A
fundamental problem that needs to be addressed
is, however, the ability to automatically extract the
funding information from scientific articles, which
can in turn become searchable in bibliographic
databases.

In this work we address this problem of au-
tomating the extraction of funding information
from text, using machine learning techniques. We
evaluate and combine several state-of-the-art se-
quential learning approaches, to accept a scientific
article as a raw text input and provide the detected
funding agencies and associated grant IDs as out-
put.

In order to test our approach, we have partici-
pated in the BioASQ challenge 5c2, which is a part
of the larger BioASQ challenge. BioASQ organizes
challenges which include tasks relevant to hier-
archical text classification, machine learning, in-
formation retrieval, QA from texts and structured
data, multi-document summarization and many
other areas (Tsatsaronis et al., 2015). In this par-
ticular task (challenge 5c), the participants are
asked to extract grant and funding agency informa-
tion from full text documents available in PubMed
Central3. Annotations from PubMed are used to
evaluate the information extraction performance
of participating systems, with the evaluation cri-
terion being micro-recall. Furthermore, the agen-
cies to be reported must be in a predetermined list
as provided by the National Library of Medicine

2http://participants-area.bioasq.org/
general_information/Task5c/

3https://www.ncbi.nlm.nih.gov/pmc/
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(NLM)4.

2 Background Literature

2.1 Named Entity Recognition

Named entity recognition (NER) locates units of
information, such as names of organizations, per-
sons and locations and numeric expressions, from
unstructured text. Each such unit of information
is then known as a named entity. In the context of
this paper, the named entities that are identified are
either Funding Agencies (FA) or Grant IDs (GR).
As an example, given a text of the form: “This
work was supported by the Funding Organization
with grant No. 1234”, the NER task is to label
“Funding Organization” in text as FA and “1234”
as GR. In principle, effective NER systems usu-
ally employ rule-based (Farmakiotou et al., 2000;
Cucerzan and Yarowsky, 1999; Chiticariu et al.,
2010), gazetteer (Ritter et al., 2011; Torisawa,
2007) and machine learning approaches (Chieu,
2002; McCallum and Li, 2003; Florian et al.,
2003; Zhou and Su, 2002). In this work we utilize
several sequential learning (Dietterich, 2002) ma-
chine learning approaches for NER, which are dis-
cussed next. A detailed survey of NER techniques
for further reading may be found in the work of
Nadeau et al. (2007).

2.1.1 Sequential Learning Approaches
Sequential learning approaches model the rela-
tionships between nearby data points and their
class labels, and can be classified into genera-
tive or discriminative. In the context of NER,
Hidden Markov Models (HMMs) are generative
models that learn the joint distribution between
words and their labels (Bikel et al., 1999; Zhou
and Su, 2002). A HMM is a Markov chain with
hidden states, and in NER the observed states
are words while the hidden states are their la-
bels. Given labelled sentences as training exam-
ples, NER HMMs find the maximum likelihood
estimate of the parameters of the joint distribu-
tion, a problem for which many algorithmic so-
lutions are known (Rabiner, 1990). Conditional
Random Fields (CRFs) are discriminative, in con-
trast to HMMs, and find the most likely sequence
of labels or entities given a sequence of words.
The relationship between the labels is modelled by
a Markov Random Field. Linear chain CRFs are

4https://www.nlm.nih.gov/bsd/grant_
acronym.html

well suited to sequence analysis and have been ap-
plied succssfully in the past in parts-of-speech tag-
ging (Lafferty et al., 2001), shallow parsing (Sha
and Pereira, 2003) and NER (McCallum and Li,
2003). Finally, another way of modelling data
for NER is Maximum Entropy (MaxEnt) models,
which select the probability distribution that max-
imizes entropy, thereby making as little assump-
tions about the data as possible. Following the
seminal work of Berger et al. (1996), maximum
entropy estimation has been successfully applied
to NER in many works (Chieu, 2002; Bender et al.,
2003). Essentially, CRFs are also maximum en-
tropy models working over the entire sequence,
whereas MaxEnt models make decisions for each
state independently of the other states.

2.1.2 State-of-the-art Open-source Toolkits

Several open-source toolkits implement one or
more of the learning approaches mentioned in the
previous section. This section discusses three of
them in particular, which have been found to be ef-
ficient, scalable and robust in practice, and which
are used as base approaches in the current work.

The Stanford CoreNLP toolkit5 is a JVM-based
text annotation framework whose NER implemen-
tation is based on enhanced CRFs with long-
distance features to capture more of the structure
in text (Finkel et al., 2005). An important feature
of the toolkit is the ability to use distributional
similarity measures, which assume that similar
words appear in similar contexts (Curran, 2003).
The toolkit is released with a well-engineered fea-
ture extractor, as well as pre-trained models for
recognizing persons, locations and organizations.

LingPipe6 is another Java-based NLP toolkit,
whose efficient HMM implementation includes n-
gram features. The toolkit has been successfully
applied in the past in gene recognition in text (Car-
penter, 2007).

Finally, in this work we also use the Apache
OpenNLP7 toolkit, which implements NER either
by using discriminative trained HMMs (Collins,
2002), or by training MaxEnt models (Ratna-
parkhi, 1998).

5http://stanfordnlp.github.io/CoreNLP/
6http://alias-i.com/lingpipe/demos/

tutorial/read-me.html
7https://opennlp.apache.org/
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2.2 Related Work
To the best of our knowledge, this is the first piece
of research work that systematically explores the
concept of extracting funding information from
the full text of scientific articles. The next clos-
est category of related published research works
mostly aims at extracting names of organizations
from affiliation strings, e.g., the works of Jonnala-
gadda et al. (2010), and Yu et al. (2007), both
of which aim at extracting names of organizations
from the metadata of published scientific articles.
There are, however, several initiatives that started
recently and are aiming at a similar direction to the
current work, such as the ERC project “Extracting
funding statements from full text research articles
in the life sciences”8.

3 Methodology

3.1 Overview
The suggested approach receives as input a text
chunk, e.g., the raw full text of a scientific arti-
cle, and annotates the input text with entities cor-
responding to Funding Agencies (FAs) and Grant
IDs (GRs), where present. A two-step search strat-
egy for finding FA and GR entities in text has been
implemented. The process starts by splitting the
input text into paragraphs, which are in turn given
sequentially as input to a binary text classifier that
identifies only those paragraphs which may con-
tain any funding information. NER is performed
next, only on the said filtered text paragraphs, to
annotate them with FA and GR labels. This design
enjoys several benefits; primarily it minimizes the
execution time of the approach, as the most costly
component, which is the NER part, is only exe-
cuted in a small selection of paragraphs in which
the binary text classifier has detected evidence of
funding information. In parallel, it reduces signif-
icantly the false positives of the approach, as there
are many text segments in a scientific full text ar-
ticle that contain strings which a NER component
could potentially annotate falsely as FA, e.g., the
organisation names in the affiliation information
of the authors.

3.2 Training Data Gathering
For this task, we have created a “Gold” set for
training, i.e., a manually curated and annotated set
of scientific articles with FA and GR labels. Such

8http://cordis.europa.eu/result/rcn/
186297_en.html

a gold set was created, even though BioASQ task
5c provides a training set, as several discrepancies
were observed in the said training set, the most
important being the absence of entity offsets. The
“gold” set was created with journal articles from
a large number of scientific publishers, and com-
prises 1, 950 articles annotated by three profes-
sional annotators, who were provided with com-
prehensive guidelines explaining the process and
the entities. A harmonization process then merged
the annotations of the three experts; when all three
agreed, annotations were automatically harmo-
nized, whilst the disagreements between the an-
notators were resolved manually by a subject mat-
ter expert (SME). From the 1, 950 articles, 1, 682
contained at least one funding-related annotation.
As for the individual entities, a total of 3, 428 FA
and 2, 592 GR annotations exist in the set. Pair-
wise averaged Cohen’s kappa (Cohen, 1960) was
used to calculate the inter-annotators agreement,
which for this set was measured at 0.89, suggest-
ing a high-quality dataset. The “gold” set was used
for two purposes: (i) to train the binary text classi-
fier that detects the paragraphs of text which con-
tain funding information; the number of positive
samples were found to be 1, 682, while the num-
ber of negative samples had a much higher value
at 47, 565, constituting a highly imbalanced set for
the task, and, (ii) to train the NER components that
detect FA and GR entities.

3.3 Detecting Text with Funding Information

The first step is to separate the parts of the text
which contain funding information from the parts
which do not. To address this problem, we have
used Support Vector Machines (SVMs), which are
known to perform favourably on text classification
problems (Joachims, 1998). More precisely, an
L2 regularized linear SVM has been used, oper-
ating on TF-IDF vectors extracted from the seg-
ments of each input text, based on a bigram bag-
of-words representation. The SVM was trained on
the examples of positive and negative segments,
i.e., paragraphs with and without funding infor-
mation, which could be found in the “gold” set
described in the previous section. The regular-
ization parameter for the SVM was found to be
C = 2 based on cross-validation experiments to
maximize the final recall.
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3.4 Training and Using Sequential Learning
Models

As described in section 2.1.1 and 2.1.2, we have
employed a variety of complementary techniques
to best extract the described entities from text. All
of the individual models, namely, a CRF imple-
mentation from the Stanford CoreNLP, a LingPipe
based enhanced HMM, and an OpenNLP imple-
mentation of the MaxEnt tagger, were trained on
the said “gold” set using the default hyperparame-
ter settings, as provided by their respective imple-
mentations.

Additionally, word clusters were provided to the
Stanford CoreNLP toolkit, which has the ability
to utilize distributional similarity features. The
clustering was performed by first extracting word-
embedding vectors from the “gold” set, using the
unsupervised Word2Vec algorithm by Mikolov et
al. (2013), followed by performing k-means clus-
tering to create the clusters, based on the cosine-
similarity of the word vectors.

For the specific purpose of BioASQ challenge
5c, keeping in mind that it is evaluated on micro-
recall, the unique outputs of the various models
were pooled in, to create the final list of named
entities to be provided as output.

3.5 Task Specific Post-processing Detected
Entities

In order to perform well on BioASQ 5c, some ad-
ditional post-processing steps were performed.

Extraction of Funding Agency from Grant ID
Usually grant IDs contain an acronym from which
the corresponding funding agencies can be in-
ferred. As an example, a fictitious grant of the
form “MRC123A” would contain the acronym
“MRC”, signifying that it has been sanctioned by
the “Medical Research Council”. For task 5c of
BioASQ, NLM provides a dictionary of acronyms
mapped to the respective agency9, which has been
used to retrieve funding agencies from the detected
grant IDs.

Corrections to Grants In some cases the prefix
of grant numbers was incorrectly published with a
letter ’O’ rather than the numeric ’0’. For exam-
ple, RO1/AI45338-04 instead of R01/AI45338-04.
As NLM has corrected these in their annotations,
so did we in a post-processing step.

9https://www.nlm.nih.gov/bsd/grant_
acronym.html

Method FA µR GR µR

HMM 80.4 82.3
MaxEnt 81.1 83.9

CRF-distsim 83.3 86.1
Pooled 85.2 86.2

Table 1: Percentage Micro-recall results for the
identification of Funding Agencies (FA) and Grant
IDs (GR) from the dry-run dataset of BioASQ task
5c.

4 Results

As the aforementioned models are trained on a en-
tirely different manually curated “gold” set, evalu-
ations could be made in one pass on the entire dry-
run data set of BioASQ task 5c, which consisted of
15, 205 documents from PubMed.

Table 1 presents the micro-recall results of the
trained models being evaluated on the dry-run
dataset. The models listed as HMM and Max-
Ent are self-explanatory, while CRF-distsim is
the Stanford CoreNLP toolkit based CRF model
which also utilizes distributional similarities, as
described in section 3.4. Pooling represents the
meta-model created by pooling in all the outputs
from the individual models. In each case, the out-
puts undergo the same post-processing step, as de-
scribed in the previous section.

The table shows that the CRF model performs
extremely well and is complemented by the other
models, all of which better the micro-recall of the
pooled meta-model, which performs 1.9 percent-
age points better than the CRF in detecting FA en-
tities, while performing comparably for GR anno-
tations.

5 Conclusions

In this paper we have tackled the problem of fund-
ing information extraction from scientific articles,
in the context of the BioASQ challenge 5c. We
have tested and combined state-of-the-art sequen-
tial learning models, along with creating a bench-
mark dataset for training. The results on the dry-
run dataset of the challenge indicate the good per-
formance of Conditional Random Fields as well as
the complementary performance of the other mod-
els, whose combination is evaluated at an overall
best micro-recall of 85.2% for Funding Agencies
and 86.2% for Grant IDs.
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Abstract

We describe a Deep Learning approach to
modeling the relevance of a document’s
text to a query, applied to biomedical lit-
erature. Instead of mapping each docu-
ment and query to a common semantic
space, we compute a variable-length dif-
ference vector between the query and doc-
ument which is then passed through a deep
convolution stage followed by a deep re-
gression network to produce the estimated
probability of the document’s relevance
to the query. Despite the small amount
of training data, this approach produces a
more robust predictor than computing sim-
ilarities between semantic vector represen-
tations of the query and document, and
also results in significant improvements
over traditional IR text factors. In the fu-
ture, we plan to explore its application in
improving PubMed search.

1 Introduction

The goal of this research was to explore Deep
Learning models for learning textual relevance of
documents to simple keyword-style queries, as ap-
plied to biomedical literature. We wanted to ad-
dress two main research questions: (1) Without
using a curated thesaurus of synonyms and related
terms, or an industry ontology like Medical Sub-
ject Headings (MeSH R©) (Lu et al., 2009), can a
neural network relevance model go beyond mea-
suring the presence of query words in a document,
and capture some of the semantics in the rest of
the document text? (2) Can a deep learning model
demonstrate robust performance despite training
on a relatively small amount of labelled data?

We had access to a month of click logs from

PubMed R©1, a biomedical literature search engine
serving about 3 million queries a day, 20 re-
sults per page (Dogan et al., 2009). Most cur-
rent users of the system are domain experts look-
ing for the most recent papers by an author or
search with complex topical boolean query expres-
sions on document aspects. For a small proportion
(∼ 5%) of the searches in PubMed, the retrieved
articles are sorte by relevance, instead of the de-
fault sort order by date. Usage analysis has shown
(ibid.) that topic-based queries are a significant
part of the search traffic. Such queries often com-
bine two or more entities (e.g. gene and disease),
and while users still use short queries, the users
are persistent and will frequently reformulate their
queries to narrow the search results. So improv-
ing the ranking is important to satisfy the needs of
PubMed’s expanding user base.

Traditional lexical Information Retrieval (IR)
factors measure the prominence of query terms
in documents treated as bags of words. While
such factors like Okapi BM25 (Robertson et al.,
1994) and Query Likelihood (Miller et al., 1999)
are quite effective, there are several cases where
they fail. Two that we wanted to target were: (i)
under-specified query problem, where even irrel-
evant documents have prominent presence of the
query terms, and relevance requires analysis of the
topics and semantics not directly specified in the
query, and (ii) the term mismatch problem (Furnas
et al., 1987), which requires detection of related
alternative terms or phrases in the document when
the actual query terms are not in the document.

2 Background

Deep Learning models have been applied to vari-
ous types of text matching problems. Their com-
mon goal is to go beyond the lexical bag-of-words

1http://ncbi.nlm.nih.gov/pubmed
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treatment and model text matching as a complex
function in a continuous space. An overview of
neural retrieval models can be found in (Zhang
et al., 2016; Mitra and Craswell, 2017). We review
some of this work that motivated our research.

Most text Deep Learning models start with a nu-
meric vector representation of text’s lexical units,
most commonly terms or words. Ideally these vec-
tors are trained as part of the model, however when
training data is limited, many researchers pre-
train these word-vectors in an unsupervised man-
ner on a large text corpus, often using one of the
word2vec models (Mikolov et al., 2013a,b). We
used the SkipGram Hierarchical Softmax method
to pre-train our word-vectors on Titles and Ab-
stracts from all documents in PubMed.

Word Mover’s Distance (WMD) (Kusner et al.,
2015) is an (untrained) model for determining the
semantic similarity between two texts by comput-
ing the pairwise distances between the words’ vec-
tors. It leverages the similarity of vectors of se-
mantically related words. When applied to ad hoc
IR, it often successfully tackles the term mismatch
problem. We compare our model’s performance
against WMD, and show that the added complex-
ity produces further improvements in ranking.

Many deep learning text similarity and IR mod-
els first project the query and each document to
vectors to a common latent semantic space. A
second stage then determines the ‘match’ between
the query and document vectors. In the rele-
vance model described in (Huang et al., 2013) the
last stage is the cosine similarity function, and
in follow-up work (Shen et al., 2014) the authors
use a convolutional layer as part of the semantic
mapping network, and a feed-forward classifica-
tion network is trained to compute the similarity.
Instead of training word embeddings, their docu-
ment presentation is based on representing each
word as a bag of letter tri-grams. Their model
is trained on about 30 million labelled query-
document pairs extracted from the click logs of a
web search engine. The convolution layer is used
to capture a word’s context and word n-grams. A
similar approach is taken in (Gao et al., 2014). The
ARC-I semantic similarity model of (Hu et al.,
2014) uses a stack of interleaving convolution and
max-pooling layers to map a sentence to a se-
mantic vector. They argue that stacking convolu-
tions of width 3 or more allows them to capture
richer compositional semantics than the recurrent

(Mikolov et al., 2010) or recursive (Socher et al.,
2011a,b) approaches. However convolutional ar-
chitectures do have fixed depths that bound the
level of composition. Our use of a vertical stack
of convolutional layers without interleaving pool-
ing layers is similar to the successful image recog-
nition models AlexNet (Krizhevsky et al., 2012)
and VGGNet (Simonyan and Zisserman, 2015).

Severyn & Moschitti’s (2015) model to rank
short text pairs is trained on small data (∼ 50k −
100k samples). Word embeddings are pretrained
using word2vec, a convolutional network maps
documents to a semantic vector, followed by a dif-
ference matrix and a 3-layer classification network
to compute the similarity between the input texts.
This is much closer to our final approach, and we
compare the performance of our relevance model
against this model, but using word-embeddings of
size 300 rather than 50 to try to capture richer se-
mantics in biomedical literature.

Another approach to text matching first devel-
ops ‘local interactions’ by comparing all possible
combinations of words and word sequences be-
tween the two texts. Examples are described in
(Hu et al., 2014; Lu and Li, 2013). A recent IR
model based on this approach is described in (Guo
et al., 2016). Authors argue that the local inter-
action based approach is better at capturing de-
tail, especially exact query term matches. Our ap-
proach simplifies the local-interactions by pairing
each document word with a single query word, fol-
lowed by deep convolutions to attempt to capture
some related compositional semantics.

3 The Data

3.1 The Input

We extracted query-document pairs from one
month of PubMed click logs where users selected
‘Best Match’ (relevance) as the retrieval sort order.
For each search resulting in a click, the first page
of up to 20 documents was recorded. If the clicked
document was not on the first page, it was added to
this list. The first click on a PubMed search result
takes you to a document summary page. Further
clicks to the full text of the document were also
recorded. Documents that received clicks were la-
belled as relevant. This binary notion of relevance
was used to train our models, and for model eval-
uation using precision-based ranking metrics. We
also experimented with relevance levels, based on
a formula hand-tuned to match human-perceived
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relevance (see appendix). We report NDCG met-
rics using these relevance levels.

The queries were restricted to simple text
searches, of up to seven words, thus eliminating
boolean expressions, author searches and queries
mentioning document fields. Log extracts were
further restricted to queries with at least 21 doc-
uments, and at least 3 clicked documents. These
filters reduced the the logs to about 33,500 queries.

These queries were randomly split to 60% train-
ing, and 20% each for validation and testing. The
number of documents available for each query was
quite skewed. Since the metrics we use (described
below) give equal weight to each query, we further
sub-sampled the training and validation datasets to
pick at most 20 of the most relevant documents
and an equal number of non-relevant documents.
This helped balance out the significance of the
queries without reducing the data size too much,
and improved the mean per-query metrics of the
trained models. The resulting training dataset con-
sisted of 634,790 samples (query-document pairs).

3.2 Pre-processing the Input

We used each document’s Title and Abstract to
form its text. After some experimentation and
evaluation on the validation dataset, we found that
limiting this to the first 50 words was optimal.
Documents shorter than that were padded with 0’s,
as were queries shorter than 7 words.

We used a simple tokenizer that split words on
space and punctuation, while preserving abbrevi-
ations and numeric forms, followed by a conver-
sion to lower-case. All punctuation was dropped,
which also resulted in a loss of sentence and some
grammatical structure, an area to be explored in
the future. Numeric forms were collapsed into
7 classes: Integer, Fraction in (0, 1), Real num-
ber, year “19xx”, year “20xx”, Percentage (num-
ber followed by “%”), and dollar amount (num-
ber preceded by “$”). Removing stop-words from
the query and documents did not improve perfor-
mance of the models.

We leveraged the large PubMed corpus of about
26 million documents to pre-train the word vec-
tors, using the SkipGram Hierarchical Softmax
method of word2vec (Mikolov et al., 2013b),
with a window size of ±5, a minimum term-
frequency of 101, and a word-vector size of 300.
This resulted in a vocabulary of 207,716 words.
Rare words were replaced with the generic “UNK”

w
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Abstract, 
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Figure 1: The Delta Relevance Classifier.

token, which was initialized to ∼ U [−0.25, 0.25],
as in (Severyn and Moschitti, 2015).

4 The Delta Relevance Classifier Model

The components of the Delta Relevance Classifier
(figure 1) are described below. Optimal sizes of
the various layers were determined by tuning for
best accuracy on validation data.

4.1 Note on Convolutional Layers
A convolutional operation (LeCun, 1989) is a se-
ries of identical transformations on subsequences
of the input obtained by a sliding window on the
input. The result is called a feature map, and a con-
volutional layer will usually involve several fea-
ture maps. The width of the input subsequence is
called the filter width.

In our application, the input is a sequence of
words, each word represented by a real vector of
size d. A convolution of filter-width k processes
word k-grams. The value of the t-th element of
the j-th feature map cj is computed as follows:

cj[t] = σ((x ∗Wj)[t] + bj)

x ∗Wj = x[t−k+1:t] ·Wj

=
d∑
i=1

m∑
j=1

(xi,t−k+jKi,j)

Here σ is the non-linear activation function, Wj ∈
Rd×k, bj ∈ R are the parameters of the j-th feature
map, and the input is x ∈ Rd×m. In the models
in this paper, the feature maps are applied in full
mode, which effectively pads the input on either
side with k − 1 d-sized 0-vectors, so xi,j = 0 for
j < 1 or j > m, and t ranges from 1 to m+k−1.

Applied to text, a convolutional layer of width 3
will extract features from 3-grams. A second con-
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Full Test Data Neg20+ OneNewWord AllNewWords

Nbr. of Queries 6,797 2,600 1,823 1,002
Nbr. of Samples 416,509 208,734 90,353 50,827
Prop. of Samples +ive 45.2% 39.5% 48.9% 48.8%
Prop. of Samples -ive 54.8% 60.5% 51.1% 51.2%
+ives without all Query terms in Title 38.9% 13.9% 34.0% 25.2%
-ives with all Query terms in Title 59.1% 83.6% 65.4% 73.4%

Table 1: Test Data and its subsets

volutional layer of the same width stacked above
then extracts features from 5-grams, and so on.

4.2 Query-Document Overlap Features

Following (Severyn and Moschitti, 2015), we
compute some overlap features to aid relevance
detection when dealing with exact matches, and
rare words collpased to the ‘UNK’ token. We
use the following overlap features, the first two of
which are taken directly from that paper: (i) pro-
portion of query and document words in common,
(ii) IDF-weighted version of (i), (iii) proportion of
query words in the document, and (iv) proportion
of query bigrams in the document.

4.3 Difference Features Stage

Instead of developing all pairwise local interac-
tions between query and document terms, we cap-
ture interactions between pairs of closest terms.
This simplifies the model, and since queries are
short, we are unlikely to loose any useful inter-
actions. The difference features are computed in
two steps (algorithm 1). First, for each word in
the document of a query-document pair, the clos-
est query word in absolute vector distance is iden-
tified (skipping all “UNK” words in the query and
document). We then output the difference vector,
along with its length and the cosine angle between
the two vectors. With word-vectors of size d and a
document of T words, the output of this stage is a
real matrix of size d× (T + 2). We found T = 50
produced the best results for the Delta models.

Algorithm 1 Query-Doc Difference Features
Input: Query text Q and Document text D.
for each word vector w in D s.t. w 6= UNK do:

Find wq = arg min(u ∈ Q, u 6= UNK) ‖w − u‖
Output: (w − wq), ‖w − wq‖, cos(w, wq)

end for

4.4 Delta Scanner Stage

The Delta Scanner stage is a vertical stack of
three Convolutional layers of 256 filters each, fol-

lowed by a Dropout layer, and then a Global Max-
Pooling layer outputting a fixed-width vector. All
feature maps use the ReLU (Rectified Linear Unit)
activation function.

The input to the Delta Scanner stage is the
d × (T + 2) matrix produced by the Difference
Features stage. Documents whose text is fewer
than T words are right-padded with 0’s, and the
Delta Scanner supports a mask input that it uses to
ignore the padding. The output of this stage is a
vector of size 256, representing the semantic dif-
ference between the the query and the document
in a query-document pair. The remaining hyper-
parameters are: Dropout probability, and the L2-
regularization coefficient.

4.5 Relevance Classifier Stage
This is a deep fully connected feed-forward lo-
gistic regression stage. The input to the Rele-
vance Classifier stage is the combined vectors out-
put from the Overlap Features and Delta Scanner
stages, with a total width of 260 = (4+256). This
data is fed through the following layers:

i. a Dropout layer,
ii. two feed-forward layers, each of width 260,

using the ReLU activation function,
iii. another Dropout layer, and
iv. a sigmoid-based Classification layer.

The Relevance Classifier’s output is an estimate of
the probability of the input document’s relevance
to the query. Documents are ranked in reverse or-
der on this estimated probability.

This stage’s hyper-parameters are: Dropout
probability (same value used for both Dropout lay-
ers), and the L2-regularization coefficient.

4.6 Loss Function and Sample Weighting
The data labels capture a binary sense of rele-
vance, and our models are binary classifiers, so we
used the standard binary cross-entropy loss.

In the default mode, the neural network models
were trained without any weighting of the training
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samples. We trained a second set of models with
sample weights derived from the non-binary rele-
vance levels (described above). For each relevance
level r, a weight of max[1, log(1 + r)] was used.
This damped the relevance levels, while ensuring
that each relevant document received at least the
same weight as a non-relevant document.

4.7 Optimization and Implementation Notes
All the neural network models were optimized us-
ing Adadelta (Zeiler, 2012), with mini-batches of
256 samples. Mini-batch gradient descent was run
for 10 epochs, and the trained values at the end
of the epoch producing the best classification ac-
curacy on the Validation dataset were chosen. A
greedy search was done in the grid space of the
hyper-parameters for the Delta Scanner and Rel-
evance Classifier stages, and the values that pro-
duced the best validation accuracy were selected.

5 Experimental Setup

We compare the performance of the relevance
models on the following ranking metrics: NDCG
at rank 20, Precision at ranks 5, 10 and 20, and
Mean Average Precision (MAP). Scoring ties were
resolved by sorting on decreasing document-id.

5.1 Methods Compared
We compared the performance of our deep
learning model against: BM25; the Unigram
Query Likelihood Model (UQLM) with Dirich-
let Smoothing (Zhai and Lafferty, 2004); Word
Mover’s Distance (WMD) that leverages pre-
trained word-vectors; and a couple of neural net-
work models based on the architecture described
in (Severyn and Moschitti, 2015).

We tested BM25 on the document Title, Ab-
stract and Title + Abstract, and found BM25 on
Title to give the best ranking performance, with
parameters k1 = 2.0, b = 0.75. Similarly, UQLM
applied to the document Title and WMD applied
to the document Title after removal of stop-words
performed better than the other alternatives.

5.1.1 Severyn-Moschitti Model
We tested four variants of the relevance classi-
fier described in (Severyn and Moschitti, 2015).
All versions used the same input data and word-
vectors as used for the Delta model. In the ba-
sic version, which we will refer to as “SevMos-
C1”, the query and document were fed into a
single-layer Convolutional stage as described in

section 4.1, with 256 feature maps and a filter
width of 5. This was followed by a Dropout layer
and then Global Max-Pooling. The outputs of the
query and document convolutions, along with the
overlap features described in section 4.2, were fed
into a Classifier stage. This stage computed a dif-
ference between the query and document features
using a difference matrix, and this value along
with the other inputs were fed into a deep clas-
sification stage identical to that used in the Delta
model (section 4.5), sized to match these inputs.

In the “SevMos-C3” variant of this model, we
replaced the single-layer convolution stage with a
deeper 3-layer stack of convolutions of filter width
3, followed by global max-pooling, just like the
Delta model’s ‘Delta Scanner’ stage.

In addition to training the models on un-
weighted samples, we also trained separate mod-
els on relevance-based weighted samples (see sec-
tion 4.6), which we refer to below as “SevMos-
C1 w” and “SevMos-C3 w”.

Optimal values for the L2-regularization and
Dropout probability hyper-parameters were deter-
mined by doing a greedy grid search, as described
for the Delta model.

5.2 The Test Data

The test data used to compare performance of the
different textual relevance approaches is the held-
out 20% split of the data extracted from search
logs, as described in section 3.1, without any fur-
ther sub-sampling. Of the relevant documents
(“+ives”), 38.9% did not contain all query terms
in the title. Similarly among the non-relevant doc-
uments (“-ives”), 59.1% contained all the query
terms in the title (see table 1).

In addition to comparing ranking metrics of
the different approaches on the test data, we
also wanted to explore the main research ques-
tions motivating this work: (i) the problems of
under-specified queries and term mismatch, and
(ii) model robustness. To help answer these ques-
tions, we also compare ranking metrics on the fol-
lowing subsets of the test data:

Neg20+: This consists of all queries for which
there were at least 20 non-relevant documents
that contained all the query words in the title.
This helps evaluate performance on under-
specified queries.

OneNewWord: The 1,823 test queries which
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NDCG.20 MAP Prec.5 Prec.10 Prec.20

rev DocID 0.164 0.456 0.344 0.376 0.406
BM25-Title 0.353 0.568 0.592 0.550 0.502
UQLM-Title 0.341 0.561 0.575 0.541 0.500
WMD-Title 0.356 0.579 0.602 0.565 0.516
SevMos-C1 0.345 0.581 0.599 0.569 0.528
SevMos-C3 0.339 0.577 0.597 0.564 0.524
Delta 0.375 0.597 0.627 0.586 0.539
Delta – WMD +5.3% +3.1% +4.2% +3.7% +4.5%
Delta – SevMos-C1 +8.7% +2.8% +4.7% +3.0% +2.1%

Table 2: Ranking metrics on the Full Test Data

contain at least one new word that did not oc-
cur in any training or validation queries.

AllNewWords: A smaller subset of queries all of
whose words are new: none of the training or
validation queries included these words.

The last two subsets will help us evaluate model
robustness. The statistics of the test data and its
subsets are summarized in table 1.

6 Main Results and Discussion

6.1 Models trained on Un-weighted Samples
Table 2 compares the performance of all the above
ranking factors and models on the full test data.
The first row shows the metrics obtained by rank-
ing all the documents on reverse order of Docu-
ment ID. We use this as a score tie-breaker for all
the other rankers, so it provides a useful baseline
performance of an uninformed ranker.

As also seen in (Shen et al., 2014), BM25 on Ti-
tle slightly outperforms the Unigram Query Like-
lihood Model. We have seen other cases where
UQLM outperforms BM25. We believe the better
performance of BM25 here is partly due to it be-
ing a strong factor in the relevance ranking from
which these click logs were extracted, thus bias-
ing the click data to some extent.

Word Mover’s Distance (WMD-Title) is the first
factor in the table that takes non-query words into
account, and it does show an improvement over
BM25. However WMD relies on the word-vectors
obtained by unsupervised training, using a simple
Euclidean distance on these vectors as the seman-
tic distance between words. This, and its relatively
simple computation, limit how well it performs.

The SevMos-C1 model applies a complex non-
linear transformation on the word-vector based
text space, in an attempt to better capture compara-
ble semantics of documents. However its NDCG

numbers are worse than both WMD and BM25,
although its precision numbers, while better than
BM25, are about the same as those for WMD.
Given that the neural network models in this ta-
ble were trained on a boolean version of relevance,
we expect the main gains to be in the precision-
based metrics, which also use a boolean notion of
relevance. The lack of improvement in precision
metrics over WMD shows that SevMos-C1’s non-
linear transformations are not doing a better job of
capturing query and document semantics.

The SevMos-C3 model learns a more complex
non-linear transformation than SevMos-C1, by us-
ing a stack of three non-linear convolution layers
instead of one in the first part of the model. How-
ever its metrics are no better (actually somewhat
worse) than SevMos-C1 across the board. So in-
creasing the expressive power of the model did not
help. Lack of sufficient training data might be lim-
iting the performance of these models.

The main difference between the Delta model
and SevMos-C3 is that the Delta Model starts by
computing a difference vector between the Doc-
ument and Query’s word-vector representations.
This local interaction vector is inspired by Word
Mover’s Distance, and in the Delta model we hope
to combine the benefits of the WMD and Sev-
Mos approaches, while at the same time reduc-
ing the complexity of the input space, and thus al-
lowing us to extract more benefit from the small
amount of training data. The performance metrics
for the Delta model do indeed show sizeable im-
provements over both WMD and SevMos-C1 (and
thus also over BM25 and UQLM). The relative im-
provements in the metrics are shown in the last two
rows of the table2.

The ‘Neg20+’ section of the table 3 compares

2All cited improvements have been verified to be statis-
tically significant to at least a 99% confidence level using a
paired t-test.
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NDCG.20 MAP Prec.5 Prec.10 Prec.20

Subset: Neg20+
rev DocID 0.098 0.413 0.310 0.335 0.365
BM25-Title 0.252 0.474 0.490 0.461 0.431
UQLM-Title 0.235 0.466 0.473 0.454 0.428
WMD-Title 0.263 0.483 0.501 0.472 0.441
SevMos-C1 0.277 0.499 0.518 0.492 0.462
SevMos-C3 0.272 0.496 0.519 0.490 0.459
Delta 0.296 0.509 0.539 0.507 0.473
Delta – WMD +12.5% +5.4% +7.6% +7.4% +7.3%
Delta – SevMos-C1 +6.9% +2.0% +4.1% +3.0% +2.4%

Subset: OneNewWord
rev DocID 0.224 0.490 0.366 0.409 0.443
BM25-Title 0.373 0.595 0.606 0.567 0.520
UQLM-Title 0.368 0.595 0.601 0.567 0.526
WMD-Title 0.362 0.600 0.606 0.578 0.531
SevMos-C1 0.363 0.609 0.614 0.588 0.549
SevMos-C3 0.354 0.603 0.613 0.583 0.547
Delta 0.402 0.625 0.644 0.606 0.559
Delta – WMD +11.0% +4.2% +6.3% +4.8% +5.3%
Delta – SevMos-C1 +10.7% +2.6% +4.9% +3.1% +1.8%

Subset: AllNewWords
rev DocID 0.230 0.509 0.392 0.439 0.466
BM25-Title 0.352 0.585 0.594 0.564 0.519
UQLM-Title 0.348 0.588 0.593 0.566 0.527
WMD-Title 0.333 0.584 0.582 0.567 0.530
SevMos-C1 0.354 0.607 0.608 0.589 0.554
SevMos-C3 0.340 0.600 0.606 0.578 0.550
Delta 0.386 0.622 0.642 0.609 0.565
Delta – WMD +15.9% +6.5% +10.3% +7.4% +6.6%
Delta – SevMos-C1 +9.0% +2.5% +5.6% +3.4% +2.0%

Table 3: Ranking metrics on selected subsets of the Test Data

NDCG.20 MAP Prec.5 Prec.10 Prec.20

Full Test Data
SevMos-C1 w 0.358 0.586 0.609 0.575 0.531
SevMos-C3 w 0.352 0.582 0.602 0.573 0.528
Delta w 0.383 0.597 0.628 0.588 0.538
Delta w – SevMos-C1 w +7.0% +1.9% +3.1% +2.3% +1.3%
Delta w – Delta +2.1% +0.0% +0.2% +0.3% -0.2%

Neg20+
SevMos-C1 w 0.404 0.620 0.635 0.608 0.560
SevMos-C3 w 0.396 0.616 0.635 0.605 0.557
Delta w 0.427 0.630 0.653 0.617 0.564
Delta w – SevMos-C1 w +5.7% +1.6% +2.8% +1.5% +0.7%
Delta w – Delta +0.9% -0.2% -0.9% +0.2% -0.4%

OneNewWord
SevMos-C1 w 0.378 0.615 0.628 0.595 0.552
SevMos-C3 w 0.364 0.609 0.619 0.587 0.548
Delta w 0.408 0.624 0.644 0.606 0.558
Delta w – SevMos-C1 w +7.9% +1.5% +2.5% +1.8% +1.1%
Delta w – Delta +1.5% -0.2% +0.0% +0.0% -0.2%

AllNewWords
SevMos-C1 w 0.368 0.616 0.629 0.597 0.558
SevMos-C3 w 0.353 0.603 0.609 0.582 0.552
Delta w 0.389 0.621 0.642 0.607 0.562
Delta w – SevMos-C1 w +5.7% +0.8% +2.1% +1.7% +0.7%
Delta w – Delta +0.8% -0.2% +0.0% -0.3% -0.5%

Table 4: Ranking metrics for Relevance-Weighted models
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ranking performance on a subset of the test data
that should be harder to rank for factors and mod-
els that do not give some consideration to the non-
query words in the document. In this data a signif-
icant number of non-relevant documents contain
all the query words in the title. Comparing these
numbers with the previous table shows that there
is indeed a significant drop in performance for all
the factors and models considered here. However
while BM25’s NDCG metrics drop by 28.6%, the
Delta model’s NDCG drops by only 21.1%, with
the corresponding drops in MAP being 16.5% and
14.7%, respectively. The Delta model still shows
the best metrics on this test set, and its degree of
improvement over WMD is bigger, as expected
from a more complex model.

Model robustness is tested when queries with
words not seen during training (i.e. training
and validation datasets) are encountered. This
is explored in sections ‘OneNewWord’ and ‘All-
NewWords’ of table 3. Both these sub-tables
show a consistently better performance by the
Delta model over the other approaches compared
here. Interestingly, the improvements in the Delta
model’s NDCG at 20 metrics over the other ap-
proaches are quite sizeable, even though for a sim-
ple un-weighted relevance classifier, the primary
target was precision and not NDCG.

6.2 Relevance Weighted Models

In this section we explore the performance of the
Delta model trained on relevance-weighted sam-
ples against the corresponding weighted versions
of the neural network models SevMos-C1 and
SevMos-C3. These metrics are shown in table 4.
A quick comparison with previous tables shows
that all the models turn in better NDCG num-
bers than their un-weighted versions. In particu-
lar, the “Delta w” model continues to depict sta-
tistically significant better metrics than the other
weighted neural network models “SevMos-C1 w”
and “SevMos-C3 w”.

Comparing the Delta weighted model against
the unweighted Delta model, we see that there is a
statistically significant improvment in the NDCG
metrics for all the Test subsets (at the 99% con-
fidence level). However the precision metrics do
not show a significant change. So by weighting the
samples we have been able to improve the NDCG
without hurting the precision.

7 Concluding Remarks

We have demonstrated a Deep Learning approach
for learning textual relevance from a fairly small
labelled training dataset. We show that this model
is robust and it outperforms both traditional IR fac-
tors as well as related shallow (WMD) and deep
(SevMos) models based on continuous represen-
tations of text, with better results on the under-
specified query and term mismatch problems.

While the Delta model is comparable to other
local-interaction ranking models, we compute
fewer and richer interactions. We believe the fewer
interactions captured in the difference vector are
sufficient for the shorter queries in our data. As a
comparison, the model in (Guo et al., 2016) com-
putes a match histogram based on cosine similarity
between all document-query word pairs, and also
query-term IDF based weighting. We plan to test
this model on our data.

The main advantage to the separate semantic
vector approach is that document semantic vectors
can be pre-computed. Prediction run-time then
primarily depends on the complexity of the sim-
ilarity computation between these semantic vec-
tors. Local-interaction models, including ours, do
not allow this pre-computation, significantly in-
creasing the ranker’s run-time cost.

We believe the most promising directions for fu-
ture research include: modeling deeper semantics
(see example in appendix), unsupervised training
on data auto-generated from the corpus and fine-
tuning with supervised training, improving extrac-
tion of non-binary relevance levels and using a
pair-wise ranking target. Further investigation is
also warranted for incorporating these models into
PubMed.
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A Document Relevance Levels

Deriving relevance level of a document to a query
from observed clicks is still experimental. We use
the following formula:

µ×AbClicks + (1− µ)× FTClicks

+
1
λ
×IsDocWithoutFullText×AbClicks
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with the parameters µ = 0.33, λ = 15, where
AbClicks is the number of observed clicks to the
document summary page in PubMed, FTClicks is
the number of observed clicks to the document’s
full text, if available, and the value of IsDocWith-
outFullText is 1 if the full text for that document
is not available, and 0 otherwise. The formula at-
tempts to capture the increased notion of relevance
if the user accesses the document’s full text, with-
out penalizing documents whose full-text is not
available. The parameters were hand-tuned to re-
flect domain experts’ relevance judgments.

B Rankings on Some Example Queries

Here are some example queries from the test set
showing the titles of the top 3 ranked documents
for the Delta weighted model, BM25 and WMD.
Relevance levels of the documents are indicated
inside parentheses before the titles.

B.1 Query: cryoglobulinemia

This word did not occur in training or validation
queries. Delta w ranks the most relevant docu-
ment at the top despite its use of an alternative
spelling. BM25 and WMD seem to prefer shorter
titles with exact matches. Number of documents
in the test dataset: relevant = 27, non-relevant =
26. Top three relevance levels: 39.0, 11.0, 4.0.

As ranked by Delta w:
i. (39.0) Diagnostics and treatment of cryoglobulinaemia:

it takes two to tango.
ii. (0.0) Clinical features of 30 patients with cryoglobu-

linemia.
iii. (4.0) The diagnosis and classification of the cryoglob-

ulinemic syndrome.

As ranked by BM25:
i. (11.0) Cryoglobulinemia Vasculitis.

ii. (3.0) Cryoglobulinemia (review).
iii. (1.0) Role of CXCL10 in cryoglobulinemia.

As ranked by WMD:
i. (11.0) Cryoglobulinemia Vasculitis.

ii. (3.0) Cryoglobulinemia (review).
iii. (3.0) Primary cryoglobulinemia with cutaneous fea-

tures.

B.2 Query: oesophageal cancer
review

The word oesophageal did not occur in training
or validation queries. The word review does not
occur in the title of all relevant documents. Both
Delta w and WMD successfully locate alternative
spellings of the word. Number of documents in
the test dataset: relevant = 22, non-relevant = 28.
Top three relevance levels: 7.0, 4.0, 4.0.

As ranked by Delta w:
i. (7.0) Esophageal cancer: Recent advances in screen-

ing, targeted therapy, and management.
ii. (3.0) Esophageal cancer: A Review of epidemiology,

pathogenesis, staging workup and treatment modali-
ties.

iii. (3.0) Esophageal Cancer Staging.

As ranked by BM25:
i. (3.0) Imaging of oesophageal cancer with FDG-

PET/CT and MRI.
ii. (0.0) Systematic review and network meta-analysis:

neoadjuvant chemoradiotherapy for locoregional eso-
phageal cancer.

iii. (0.0) Serum autoantibodies in the early detection of
esophageal cancer: a systematic review.

As ranked by WMD:
i. (3.0) Esophageal Cancer Staging.

ii. (0.0) Outcomes in the management of esophageal can-
cer.

iii. (4.0) Endoscopic Management of Early Esophageal
Cancer.

B.3 Query: chronic headache and
depression review

In this example, both WMD and Delta w are able
to leverage word vectors to relate headache to mi-
graine. However both miss the most relevant doc-
ument, whose title is “Psychological Risk Factors in

Headache” (relevance level = 6.0). This example
demonstrates the need for deeper semantic model-
ing. Number of documents in the test dataset: rel-
evant = 23, non-relevant = 18. Top three relevance
levels: 6.0, 3.0, 3.0.

As ranked by Delta w:
i. (3.0) Migraine and depression: common pathogenetic

and therapeutic ground?
ii. (3.0) Migraine and depression comorbidity: antide-

pressant options.
iii. (3.0) Migraine and depression: bidirectional co-

morbidities?

As ranked by BM25:
i. (3.0) Comprehensive management of headache and de-

pression.
ii. (0.0) Chronic daily headache in children and adoles-

cents.
iii. (0.0) Screening for depression and anxiety disorder in

children with headache.

As ranked by WMD:
i. (3.0) Comprehensive management of headache and de-

pression.
ii. (3.0) Chronic headaches and the neurobiology of som-

atization.
iii. (3.0) Migraine and depression: biological aspects.
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Abstract
We investigate if writers with demen-
tia can be automatically distinguished
from those without by analyzing linguis-
tic markers in written text, in the form of
blog posts. We have built a corpus of sev-
eral thousand blog posts, some by people
with dementia and others by people with
loved ones with dementia. We use this
dataset to train and test several machine
learning methods, and achieve prediction
performance at a level far above the base-
line.

1 Introduction

Dementia is estimated to become a trillion dollar
disease worldwide by 2018, and prevalence is ex-
pected to double to 74.7 million by 2030 (Prince,
2015). Dementia is a clinical syndrome caused by
neurodegenerative illnesses (e.g. Alzheimer’s Dis-
ease, vascular dementia, Lewy Body dementia).
Symptoms can include memory loss, decreased
reasoning ability, behavioral changes, and – rel-
evant to our work – speech and language impair-
ment, including fluency, word choice and sentence
structure (Klimova and Kuca, 2016).

Recently, there have been attempts to combine
clinical information with language analysis using
machine learning and NLP techniques to aid in di-
agnosis of dementia, and to distinguish between
types of pathologies (Jarrold et al., 2014; Ren-
toumi et al., 2014; Orimaye et al., 2014; Fraser
et al., 2015; Masrani et al., 2017). This would
provide an inexpensive, non-invasive and efficient
screening tool to assist in early detection, treat-
ment and institution of supports. Yet, much of the
work to date has focused on analyzing spoken lan-
guage collected during formal assessment, usually
with standardized exam tools.

There has been comparatively little work done
on analyzing written language spontaneously gen-
erated by people with dementia. In coming years,
there will be an increased number of tech-savvy
seniors using the internet, and popular online com-
mentators will continue to age. There will there-
fore be a growing dataset available in the form of
tweets, blog posts, and comments on social media,
on which to train a classifier. Provided our writers
have a verified clinical diagnosis of dementia, such
a dataset would be large, inexpensive to acquire,
easy to process, and require no manual transcrip-
tions.

There are downsides to using written language
samples as well. Unlike spoken language, writ-
ten text can be edited or revised by oneself or
others. People with dementia may have “good
days” and “bad days,” and may write only on days
when they are feeling lucid, and therefore written
samples may be biased towards more intact lan-
guage. Furthermore, we do not have an accompa-
nying audio file and patients are not constrained
to a single topic; people with dementia may have
greater facility discussing familiar topics. A non-
standardized dataset will also prevent the collec-
tion of common test-specific linguistic or acous-
tic features. However, working with a very large
dataset may be able to mitigate the effects of these
limitations.

In this work we gather a corpus of blog posts
publicly available online, some by people with de-
mentia and others by the loved ones of people with
dementia. We extract a variety of linguistic fea-
tures from the texts, and compare multiple ma-
chine learning methods for detecting posts written
by people with dementia. All models perform well
above the baseline, demonstrating the feasibility
of this detection task.
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2 Related Work

Early signs of dementia can be detected through
analysis of writing samples (Le et al., 2011; Ri-
ley et al., 2005; Kemper et al., 2001). In the “Nun
Study” researchers analyzed autobiographies writ-
ten in the US by members of the School Sisters
of Notre Dame between 1931-1996. Those nuns
who met criteria for dementia had lower grammat-
ical complexity scores and lower “idea density” in
their autobiographies.
Le et al. (2011) performed a longitudinal analysis
of the writing styles of three novelists: Iris Mur-
doch who died with Alzheimer’s disease (AD),
Agatha Christie (suspected AD), and P.D. James
(normal brain aging). Measurements of syntactic
and lexical complexity were made from 51 nov-
els spanning each of the author careers. Murdoch
and Christie exhibited evidence of linguistic de-
cline in later works, such as vocabulary loss, in-
creased repetition, and a deficit of noun tokens (Le
et al., 2011).
Despite evidence that linguistic markers predic-
tive of dementia can be found in writing samples,
there have been no attempts to train models to
classify dementia based on writing alone. Previ-
ous work has been successful in training models
using transcribed utterances from patients under-
going formal examinations, but this data is diffi-
cult to acquire and many models use audio and/or
test-specific features which would not be available
from online text (Rentoumi et al., 2014; Orimaye
et al., 2014; Fraser et al., 2014; Roark et al., 2011).
State-of-the-art classification accuracy of 81.92%
was achieved by Fraser et al. (2015) with logis-
tic regression using acoustic, textual, and test-
specific features on 473 samples from Demen-
tiaBank dataset, an American cohort of 204 per-
sons with dementia and 102 controls describing
the “Cookie Theft Picture”, a component of the
Boston Diagnostic Aphasia Examination (Becker
et al., 1994; Giles et al., 1996). More recently,
these results have been extended via domain adap-
tation by Masrani et al. (Masrani et al., 2017).

Our methods are similar to Fraser et al. (2015),
with the main difference being the dataset used
and their inclusion of audio and test-specific fea-
tures, which are not available in our case. To the
best of our knowledge, ours is the first compari-
son of models trained exclusively on unstructured
written samples from persons with dementia.

3 Experimental Design

In this section, we describe the novel blog corpus
and experimental setup.

3.1 Corpus
We scraped the text of 2805 posts from 6 public
blogs as described in Table 1. Three blogs were
written by persons with dementia (First blogger:
male, AD, age unknown. Second blogger: female,
AD, age 61. Third blogger: Male, Dementia with
Lewy Bodies, age 66) and three written by fam-
ily members of persons with dementia to be used
as control (all female, ages unknown). Other de-
mographic information, such as education level,
was unavailable. From each of the three demen-
tia blogs, we manually filtered all texts not writ-
ten by the owner of the blog (e.g. fan letters) or
posts containing more images than text. We were
left with 1654 samples written by persons with de-
mentia and 1151 from healthy controls. The script
to download the corpus is available at https:
//github.com/vadmas/blog_corpus/.

3.2 Classification Features
Following Fraser et al. (2015), we extracted 101
features across six categories from each blog post.
These features are described below.

Parts Of Speech (14) We use the Stanford Tag-
ger (Toutanova et al., 2003) to capture the fre-
quency of various parts of speech tags (nouns,
verbs, adjectives, adverbs, pronouns, determin-
ers, etc). Frequency counts are normalized by the
number of words in the sentence, and we report
the sentence average for a given post. We also
count not-in-dictionary words and word-type ra-
tios (noun to verb, pronoun to noun, etc).

Context Free Grammar (45) Features which
count how often a phrase structure rule occurs in a
sentence, including NP→VP PP, NP→DT NP, etc.
Parse trees come from the Stanford parser (Klein
and Manning, 2003).

Syntactic Complexity (28) Features which
measure the complexity of an utterance through
metrics such as the depth of the parse tree, mean
length of word, sentences, T-Units and clauses and
clauses per sentence. We used the L2 Syntactic
Complexity Analyzer (Lu, 2010).

Psycholingustic (5) Psycholinguistic features
are linguistic properties of words that effect word

233



URL Posts Mean words Start Date Diagnosis
https://creatingmemories.blogspot.ca/ 618 242.22 (s=169.42) Dec 2003 AD
http://living-with-alzhiemers.blogspot.ca/ 344 263.03 (s=140.28) Sept 2006 AD
http://parkblog-silverfox.blogspot.ca/ 692 393.21 (s=181.54) May 2009 Lewy Body
http://journeywithdementia.blogspot.ca/ 201 803.91 (s=548.34) Mar 2012 Control
http://earlyonset.blogspot.ca/ 452 615.11 (s=206.72) Jan 2008 Control
http://helpparentsagewell.blogspot.ca/ 498 227.12 (s=209.17) Sept 2009 Control

Table 1: Blog Information.

processing and learnability (Salsbury et al., 2011).
We used five psycholinguisic features: Familiar-
ity, Concreteness, Imageability, Age of acquisi-
tion, and the SUBTL , which is a measure of the
frequency with which a word is used in daily
life (Kuperman et al., 2012; Brysbaert and New,
2009a; Salsbury et al., 2011). Psycholinguis-
tic word scores are derived from human ratings1

while the SUBTL frequency norm2 is based on
50 million words from television and film subti-
tles (Brysbaert and New, 2009b).

Vocabulary Richness (4) We calculated four
metrics which capture the range of vocabulary in
a text: type-token ratio, Brunet’s index, a length
insensitive version of the type-token ratio, Hon-
ore’s statistic, and the moving-average type-token
ratio (MATTR) (Asp and De Villiers, 2010; Cov-
ington and McFall, 2010). These metrics have
been shown to be effective in previous AD re-
search (Bucks et al., 2000; Fraser et al., 2015)

Repetitiveness (5) We represent sentences as
TF-IDF vectors and compute the cosine similarity
between sentences. We then report the proportion
of sentence pairs below three similarity thresholds
(0, 0.3, 0.5) as well as the min and average cosine
distance across all pairs of sentences.

3.3 Training and Testing

We perform a 9-fold cross validation by training
each model on all the posts of four blogs and test-
ing on the remaining two, where we assure that
each test set contains the posts of one control blog
and one dementia blog. Within each fold we per-
form a feature selection step before training where
we select for inclusion into the model the first k
features which have the highest absolute correla-
tion with the labels in the training fold.

1http://websites.psychology.uwa.edu.
au/school/MRCDatabase/uwa_mrc.htm

2http://subtlexus.lexique.org/

4 Results

For each machine learning model, we calculate the
ROC curve and the area under the curve (AUC),
comparing with a random performance baseline
AUC of 0.5. The AUC results are shown in Fig-
ure 1, with all models well above the baseline of
0.5. The best performing models are logistic re-
gression and neural networks, with average AUC
scores of 0.815 and 0.848, respectively.

The SUBTL measure of vocabulary richness
was the feature most correlated with the outcome
variable in eight out of nine folds. Figure 2 shows
the SUBTL scores for each blog post in the cor-
pus, arranged by blog and with the bloggers with
dementia shown in the top row. A lower score in-
dicates a richer vocabulary. We can see that the
bloggers with dementia have a less rich vocabu-
lary. Interestingly, however, the longitudinal trend
does not show their vocabularies worsening during
the time-period captured in this corpus. The analy-
sis of other features highly informative for the tar-
get prediction is ongoing, and additional findings
will be discussed at the workshop.

5 Conclusion

We have shown that it is possible to distinguish
bloggers with dementia from those without, on a
novel corpus of blog data. We extracted linguis-
tic features from the texts and compared a large
number of machine learning methods, all of which
performed well above the baseline. While feature
analysis is ongoing, we have made some interest-
ing observations about the effect of the SUBTL
measure of vocabulary richness. Future work will
include liaising with patient and caregiver support
groups to expand this new dementia corpus, in-
clusion of a topic clustering preprocessing step to
control for variation across content, and further
longitudinal analysis.
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Figure 1: Comparison of models. We show the mean AUC and 90% confidence intervals across a 9-fold
CV. All the posts of a blog appear in either the training or test set, but not both.

Figure 2: SUBTL word scores for each post in a given blog. Bloggers with dementia (AD or Dementia
w/ Lewy Bodies) appear in the top row.
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Abstract

Literature in Molecular Biology is abun-
dant with linguistic metaphors. There have
been works in the past that attempt to
draw parallels between linguistics and bi-
ology, driven by the fundamental premise
that proteins have a language of their own.
Since word detection is crucial to the de-
cipherment of any unknown language, we
attempt to establish a problem mapping
from natural language text to protein se-
quences at the level of words. Towards this
end, we explore the use of an unsupervised
text segmentation algorithm to the task of
extracting ”biological words” from pro-
tein sequences. In particular, we demon-
strate the effectiveness of using domain
knowledge to complement data driven ap-
proaches in the text segmentation task, as
well as in its biological counterpart. We
also propose a novel extrinsic evaluation
measure for protein words through protein
family classification.

1 Introduction

Research works in the field of Protein Linguistics
(Searls, 2002) are largely based on the underlying
hypothesis that proteins have a language of their
own. However, modeling of protein molecules us-
ing linguistic approaches is yet to be explored in
depth. This might be due to the structural com-
plexities inherent to protein molecules. Instead of
resorting to purely wet lab experiments, we pro-
pose to make use of the abundant data available
in the form of protein sequences together with
knowledge from domain experts to model the pro-
tein language. From a linguistic point of view,
the first step in deciphering an unknown language

will be to identify the independent lexical units or
words of the language. This motivates our current
attempt to establish a problem mapping from nat-
ural language text to protein sequences at the level
of words. Towards this end, we explore the use
of an unsupervised word segmentation algorithm
to the task of extracting ”biological words” from
protein sequences.

Many unsupervised word segmentation algo-
rithms use compression based techniques ((Chen,
2013), (Hewlett and Cohen, 2011), (Zhikov et al.,
2010), (Argamon et al., 2004), (Kityz and Wilksz,
1999)) and are largely centred around the princi-
ple of Minimum Description Length (MDL). We
use the MDL based segmentation algorithm de-
scribed in (Kityz and Wilksz, 1999) which makes
use of the repeating subsequences present within
text corpus to compress it. It is found that the seg-
ments generated by this algorithm exhibit close re-
semblances to words of English language. There
are also other non-compression based unsuper-
vised word segmentation and morphology induc-
tion algorithms in literature ((Mochihashi et al.,
2009), (Hammarström and Borin, 2011), (Sori-
cut and Och, 2015)). However, in this context of
protein sequence analysis, we have chosen to use
MDL based unsupervised segmentation because it
resembles closely the first natural attempt of a lin-
guist in identifying words of an unknown language
i.e. looking for repeating subsequences as candi-
dates for words.

As we do not have access to ground-truth
knowledge about protein words, we propose to
use a novel extrinsic evaluation measure based on
protein family classification. SCOPe is an ex-
tended database of SCOP hierarchy (Murzin et al.,
1995) which classifies protein domains based on
the structural and sequence similarities. We have
proposed a MDL based classifier for the task of
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automatic SCOPe prediction. The performance of
this classifier is used as an extrinsic measure of the
quality of protein segments.

Finally, the MDL based word segmentation
used in (Kityz and Wilksz, 1999) is purely data
driven and does not have access to any domain-
specific knowledge source. We propose that con-
straints based on domain knowledge can be prof-
itably used to improve the performance of segmen-
tation algorithms. In English, we use constraints
based on pronounceability rules to improve word
segmentation. In protein segmentation, we use
knowledge of SCOPe Class labels (Fox et al.,
2014) to impose constraints. In both cases, con-
straints based on domain knowledge are seen to
improve the segmentation quality.

To summarize, the main contributions of our
work are the following :

1. We attempt to establish a mapping from pro-
tein sequences to language at the level of
words which is a vital step in the linguistic
approach to protein language decoding. To-
wards this end, we explore the use of an un-
supervised text segmentation algorithm to the
task of extracting ”biological words” from
protein sequences.

2. We propose a novel extrinsic evaluation mea-
sure for protein words via protein family clas-
sification.

3. We demonstrate the effectiveness of us-
ing domain knowledge to complement data
driven approaches in the text segmentation
task, as well as in its biological counterpart.

2 Related Work

Protein Linguistics (Searls, 2002) is the study of
applying linguistic approaches to understand the
structure and function of protein molecules. Re-
search in the field of Protein Linguistics is largely
based on the underlying assumption that proteins
have a language of their own. David Searls draws
many analogies between Linguistics and Molecu-
lar Biology to show how a linguistic metaphor can
be seen interwoven into many problems of Molec-
ular Biology. The fundamental analogy is that the
20 amino acids of proteins and 4 nucleotides of
genes are analogous to the 26 letters in English al-
phabet.

Literature is abundant with parallels between
language and biology (Bralley, 1996; Searls,

2002; Atkinson and Gray, 2005; Gimona, 2006;
Tendulkar and Chakraborti, 2013). There are strik-
ing similarities between the structure of a protein
molecule and a sentence in a Natural Language
text some of which have been highlighted in Fig-
ure 1.

Gimona (2006) presents an excellent discus-
sion on linguistics-based protein annotation and
raises the interesting question of whether compo-
sitional semantics could improve our understand-
ing of protein organization and functional plastic-
ity. Tendulkar and Chakraborti (2013) also have
drawn many parallels between biology and lin-
guistics.

The wide gap between available primary se-
quences and their three dimensional structures
leads to the thought that the current protein struc-
ture prediction methods might struggle due to lack
of understanding of the folding code from protein
sequence. If biological sequences are analogous
to strings generated from a specific but unknown
language, then it will be useful to find the rules of
the unknown language. And, word identification
is fundamental to the task of learning rules of an
unknown language.

Motomura et. al ((2012),(2013)) use a fre-
quency based linguistic approach to protein de-
coding and design. They call the short consequent
sequences (SCS) present in protein sequences as
words and use availability scores to assess the bi-
ological usage bias of SCS. Our approach of using
MDL for segmentation is interesting in that it does
not require prior fixing of word length as in (Mo-
tomura et al., 2012), (Motomura et al., 2013).

3 Word Segmentation

Word is defined as a single distinct conceptual
unit of language, comprising inflected and vari-
ant forms1. In English, though space acts as a
good approximation for word delimiter, proper
nouns like New York or phrases like once in a blue
moon make sense only when taken as a single unit.
Therefore, space is not a good choice for delimit-
ing atomic units of meaning.

Imagine a corpus of English text with spaces
and other delimiters removed. Now, word seg-
mentation is the problem of dividing a continu-
ous piece of text into meaningful units. For exam-
ple, imagine a piece of text in English with delim-
iters removed such as ’BIRDONTHETREE’. The contin-

1https://en.oxforddictionaries.com/definition/word
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Figure 1: Structural levels in a Protein Molecule [Image source : (Wikipedia, 2017)] vs. Natural Lan-
guage Sentence

uous text can be segmented into four meaningful
units as ’BIRD’,’ON’,’THE’,’TREE’. Analogously, we de-
fine protein segmentation as the problem of divid-
ing the amino acid sequence of a protein molecule
into biologically meaningful segments. For exam-
ple, the toy protein sequence ’MATGQKLMRAIRVFEFGG-

PEVLKLQSDVVVPVPQSHQ’ can consist of three segments
’MATGQKLMRAIR’, ’VFEFGGPEV’, ’LKLQSDVVVPVPQSHQ’. For
our work, we assume that the word segmentation
algorithm does not have knowledge about English
lexicon. The significance of this assumption can
be understood in the context of protein segmenta-
tion. Since the ground truth about words in protein
language is not known, we consider the problem of
protein segmentation to be analogous to unsuper-
vised word segmentation in English.

We begin this section by explaining why MDL
can be a good model selection principle for learn-
ing words followed by description of the algorithm
used and results obtained on Brown corpus.

3.1 MDL for Segmentation
According to the principle of Minimum Descrip-
tion Length (MDL),

Data compression→ Learning

Any regularity present in data can be used to
compress the data which can also be seen as learn-
ing of a model underlying the data (Grünwald,
2005). In an unsegmented text corpus, the rep-
etition of words creates statistical regularities.
Therefore, the key idea behind using MDL for
word segmentation is that we can learn word-like
segments by compressing the text corpus.

Description Length (DL) of a corpus X is de-
fined as the number of bits needed to encode it us-
ing Shannon Fano coding [ (Shannon, 2001),(Ki-
tyz and Wilksz, 1999)] and is expressed as given
below.

DL(X) = −
∑
xεV

c(x) log
c(x)
|X| (1)

where, V is the language vocabulary, c(x) is the
frequency of word x in the given corpus and |X|
is total number of words in X .

As an unsupervised learning algorithm does not
have access to language lexicon, the initial DL
of the corpus is calculated by using the language
alphabet as its vocabulary. When the algorithm
learns word-like segments, we can expect the DL
of corpus to get reduced. According to MDL, the
segmentation model that best minimizes the com-
bined description length of data + model (i.e. cor-
pus+ vocabulary) is the best approximation of the
underlying word segmentation.

An exponential number of candidate segmenta-
tions is possible for a piece of unsegmented text.
For example, some candidate segmentations for
the text ’BIRDONTHETREE’ are given below.

’B’,’IRDONTHETREE’

’BI’,’RD’,’ONTHET’,’R’,’E’,’E’

’B’,’I’,’R’,’D’,’ONTHET’,’REE’

’BIR’,’D’,’ONT’,’HE’,’TREE’

’BIRDON’,’THE’,’TREE’

’BIRD’,’ON’,’THETREE’
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(Kityz and Wilksz, 1999) define a goodness
measure called Description Length Gain (DLG)
to quantify the compression effect produced by a
candidate segmentation. DLG of a candidate seg-
mentation is equal to the sum of DLGs of indi-
vidual segments within it. DLG of a segment s
is defined as the reduction in description length
achieved by retaining this segment as a single lex-
ical unit while aDLG stands for the average de-
scription length gain as given below.

DLG(s) = DL(X)−DL(X[r → s]⊕ s)

aDLG(s) =
DLG(s)

c(s)

where, X[r → s] represents the new corpus ob-
tained by replacing all occurrences of the segment
s by a single token r, c(s) is the frequency of the
segment s in corpus and ⊕ represents the con-
catenation of two strings with a delimiter in be-
tween. This is necessary because MDL minimizes
the combined DL of corpus and vocabulary. (Ki-
tyz and Wilksz, 1999) uses Viterbi algorithm to
find the optimal segmentation of a corpus. Time
complexity of the algorithm is O(mn) where n
is the length of the corpus and m is the maximal
word length.

3.2 Imposing Language Constraints
MDL based algorithm as described in (Kityz
and Wilksz, 1999) performs uninformed search
through the space of word segmentations. We
propose to improve the performance of unsuper-
vised algorithm by introducing constraints based
on domain knowledge. These constraints help to
improve the word-like quality of the MDL seg-
ments. For example, in English domain, we have
used the following language constraints, mainly
inspired by the fact that legal English words are
pronounceable.

1. Every legal English word has at least one
vowel in it

2. There cannot be three consecutive conso-
nants in the word beginning except when the
first consonant is ’s’

3. Some word beginnings are impossible. For
example, ’db’, ’km’, ’lp’, ’mp’, ’ns’, ’ms’,
’td’, ’kd’, ’md’, ’ld’, ’bd’, ’cd’, ’fd’, ’gd’,
’hd’, ’jd’, ’nd’, ’pd’, ’qd’, ’rd’, ’sd’, ’vd’,
’wd’, ’xd’, ’yd’, ’zd’

4. Bigrams having high probability of occur-
rence at word boundaries are obtained apriori
from a knowledge base to facilitate splitting
of long segments

3.3 MDL Segmentation of Brown Corpus
The goal of our experiments is twofold. First, we
apply an MDL based algorithm to identify word
boundaries. Second, we use constraints based on
domain knowledge to further constrain the search
space and thereby improving the quality of seg-
ments.

The following is a sample input text from
Brown corpus (Francis and Kucera, 1979) used in
our experiment.

implementationofgeorgiasautomobiletitlelaw
wasalsorecommendedbytheoutgoingjury
iturgedthatthenextlegislatureprovideenab
lingfundsandresettheeffectivedatesothata
norderlyimplementationofthelawmaybeeffect

The output segmentation obtained after apply-
ing MDL algorithm is given below. It can be seen
that the segments identified by the MDL algorithm
are close to the actual words of English language.

implementationof georgias automo-
bile title l a w wasalso recom-
mend edbythe outgoing jury i tur
g edthat thenext legislature pro-
vide enabling funds andre s et
theeffective d ate sothat anorderly
implementationof thelaw maybe ef-
fect ed

The segments generated by MDL are improved
by applying the language constraints listed in pre-
vious section. Sample output is shown below.
We can observe the effect of constraints on seg-
ments, for example, [l][a][w] is merged into [law]
; [d][ate] is merged into [date].

implementationof georgias automo-
bile title law wasalso recommend
edbythe outgoing jury i tur ged
that thenext legislature provide en-
abling funds andre set theeffective
date sothat anorderly implementa-
tionof thelaw maybe effect ed

Segmentation results are evaluated by averaging
the precision and recall over multiple random sam-
ples of Brown Corpus. A segment is declared as
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Algorithm Precision Recall
MDL (Kityz and
Wilksz, 1999)

79.24 34.36

MDL + Constraints 82.57 41.06

Table 1: Boundary Detection by MDL Segmenta-
tion

Algorithm Precision Recall
MDL(Kityz and
Wilksz, 1999)

39.81 17.26

MDL + Constraints 52.94 26.36

Table 2: Word Detection by MDL Segmentation

a correct word only if both the starting and ending
boundaries are identified correctly by the segmen-
tation algorithm. Word precision and word recall
are defined as follows.

Word Precision =
No. of correct segments

Total no. of segments

Word Recall =
No. of correct segments

Total no. of words in corpus

Boundary precision and boundary recall are de-
fined as follows.

Boundary Precision =
# correct segment boundaries

# segment boundaries

Boundary Recall =
# correct segment boundaries

# word boundaries

The performance of our learning algorithm av-
eraged over 10 samples of size 10,000 characters
(from random indices in Brown corpus) is shown
in Tables 1 and 2. The reported results are in line
with our proposed hypothesis that domain con-
straints help in improving the performance of un-
supervised MDL segmentation.

4 Protein Segmentation

In this section, we discuss our experiments in pro-
tein domain. Choice of protein corpus is very
critical to the success of MDL based segmenta-
tion. If we look at the problem of corpus selection
from a language perspective, we know that simi-
lar documents will share more words in common
than dissimilar documents. Hence, we have cho-
sen our corpus from databases of protein families
like SCOPe and PROSITE. We believe that protein
sequences performing similar functions will have
similar words.

4.1 Qualitative Analysis

The objective of our experiments on PROSITE
database (Sigrist et al., 2012) is to qualitatively
analyse the protein segments. It can be observed
that within a protein family, some regions of the
protein sequences have been better conserved than
others during evolution. These conserved regions
are found to be important for realizing the protein
function and/or for the maintenance of its three di-
mensional structure. As part of our study, we ex-
amined if the MDL segments are able to capture
the conserved residues represented by PROSITE
patterns.

MDL segmentation algorithm was applied to 15
randomly chosen PROSITE families containing
varying number of protein sequences. 2 Within a
PROSITE family, some sequences get compressed
more than others. An interesting observation is
that the less compressed sequences are those that
have evolved over time and hence have low se-
quence similarity with other members of the pro-
tein family. But, they have the conserved residues
intact and MDL segmentation algorithm is able to
capture those conserved residues.

For example, consider the PROSITE pattern 3

for Amidase enzyme (PS00571) G-[GAV]-S-[GS](2)-G-

x-[GSAE]-[GSAVYCT]-x-[LIVMT]- [GSA]-x(6)-[GSAT]-x- [GA]-x-[DE]-x-

[GA]-x-S- [LIVM]-R-x-P-[GSACTL] . The symbol ’x’ in a
PROSITE pattern is used for a position where any
amino acid is accepted. ’x(6)’ stands for a chain
of five amino acids of any type. For patterns with
long chains of x, MDL algorithm captures the con-
served regions as a series of adjacent segments.
For example, in the protein sequence with UniPro-
tKB id O00519, the conserved residues and MDL
segments are shown in Figure 2.

As another example, consider the family
PS00319 with pattern G-[VT]-[EK]-[FY]-V-C-C-P . This
PROSITE pattern is short and does not contain any
’x’. In such cases, the conserved residues can get
captured accurately by MDL segments. The pro-
tein sequence with UniProtKB id P14599 has less
sequence similarity but its conserved residues GVE-

FVCCP are captured exactly in a single MDL seg-
ment. We also studied the distribution of segment
lengths among the PROSITE families. A single
corpus was created combining the sequences from

2The output segments are available at
https://1drv.ms/f/s!AnQHeUjduCq0ae9rWhuoybZoA-U

3A PROSITE pattern like [AC]-x-V-x(4)-AV is to be
translated as: [Ala or Cys]-any-Val-any-any-any-any-Ala-Val
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Figure 2: Conserved residues and MDL segments
of a protein sequence (UniProtKB id O00519) in
PROSITE family PS00571

Figure 3: Distribution of MDL segment lengths
among PROSITE families PS00319, PS00460,
PS00488, PS00806 and PS00818

5 randomly chosen PROSITE families and the dis-
tribution of segment lengths is shown in Figure 3.
Protein segments that were common among the
families were typically four or five amino acids
in length. However, within each individual family
there were longer segments unique to that family.
Very long segments (length >15) are formed when
the corpus contains many sequences with high se-
quence similarities.

4.2 Quantitative Analysis

Unlike in English language, we do not have access
to ground truth about words in proteins. Hence, we
propose to use a novel extrinsic evaluation mea-
sure based on protein family classification. We
describe a compression based classifier that uses
the MDL segments (envisaged as words in pro-
teins) for SCOPe predictions.The performance of
the MDL based classifier on SCOPe predictions is
used as an extrinsic evaluation measure of protein
segments.

4.2.1 MDL based Classifier
Suppose we want to classify a protein sequence
p into one of k protein families, the MDL based
classifier is given by,

family (p) = argmax
family

DLG(p, family1...k) (2)

where DLG(p,familyi) is the measure of the com-
pression effect produced by protein sequence p in
the protein corpus of familyi. We hypothesize that
a protein sequence will be compressed more by
the protein family it belongs to, because of the
presence of similar words among the same family
members.

Experimental Setup The dataset used for pro-
tein classification is ASTRAL Compendium
(Chandonia et al., 2004). It contains protein
domain sequences for domains classified by the
SCOPe hierarchy. ASTRAL 95 subset based on
SCOPe v2.05 is used as training corpus and the
test set is created by accumulating the protein do-
main sequences that were newly added in SCOPe
v2.06. Performance of the MDL classifier is dis-
cussed in four SCOPe levels - Class, Fold, Su-
perfamily and Family. At all levels, we consider
only the protein domains belonging to four SCOPe
classes A,B,C and D representing All Alpha, All
Beta, Alpha+Beta, Alpha/Beta respectively. The
blind test set contains a total of 4821 protein do-
main sequences.

SCOPe classification poses the problem of class
imbalance due to the non-uniform distribution of
domains among different classes at all SCOPe lev-
els. Due to this problem, we use macro precision
and macro recall (Yang, 1999) as performance
measures and are given by the below equations.

Precisionmacro =
1
q

q∑
i=1

TPi
TPi + FPi

(3)

Recallmacro =
1
q

q∑
i=1

TPi
TPi + FNi

(4)

4.2.2 Performance of MDL Classifier
Class Prediction Out of 4821 domain se-
quences in the test data, the MDL classifier ab-
stains from prediction for 71 sequences due to
multiple classes giving the same measure of com-
pression. The MDL Classifier achieves a macro
precision of 75.64% and macro recall of 69.63%
in Class prediction.
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SCOPe level Macro
Average
Precision

Macro
Average
Recall

Class 75.64 69.63
Fold 60.59 45.08

Super family 56.65 43.73
Family 43.25 37.7

Table 3: Performance of MDL Classifier in
SCOPe Prediction

SCOPe level Weighted
Average
Precision

Weighted
Average
Recall

Class 76.38 69.77
Fold 81.49 49.25

Super family 72.80 48.23
Family 45.02 35.85

Table 4: Performance of MDL Classifier in
SCOPe Prediction - Weighted Measures

Fold Prediction SCOPe v2.05 contains a total
of 1208 folds out of which 991 folds belong to
classes A,B,C and D. The distribution of protein
sequences among the folds is non-uniform ranging
from 1 to 2254 sequences with 250 folds contain-
ing only one sequence. MDL Classifier achieves
a macro precision of 60.59% and macro recall of
45.08% in fold classification.

Impact of Corpus Size The number of pro-
tein domains per class decreases greatly down the
SCOPe hierarchy. The folds (or families, super-
families) that have very few sequences should have
less contribution in the overall prediction accu-
racy. We weighted the macro measures based
on the number of instances which resulted in the
weighted averages reported in Table 4. The MDL
classifier achieves a weighted macro precision of
81.49% in SCOPe fold prediction which is higher
than the precision at any other level. This obser-
vation highlights the quality of protein segments
generated by MDL algorithm. It is also important
to note that fold prediction is an important sub task
of protein structure prediction just as how word
detection is crucial to understanding the meaning
of a sentence.

4.3 MDL Classifier as a Filter
The folds which are closer to each other in the
SCOPe hierarchy tend to compress protein se-
quences almost equally. Instead of returning a

Figure 4: Variation of Filter Utility with Filter Size
k

single fold giving maximum compression, if the
MDL classifier returns the top-k candidates, then
we can reduce the search space for manual or high
cost inspections. We define utility of the MDL
classifier when used as a filter as given below.

Utility = No. of predictions where correct fold is in top-k list
Total no. of predictions

Figure 4 shows the k versus utility on test data. It
can be seen from the graph that at k=400 (which is
approximately 33% of the total number of folds),
top-k predictions are able to give 93% utility. In
other words, in 93% of the test sequences, MDL
filter can be used to achieve nearly 67% reduction
in the search space of 1208 folds.

4.4 Impact of Constraints based on Domain
Knowledge

Similar to experiments in English domain, the
MDL algorithm on protein dataset can also be
enhanced by including constraints from protein
domain knowledge. For example, in a protein
molecule, hydrophobic amino acids are likely
to be found in the interior, whereas hydrophilic
amino acids are more likely to be in contact with
the aqueous environment. This information can be
used to introduce checks on allowable amino acids
at the beginning and end of protein segments.
Unlike in English, identifying constraints based
on protein domain knowledge is difficult because
there are no lexicon or protein language rules read-
ily available. Domain expertise is needed for get-
ting explicit constraints.

As proof of concept, we use the SCOPe class
labels of protein sequences as domain knowledge
and study its impact on the utility of the MDL fil-
ter. After introducing class knowledge, MDL filter
achieves an utility of 93% at k=100, i.e., in 93%
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Figure 5: Variation of Filter Utility with Filter Size
k after adding constraints based on SCOPe Class
labels

of the test sequences, MDL filter can be used to
achieve nearly 90% reduction in the search space
of 1208 folds. In the absence of class knowledge,
the same filter utility was obtained at k=400 which
is only 67% reduction of search space (Figure 5).
Through this experiment, we emphasize that ap-
propriate domain knowledge can help in improv-
ing the quality of word segmentation in protein se-
quences. Such domain knowledge could be im-
posed in the form of constraints during unsuper-
vised learning of protein words. We would like to
emphasize the fact that introducing domain knowl-
edge in the form of class labels as in supervised or
semi-supervised learning frameworks may not be
appropriate in protein sequences due to our current
ignorance of the true protein words.

5 Discussion

In the words of Jones and Pevzner (Jones and
Pevzner, 2004), ”It stands to reason that if a
word occurs considerably more frequently than
expected, then it is more likely to be some sort of
’signal’ and it is crucially important to figure out
the biological meaning of the signal”. In this pa-
per, we have proposed protein segments obtained
from MDL segmentation as the signals to be de-
coded.

As part of our future work, we would like to
study the performance of SCS words (Motomura
et al., 2012), (Motomura et al., 2013) in protein
family classification and compare it against MDL
words; We would also like to measure the avail-
ability scores of MDL segments. It may also be in-
sightful to study the co-occurrence matrix of MDL
segments.

6 Conclusion

Given the abundance of unlabelled data, data
driven approaches have witnessed significant suc-
cess over the last decade in several tasks in vi-
sion, language and speech. Inspired by the corre-
spondence between biological and linguistic tasks
at various levels of abstraction as revealed by the
study of Protein Linguistics, it is only natural that
there would be a propensity to extend such ap-
proaches to several tasks in Computational Biol-
ogy. A linguist already knows a lot about language
however, and a biologist knows lot about biology;
so, it does make sense to incorporate what they al-
ready know to constrain the hypothesis space of a
machine learner, rather than make the learner re-
discover what the experts already know. The latter
option is not only demanding in terms of data and
computational resources, it may need us to solve
riddles we just do not have answers to. Classifying
a piece of text as humorous or otherwise is hard at
the state of the art; there are far too many inter-
actions between variables than we can model, not
only do the words interact between them, they also
interact with the mental model of the person read-
ing the joke. It stretches our wildest imaginations
to think of a purely bottom up Deep Learner that
is deprived of common-sense and world knowl-
edge to learn such end-to-end mappings reliably
by looking at data alone. The same is true in
biological domains where non-linear interactions
between a large number of functional units make
macro-properties ”emerge” out of interactions be-
tween individual functional units. We feel that a
realistic route is one where top down (knowledge
driven) approaches complement bottom up (data
driven) approaches effectively. This paper would
have served a modest goal if it has aligned itself to-
wards demonstrating such a possibility within the
scope of discovering biological words, which is
just one small step in the fascinating quest towards
deciphering the language in which biological se-
quences express themselves.
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Abstract

This paper evaluates the impact of vari-
ous event extraction systems on automatic
pathway curation using the popular mTOR
pathway. We quantify the impact of train-
ing data sets as well as different machine
learning classifiers and show that some
improve the quality of automatically ex-
tracted pathways.

1 Introduction

Biological pathways encode sequences of biolog-
ical reactions, such as phosphorylation, activa-
tion etc, involving various biological species, such
as genes, proteins (Aldridge et al., 2006; Kitano,
2002). Studying and analyzing pathways is cru-
cial to understanding biological systems and for
the development of effective disease treatments
and drugs (Creixell et al., 2015; Khatri et al.,
2012). There have been numerous efforts to re-
construct detailed process-based and disease level
pathway maps such as Parkinson disease map (Fu-
jita et al., 2014), Alzheimers disease Map (Mizuno
et al., 2012), mTOR pathway Map (Caron et al.,
2010), and the TLR pathway map (Oda and Ki-
tano, 2006). Traditionally, these maps are con-
structed and curated by expert pathway curators
who manually read numerous biomedical docu-
ments, comprehend and assimilate the knowledge
in them and construct the pathway.

With increasing number of scientific publica-
tions manual pathway curation is becoming more
and more impossible. Therefore, Automated Path-
way Curation (APC) and semi-automated biolog-
ical knowledge extraction has been an active re-
search area (Ananiadou et al., 2010; Ohta et al.,
2013; Szostak et al., 2015) trying to overcome
the limitations of manual curation using vari-
ous techniques from hand-crafted NLP systems

(Allen et al., 2015) to machine learning techniques
(Björne et al., 2011). Machine-learning NLP sys-
tems, in particular, show good performance in
BioNLP tasks, but they are still performing less
good in automated pathway curation, partly be-
cause there have been few attempts to measure the
performance of NLP systems for APC directly.

Recently, there has been some attempt at rem-
edying the situation and new datasets and eval-
uation measures have been proposed. For in-
stance, Spranger et al. (2016) use the popu-
lar human-generated mTOR pathway map (Caron
et al., 2010; Efeyan and Sabatini, 2010; Katiyar
et al., 2009) and quantify the performance of a par-
ticular APC system and its ability to recreate the
complete pathway automatically. Results reported
were mixed.

One of the key components in such APC sys-
tems is identification of triggers, events and their
relationships. These machine learning-based sys-
tems are essentially just supervised classification
components.

This paper explores whether we can improve
results of automated pathway curation for mTOR
pathway by using different training datasets and
learning algorithms. We show that the choice of
event extraction classifiers increases F-score by up
to 20% compared to state-of-the-art system. Our
results also show that within limits the choice of
training data has significantly less impact on re-
sults than the choice of classifier. Our results
also suggest that additional research is necessary
to solve the problem of APC.

2 Automatic Pathway Curation

We constructed an automatic pathway curation
system that take as input scientific articles in PDF
format and transforms them into SBML encoded,
annotated pathway maps. The pipeline has multi-
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ple steps.

1. PDFs are translated into pure text files using
the cermine1 tool.

2. Preprocessing provides tokenization, POS
tagging, dependency and syntax parsing.

3. An event extraction system extracts the men-
tions of entities (genes, proteins etc), reac-
tions (e.g. phosphorylation) and their argu-
ments (theme, cause, product).

4. A converter constructs pathways from the in-
formation provided by the event extraction
system.

5. An annotation system maps extracted entities
and events to Entrez gene identifiers and SBO
terms.

The following sections detail steps 3 to 5.

2.1 Event Extraction

We used the TURKU Event Extraction System
(TEES) for event extraction (Björne et al., 2010).
This system is one of the most successful BioNLP
systems. It has not only won 1st place in BioNLP
competitions but was also the only one NLP sys-
tem that participated in all BioNLP-ST 2013 tasks
(Björne et al., 2012). The system combines var-
ious NLP techniques to extract information from
text. TEES workflow consists of four steps:

1. Trigger Detection - detection of named enti-
ties and event triggers in a given sentence to
construct nodes of the event graph.

2. Edge detection - construction of complex
events linking few triggers to create event
graph. Output produced during this step is
often a directed, typed edge connecting two
entity nodes.

3. Unmerging - event nodes from merged event
graph are duplicated in order to separate ar-
guments into valid combinations. This step
is needed for evaluation of final results in
BioNLP Shared Task standard.

4. Modifiers detection - final component that
defines additional attributes for events such
as speculation and negation modifiers.

By default TEES trains a different instance of
multiclass Support Vector Machines (SVM) for
each step. Recent versions of TEES (Björne and

1http://cermine.ceon.pl/index.html

Salakoski, 2015) allow to easily exchange the
SVM classifiers with other supervised classifica-
tion algorithms. For example, all scikit-learn mul-
ticlass, supervised learning algorithms that sup-
port sparse feature matrices can be applied (Pe-
dregosa et al., 2011). Thanks to this it is possi-
ble to test different algorithms for event extraction
task and automatic pathway extraction. For this
paper, we exchanges classifiers in all steps 1-4s
as described in Section 3. The output of TEES is
a standoff formatted representation of entities and
events.

2.2 Conversion Standoff to SBML pathways

In principle events and entities extracted by TEES
correspond to biological species and reactions.
We translate the NLP representation into SBML
– the standard, XML-based markup language
for representing biological models (Hucka et al.,
2003). SBML essentially encodes models us-
ing biological players called sbml:species2.
sbml:species can participate in interac-
tions, called sbml:reaction. Species par-
ticipate in interaction as sbml:reactant,
sbml:product and sbml:modifier. The
basic idea being that some quantity of reactant is
consumed to produce a product. Reactions are
influenced by modifiers. The mapping algorithm
is adopted from and described in more detail in
Spranger et al. (2015).

2.3 SBO/GO, Entrez Gene Annotations

The SBML encoded, automatically extracted path-
way is further annotated using Systems Biology
Ontology (SBO) (Le Novère, 2006) and Gene On-
tology (GO) terms. SBO also provides a class hi-
erarchy for reaction types. For instance, the NLP
system identify phosphorylation reactions, which
are a subclass of conversion reactions. All reac-
tions in the data are automatically annotated with
SBO/GO term (coverage 100%) using an annota-
tion scheme detailed in (Spranger et al., 2015).

Species (e.g. proteins, genes) were annotated
using the gene/protein named entity recognition
and normalization software GNAT (Hakenberg
et al., 2011) - a publicly available gene/protein
normalization tool. GNAT returns a set of En-
trez Gene identifiers (Maglott et al., 2005) for each
input string. Species were annotated using all
returned Entrez Gene identifiers for a particular

2We refer to SBML vocabulary using the prefix “sbml”.
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species (organism human). We call the set of En-
trez Gene identifiers returned by GNAT for each
species Entrez Gene signature.

3 Classifiers for Event Extraction

In this paper we evaluate classifiers for event ex-
traction (Section 2.1) and their impact on the over-
all performance of the automatic pathway extrac-
tion system. We compare the following classifiers:

• Support Vector Machines (SVM) is the de-
fault TEES classifier (Joachims, 1999). It
was optimized for linear classification and its
performance scales linearly with the number
of training examples.

• Decision Tree (DT) creates a model that can
predict the target value by learning simple de-
cision rules inferred from the training data.
Compared to the other techniques they are
relatively fast, cost of using tree is logarith-
mic in the number of examples. We use Gini
impurity criterion to evaluate quality of the
split.

• Random Forest (RF) classifiers fit a number
of ensembled decision tree classifiers, each
built from a bootstrap sample of a training
set. The best split of node is chosen only from
a random subset of the features, not all fea-
tures. Final classifiers are combined by av-
eraging their probabilistic prediction. Single
tree have a higher bias but, due to averaging
variance of the random forest as a whole de-
creases.

• Multinomial Naive Bayes (MNNB) This is
an implementation of the naive Bayes algo-
rithm for multinomial data which is one of
the classic variants used in classification of
discrete features (e.g. text classification).
Additive smoothing parameter was set to 1.

• Multi-layer Perceptron (MLP) MLP is a
feedforward neural network model. We use
hidden layer with 100 neurons and rectified
linear unit activation function. We optimize
for logarithmic loss using stochastic gradient
descent. Learning rate is constant and equal
to 0.001.

For DT, RF, MNNB and MLP we use imple-
mentations from scikit-learn Python library (Pe-
dregosa et al., 2011).

Item ANN GE11 PC13
Documents 60 908 260
Words 11960 205729 53811
Entities 1921 11625 7855
Events 1284 10310 5992
Modifiers 71 1382 317
Renaming 101 571 455

Table 1: Corpora statistics
Reaction type ANN GE11 PC13
Acetylation 0 0 38
Activation 0 0 359
Binding 211 988 606
Catalysis 87 0 0
Conversion 0 0 124
Deacetylation 0 0 1
Degradation 0 0 49
Demethylation 0 0 4
Dephosphorylation 14 0 22
Deubiquitination 0 0 3
Dissociation 55 0 54
Gene expression 46 2265 384
Hydroxylation 0 0 1
Inactivation 0 0 76
Localization 27 281 96
Methylation 0 0 7
Negative regulation 194 1309 801
Pathway 0 0 443
Phosphorylation 252 192 406
Positive regulation 235 3385 1506
Protein catabolism 18 110 0
Regulation 132 1113 707
Transcription 8 667 74
Translation 1 0 11
Transport 0 0 189
Ubiquitination 4 0 31

Table 2: Reaction types annotated for training data
sets.

4 Datasets

4.1 Training Datasets

In order to quantify the impact of training data, we
test the following three training sets.

• ANN - consists of 60 abstracts of scien-
tific papers from Pubmed database related to
the mTORpathway map. This dataset was
human-annotated for NLP system training
(Ohta et al., 2011, Corpus annotations (c)
GENIA Project) .
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• GE11 consists of 908 abstracts and full texts
of scientific papers used in BioNLP ST 2011
GENIA Event Extraction task as training data
(Kim et al., 2012).

• PC13 consists of 260 abstracts of scientific
papers used in BioNLP ST 2013 Pathway
Curation task as training data (Ohta et al.,
2013). The task goal was to evaluate the ap-
plicability of event extraction systems to sup-
port the automatic curation and evaluation of
biomolecular pathway models.

The overall corpora statistics are summarized in
Table 1. GE11 and PC13 have the largest number
of annotated events. ANN is much smaller in com-
parison. Also, the distribution of event types dif-
fers between data sets (Table 2). GE11 uses more
general terms (Binding, Regulation) compared to
PC13 where some specific events appear only a
few times (Deacetylation, Hydroxylation, Methy-
lation).

We train classifiers on four combinations of
the three training datasets: 1) standalone GE11;
2) GE11+ANN - combined GE11 and ANN; 3)
combined GE11+PC13+ANN - GE11, PC13 and
ANN; 4) PC13+ANN - combined PC13 and ANN.
For instance, DT+GE11 refers to a decision tree
classifier trained on GE11.

We use GE11-Devel BioNLP ST2011 dataset
for hyperparameter optimization of all classifiers.

4.2 Test Data
Performance of classifiers is tested on the mTOR
pathway map (Caron et al., 2010). The map was
constructed by expert human curators using 522
full text papers from the PubMed database. The
experts curated a single large map using CellDe-
signer (Funahashi et al., 2008) - a software for
modeling and executing mechanistic models of
pathways. CellDesigner represents information
using a heavily customized XML-based SBML
format (Hucka et al., 2003).

Target Human expert data We translate the
curator map into standard SBML and further en-
rich the information using SBO/GO and Entrez
Gene annotations. For SBO/GO, we use existing
annotations provided by curators and extend them
by automatic annotations deduced from reactants
and products of reactions. For example, if a phos-
phoryl group is added in a reaction, it is annotated
using the SBO term for phosphorylation. Each re-
action may be annotated with multiple SBO/GO

terms. Also we annotate the curated map with En-
trez gene identifiers (similar to the automatic ex-
traction data). We call this pathway TARGET.

Testing classifiers The 522 full text papers –
used by human curators for the construction of the
mTOR pathway – are used for evaluating the dif-
ferent text mining classifiers. For this, we plug
in (trained) classifiers into the automatic pathway
extraction pipeline which performs preprocessing,
event extraction, conversion to SBML and anno-
tation (see also Section 2). The output of this is
an annotated SBML file that is subsequently com-
pared to human-curated SBML-encoded pathway
data.

5 Evaluation

Evaluation of the classifiers (and the system as
a whole) is performed by comparing the auto-
matically extracted pathway with the hand-curated
pathway. Spranger et al. (2016) propose a num-
ber of graph overlap algorithms for quantifying the
difference and similarity of two pathways. Here
we employ the same measures. The following
summarizes the strategies.

Species In order to decide whether species in
two pathways are the same, we use the name of
the identifiers and their Entrez gene signatures.

nmeq: Two species are equal if their names are
exactly equal. We remove certain prefixes
from the names (e.g. phosphorylated).

appeq: Two species are equal if their names
are approximately equal. Two names are
approximately equal iff their Levenshtein-
based string distance is above 90 (Leven-
shtein, 1966)

enteq: Two species are equal if their entrez gene
identifiers are exactly equal. This basically
translates to the two species bqbiol:is identi-
fier sets being exactly the same (order does
not matter).

entov: Two species are equal if their entrez gene
identifiers sets overlap. This basically trans-
lates to the two species bqbiol:is identifier
sets overlapping.

wc: Human curated data contains complex
species that contain other species as con-
stituents (species that consist of various pro-
teins etc). wc allows species to match with
constituents of complexes.

Reaction match based on their SBO/GO anno-
tations
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sboeq: Two reactions are equal iff their signa-
tures are exactly the same. That is, the whole
set of SBO/GO terms of one reaction is the
same as of the other reaction.

sboov: Two reactions are equal, iff their signa-
tures overlap. That is, the intersection of the
set of SBO/GO terms of one reaction is with
the set of SBO/GO terms of the other reaction
is not empty.

sobisa: Two reactions are equal, iff there is at
least one SBO/GO term in each signature that
relate in a is a relationship in the SBO re-
action type hierarchy. For instance, if there
is a phosphorylation reaction and a conver-
sion reaction, then sboisa will match because
phosphorylation is a subclass of conversion
according to the SBO type hierarchy.

Edges only match if their labels are strictly
equal. So if an edge is a reactant, then it has to
be a reactant in the other pathway. Same holds for
products and modifiers.

Subgraph matching strategies are combina-
tions of matching strategies for species, reactions
(and for edges which is always the same). For in-
stance, the matching strategy nmeq, sboeq is the
most strict and requires that species names are ex-
actly equal and that SBO/GO signatures of reac-
tions are exactly equal. The matching strategy
appeq/enteq/wc, sboisa is the most loose strategy.
In this strategy, two species match if their names
are approximately equal or if their Entrez gene
identifiers overlap or if any of this applies to one of
the constituents of the two species. Two reactions
match if any of their SBO/GO terms are in a is a
relationship. We compare a total of 24 matching
strategies.

Subgraph overlap is computed as follows.
For each subgraph in the extracted pathway we
search for subgraphs in the human curated data
that match according to some subgraph matching
strategy. We use micro-averaged F-score, preci-
sion and recall (Sokolova and Lapalme, 2009) for
quantifying the retrieval results. F-score is used
to quantify the overlap of species, reactions and
edges. We then macro-average these results to get
a total F-score quantifying performance of the ex-
traction system as a whole.

6 Results

Some classifiers take long to train, so we only have
partial results for MLP. However, all other classi-

fiers (DT, MNNB, RF, SVM) finished training on
all selected combinations of training data sets.

Since we tested 24 subgraph overlap measures
with 18 classifiers, we receive a lot of data that
cannot be discussed in detail in this paper. Here,
we concentrate on general trends in the data. Code
and datasets are published as appropriate3.

6.1 Extraction Results: Species, Reactions,
Subgraphs

Generally speaking the extracted pathways con-
tain two order of magnitudes more species reac-
tions, and edges than the TARGET pathway (see
Table 3 for all results). This is normal since the
extracted pathways consist of all combinations of
entity and event mentions in text. The same enti-
ties may occur more often in the text then they are
referenced in the actual pathway.

Our results show that extraction classifiers per-
form inconsistent with respect to the identification
of compartments. While some classifiers retrieve
a lot of compartment information (via localization
events), others (especially MNNB trained on ANN
and PC13 datasets) do not extract any compart-
ments. MNNB with our parameter choice might
not be able to learn many different event types so
it skips least frequent reaction types (one of which
is localization event).

Measuring how many subgraphs there are per
pathway, we can see that more than half of all
species extracted by classifiers are isolated and not
connected to any reactions. Similarly we see many
(small) subgraphs being extracted by the classi-
fiers, whereas TARGET consists of essentially one
large connected graph (with a few modeling mis-
takes).

6.2 General Trends Subgraphs overlap
Let us first concentrate on overall performance
especially with respect to previous results. For
this we compute the best classifiers and their
score for different matching strategies. For each
matching strategy, we evaluate all classifiers and
then choose the best performing one and com-
pare it with the results reported in Spranger et al.
(2016)/Spr16. Table 4 shows that the best classi-
fiers outperform Spr16 in all cases and for some
subgraph overlap measures by 10 points.

If we analyze the classifiers from this paper in
more detail, results (Figure 1, Table 5) show that

3https://github.com/sbnlp/
2017BioNLPEvaluation/
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DT+GE11 282361 92899 201 195531 89001 91895 14635 118162 187871
DT+GE11+ANN 284187 95096 188 212490 100529 93886 18075 115427 184542
DT+GE11+PC13+ANN 289504 94496 208 207447 94044 93559 19844 118281 188013
DT+PC13+ANN 279647 82977 20 188325 86802 82469 19054 123309 184698
MLP+GE11+ANN 278510 88502 230 193150 88655 87636 16859 114541 182456
MNNB+GE11 264413 69744 202 137828 61448 69250 7130 139402 198972
MNNB+GE11+ANN 245680 45690 0 86771 40102 45676 993 166712 206606
MNNB+GE11+PC13+ANN 269008 68926 0 142712 70292 68894 3526 151495 203903
MNNB+PC13+ANN 287314 76932 0 183029 94693 76925 11411 154210 199844
RF+GE11 227613 29573 9 50444 20786 29133 525 178233 206874
RF+GE11+ANN 261414 67974 347 130556 57195 67271 6090 136180 199157
RF+GE11+PC13+ANN 203314 32075 1 58083 25312 31704 1067 146342 177371
RF+PC13+ANN 236220 37018 0 68559 30493 36909 1157 168927 204771
SVM+GE11 288421 98938 451 200595 89769 97791 13035 109060 191175
SVM+GE11+ANN 262327 81207 388 169841 73033 80203 16605 109862 177023
SVM+GE11+PC13+ANN 275303 85435 312 179661 77587 84549 17525 114941 184481
SVM+PC13+ANN 275256 82119 59 177651 79239 81512 16900 120729 186122
TARGET 2242 777 7 2457 1044 892 521 15 4

Table 3: General statistics of all datasets. Number of extracted species, reactions and compartments.
Total number of edges and of product, reactant and modifier edges. The table also shows the number of
isolated species and the number of unconnected subgraphs for each pathway. The human curated mTOR
pathway TARGET numbers are shown in the last row.

this Spr16
f-score f-score

nmeq, sboeq 11.7 7.6
nmeq, sboov 15.3 11.4
nmeq, sboisa 18.1 13.6
appeq, sboeq 12.5 8.1
appeq, sboov 16.3 12.0
appeq, sboisa 19.4 14.5
appeq/enteq, sboeq 16.9 11.9
appeq/enteq, sboov 21.7 17.1
appeq/enteq, sboisa 26.0 20.4
appeq/entov, sboeq 36.2 26.9
appeq/entov, sboov 41.9 34.7
appeq/entov, sboisa 48.6 39.5
nmeq/wc, sboeq 23.3 15.0
nmeq/wc, sboov 26.0 19.6
nmeq/wc, sboisa 29.1 22.0
appeq/wc, sboeq 24.6 15.7
appeq/wc, sboov 27.4 20.4
appeq/wc, sboisa 30.9 23.1
appeq/enteq/wc, sboeq 39.7 29.1
appeq/enteq/wc, sboov 45.3 37.2
appeq/enteq/wc, sboisa 52.0 42.2
appeq/entov/wc, sboeq 39.7 29.1
appeq/entov/wc, sboov 45.3 37.2
appeq/entov/wc, sboisa 52.0 42.2

Table 4: This table compares macro F-score per-
formance of the classifiers discussed in this paper
with results reported in Spranger et al. (2016)

for the strictest matching strategy (nmeq, sboeq)
the best classifiers reach a macro F-score of 12

Figure 1: Best performing classifier f-score, pre-
cision and recall for each subgraph overlap func-
tions. The x-axis are the different subgraph over-
lap function. The y-axis shows precision, recall,
f-score of the highest classifier for each subgraph
overlap function. Notice that these can be differ-
ent classifiers for each subgraph overlap function
(see Table 5 for all results).

(with 14 precision, 13 recall scores). For the loos-
est strategy (appeq/entov/wc, sboisa) this goes up
to F-score 52 (47 precision, 66 recall). These re-
sults show that when it comes to exact extraction
the classifiers fail badly, whereas with more looser
overlap strategies, performance becomes reason-
able and there is some overlap between the ex-
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tracted and the human-curated data. Of course,
this also entails that the automatically extracted
pathway does not completely capture what hu-
mans are constructing from the text.

Generally speaking overlap strategies that are
loose with respect to constituents of complex
species (wc) outperform their non wc counterparts.
For instance, nmeq/wc, sboeq performs much bet-
ter than nmeq, sboeq. This shows that complex
species are important for the mTOR pathway but
their extraction is not very detailed - which is why
the overlap matching strategy has to be lenient
with respect to complex species constituents. The
increase in F-score for wc matching strategies is
primarily driven by an increase in recall score. For
instance, the difference between nmeq, sboeq and
nmeq/wc, sboeq is more than 20 points, whereas
precision does not improve that much. The rea-
sons for that is that the same subgraphs in the ex-
tracted pathway overlap with more subgraphs in
TARGET. So it is not the case that other subgraphs
in the extracted pathway overlap with TARGET.

Results also show that recall is in general much
higher than precision for looser strategies. For
instance, wc strategies (right hand side of Figure
1) double the recall score w.r.t to their precision
scores. This also shows that in principle loosen-
ing matching strategies impacts mostly recall as
the same subgraphs in the extracted data overlap
with the human curated data.

6.3 Classifier Performance in Detail

The bottom figure in Figure 2 shows the best clas-
sifiers in terms of precision, recall and F-score. We
measured how often a classifier is the best classi-
fier (for each of the 24 subgraph overlap strate-
gies). It is clear that overall Random Forest classi-
fier (RF) performance is the best. For all 24 match-
ing strategies it is a Random Forest classifier that
is better than any other competitor with RF trained
on PC13 and ANN being the most frequent best
classifier overall. Second place is Random For-
est trained simply on GE11 (the largest dataset in
terms of entities and events). No other classifiers
(SVM, MLP, MNNB, DT) outperform RF. Train-
ing on all datasets (RF+GE11+PC13+ANN) does
not seem to increase success significantly. Perfor-
mance across different RF classifiers is on par and
good (see Table 5)

Results in the top figure of Figure 2 show
that RF has the best precision performance.

Figure 2: Histogram of best classifiers. This his-
togram is generated by counting how often a clas-
sifier is the best for a particular subgraph matching
strategy.

RF+PC13+ANN is the most frequent best
classifier w.r.t precision. RF+GE11 and
RF+GE11+PC13+ANN also performing compa-
rably. Compared to recall this means that RF wins
F-score because they are best in precision.

No RF classifier performs best in recall. Results
show that MLP, DT and SVM all perform well for
certain subgraph overlap strategies with SVM be-
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Figure 3: Statistics of classifier performance
across all matching strategies. X-axis - classifiers.
Y-axis - macro precision top, macro recall middle
and macro f-score bottom (with 100 being perfect
score).

ing most often the best classifier, followed by var-
ious DT-based classifiers and MLP.

Figure 3 gives results for all classifiers across
all matching strategies. Looser strategies give the
max and strict matching strategies the min data
points. We can see that performance is primar-
ily driven by the choice of classifier as the F-score
mostly varies with the type of classifier used (even
though there are a few outliers). Situation is a bit
more varied for precision and recall. Interestingly
choice of dataset seems to have less impact. Gen-
erally speaking MNNB are the least successful.
RF clearly dominate precision on average but are
close enough to DT and SVM on recall.

7 Conclusion

This paper continues the current trend of extend-
ing NLP systems for APC and building more com-
plete systems that allow evaluation with respect
to some external standard - here the hand curated
mTOR pathway.

We measured the impact of different classifiers
on retrieval performance and showed that certain
classifiers have the potential to increase retrieval
performance. Especially Random Forest classi-
fiers perform much better on mTOR than previ-
ously tried Support Vector Machines. On the other
hand, the training data choice seems to have lit-
tle impact (at least for the tested ANN, GE11 and
PC13 training datasets).

Spranger et al. (2016) argue that not all of the
problems of APC can be overcome by using more
training data on event extraction systems. They ar-
gue that additions such as complex species recog-
nition, co-reference resolution and pathway con-
struction are needed to ultimately solve the prob-
lem posed by APC. This certainly remains true and
is not directly questioned by results in this paper.
The system described here does not automatically
compose single pathway maps from the extracted
data. Nevertheless, our results suggest that a lot of
progress can be made by improving on the event
extraction part of the pipeline.

This paper focuses on evaluating current ma-
chine learning techniques for event extraction. We
are currently in the process of evaluating other sys-
tems including rule-based ones.
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Abstract

Severe sepsis and septic shock are condi-
tions that affect millions of patients and
have close to 50% mortality rate. Early
identification of at-risk patients signifi-
cantly improves outcomes. Electronic
surveillance tools have been developed
to monitor structured Electronic Medical
Records and automatically recognize early
signs of sepsis. However, many sepsis
risk factors (e.g. symptoms and signs of
infection) are often captured only in free
text clinical notes. In this study, we de-
veloped a method for automatic monitor-
ing of nursing notes for signs and symp-
toms of infection. We utilized a creative
approach to automatically generate an an-
notated dataset. The dataset was used
to create a Machine Learning model that
achieved an F1-score ranging from 79 to
96%.

1 Introduction

Severe sepsis and septic shock are rapidly progres-
sive, life-threatening conditions caused by compli-
cations from an infection. They are major health-
care problems that affect millions of patients glob-
ally each year (Kim and Hong, 2016). The mortal-
ity rate for severe sepsis and septic shock is ap-
proaching 50% (Nguyen et al., 2006).

A key goal in critical care medicine is the early
identification and treatment of infected patients
with early stage sepsis. The most recent guide-
lines for the management of severe sepsis and sep-
tic shock include early recognition and manage-
ment of these conditions as medical emergencies,
immediate administration of resuscitative fluids,
frequent reassessment, and empiric antibiotics as
soon as possible following recognition (Dellinger

et al., 2008).
Early recognition of infections that can lead to

sepsis, severe sepsis and/or septic shock can be
challenging for several reasons: 1) these condi-
tions can quickly develop from any form of com-
mon infections (bacterial, viral or fungal) and can
be localized or generalized; 2) culture-dependent
diagnosis of infection is commonly slow and prior
use of antibiotics may make cultures falsely neg-
ative (Vincent, 2016); 3) systemic inflammatory
response syndrome, traditionally associated with
sepsis, may be the result of other noninfectious
disease processes (Bone et al., 1992). Conse-
quently, clinicians frequently rely on a myriad of
non-specific symptoms of infections and physio-
logical signs of systemic inflammatory response
for rapid diagnosis. Each hour of delay in the
administration of recommended therapy is associ-
ated with a linear increase in the risk of mortality
rate (Kumar et al., 2006; Han et al., 2003), driving
the need for automation of early sepsis recogni-
tion.

In response to this need, electronic surveil-
lance tools have been developed to monitor for the
arrival of new patient electronic medical record
(EMR) data, automatically recognize early signs
of sepsis risk in specific patients, and trigger alerts
to clinicians to help guide timely, effective inter-
ventions (Herasevich et al., 2011; Azzam et al.,
2009; Koenig et al., 2011). The automated deci-
sion logic used in many existing sepsis screening
tools, for example (Nguyen et al., 2014; Hooper
et al., 2012; Nelson et al., 2011), relies on consen-
sus criteria-based rules.

Structured EMR data, such as diagnostic codes,
vital signs and orders for tests, imaging and med-
ications, can be a reliable source of sepsis crite-
ria. However, many sepsis risk factors (e.g. symp-
toms and signs of infection) are routinely captured
solely in free text clinical notes. The aim of this
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study is to develop a system for the detection of
signs and symptoms of infection from free-text
nursing notes. The output of the system is later
used, in conjunction with available structured data,
as an input to an electronic surveillance tool for an
early detection of sepsis.

2 Task Definition and Dataset

Depending on the infection source and the
specifics of the patient history, signs and symp-
toms of infection can vary widely. In addition,
similar symptoms can be stated using a number
of synonymous expressions, complicated by the
presence of abbreviations, variant spellings and
misspellings. Table 1 lists nursing note snippets
indicating a possible presence of infection with
various degrees of certainty. For example, line
items 1, 8, and 12 indicate increased temperature;
line items 1, 3, 6, 7, and 13 indicate the use of
infection-treating antibiotics; line items 4, 7, 9,
11, and 13 mention specific infectious diseases. A
number of examples mention additional infection
symptoms or infection detecting tests.

1 Afebrile on antibiotics.
2 Very large copious amount of secretions,sputum
3 ... medicated with iv cefazolin dose 2 of 3
4 UA positive for UTI.
5 Blood culture pos for gram neg organisms.
6 Elevated WBC count, on clindamycin IV.
7 ... continues on clindamycin(D6), pen-G(D5)

and doxycycline(D4) for LLL pneumonia
8 84 year old male with h/o throat cancer who

presented on [DATE] to [LOCATION] with fever,
diffuse rash, renal failure and altered mental status.

9 Pt had a positive sputum specs for GBS and GPC,
and he has HSV on lips.

10 ... blood, urine and sputum culture sent today ...
11 PEG tube to gravity, episodes of vomitting on day

shift,NPO. Contact precautions MRSA.
12 Pt had temp spike of 102.4
13 Levaquin started for pnuemonia.
14 Had infected knee prosthesis which led to wash out

of joint yesterday.

Table 1: MIMIC-III nursing note snippets indicating a pres-
ence of infection with various degrees of certainty. Abbrevi-
ations and misspellings are preserved to demonstrate the task
challenges.

In the literature of identifying patient phenotype
cohorts using electronic health records, most stud-
ies map textual elements to standard vocabular-
ies, such as the Unified Medical Language Sys-
tem (UMLS) (Shivade et al., 2014). The standard
vocabulary concepts are later used in rule-based,
and, in some cases, Machine Learning (ML) ap-
proaches to identify patient cohorts.

In the context of identifying infection from clin-

ical notes, however, such an approach poses a
number of challenges. Symptoms can vary widely
depending on the source of infection, for example,
redness, sputum, swelling, pus, phlegm, vomiting,
increased white blood cell count, etc. The same
symptom can also be expressed in a large num-
ber of ways, for example, afebrile, temp spike of
102.4, fever, etc. There is a large number of condi-
tions indicating infections, for example UTI, strep
throat, hepatitis, HIV/AIDS, etc. In addition, ab-
breviations and misspellings are quite common in
the context of ICU care, for example, pneumonia,
PNA, pnuemonia, pneu, etc.

Due to their nature, the dataset and task are bet-
ter suited for ML approaches that are not relying
on standard vocabularies or a structured set of fea-
tures. As with most ML tasks in the clinical do-
main, the challenge in this approach is obtaining a
sufficient amount of training data (Chapman et al.,
2011).

To address these challenges, we utilized the
MIMIC-III dataset (Johnson et al., 2016) and de-
veloped a creative solution to automatically gener-
ate training data as described in section 3. MIMIC
(Medical Information Mart for Intensive Care) is
a large, freely-available database comprising dei-
dentified health-related data associated with over
40,000 patients who stayed in critical care units
of the Beth Israel Deaconess Medical Center be-
tween 2001 and 2012. The dataset contains over
2 million free-text clinical notes. We focused only
on nursing notes for adult patients, and our dataset
consists of a total of 634,369 nursing notes.

3 Rule-based Training Dataset Creation

To obtain a sizable training dataset we explored
the use of available MIMIC-III structured data,
such as test orders and results, prescribed medi-
cations, and diagnosis codes. However, this ap-
proach did not translate to accurately identifying
nursing notes suggesting infection for a number
of reasons1. Instead, we utilized a simple heuris-
tic. We observed that whenever there is an existing
infection or a suspicion of infection, the nursing
notes describe the fact that the patient is taking or
is prescribed infection-treating antibiotics. Thus,
identifying nursing notes describing the use of an-
tibiotics will, in most cases, also identify nursing
notes describing signs and symptoms of infection.

1Challenges include missing or incorrect data, discontin-
uous or disordered EMR data entry timestamps, etc.
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To identify positive mentions of administered
antibiotics, we used a list of the 60 most com-
monly administered infection-treating antibiotics
in the MIMIC dataset (Misquitta, 2013). This ini-
tial list was then extended to include additional
antibiotic names, brands, abbreviations, spelling
variations, and common misspellings. We semi-
automated this laborious task by utilizing word
embeddings (Mikolov et al., 2013). Word em-
beddings were generated utilizing all available
MIMIC-III nursing notes2. The initial set of an-
tibiotics was then extended using the closest word
embeddings in terms of cosine distance. For ex-
ample, the closest words to the antibiotic amox-
icillin are amox, amoxacillin, amoxycillin, ce-
fixime, suprax, amoxcillin, amoxicilin. As shown,
this includes misspellings, abbreviations, similar
drugs and brand names. The extended list was then
manually reviewed. The final infection-treating
antibiotic list consists of 402 unambiguous expres-
sions indicating antibiotics.

Antibiotics, however, are sometimes negated
and are often mentioned in the context of aller-
gies (e.g. allergic to penicillin). To distinguish
between affirmed, negated, and speculated men-
tions of administered antibiotics, we also devel-
oped a set of rules in the form of keyword trig-
gers. Similarly to the NegEx algorithm (Chapman
et al., 2001), we identified phrases that indicate
uncertain or negated mentions of antibiotics that
precede or follow a list of hand-crafted expression
at the sentence and clause levels. Word embed-
dings were again used to extend the list of triggers
with synonyms, spelling variations, abbreviations,
and misspellings. For example, the words allergic,
anaphylaxis, anaphalaxis, allerg, and anaphylax-
sis are all used as triggers indicating the negation
of an antibiotic use. The full list of keywords in-
dicating antibiotics, negation/speculation triggers
and conjunctions is available online3.

The described approach identified 186,158
nursing notes suggesting the unambiguous pres-
ence of infection (29%) and 3,262 notes suggest-
ing possible infection. The remaining 448,211
notes (70%) were considered to comprise our neg-
ative dataset, i.e. not suggesting infection.

2We used vector size 200, window size 7, and continuous
bag-of-words model.

3https://github.com/ema-/antibiotic-dictionary

4 Machine Learning Results

We modeled the task as a binary classification
of free-form clinical notes. It has been shown
that Support Vector Machines (Cortes and Vapnik,
1995) achieve superior results in most text clas-
sifications tasks and were selected as a sensible
first choice. The individual nursing notes were
represented as a bag-of-words (1-grams). The to-
kens were all converted to lower case and non-
alphanumeric characters were discarded. Tokens
that are present in more than 60% of all samples or
less than 6 times were also discarded. The tokens
were weighted using the tf-idf scheme (Salton and
McGill, 1986). We trained the model using lin-
ear kernel SVMs4 (Chang and Lin, 2011). We set
the positive class weight to 2 to address the un-
balanced dataset. 70% of the automatically gener-
ated dataset was used for training and the remain-
ing 30% for testing. This resulted in a precision of
93.12 and a recall of 99.04 as shown in Table 2.

Precision Recall F1-score
SVMauto 93.12 99.04 95.99
SVMgold 92.10 68.46 78.53

Table 2: Classification Results. SVMauto=Results from ap-
plying the SVM model on an automatically generated test
set of 190,000 nursing notes; SVMgold=Results from apply-
ing the SVM model on a manually reviewed dataset of 200
nursing notes.

As the training dataset was automatically cre-
ated, the above results do not truly reflect the
model performance. To evaluate the model on
the ground truth, a qualified professional manually
reviewed 200 randomly selected nursing notes.
These results are also shown in Table 2. While the
model precision remained high (92.10), the recall
dropped significantly to 68.46.

The drop in recall can be partially attributed
to the manner in which the testing data was cre-
ated. Nursing notes describing signs of infection
but failing to mention the use of antibiotics were
considered (incorrectly) negative examples. How-
ever, an error analysis revealed that the majority of
the false negatives (contributing to the low recall)
were actually all indicating low level of suspicion
of infection. For example, the human annotator
considered the following snippets sufficient to in-
dicate a possible infection afebrile, bld cx’s sent;
monitor temp, wbc’s, await stool cx results; lungs
coarse, thick yellow secretions suctioned from ett;

4We used the LibSVM library with both the cost and
gamma parameters set to 2 (obtained via grid-search param-
eter estimation).
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awaiting results of CT, malignancy vs pneumonia.
In all cases, the note expresses only a suspicion for
infection, pending further tests.

We further attempted to improve the system per-
formance by utilizing Paragraph Vectors (Le and
Mikolov, 2014). Unsupervised algorithms have
been used to represent variable pieces of texts such
as paragraphs and documents as fixed-length fea-
ture representations (Paragraph Vectors). Stud-
ies have shown that Paragraph Vectors outperform
bag-of-words models on some text classification
tasks. We used the text from all nursing notes
to create Paragraph Vectors. We generated doc-
ument embeddings using a distributed memory
model and distributed bag-of-words model, each
of size 300 with a window size of 7. Combin-
ing the vectors of the distributed memory model
and the distributed bag-of-words model, we rep-
resented each document as a vector of size 600.
The paragraph vectors of the training instances
were then fed to a logistic regression, K-nearest
neighbors, and an SVM classifier. Results signif-
icantly under-performed the SVM bag-of-words
model and we were able to achieve a maximum
precision and recall of 63% and 77% respectively.

5 Related Work

A review of approaches to identifying patient phe-
notype cohorts using EMR data (Shivade et al.,
2014) describes a number of studies using clinical
notes, most often in combination with additional
structured information, such as diagnosis codes.
The study asserts that clinical notes are often the
only source of information from which to infer im-
portant phenotypic characteristics.

Demner-Fushman et al. (2009) note that clinical
events monitoring is one of the most common and
essential tasks of Clinical Decision Support sys-
tems. The task is in many respects similar to the
task of identifying patient phenotype cohorts and
it has been observed that free text clinical notes are
again the best source of information. For example,
Murff et al. (2003) found the electronic discharge
summaries to be an excellent source for detecting
adverse events. They also note that simple key-
words and triggers are not sufficient to detect such
events.

In the context of identifying infection from clin-
ical text, most studies map textual elements to
standard vocabularies, such as UMLS. For exam-
ple, Matheny et al. (2012) develop a system for de-
tecting infectious symptoms from emergency de-

partment and primary care clinical documentation,
utilizing keywords and SNOMED-CT concepts.
Bejan et al. (2012) describe a system for pneu-
monia identification from narrative reports using
n-grams and UMLS concepts. Similarly, Elkin
et al. (2008) encoded radiology reports using
SNOMED-CT concepts and developed a set of
rules to identify pneumonia cases.

Horng et al. (2017) develop an automated trig-
ger for sepsis clinical decision support at emer-
gency department triage. They utilize machine
learning and establish that free text drastically im-
proves the discriminatory ability of identifying
infection (increase in AUC from 0.67 to 0.86).
Arnold et al. (2014) develop an EHR screen-
ing tool to identify sepsis patients. They utilize
NLP applied to clinical documentation, providing
greater clinical context than laboratory and vital
sign screening alone. DeLisle et al. (2010) used
a combination of structured EMR parameters and
text analysis to detect acute respiratory infections.
Murff et al. (2011) develop a natural language
processing search approach to identify postoper-
ative surgical complications within a comprehen-
sive electronic medical record.

Halpern et al. (2014) describe a system for
learning to estimate and predict clinical state vari-
ables without labeled data. Similar to our ap-
proach, they use a combination of domain exper-
tise and vast amounts of unlabeled data, without
requiring labor-intensive manual labeling. In their
system, an expert encodes a certain amount of
domain knowledge (identifying anchor variables)
which is later used to train classifiers. Elkan and
Noto (2008) show that a classifier trained on posi-
tive and unlabeled examples predicts probabilities
that differ by only a constant factor from the true
conditional probabilities of being positive.

6 Discussion

We presented an approach to identifying nursing
notes describing the suspicion or presence of an
infection. We utilized the MIMIC-III dataset and
a creative approach to obtain an ample amount of
annotated data. We then applied ML methods to
the task and achieved performance sufficient for
practical applications. The ultimate goal of this
study is to utilize free-text notes, in combination
with structured EMR data, to build an automated
surveillance system for early detection of patients
at risk of sepsis.
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Abstract

Assigning a standard ICD-9-CM code to
disease symptoms in medical texts is an
important task in the medical domain. Au-
tomating this process could greatly reduce
the costs. However, the effectiveness of an
automatic ICD-9-CM code classifier faces
a serious problem, which can be triggered
by unbalanced training data. Frequent dis-
eases often have more training data, which
helps its classification to perform better
than that of an infrequent disease. How-
ever, a diseases frequency does not nec-
essarily reflect its importance. To resolve
this training data shortage problem, we
propose to strategically draw data from
PubMed to enrich the training data when
there is such need. We validate our method
on the CMC dataset, and the evaluation re-
sults indicate that our method can signifi-
cantly improve the code assignment classi-
fiers’ performance at the macro-averaging
level.

1 Introduction and Background

The rapid computerization of medical content
such as electronic medical records (EMRs), doc-
tors notes and death certificates, drives a crucial
need to apply automatic techniques to better as-
sist medical professionals in creating and manag-
ing medical information. A standard procedure in
hospital is to assign the International Classifica-
tion of Diseases (ICD) codes to diseases appear-
ing in medical texts by professional coders. As a
result, several recent studies have been devoted to
automatically extracting ICD code from medical
texts to help manual coders (Crammer et al., 2007;
Farkas and Szarvas, 2008; Aronson et al., 2007;
Kavuluru et al., 2015, 2013; Zuccon and Nguyen,

Figure 1: An example radiology report with man-
ually labeled ICD-9-CM code from CMC dataset.

2013; Koopman et al., 2015).
In this paper, we focus on ICD-9-CM (the 9th

version ICD, Clinical Modification), although our
work is portable to ICD-10-CM (the 10th version
ICD). The reason to conduct our study on ICD-
9-CM is to compare with the state-of-art methods,
whose evaluations have mostly conducted on ICD-
9-CM code (Aronson et al., 2007; Kavuluru et al.,
2015, 2013; Patrick et al., 2007; Ira et al., 2007;
Zhang, 2008). ICD-9-CM codes are organized hi-
erarchically, and each code corresponds to a tex-
tual description, such as ”786.2, cough”. Multi-
ple codes can be assigned to a medical text, and a
specific ICD-9-CM code is preferred than a more
generic one when both are suitable (Pestian et al.,
2007). Figure 1 shows a code assignment example
where a radiology report is labeled with ”786.2,
cough”.

Existing methods for automatic ICD-9-CM as-
signment have been mostly supervised methods
because of the effectiveness the training; how-
ever, classification performance heavily relies on
the sufficiency of training data (He and Garcia,
2009). To certain degree, micro-average mea-
sures, commonly used to evaluate the classifica-
tion performance of existing algorithms, pays at-
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Figure 2: The distribution of radiology reports for
45 ICD-9-CM codes in the CMC dataset.

tention to the correctness of the code assignment
to each EHR (individual case), which helps to
hide the impact of unbalanced training data. How-
ever, a useful classification system should perform
consistently across all ICD-9-CM codes regard-
less of the popularity of the codes (Jackson and
Moulinier, 2007). This motivated us to examine
the imbalanced training data and its impacts to the
classifier. Specifically, we pay more attention to
macro-average measures, which helps to examine
the consistency across all codes.

Unfortunately, in a real dataset for studying
ICD-9-CM code classification, the data available
for each code is highly imbalanced. For example,
Figure 2 shows the count of available radiology
reports for each of the 45 ICD-9-CM codes in the
CMC dataset (Pestian et al., 2007). Common dis-
eases like ”786.2, cough”, can have 266 reports
as the training data, whereas unpopular disease
”758.6, Gonadal dysgenesis” only has one. Sim-
ilarly, Kavuluru et al. (2015) found that 874 of
1,231 ICD-9-CM code in their UKLarge dataset
have less than 350 supporting data, and only 92
codes have more than 1,430 supporting data. In
another example, Koopman et al. (2015) found
that 85% of the whole death certificate dataset are
related to top 20 common cancers, and only rest
15% is associated with 65 rarer cancers. These
long tail supporting data problems are very com-
mon, which makes data imbalance an noticeable
problem.

Our approach for resolving this problem is to
introduce additional information resources. Fur-
thermore, due to the privacy concern of medical-
related content, this study is particularly interested
in obtaining extra relevant training data from pub-

licly available medical datasets. PubMed1, as a
vast and broad medical literature dataset, covers
a great number of disease related information and
imposes few restrictions on data access. There-
fore, it is a perfect starting point to explore our
approach. The hypothesis is that training data can
be obtained from PubMed articles that talk about a
disease corresponding to a ICD-9-CM code. With
the abundant PubMed articles, we would be able
to alleviate the training data imbalance problem.

There are several contributions in our study.
Firstly, we examine the data imbalance problem
in ICD-9-CM code assignment. Secondly, we pro-
pose and compare several methods to resolve the
data imbalance problem. Thirdly, we give a com-
prehensive discussion on the current classification
challenges. Finally, our method can be adapted
to ICD-10-CM code assignment task with minor
modifications.

The rest of this paper is organized as follows.
In Section 2, we will discuss related research. Our
methods and experiments will appear in Section 3
and 4. Limitations are discussed in Section 5 and
the conclusion is provided in Section 6.

2 Related Work

The existing studies of automating ICD-9 code
assignment can be classified into two groups.
Through examining how professional coders as-
signing ICD codes, the first one used rule-based
approaches. Ira et al. (2007) developed a rule-
based system considering factors such as uncer-
tainty, negation, synonymy, and lexical elements.
Farkas and Szarvas (2008) used Decision Tree
(DT) and Maximum Entropy (ME) to automati-
cally generate a rule-based coding system. Cram-
mer et al. (2007) composed a hybrid system con-
sisting of a machine learning system with natural
language features, a rule-based system based on
the overlap between the reports and code descrip-
tions, and an automatic policy system. Their re-
sults showed better performance than each single
system.

The second group employed supervised ma-
chine learning methods for the assignment task,
and their performance has been being equivalent
or even better than those rule-based systems that
need experts manually crafting knowledge. Aron-
son et al. (2007) used a stacked model to combine
the results of four modules: Support Vector Ma-

1https://www.ncbi.nlm.nih.gov/pubmed/
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chine (SVM), K-Nearest Neighbors (KNN), Pat-
tern Matching (PM) and a hybrid Medical Text
Indexer (MTI) system. Patrick et al. (2007) used
ME and SVM classifiers, enhanced by a feature-
engineering module that explores the best combi-
nation of several types of features. Zhang (2008)
proposed a hierarchical text categorization method
utilizing the ICD-9-CM codes structure. Zuc-
con and Nguyen (2013) conducted a comparison
study on four classifiers (SVM, Adaboost, DT, and
Naive Bayes) and different features on a 5,000
free-text death certificate dataset, and found that
SVM with a stemmed unigram feature performed
the best.

Along with the introduction of supervised meth-
ods, many past studies indicated that data imbal-
ance problem can severely affect the classifier’s
performance. For example, Kavuluru et al. (2015)
found that 874 of 1,231 ICD-9-CM codes in UK-
Large dataset have less than 350 supporting data,
whereas only 92 codes have more than 1,430 sup-
porting data. The former group has macro F1
value of 51.3%, but the latter group only has
16.1%. To resolve data imbalance problem, they
used optimal training set (OTS) selection approach
to sample negative instance subset that provides
best performance on validation set. However, OTS
did not work on UKLarge dataset because sev-
eral codes have so few training examples that even
carefully selecting negative instances could not
help. When Koopman et al. (2015) found that
85% of the whole death certificate dataset is asso-
ciated with only top 20 common cancers, whereas
the other 65 rarer cancers only have the rest 15%
of the dataset, they tried to construct the balanced
training set by randomly sampling a static num-
ber of negative examples for each class. Their re-
sults reflected the benefits of having more train-
ing data in improving the classifiers’ performance.
Since result of original model learned with imbal-
anced data is not provided, we cannot know the ac-
tual improvement. In addition, to deal with codes
that only appear once in the dataset, Patrick et al.
(2007) used a rule-based module to supplement
ME and SVM classifiers.

Consistent to the existing works, our approach
utilizes supervised methods for automatic ICD-9-
CM code assignment, and our focus is on address-
ing the training data imbalance problem. But our
work tries to solve the data imbalance problem by
adding extra positive instances, which is not lim-

ited to the existing training data distribution or ex-
pert’s knowledge. Adding positive instances have
been proven to be effective in supervised machine
learning in other domains(Caruana, 2000; He and
Garcia, 2009), and we are first to find open source
dataset as supplementary data for improving ICD-
9-CM assignment performance.

3 Methods

In this section, we will first introduce the dataset
on which our methods will be evaluated, then we
propose two methods of collecting supplementary
training data from PubMed dataset.

3.1 Dataset

We validate our methods on the official dataset
of the 2007 Computational Medicine Challenge
(CMC dataset), collected by Cincinnati Children’s
Hospital Medical Center (Pestian et al., 2007),
which is frequently used by researchers working
on the ICD-9-CM code assignment task. The
CMC dataset consists of training and testing
dataset, but only training dataset is accessible for
us. Fortunately, most studies publish their system
performance on both training and testing dataset,
and then we can compare our methods with state-
of-art methods. This corpus consists of 978 radi-
ological reports taken from real medical records,
and each report has been manually labeled with
ICD-9-CM codes by professional companies. The
example in Figure 1 comes from this dataset. In
total, there are 45 ICD-9-CM codes appearing in
the CMC dataset, and each report is labeled with
one or more ICD-9-CM codes. This is a very im-
balanced collection, with around half codes having
less than 10 training data (see Figure 2).

3.2 Method I: Retrieving PubMed articles
using ICD-9-CM code official description

Through examining the reports available to us, and
also based on the discussions in previous work
(Farkas and Szarvas, 2008; Ira et al., 2007; Cram-
mer et al., 2007; Farkas and Szarvas, 2008), we
hypothesize that the text description part of ICD-
9-CM code can play important role for code as-
signers to build up the connection between a med-
ical text and a ICD-9 code. Therefore, this mo-
tivated us to view the identifying extra training
data in PubMed for an ICD-9-CM code as a re-
trieval problem where the text description part of
an ICD-9-CM code can act as the query, and the
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whole PubMed dataset as a document collection.
For example, based on ICD-9-CM code ”786.2,
cough”, we can retrieve PubMed articles with a
query ”cough”. Our initial informal testing con-
firmed our hypothesis.

To avoid bring back too much noise, we re-
stricted the PubMed retrieval to only search on
the article title field. Our motivation is that the
title generally introduces the main topic of the
whole paper. For the same reason, we also only
utilized the title and abstract of top returned arti-
cles as the supplementary training data. In case of
empty retrieval result, certain ICD-9-CM descrip-
tion terms that would not appear in PubMed ar-
ticle titles, such as ”other”, ”unspecified”, ”spec-
ified”, ”NOS”, and ”nonspecific”, are removed
from the query. For example, ICD-9-CM code
”599.0”, whose description is ”urinary tract infec-
tion, site not specified”, will generate a cleaned
query ”urinary tract infection”, and ICD-9-CM
code ”596.54”, whose description is ”neurogenic
bladder NOS”, will generate a cleaned query ”neu-
rogenic bladder”.

3.3 Method II: Retrieving PubMed articles
with both official and synonyms
ICD-9-CM code description

Despite great overlap among them, ICD-9-CM
code descriptions and the radiology reports in the
CMC collection are written by different groups of
people with different purposes. Therefore, there
could be term mis-match problems between them.
When this happens, it is actually better to not use
the terms in the ICD-9-CM official description as
the query for finding relevant PubMed articles,
but actually to use the related terms in the CMC
dataset as the query terms instead. This would en-
able the model trained on these returned PubMed
articles can be more effectively classifying CMC
reports. For example, the description ”Anorexia”
of code ”783.0” does not appear in CMC dataset.
Instead, ”loss of appetite” exists in the radiology
reports labeled with ”783.0”, while according to
data in ICD9Data.com, ”loss of appetite” is the
synonym of ”Anorexia”. Therefore, in this case,
it is better to use ”loss of appetite” rather than
”Anorexia” to be the query when search for train-
ing data in PubMed.

ICD9Data.com is an online website, providing
rich and free ICD-9-CM coding information. It
contains code definition, hierarchy structure, ap-

proximate synonyms, etc. We crawled the 45
codes’ synonyms from the website. In method II,
besides the queries from the official description,
we also conducted PubMed searches with queries
based on the synonyms of the descriptions. Each
synonym is an individual PubMed query, and only
when all its terms appear in CMC dataset, the
query is considered. If one ICDcode has n queries
and totally needs m supplementary documents for
training, only top m/n retrieved PubMed articles
from each query are considered.

4 EXPERIMENTS

4.1 Evaluation metrics

Following the past studies (Pestian et al., 2007;
Kavuluru et al., 2015), we evaluate the classifica-
tion performance through a micro F1 score (i.e.,
sum of the individual classification performance
and divided by the individual amount) and a macro
F1 score (i.e., sum of the classifiers performance
and divided by the classifiers amount). We ex-
pect that by alleviating the data imbalance prob-
lem, macro F1 scores can increase significantly.
All experiments in this study have gone through
10-fold cross validation, because it can provide a
reliable result when data is limited (Witten et al.,
2016).

4.2 Pre-process and Features

Following the past studies (Crammer et al., 2007;
Aronson et al., 2007; Kavuluru et al., 2015, 2013;
Koopman et al., 2015; Patrick et al., 2007; Ira
et al., 2007), the CMC dataset is preprocessed with
following steps:

• Full name restoration. Medical abbreviation
restoration is a hard topic, which is not ex-
plored in this study. We manually generate a
list of full names for abbreviations appearing
in CMC dataset 2.

• Word lemmatization. Lemmatization of
words are restored with WordNet 3.0 (Miller,
1995).

• Negation detection and removal. Negex
(Chapman et al., 2001) is used to detect
the negation expression, and negation target
terms are removed after detection.

2https://github.com/daz45/CMC-data-set-
abbreviations/tree/master
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Figure 3: Feature selection on LR and SVM.

• Phrase recognition. MetaMap (Aronson and
Lang, 2010) is utilized to extract the medical
concept phrase appearing in the text, which is
appended to the text.

After preprocessing, the example radiology re-
port in Figure 1 will be ”ten year old with chest
pain x two week. the lung be well expand and
clear. there be. the cardiac and mediastinal silhou-
ette be normal. there be. chest pain”. Supplemen-
tary data collected from PubMed will be prepro-
cessed in the same way.

4.3 Baselines
According to the past studies(Farkas and Szarvas,
2008; Aronson et al., 2007; Kavuluru et al., 2015),
Support Vector Machine (SVM) and Logistic Re-
gression (LR) are the most effective and com-
monly used classification models in this task.
Therefore, we selected them as the two baselines.
Each ICD-9-CM code has one binary classifier
implemented using Scikit-Learn(Pedregosa et al.,
2011). We name these two sets of baselines as
Baseline LR and Baseline SVM.

Features consist of unigrams and bigrams ap-
pearing in preprocessed radiology reports, and the
feature vector values are binary, indicating the ap-
pearance or absence of the word in text.

We performed feature selection on two base-
lines to avoid over-fit and extra computation cost.
χ2 based feature selection was employed for fea-
ture selection (Liu and Setiono, 1995). As shown
in Figure 3, We find that 500 features can provide
stable micro F1 performance and best macro F1
performance for Baseline LR and Baseline SVM.
In all the following experiments, all classifiers are

trained on these 500 selected features.
Our baseline performance were compared with

the state-of-art methods in Table 1. Stacking
is a stacked model combining four classification
models (Aronson et al., 2007). Hybrid rule-
based+MaxEnt is a hybrid system combining rule-
based method with MaxEnt (Aronson et al., 2007).
Although Table 1 shows that their performance is
significantly better than our baselines, for the pur-
pose of studying the methods for addressing im-
balanced training data, we have to use the two
current baselines since these advanced and com-
plicated systems would hide the effects that we
want to observe. In addition, any improvement we
achieve in single classifier can be later integrated
into these systems, which could be an interesting
future work. These methods concentrated on mi-
cro averaging performance, while in this study we
will explore the macro averaging performance.

Method Micro F1
Baseline LR 86.51%
Baseline SVM 87.26%
Stacking 89.00%
Hybrid rule-based+MaxEnt 90.26%

Table 1: Baseline performance and existing best
performed methods from related work.

Figure 4 shows the individual classification per-
formance of 45 classifiers, and we can find an un-
stable performance across 45 classifiers. We use
Macro F1 score as the split line, and we can find
that, for both baseline system, there are 21 classi-
fiers having a below-average performance, and all
of them have relatively less training data than the
classifiers with above-average performance. This
indicates that the data imbalance leads to the per-
formance instability across all classes.

With the Macro F1 score, we separate 45 classi-
fiers into two groups: Group 1 consists of 24 clas-
sifiers, union set of classifiers with below-average
performance in two baselines, and Group 2 con-
sists of rest 21 classifiers with above-average clas-
sification performance. Though Group 1 has 24
classifier, radiological reports labeled with them
only takes 11.56% of 978 reports. To deal with
this data imbalance problem, we will introduce
supplementary training data from PubMed dataset.
Through adding additional data, we expect that
classification performance of the whole system,
especially Group 1, will be improved.
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Figure 4: Individual classification performance of 45 classifiers trained with LR and SVM model in
Baseline.

4.4 Experiment I: retrieving PubMed articles
with ICD code official description

In the first experiment, supplementary data is col-
lected based on ICD-9-CM code official descrip-
tion, as described in method I. The supplement-
ing document size is set to be 10, 20, 40 and
60. Supplementary training data is added to 24
classifiers in Group 1. We name these two new
runs as Group 1 Description LR (G1 desc LR)
and Group 1 Description SVM (G1 desc SVM),
appended with supplementary data size. The re-
sults in Table 2 also show that supplementing 10
documents can generate best performance, and
with more documents added, both macro and mi-
cro F1 will decrease.

Method Micro F1 Macro F1
Baseline LR 86.51% 51.52%
G1 desc LR 10 86.68% 55.78%
G1 desc LR 20 86.07% 55.23%
G1 desc LR 40 85.18% 52.01%
G1 desc LR 60 84.97% 51.40%
Baseline SVM 87.26% 48.03%
G1 desc SVM 10 86.96% 57.09%
G1 desc SVM 20 86.67% 55.43%
G1 desc SVM 40 85.87% 57.61%
G1 desc SVM 60 86.25% 54.77%

Table 2: Enhance classifiers in Group 1 with sup-
plementary data collected with method I, while the
evaluation is performed on all classes.

Through Wilcoxon Signed Ranks test, there is
no significant difference between G1 desc LR 10

and Baseline LR. Nor does G1 desc SVM 10.
Further, we compare both methods against base-
line on Group 1 and Group 2 separately. How-
ever, there is still no significant difference existing.
Take G1 desc SVM 10 for example, from Figure
5, we can see that 11 classes still have F1=0%,
while 5 classes’ performance decrease, and only 8
got F1 improved. It indicates that the method I is
ineffective.

After exploring the results, we find sometimes
the supplementary data does not help training. For
example, for ICD-9-CM code ”783.0 Anorexia”,
the classification performance stays 0%. The
corresponding radiology report doesn’t have term
”Anorexia”, making the supplementary data use-
less. It implies we need to collect PubMed arti-
cles containing same features with the radiology
reports in CMC dataset.

4.5 Experiment II: Retrieving PubMed
articles with ICD code official and
synonyms descriptions

In this second experiment, we collect PubMed
data through the ICD-9-CM code’s both of-
ficial and synonyms description that appears
in CMC dataset. We name these two runs
as Group 1 Synonym LR (G1 syn LR) and
Group 1 Synonym SVM (G1 syn SVM). Due to
the paper size limitation, here we only show the
best results with supplementary document size
being 10 in Table 3.

Through Wilcoxon Signed Ranks test,
G1 syn SVM 10 significantly outperforms
baseline (p − value < 0.01), but has no signifi-
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cant difference compared with G1 desc SVM 10.
However, if only classifiers in Group 1 are consid-
ered, G1 syn SVM 10 significantly outperforms
G1 desc SVM 10 (p − value < 0.01). This
indicates that our propose method II can generate
effective supplementary training data. On the
other hand, G1 syn LR 10 is found to outperform
Baseline LR significantly only on Group 1 classes
(p− value < 0.01).

Method Micro F1 Macro F1
Baseline LR 86.51% 51.52%
G1 desc LR 10 86.68% 55.78%
G1 syn LR 10 86.30% 62.85%‡
All syn LR 10 86.60% 62.19%‡
Baseline SVM 87.26% 48.03%
G1 desc SVM 10 86.96% 57.09%
G1 syn SVM 10 87.22% 67.43%†‡
All syn SVM 10 87.88% 64.54%†‡

Table 3: Experiment results. †means significantly
outperform baseline. ‡means significant outper-
form baseline on Group 1.

It shows that on SVM model, PubMed data
collected with ICD-9-CM code descriptions syn-
onyms works better in solving the data imbalance
problem than with the official descriptions. After
data supplementation, there are still 6 classifiers
with F1 score being 0%, which will be further dis-
cussed in Section 5.

4.6 Experiment III: adding supplementary
training data to all classifiers

In the third experiment, we add supplemen-
tary data to all 45 classifiers to explore whether
adding supplementary data to the classifiers that
originally have sufficient training data still can
gain performance improvement. We name these
two runs as All Synonym LR (All syn LR) and
All Synonym SVM (All syn SVM). Also, only
the best results with supplementary document size
being 10 is shown in Table 3. Through Wilcoxon
Signed Ranks test, All syn SVM 10 significantly
outperforms the baseline, and All syn LR 10 sig-
nificantly outperforms the baseline only on Group
1 (p − value < 0.01), but both have no signifi-
cant difference with G1 syn and G1 desc. These
means that adding supplementary training data is
effective on solving data imbalance problem, but
for the classifiers that originally have sufficient
training data, extra training data seems have no

significant effect.

5 Discussion

Experiment results indicates that our proposed
supplementing training data method can help the
classifiers to reach to a relatively balanced perfor-
mance. Such improvement mainly comes from
changing the word weight ranking so that im-
portant words rank higher. For example, for
code ”758.6 turner syndrome”, in the baseline LR
(F1=0%), top 3 features with highest weights are
”duplicate left, partially, turner syndrome”. But
in G1 syn LR 10 (F1=67%), top 3 features are
”turner, turner syndrome, syndrome”. Supplemen-
tary data trains term in ”turner syndrome” a higher
weight in LR model, explaining this code’s classi-
fication performance increase.

In addition, supplementary data will improve
classification through boosting the weight of the
features. For example, the top features for code
”786.59, Other chest pain” are basically similar
in both baseline LR (F1=0%) and G1 syn LR 10
(F1=40%), including ”tightness, chest tightness,
chest pain”. However, the weight differs a lot. For
baseline LR, weights are all under 1.5, while in
G1 syn LR 10, top 5 features are all above 1.5, in-
dicating the classification model have much higher
confidence on these features.

Finally, supplementary data mainly support
code assignment effectively in Group 1, and we
find that classification performance in Group 2 ba-
sically has no significant difference across all ex-
periments. Meanwhile, 978 reports, dominated
by Group 2 classes, also show no significant dif-
ference across all experiments. Therefore, extra
training data does not improve Group 2’s perfor-
mance, and hence supplementary data is not sug-
gested for classes having sufficient training data.

Besides, our proposed methods can be directly
used in ICD-10-CM classification with little mod-
ification. Just update the PubMed query with the
ICD-10-CM textual descriptions and synonyms.

Though data imbalance problem has been
largely alleviated, there are still a few classifiers
in Group 1 have poor performance. After explor-
ing, we think there are mainly four reasons:

• Word level feature matching limitation. For
example, description of code ”V72.5 Radio-
logical examination” does not appear in the
collection, and it has no synonyms. Radio-
logical examination actually means a variety

269



Figure 5: Individual classification performance of 45 classifiers on Baseline and three experiments.

of imaging techniques, and such word level
feature matching cannot help classification.

• ”History of” ICD-9-CM codes. For codes
”V13.02, Personal history, urinary tract in-
fection” and ”V13.09 Personal history of
other specified urinary system disorders”,
adding supplementary data doesn’t help their
performance. We find their radiology re-
ports are basically classified to ”599.0 urinary
tract infection” and ”593.70 vesicoureteral
reflux”. ”history of” feature is ignored. Extra
training data has no effect on this problem.

• Speculative expression. In prepossessing
procedure, negation terms are removed, but
speculative expressions are kept. It results in
that when doctor is not sure whether a patient
may get a disease, but write it down to re-
ports, classification results will rely on these
speculative terms, and cause false positive.
For example, code ”518.0” has a low F1 score
because in many reports labeled with other
codes, doctors write that the patient may have
disease ”atelectasis”, while ”atelectasis” is a
very important word to recognize ”518.0”.

• Data missing due to expert disagreement. In
CMC dataset, three experts manually assign
codes to 978 radiology reports. Only when
two or more experts agree, code is approved.
However, sometimes the conflict opinions re-

sults in code assignment failure. For exam-
ple, reports 99619963 and 99803917 should
be labeled with ”741.90 Spina bifida”. How-
ever, one expert assigned ”741.90”, another
assigned ”741.9”, and the third expert miss
this code at all. This led to ”741.90 Spina bi-
fida” was not assigned to these two reports.
However, with the supplementary data added
into the training, our method correctly as-
signs ”741.90 Spina bifida” to these two re-
ports, but this assignment was counted as
wrong since the ground truth does not have
this code due to expert disagreements.

6 Conclusion and Future Work

In this study, we studied to address the data im-
balance problem in ICD-9-CM code automatic as-
signment task. Using ICD-9-CM codes synonyms
can accurately search medical texts relevant docu-
ments from PubMed. Collected data, used as sup-
plementary training data, can significantly boost
systems macro averaging performance as the data
imbalance problem is largely alleviated. However,
for the classifiers that originally have sufficient
training data, additional data basically has no sig-
nificant effect. As future work, we will modify
the Context algorithm (Harkema et al., 2009) to
detect the historical mentions and speculative ex-
pressions in the radiology reports. Also, we would
explore the difference of same features extracted
from different field of radiology reports.
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Abstract

In this paper, we present an analysis of
feature extraction methods via dimension-
ality reduction for the task of biomedi-
cal Word Sense Disambiguation (WSD).
We modify the vector representations in
the 2-MRD WSD algorithm, and evalu-
ate four dimensionality reduction meth-
ods: Word Embeddings using Continu-
ous Bag of Words and Skip Gram, Sin-
gular Value Decomposition (SVD), and
Principal Component Analysis (PCA). We
also evaluate the effects of vector size on
the performance of each of these meth-
ods. Results are evaluated on five stan-
dard evaluation datasets (Abbrev.100, Ab-
brev.200, Abbrev.300, NLM-WSD, and
MSH-WSD). We find that vector sizes of
100 are sufficient for all techniques except
SVD, for which a vector size of 1500 is
preferred. We also show that SVD per-
forms on par with Word Embeddings for
all but one dataset.

1 Introduction

Word Sense Disambiguation (WSD) is the
task of automatically identifying the intended
sense (or concept) of an ambiguous word based on
the context in which the word is used. Automati-
cally identifying the intended sense of ambiguous
words improves the performance of clinical and
biomedical applications such as medical coding
and indexing for quality assessment, cohort dis-
covery (Plaza et al., 2011; Preiss and Stevenson,
2015), and other secondary uses of data such as
information retrieval and extraction (Stokoe et al.,
2003), and question answering systems (Ferrández
et al., 2006). These capabilities are becoming es-
sential tasks due to the growing amount of in-

formation available to researchers, the transition
of health care documentation towards electronic
health records, and the push for quality and effi-
ciency in health care.

Previous methods using distributional context
vectors have been shown to perform well for the
task of WSD. One problem with distributional
vectors is the sparseness of the vectors and noise
(defined here as information that does not aid in
the discrimination between word senses). Word
embeddings have become an increasingly popular
method to reduce the dimensionality of vector rep-
resentations, and have been shown to be a valu-
able resource for NLP tasks including WSD (Sab-
bir et al., 2016).

Prior to word embeddings, (Deerwester et al.,
1990) proposed Latent Semantic Indexing (LSI)
which reduces dimensionality using the factor
analysis technique, singular value decomposition
(SVD). When performing SVD, some informa-
tion is lost. Intuitively the lost information is
noise, and its removal causes the similarity and
non-similarity between words to be more dis-
cernible (Pedersen, 2006).

Similar to SVD is principal component analy-
sis (PCA). PCA transforms the vectors into a new
basis of principal components, which are created
by orthogonal linear combinations of the original
features. Each principal component captures as
much variance in the data as possible while main-
taining orthogonality. Dimensionality reduction is
performed by removing principal components that
capture little variance.

In this paper, we evaluate the performance of
word embeddings, SVD, and PCA for dimension-
ality reduction for the task of knowledge-based
WSD. Explicit vectors are trained on Medline ab-
stracts and performance is evaluated on five refer-
ence standards. Specifically, the contributions of
this paper are an analysis of:
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• Vector Representation: SVD, PCA, and word
embeddings using continuous bag of words
(CBOW) and skip-gram are evaluated as di-
mensionality reduction techniques applied to
the task of knowledge-based WSD. Evalua-
tion is performed on several standard evalu-
ation datasets, and compared against explicit
co-occurrence vectors as a baseline.

• Dimensionality: the dimensionality of the re-
duced vectors is a parameter, and the value
can effect performance. We evaluate each
vector representation’s performance at di-
mensionalities of 100, 200, 500, 1000, and
1500.

2 Related Work

Existing biomedical WSD methods can be clas-
sified into three groups: unsupervised (Brody and
Lapata, 2009; Pedersen, 2010), supervised (Zhong
and Ng, 2010; Stevenson et al., 2008), and
knowledge-based methods (Navigli et al., 2011).
Unsupervised methods use the distributional char-
acteristics of an outside corpus and do not rely on
sense information or a knowledge source (Peder-
sen, 2006).

Supervised methods use machine learning al-
gorithms to assign senses to instances contain-
ing the ambiguous word. Although supervised
methods have the best performance, they require
training data for each target word to be disam-
biguated. Whether this is done manually or au-
tomatically, it is infeasible to create such data on a
large scale. Recently, (Sugawara et al., 2015) cre-
ated a supervised system that uses word2vec word
embeddings as input to a support vector machine
classifier. They compare the word vectors gener-
ated by word2vec with the word vectors generated
by SVD, and show that word2vec slightly outper-
forms SVD with vector dimensionality of 300.

Knowledge-based methods do not use manu-
ally or automatically generated training data, but
instead use information from an external knowl-
edge source (e.g. taxonomy). These knowledge-
based methods can be classified into two cate-
gories, graph-based and vector-based approaches.
Here, we focus on vector-based approaches as it
relates to this research.

(Humphrey et al., 2006) introduce a vector-
based method that assigns a sense to a target word
by first identifying its semantic type with the as-
sumption that each possible sense has a distinct

semantic type. In this method, semantic type (st-
) vectors are created for each possible semantic
type. The st-vectors consist of binary values for
each one word term in the United Medical Lan-
guage System (UMLS); a one if that word has a
sense of the semantic type, else a zero. A tar-
get word (tw-) vector is created using the words
surrounding the target word. The cosine of the
angle between the tw-vector and each of the st-
vectors is calculated and the sense whose st-vector
is closest to the tw-vector is assigned to the target
word. The limitation of this method is that two
possible senses may have the same semantic type.
For example, the term cortices can refer to either
the cerebral cortex (C0007776) or the kidney cor-
tex (C0022655), both of which have the same se-
mantic type, “Body Part, Organ, or Organ Compo-
nent”. Analysis of the 2009 Medline data 1 shows
that there are 1,072,902 terms in Medline that ex-
ist in the UMLS of which 35,013 are ambiguous
and 2,979 have two or more senses with the same
semantic type. This indicates that approximately
12% of the ambiguous words cannot be disam-
biguated using the knowledge-based methods dis-
cussed above, and another method is required.

(Jimeno-Yepes et al., 2011) attempt to address
this limitation by introducing two methods, MRD
and 2-MRD. In these methods a sense vector (s-
vector) is created for each possible sense of a tar-
get word using the definition information from the
UMLS. A target word (tw-) vector is created using
the words surrounding the target word. The co-
sine of the angle between the tw-vector and each
of the s-vectors is calculated and the sense whose
s-vector is closest to the tw-vector is assigned to
the target word. The MRD method uses the words
within the definition weighted based on their oc-
currence statistics across definitions in the UMLS.
The 2-MRD method (discussed more fully in Sec-
tion 3) uses second-order context vectors to repre-
sent the concept’s definition.

(Pakhomov et al., 2016) and (Tulkens et al.,
2016) explore using the 2-MRD method in con-
junction with word embeddings, and evaluate their
performance with varying training corpora. Their
results are promising, however evaluation is lim-
ited to a single dataset (MSH-WSD), vector size is
not varied, and they do not compare performance
with different word2vec models.

1http://mbr.nlm.nih.gov/index.shtml
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3 Method

We modify the vector representations of the 2-
MRD WSD algorithm using four different vec-
tor representations: SVD, PCA, and word embed-
dings using continuous bag of words (CBOW) and
skip-gram. Explicit vectors are word-by-word co-
occurrence vectors, and are used as a baseline. The
disadvantage of explicit vectors is that the word-
by-word co-occurrence matrix is sparse and sub-
ject to noise introduced by features that do not dis-
tinguish between the different senses of a word.
The goal of the dimensionality reduction tech-
niques is to generate vector representations that re-
duce this type of noise. Each method is described
in detail here.

3.1 2-MRD Algorithm

In this section we describe the 2-MRD WSD algo-
rithm at a high level: a vector is created for each
possible sense of an ambiguous word, and the am-
biguous word itself. The appropriate sense is then
determined by computing the cosine similarity be-
tween the vector representing the ambiguous word
and each of the vectors representing the possible
senses. The sense whose vector has the smallest
angle between it and the vector of the ambiguous
word is chosen as the most likely sense.

To create a vector for a possible sense, we
first obtain a textual description of sense from
the UMLS, which we refer to as the extended
definition. Each sense, from our evaluation set,
was mapped to a concept in the UMLS, there-
fore, we use the sense’s definition plus the def-
inition of its parent/children and narrow/broader
relations and associated synonymous terms. Af-
ter the extended definition is obtained, we create
the second-order vector by first creating a word
by word co-occurrence matrix in which the rows
represent the content words in the extended defi-
nition, and the columns represent words that co-
occur in Medline abstracts with the words in the
definition. Each word in the extended definition
is replaced by its corresponding vector, as given
in the co-occurrence matrix. The centroid of these
vectors constitutes the second order co-occurrence
vector that is used to represent the sense.

The second-order co-occurrence vector for the
ambiguous word is created in a similar fashion,
only rather than using words in the extended defi-
nition, we use the words surrounding the word in
the instance. Second-order co-occurrence vectors

were first described by (Schütze, 1998) and ex-
tended by (Purandare and Pedersen, 2004) and
(Patwardhan and Pedersen, 2006) for the task of
word sense discrimination. Later, (McInnes et al.,
2011; Jimeno-Yepes et al., 2011) adapted these
vectors for the task of disambiguation rather than
discrimination.

3.2 Singular Value Decomposition
Singular Value Decomposition (SVD), used in La-
tent Semantic Indexing, is a factor analysis tech-
nique to decompose a matrix, M into a product of
three simpler matrices, such that M = U ·Σ · V T .
The matrices U and V are orthonormal and Σ is a
diagonal matrix of eigenvalues in decreasing or-
der. Limiting the eigenvalues to d, we can re-
duce the dimensionality of our matrix to Md =
Ud · Σd · V T

d . The columns of Ud correspond to
the eigenvectors of Md. Typically this decomposi-
tion is achieved without any loss of information.
Here though, SVD reduces a word-by-word co-
occurrence matrix from thousands of dimensions
to hundreds, and therefore the original matrix can-
not be perfectly reconstructed from the three de-
composed matrices. The intuition is that any infor-
mation lost is noise, the removal of which causes
the similarity and non-similarity between words to
be more discernible (Pedersen, 2006).

3.3 Principal Component Analysis
Principal Component Analysis (PCA) is similar to
SVD, and is commonly used for dimensionality
reduction. The goal of PCA is to map data to a new
basis of orthogonal principal components. These
principal components are linear combinations of
the original features, and are ordered by their vari-
ance. Therefore, the first principal components
capture the most variance in the data. Under the
assumption that the dimensions with the most vari-
ance are the most discriminative, dimensions with
low variance (the last principal components) can
safely be removed with little information loss.

PCA may be performed in a variety of ways,
however the implementation we chose makes the
parallels between PCA and SVD clear. First the
co-occurrence matrix, M is centered to produce
the matrix C. Centering consists of subtracting
the mean of each column from values in that col-
umn. PCA is sensitive to scale, and this pre-
vents the variance of features with higher absolute
counts from dominating. Mathematically, this al-
lows us to compute the principal components us-
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ing SVD on C. This is because CTC is propor-
tional to the covariance matrix of M , and is used
in the calculation of SVD. Applying SVD to C,
such that C = U · Σ · V T , the principal compo-
nents are obtained by the product of U and Σ (e.g.
MPCA = U · Σ). For dimensionality reduction
all but the first d columns of MPCA are removed.
This captures as much variation in the data with
the fewest possible dimensions.

3.4 Word embeddings

The word embeddings method, proposed by
(Mikolov et al., 2013), is a neural network based
approach that learns a representation of a word-
word co-occurrence matrix. The basic idea is
that a neural network is used to learn a series of
weights (hidden layer with in the neural network)
that either maximizes the probability of a word
given the surrounding context, referred to as the
continuous bag of words (CBOW) approach, or
to maximize the probability of the context given
a word, referred to as the Skip-gram approach;

For either approach, the resulting hidden layer
consists of a matrix where each row represents a
word in the vocabulary and columns a word em-
bedding. The basic intuition behind this method
is that words closer in meaning will have vectors
closer to each other in this reduced space.

4 Data

4.1 Training Data

We develop our vectors using co-occurrence in-
formation from Medline 2. Medline is a biblio-
graphic database containing around 23 million ci-
tations to journal articles in the biomedical do-
main and is maintained by National Library of
Medicine. The 2015 Medline Baseline encom-
passes approximately 5,600 journals starting from
1948, and contains 22,775,609 citations, of which
13,835,206 contain abstracts. In this work, we use
Medline titles and abstracts from 1975 to present
day to generate word embeddings, and to generate
the co-occurrence matrix of explicit vectors that is
the input into SVD and PCA. Prior to 1975, only
2% of the citations contained an abstract.

4.2 Evaluation Data

We evaluate using several standard WSD evalua-
tion datasets which include the following.

2http://mbr.nlm.nih.gov/Download/index.shtml

Abbrev. The Abbrev dataset 3 developed by
Stevenson, et al. (Stevenson et al., 2009) contains
examples of 300 ambiguous abbreviations found
in MEDLINE that were initially presented by (Liu
et al., 2001). The data set was automatically re-
created by identifying the abbreviations and long-
forms (unabbreviated terms) in MEDLINE ab-
stracts, and replacing the long-form in the abstract
with its abbreviation. The abbreviations’ long-
forms were manually mapped to concepts in the
UMLS by Stevenson, et al. Each abstract contains
approximately 216 words. The datasets consist of
a set of 21 different ambiguous abbreviations for
which the number of labeled instances of those
abbreviations varies. Abbrev.100 contains 100 in-
stances, Abbrev.200 contains 200, and Abbrev.300
contains 300 labeled instances. Two abbreviations
contain less than 200 instances, and three abbre-
viations contain less than 300 instances, and are
omitted from Abbrev.200 and Abbrev.300 respec-
tively. The average number of long-forms per ab-
breviation is 2.6 and the average majority sense
across all subsets is 70%.

NLM-WSD. The National Library of
Medicine’s Word Sense Disambiguation (NLM-
WSD) dataset 4 developed by (Weeber et al.,
2001) contains 50 frequently occurring ambiguous
words from the 1998 MEDLINE baseline. Each
ambiguous word in the NLM-WSD dataset con-
tains 100 ambiguous instances randomly selected
from the abstracts totaling to 5,000 instances.
The instances were manually disambiguated by
11 evaluators who assigned the ambiguous word
to a concept (CUI) in the UMLS, or assigned
the concept as “None” if none of the possible
concepts described the term. The average number
of senses per term is 2.3, and the average majority
sense is 78%.

MSH-WSD. The National Library of
Medicine’s MSH Word Sense Disambiguation
(MSH-WSD) dataset 5 developed by (Jimeno-
Yepes et al., 2011) contains 203 ambiguous terms
and abbreviations from the 2010 MEDLINE base-
line. Each target word contains approximately
187 instances, has 2.08 possible senses, and has a
54.5% majority sense. Out of 203 target words,
106 are terms, 88 are abbreviations, and 9 have
possible senses that are both abbreviations and

3http://nlp.shef.ac.uk/BioWSD/downloads/corpora
4http://wsd.nlm.nih.gov
5http://wsd.nlm.nih.gov
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Figure 1: Comparison between accuracy of vector representations on WSD datasets

terms. For example, the target word cold has the
abbreviation Chronic Obstructive Lung Disease
as a possible sense, as well as the term Cold
Temperature. The total number of instances is
37,888.

5 Experimental Framework

We used the following packages to obtain our vec-
tor representations:

[1] Explicit Representation: We used the
Text::NSP packaged developed by (Pedersen
et al., 2011). We used a windows size of 8,
a frequency cutoff of 5, and removed stop-
words.

[2] Singular Value Decomposition: We ran the
MATLAB R2016b implementation of sparse
matrix SVD (svds) on the explicit representa-
tion matrix, and used each row of the result-
ing U matrix as a reduced vector.

[3] Principal Component Analysis: We centered
the explicit representation matrix, and used
the MATLAB R2016b implementation of
sparse matrix SVD (svds) on the centered
matrix to obtain the U and Σ matrices. The
reduced vectors are obtained from the prod-
uct of U and Σ.

[4] Word Embeddings: We used the word2vec
package developed by (Mikolov et al., 2013)

for the continuous-bag-of-words (CBOW)
and skip-gram word embedding models with
a window size of 8, a frequency cutoff of 5,
and default settings for all other parameters.

We use the Word2vec::Interface package 6 ver-
sion 0.03 to obtain the disambiguation accuracy
for each of the WSD datasets. The differences be-
tween the means of disambiguation accuracy were
tested for statistical significance using pair-wise
Students t-test.

6 Results and Analysis

6.1 Results

Figure 1 compares the performance of each vec-
tor representation technique, and shows the best
results (best among all dimensionalities tested) of
each of the vector representations on the WSD
datasets. Explicit refers to the co-occurrence vec-
tor without dimensionality reduction, PCA refers
to the principal component analysis representa-
tion, SVD refers to singular value decomposition
representation, CBOW refers to the word embed-
dings continuous bag of words representation and
SG refers to the word embeddings skip gram rep-
resentation. The colored bars show results for in-
dividual datasets, and the total length shows the
sum of accuracies for all datasets.

6http://search.cpan.org/dist/Word2vec-Interface/
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Figure 2: Effect of dimensionality on accuracy

Abbrev.100
PCA SVD CBOW SG

explicit 0.65 0.0008 0.0015 0.0006
PCA 0.0007 0.0013 0.0005
SVD 0.94 0.97

CBOW 0.93
Abbrev.200

PCA SVD CBOW SG
explicit 0.29 0.006 0.0047 0.0045

PCA 0.005 0.0042 0.0037
SVD 0.56 0.93

CBOW 0.60
Abbrev.300

PCA SVD CBOW SG
explicit 1.0 1.0 0.41 0.63

PCA 1.0 0.41 0.63
SVD 0.29 0.21

CBOW 0.08
NLM-WSD

PCA SVD CBOW SG)
explicit 0.35 0.10 0.0062 0.0127

PCA 0.087 0.0042 0.009
SVD 0.2489 0.2993

CBOW 0.66
MSH-WSD

PCA SVD CBOW SG
explicit 0.37 0.0001 0.0001 0.0001

PCA 0.0356 0.0005 0.0001
SVD 0.0005 0.0346

CBOW 0.056

Table 1: The p-values using Student’s pairwise t-
test. Each table corresponds to a different dataset,
each row and column a different dimensionality
reduction technique.

The Abbrev.100, Abbrev.200, and Abbrev.300
results show that SVD (0.87/0.84/0.62), CBOW
(0.87/0.86/0.62), and SG (0.87/0.84/0.59) ob-
tained a statistically higher overall disambiguation
accuracy (p ≤ 0.05) than explicit (0.69/0.70/0.59)
and PCA (0.59/0.70/0.59), while the difference
between their respective results was not statis-
tically significant. The NLM-WSD results also
show that SVD (0.61), CBOW (0.65), and SG
(0.65) obtained a statistically higher disambigua-
tion accuracy than explicit (0.54) and PCA (0.54),
while the difference between their respective re-
sults was not statistically significant. The MSH-
WSD results show a statistically significant dif-
ference (p ≤ 0.05) between explicit (0.64), PCA
(0.64), SVD (0.77), CBOW (0.81), and SG (0.79)
except for Explicit and PCA. Table 1 shows the
p-values between the vector representations for
each of the datasets.

Figure 2 shows the effects of dimensionality on
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Figure 3: Effect of dimensionality on the accuracy of SVD

disambiguation accuracy of PCA, SVD, CBOW 7,
and SG for each of the datasets for dimensionality
reduction of d = 100, 200, 500, 1000 and 1500.
The PCA, CBOW, and SG all show little change
in accuracy as the dimensions vary. This indicates
lower dimensional vector representations are suffi-
cient for these techniques. SVD on the other hand
shows for all of the datasets except NLM-WSD, an
increase in accuracy as dimensionality increases.
To discover an upper bound on dimensionality and
performance, we continued to increase the dimen-
sions of SVD up to 3000. Results are shown in
Figure 3, and indicate that after d = 1500 there are
not significant gains in accuracy, indicating that a
dimensionality of 1500 is sufficient for SVD.

6.2 Analysis

This study indicates that SVD performs on par
with word embeddings for most datasets. This is
exciting because the co-occurrence matrix that is
the input for SVD can be easily modified to hope-
fully increase performance. The word embeddings
algorithms use a neural network approach which
can approximate any function, but does not pro-
vide any insights about the features being approx-
imated; instead accuracy gains are often achieved
by increasing the amount of training data.

One disadvantage of SVD is that it, unlike word
embeddings, may not be scalable to massive cor-

7CBOW crashed due to memory constraints for d = 1500

pora. Since we are using the majority of MED-
LINE, we feel that SVD is sufficient, and previous
studies (Pakhomov et al., 2016; Pedersen et al.,
2007) have shown that beyond 100 million tokens
little performance gains can be achieved.

Surprisingly the results showed that PCA did
not obtain a higher accuracy than the explicit co-
occurrence vector. We believe this is a result
of centering the matrix, and believe that in lan-
guage absolute counts are important. When the
matrix is centered, only relative counts are con-
sidered. This could create a situation where infre-
quently used words have distributions similar to
commonly used words, adversely effecting results.

With respect to dimensionality, we found that
low vector dimensionality (d = 100) is sufficient
for CBOW and SG, but that a higher dimensional-
ity (d = 1500) obtained better results with SVD.
In addition, we found that although PCA is com-
monly used for dimensionality reduction in many
fields, it does not improve results for WSD.

We found that CBOW and SG achieve approx-
imately the same accuracy which is important
because SG takes much longer to compute (our
rough estimates indicate that SG takes between 5
and 9 times as long to train).

6.3 Comparison with previous work

Recently, word embeddings have been used for
word sense disambiguation in the biomedical do-
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Table 2: Comparison with Previous Work on MSH-WSD
Method Medline MIMIC-III BioASQ Fairview PMC
(Pakhomov et al., 2016) (CBOW) 0.72 0.78
(Tulkens et al., 2016) (SG) 0.80 0.69 0.84
SG 0.81
CBOW 0.79
SVD 0.77
PCA 0.64
Explicit 0.64

main. (Tulkens et al., 2016) evaluated the skip
gram model on the MSH-WSD dataset with three
different sets of training data: a subset of Medline
abstracts, the MIMIC-III corpus of clinical notes,
and BioASQ Medline abstracts. (Pakhomov et al.,
2016) evaluated CBOW on the MSH-WSD dataset
using two different types of training data: clinical
(clinical notes from the Fairview Health System)
and biomedical (PMC corpus).

Table 2 shows the comparison between the pre-
vious works’ reported results and our current re-
sults. The table shows that our skip gram and
CBOW results are similar to those reported by
both (Tulkens et al., 2016) (0.80 versus 0.81) and
(Pakhomov et al., 2016) (0.78 versus 0.79) respec-
tively. We believe that the small variations in accu-
racy are due to the difference in training data. The
table also shows that SVD performs on par with
previous word embeddings results.

6.4 Limitations
This study focused on comparing vector represen-
tations and the effects of dimensionality for WSD.
We did not experiment with other parameters, such
as window size, cut-off level, and sampling pa-
rameters. We also limited our technique to the 2-
MRD WSD algorithm. This is a well known algo-
rithm that has been shown to perform well in the
past, and allows comparison between similar pa-
pers. These vector representations can be used for
other WSD algorithms as well, including super-
vised or “distantly supervised” approaches (Sab-
bir et al., 2016) which may achieve higher accura-
cies, but are limited to pre-labeled or preprocessed
datasets.

7 Conclusions and Future Work

In this study we analyzed the performance of vec-
tor representations using the dimensionality re-
duction techniques of word embeddings (continu-
ous bag of words and skip-gram), singular value

decomposition (SVD), and principal component
analysis (PCA) on five evaluation standards (Ab-
brev.100, Abbrev.200, Abbrev.300, NLM-WSD,
MSH-WSD). We used explicit co-occurrence vec-
tors as the baseline. The results show that word
embeddings and SVD outperform PCA and ex-
plicit representations for all datasets. PCA does
not increase performance over explicit, and word
embeddings are significantly different from SVD
on just a single dataset (MSH-WSD). The method
(CBOW versus SG) in which word embeddings
are generated makes no statistically significant dif-
ference in WSD results. We also varied the dimen-
sionality of the vectors to 100, 300, 500, 1000, and
1500. We found that the smallest dimensionality
of 100 is sufficient for all vector representations
except SVD. For SVD we found that increasing
dimensionality does increase performance, and
continued to increase the dimensionality to 2000,
2500, and 3000. Accuracy stopped increasing at
1500, indicating that a dimensionality of 1500 is
sufficient for SVD.

An interesting result of this research is that
SVD performs essentially on par with word em-
beddings. In the future we hope to increase the
accuracy of SVD by modifying the co-occurrence
matrix that is input into SVD to include incorpo-
rating knowledge sources (such as the UMLS) for
term expansion by capturing co-occurrences with
synonymous terms, and creating a UMLS con-
cept (CUI) co-occurrence matrix. Additionally,
this concept co-occurrence matrix can then be aug-
mented to exploit the hierarchical structure of the
UMLS. Using a matrix of similarities or associ-
ation scores may also be interesting. Independent
from how vectors are generated, we could use sim-
ilarity metrics other than cosine, similar to those
from (Sabbir et al., 2016) that incorporate both
magnitude and orientation.
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Abstract

In this paper, we present pilot work
on characterising the documentation of
electronic cigarettes (e-cigarettes) in the
United States Veterans Administration
Electronic Health Record. The Veterans
Health Administration is the largest health
care system in the United States with
1,233 health care facilities nationwide,
serving 8.9 million veterans per year. We
identified a random sample of 2000 Veter-
ans Administration patients, coded as cur-
rent tobacco users, from 2008 to 2014. Us-
ing simple keyword matching techniques
combined with qualitative analysis, we
investigated the prevalence and distribu-
tion of e-cigarette terms in these clinical
notes, discovering that for current smok-
ers, 11.9% of patient records contain an e-
cigarette related term.

1 Introduction

Electronic cigarettes — e-cigarettes — were de-
veloped in China in the early 2000s and first in-
troduced to the US market in 2007. Once es-
tablished in the US, the product experienced ex-
plosive growth, with the number of e-cigarette
users doubling every year between 2008 and 2012
(Grana et al., 2014). In 2012 it was estimated that
75% of US adults had heard of e-cigarettes, and

8.1% had tried them (Zhu et al., 2013). By 2014,
the proportion of adult Americans who had tried
e-cigarettes increased to 12.6% (Schoenborn and
Gindi, 2015).

Public health practitioners, government regula-
tory authorities, professional associations, the me-
dia, as well as individual clinicians and health
workers are divided as to whether e-cigarettes rep-
resent an exciting new smoking cessation oppor-
tunity (Green et al., 2016; McNeill et al., 2015;
Caponnetto et al., 2013) or are an untested, poten-
tially dangerous technology that risks undermin-
ing recent successes in “denormalising” smoking
(Choi et al., 2012; Etter et al., 2011; Gornall, 2015;
U.S. Department of Health and Human Services,
2016; Department of Health and Human Services,
2014).

Currently, little is known about how clinicians
“on-the-ground” advise patients who use, or are
considering using, e-cigarettes. While Winden
et al. (2015) has gone some way to describing
e-cigarette Electronic Health Record (EHR) doc-
umentation behaviour in the context of a med-
ical system in Vermont, national patterns in e-
cigarette documentation have not been explored.
In this paper, we present pilot work on charac-
terising the documentation of e-cigarettes in the
United States Veterans Administration Electronic
Health Record. The Veterans Health Administra-
tion (VA) is the largest health care system in the
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United States with 1,233 health care facilities na-
tionwide, serving 8.9 million veterans per year.
VA EHR data provides the opportunity for nation-
wide population-health surveillance of e-cigarette
use.

The remainder of this document consists of five
sections. Following a discussion of related work
in Section 2, Section 3 describes both our cohort
selection procedure, and our method of identifying
e-cigarette documentation in clinical notes, while
Sections 4 and 5 present the results of out analysis,
and some discussion of those results. The final
section outlines some broad conclusions.

2 Background

The VA collects data about patient smoking his-
tory and status using several approaches at the
time of a patient encounter. Most patient clin-
ical encounters have an associated health factor
(i.e. semi-structured data that describes patient
smoking status or smoking history (Barnett et al.,
2014)). In addition, if the veteran has received
dental care, the VA dental data contains descrip-
tions of patient smoking status as a coded database
field. However, neither of these data sources can
be used to define what type of tobacco the patient
uses and more specifically, if the patient uses e-
cigarettes. This information is only found embed-
ded in clinical text.

Given the rapid rise in popularity of e-
cigarettes, and the lack of adequate public health
surveillance systems currently focussing on these
novel tobacco products, various methods and data
sources have been used to understand changes
in e-cigarette prevalence and usage patterns, in-
cluding analysing search engine queries relevant
to e-cigarettes (Ayers et al., 2011), mining so-
cial media data (Myslı́n et al., 2013; Chen et al.,
2015), and — the focus of this paper — analysing
EHR data for e-cigarette related documentation
(Winden et al., 2015).

Previous work on smoking status identification
in the EHR context has focussed on structured
data (e.g. Wiley et al. (2013) used ICD-9 codes
successfully to identify current smokers in the
Vanderbilt Medical Center EHR), semi-structured
data (e.g. McGinnis et al. (2011) used VA EHR
health factors to reliably identify current smok-
ers), and unstructured data (e.g. Clark et al.
(2008); Savova et al. (2008); Da Silva et al. (2011)
applied natural language processing methods to

EHR clinical notes to identify smoking status).
EHR corpus analysis has been the focus of sev-

eral research efforts in the tobacco domain. For
example, Chen et al. (2014) investigated the docu-
mentation of general tobacco use in clinical notes
from Vermont’s Fletcher Allen Health Center, dis-
covering that free-text clinical notes are frequently
used to document amount of tobacco used, to-
bacco use frequency, and start and end dates of
tobacco use (i.e. important clinical information
that is difficult to represent with structured data).
In follow-up work focussing specifically on e-
cigarettes rather than general tobacco use, Winden
et al. (2015), again using EHR data from Fletcher
Allen Health Center, developed a sophisticated an-
notation scheme to code e-cigarette documenta-
tion, with categories including dose, device type,
frequency, and use for smoking cessation. One re-
sult of particular note garnered from this research
is the observation that less than 1% of patients had
e-cigarette mentions in their note.

In this pilot study, our aim is to complete an ini-
tial corpus analysis of VA patient record data with
the goal of quantifying the frequency with which
e-cigarette usage is documented within the VA pa-
tient record.

3 Materials and Methods

We queried the VA dental record data found in
the VA Corporate Data Warehouse to identify a
national cohort of all Veterans Affairs patients
with a coded history of current (or current and
past) smoking between the years 2008-2014. Den-
tal records were chosen as a data source as they
are believed to be the most reliable indicators of
smoking status in the VA context. From these data
we identified 87,392 unique patients (77,491 cur-
rent smokers, 9,901 current and past smokers). We
then selected a random sample of 2,000 patients
and extracted their associated clinical notes yield-
ing 154,991 clinical notes. Note types include
progress notes, consultation notes, consent docu-
ments, instructions, triage notes, history and phys-
ical notes, amongst others.

Based on an iterative process of corpus explo-
ration, along with insights gleaned from previ-
ous work on e-cigarette related natural language
processing (Myslı́n et al., 2013; Winden et al.,
2015), we identified twenty e-cigarette related
terms (listed in Table 1), and — using these terms
— performed a keyword search within the pa-
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tient clinical notes. We reviewed each e-cigarette
term instance in its context to ascertain whether
the e-cigarette term instance actually referred to e-
cigarette usage.

We report the precision of each e-cigarette term
defined as the proportion of term match instances
actually referencing e-cigarette usage of all term
matches.

4 Results

Term Total TP FP Precision
ecig 14 14 0 100.0
electronic cig 10 10 0 100.0
liquid nicotine 5 5 0 100.0
Ecig 4 4 0 100.0
E CIG 4 4 0 100.0
electric cig 1 1 0 100.0
ecigarette 1 1 0 100.0
Ecigarette 1 1 0 100.0
E Cig 1 1 0 100.0
vape 19 18 1 0.947
e cig 7 6 1 0.857
Vape 6 5 1 0.833
VAPOR 9 7 2 0.778
VAPE 2 1 1 0.500
vapor 241 81 160 0.336
vaporizer 192 36 156 0.188
Vapor 73 4 69 0.055
Vaporizer 3 0 3 0.000
VAPORIZER 3 0 3 0.000
ECIG 5 0 5 0.000
Total 601 199 402 –

Table 1: Proposed e-cigarette related terms
ranked by precision

We analysed notes from 2,000 VA patients.
From these notes, we observed 238 patients
(11.9%) with one or more e-cigarette mentions
within their notes (see Figure 1). In total, there
were 601 mentions, with 436 notes containing
more than one mention. Of these 601 mentions,
199 (33.1%) mentions described true e-cigarette
usage (Table 1) as ascertained by manual inspec-
tion. The most frequent e-cigarette term matches
included variants of the term vapor (vapor: 241,
vaporizer: 192, Vapor: 73). These terms were also
the most frequent sources of false positives (va-
por: 160, vaporizer: 156, and Vapor: 69). Thir-
teen of the twenty terms yielded precision scores
greater than 0.500. Of these high-precision terms,

the most prevalent terms included vape: 19, ecig:
14, and electronic cig: 10.

5 Discussion

We observed a variety of linguistic contexts de-
scribing e-cigarette usage. Patients report use
of e-cigarettes with other tobacco products (e.g.,
“smokes 10 tobacco cigs per day and uses vape”).
Similar to tobacco cessation, clinicians report pro-
viding encouragement and counselling for patients
to stop e-cigarette use. Patients often contem-
plate e-cigarettes as an alternative to tobacco us-
age (e.g., “thinking about switching to ecig”) or
as an approach to tobacco cessation (e.g., “uses
nicotine vaporizer and hasn’t smoked tobacco in
6 mos”). This was not a surprising finding given
that, according to the Centers for Disease Control,
“among current cigarette smokers who had tried
to quit smoking in the past year, more than one-
half had ever tried an e-cigarette and 20.3% were
current e-cigarette users” (Schoenborn and Gindi,
2015). Patients reported differing experiences of
using e-cigarettes as a smoking cessation aid, with
one patient stating directly that e-cigarettes were
an ineffective tool in his struggle to quit smoking.
Consistent with current uncertainty regarding the
safety of e-cigarettes and their utility as a smoking
cessation aid, not all clinicians support the use of
e-cigarettes as a safe alternative to tobacco usage
(e.g., “I do not recommend ecig/vapor”).

Analogous to the “packs-per-day” metric used
by clinicians to document volume of com-
bustable tobacco use, patients report their fre-
quency of e-cigarette use in volume over time
(e.g., “6mg/day”). E-cigarette usage goals are of-
ten set by both clinicians (“reducing consumption
from 9 grams to 3 with goal of quitting”) and
patients (“using e cig and cutting back by half”)
alike. One clinician reported a patient’s use of e-
cigarettes with “no side effects with current meds”
suggesting that clinicians are aware that known
side effects with medication use is a possibility.

Although most of the twenty e-cigarette terms
used in this study yielded precision scores greater
than 0.500, we also observed a substantial propor-
tion of term matches that did not indicate actual
e-cigarette usage. Many false positives occurred
due to the ambiguous nature of the word vapor-
izer and its variants. For example, the domestic
use of a vaporizer to increase room humidity, the
treatment of patients with over-the-counter sinus
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Figure 1: Frequency of e-cigarette terms in the clinical notes of a cohort of 2,000 VA smokers

relief (“Vicks vapor rub”), or the use of vaporis-
ers to ingest medical marijuana (“MJ via vapor-
izer”). These non-relevant mentions of e-cigarette
related terms are most frequently found in anaes-
thesia consent notes (n=185 mentions).

From notes containing matched e-cigarette vari-
ants, we discovered several co-occurring terms
which could improve the term’s precision, with
examples including nicotine vaporizer, vapor-
nicotine, vapor cig, vapor cigarettes, vapor pens,
vapor cigarets, methonol vapor, and vapor nico-
tine.

The pilot work described in this short paper has
several limitations. First, our list of e-cigarette
related keywords was limited to twenty. As in-
dicated above, there may well be additional high
precision e-cigarette related terms that we did not
use in this work. Second, unlike Winden et al.
(2015) we have not conducted a large scale anno-
tation effort or mapped to an annotation scheme.
Finally, while the VA is the largest integrated med-
ical system in the United States, and the only na-
tionwide system, VA patients are not necessarily
representative of the general population. It is par-
ticularly important to note that approximately 92%
of veterans are male (National Center for Veterans
Analysis and Statistics, 2013).

6 Conclusion

In conclusion, we have demonstrated that for
current smokers, e-cigarette terms are present in
11.9% (238) of VA patient records. Of this 11.9%

of patients, it is estimated that around two thirds of
e-cigarette mentions are false positives, suggest-
ing that around 4% of smokers have e-cigarette use
documented in their clinical notes.
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Abstract

Dictated medical reports very often fea-
ture a preamble containing metainforma-
tion about the report such as patient and
physician names, location and name of the
clinic, date of procedure, and so on. In the
medical transcription process, the pream-
ble is usually omitted from the final report,
as it contains information already avail-
able in the electronic medical record. We
present a method which is able to automat-
ically identify preambles in medical dic-
tations. The method makes use of state-
of-the-art NLP techniques including word
embeddings and Bi-LSTMs and achieves
preamble detection performance superior
to humans.

1 Introduction

For decades, medical dictation and transcription
has been used as a convenient and cost-effective
way to document patient-physician encounters and
procedures and bring reports into a form which
can be stored in an electronic medical record
(EMR) system, formatted as an out-patient let-
ter, etc (Häyrinen et al., 2008; Johnson et al.,
2008; Meystre et al., 2008; Holroyd-Leduc et al.,
2011; Kalra et al., 2012; Logan, 2012; Hyppönen
et al., 2014; Campanella et al., 2015; Moreno-
Conde et al., 2015; Alkureishi et al., 2016; Ford
et al., 2016). While dictated speech has tradition-
ally been transcribed by humans (such as clinical
assistants or professional transcription personnel),
sometimes in multiple stages, it is common nowa-
days for speech recognition technology to be de-
ployed in the first stage to increase transcription
speed and cope with the enormous amount of dic-
tated episodes in the clinical context (Hammana
et al., 2015; Hodgson and Coiera, 2016; Edwards

et al., 2017).
In its purest form, a speech recognizer trans-

forms spoken into written words, as exemplified
in Figure 1. Obviously, this raw output will have
to undergo multiple transformation steps to for-
mat it in a way it can be stored in an EMR or
sent out as a letter to the patient, including: for-
matting numbers, dates, units, etc.; punctuation
restoration (Salloum et al., 2017b); and process-
ing physician normals.

Furthermore, dictated reports often contain
metadata in a preamble containing information not
intended to be copied into the letter, such as pa-
tient and physician names, location and name of
the clinic, date of procedure, and so on. Rather,
the metadata serves the sole purpose of enabling
realigning dictations with a particular record or
file, in case this alignment is not otherwise pos-
sible (usually, metadata in medical transcription
systems is automatically retrieved from the EMR
system and inserted into the outpatient letter). See
Figure 2 for the same text sample as Figure 1
with the preamble highlighted and the above post-
processing rules applied.

In a second stage, medical transcriptionists take
the speech recognizer output and perform a post-
editing exercise and quality check before entering
the final report into the EMR or sending it off as
an outpatient letter. This stage usually involves the
removal of metadata, i.e. the preamble, from the
dictation’s main text body. To facilitate this pro-
cedure, this paper explores techniques to automat-
ically mark preambles.

It is worth noting that the accurate detection of
preambles in dictated reports is a non-trivial task,
even for humans. Clinical dictations may (a) con-
tain metadata at multiple places throughout the re-
port (see Figure 3 for an example), (b) or no such
data at all, (c) feature sentences convolving meta-
data and general narrative, or (d) have grammati-
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this is doctor mike miller dictating

a maximum medical improvement slash

impairment rating evaluation for

john j o h n doe d o e social one

two three four five six seven eight

nine service i d one two three four

five six seven eight nine service

date august eight two thousand and

sixteen subjective and treatment to

date the examinee is a thirty-nine

year-old golf course maintenance

worker with the apache harding park

who was injured on eight seven two

thousand sixteen

Figure 1: Raw output of a medical speech recog-
nizer.

This is Dr Mike Miller dictating a Maximum

Medical Improvement/Impairment Rating

Evaluation for John Doe.
SSN: 123-45-6789
Service ID: 123 456 789
Service Date: 08/08/16

Subjective and Treatment:
To date, the examinee is a 39 year-old golf
course maintenance worker with the Apache
Harding Park who was injured on 08/07/16.

Figure 2: Output of post-processor with preamble
highlighted.

cal inaccuracies and lack overall structure caused
by the spontaneous nature of dictated speech, in-
cluding the total absence of punctuations. To sys-
tematically quantify the task’s complexity, we also
determined the human baseline performance of
detecting the preamble in clinical dictation.

This paper is structured as follows: After dis-
cussing related work in Section 2, we describe the
corpus and determine the human baseline in Sec-
tion 3.3. Section 4 provides details on the tech-
niques we used for the automated detection of
preambles, followed by evaluation results and dis-
cussion in Section 5. We conclude the paper and
provide an outlook on future work in Section 6.

This is Dr Mike Miller.
The patient is a baking associate over at Back-
werk.
Today’s date is 03/10/2016.

The patient noted he strained his back while
he was helping his mother move some house-
hold items.

Figure 3: Example of a report intertwining pream-
ble and main body. Physician name and date
of the visit are commonly considered preamble,
whereas the patient’s profession and employer are
not. When spontaneously dictating, physicians
sometimes remember to mention preamble state-
ments only after they have already started the main
body narrative, such as the date of visit in this ex-
ample.

2 Related Work

To our knowledge, the problem of automated
preamble detection in medical transcriptions has
not been addressed before. That said, we do
build upon classic methods in NLP: specifically,
our system is a generalization of sequence tag-
ging, which has seen use in other tasks such as
part-of-speech tagging, shallow parsing or chunk-
ing, named entity recognition, and semantic role
labeling. Traditionally, sequential tagging has
been handled using either generative methods,
such as hidden Markov models (Kupiec, 1992),
or sequence-based discriminative methods, such
as conditional random fields (Lafferty et al., 2001;
Sha and Pereira, 2003).

More modern approaches have shown perfor-
mance gains and increased generalizability with
neural networks (NNs). Collobert and colleagues
(Collobert and Weston, 2008; Collobert et al.,
2011) successfully apply NNs to several sequen-
tial NLP tasks without the need for separate fea-
ture engineering for each task. Their networks fea-
ture concatenated windowed word vectors as in-
puts or, in the case of sentence-level tasks, a con-
volutional architecture to allow interaction over
the entire sentence.

However, this approach still does not cleanly
capture nonlocal information. In recent years, re-
current NN architectures, often using gated recur-
rent (Cho et al., 2014; Tang et al., 2016; Dey and
Salem, 2017) or long short-term memory (LSTM)
units (Hochreiter and Schmidhuber, 1997; Ham-
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merton, 2003), have been applied with excel-
lent results to various sequence labeling problems.
Many linguistic problems feature dependencies at
longer distances, which LSTMs are better able
to capture than convolutional or plain recurrent
approaches. Bidirection LSTM (Bi-LSTM) net-
works (Graves and Schmidhuber, 2005; Graves
et al., 2005; Wöllmer et al., 2010) also use fu-
ture context, and recent work has shown advan-
tages of Bi-LSTM networks for sequence labeling
and named entity recognition (Huang et al., 2015;
Chiu and Nichols, 2015; Wang et al., 2015; Lam-
ple et al., 2016; Ma and Hovy, 2016; Plank et al.,
2016).

In some approaches, tag labels from NN out-
puts are combined in a final step, such as condi-
tional random fields, especially when the goal is
to apply a single label to a continuous sequence of
tags. Our architecture, as described in Section 4,
also utilizes a post-tagging step to define a clear
preamble endpoint.

3 Corpus and Inter-Annotator
Agreement

In this section we report on the corpus used for
this study, the methodology for computing inter-
annotator agreement, and we analyze the preamble
split positions in more detail.

3.1 The Data

A total of 10,517 dictated medical reports were
transcribed by a team of professional medical tran-
scriptionists (MTs) organized in a private crowd
as described in (Salloum et al., 2017a). The pro-
duced transcriptions were raw, i.e., only lower-
case alphabetic characters, dash, and underscore
were permitted, resulting in output as shown in
Figure 1.

In a separate round, we sent these transcribed
reports to a private crowd of MTs to acquire a to-
tal of five annotation jobs per file. Since we cannot
specify all types of information that are expected
to be found in preambles ahead of time, we let
the MTs, who are well experienced in transcrib-
ing medical dictations, determine the exact split
position that, in their opinion, separated preamble
text from main report. This approach allows us to
harvest the wisdom of the crowd and define what
they agree on as the ground truth, which we can
then learn automatically.

Figure 4: Histogram of the maximum number of
exact agreements obtained for the annotated re-
ports

3.2 Inter-Annotator Agreement

In order to establish a corpus with reliable labels
which subsequently can be used to measure human
accuracy and train and test the automatic preamble
detector, we defined a gold-standard annotation to
be one where at least three annotators agreed on
the exact split between preamble and main body.
Figure 4 shows a histogram of the frequency of
number of agreements. For example, out of the
10,517 reports, 5,092 have all annotators agree
on the split position while only 5 reports have 5
different annotations. By reducing the corpus to
only those reports with at least three annotators in
agreement about the split position, we ended up
with a total of 9,754 reports, or 92.75% of the
original body of data. 4.4% of the reports were
not annotated by all five annotators, constituting
the majority of omitted files. The lack of anno-
tations is presumably due to annotators not being
sure how to split, or due to oversight. Missing an-
notations makes it harder for such files to match
the three-agreement threshold.

Overall, it became clear that the lack of guide-
lines on specific types of phenomena featured in
the preamble, such as including or excluding a
patient’s employer, led to disagreements that ulti-
mately caused the exclusion of reports—although
note that nearly half of included reports do have
at least one dissenting opinion. This analysis is
specifically helpful for designing new guidelines
for the next round of annotations, which will lead
to cleaner data fed to our system.

We split the 9,754 reports randomly into train-
ing and test sets. Table 1 shows some statistics
about the data split. The test set out-of-vocabulary
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Set # reports # tokens # types
Training Set 8,711 3,335,588 30,707
Test Set 1,043 415,491 13,507

Table 1: Corpus statistics.

(OOV) rate against the training set is 10.76%
(1,454 types).

In order to quantify the inter-annotator agree-
ment, we compared each annotator against the ma-
jority vote, resulting in the following annotator
split accuracy scores: 83.22%, 86.09%, 86.09%,
86.58%, 88.20%. The average inter-annotator
agreement score, 86.04%, will serve as standard
of comparison in this paper.

3.3 Analysis of Preamble Split Positions

As motivated in the introduction, the use of pream-
bles in medical dictations is not very consistent.
E.g., a good amount of dictations do not contain a
preamble at all, whereas others contain multiple,
even others convolve preamble and main text so
much that it is very hard to determine the exact
split position. In this work, annotators were re-
quired to provide a single split tag at the location
were they found the boundary to be most appro-
priate. If annotators did not find any preamble in
the dictation, the tag was placed in front of the first
token of the dictation.

Figure 5 displays a histogram of the split posi-
tion in reports. The vast majority of split positions
are below 100 tokens into the dictation (compared
to the average total token count for the dictations
in our corpus of 385; see Table 1 for exact statis-
tics). There are 319 reports (3.3%) with no pream-
ble and, hence, split position 0.

If we define the problem as a sequence tagging
problem where every token in a preamble is tagged
with I-P (Inside Preamble) and every token in the
main report is tagged with I-M (Inside Main), we
get the histogram in Figure 6.

4 Approach

Although the training data contains 3.3 M to-
kens, the evaluation is at the level of reports, of
which we have only 8.7 K examples. We deter-
mined from preliminary experiments that this lim-
ited amount of examples is not enough to train an
end-to-end neural network to predict the split po-
sition. Therefore, we use a two-step approach to
preamble detection:

1. A sequence tagger that labels every word in
the input sequence with one of two tags: I-
P (Inside Preamble) and I-M (Inside Main).
This tagger leverages the large number of to-
kens in our data, as opposed to the small
number of example reports, which leads to
near perfect tagging accuracy.

2. A report splitter that determines heuristically
at what position to split the tagged report into
preamble and main. This splitter attempts to
correct the tagger’s mistakes.

4.1 The Tagging Model

Like other recent work, our model is based on
LSTM NNs. We experimented with both unidirec-
tional and bidirectional networks. The stack con-
sists of an embedding layer (see Section 4.3 for
details), a (Bi-)LSTM layer, and a time-distributed
dense layer with softmax activation (illustrated in
Figure 7). For the present study, we used Keras
with TensorFlow backend (Chollet, 2015; Abadi
et al., 2016; Chollet, 2017). We applied a cate-
gorical cross-entropy cost function and Adam op-
timization (Kingma and Ba, 2014).

In addition to word meaning and context, the
analysis we did in Section 3.3 motivates that the
correct prediction of tags depends on the location
of words in the report as well (Figure 5 and Fig-
ure 6). Therefore, instead of tagging the input se-
quence using a sliding window like many taggers
do, we have a fixed size input to the network com-
prising the first 512 tokens of the report. Words
after this limit are truncated. We add padding for
reports with less than 512 tokens. Informal exper-
iments showed that varying the window length to
256 or 1024 tokens deteriorated preamble detec-
tion performance.

Since the data we have is limited in size, we use
word vectors pretrained on large amounts of unla-
beled text collected from medical reports and med-
ical dictation transcriptions. This transfer learn-
ing technique is often used in deep learning ap-
proaches to NLP since the vectors learned from
massive amounts of unlabeled text can be trans-
fered to another NLP task where labeled data is
limited and might not be enough to train the em-
bedding layer.

4.2 The Heuristic Splitter

The training examples of the tagging model al-
ways have preamble tags (I-P) preceding main re-
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Figure 5: A histogram of the split position in our training set. A point of interest is the split at position 0,
which indicates that 319 reports have no preamble text. The longest preamble text ends at position 131,
after that the curve stays on 0.

Figure 6: Frequency of the two tags at positions in the first 1000 words of reports. The last preamble tag,
I-P, appears at position 131, after that the red curve stays on 0. The main tag, I-M, starts at position 1
with a value 319, and goes up as the report grows longer. The main tag curve then falls down as longer
reports are less frequent than shorter ones.

port tags (I-M). Nevertheless, the neural network
sometimes produces mixed sequences of I-P and
I-M. An example of such output starts with I-P,
switches briefly to I-M, then back to I-P, and then
to I-M. This situation requires another system to
find the exact position in which we need to split
preamble from main report. We use simple heuris-
tics to determine the split position as explained in
Algorithm 1.

The algorithm looks for concentrations of
preamble and main tag sequences. It initializes the
split position it is trying to predict, splitPos, and
a sequence counter, counter, to 0. While scan-
ning the tagged sequence, it increases counter if
it sees an I-P (Line 6) and decreases it if it sees an
I-M (Line 11). counter > 0 means that we have
seen a long enough I-P tag sequence since the last
I-M tag to consider the text so far to be preamble
and the previous I-M tags to be errors. However,

the next I-M tag will set restart the counter (Line
9) and set splitPos to the previous position (Line
10). Lines 12-13 handle the edge case where the
sequence ends while counter > 0, which means
that the whole report is preamble.

It is important to point out that our splitter is bi-
ased, by design, to vote in favor of including more
words in main (i.e., shorter preambles). The rea-
son for this bias is that in applications where the
main text is more valued than preamble (e.g., to
create a formatted note), we take the safe option
not to omit content words.

4.3 Pretrained Word Embeddings
Word embeddings were trained offline using the
original implementation of the word2vec package
(Mikolov et al., 2013b,a). All vectors are 200 di-
mensions and trained using 15 iterations of the
continuous bag-of-words model over a window of
8 words, with no word count minimum.
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Figure 7: The NN stack using Bi-LSTM. An em-
bedding at each word step is fed into forward and
backward LSTM layers, which are fully connected
to a softmax-activated output layer. (For the uni-
directional LSTM, the backward layer is omitted.)

We experimented with three sets of embed-
dings, each trained on cumulatively more text:

• “SplitEmb” was trained on the same tran-
scriptions as the tagging model (plus those
on which only two annotators agreed on the
split), with the insertion of a line break at
the split between the preamble and main text.
This break causes word2vec not to train on
co-occurrences of tokens on either side of
the split, hypothetically leading to decreased
similarity between words typically found in-
side and outside of preambles. (3.7 M tokens
total.)

• “SplitTransEmb” added more transcribed
medical dictations which were not part of the
preamble-annotated set. (8.3 M tokens.)

• “SplitTransRepEmb” added formatted
medical reports processed to look like
transcriptions—numerals spelled out, punc-
tuation removed, etc. (60 M tokens.)

5 Evaluation

As a first sanity check, we measured the pream-
ble tagging accuracy on the token level. In other
words, we determined how many of the tokens in
the test set were correctly tagged as being either
part of the preamble or the main body. In this task,

Algorithm 1 The Heuristic Splitter.
1: splitPos← 0 // predicted split position.
2: counter ← 0 // sequence counter.

3: for pos := 1→ length(tags) do
4: switch tags[pos] do

// ... padding is ignored.

5: case I-P
6: counter++
7: case I-M
8: if counter > 0 then
9: counter ← 0 // reset

10: splitPos← pos− 1
11: counter--
12: if counter > 0 then
13: return length(predictedTags)
14: else
15: return splitPos

our system achieved an accuracy of 99.80%, with
only 816 mismatches among the total of 415,491
tokens in the test set.

As motivated in Section 3.2, the ultimate per-
formance measure we are using counts how many
perfect splits the preamble detector found, i.e. the
split accuracy. Table 2 shows detailed results of
the systems introduced in Section 4, comparing
all pre-trained word embedding models across two
embedding schemes (trainable vs. frozen) and for
both Uni- and Bi-LSTM. The best overall system
uses Bi-LSTMs and frozen embeddings, perform-
ing at 89.84% split accuracy. In comparison, as
calculated earlier, the human split accuracy on our
corpus was determined to be 86.04% which con-
stitutes a statistically significant difference. The
fact that our automated preamble detection system
outperforms humans demonstrates the strength of
the presented methods in exploiting synergistic ef-
fects across a crowd of annotators.

We were also interested in the effectiveness of
the heuristic splitter introduced in Section 4.2.
We therefore determined results for both Uni-
LSTM (75.74%) and Bi-LSTM (87.44%) when
leaving out the splitter. Compared to the indi-
vidual best results for Uni- and Bi-LSTMs in Ta-
ble 2, this constitutes a difference of 8.25% and
2.4%, demonstrating a clear positive impact of the
heuristic splitter.
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Test OOVs
(first 512)

LSTM Bi-LSTM
Trainable Emb. Frozen Emb. Trainable Emb. Frozen Emb.

# types rate # PS % # PS % # PS % # PS %
Fully-trained Emb. n/a n/a 754 72.29% n/a n/a 863 82.74% n/a n/a
SplitEmb 1133 8.59% 809 77.56% 839 80.44% 911 87.34% 916 87.82%
SplitTransEmb 905 6.86% 809 77.56% 846 81.11% 899 86.19% 937 89.84%
SplitTransRepEmb 230 1.74% 798 76.51% 876 83.99% 907 86.96% 925 88.69%

Table 2: Evaluation of our LSTM and Bi-LSTM models across all pretrained word embedding models.
The first column shows the different pretrained word embedding models we used. The “Test OOVs”
column shows the OOV count and rate against each pretrained embedding model. This only includes
types in the first 512 words of the report (that are passed to the NN) which contain 13,186 types out
of the 13,507. Columns with title “Trainable Emb.” report results where backpropagation is allowed to
update the pretrained embedding layer after it is loaded, while columns with title “Frozen Emb.” does
not allow such updates. # PS is the number of Perfect Splits.

6 Conclusion and Future Work

The work presented in this paper shows yet again
that careful design and execution of state-of-the-
art NLP techniques when applied to traditionally
manual tasks (in this case, the detection of pream-
bles in medical dictations) can approach or even
surpass human performance. We assume that the
presented NLP stack with Bi-LSTMs makes use of
the wisdom of the crowd: it exploits the fact that,
even though the annotators working on this task
were professional MTs, the provided guidelines on
how to tell preambles from main body were not
very detailed.

In future investigations, we would like to see
how more elaborate annotation guidelines can im-
prove human performance and what impact the
improved annotations have on the performance of
an automated preamble detector. It is specifically
interesting to investigate how situations of inter-
twined preamble and main body, as exemplified
in Figure 3, can be resolved by clearer guidelines
or, alternatively, by an annotation scheme allow-
ing for more than a single hard split.

We are also interested to further enhance the
automatic preamble detector by combining the
tagger and splitter into a joint neural network
model, or by implementing a transfer learning step
which reuses the learned tagger weight in a neural-
network-based splitter.
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Abstract

Question answering, the identification of
short accurate answers to users questions,
is a longstanding challenge widely stud-
ied over the last decades in the open-
domain. However, it still requires fur-
ther efforts in the biomedical domain. In
this paper, we describe our participation in
phase B of task 5b in the 2017 BioASQ
challenge using our biomedical question
answering system. Our system, dealing
with four types of questions (i.e., yes/no,
factoid, list, and summary), is based on
(1) a dictionary-based approach for gen-
erating the exact answers of yes/no ques-
tions, (2) UMLS metathesaurus and term
frequency metric for extracting the ex-
act answers of factoid and list questions,
and (3) the BM25 model and UMLS con-
cepts for retrieving the ideal answers (i.e.,
paragraph-sized summaries). Preliminary
results show that our system achieves good
and competitive results in both exact and
ideal answers extraction tasks as compared
with the participating systems.

1 Introduction

Finding accurate answers to biomedical questions
written in natural language from the biomedi-
cal literature is the key to creating high-quality
systematic reviews that support the practice of
evidence-based medicine (Kropf et al., 2017;
Wang et al., 2017; Sarrouti and Lachkar, 2017)
and improve the quality of patient care (Sarrouti
and Alaoui, 2017b). However, with the large and
increasing volume of textual data in the biomedi-
cal domain makes it difficult to absorb all relevant
information (Sarrouti and Alaoui, 2017a). Since
time and quality are of the essence in finding an-

swers to biomedical questions, developing and im-
proving question answering systems are desirable.
Question answering (QA) systems aim at directly
producing and providing short precise answers to
users questions by automatically analyzing thou-
sands of articles using information extraction and
natural language processing methods.

Although different types of QA systems have
different architectures, most of them, especially
in the biomedical domain, follow a framework in
which (1) question classification and query for-
mulation, (2) document retrieval, (3) passage re-
trieval, and (4) answer extraction components play
a vital role (Athenikos and Han, 2010; Neves and
Leser, 2015; Abacha and Zweigenbaum, 2015).

Question answering in the open-domain is a
longstanding challenge widely studied over the
last decades (Green et al., 1961; Katz et al.,
2002). However, it still remains a real challenge
in the biomedical domain. As has been exten-
sively documented in the recent research litera-
ture (Athenikos and Han, 2010), open-domain QA
is concerned with questions which were not re-
stricted to any domain, while in restricted-domain
QA such as the biomedical one, the domain of ap-
plication provides a context for the QA process.
Additionally, Athenikos and Han (2010) report the
following characteristics for QA in the biomedical
domain: (1) large-sized textual corpora, (2) highly
complex domain-specific terminology, and (3) do-
main specific format and typology of questions.

Since the launch of the biomedical QA track at
the BioASQ1 challenge (Tsatsaronis et al., 2015),
various approaches in biomedical QA have been
presented. The BioASQ challenge, within 2017
edition, comprised three tasks: (1) task 5a on
large-scale online biomedical semantic indexing,
(2) task 5b on biomedical semantic QA, and (3)

1http://bioasq.org/
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Figure 1: Overall architecture of the proposed biomedical question-answering system

task 5c on funding information extraction from
biomedical literature. Task 5b consists of two
phases: In phase A, BioASQ released questions
in English from benchmark datasets. There were
four types of questions: yes/no, factoid, list and
summary questions (Balikas et al., 2013). Partic-
ipants had to respond with relevant concepts, rel-
evant documents, relevant snippets retrieved from
the relevant documents, and relevant RDF triples.
In phase B, the released questions contained the
golden answers for the required elements (docu-
ments and snippets) of the first phase. The par-
ticipants had to answer with exact answers (e.g.,
biomedical entity, number, list of biomedical en-
tities, yes, no, etc.) as well as with ideal an-
swers (i.e., paragraph-sized summaries) (Krithara
et al., 2016). In this paper, we describe our par-
ticipation in the phase B (i.e., exact and ideal an-
swers) of task5b in the 2017 BioASQ challenge.
In our biomedical QA system, we have used (1)
a dictionary-based approach to generate the exact
answers to yes/no questions, (2) the unified med-
ical language system (UMLS) metathesaurus and
term frequency metrics for extracting the exact an-
swers of factoid and list questions, and (3) the
BM25 model and UMLS concepts for retrieving

the ideal answers. Figure 1 illustrates the generic
architecture of our biomedical QA system.

The remainder of the paper is organized as fol-
lows. Section 2 introduces related work and dis-
cussion about the main biomedical QA approaches
with a particular focus on BioASQ participants.
Section 3 describes the answer extraction meth-
ods used in our biomedical QA system. Section 4
presents the preliminary results we obtained in the
2017 BioASQ challenge. Finally, the conclusion
and future work are made in Section 5.

2 Related work

Since the launch of the BioASQ challenge (Tsat-
saronis et al., 2015), QA in the biomedical do-
main has received much attention from the re-
search community. The BioASQ challenge, which
takes place regularly every year since 2013, is an
EU-funded support action to set up a challenge
on biomedical semantic indexing and QA. Yenala
et al. (2015) have presented IIITH biomedical QA
system in BioASQ 2015 based on PubMed search
engine, leverage web search results, and domain
words. The authors have relied on the PubMed
search engine to retrieve relevant documents and
then applied their own snippet extraction meth-
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ods, which is based on number of common do-
main words of the top 10 sentences of the retrieved
documents and the question. Zhang et al. (2015)
have described USTB biomedical QA system in
the 2015 BioASQ challenge. They have built a
generic retrieval model based on the sequential
dependence model, word embedding and ranking
model for document retrieval. After splitting the
top-ranked documents into sentences, the authors
then have applied the same approach for snippets
retrieval. Yang et al. (2016) have described the
OAQA system in BioASQ 4b based on NLP an-
notators, machine learning algorithms for search
result scoring, collective answer re-ranking, and
yes/no answer prediction. Schulze et al. (2016)
have presented HPI biomedical QA system based
on NLP functionality from a in-memory database
(IMDB). The authors have participated in phase
A and B of BioASQ 4b. They have used the
LexRank algorithm and biomedical entity names
for generating ideal answers. Lee et al. (2016)
have described KSAnswer biomedical QA system
that returns relevant documents and snippets in
BioASQ 4b. KSAnswer, which is participated in
phase A of task 4b in the 2016 BioASQ challenge,
retrieves candidate snippets using a cluster-based
language model. Then, it reranks the retrieved top-
N snippets using five independent similarity mod-
els based on shallow semantic analysis.

3 Methods

In this section, we describe the answer extraction
module of our biomedical QA system. Although
our biomedical QA system is composed of many
components (cf. Figure 1) which are included in
three main phases, i.e., question processing, docu-
ment processing, and answer processing, we have
only used its answer extraction module since we
have participated only in phase B (i.e., exact and
ideal answers) of task 5b in BioASQ 2017.

During phase B, BioASQ organizers released
the test set of biomedical questions along with
their relevant documents, relevant snippets, and
questions types, i.e., whether yes/no, factoid, list
or summary. For each question, each participat-
ing system may return an ideal answer, i.e., a
paragraph-sized summary of relevant information.
In the case of yes/no, factoid, and list questions,
the systems may also return exact answers; for
summary questions, no exact answers will be re-
turned. In the following sections (cf. Sections 3.1

and 3.2), we will provide a detailed description
of the proposed methods used to extract exact and
ideal answers for yes/no, factoid, list and summary
questions.

3.1 Exact answers

As it has already been described by the BioASQ
challenge, the participating systems in phase B of
task 5b may return exact answers for yes/no, fac-
toid, and list questions, while no exact answers
will be returned for summary questions.
Yes/No questions: For each yes/no question, the
exact answer of each participating system will
have be either “yes” or “no”. The decision for
the answers “yes” or “no” in our system is ob-
tained by a sentiment analysis-based approach. In-
deed, we first have used the Stanford CoreNLP
(Manning et al., 2014) for tokenization and part-
of-speech tagging one by one the N retrieved snip-
pets (s1, s2, ..., sn) from benchmark datatsets. We
then have assigned a sentiment score using the
SentiWordNet (Baccianella et al., 2010) lexical re-
source to each word in the set of retrieved snippets.
Finally, the decision for the answers “yes” or “no”
is based on the number of positive and negative
snippets.
Factoid questions:

For each factoid question, each participating
system will have to return a list of up to 5 entity
names (e.g., up to 5 names of drugs), numbers,
or similar short expressions, ordered by decreas-
ing confidence. To answer a factoid question in
our biomedical QA system, we have first mapped
both the given question and its N relevant snippets
retrieved from benchmark datasets to the UMLS
metathesaurus in order to extract a set of biomedi-
cal entity names. To do so, the MetaMap2 program
was used (Aronson, 2001). We then re-ranked the
obtained set of biomedical entity names based on
term frequency metrics, i.e., the number of times
an entity name appeared in the set of biomedical
entity names. Indeed, the biomedical entity names
appeared in the question are ignored. We finally
kept the 5 top-ranked biomedical entity names as
answers. A factoid question has one correct an-
swer, but up to five candidate answers are allowed
in BioASQ 2017.
List questions: For each list question, each par-
ticipating system will have to return a single list
of entity names, numbers, or similar short expres-

2https://metamap.nlm.nih.gov/
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sions. The proposed method used to answer list
questions in our system is similar to the one de-
scribed for factoid questions. Indeed, the exact
answer is the same of factoid questions, only the
interpretation is different for list questions: All N
top-ranked biomedical entities are considered part
of the same answer for the list question, not as
candidates. In this work, we have used the five
top-ranked (N = 5) entities as answers for list
questions.

3.2 Ideal answers

To formulate and generate the ideal answers for
a given yes/no, factoid, list or summary ques-
tion, we have used the proposed retrieval model
presented in (Sarrouti and Alaoui, 2017b). More
specifically, after retrieving the N relevant snip-
pets from benchmark datasets to a given biomed-
ical question, we have re-ranked them based on
the BM25 model as retrieval model, stemmed
words and UMLS concepts as features. First, we
have preprocessed the retrieved set of snippets, in-
cluding tokenization using the Stanford CoreNLP
(Manning et al., 2014), removing stop words3, and
applying Porter’ stemmer (Porter, 1980) to ex-
tract stemmed words. Additionally, we have used
MetaMap to map both questions and snippets to
UMLS metathesaurus concepts so as to extract
UMLS concepts. Then, we have re-ranked the set
of snippets using stemmed words and UMLS con-
cepts as features for the BM25 model. Finally, the
ideal answer is obtained by concatenating the two
top-ranked snippets.

4 Experimental results and discussion

In this section, we present the preliminary results
we obtained in BioASQ 2017. We first introduce
the evaluation metrics, then give the experimental
results, and finally discuss the results.

4.1 Evaluation metrics

The evaluation metrics used for the exact answers
in phase B of task 5b are accuracy, strict accu-
racy and lenient accuracy, mean reciprocal rank
(MRR), mean precision, mean recall, and mean
F-measure. Accuracy, MRR and F-measure are
the official measures used for evaluating the ex-
act answers of yes/no, factoid and list questions,
respectively. ROUGE-2 and ROUGE-SU4, on the

3http://www.textfixer.com/resources/
common-english-words.txt

other hand, are the main measures for an automatic
evaluation of ideal answers. Details of these eval-
uations metrics appear in (Balikas et al., 2013).

4.2 Results and discussion

Table 1 highlights the preliminary results of our
system in phase B (i.e., exact and ideal answers)
of BioASQ task 5b. More details on the results
can be found in the BioASQ web site4.

Our system performed well in the challenge
ranking as compared with the participating sys-
tems. In batch 1, it achieved the third and the fifth
position within the 15 participating systems for ex-
tracting the exact answers of list and factoid ques-
tions respectively. More specifically, our system
obtained the second and the third position when
considering results by teams, instead of each in-
dividual run. In batch 2, considering results by
teams, our system obtained the second and the
fourth position for extracting the exact answers of
list and factoid questions respectively. For yes/no
questions, our system achieved the first and the
second position respectively in batch 3 and batch
4, while it obtained the fifteenth position in batch
5.

On the other hand, for the ideal answers, our
system in terms of ROUGE-2 achieved the fourth
position as compared to the 15 and 21 participat-
ing systems in batch 1, batch 2 and batch 3 respec-
tively. While in terms of ROUGE-SU4, our sys-
tem obtained the third position in batch 1 and the
fourth position in batch 2. In batch 4 and batch 5,
our systems achieved respectively the second and
third position within the 27 participating systems
in terms of ROUGE-2 and ROUGE-SU4 when
considering results by teams, instead of each indi-
vidual run. This proves that the proposed method
could effectively identify the ideal answers to a
given biomedical question.

Overall, from the results and analysis on fives
batches of testing data of BioASQ task 5b, we can
draw a conclusion that our system is very compet-
itive as compared with the participating systems in
both exact and ideal answers tasks.

5 Conclusion and future work

In this paper, we presented the obtained results
for the answer extraction module of our biomed-
ical QA system that participated in task 5b of

4http://participants-area.bioasq.org/
results/5b/phaseB/
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Datasets
Exact answers Idial answersYes/No Factoid List

Accuracy MRR P R F ROUGE-2 ROUGE-SU4
Batch 1 0.7647 0.2033

(5/15)
0.1909 0.2658 0.2129

(3/15)
0.4943
(4/15)

0.5108 (3/15)

Batch 2 0.7778 0.0887
(10/21)

0.2400 0.3922 0.2920
(6/21)

0.4579
(4/21)

0.4583 (4/21)

Batch 3 0.8387
(1/21)

0.2212
(9/21)

0.2000 0.4151 0.2640
(6/21)

0.5566
(4/21)

0.5656 (4/21)

Batch 4 0.6207
(2/27)

0.0970
(13/27)

0.1077 0.2013 0.1369
(12/27)

0.5895
(4/27)

0.5832 (4/27)

Batch 5 0.4615
(15/25)

0.2071
(9/25)

0.2091 0.3087 0.2438
(11/25)

0.5772
(7/25)

0.5756 (7/25)

Table 1: The primarily results of our system in phase B of BioASQ task 5b. P, R, and F indicate
precision, recall, and F-measure, respectively. The values inside parameters indicate our current rank
and the total number of submissions for the batch.

the 2017 BioASQ challenge. The proposed ap-
proach is based on (1) the SentiWordNet lexi-
cal resource to generate the exact answers for
yes/questions, (2) UMLS metathesaurus and term
frequency metrics for answering factoid and list
questions, (3) our retrieval model based on UMLS
concepts and the BM25 model for generating the
ideal answers. The preliminary results show that
our system achieved good performances and is
very competitive as compared with the participat-
ing systems.

In future research, we intend to present the end-
to-end evaluations of our biomedical QA system
which includes question classification, document
retrieval, passage retrieval, and answer extraction
components.
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Abstract

Word embeddings are a crucial compo-
nent in modern NLP. Pre-trained embed-
dings released by different groups have
been a major reason for their popularity.
However, they are trained on generic cor-
pora, which limits their direct use for do-
main specific tasks. In this paper, we pro-
pose a method to add task specific infor-
mation to pre-trained word embeddings.
Such information can improve their util-
ity. We add information from medical cod-
ing data, as well as the first level from
the hierarchy of ICD-10 medical code
set to different pre-trained word embed-
dings. We adapt CBOW algorithm from
the word2vec package for our purpose. We
evaluated our approach on five different
pre-trained word embeddings. Both the
original word embeddings, and their mod-
ified versions (the ones with added infor-
mation) were used for automated review of
medical coding. The modified word em-
beddings give an improvement in f-score
by 1% on the 5-fold evaluation on a pri-
vate medical claims dataset. Our results
show that adding extra information is pos-
sible and beneficial for the task at hand.

1 Introduction

Word embeddings are a recent addition to an NLP
researcher’s toolkit. They are dense, real-valued
vector representations of words that capture inter-
esting properties among them. Word embeddings
are learned from raw corpora. Usually, the larger
the corpora, the better is the quality of the em-
beddings learned. However, the larger the cor-
pora, the larger is the amount of resources and time
needed for their training. Thus, different groups
release their learned embeddings publicly. Such

pre-trained embeddings is a primary reason for the
inclusion of word embeddings in mainstream NLP.
However, such pre-trained embeddings are usually
learned on generic corpora. Using such embed-
dings in a particular domain such as medical do-
main leads to following problems:

• No embeddings for domain-specific words.
For example, phenacetin is not present in pre-
trained vectors released by Google.

• Even those words that do have embeddings,
may have a poor quality of the embedding,
due to different senses of the words, some of
which belonging to different domains.

It is difficult to obtain large amounts of domain-
specific data. However, many NLP applications
have benefited from the addition of information
from small domain-specific corpus to that ob-
tained from a large generic corpus (Ito et al.,
1997). This raises the following questions:

• Can we use additional domain-specific data
to learn the missing embeddings?

• Can we use additional domain-specific data
to improve the quality of already available
embeddings?

In this paper, we address the second question:
Given pre-trained word embeddings, and domain
specific data, we tune the pre-trained word em-
beddings such that they can achieve better perfor-
mance. We tune the embeddings for and evaluate
them on an automated review of medical coding.

The rest of the paper is organized as follows:
Section 2 provides some background on different
notions used later in the paper. Section 3 moti-
vates our approach through examples. Section 4
explains our approach in detail. Section 5 enlists
the experimental setup. Section 6 details the re-
sults and analysis, followed by conclusion and fu-
ture work.
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2 Background

2.1 Word Embeddings

Word embeddings are a crucial component of
modern NLP. They are learned in an unsupervised
manner from large amounts of raw corpora. Ben-
gio et al. (2003) were the first to propose neural
word embeddings. Many word embedding mod-
els have been proposed since then (Collobert and
Weston, 2008; Huang et al., 2012; Mikolov et al.,
2013; Levy and Goldberg, 2014). The central idea
behind word embeddings is the distributional hy-
pothesis, which states that words which are simi-
lar in meaning occur in similar contexts (Ruben-
stein and Goodenough, 1965). Consider the Con-
tinuous Bag of Words model by (Mikolov et al.,
2013), where the following problem is poised to
a neural network: given the context, predict the
word that comes in between. The weights of
the network are the word embeddings. Training
the model over running text brings embeddings of
words with similar meaning closer.

2.2 Medical Coding

Medical coding is the process of assigning prede-
fined alphanumeric medical codes to information
contained in patient medical records.

Babre et al. (2010) shows a typical medical cod-
ing pipeline. Note that the coding (both automatic
and/or manual) is followed by a manual review.
This is due to the critical nature of the coding pro-
cess, and the high cost incurred due to any errors.
However, any human involvement increases cost
both in terms of time and money. Thus, in order to
reduce human involvement in the review process,
an automatic review component can be inserted
just before the human review. Automated review-
ing is a binary classification problem. Those in-
stances that are rejected by the automated review
component can be directly sent back for recoding,
whereas those instances that are accepted by the
automated review component should be sent to hu-
man reviewers for further checking. Such a modi-
fication decreases the load on the human reviewer,
thereby reducing the cost of overall pipeline.

Given the textual nature of medical data, many
natural language processing challenges manifest
themselves while performing either automated
medical coding or automated review of medical
coding. Common challenges include, but are not
limited to:

• Synonymy: Multiple words can have same
meaning (Synonym). For instance, High
Blood Sugar and Diabetes have the same
meaning.

• Abbreviation: Medical staff, in their hurry,
often abbreviate words and sentences. For in-
stance, hypertension can be written as HTN.
The automated system needs to understand
that both these strings ultimately mean the
same thing.

One can note that both in case of synonym and
abbreviations, the context will be almost same.
Thus, word embeddings are well suited to handle
both these challenges.

3 Motivation

Consider the following medical terms (the abbre-
viations in parentheses will be used to refer to the
terms later):
- High Blood Pressure (HBP)
- Low Blood Pressure (LBP)
- High Blood Sugar (HBS)
- Liver Failure (LF)
- Diabetes (D)
- Hypertension
- HTN

We would ideally like the embeddings of the
terms to be learned such that the following con-
straints hold:

• Similarity (HBP, HBS) should be higher than
Similarity (HBP, LBP), which in turn, should
be higher than Similarity (HBP, LF) (as per
medical knowledge).

• Similarity (HBS, D) should be high (as they
are synonyms).

• Similarity (Hypertension, HTN) should be
high (as HTN is abbreviation of hyperten-
sion).

Information about such relations might not be
available in generic corpus on which most pre-
trained embeddings are trained. However, it might
be available in domain specific corpora, or even
labeled data, such as those used in medical claims.
Approaches that can add that information to pre-
trained embeddings will definitely improve their
utility.
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4 Approach

We adapt the Continuous Bag Of Words (CBOW)
approach (Mikolov et al., 2013) for our situation.
Given labeled medical claims data, we consider
the terms in the transcripts as context words, and
the corresponding codes as target word. We have
both positive and negative samples in our data.
Thus we have both normal samples as well as neg-
ative samples needed for applying negative sam-
pling.

Figure 1: Network architecture of our approach

Figure 1 shows the network of our approach.
The inputs to the network are a bag of words rep-
resentation of medical terms, and a one-hot repre-
sentation of the corresponding code. The output of
the network is a binary value indicating whether
the input code is accepted for the corresponding
input medical terms.

Exploiting ICD10 Code hierarchy

Another information that can be included is the hi-
erarchical nature of the ICD10 code set. Currently,
the network considers the error of misclassifying
codes in same subcategory, say F32.9 and F11.20,
the same as the error of misclassifying codes be-
longing to different subcategories, say F32.9 and
30233N1. Ideally, error(F32.9, F11.20) should be
less than error(F32.9, E87.1), which in turn should
be less than error(F32.9, 30233N1). Such hierar-
chical information can be encoded by a network
like the one in figure 2. Due to resource and time
constraints, we have currently considered only the
top level hierarchy, i.e. whether the code is ICD-
10 Diagnosis or ICD-10 Procedural.

The learned weights between Proj1 and codes
input in hierarchy network (figure 2) are used to
initialize the weights between Proj2 and codes in
the original network (figure 1). Then the original
network is trained as usual. The weights between

Figure 2: Encoding hierarchy information

Proj1 and medical terms in the original network
are the modified word embeddings.

5 Experimental Setup

5.1 Dataset

We used a private medical claims review dataset,
which we cannot release publicly due to privacy
concerns. The dataset consists of 280k records,
consisting of medical terms along with a code.
Each entry is labeled as accept or reject, depend-
ing on whether the entry has correct code, or
whether it was sent for recoding.

5.2 Pre-trained word embeddings

We used 5 different pre-trained word embed-
dings. The first one is the one released along with
Google’s word2vec toolkit. The remaining four
are medical domain specific, and were released by
(Pyysalo et al., 2013). They are as follows:

• PMC: Trained on 4 million PubMed Central’s
full articles

• PubMed: Trained on 26 million abstracts and
citations in PubMed.

• PubMed PMC: Trained on combination of
previous two resources

• Wikipedia PubMed PMC: Trained on com-
bination of Wikipedia, PubMed and PMC re-
sources.

5.3 Classifiers

Once we tune the embeddings, we use them to
learn a binary classifier. For our experiments, we
report the results we got by using logistic regres-
sion..
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Medical Knowledge Synonym Abbreviation
HBP,HBS HBP,LBP HBP,LF HBS,Diabetes Hypertension,HTN

Google
Orig 0.534 0.895 0.181 0.293 0
Mod 0.549 0.640 0.089 0.350 -0.004

PMC
Orig 0.599 0.980 0.173 0.141 0.608
Mod 0.638 0.477 -0.054 0.221 0.947

PubMed
Orig 0.529 0.970 0.006 0.091 0.465
Mod 0.636 0.474 -0.090 0.188 0.952

PubMed PMC
Orig 0.592 0.976 0.116 0.141 0.575
Mod 0.641 0.450 -0.039 0.241 0.952

Wikipedia
PubMed PMC

Orig 0.595 0.976 0.158 0.156 0.617
Mod 0.653 0.474 -0.061 0.190 0.950

Table 1: Cosine similarities of pairs of examples from Section 3

Pre-trained
Embeddings

Original
Embeddings

Modified
Embeddings

Google 82.78 83.37
PMC 82.93 83.96
PubMed 83.18 84.00
PubMed PMC 82.88 83.92
Wikipedia
PubMed PMC

83.12 83.91

Table 2: Average 5-fold cross validation F-score
on automated review of medical coding

6 Results and Analysis

Table 2 shows the results of 5-fold evaluation on
automated review of medical coding. Note that
the modified embeddings consistently outperform
the original ones for all pre-trained embeddings
that we used. The reason behind this improve-
ment is evident from the analysis table 1 where
we show how the constraints are better modeled
by the modified embeddings (Mod) as compared
to the original embeddings (Orig).

7 Related Work

Word embeddings have proved to be useful for
various tasks, such as Part of Speech Tagging
(Collobert and Weston, 2008), Named Entity
Recognition Sentence Classification (Kim, 2014),
Sentiment Analysis (Liu et al., 2015), Sarcasm
Detection (Joshi et al., 2016). Medical domain
specific pre-trained word embeddings were re-
leased by different groups, such as Pyysalo et al.
(2013), Brokos et al. (2016), etc. Wu et al. (2015)
apply word embeddings for clinical abbreviation
disambiguation.

8 Conclusion and Future Work

In this paper, we proposed a modification of the
CBOW algorithm to add task and domain specific
information to pre-trained word embeddings. We
added information from a medical claims dataset
and the ICD-10 code hierarchy to improve the util-
ity of the pre-trained word embeddings. We ob-
tained an improvement of approximately 1% us-
ing the modified word embeddings as compared
to using the original word embeddings. Such im-
provement was achieved by including only the top
level hierarchy. We hypothesize that using the full
hierarchy will lead to better improvements, which
we shall investigate in the future.
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Abstract

Many tasks in the biomedical domain re-
quire the assignment of one or more pre-
defined labels to input text, where the la-
bels are a part of a hierarchical structure
(such as a taxonomy). The conventional
approach is to use a one-vs.-rest (OVR)
classification setup, where a binary clas-
sifier is trained for each label in the tax-
onomy or ontology where all instances not
belonging to the class are considered nega-
tive examples. The main drawbacks to this
approach are that dependencies between
classes are not leveraged in the training
and classification process, and the addi-
tional computational cost of training par-
allel classifiers. In this paper, we apply
a new method for hierarchical multi-label
text classification that initializes a neural
network model final hidden layer such that
it leverages label co-occurrence relations
such as hypernymy. This approach ele-
gantly lends itself to hierarchical classifi-
cation. We evaluated this approach using
two hierarchical multi-label text classifica-
tion tasks in the biomedical domain using
both sentence- and document-level classi-
fication. Our evaluation shows promising
results for this approach.

1 Introduction

Many tasks in biomedical natural language pro-
cessing require the assignment of one or more la-
bels to input text, where there exists some struc-
ture (such as a taxonomy or ontology) between the
labels: for example, the assignment of Medical
Subject Headings (MeSH) to PubMed abstracts
(Lipscomb, 2000).

A typical approach to classifying multi-label

documents is to construct a binary classifier for
each label in the taxonomy or ontology where all
documents not belonging to the class are consid-
ered negative examples, i.e. one-vs.-rest (OVR)
classification (Hong and Cho, 2008). This ap-
proach has two major drawbacks: first, it makes
the hard assumption that the classes are indepen-
dent which often does not reflect reality; second,
it is more computationally expensive (albeit by a
constant factor): if there are a very large number
of classes, the approach becomes computationally
unrealistic.

In this paper, we investigate a simple and com-
putationally fast approach for multi-label classifi-
cation with a focus on labels that share a structure,
such as a hierarchy (taxonomy). This approach
can work with established neural network archi-
tectures such as a convolutional neural network
(CNN) by simply initializing the final output layer
to leverage the co-occurrences between the labels
in the training data.

Figure 1: Hierarchical multi-label classification.
Nodes represent possible labels that can be as-
signed to text: a dark grey node denotes an explicit
label assignment and light grey denotes implicit
assignment due to a hypernymy relationship with
the explicitly assigned label.

307



First, we need to define hierarchical multi-label
classification. In multi-label text classification, in-
put text can be associated with multiple labels (la-
bel co-occurrence). When the labels form a hi-
erarchy, they share a hypernym–hyponym relation
(Figure 1). When multiple labels are assigned to
the text, if it is explicitly labeled by a subclass it
must also implicitly include all of the its super-
classes.

The co-occurrence between subclasses and su-
perclasses as labels for the input text contains in-
formation we would like to leverage to improve
multi-label classification using a neural network.

In this paper we experiment with this approach
using two hierarchical multi-label text classifica-
tion tasks in the biomedical domain, using both
document- and sentence-level classification.

We first briefly summarize related literature on
the topic of multi-label classification using neural
networks, we then describe our methodology and
evaluation procedure, and then we present and dis-
cuss our results.

2 Related work

There have been numerous works that focus on
solving hierarchical text classification. Sun and
Lim (2001) proposed top-down level-based SVM

classification. More recently, Sokolov and Ben-
Hur (2010); Sokolov et al. (2013) predict ontol-
ogy terms by explicitly modeling the structure hi-
erarchy using kernel methods for structured output
space. Clark and Radivojac (2013) use a Bayesian
network, structured according to the underlying
ontology to model the prior probability.

Within the context of neural networks, Kurata
et al. (2016) propose a scheme for initializing neu-
ral networks hidden output layers by taking into
account multi-label co-occurrence. Their method
treats some of the neurons in the final hidden layer
as dedicated neurons for each pattern of label co-
occurrence. These dedicated neurons are initial-
ized to connect to the corresponding co-occurring
labels with stronger weights than to others. They
evaluated their approach on the RCV1-v2 dataset
(Lewis et al., 2004) from the general domain, con-
taining only flat labels. Their evaluation shows
promising results. However, their applicability to
the biomedical domain with more a complex set
of labels that share a hierarchy remains an open
question.

Chen et al. (2017) propose a convolutional

neural network (CNN) and recurrent neural net-
work (RNN) ensemble method that is capable of
efficiently representing text features and mod-
eling high-order label correlation (including co-
occurrence). However, they show that their
method is susceptible to overfitting with small
datasets.

Cerri et al. (2014) propose a method for hierar-
chical multi-label text classification that incremen-
tally trains a multi-layer perceptron for each level
of the classification hierarchy. Predictions made
by a neural network in a given level are used as in-
puts to the neural network responsible for the pre-
diction in the next level. Their method was eval-
uated against several datasets with convincing re-
sults.

There are also several relevant works that pro-
pose the inclusion of multi-label co-occurrence
into loss functions such as pairwise ranking loss
(Zhang and Zhou, 2006) and more recent work by
Nam et al. (2014), who report that binary cross-
entropy can outperform the pairwise ranking loss
by leveraging rectified linear units (ReLUs) for
nonlinearity.

3 Method

In this section, we describe the approach of initial-
izing a neural network for multi-label classifica-
tion. We base our CNN architecture on the model
of Kim (2014), which has been used widely in text
classification tasks, but this approach can be ap-
plied to any other architecture.

Briefly, this model consists of an initial embed-
ding layer that maps input texts into matrices, fol-
lowed by convolutions of different filter sizes and
1-max pooling, and finally a fully connected layer.
The architecture is illustrated in Figure 2.

To perform multi-label classification using this
architecture, the final output layer uses logistic
(sigmoid) activation function σ:

σ(x) =
1

1 + e−x
(1)

where x is the input signal. The output range of the
function is between zero and one; if it is above a
cut-off threshold Tσ (which is tuned by grid search
on the development dataset) then the prediction y′k
for label yk is positive. We use a binary cross-
entropy loss function L:
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L(θ, (x, y)) = −
K∑
k=1

yk log(y′k)+(1−yk) log(1−y′k)
(2)

where θ is the model parameters and K is the
number of classes.

As shown in Figure 2, the multi-label initial-
ization happens in output layer of the network.
Figure 3 illustrates the initialization process. The
rows represent the units in the final hidden layer,
while the columns represent the output classes.

The idea is to initialize the final hidden layer
with rows that map to co-occurrence of labels
in the training data. This can be implicit hy-
pernymy relations between the labels, or explicit
co-occurrence in the annotation. For each co-
occurrence, the value ω is assigned to the associ-
ated classes and a value of zero is assigned to the
rest. The value ω is the upper bound of the normal-
ized initialization proposed by Glorot and Bengio
(2010), which is calculated as follows:

ω =
√

6√
nh + nk

(3)

where nh is the number of units in the final hidden
layer and nk is the number of units in the output
layer (i.e. classes). This value was also success-
fully used by Kurata et al. (2016) in their initial-
ization procedure.

The motivation for this initialization is to incline
units in the hidden layer to be dedicated to repre-
senting co-occurrence of labels by triggering only
the corresponding label nodes in the output layer
when they are active.

The number of units in the final hidden layer can
exceed the number of label co-occurrences in the
training data. We must therefore decide what to
do with the remaining hidden units. Kurata et al.
(2016) assign random values to these units (shown
in Figure 3 (B)). We will also use this scheme, but
in addition we propose another variant: we assign
the value zero for these neurons, so that the hid-
den layer will only be initialized with nodes that
represent label co-occurrence.

We implement the neural network and the ini-
tialization using Keras (Chollet, 2015). the hyper-
parameters for our model and baselines are those
of Kim (2014), summarized in Table 1.

We use word2vec embeddings trained on
PubMed by Chiu et al. (2016).

Hyperparameter Value

Word vector size 300
Filter sizes 3, 4, and 5
Number of filters 300 (100 of each size)
Dropout probability 0.5
Minibatch size 50
Input size (in tokens) 500 (documents), 100 (sentences)

Table 1: Our baseline model, based on Kim (2014)
model hyperparameters.

4 Data

We investigate our approach using two multi-label
classification tasks. In this section, we describe
the nature of these tasks and the annotated gold
standard data.

Task 1: The Hallmarks of Cancer The Hall-
marks of Cancer describe a set of interrelated bi-
ological properties and behaviors that enable can-
cer to thrive in the body. Introduced in the sem-
inal paper by Hanahan and Weinberg (2000)—
the most cited paper in the journal Cell—the hall-
marks of cancer have seen widespread use in
BioNLP for many systems and works, including
the BioNLP Shared Task 2013, ‘Cancer Genetics
task’ (Pyysalo et al., 2013), which involved the ex-
traction of events (i.e. biological processes) from
cancer-domain texts. Baker et al. (2016) have re-
leased an expert-annotated dataset for cancer hall-
mark classification for both sentences and docu-
ments from PubMed. The data consists of multi-
labelled documents and sentences using a taxon-
omy of 37 classes.

Task 2: The exposure taxonomy Larsson et al.
(2017) introduce a new task and an associated an-
notated dataset for the classification of text (doc-
uments or sentences) for chemical risk assess-
ment: more specifically, the assessment of ex-
posure routes (such as ingestion, inhalation, or
dermal absorption) and human biomonitoring (the
measurement of exposure biomarkers). The tax-
onomy of 32 classes is divided into two branches:
Biomonitoring and Exposure routes.

We split both datasets (by documents) into train,
development (dev), and test splits in order to eval-
uate our methodology. Table 4 summarizes key
statistics for these splits.
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Figure 2: Convolutional Neural Network (CNN) architecture with the initialization layer outlined. The
CNN architecture is based on the model of Kim (2014).
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Figure 3: The two initialization schemes: (A) ini-
tializing non label co-occurrence nodes with zero,
(B) initializing non label co-occurrence with a ran-
dom value (#) drawn from a uniform distribution.

Task 1 Task 2

Document Sentence Document Sentence

Train 1,303 12,279 2,555 25,307
Dev 183 1,775 384 3,770
Test 366 3,410 722 7,100
Total 1,852 17,464 3,661 36,177

Table 2: Summary statistics for Tasks 1 and 2.

We also measure the overlap in the data between
pairs of labels. We use Jaccard similarity J to
measure this overlap using the following equation:

J(A,B) =
A ∩B
A ∪B (4)

Where A and B are sets of instances labelled
with these classes. Table 4 summarizes the aver-
age and maximum pairwise Jaccard similarity be-
tween the labels in both tasks.

Table 4 shows that Task 1 labels have slightly
more overlap than those of Task 2.

Task 1 Task 2

Document Sentence Document Sentence

Avg 4.1 2.3 5.7 3.0
Max 49.3 49.4 45.7 42.5

Table 3: Jaccard similarity scores (expressed as
percentages) between label pairs.

The large difference in values between docu-
ment and sentence label overlap is due to the fact
that documents have more labels per instance than
sentences. The average score is much lower as
most pair combinations would not have overlaps;
where there is overlap it is typically significant (as
shown by the Max row in Table 4).

5 Evaluation

In this section, we describe our experimental setup
and our baselines.

5.1 Experimental setup
We ascertain the performance of our approach un-
der a controlled experimental setup. We compare
two baseline models (described in the next sec-
tion), and two variants of the initialization mod-
els corresponding to the two initialization schemes
described in Figure 3. We will refer to the first
scheme (allocating all units in the final hidden
layer to representing label co-occurrences and ze-
roing all other units) as INIT-A, and the second
scheme (allocating a random value drawn from a
uniform distribution for non co-occurrence hidden
units) as INIT-B. We use the hyperparameters in
Table 1 and data splits in Table 4 for all models.

We check the model’s performance (F1-score)
on development data at the end of every epoch. We

310



select the model from the best-performing epoch
and train it until its performance does not improve
for ten epochs.

5.2 Baselines

We compare two baselines in our setup: one-
vs.-rest (OVR) and multi-label baseline (MULTI-
BASIC)

One-vs.-rest (OVR) We train and evaluate K in-
dependent binary CNN classifiers (i.e. a single
classifier per class with the instances of that class
as positive samples and all other instances as neg-
atives).

Multi-label baseline (MULTI-BASIC) We train
and evaluate a multi-label baseline based on Fig-
ure 2 without initialization of the final hidden
layer. This enables us to directly compare the
effect of the initialization step. As with the ini-
tialization models (INIT-A and INIT-B), we grid
search the sigmoid cut-off parameter Tσ on the de-
velopment data at the end of each epoch to be used
with the selected best model on the test split.

5.3 Post-processing label correction

The predicted output labels from all of our mod-
els can be inconsistent with respect to the label hi-
erarchy: a subclass label might be positive while
its superclass is negative, thereby contradicting the
hypernmy relation (illustrated in Figure 4 (A)).

We can apply two kinds of post-processing cor-
rections to the predicted labels in order for them
to be well-formed. We call the first transitive cor-
rection (Figure 4 (B)), wherein we correct all su-
perclass labels (transitively) to be positive. The
alternative is retractive correction (Figure 4 (C)),
where we ignore the positive classification of the
subclass label, and accept only the chain of su-
perclass labels (from the root), as long as they are
well-formed.

We apply both of these post-processing correc-
tion policies to all of the models, and observe the
effect on their performance.

6 Results

In this section, we describe the results for the eval-
uation setup described in the last section. We as-
sess the performance of the models by measuring
the precision (P), recall (R), and F1-scores of the
labels in the model using the one-vs.-rest setup.

Document Sentence

P R F1 P R F1

Task 1
OVR 77.8 51.7 62.1 56.8 30.7 39.9
MULTI-BASIC 71.0 71.6 71.3 42.0 71.9 53.0
INIT-A 73.4 76.9 75.1 42.7 70.6 53.2
INIT-B 68.3 83.4 75.1 40.1 72.2 51.6

Task 2
OVR 89.5 87.1 88.3 66.2 62.8 64.5
MULTI-BASIC 86.0 90.0 88.0 51.7 75.6 61.4
INIT-A 86.7 91.1 88.9 49.5 80.7 61.4
INIT-B 75.7 91.3 82.8 47.0 83.2 60.1

Table 4: Performance results for Tasks 1 and 2.
All figures are micro-averages expressed as per-
centages.

Table 6 shows the micro-averaged scores across
all labels for both tasks.

The results show that for Task 1, all multi-
labeled models significantly outperform the OVR

model in F1-score, which is explained by a very
substantial improvement in recall. INIT-A outper-
forms all models in this task, particularly at the
document level where there is 5 point improve-
ment over MULTI-BASIC.

The results for Task 2 on are more mixed. Over-
all, all models achieve a similar F1-score at the
document level. However, there is a clear im-
provement in recall at the cost of lower preci-
sion when compared to OVR. The best perform-
ing model at the document level is INIT-A. On the
sentence level, OVR seems to outperform all multi-
label models by a good margin. This indicates that
the multi-label approach did not aid sentence-level
classification in this particular task.

The figures in Table 6 do not show a complete
picture as the interactions between the labels are
not taken into account.

We can observe the proportion of the number
of labels assigned to each instance by the classi-
fiers, and compare these proportions to the anno-
tated gold standard test data. Figure 5 shows this
distribution for each classifier. We can see in Fig-
ure 5 that the overall distributions for all sentence-
level classifiers (for both tasks) are closer to the
gold standard distribution (compared to document
level). This is due to the fact that most sentences
have no assigned labels. For Task 2, the classifiers
tend to assign more labels than the gold standard.

Document-level classification shows two out-
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A B C

Figure 4: Illustrating post-processing label correction, with (A) showing the output prediction from the
neural network model, (B) applying transitive correction, (C) applying retractive correction.

liers. For Task 1, we observe that OVR dispropor-
tionately assigns exactly one label per document
compared to gold standard (where documents have
two to three labels on average). In Task 2, INIT-B

assigns more labels per document than the gold
standard (and every other model).

In addition to looking at the number of labels
per class, we also measure the proportion of exact
label matches that each model predicts as shown
in Table 6.

Task 1 Task 2

Doc. Sent. Doc. Sent.

OVR 18.0 67.9 43.4 61.7
MULTI-BASIC 26.2 59.3 40.9 54.2
INIT-A 33.9 65.9 45.6 53.1
INIT-B 31.3 62.6 12.7 49.7

Table 5: The proportion (%) of exact matches.

For document classification in Task 1, INIT-A

outperforms all models, while OVR significantly
underperforms. However, OVR performs signif-
icantly better than all other models when classi-
fying sentences when considering exact matches
only.

Finally, we look at how consistent (well-
formed) the predictions output by each model are.
We do this by running the post-processing label
correction policies described in Section 5.3. Ta-
ble 6 summarizes these results.

For Task 1, OVR shows the largest variance af-
ter the application of any method of correction,
whereas no multi-labeled model shows this vari-
ation. This indicates that the post-processing cor-
rections had little effect on the predicted results as
they were already well-formed. For Task 2, there
is very little variance for all multi-labeled models,
with only a slight change for OVR.

Document Sentence

O T R O T R

Task 1
OVR 62.1 63.9 60.6 39.9 42.2 37.5
MULTI-BASIC 71.3 71.3 71.2 53.0 53.0 53.0
INIT-A 75.1 75.0 75.2 53.2 53.2 53.3
INIT-B 75.1 74.9 75.3 51.6 51.5 51.6

Task 2
OVR 88.3 88.4 88.2 64.5 65.3 63.3
MULTI-BASIC 88.0 87.7 88.1 61.4 61.3 61.7
INIT-A 88.9 88.7 89.0 61.4 61.3 61.5
INIT-B 82.8 82.8 82.8 60.1 59.8 60.4

Table 6: Post-processing label correction. O is
the predicted output, T is transitive correction, and
R is retractive correction. All figures are micro-
averaged F1-scores expressed as percentages.

7 Discussion

The strength of using the hidden-layer initializa-
tion for multi-label classification lies in leverag-
ing the co-occurrence between labels. Naturally,
if such co-occurrences are relatively rare in the
dataset, then this approach becomes less effective.
This implies that this approach is especially at-
tractive for hierarchical multi-label classification,
because of the implicit hypernym–hyponym rela-
tions between the labels, which by definition guar-
antees co-occurrence of labels in the datasets. The
superclass labels must be included when labeling
a given example in order to model the hierarchical
nature of the labels.

Another key strength of this approach is its low
computational cost, which is only proportional to
the size of the input text, and the number of label
co-occurrences.

However, when there is a large amount of train-
ing data, the number of label co-occurrences can
be larger than the number of the hidden units. In
such a case, one possible option is to select an ap-
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Figure 5: The distribution of instances according to the number labels per instance. The number of labels
per instance (x-axis), and y-axis is the proportion of instances in the test dataset that have that number
of labels. The black line indicates the distribution of the gold standard annotation (i.e. ground truth).

propriate subset of label co-occurrences using a
certain criteria such as the frequency in the train-
ing data. For the datasets used in this paper, this
was not necessary.

Overall, the results of the evaluation show
that initializing the model using only label co-
occurrences (INIT-A) generally produced a higher
performance compared to the other models, in-
cluding the random initialization of remaining hid-
den units in the final hidden layer (the INIT-B

model) as proposed by Kurata et al. (2016). How-
ever, there was one key exception in Task 2 sen-
tence level classification, where the one-vs.-rest
OVR model achieved the best results.

Both variants of the initialization models in-
vestigated here achieved generally positive results
when the scope of text is larger (i.e. documents),
where there are more labels assigned per text in-
stance. However, due to time and computational
constraints, this initialization method was not fully
utilized as we could only investigate its perfor-
mance under a closed set of hyperparamaters for
the CNN model.

It may be possible for this approach to yield
even better results if further parameters are in-

cluded in the CNN models (e.g. more filters and
filter sizes). It is also important to note that col-
lectively the one-vs.-rest models have much more
parameters than any of the the multi-label models
in our experiment setup, and therefore they have
a higher capacity to capture correlations. In spite
of this, the multi-label models have largely outper-
formed the OVR model.

8 Conclusions

There are many tasks in the biomedical domain
that require the assignment of one or more labels
to input text. These labels often exists within some
hierarchical structure (such as a taxonomy).

The conventional approach is to use a one-
vs.-rest classification setup: a binary classifier is
trained for each label in the taxonomy or ontol-
ogy where all instances not belonging to the class
are considered negative examples. The main draw-
backs to this approach are that dependencies be-
tween classes are not leveraged in the training and
classification process, and the additional computa-
tional cost of training a classifier for each class.

We applied a new method for multi-label clas-
sification that initializes a neural network model
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final hidden layer to leverage label co-occurrence.
This approach elegantly lends itself to hierarchical
classification.

We evaluated this approach using two hierarchi-
cal multi-label classification tasks using both sen-
tence and document level classification. We use
a baseline CNN model with a sigmoid output for
each class, and a binary cross-entropy loss func-
tion. We investigated two variants of the initial-
ization procedure. One used only co-occurrence
(and hierarchical information), while the other
randomly assigned random values to the remain-
ing hidden units in the final hidden layer as pro-
posed by Kurata et al. (2016). The experimental
results for both tasks show that overall, our pro-
posed initialization procedure (INIT-A) achieved
better results than all of the the other models, with
the exception of sentence-level classification in
Task 2, where one-vs.-rest classification attained
the best result. We believe that this approach
shows promising potential for improving the per-
formance for hierarchical multi-label text classifi-
cation tasks.

For future work, we plan to try different ini-
tialization schemes in addition to the upper bound
parameter by Glorot and Bengio (2010) that was
used in the paper, and the application of this ap-
proach to other tasks and datasets such as Medical
Subject headings (MeSH) text classification.
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Abstract

Biomedical events describe complex inter-
actions between various biomedical enti-
ties. Event trigger is a word or a phrase
which typically signifies the occurrence of
an event. Event trigger identification is an
important first step in all event extraction
methods. However many of the current
approaches either rely on complex hand-
crafted features or consider features only
within a window. In this paper we pro-
pose a method that takes the advantage
of recurrent neural network (RNN) to ex-
tract higher level features present across
the sentence. Thus hidden state represen-
tation of RNN along with word and entity
type embedding as features avoid relying
on the complex hand-crafted features gen-
erated using various NLP toolkits. Our ex-
periments have shown to achieve state-of-
art F1-score on Multi Level Event Extrac-
tion (MLEE) corpus. We have also per-
formed category-wise analysis of the re-
sult and discussed the importance of var-
ious features in trigger identification task.

1 Introduction

Biomedical events play an important role in im-
proving biomedical research in many ways. Some
of its applications include pathway curation (Ohta
et al., 2013) and development of domain spe-
cific semantic search engine (Ananiadou et al.,
2015). So as to gain attraction among researchers
many challenges such as BioNLP’09 (Kim et al.,
2009), BioNLP’11 (Kim et al., 2011), BioNLP’13
(Nédellec et al., 2013) have been organized and
many novel methods have also been proposed ad-
dressing these tasks.

Figure 1: Example of a complex biomedical event

An event can be defined as a combination of
a trigger word and arbitrary number of argu-
ments. Figure 1 shows two events with trigger
words as “Inhibition” and “Angiogenesis” of trig-
ger types “Negative Regulation” and “Blood Vessel
Development” respectively. Pipelined based ap-
proaches for biomedical event extraction include
event trigger identification followed by event ar-
gument identification. Analysis in multiple stud-
ies (Wang et al., 2016b; Zhou et al., 2014) reveal
that more than 60% of event extraction errors are
caused due to incorrect trigger identification.

Existing event trigger identification models
can be broadly categorized in two ways: rule
based approaches and machine learning based
approaches. Rule based approaches use various
strategies including pattern matching and regular
expression to define rules (Vlachos et al., 2009).
However, defining these rules are very difficult,
time consuming and requires domain knowledge.
The overall performance of the task depends on
the quality of rules defined. These approaches of-
ten fail to generalize for new datasets when com-
pared with machine learning based approaches.
Machine learning based approaches treat the trig-
ger identification problem as a word level classi-
fication problem, where many features from the
data are extracted using various NLP toolkits
(Pyysalo et al., 2012; Zhou et al., 2014) or learned
automatically (Wang et al., 2016a,b).

In this paper, we propose an approach using
RNN to learn higher level features without the re-
quirement of complex feature engineering. We
thoroughly evaluate our proposed approach on
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MLEE corpus. We also have performed category-
wise analysis and investigate the importance of
different features in trigger identification task.

2 Related Work

Many approaches have been proposed to ad-
dress the problem of event trigger identification.
Pyysalo et al. (2012) proposed a model where var-
ious hand-crafted features are extracted from the
processed data and fed into a Support Vector Ma-
chine (SVM) to perform final classification. Zhou
et al. (2014) proposed a novel framework for trig-
ger identification where embedding features of the
word combined with hand-crafted features are fed
to SVM for final classification using multiple ker-
nel learning. Wei et al. (2015) proposed a pipeline
method on BioNLP’13 corpus based on Condi-
tional Random Field (CRF) and Support vector
machine (SVM) where the CRF is used to tag
valid triggers and SVM is finally used to identify
the trigger type. The above methods rely on var-
ious NLP toolkits to extract the hand-crafted fea-
tures which leads to error propagation thus affect-
ing the classifier’s performance. These methods
often need to tailor different features for different
tasks, thus not making them generalizable. Most
of the hand-crafted features are also traditionally
sparse one-hot features vector which fail to cap-
ture the semantic information.

Wang et al. (2016b) proposed a neural net-
work model where dependency based word em-
beddings (Levy and Goldberg, 2014) within a win-
dow around the word are fed into a feed for-
ward neural network (FFNN) (Collobert et al.,
2011) to perform final classification. Wang et al.
(2016a) proposed another model based on convo-
lutional neural network (CNN) where word and
entity mention features of words within a window
around the word are fed to a CNN to perform fi-
nal classification. Although both of the methods
have achieved good performance they fail to cap-
ture features outside the window.

3 Model Architecture

We present our model based on bidirectional RNN
as shown in Figure 2 for the trigger identification
task. The proposed model detects trigger word as
well as their type. Our model uses embedding fea-
tures of words in the input layer and learns higher
level representations in the subsequent layers and

Figure 2: Model Architecture

makes use of both the input layer and higher level
features to perform the final classification. We
now briefly explain about each component of our
model.

3.1 Input Feature Layer

For every word in the sentence we extract two
features, exact word w ∈ W and entity type e ∈
E. Here W refers the dictionary of words and E
refers to dictionary of entities. Apart from all the
entities, E also contains a None entity type which
indicates absence of an entity. In some cases the
entity might span through multiple words, in that
case we assign every word spanned by that entity
the same entity type.

3.2 Embedding or Lookup Layer

In this layer every input feature is mapped to a
dense feature vector. Let us say that Ew and Ee

be the embedding matrices of W and E respec-
tively. The features obtained from these embed-
ding matrices are concatenated and treated as the
final word-level feature (l) of the model.

The Ew ∈ Rnw×dw embedding matrix is ini-
tialized with pre-trained word embeddings and Ee

∈ Rne×de embedding matrix is initialized with
random values. Here nw, ne refer to length of the
word dictionary and entity type dictionary respec-
tively and dw, de refer to dimension of word and
entity type embedding respectively.

3.3 Bidirectional RNN Layer

RNN is a powerful model for learning fea-
tures from sequential data. We use both LSTM
(Hochreiter and Schmidhuber, 1997) and GRU
(Chung et al., 2014) variants of RNN in our ex-
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periments as they handle the vanishing and ex-
ploding gradient problem (Pascanu et al., 2012)
in a better way. We use bidirectional version of
RNN (Graves, 2013) where for every word for-
ward RNN captures features from the past and the
backward RNN captures features from future, in-
herently each word has information about whole
sentence.

3.4 Feed Forward Neural Network

The hidden state of the bidirectional RNN layer
acts as sentence-level feature (g), the word and
entity type embeddings (l) act as a word-level
features, are both concatenated (1) and passed
through a series of hidden layers (2), (3) with
dropout (Srivastava et al., 2014) and an output
layer. In the output layer, the number of neurons
are equal to the number of trigger labels. Finally
we use Softmax function (4) to obtain probabil-
ity score for each class.

f = gk ⊕ lk (1)

h0 = tanh(W0f + b0) (2)

hi = tanh(Wihi−1 + bi) (3)

p(y|x) = Softmax(Wohi + bo) (4)

Here k refers to the kth word of the sentence, i
refers to the ith hidden layer in the network and
⊕ refers to concatenation operation. Wi,Wo and
bi,bo are parameters of the hidden and output lay-
ers of the network respectively.

3.5 Training and Hyperparameters

We use cross entropy loss function and the model
is trained using stochastic gradient descent. The
implementation1 of the model is done in python
language using Theano (Bergstra et al., 2010) li-
brary. We use pre-trained word embeddings ob-
tained by Moen et al. (2013) using word2vec tool
(Mikolov et al., 2013).

We use training and development set for hyper-
parameter selection. We use word embeddings of
200 dimension, entity type embeddings of 50 di-
mension, RNN hidden state dimension of 250 and
2 hidden layers with dimension 150 and 100. In
both the hidden layers we use dropout of 0.2.

1Implementation is available at https:
//github.com/rahulpatchigolla/
EventTriggerDetection

4 Experiments and discussion

4.1 Dataset Description

We use MLEE (Pyysalo et al., 2012) corpus for
performing our trigger identification experiments.
Unlike other corpora on event extraction it covers
events across various levels from molecular to or-
ganism level. The events in this corpus are broadly
divided into 4 categories namely “Anatomical”,
“Molecular”, “General”, “Planned” which are
further divided into 19 sub-categories as shown in
Table 1. Here our task is to identify correct sub-
category of an event. The entity types associated
with the dataset are summarized in Table 2.

Category Trigger label Train count Test count

Anatomical

Cell Proliferation (CELLP) 82 43
Development (DEV) 202 98
Blood Vessel Development (BVD) 540 305
Death (DTH) 57 36
Breakdown (BRK) 44 23
Remodeling (REMDL) 22 10
Growth (GRO) 107 56

Molecular

Synthesis (SYN) 13 4
Gene Expression (GENEXP) 210 132
Transcription (TRANS) 16 7
Catabolism (CATA) 20 4
Phosphorylation (PHO) 26 3
Dephosphorylation (DEPHO) 2 1

General

Localization (LOC) 282 133
Binding (BIND) 102 56
Regulation (REG) 362 178
Positive Regulation (PREG) 654 312
Negative Regulation (NREG) 450 233

Planned Planned Process (PLP) 407 175

Table 1: Statistics of event triggers in MLEE corpus

Category Entity label Train count Test count

Molecule
Drug or Compound 637 307
Gene or Gene Product 1961 1001

Anatomy

Organism Subdivision 27 22
Anatomical System 10 8
Organ 123 53
Multi-tissue Structure 348 166
Tissue 304 122
Cell 866 332
Cellular Component 105 40
Developing Anatomical Structure 4 2
Organism Substance 82 60
Immaterial Anatomical Entity 11 4
Pathological Formation 553 357

Organism Organism 485 237

Table 2: Statistics of entities in MLEE corpus

4.2 Experimental Design

The data is provided in three parts as training,
development and test sets. Hyperparameters are
tuned using development set and then final model
is trained on the combined set of training and de-
velopment sets using the selected hyperparame-
ters. The final results reported here are the best
results over 5 runs.
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Figure 3: Confusion matrix of trigger classes with abbreviations mentioned in Table 1

We have used micro averaged F1-score as the
evaluation metric and evaluated the performance
of the model by ignoring the trigger classes with
counts ≤ 10 in test set while training and consid-
ered them directly as false-negative while testing.

4.3 Performance comparison with Baseline
Models

We compare our results with baseline models
shown in Table 3. Pyysalo et al. (2012) defined a
SVM based classifier with hand-crafted features.
Zhou et al. (2014) also defined a SVM based clas-
sifier with word embeddings and hand-crafted fea-
tures. Wang et al. (2016a) defined window based
CNN classifier. Apart from the proposed models
we also compare our results with two more base-
line methods FFNN and CNNψ which are our im-
plementations. Here FFNN is a window based
feed forward neural network where embedding
features of words within the window are used to
predict the trigger label (Collobert et al., 2011).
We chose window size as 3 (one word from left

and one word from right) after tuning it in vali-
dation set. CNNψ is our implementation of win-
dow based CNN classifier proposed by Wang et al.
(2016a) due to unavailability of their code in pub-
lic domain. Our proposed model have shown
slight improvement in F1-score when compared
with baseline models. The proposed model’s abil-
ity to capture the context of the whole sentence is
likely to be one of the reasons of improvement in
performance.

We perform one-side t-test over 5 runs of F1-
Scores to verify our proposed model’s perfor-
mance when compared with FFNN and CNNΨ.
The p value of the proposed model (GRU) when
compared with FFNN and CNNψ are 8.57×10−07

and 1.178 × 10−10 respectively. This indicates
statistically superior performance of the proposed
model.

4.4 Category Wise Performance Analysis

The category wise performance of the proposed
model is shown in Table 4. It can be observed that
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Method Precision Recall F1-Score
SVM (Pyysalo et al., 2012) 81.44 69.48 75.67

SVM+We (Zhou et al., 2014) 80.60 74.23 77.82
CNN (Wang et al., 2016a) 80.67 76.76 78.67

FFNN 77.53 75.55 76.53
CNNψ 80.75 69.36 74.62

Proposed (LSTM) 78.58 78.84 78.71
Proposed (GRU) 79.78 78.45 79.11

Table 3: Comparison of performance of our model with base-
line models

model’s performance in anatomical and molecu-
lar categories are better than general and planned
categories. We can also infer from the confusion
matrix shown in Figure 3 that positive regulation,
negative regulation and regulation among general
category and planned category triggers are caus-
ing many false positives and false negatives thus
degrading the model’s performance.

Trigger Category Precision Recall F1-Score
Anatomical 88.86 83.06 85.87
Molecular 88.80 73.51 80.43
General 75.69 78.53 77.09
Planned 67.63 67.24 67.43
Overall 79.78 78.45 79.11

Table 4: Category wise performance of the model

4.5 Further Analysis

In this section we investigate the importance of
various features and model variants as shown in
Table 5. Here Ew and Ee refer to using word and
entity type embedding as a feature in the model, l
and g refer to using word-level and sentence-level
feature respectively for the final prediction. For
example, Ew + Ee and g means using both word
and entity type embedding as the input feature for
the model and g means only using the global fea-
ture (hidden state of RNN) for final prediction.

Index Method F1-Score
1 Ew and g 76.52
2 Ew and l + g 77.59
3 Ew + Ee and g 78.70
4 Ew + Ee and l + g 79.11

Table 5: Affect on F1-Score based on feature analysis and
model variants

Examples in Table 6 illustrate importance of
features used in best performing models. In phrase
1 the word “knockdown”, is a part of an en-
tity namely “round about knockdown endothelial

cells” of type “Cell” and in phrase 2 it is trigger
word of type “Planned Process”, methods 1 and 2
failed to differentiate both of them because of no
knowledge about the entity type. In phrase 3 “im-
paired” is a trigger word of type “Negative Regu-
lation” methods 1 and 3 failed to correctly iden-
tify but when reinforced with word-level feature
the model succeeded in identification. So, we can
say that Ee feature and l + g model variant help in
improving the model’s performance.

Index Phrase

1
silencing of directional migration
in round about knockdown
endothelial cells

2
we show that PSMA inhibition
knockdown or deficiency decrease

3
display altered maternal hormone
concentrations indicative of an
impaired trophoblast capacity

Table 6: Example phrases for Further Analysis

5 Conclusion and Future Work

In this paper we have proposed a novel approach
for trigger identification by learning higher level
features using RNN. Our experiments have shown
to achieve state-of-art results on MLEE corpus. In
future we would like to perform complete event
extraction using deep learning techniques.
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Abstract

Token sequences are often used as the in-
put for Convolutional Neural Networks
(CNNs) in natural language processing.
However, they might not be an ideal repre-
sentation for time expressions, which are
long, highly varied, and semantically com-
plex. We describe a method for represent-
ing time expressions with single pseudo-
tokens for CNNs. With this method, we
establish a new state-of-the-art result for a
clinical temporal relation extraction task.

1 Introduction

Convolutional Neural Networks (CNNs) utilize
convolving filters and pooling layers for explor-
ing and subsampling a feature space, and show
excellent results in tasks such as semantic pars-
ing (Yih et al., 2014), search query retrieval (Shen
et al., 2014), sentence modeling (Kalchbrenner
et al., 2014), and many other natural language pro-
cessing (NLP) tasks (Collobert et al., 2011).

Token sequences are often used as the input for
a CNN model in NLP. Each token is represented as
a vector. Such vectors could be either word embed-
dings trained on the fly (Kalchbrenner et al., 2014),
pre-trained on a corpus (Pennington et al., 2014;
Mikolov et al., 2013), or one-hot vectors that index
the token into a vocabulary (Johnson and Zhang,
2014). CNN filters then act as n-grams over contin-
uous representations. Subsequent network layers
learn to combine these n-gram filters to detect pat-
terns in the input sequence.

This token vector sequence representation has
worked for many NLP tasks, but has not been well-
studied for temporal relation extraction. Time ex-
pressions are complex linguistic expressions that
are challenging to represent because of their length
and variety. For example, for the time expressions
in the THYME (Styler IV et al., 2014) colon can-
cer training corpus, there are 3,833 occurrences of

Figure 1: CNN with encoded timex

2,014 unique expressions of which 1,624 (80.6%)
are multi-token, 1,104 span three or more tokens,
and some span as many as 10 tokens. CNNs, which
represent meaning through fragments of word se-
quences, might struggle to compose these frag-
ments to represent the meaning of time expressions.
For example, can a CNN properly generalize that
May 7 as a date is closer to April 30 than May
20? Can it embed years like 2012 and 2040 to rec-
ognize that the former was in the past, while the
latter is in the future? Time normalization systems
can handle such phenomena, but they are complex
and language-specific, and often require signifi-
cant manual effort to re-engineer for a new domain
(Strötgen and Gertz, 2013; Bethard, 2013).

Fortunately, not all tasks require full time nor-
malization, so if the CNN can at least embed a
meaningful subset of the time expression seman-
tics, it may still be helpful in such tasks. An open
question then, is how to best feed time expressions
to the CNN so that it can usefully generalize over
them as part of its solution to a larger task.

We propose representing time expressions as sin-
gle pseudo-tokens, with single vector representa-
tions (as in Figure 1), that encode easily extractable
information about the time expression that is valu-
able for the task of temporal relation extraction.
The benefits are two-fold: 1) Only minimal linguis-
tic preprocessing is required: off-the-shelf time
expression identifiers are available with low over-
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A
EVENT

surgery is scheduled on
TIME

Mar 11 .
⇓

1: a 〈e〉 surgery 〈/e〉 is scheduled on 〈t〉 mar 11 〈/t〉 .
2: a 〈e〉 surgery 〈/e〉 is scheduled on 〈t〉 〈timex〉 〈/t〉 .
3: a 〈e〉 surgery 〈/e〉 is scheduled on 〈t〉 〈date〉 〈/t〉 .
4: a 〈e〉 surgery 〈/e〉 is scheduled on 〈t〉 〈nn cd〉 〈/t〉 .
5: a 〈e〉 surgery 〈/e〉 is scheduled on 〈t〉 〈date nn cd〉 〈/t〉 .
6: a 〈e〉 surgery 〈/e〉 is scheduled on 〈t〉 〈index 721〉 〈/t〉 .
7: a 〈e〉 surgery 〈/e〉 is scheduled on 〈t〉 mar 11 〈date〉 〈/t〉 .
8: 〈o〉 〈o〉 〈o〉 〈o〉 〈o〉 〈b〉 〈i〉 〈o〉 〈o〉
9: 〈o〉 〈o〉 〈o〉 〈o〉 〈o〉 〈b date〉 〈i date〉 〈o〉 〈o〉
10: a 〈e1〉 surgery 〈/e1〉 is 〈e2〉 scheduled 〈/e2〉 on .

Figure 2: Representations of an input sequence

head and high accuracy (Miller et al., 2015). 2)
CNN filters are more effective because they oper-
ate over the time expression as one unit. The filter
process can thus focus on the informative surround-
ing context to catch generalizable patterns instead
of being trapped within lengthy time expressions.

We explored a variety of one-tag representations
for time expressions, from very specific to very
general. We also experimented with other ways to
inject temporal information into the CNN models
and compared them with our one-tag representa-
tions. We picked a challenging learning task where
time expressions are critical cues for evaluating our
proposed representation: clinical temporal relation
extraction. The identification of temporal relations
in medical text has been drawing growing attention
because of its potential to dramatically increase the
understanding of many medical phenomena such
as disease progression, longitudinal effects of med-
ications, a patient’s clinical course, and its many
clinical applications such as question answering
(Das and Musen, 1995; Kahn et al., 1990), clinical
outcomes prediction (Schmidt et al., 2005), and
the recognition of temporal patterns and timelines
(Zhou and Hripcsak, 2007; Lin et al., 2014).

Through experiments, we not only demonstrate
the usefulness of one-tag representations for time
expressions, but also establish a new state-of-the-
art result for clinical temporal relation extraction.

2 Methods

We trained two CNN-based classifiers for recog-
nizing two types of within-sentence temporal re-
lations, event-event and event-time relations, as
they usually call for different temporal cues (Lin
et al., 2016a). The input to our classifiers was
manually annotated (gold) events and time expres-
sions during both training and testing stages. That

way we isolated the task of time expression rep-
resentation for temporal relation extraction from
the tasks of event and time expression recognition.
We adopted the same xml-tag marked-up token se-
quence representation and model setup as (Dligach
et al., 2017). Figure 2(1) illustrates the marked-up
token sequence for an event-time instance, in which
the event is marked by 〈e〉 and 〈/e〉 and the time
expression is marked by 〈t〉 and 〈/t〉. Event-event
instances are handled similarly, e.g. a 〈e1〉 surgery
〈/e1〉 is 〈e2〉 scheduled 〈/e2〉 on march 11.

We tried different ways of representing a time ex-
pression as a one-token tag. The most coarse option
would be to represent all time expressions with one
universal tag, 〈timex〉, as in Figure 2(2). For more
granular options, we experimented with these addi-
tional representations: 1) The time class1 of a time
expression, as in Figure 2(3), where the time ex-
pression, Mar 11, is represented by its class, 〈date〉.
2) The Penn Treebank POS tags of the tokens in a
time expression, as in Figure 2(4), where the time
expression, Mar 11, is represented by concatenat-
ing two POS tags, 〈nn cd〉. 3) The combination of
time class and POS tags, as in Figure 2(5), where
the time expression is represented by 〈date nn cd〉.
4) A fine-grained representation that assigns an
index to each unique time expression, as in Fig-
ure 2(6), where the time expression is represented
by 〈index 721〉, the index used every time the time
expression Mar 11 appears. For event-event rela-
tions, where time expressions are not part of the
relational arguments, we tried removing the time
expressions altogether, as in Figure 2(10), where
Mar 11 has been removed.

To show the contribution of one-tag represen-
tations versus adding new information to the sys-
tem, we explored incorporating temporal informa-
tion by adding time-class tags to the original to-
ken sequences (Figure 2(7)) and adding BIO tags
with/without time classes for time expression (Fig-
ure 2(8,9)) alongside the original token sequences.

We used the same CNN architecture as the
CNN used in (Dligach et al., 2017), and fo-
cused on extracting the contains relation. The
word embeddings were randomly initialized2 and

1We used the standard clinical domain classification
(Styler IV et al., 2014), where the classes are date (e.g., next
Friday, this month), time (e.g. 3:00 pm), duration (e.g., five
years), quantifier (e.g. twice, four times), prepostexp (e.g.,
preoperative, post-surgery), and set (e.g., twice monthly).

2Our preliminary experiments showed better results for
randomly-initialized embeddings than several pre-trained em-
beddings. One-hot vectors were too slow for processing.
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Model Event-time relations Event-event relations
P R F1 P R F1

THYME system 0.583 0.810 0.678 0.569 0.574 0.572
1. CNN tokens 0.660 0.775 0.713 0.566 0.522 0.543
2. CNN <timex> 0.697 0.710 0.703 0.681 0.397 0.501
3. CNN time class tags 0.705 0.759 0.731 0.582 0.495 0.535
4. CNN POS tags 0.727 0.710 0.719 0.619 0.462 0.529
5. CNN time class+ POS tags 0.709 0.747 0.727 0.553 0.521 0.537
6. CNN indexed time expressions 0.692 0.727 0.709 0.645 0.429 0.516
7. CNN token + time class tags 0.749 0.626 0.682 0.437 0.589 0.502
8. CNN token + BIO tags 0.691 0.708 0.700 0.570 0.423 0.486
9. CNN token + BIO-time class tags 0.713 0.726 0.719 0.428 0.542 0.478
10. CNN remove all time expressions n/a n/a n/a 0.635 0.446 0.524

Table 1: Event-time and event-event contains relation on the dev set (all notes included)

learned through training. For the combined to-
ken and BIO sequence input, we used two em-
bedding/convolutional branches: one for the token
sequence, and one for the BIO sequence; the result-
ing vectors were concatenated into the same dense,
dropout and final softmax layers. All models were
implemented in Keras 1.0.4 (Chollet, 2015) with
Theano (Theano Development Team, 2016) back-
end. Models were trained with a batch size of 50,
a dropout rate of 0.25, RMSprop optimizer, and a
learning rate of 0.0001, on a GTX Titan X GPU.
Our code will be made publicly available.

3 Evaluation Methodology and Results

We tested our new representations of time expres-
sions on the THYME corpus (Styler IV et al., 2014).
We followed the evaluation setup of Clinical Temp-
Eval 2016 (Bethard et al., 2016). The THYME
corpus contains a colon cancer set and a brain can-
cer set. The colon cancer set was our main focus.
Models were trained on the colon cancer training
set, hyper-parameters were tuned on the colon can-
cer development set. Finally, the best models were
re-trained using the best hyper-parameters on the
combined training and development sets, tested and
compared on the colon cancer test set.

As a secondary validation set, we also consid-
ered the brain cancer portion of the THYME corpus.
The models were re-trained on the brain cancer
training and development sets (using the best hyper-
parameters found for colon cancer) and tested on
the brain cancer test set.

For results on the test sets, we used the official
Clinical TempEval evaluation scripts (with closure-
enhanced precision, recall, and F1-score).

Table 1 shows performance on the colon devel-
opment set for the THYME system and the various
methods of representing time expressions to CNN
models. The order of representation settings is iden-
tical to that in Figure 2. For event-time relations,
all our neural models outperformed the state-of-
the-art THYME system’s F1. Three one-tag tempo-
ral representations with moderate granularity, time
class (Table 1(3)), POS tags (Table 1(4)), and time
class plus POS tags (Table 1(5)), performed better
than the token sequence CNN baseline (Table 1(1)),
with the time class tag representation achieving
the highest score (Table 1(3)). CNNs were better
able to leverage time class information in our tag-
based representation (Table 1(3)), than adding time
class information to the original token sequence
(Table 1(7)) or adding a separate time-class neural
embedding (Table 1(9)).

For event-event relations, none of the neural
models performed as well as the state-of-the-art
THYME system. The CNN token-based model had
similar performance as some of the one-tag tem-
poral representations (Table 1(3,4,5)). Removing
the time expression entirely (Table 1(10)) did not
hurt performance much, confirming that time ex-
pressions were not critical cues for within-sentence
event-event relation reasoning (Xu et al., 2013).
Thus, on the colon test set, we evaluated the contri-
bution of encoding time expressions on the event-
time CNN model only. For the event-event part, we
used the THYME event-event system, so that our
results were directly comparable with the outcomes
of Clinical TempEval 2016 (Bethard et al., 2016)
and the performance of the THYME system (Lin
et al., 2016a,b). As for the Brain cancer data, we

324



Corpus Model contains relations
P R F1 p-value

Colon cancer Top Clinical TempEval 2016 system 0.588 0.559 0.573
THYME system 0.669 0.534 0.594
CNN (tokens) event-time + THYME event-event 0.654 0.576 0.612
CNN (encode) event-time + THYME event-event 0.662 0.585 0.621 0.03

Brain cancer CNN (tokens) event-time 0.765 0.371 0.500
CNN (encode) event-time 0.726 0.429 0.539 0.0002

Table 2: Performance on both Colon and Brain test sets with the Clinical TempEval evaluation.

only evaluated on the event-time CNN models, so
that we could directly assess the contribution of
encoding time expressions as time class tags.

The top 4 rows of Table 2 show performance on
the colon cancer test set for the best model from
Clinical TempEval 2016, the THYME system, our
CNN model with tokens only, and our CNN model
where time expressions are encoded with time class
tags. (To allow comparison with prior work, the
event-time relation predictions made by our CNN
models were coupled with the event-event relation
predictions from the THYME system.) The bottom
two rows of Table 2 show performance on the brain
cancer test set. On both colon and brain corpora,
the encoded CNN model outperformed the regu-
lar CNN model significantly, based on a Wilcoxon
signed-rank test over document-by-document com-
parisons, as in (Cherry et al., 2013).

4 Discussion

The CNN filters in the first layers are designed to
detect the presence of highly discriminative pat-
terns. For the event-time relation extraction task,
one such pattern signaling a contains relation is
“on Mar 11, 2014” as in Figure 1. However, a more
generalizable pattern should be – “on DATE”. Our
time-class tag representation provided such infor-
mation and contributed towards generalizability.
A size-two filter can easily capture such a useful
pattern, instead of picking up less generalizable pat-
terns like “on March” or “11 ,” (shown in Figure 1).
For a time-sensitive learning task, especially the
event-time relation extraction, our time encoding
technique has been proved effective on two corpora.
We hypothesize the contribution is from generaliz-
ability and efficient filter computation.

Our method did not work for event-event rela-
tions because time expressions are not critical cues
for such relations. CNN models as a whole did
not outperform the conventional THYME event-

event system, as confirmed by Dligach et al. (2017).
Event-event relations have lower inter-annotator
agreement and usually leverage more of the syn-
tactic information and event properties (Xu et al.,
2013), which are not perfectly captured by token
sequences. The class imbalance issues are more
severe for event-event relations than for event-time
relations as well (Dligach et al., 2017). These likely
lead to a lower performance for event-event CNNs.
In the future, we will investigate methods to im-
prove the event-event model including incorporat-
ing syntactic information and event properties into
a deep neural framework, and positive instance
augmentation Yu and Jiang (2016).

Word embeddings trained by conventional meth-
ods such as word2vec and GloVe did not prove to
be useful in our preliminary experiments. This is
likely due to (1) lack of sufficiently large publicly
available domain-specific corpora, and (2) inability
of the conventional methods to capture the seman-
tic properties of events that are key for the relation
extraction task (such as event durations).

Currently, when we combined our encoded
CNN-based event-time model with the THYME
event-event model, we achieved the state-of-the-
art performance (0.621F) on the colon cancer data.
The best 2016 Clinical TempEval system achieved
0.573F (Bethard et al. (2016); row 1 of Table 2), the
result of the THYME system was 0.594F (Lin et al.
(2016b); row 2 of Table 2), while our best com-
bined model reached 0.621F, significantly higher
(p=0.03) than the 0.612F of the combination of a
regular CNN event-time model and the THYME
event-event model. Note that the number of gold
event-time contains relation instances is similar
to the number of gold event-event contains rela-
tions (Lin et al., 2016a). Having a better event-time
model indeed made the difference.

The conventional machine learning world has
focused on heavy feature engineering, while the
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new deep learning world has called for minimal-
istic pre-processing as input to powerful learners.
We propose a new direction to combine the best of
both worlds – infusing some knowledge into the
learner input. For CNN models, multi-word time
expressions are imperfectly represented in the to-
ken sequence representation. With a little engineer-
ing, we can encapsulate the time expressions in one
tag with different granularities. Our experiments
show that this small change still takes minimum
linguistic preprocessing but delivers a significant
performance boost for a temporal relation extrac-
tion task. There are other multi-token named enti-
ties (locations, organizations, etc.) where it may be
hard to generalize over their multiple tokens. We
believe our encoding strategy is likely to benefit
tasks where critical linguistic information resides
in phrases or multi-word units.
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Abstract

Diagnosis autocoding is intended to
both improve the productivity of clini-
cal coders and the accuracy of the cod-
ing. We investigate the applicability of
deep learning at autocoding of radiol-
ogy reports using International Classi-
fication of Diseases (ICD). Deep learn-
ing methods are known to require
large training data. Our goal is to ex-
plore how to use these methods when
the training data is sparse, skewed
and relatively small, and how their ef-
fectiveness compares to conventional
methods. We identify optimal param-
eters for setting up a convolutional
neural network for autocoding with
comparable results to that of conven-
tional methods.

1 Introduction

Hospitals and other medical clinics invest in
clinical coders to abstract relevant informa-
tion from patients’ medical records and de-
cide which diagnoses and procedures meet
the criteria for coding, as per coding stan-
dards such as International Statistical Classi-
fication of Diseases referred to as ICD Code.
For example, Multiple fractures of foot is rep-
resented by the ICD-10 code ‘S92.7’. These
codes are used to find statistics on diseases
and treatments as well as for billing pur-
poses. Clinical coding is a specialized skill
requiring excellent knowledge of medical
terminology, disease processes, and coding
rules, as well as attention to detail, and an-
alytical skills. Apart from high costs of labor,
human errors could lead to over and under-
coding resulting in misleading statistics.

To alleviate the costs and increase the accu-
racy of coding, autocoding has been studied
by the Natural Language Processing (NLP)
community. It has been studied for a va-
riety of clinical texts such as radiology re-
ports (Crammer et al., 2007; Perotte et al.,
2014; Kavuluru et al., 2015; Scheurwegs et al.,
2016), surveillance of diseases or type of can-
cer from death certificates (Koopman et al.,
2015a,b), and coding of cancer sites and mor-
phologies (Nguyen et al., 2015).

Text classification using deep learning is
relatively recent with promises to reduce the
load of domain or application specific fea-
ture engineering. Conventional classifiers
such as SVMs with well-engineered features
have long shown high performance in differ-
ent domains. We investigate if deep learn-
ing methods can further improve clinical
text classification. Specifically, we investigate
how and in what setting some of the most
popular neural architectures such as Convo-
lutional Neural Networks (CNNs) can be ap-
plied to the autocoding of radiology reports.
The outcomes of our work can inform simi-
lar tasks with decision making on type and
settings of text classifiers.

2 Related Work

In 2007 Pestian et al. (2007) organised a
shared task which introduced a dataset of ra-
diology reports to be autocoded with ICD9
codes. This multi-label classification task
attracted a large body of research over
the years—e.g., (Farkas and Szarvas, 2008;
Suominen et al., 2008)—which tackled the
problem with methods such as rule-based,
decision trees, entropy and SVM classifiers.
Text classification using SVM has long been
known to be state-of-the-art.
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Best Values
Parameter Definition Range Default ICD9 rICD9 IMDB

Batch size Number of samples that will be prop-
agated through the network at each
point of time

8–256 8 16 16 32

Number of epochs Epoch is one forward pass and one
backward pass of all training data

1–40 30 30 30 3

Activation function
on convolution layer

Non-linearity function applied on the
output of convolution layer neurons

linear, tanh, sigmoid, soft-
plus, softsign, relu, relu6,
leaky_relu, prelu, elu

relu leaky_relu relu6 relu

Activation function
on fully connected
layer

Non-linearity function applied on
the output of neurons in the fully-
connected layer

linear, tanh, sigmoid, soft-
max, softplus, softsign, relu,
relu6, leaky_relu, prelu, elu

softmax softmax softplus softmax

Dropout rate At each training stage, node can be
dropped out of the network with prob-
ability 1 − p. The reduced network is
then trained on the data in that stage

0.1 - 1.0 0.5 0.7 0.5 0.3

Filter size Receptive field of each neuron also
known as local connectivity

1–7 and all combinations (3, 4, 5) (2, 3, 4) (2;3;4;5;6) (3;4;5)

Depth Number of filters per filter size 40 - 5000 100 800 100 200
Learning rate Controls the size of weight and bias

changes during training
0.0001 - 0.03 0.001 0.001 0.001 0.001

Word representation How words in text are represented as
input to the network

See Table 3 random Medline (300) Medline (100) Medline (40)

Vector size Size of input vectors. When word em-
beddings are used, this represents the
embedding size

32–512 128 128 128 128

Stride Size of sliding window for moving filter
over input

1 1 1 1 1

Table 1: Hyperpameters, range of grid search for finding optimal values, initial and best
values for three datasets.

Recently, neural network based learning
methods have been investigated in generic
NLP as well as domain-specific applications.
For text classification, two dominant meth-
ods are: (1) Convolutional Neural Networks
(CNNs) from the category of feed-forward
neural networks; and (2) Long Short-Term
Memory (LSTM) with a recurrent neural net-
work (RNN) architecture. Also the use of
word embeddings (Le and Mikolov, 2014)—
which are to capture semantic representa-
tions of words in text—has been investigated
in a variety of applications to replace one-hot
(vector space) models which is the traditional
method of text representation.

Text classification using CNNs has been
increasingly studied in recent years (Kalch-
brenner et al., 2014; Kim, 2014; Rios and
Kavuluru, 2015). For example, Rios and
Kavuluru (2015) applied CNN to classify
biomedical articles for indexing, and Kavu-
luru et al. (2016) on suicide watch forums.

3 Method

We build a CNN network with the architec-
ture proposed by (Kim, 2014). It consists of
one convolutional layer using multiple filters
and filter sizes followed by a max pooling
and fully-connected layer to assign a label.

This model is chosen based on its success in
other tasks. This will set a base for what is
achievable using this set of algorithms with-
out using a very deep network or more com-
plicated architecture.

Input text to the network is represented us-
ing two different settings: (1) a matrix of ran-
dom vectors representing all the words in a
document; or (2) word embeddings. We re-
fer to word embeddings created from a cor-
pus of medical text such as Medline cita-
tions as in-domain, and out-of-domain other-
wise (i.e., using Wikipedia). We also experi-
mented with static and dynamic embeddings.
In static setting, the embedding vector values
were pre-fixed based on the collection they
were created on, whereas dynamic embed-
dings changed values during the training.

One goal of this work is to quantify the im-
pact of CNN hyperparameters. Tuning hy-
perparameters can be considered equivalent
of feature engineering in conventional ma-
chine learning tasks. We list some of the
main hyperparameters to be set in a CNN in
Table 1 (first two columns). Our experiments
are focused on tuning these and investigate
how they differ for different datasets.
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Classifier Accuracy Precision Recall F1-score

SVM 80.52 66.02 67.69 65.63
Random Forests 68.22 50.85 49.38 48.66
Logistic Regression 79.43 66.08 66.15 64.63

CNN (default) 81.55 78.93 81.55 79.05
CNN (optimal) 83.84 81.44 83.84 81.55

Table 2: Comparison of conventional classi-
fiers with CNN on ICD9.
4 Datasets

We experiment on two different datasets, in-
domain and out-of-domain, in order to find
common characteristics and domain specific
properties of these datasets for text classifica-
tion. These datasets are: (a) ICD9, a dataset
of radiology reports, and (b) IMDB, a sen-
timent analysis dataset. These corpora are
publicly available and are explained below.

ICD9 dataset is an open challenge dataset
published by the Computational Medicine
Center in 2007 (Pestian et al., 2007). The
dataset consists of clinical free text which is
a set of 978 anonymized radiology reports
and their corresponding ICD-9-CM codes.1

There are 38 unique ICD-9 codes present in
the dataset. Given the imbalance of different
disease categories in the dataset with some
categories only having one or two instances,
we created a revised subset rICD9. In rICD9
those codes with less than 15 instances are
removed. This subset contains 894 docu-
ments with 16 unique codes. To measure
how our grid search for hyper-parameters
are robust and how much they are task and
dataset dependent, we use an out-of-domain
dataset. IMDB movie review dataset is a
sentiment analysis dataset provided by Maas
et al. (2011). It contains 100, 000 movie re-
views from IMDB.

5 Experimental Setup

We treat this task as a multi-label classifica-
tion problem. Our implementations use Ten-
sorflow and Scikit-learn. For word embed-
dings we use Word2Vec (Mikolov et al., 2013).
For SVM and other conventional methods,
we used normalized tf-idf features similar
to (Wang and Manning, 2012).

Evaluation For evaluations on ICD9 and its
variant rICD9, we use stratified 10-fold cross-
validation. We measure classification accu-

1Testing data for this dataset is no longer available.

Word embedding Vector Size Dynamic ICD9 rICD9 IMDB

Random embedding 81.93 86.69 87.75

Word2Vec 40 Yes 81.03 86.24 88.79
Wikipedia No 69.75 74.90 85.02

100 Yes 82.04 86.86 88.55
No 75.93 81.40 86.98

300 Yes 82.41 87.22 88.21
No 79.34 84.94 88.14

400 Yes 82.60 87.24 88.10
No 80.03 85.53 88.19

Word2Vec 40 Yes 81.59 87.06 89.00
Medline No 72.31 78.05 82.11

100 Yes 82.55 87.76 89.00
No 78.66 84.06 85.70

300 Yes 83.84 87.45 88.58
No 80.88 86.30 87.10

400 Yes 82.55 87.56 88.62
No 81.39 86.66 87.21

Table 3: Impact of methods of generating
word embeddings on classification accuracy.

racy, precision, recall, and F-score by macro-
averaging. Stratified cross-validation is used
to make label distribution in each training
and validation fold as consistent as possible.
IMDB dataset has been divided into training
data and testing data by its providers. We
therefore train the model on the training data
and evaluate the results on the test data. For
all datasets, all experiments are run for 50
times, and reported results are averaged over
repeated experiments.

Hyperparameter Tuning Effect of varying
different hyperparameters on classification
accuracy is examined by a grid search
method that incrementally changes the val-
ues of hyperparameters. We start from a de-
fault setting as shown in Table 1 as a base-
line. We also change one parameter at a time,
according to a wide range given in column
three, and analyze the results to find the opti-
mal hyperparameter values. Based on the op-
timal parameter values, all experiments are
repeated to measure the effects.

6 Experiments and Results

CNN versus Conventional Classifiers
Classification accuracy was calculated vary-
ing values of different hyperparameters.
Based on the best results we chose the opti-
mal values for each hyper parameter as listed
in columns 5 to 7 of Table 1. Table 2 com-
pares three conventional classifiers, includ-
ing SVM, Random Forests and logistics re-
gression to CNNs. The results for CNN with
default values as well as accuracy- optimized
values on ICD9 dataset shows comparable re-
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sults to all the three conventional classifiers.
That means the two sets of algorithms can
achieve similar baselines with minimal fea-
ture engineering or parameter tuning.

Effect of Pre-trained Word Vectors
Pre-trained word vectors can be considered
as prior knowledge on meaning of words in
a dataset. That is, instead of random val-
ues, the embedding layer can be initialized
to values obtained from word embeddings.
We investigated whether using word embed-
dings would improve classification accuracy
in our coding task. Therefore, we created
different word vectors trained using both
Wikipedia and Medline with various vector
sizes. We then compared the accuracy of
random embeddings with these pre-trained
embeddings. Our results, shown in Table 3,
can be summarized as below: (1) Pre-trained
word vectors improve the classification ac-
curacy: The best accuracy achieved on all
three datasets come from using pre-trained
word vectors. It shows that pre-trained word
vectors did improve the effectiveness of our
model (t-test, p-value < 0.05); (2) Dynamic
word vectors are better than static ones: Al-
most all dynamic word vectors achieve bet-
ter accuracy than their corresponding static
word vectors; (3) In-domain word vectors
are better than generic ones: On ICD9 and
its variant dataset, word vectors trained us-
ing Medline which is a collection of med-
ical articles outperformed the word vectors
trained using Wikipedia. It shows in-domain
word vectors can better capture the meaning
of medical terminology. On the other hand,
for IMDB dataset, word vectors trained us-
ing Wikipedia were more effective than word
vectors trained using Medline, but that was
only if the word vectors were static. We
believe that a dynamic word vector, regard-
less of what source it is built on, eventually
leads to more accurate classification; and (4)
Larger embedding size does not always lead
to higher accuracy: For all three datasets,
once the vector size was set to 100, the ac-
curacy leveled with higher vector sizes. It
means that the computation load associated
with bigger vectors may not be necessary.

Error Analysis To identify how accurate
our CNN classifier was and what mistakes it

makes, we manually inspected some of these
classification mistakes. We found two ma-
jor sources of mistakes as below: (1) Not all
the documents in ICD9 dataset have exactly
one target label. 212 out of 978 documents
(22%) have two target labels, and 14 docu-
ments have three. These multi-label annota-
tions imply that even human experts cannot
have full consensus on some of these cod-
ing tasks; and, (2) Companion diseases: Hu-
man experts may focus on different symp-
toms present on a patient report and there-
fore reach to different conclusions. For exam-
ple, based on the following text: “UTI with
fever. Bilateral hydroureteronephrosis. Diffuse
scarring lower pole right kidney.”, one expert
labeled the instance as ’591’ (Hydronephro-
sis), and a second expert labeled it as both
’591’ and ’599.0’ (Urinary tract infection, site
not specified), and a third expert labeled it
as ’591’, ’599.0’ and ’780.6’ (Fever and other
physiologic disturbances of temperature reg-
ulation). In this case, ’591’ is a majority vote,
however, ’599.0’ may also be a reasonable tar-
get, since two of the experts agreed on that.
Based on our experiments, accommodating
this increases the overall accuracy on ICD9
by approximately 4%.

7 Conclusion

We explored the potential of machine learn-
ing methods using neural networks to com-
pete with conventional classification meth-
ods. We used ICD9 coding of radiology re-
ports. Our experiments showed that some
of CNN hyperparameters such as depth are
specific to a dataset or task and should be
tuned, whereas some of the parameters (e.g.,
learning rate or vector size) can be set in ad-
vance without sacrificing the results. Our
results also showed the value of using dy-
namic word embeddings. Our best classifica-
tion results achieved comparable or superior
results to SVM and logistic regression classi-
fiers for autocoding of radiology reports. Our
work is continuing in two major directions:
(1) quantifying the relationships between hy-
perparameters using linear-regression analy-
sis; and (2) applying CNN and LSTM models
for ICD-10 autocoding of patient encounters
in hospital settings.
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Université Paris-Saclay, Orsay, France
{campillos|rosset|pz}@limsi.fr

Abstract

We present the work-in-progress of au-
tomating the classification of doctor-
patient questions in the context of a sim-
ulated consultation with a virtual pa-
tient. We classify questions according
to the computational strategy (rule-based
or other) needed for looking up data in
the clinical record. We compare ‘tradi-
tional’ machine learning methods (Gaus-
sian and Multinomial Naive Bayes, and
Support Vector Machines) and a neural
network classifier (FastText). We obtained
the best results with the SVM using se-
mantic annotations, but the neural classi-
fier achieved promising results without it.

1 Introduction

Previous work on question classification has
mostly been undertaken within the framework of
question answering (hereafter, QA) tasks, where
classification is but one step of the overall pro-
cess. Other steps are linguistic/semantic question
processing, answer retrieval and generation by in-
tegrating data; indeed, these make QA a differ-
ent task to that of standard information retrieval.
Biomedical QA (Zweigenbaum, 2003) has mostly
focused on questions that aim to obtain knowledge
to help diagnose or cure diseases, by medical doc-
tors (Demner-Fushman and Lin, 2007) or by pa-
tients (Roberts et al., 2014b), or to obtain knowl-
edge on biology (Neves and Leser, 2015). Clinical
questions to obtain data from patient records have
also been addressed (Patrick and Li, 2012).

Herein, we address a question classification task
from a different perspective to existing research.
Our task is set in a simulated consultation sce-
nario where a user (a medical doctor trainee) asks
questions to a virtual patient (hereafter, VP) (Jaffe

et al., 2015; Talbot et al., 2016) during the anam-
nesis stage, i.e. the interview to the patient to ob-
tain diagnostic information. Question types need
accurate classification to search the data in the
clinical record.

In this context, question classification has aimed
at identifying detailed question types (Jaffe et al.,
2015). In contrast, we consider a situation where
we already have a rule-based question analysis
system that classifies questions according to the
semantic function or content (in order to restrict
the search for data in the patient record and re-
ply coherently). This strategy works well as long
as questions remain within its specifications; other
questions should be handled by a different strat-
egy. What is needed in this context is a way to de-
termine whether a given question should be trans-
mitted to the rule-based system or to a fallback
strategy. This is the goal of the present research,
which is tackled as a binary classification task.
Figure 1 is a schema of the processing steps we
address in this work (note that we do not represent
other stages such as dialogue management).

Guiding the processing of input questions is
a common step in QA systems. Questions may
be filtered through an upfront classifier based
on machine-learning techniques, parsing (Herm-
jakob, 2001), regular expressions and syntactic
rules, or hybrid methods (Lally et al., 2012). To
achieve that, a question analysis process might
precede, which may involve detecting lexical an-
swer types, question targets or the question focus.

Our VP system relies on named entity recogni-
tion and domain semantic labels in the question
analysis. The results we report seem to show that
leveraging this semantic information was benefi-
cial for the classification step. We also tested a
neural method without the semantic information,
and indeed did not achieve the best performance
(despite having promising results). We suggest
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Figure 1: Schema of the question processing and search for data in the virtual patient record

that using a linear SVM classifier with the seman-
tic information defined for the task (together with
features such as token frequency and 3-grams) is
a reliable technique for question triage in a rule-
based system similar to the one we present.

We report results of the classification task
and compare traditional machine-learning and a
neural-network supervised classifiers (Bojanowski
et al., 2016). We briefly review approaches to
question classification (§2) and outline our task
(§3). Then, we explain the sources of our data and
describe them (§4). We present our methods (§5)
and give our results (§6) then conclude (§7).

2 Related work

2.1 Question classification in medical QA

QA in medicine has extensively been researched.
Approaches have addressed doctor questions on
clinical record data (Patrick and Li, 2012), with
the purpose of, among others, improving clini-
cal decision support (Roberts et al., 2015; Good-
win and Harabagiu, 2016) or meeting the infor-
mation needs of evidence-based medicine (EBM)
practitioners (Demner-Fushman and Lin, 2007).
EBM-focused approaches have relied on a spe-
cific knowledge framework, decomposing ques-
tion topics into Problem/Population, Intervention,
Comparison, and Outcome (PICO). Taxonomies
of clinical question types already exist (Ely et al.,
2000). (Patrick and Li, 2012) report an ontology
and classification model for clinical QA applied to
electronic patient notes.

Consumer health questions are another area of
interest (Roberts et al., 2014b). Research has fo-
cused on classifiying the question according to the
user (consumer or clinician) and question type (e.g
focusing on the cause of a condition or the af-
fected anatomic entity (Roberts et al., 2014a), or
how consumer queries differ at the lexical, syntac-
tic and/or semantic level (Slaughter et al., 2006;
Roberts and Demner-Fushman, 2016).

We refer to (Athenikos and Han, 2010; Neves
and Leser, 2015), respectively, for state-of-the-art

reviews of QA for biomedicine and biology. Ques-
tions are generally classified into Yes/No, Fac-
toid/List and Definition/summary.

Questions to a virtual patient have been ad-
dressed by mapping the user input to a set of pre-
defined questions (Jaffe et al., 2015), as is done
in a large subset of recent general-domain QA
work which queries lists of frequently asked ques-
tions (FAQs) and returns their associated predeter-
mined answers (Leuski et al., 2006; Nakov et al.,
2016). Our setting is different in two ways: first,
we do not rely on a FAQ but instead generate an-
swers based on the question and on the contents
of the virtual patient’s record; second, we already
perform fine-grained question classification with
a rule-based system (Campillos et al., 2015), and
aim to determine whether a given question should
be referred to this rule-based strategy or deserves
to be handled by a fallback strategy.

2.2 Approaches

Across the mentioned tasks, machine-learning
methods for classifying questions range from hi-
erarchical classifiers (Li and Roth, 2002) to linear
support vector machines (SVM, hereafter) (Zhang
and Lee, 2003). The benefit of using semantic
features to improve question classification varies
across experiments. For example, (Roberts et al.,
2014a) reported improvements when classifying
a dataset of consumer-related topics. They used
an SVM with combinations of features includ-
ing semantic information, namely Unified Medi-
cal Language System R© (Bodenreider, 2004) Se-
mantic Types and Concept Unique Identifiers. For
their part, (Patrick and Li, 2012) used SNOMED
categories. They reported improvements in clas-
sification through models including this type of
feature, but not systematically. The type of the
semantic information used in each task might ex-
plain these results. The impact of using semantic
features is a point we explore in the present work
in the context of questions to a virtual patient.

Neural network representations and classifiers
are more and more applied to natural language
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processing (Bengio et al., 2003; Collobert et al.,
2011). Word embeddings—i.e. vector representa-
tions of words—allow the prediction of a word ac-
cording to the surrounding context, and vice-versa.
New research questions are being raised with re-
gard to current architectures (Mikolov et al., 2013;
Pennington et al., 2014; Goldberg, 2016), param-
eters (e.g. vector dimension or window size), hy-
perparameters or the effect of input data.

The latest models include subword information
in word embeddings, encoding both n-grams of
characters and the standard occurrence of words
(Bojanowski et al., 2016). There is a grow-
ing interest in research on word embeddings for
sentence classification (Kim, 2014; Zhang et al.,
2016) and question classification (Mou et al.,
2015). However, a far as we know, a neural net-
work classifier using subword information has not
yet been tested on a medical question classification
task. This is another point we explore herein.

3 Task description

We classify questions into those that a rule-based
dialogue system can process, and those needing a
supplementary method. Table 1 gives examples of
these two classes of questions, and shows the se-
mantic annotation performed in our task. A rule-
based system is to be favoured to maximize pre-
cision, but developing rules for any question type
is not feasible in the long term. Thus, we need a
classifier to distinguish which questions should be
processed through our rules and which should re-
sort to another strategy. Those rule-based process-

Example of questions Strategy Semantic annotation
Do you cough every day ? Rule-based SYMPTOM, FREQUENCY

Are your parents still alive ? Other FAMILYMEMBER

Table 1: Examples of questions and classes

ing strategy (RBPS hereafter) types of question are
thought to have specific patterns (e.g. recurrent n-
grams, question roots or domain semantic labels),
which make it possible to formalise rules.

In our system, rules are formalised based on the
semantic annotation of questions.1 For example,
a rule processing the combination of SYMPTOM

and FREQUENCY labels interprets the input as a
query on the frequency of a symptom. Accord-
ingly, the VP agent will answer with a fixed type

1The semantic labels we use encode domain data
(DISEASE), miscellanea (e.g. time or quantity) and question
type or tense: e.g. QPASTYESNO (Campillos et al., 2016).

of reply instantiated with the corresponding data
in the record. We hypothesize that questions not
fitting this scheme will require some other pro-
cessing strategy (OPS hereafter), be it statistical,
neural or machine-learning-based techniques, to
search data in the record (or to reply adequately
when data are not available).

4 Data sources and preparation

4.1 Data sources
We collected French language questions from
books aimed at medical consultation and clini-
cal examination (Bates and Bickley, 2014; Ep-
stein et al., 2015), as well as resources for medical
translation (Coudé et al., 2011; Pastore, 2015).2

We also collected questions from 25 transcribed
doctor-patient interactions performed by human
standardized patients (i.e. actors simulating medi-
cal consultations).

4.2 Additional data creation
The purpose of collecting the corpus is to train
health dialogue systems aimed at simulating a con-
sultation with virtual patients. There is a grow-
ing interest of research groups towards integrat-
ing Natural Language Interaction (NLI) features
in medical education simulation systems (Hubal
et al., 2003; Stevens et al., 2006; Kenny et al.,
2008; Jaffe et al., 2015; Talbot et al., 2016).

Due to the lack of availability of questions,
a subset of data was generated automatically by
using question formation templates, semantic la-
bels and resources from the UMLS. An example
of template is Do you suffer from SYMPTOM in
your ANATOMY?. There, the label SYMPTOM is
replaced automatically with symptom terms (e.g.
pain or tingling), and ANATOMY, with anatomic
entities (e.g. leg or arm). We also generated au-
tomatically paraphrases of questions through a list
of paraphrase patterns (e.g. can you → are you
able to). These procedures allowed us to increase
the corpus data, making up around 25% of the to-
tal number of questions. Of note is that we did not
increase the corpus with more generated questions
in order to avoid getting a too artificial dataset. Ta-
ble 2 provides statistics on the experimental data.

4.3 Data preparation
We processed each question with our VP dialogue
system (Campillos et al., 2015). Then, we manu-

2http://anglaismedical.u-bourgogne.fr/
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Questions RBPS OPS Total
Original 1,607 825 2,432
Generated 510 328 838
Total 2,117 1,153 3,270

W
or

ds

Tokens 15,276 10,299 25,575
Types 3,470 2,624 4,985
Mean 7.21 8.93 7.82
Stdev 2.68 3.35 3.04
Minimum 1 2 1
Maximum 20 27 27

Se
m

.l
ab

el
s

Tokens 6,816 3,375 10,291
Types 111 90 119
Mean 3.22 3.01 3.15
Stdev 1.30 1.59 1.41
Minimum 0 0 0
Maximum 11 11 11

Table 2: Distribution of experimental data (stdev
= standard deviation)

ally labelled the output of question analysis, based
on our knowledge of the dialogue system, into
questions that should be processed by rule-based
processing (RBPS) and questions requiring some
other processing strategy (OPS). Specifically, we
labelled as RBPS those questions with correct
replies through the rule-based dialogue manager,
or those questions for which the system has rules,
but did not understand the questions or produced
incorrect replies due to processing errors. We la-
belled as OPS the remaining questions that were
not understood by the system or had wrong replies.

We split our corpus into 80% training and 20%
test data (respectively, 2616 and 654 questions
of both types). We performed 10-fold cross-
validation on the training set for the non-neural
classifiers, then applied the model to the test set.

5 Methods

We carried out tests with a linear support vector
machine classifier and two Naive Bayes classifiers
(Gaussian and Multinomial; from here on, respec-
tively, Gaussian NB and Multinomial NB). We
used Scikit-learn v0.18 (Pedregosa et al., 2011);
the SVM used the LinearSVC implementation
based on liblinear, one versus the rest scheme.

The combination of features used were inspired
by (Roberts et al., 2014a). We used four sources
of information:
1. The question Q itself, i.e., morphological and
lexical features:

• Token and frequency in Q (TK)

• Question root (QR): the three first words of Q

• Three-character-grams (3CG) and frequency

• Three-grams (3G) and their frequency

• Number of words in Q (WC)

• Minimum, maximum and average word
length in Q (WL)

2. The relation of Q to system knowledge, i.e., the
term is found in the core system lexicon:

• Out-of-vocabulary words (NIL): terms in Q
not found in system lexicon

3. Word representations computed from an exter-
nal corpus:

• Average word embeddings of words in Q
(WE). We used pre-trained word vectors
(see below) with the best combination of pa-
rameters we tested (window=10, vector di-
mension=100, negative samples=10, learning
rate=0.1, sampling threshold=1-e4). We only
used this feature for the SVM classifier.

4. Annotations produced by the question analysis
component of our dialogue system:

• Semantic annotation of Q (SEM)

We also tested the neural method implemented
in FastText (Joulin et al., 2016). An extension of
word2vec (Mikolov et al. 2013), FastText asso-
ciates n-grams of words and/or characters to learn
word vectors. It is a shallow neural model rely-
ing on a hidden layer, where a sentence is repre-
sented by averaging the vector representations of
each word. This text representation is then input
to a linear classifier (a hierarchical softmax, which
reduces computational complexity). As our data
were scarce, we used word vectors pretrained in a
large domain corpus from the European Medicines
Agency,3 which amounts to more than 16 million
tokens after tokenization. Several parameter val-
ues were tested: window size of 2, 4, 6, 8 and
10, vector dimension of 50, 100 and 300, use of
3-grams or 3-character-grams, number of negative
samples (5, 10 or 20), learning rate (0.1 and 0.05)
and sub-sampling threshold (1e-3 and 1e-4). We
only tested the skip-gram architecture since it has

3http://opus.lingfil.uu.se/EMEA.php/
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been observed to yield better results (Chiu et al.,
2016). The minimum word count was fixed to 1,
given the scarcity of our labelled data. We did not
use semantic annotation to create word vectors.

6 Results and discussion

Table 3 breaks down our results (reported as F1-
score) in the training set (top of the table) with
different parameter combinations and non-neural
classifiers. The weighted average F1-score was
computed based upon both F1-scores of classify-
ing RBPS and OPS types of questions. The best
combinations of parameters found in the training
set were applied to the test set; their results are
placed at the bottom of the table. Note that a
baseline method making a majority class decision
would categorize each question as RBPS: since the
proportion of RBPS is 0.647, its weighted average
F1-score would be 0.6472 = 0.419.

The SVM classifier outperformed the other
classifiers and the neural classifier. In all combi-
nations of features used with non-neural methods,
the use of semantic labels improved question clas-
sification. Multinomial NB obtained better results
than Gaussian NB. Results with the best combina-
tions of features and Multinomial NB gave similar
results to those yielded by the neural method.

In such a small dataset and constrained task, the
use of word embeddings as feature did not im-
prove classification performance. This could be
due to the data used for pre-training word embed-
dings. Despite being related to the domain, the na-
ture of texts used for pre-training vectors is differ-
ent to that of a clinical consultation context. Using
the combination of token/frequency and semantic
annotation together with another feature provided
the highest results (or almost the highest). The use
of 3-character-grams, word length or word count
contributed to good classification, but their benefit
was not strong, nor is it clear which feature was
more relevant. Using 3-grams seems to be the ex-
ception: the best combination of parameters—as
it improved results in all models—is 3-grams, se-
mantic labels and token/frequency. Not shown in
the table, when semantic labels are not used, the
other features did not improve classification in our
task (except 3-grams with Gaussian NB).

We note that the F1-scores obtained on the test
set are similar to that obtained by cross-validation
on the training set: the system did not overfit the
training data.

The fact that we used a subset of generated
questions from patterns could be argued as a
bias. However, we tested the above models in
a subset of 2,282 questions without any gen-
erated sentence, and the models and classifiers
had similar results (but lower F1-scores). We
again obtained the best results (avg. F1=0.81)
with Linear SVC, with models using seman-
tic features with or without all other parame-
ters (e.g. QR+TK+WL+WC+SEM+3G+NIL and
TK+SEM+QR+WC). We also tested the same com-
binations of features in Linear SVC with and with-
out computing term frequency-inverse document
frequency (tf-idf), and also a Logistic Regression
classifier (with and without tf-idf). For each group
of parameters, results were similar to those yielded
by Linear SVC (which does not use tf-idf).

As for the neural method, Table 4 reports our
results. The F1-score was computed based on pre-
cision and recall of the top ranked label (precision
and recall @1). The best result was an average F-
score of 0.812 (window of 10, vector dimension
of 100, negative sampling of 10, learning rate of
0.1 and sampling threshold of 1-e4). We achieved
similar results by modifying parameters (e.g. win-
dow of 6 or 8, vector dimension of 50, or use of
3 grams). Interestingly, using both 3 grams and
3-character-grams tended to lower performance.

We can draw two observations from our results.
First, we find it beneficial leveraging the seman-
tic information used for question analysis at the
classification step. This could be a hint for de-
velopping QAs in a similar task and restricted do-
main to the one here presented. That is, the ques-
tion analysis and classification steps for a similar
rule-based system would need to build on a com-
prehensive semantic scheme permeating both rule
development, entity type annotation and question
triage. This is what seems to explain our lower
results obtained when semantic features were not
used in with machine-learning classifiers and the
neural method. Indeed, (Jaffe et al., 2015) also re-
ported an error reduction in question classification
when domain concept-based features were used in
the question classifier for their VP system.

Second, we found necessary to complement the
neural approaches in this restricted task with nat-
ural language processing techniques to raise the
classification performance. We trained a large
amount of data for generating word embeddings
(to use them as features for the LinearSVC classi-
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TRAINING
Parameters Linear SVC Gaussian NB Multinomial NB
TK 0.798 0.573 0.783
3G 0.766 0.678 0.787
3CG 0.752 0.539 0.751
SEM 0.746 0.389 0.676
QR 0.679 0.427 0.670
WE 0.616 - -
WC 0.611 0.554 0.612
WL 0.519 0.467 0.576
TK+SEM 0.839 0.595 0.805
TK+3G 0.814 0.729 0.794
TK+SEM+3G 0.861 0.741 0.815
TK+SEM+QR 0.844 0.657 0.802
TK+SEM+WC 0.841 0.596 0.803
TK+SEM+NIL 0.839 0.595 0.805
TK+SEM+3G+NIL 0.862 0.741 0.815
TK+SEM+3G+WC 0.858 0.742 0.809
TK+SEM+QR+WC 0.843 0.659 0.797
TK+SEM+3G+3CG 0.834 0.756 0.796
TK+SEM+QR+WC+WL 0.844 0.693 0.800
TK+SEM+QR+WC+WL+NIL 0.844 0.693 0.800
TK+SEM+3G+QR+WC+WL+NIL 0.860 0.763 0.811
TK+SEM+3CG+QR+WC+WL+NIL 0.816 0.701 0.781
TK+SEM+3G+QR+WC+WE+WL+NIL 0.862 - -
TK+SEM+3G+QR+WC+WL+3CG+NIL 0.840 0.764 0.795

TEST
TK+SEM+3G 0.866 0.765 0.817
TK+SEM+3G+WC 0.871 0.766 0.806
TK+SEM+3G+NIL 0.866 0.765 0.817
TK+SEM+3G+QR+WC+WL+NIL 0.870 0.759 0.810

TK: token; SEM: semantic labels; WL: maximum, minimum and average word length;
WC: word count; QR: question root (3 first words); 3G: 3-grams; 3CG: 3-character-grams;
NIL: word not in lexicon

Table 3: Avg. F1 of non-neural classifiers with the best tested features in training and test sets

WS DIM GR CHGR NEG LR SAMP Avg F1
10 100 0 0 10 0.1 1-e4 0.812
8 50 3 0 20 0.1 1-e4 0.804
8 100 0 3 20 0.1 1-e4 0.803
6 50 0 3 10 0.1 1-e4 0.803
10 50 0 3 10 0.1 1-e4 0.800
2 50 3 3 20 0.1 1-e4 0.800
4 300 0 0 20 0.05 1-e3 0.792
10 300 0 3 10 0.05 1-e4 0.789

WS: window size; DIM: vector dimension; GR: n-grams;
CHGR: character-grams; NEG: number of negative samples;
LR: learning rate; SAMP: sampling threshold

Table 4: Results of the best tested models (neural approach)
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fier) and also used a neural model to classify ques-
tions. However, our results agree with the obser-
vation that restricted-domain QA is less affected
by data-intensive methods, but depend on refined
language processing methods (Mollá and Vicedo,
2007)—in this type of system, accurate semantic
annotation. On the other hand, the neural method
seems promising in this kind of classification task,
and how to use domain semantic information with
it requires further exploration, in line with current
works (Yu et al., 2016). We also need to pre-
train vectors on domain data of different nature
(e.g. clinical records) to confirm our results. Fi-
nally, other methods for computing vector repre-
sentations of sentences deserve to be explored.

7 Conclusions

For the task of optimizing question processing in
a VP natural language system, we reported the im-
provement of using the semantic information in
the question analysis step as a feature for ques-
tion classification. This is likely due to the id-
iosyncrasy of our task, where the dialogue system
makes use of semantic rules for processing input
questions. We are nonetheless interested in con-
firming to which extent reusing semantic informa-
tion from the question analysis would benefit the
classification step in QA systems for other tasks
and domains. Anyhow, the neural method here
tested yielded promising results for similar clas-
sification tasks. Other approaches to test might
be including semantic annotation to generate vec-
tor representations of questions, pretraining word
vectors on clinical record data, and using informa-
tion from the VP clinical record as another source
of features for classification.
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Abstract

Question answering (QA) can support
physicians and biomedical researchers to
find answers to their questions in the scien-
tific literature. Such systems process large
collections of documents in real time and
include many natural language process-
ing (NLP) procedures. We recently devel-
oped Olelo, a QA system for biomedicine
which includes various NLP components,
such as question processing, document
and passage retrieval, answer processing
and multi-document summarization. In
this work, we present an evaluation of
our system on the the fifth BioASQ chal-
lenge. We participated with the current
state of the application and with an exten-
sion based on semantic role labeling that
we are currently investigating. In addition
to the BioASQ evaluation, we compared
our system to other on-line biomedical QA
systems in terms of the response time and
the quality of the answers.

1 Introduction

Question answering (QA) is the task of automat-
ically answering questions posed by users (Ju-
rafsky and Martin, 2013). As opposed to in-
formation retrieval (IR), input is in the form of
natural language, e.g., English, instead of key-
words, and answers are provided as short an-
swers, instead of presenting a list of relevant doc-
uments. Therefore, QA systems need to rely on
various natural language processing (NLP) com-
ponents, such as question understanding, named-
entity recognition (NER), document and passage
retrieval, answer extraction and multi-document
summarization, among others. QA systems have
been developed for many domains, including

biomedicine (Athenikos and Han, 2010; Neves
and Leser, 2015). Given the large collection
of biomedical documents, e.g., in PubMed, re-
searchers and physicians need to obtain answers
for their various questions in a timely manner.

Much research has been published in the past
for biomedical QA (Athenikos and Han, 2010),
but focus was previously mainly on clinical
documents. QA for biomedicine has recently
gained importance owing to the BioASQ chal-
lenges (Tsatsaronis et al., 2015), for which the or-
ganizers created comprehensive datasets of ques-
tions, answers and intermediate results. The
BioASQ challenge considers four types of ques-
tions: (i) yes/no, (ii) factoid, (iii) list and (iv) sum-
mary. For yes/no questions, a system should re-
turn either of the two answers, factoid and list
questions expect one or more short answers, e.g.,
a gene name, while a short paragraph should be
generated as answer for summary questions. De-
spite the accessibility of these datasets to support
development and evaluation of QA systems for
biomedicine, few QA applications are currently
available on-line.

We recently developed Olelo1, a QA system for
biomedicine (Kraus et al., 2017). It relies on a
local index of the Medline documents, includes
domain terminologies and implements algorithms
specifically designed for biomedical QA. Previous
versions of our system were evaluated in the last
three editions of the BioASQ challenges (Schulze
et al., 2016; Neves, 2015, 2014).

In this work, we perform a comprehensive
evaluation of our application, both automatically,
during participation in the fifth edition of the
BioASQ challenge, as well as manually, by check-
ing our answers against the gold standard ones
from BioASQ benchmarks. We also present re-

1http://hpi.de/plattner/olelo
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sults for a new extension based on semantic role
labeling (SRL) that we are considering for our ap-
plication. Finally, we performed a comparison of
Olelo to the other on-line biomedical QA tools.

2 Related work

We are only aware of three other biomedi-
cal QA services, as surveyed in (Bauer and
Berleant, 2012), namely, askHERMES (Cao
et al., 2011), EAGLi (Gobeill et al., 2015) and
HONQA (Cruchet et al., 2009). However, none
of the these systems performs robustly to most
question types. Further, as far as we know, they
have not been recently evaluated on comprehen-
sive biomedical QA benchmarks, as the ones pro-
vided by BioASQ.

askHermes extracts answers from various
sources, e.g., PubMed and Wikipedia, and
presents answers as a cluster of terms, a ranked list
or clustered by content, along with the correspond-
ing relevant passages. However, the result page
tends to be very long and contains more informa-
tion than most users can deal with. The meth-
ods behind askHermes include regular expressions
for question understanding, classification into 12
topics and keyword identification, both based on
machine learning approaches, and the use of the
MetaMap system for concept recognition. Docu-
ment indexing is based on the BM25 model and
passage ranking is based on the longest common
subsequence (LCS) score.

EAGLi extracts the answers exclusively from
PubMed abstracts and returns a list of concepts
as answers. When no answer is found, the sys-
tem returns a list of potential relevant publica-
tions, along with selected passages. The system
locally indexes Medline with the Terrier informa-
tion retrieval platform and uses the Okapi BM25
as weighting scheme to rank documents. EAGLi
provides answers based on the Gene Ontology
(GO) concepts.

Finally, HONQA relies on certified websites
from the Health On The Net (HON), from which
it extracts the answers, and considers a variety of
question types. Questions can also be posed in
French and Italian. The system relies on UMLS to
detect the type of the expected answer and it fol-
lows the typical architecture of QA systems, but
no details are presented in the publication.

3 Methods

In this section, we briefly describe the current
methods behind Olelo as well as its extension for
answer extraction based on SRL.

3.1 Olelo QA application

Olelo relies on the typical three steps of QA work-
flow (Athenikos and Han, 2010), namely, question
processing, document/passage retrieval and an-
swer extraction. Details of our methods have been
previously published (Kraus et al., 2017; Schulze
and Neves, 2016), but we give an overview of
these below.

The application is built on top of an in-memory
database (IMDB) that accounts for data storage
(question, documents and terminologies) and text
analysis. The latter are based both on built-in text
processing features from the database, namely,
sentence splitting, tokenization and part-of-speech
tagging, as well as custom implemented SQL pro-
cedures for some QA components, such as ques-
tion understanding, multi-document summariza-
tion and answer extraction. The database also
includes an NER component based on custom
dictionaries that we compiled based on concepts
from MeSH and UMLS. Our document collection
currently includes Medline abstracts and full text
from PubMed Central Open Access.

When a question is posed to the system, its type
(e.g., factoid or summary) is extracted via regu-
lar expressions. Further, in the case of factoid or
list questions, the expected semantic types are de-
tected, e.g., whether a gene or disease name. A
query is then generated for the question based on
the detected named entities (from the NER compo-
nent) and other keywords from the question. Rel-
evant documents and passages are then retrieved
based on some simple heuristics that consider key-
words and named entities from the question. For
the answer extraction, different approaches are
considered depending on the question type. For
summary questions, a custom summary is gen-
erated based on the relevant sentence and corre-
sponding named entities. Our approach is based
on a graph-based approach for sentence selec-
tion (Schulze and Neves, 2016). In the case of
factoid questions, and given the set of potentially
relevant sentences, the system returns the corre-
sponding MeSH concepts which belong from the
same types of the expected type.

Contrary to BioASQ, our application does not
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distinguish between factoid and list questions,
thus, more that one exact answer can be returned
for a factoid question. Further, it does not yet sup-
port yes/no questions. Finally, Olelo supports defi-
nition questions, e.g., “What is zika virus?”, a type
not supported in BioASQ. For these cases, the sys-
tem returns the respective MeSH definition.

3.2 Semantic role labeling for answer
extraction

We currently investigate an extension to our sys-
tem based on SRL whose goal is to improve both
the question understanding and answer extrac-
tion steps. Our aim is to find correct answers
by identifying semantic conformities between a
question and its snippets. As a first investigative
step, we experimented with the BioKIT SRL tool
(Dahlmeier and Ng, 2010) and used it to label the
datasets from the first three years of the BioASQ
challenge. We propose an initial rule-based proof-
of-concept approach to investigate if SRL could
improve Olelo QA system. Therefore, we put fo-
cus on finding suitable rules for all question types
supported in the BioASQ challenge, i.e., yes/no,
factoid, list and summary. In our experiments, we
relied only on the gold-standard snippets provided
by BioASQ, instead of the ones retrieved by Olelo.

Yes/no questions. When experimenting with
yes/no questions, we soon observed problems with
the skewed nature of the training data. As more
than 4 out of 5 correct answers had to be ”yes”,
the challenge was more about finding out in which
rare cases to answer ”no”, instead of whether the
answer was ”yes” or ”no”. The latter approach
would regularly lead to worse results than the ap-
proach of simply answering ”yes” to every ques-
tion. Initially, we were motivated by the idea that
SRL could help us to be more confident when an
answer was ”yes”. This could be achieved by find-
ing a semantically matching answer to a question.
However, due to the characteristics of the BioASQ
data, being confident of when to output ”yes” was
not helpful to improve results. Hence, we inves-
tigated if we could find out whether an answer is
”no” by applying a similar strategy.

We investigated the detection of negation.
Looking at specific cases of the training data, we
created rules which include negation terms or the
occurrence of certain domain-specific terms. If
multiple answer snippets matched, we calculated
an overall score for taking the yes/no decision. For

this score, answer snippets were weighted differ-
ently depending on the strength of their match.

Factoid and list questions. Factoid and list
questions demand slightly different approaches.
For both categories, we implemented a rule-based
priority queue on answer candidates. The high-
est priority was given to answers where question
and answer snippet contained the same predicate
and for which the argument type of the answer
matched the argument type of the question word of
the question (e.g. ”what”). The next highest pri-
ority was given to answers which were somehow
related to the matching predicate. Hereby, the ar-
gument types ”Arg0” and ”Arg1” have higher pri-
ority. For factoid questions, the top five answers
were selected for the submission. For list ques-
tions, the maximum number of answers to be listed
decreased depending on how low the priority lev-
els got. This should ensure that we do not leave
out a high-priority answer with a high probability
to be correct in our model. Additionally, too many
low-priority answers should be avoided to keep
an acceptable precision level. Besides the SRL-
based priority queue, we introduced a rule for the
list question approach. As of the essence of list
questions, we consider enumerations by detecting
symbols like commas or the conjunction ”and”.

Summary questions and ideal answers. We
also investigated SRL for the summarization task.
For summary questions, out of the given sets of
answer snippets, the system selects the ones with
the largest semantic conformities. Similar to fac-
toid and list questions, the semantic conformity is
determined by the degree to which question and
answer snippet contain similar predicate argument
structures or vocabulary. The same, previously de-
scribed priority queue is applied. The ideal an-
swers for yes/no, factoid and list questions were
retrieved by selecting the whole answer snippet
that included the highest priority answer to the cor-
responding question. If no answer could be de-
termined, we followed the same procedure as for
summary questions.

4 Results

In this section we present an evaluation of Olelo
based on two aspects: (a) an automatic evaluation
of its QA components and the SRL extension ap-
proach on the fifth edition of the BioASQ chal-
lenge; and (b) its comparison to other on-line QA
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Batch System Doc. retr. Pass. retr.
1 Olelo 0.0465 0.0441
2 Olelo 0.0318 0.0246
3 Olelo 0.0658 0.0386
4 Olelo 0.0449 0.0347
5 Olelo 0.0381 0.0386
top results [0.0874,0.1157] [0.0467,0.0898]

Table 1: Results for mean average precision
(MAP) for Olelo in BioASQ task 5b phase A,
i.e., for document retrieval and passage retrieval.
Range of top results in all batches are presented in
the last row.

systems, in terms of processing time and quality
of the answers.

4.1 BioASQ test sets

We participated in Task 5b (Biomedical Seman-
tic QA) of the fifth edition of the BioASQ chal-
lenge. This task is composed of two phases: (a)
Phase A, which includes submission of results for
relevant concepts, documents, snippets and RDF
triples. (b) Phase B, which includes submission of
results for exact and ideal answers. A new batch
of questions is released every two weeks and par-
ticipants have 24 hours to submit results. For each
batch of Phase A, the organizers release a JSON
file which includes 100 questions and their cor-
responding type and identifier. After the end of
phase A (24 hours), phase B starts after the release
of an extended version of the JSON file which
includes the gold standard concepts, documents,
passages and RDF snippets, i.e., the answers for
Phase A. Therefore, predictions for phase B can
rely on this gold standard information, which we
indeed used in some of our runs.

4.2 Evaluation on BioASQ task 5b

In this section we present results for both Olelo
and the SRL approach. These are the official re-
sults that were made available and based on the of-
ficial metrics that are described in the guidelines2.

Table 1 presents the results for phase A based
on mean average precision (MAP). For this phase,
we provide results only for document and pas-
sage retrieval. We simply provide the top 10
documents and passages as returned by Olelo for
each question, following the maximum number of
documents and snippets which is specified in the
BioASQ’s guidelines.

2http://participants-area.bioasq.org/
general_information/Task5b/

Table 2 presents results of Olelo and the SRL
approach for the exact answers of Phase B. We
only provide results for yes/no questions using the
SRL approach as this question type is not sup-
ported by Olelo. For the first batch, we had two
submissions for SRL. SRL2 considers the detec-
tion of enumerations for list questions and fixes
some minor bugs regarding the retrieval of ideal
answers. The results in batch 1, SRL2 shows a
significant improvement for list questions. Given
that SRL2 was an improvement of SRL, we did
not submit the latter from the second batch on.

For yes/no questions we did not measure any
achievements in comparison to the approach of
just saying ”yes” to any question. The training
data from recent years was very ”yes”-biased and
subsequently was our system. The results imply
that this must have changed for the 4th and 5th
batch.

The results for factoid questions based on SRL
were constantly lower than the Olelo system, but
they both reached a similar magnitude, which in-
dicates a potential for a combination of both.

For list questions, the SRL approach achieved
much higher F-Measure scores than Olelo. How-
ever, it should be noted that the Olelo QA system
was performing its own passage retrieval and was
not simply relying on the gold standard snippets
provided by the challenge.

Finally, Table 3 presents our results for Olelo
and the SRL approach for the ideal answers, i.e.,
custom summaries. These summaries should be
provided for all questions, independent of their
type. The difference between the Olelo and the
Olelo-GS submissions is that the later relies on the
gold standard (GS) snippets, instead of the ones
retrieved by the system.

As expected, the Olelo-GS submissions usu-
ally obtained a higher score than the Olelo ones,
but difference was lower than our expectations.
The SRL-based approaches obtained much lower
scores than Olelo runs. All Rouge metrics for the
SRL approach were below 10%, which can be ex-
plained by the fact that it was basically just an an-
swer snippet selection approach.

4.3 Comparison to other on-line QA
applications

We compare the time response provided by
our system to three other biomedical QA
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Batch System Yes/No Factoid List

1
Olelo - 0.0400 0.0240

Olelo-GS - 0.0400 0.0477
SRL 0.8824 - 0.0038

SRL2 0.8824 - 0.1183

2
Olelo - 0.0430 0.0281

Olelo-GS - 0.0323 0.0287
SRL2 0.9630 0.0129 0.1123

3
Olelo - 0.0192 0.0408

Olelo-GS - 0.0192 0.0549
SRL2 0.8065 0.0128 0.1715

4
Olelo - 0.0253 0.0513

Olelo-GS - 0.0513 0.0513
SRL2 0.5517 0.0379 0.0943

5
Olelo - - 0.0202

Olelo-GS - - 0.0379
SRL2 0.4615 0.0286 0.2870

top results [0.8387,0.9630] [0.3606,0.5713] [0.3358,0.5001]

Table 2: Results for Olelo and the SRL approach in the BioASQ task 5b phases B (exact answers).
Results for yes/no questions are in terms of accuracy, MRR for factoid questions and f-measure for list
questions. Range of top results in all batches are presented in the last row.

Batch System Rouge-2 Rouge-SU4

1

Olelo 0.2222 0.2710
Olelo-GS 0.2958 0.3243

SRL 0.0467 0.0510
SRL2 0.0833 0.0870

2

Olelo 0.2751 0.2976
Olelo-GS 0.2048 0.2500

SRL2 0.0425 0.0418

3

Olelo 0.3426 0.3604
Olelo-GS 0.2891 0.3262

SRL2 0.0411 0.0416

4

Olelo 0.2261 0.2696
Olelo-GS 0.3460 0.3516

SRL2 0.0796 0.0740

5

Olelo 0.3418 0.3536
Olelo-GS 0.2117 0.2626

SRL2 0.0406 0.0413
top results [0.5153,0.6891] [0.5182,0.6789]

Table 3: Results for ideal answers (summaries) in
terms of Rouge metrics for Olelo and the SRL ap-
proach. Range of top results in all batches are pre-
sented in the last row.

systems3, namely AskHermes (Cao et al.,
2011), EAGLi (Gobeill et al., 2015) and
HONQA (Cruchet et al., 2009). However, we
did not obtain any answer for none of the ques-
tions posed to HONQA, instead, only the follow-
ing message: “A problem has occurred. Try later”.

We randomly selected ten factoid questions
from the BioASQ dataset and posed these to the
three systems - AskHermes, EAGLi and our ap-
plication. This evaluation was carried out manu-
ally, and therefore, we needed to limit the number
of questions and types. We decided to limit it to
factoid questions given that this type of answer is
easier to check manually than summaries. Table 4
shows the list of questions.

We manually recorded the time response using
a stopwatch. Time record started when clicking
on the search button and stopped when any re-
sults was shown. All experiments were carried
out from a laptop using the Chrome browser in-
stalled in the Ubuntu operating system. Further,
it was carried out from home, i.e., not in the net-
work of our institution, in order not to favor lower
response times from Olelo. We manually and care-
fully checked the output provided by each system
to look for the gold standard answer as provided
by BioASQ. This ranged from short titles, as re-
turned by EAGLi, short summaries returned by
Olelo and even three long pages of text, as in the
case of AskHermes. Table 5 summarizes the re-

3respectively,http://www.askhermes.
org/;http://eagl.unige.ch/EAGLi/
oldindex.htm;http://www.hon.ch/QA/
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Number Question
1 Which is the protein (antigen) targeted by anti-Vel antibodies in the Vel blood group?
2 Where in the cell do we find the protein Cep135?
3 Which enzyme is involved in the maintenance of DNA (cytosine-5-)-methylation?
4 Which is the most widely used model for the study of multiple sclerosis (MS)?
5 Which medication should be administered when managing patients with suspected acute opioid overdose?
6 What is the lay name of the treatment for CCSVI (chronic cerebro-spinal venous insufficiency) in multiple

sclerosis?
7 What is the percentage of responders to tetrabenazine treatment for dystonia in children?
8 Intact macromolecular assemblies are analysed by advanced mass spectrometry. How large complexes (in

molecular weight) have been studied?
9 Which is the most important prognosis sub-classification in Chronic Lymphocytic Leukemia?
10 What disease is mirtazapine predominantly used for?

Table 4: List of ten factoid questions that we considered for manual evaluation.

Systems Output Answers Time
AskHermes 7/10 1/10 10.1 [2.09,19.74]

EAGLi 10/10 2/10 58.6 [21.41,107.72]
Olelo 10/10 4/10 8.84 [3.35,28.12]

Table 5: Results in terms of number of correct an-
swers and response time for the on-line QA appli-
cations.

sults that we obtained. All output pages (or an-
swers) returned by the systems are available for
download4.

5 Discussion

In this section we discuss our performance in
the current edition of the BioASQ challenge and
present an error analysis based on datasets from
the previous years, given that gold standard re-
sults for this year’s challenge are not yet available.
We also provide a discussion on the comparison of
Olelo to other on-line biomedical QA systems.

5.1 Olelo’s performance in BioASQ task 5b

Although we have been participating in BioASQ
in the last years, the development of our applica-
tion did not have the challenge as goal. Thus, we
still do not use any of past challenge datasets for
training data. The system is not tuned to obtain
best performance in BioASQ, except for the Olelo-
GS submissions. As discussed above (cf. Sec-
tion 3), Olelo does not distinguish between factoid
and list questions, and we might have provided
multiple results even for factoid questions.

The methods behind Olelo are constantly being
improved. Currently, besides the approach based
on SRL that we presented here, we also evalu-
ated a new approach based on neural networks

4https://hpi.de//en/plattner/projects/
in-memory-natural-language-processing/
olelo.html

for the extraction of exact answers (Wiese et al.,
2017), which obtained top results for factoid and
list questions. We plan to integrate this new com-
ponent into Olelo soon.

5.2 Error analysis based on previous data

In order to analyze the errors returned by our ap-
plication, we carried out an evaluation on the test
datasets of the two last editions (2015 and 2016) of
the BioASQ challenge. We evaluated our exact an-
swers using the BioASQ Oracle system, an on-line
system that allows uploading JSON result files and
obtaining evaluations at any time. We considered
only the questions identified as ”factoid” and ”list”
in the BioASQ dataset. We obtained a MAP that
ranged from 0.0000 (no single match) to 0.0909
for factoid questions and a MAP from 0.0010 to
0.1000 for list questions.

This automatic evaluation is based solely on au-
tomatic matching procedures and results shown
here are for the strict accuracy, i.e., an exact
matching should apply. However, as described in
our methods, our answers are derived from MeSH
terms, while the gold standard answers in BioASQ
are mostly based on the text spans as they appear
in the document. For instance, for one of the ques-
tions, we returned the disease name ”Hirschsprung
Disease”, while the gold standard consists of the
text ”Aganlionic megacolon or Hirschsprung dis-
ease”. Indeed, during the BioASQ challenge, the
organizers carry out a manual evaluation of all
submitted answers, besides performing the auto-
matic evaluation. Finally, our system does have
some limitations on the exact answers that it is
able to return, given its dependency to the MeSH
terms. For instance, it performs particularly bad
on questions which require gene/protein names
in return, given that these entity types are poorly
represented in MeSH. Indeed, almost 30% of the
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questions in BioASQ expect a gene/proteins in re-
turn, as pointed by (Neves and Kraus, 2016).

We manually checked our exact answers for
all factoid and list questions. Unfortunately, the
BioASQ Oracle system only returns a score for
each batch of questions but does not give any in-
formation regarding true positives (TP), false neg-
atives (FN) and false positives (FP). In our man-
ual evaluation, we did not simply consider any
overlap as a TP. For instance, we did not con-
sider ”Receptors, Notch” and ”Notch intracellu-
lar domain (NICD)” as a match. However, we
did record as TP those cases in which our answers
were correct, e.g., ”Ethambutol” and ”Rifampin”,
even though they did not match exactly the gold
standard answer, which is the case of the following
very long answer (sentence): ”Rifampin 10 mg/kg
daily, ciprofloxacin 500 mg twice daily, clofaz-
imine 100 mg every day, and ethambutol 15 mg/kg
orally daily for 24 weeks, [...]”.

For a total of 502 factoid and list questions, our
application was able to provide a total of 116 TPs,
and at least one correct answer for a total of 71
questions. However, we missed many correct an-
swers (FNs) as well as provided many false an-
swers (FPs), sometimes even more than 20 FPs for
a question.

Olelo did not return any results for many ques-
tions, and we believe that these might have been
recognized as summary questions. As discussed
above, our system still fails to return answers for
concepts not properly covered by the MeSH on-
tology, but results are promising given the com-
plexity of the task. More importantly, the man-
ual evaluation shows that the user could receive at
least one correct answers for 14% of the questions,
while some answers could also have been found in
the summary, for those questions for which only a
summaries were returned.

5.3 Performance of semantic role labeling
experiments

As of the date of the BioASQ submissions, our
experiments on SRL were still in a preliminary
phase. For the specific case of list questions, we
could already show how a biomedical QA system
could benefit from SRL. However, in general, we
got the impression that SRL should not be used to
design a QA system from scratch (as we tried in
our experiments) but to improve our existing ap-
proaches. A major problem of our SRL approach

was its coverage: if no matching labels for a ques-
tion were found, we need an alternative approach
to it. Otherwise, the recall will be too low, as ex-
perienced in our experiments. For list questions,
considering enumerations as a baseline approach
was very helpful.

For yes/no questions, more sophisticated de-
tection strategies based on negation might be ap-
plied to find out when the answer is ”no” with
higher precision. There might be further poten-
tial when analyzing occurrences of double nega-
tion or other sophisticated contextual information.
A less ”yes”-biased training dataset in the BioASQ
challenge could also produce further insights. At
least having training data with more ”no”-samples
might be desirable and allow more sophisticated
approaches like machine learning. As stated be-
fore, the answer snippet selection strategy for the
summarization task was not meant to be very
promising. Nevertheless, the strategy could be
combined with the current approach in the olelo
system.

5.4 QA performance in a real-time scenario

Given the comparison of our systems to the other
three available biomedical QA applications (cf.
Section 4), we now present a discussion on the per-
formance of the systems.

Olelo displayed high response times (19.85 sec-
onds and 28.12 seconds) only for two questions,
namely: ”Where in the cell do we find the pro-
tein Cep135?” and ”Intact macromolecular assem-
blies are analysed by advanced mass spectrome-
try. How large complexes (in molecular weight)
have been studied?”. The second question is in-
deed longer than usual questions in BioASQ. Even
though AskHermes outperformed Olelo in both
minimum and maximum time, our application has
on average a lower response time, besides being
able to return an answer to all questions (cf. be-
low). Further, three of the questions with response
time under 10 seconds in AskHermes were those
which returned no results, which suggests that the
processing might have been interrupted. Finally,
processing in EAGLi takes far too much time.

We manually analyzed the answers provided for
the questions by each system. For all questions,
Olelo returned a summary as answer, and in four
of these questions, the summaries contained at
least one of the correct answers for the question,
as provided in the BioASQ benchmark. For in-
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stance, the following sentence is the first one in
the summary that the system returned: “Cep135 is
a 135-kDa, coiled-coil centrosome protein impor-
tant for microtubule organization in mammalian
cells.” (PubMed 14983524). It contains the an-
swer (centrosome) for the question “Where in the
cell do we find the protein Cep135?”.

In contrast, AskHermes extracted the correct
answer only for one question. Nevertheless,
the answer was indeed given as the top ranked.
EAGLi could not provide exact answers for none
of the questions, instead, only relevant documents
(titles) and their corresponding single selected
passages were presented. Two of these top pas-
sages indeed contained the correct answer to the
question. Some of the snippets that contained the
answer, as returned by AskHermes and EAGLi,
appeared at the far end of a very long results page.
However, these were too far from the top ranked
answers (or passages) to be read by the average
user, in our opinion. Finally, we should notice that
EAGLi restricts the size of the question up to 80
characters, which could result in some questions
not being properly processed by the system.

Even though Olelo was not able to detect that
the questions were of the factoid type, and thus
generated summaries for all questions, these sum-
maries contain a maximum of five sentences (de-
fault value). Thus, we believe that most users
could indeed find those four correct answers by
reading through the short paragraphs. Changes
on our question processing component could al-
low our system to output more short answers, in-
stead of summaries, for questions that are in fact of
the the factoid type. Currently, it only returns ex-
act answers when both the headword and semantic
types are detected, in addition to the candidate an-
swers being of this same semantic type.

6 Conclusions

In this work, we presented an assessment of our
Olelo QA system for biomedicine. We considered
both the current online state of the system as well
as a future extension based on semantic role la-
beling. We presented an evaluation both in terms
of response time and robustness, in comparison to
other online QA systems, as well as automatic and
manual evaluation of the exact answers based on
the BioASQ dataset. Our results are promising,
given the complexity of the QA task, and future
work will focus on the improvement of our current

methods, integration of additional terminologies
(e.g., for gene/proteins names) and support for ad-
ditional question types (e.g., yes/no questions).
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Abstract

Event detection from clinical notes has been tradi-
tionally solved with rule based and statistical nat-
ural language processing (NLP) approaches that
require extensive domain knowledge and feature
engineering. In this paper, we have explored the
feasibility of approaching this task with recurrent
neural networks, clinical word embeddings and in-
troduced a hybrid architecture to improve detec-
tion for entities with smaller representation in the
dataset. A comparative analysis is also done which
reveals the complementary behavior of neural net-
works and conditional random fields in clinical en-
tity detection.

1 Introduction

Event detection from clinical notes is a well stud-
ied problem in biomedical informatics; yet, it is
constantly evolving through research. Much of
this research has been promoted by the i2b2 chal-
lenges (2010, 2012) and their publicly available
datasets comprised of annotated discharge sum-
maries. For the 2010 task, the notes were anno-
tated for three types of events - Problem, Test and
Treatment, which are predominantly noun phrases.
(Uzuner et al., 2011) The task was made even
more challenging in 2012 with the addition of
three new entity classes - Occurrence, Evidential
and Clinical Department. Occurrence and Eviden-
tial concepts are mostly verb phrases, with some
examples being ’readmitted’, ’diagnosed’, ’seen in
consultation’, ’revealed’ etc. Rule based and sta-
tistical NLP approaches such as Conditional Ran-
dom Fields have been used at identifying these
entities. These approaches require extensive do-
main knowledge and feature engineering. (Sun
et al., 2013) In this paper, we explore discretized

word embeddings as new features in structured in-
ference and also implement a neural network ar-
chitecture for clinical entity recognition. We de-
fined a CRF baseline to compare the performance
of our neural networks and performed a detailed
error analysis.

2 Related Work

The best performing system on 2010 i2b2 corpus
is a semi-supervised HMM (semi-Markov) model
which scored 0.9244 (partial match F1-score) in
the concept extraction track (Uzuner et al., 2011).
Xu et al. (2012) divided the Treatment category
into Medication and Non-medication concepts,
and trained two separate conditional random field
(CRF) classifiers for sentences with and without
medication. With additional features, this system
scored 0.9166 on event detection track in 2012
i2b2 challenge, taking the top spot. Tang et al.
(2013) built a cascaded CRF system which scored
0.9013 on event detection and came a close sec-
ond. Most of the other competing teams also em-
ployed CRF for this task along with Support Vec-
tor Machines or Maximum Entropy for classify-
ing the event category, with the exception of Jin-
dal and Roth (2013) who implemented a sentence-
level inference strategy using Integer Quadratic
Program. Sun et al. (2013) showed that these sys-
tems found it harder to identify Clinical Depart-
ment, Occurrence and Evidential concepts.

With the surge in deep learning, there have been
several new approaches to clinical event detection.
Wu et al. (2015) used word embeddings as fea-
tures in a CRF model and noted improvement in
recall for the i2b2 2010 corpus. Chalapathy et al.
(2016) implemented a bi-directional LSTM-CRF
model with generic embeddings and reported no
improvement over the top-performing system in
2010 i2b2 challenge. Jagannatha and Yu (2016a)
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tested a bi-directional LSTM framework initial-
ized with pre-trained biomedical embeddings on
an independent dataset and reported improvement
over a CRF baseline. Recent results show that ap-
proximate skip-chain CRFs are more effective at
capturing long-range dependencies in clinical text
than recurrent neural networks (RNN) (Jagannatha
and Yu, 2016b).

The 2012 i2b2 corpus has remained relatively
unexplored in light of recent advances in NLP. We
analyze the performance of recurrent neural net-
works for identification of clinical events from this
dataset.

3 Methods

3.1 Dataset
The 2012 i2b2 corpus is made of 310 discharge
summaries consisting of 178, 000 tokens anno-
tated with clinical events, temporal expressions
and temporal relations. The entire corpus is di-
vided into training and test sets, containing 190
and 120 documents respectively. Each discharge
summary has sections for clinical history and hos-
pital course. Annotation of clinical events includes
problems, tests, treatments, clinical departments,
occurrences (admission, discharge) and evidences
of information (patient denies, tests revealed). The
inter-annotator agreement for event spans is 0.83
for exact match and 0.87 for partial match (Sun
et al., 2013). Clinical Department and Evidential
concepts are under-represented in training set with
less than 1000 examples each.

3.2 Approach
3.2.1 Baseline
The best performing system in 2012 i2b2 chal-
lenge (Xu et al., 2013) requires additional anno-
tation. So, we choose to replicate the second
best performing system built by Tang et al. (2013)
as our baseline. It is a cascaded CRF classifier,
wherein the first CRF is trained on datasets re-
leased in 2010 & 2012 to classify for problem,
test and treatment. The next CRF is trained on
2012 dataset to extract clinical department, occur-
rence and evidential concepts. This split in classes
is performed to leverage the 2010 dataset which
is annotated for the first three classes only. Preci-
sion, recall and F-measure (exact event span) for
the original system is reported as 93.74%, 86.79%
and 90.13% respectively. Our baseline system is
built with the same cascaded configuration. The

following features are used: N-grams (±2 con-
text window), word-level orthographic informa-
tion, syntactic features using MedPOST (Smith
et al., 2004), discourse information using a statis-
tical section chunker (Tepper et al., 2012) and se-
mantic features from normalized UMLS concepts
(CUIs and semantic types). Tang et al. (2013)
employs several other lexical sources and NLP
systems for additional features, such as MedLEE,
KnowledgeMap and private dictionaries of clini-
cal concepts. For lack of access, they have been
left out of our baseline. We have implemented the
baseline using CRFSuite package (Okazaki, 2007)
and optimum parameters are selected through 5-
fold cross-validation on the training set.

3.2.2 Word Embeddings
We use the publicly available source code of
GloVe (Pennington et al., 2014) to extract word
vectors of dimension 50 for 133,968 words
from MIMIC-III. The MIMIC-III dataset (Johnson
et al., 2016) contains 2,083,180 clinical notes in-
cluding discharge summaries, ECG reports, radi-
ology reports etc. Since we are dealing exclusively
with discharge summaries in our task, GloVe is
run only on the discharge summaries present in
MIMIC. These vectors are unfit for direct use
in structured prediction and are discretized using
methods advocated by Guo et al. (2014).

3.2.3 Recurrent Neural Networks
The bi-directional LSTM-CRF neural architec-
ture introduced by Lample et al. (2016) has
been shown to excel on multi-lingual NER tasks.
Among others, its components include a char-
RNN that models word prefixes, suffixes and
shape - features that are critical to NER. We ini-
tialize two instances of the complete network with
the GloVe vectors extracted from MIMIC-III dis-
charge summaries. First instance is trained to clas-
sify problem, test and treatment concepts only;
second instance is trained for other three classes.
78.96% words in the training corpus are initial-
ized with pre-trained embeddings. Results from
both the networks are merged in a combination
module for final evaluation of the end-to-end sys-
tem. Overlaps are resolved by placing preference
on predictions from the first instance.

3.2.4 Hybrid Architecture
The current of state-of-art for detecting problem,
test and treatment concepts from clinical text is
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System TP FP FN Precision Recall F1 Score
Baseline 13951 794 2517 94.63 84.71 89.40
Baseline + BinEmb 13982 818 2486 94.47 84.90 89.43
Baseline + ProtoEmb 14006 825 2460 94.43 85.06 89.50
Baseline + Brown Clusters 14129 843 2339 94.38 85.78 89.88
Baseline + Brown Clusters + ProtoEmb 14130 860 2338 94.26 85.78 89.82
RNN + random initialization 12370 3123 4098 79.84 75.12 77.38
RNN + MIMIC Embeddings 14315 1373 2153 91.25 86.93 89.31
CRF + RNN (Hybrid) 14236 936 2232 93.66 86.45 89.91

Table 1: 5-fold cross validation performance of various systems on 2012 i2b2 training set

Entity Class System TP FP FN Precision Recall F1 Score
Problem Baseline + Brown Clusters 4607 194 414 95.96 91.72 93.79

RNN + Embeddings 4429 776 594 85.09 88.17 86.61
Test Baseline + Brown Clusters 2355 100 242 95.93 90.64 93.21

RNN + Embeddings 2182 342 415 86.45 83.98 85.20
Treatment Baseline + Brown Clusters 3469 160 361 95.62 90.57 93.03

RNN + Embeddings 3296 525 534 86.26 86.06 86.16
Occurrence Baseline + Brown Clusters 2030 620 1256 76.60 61.78 68.40

RNN + Embeddings 2042 510 1234 79.51 62.14 70.82
Evidential Baseline + Brown Clusters 456 116 284 79.72 61.62 69.51

RNN + Embeddings 497 134 243 78.76 67.16 72.5
Clinical Department Baseline + Brown Clusters 741 122 256 85.86 74.32 79.68

RNN + Embeddings 813 188 194 79.96 82.05 80.99

Table 2: Entity-level performance of best performing CRF system and RNN on 2012 i2b2 training set

based on CRF and it has been hard to improve on
this baseline, even with neural networks. (Chala-
pathy et al., 2016) Cross-validation performance
(presented in Table 2) reveals entity-level differ-
ences between CRF and RNN systems. So, we
combine the merits of both approaches to create a
hybrid end-to-end model. The exact configuration
is discussed in the results section.

4 Evaluation Metrics and Results

We report the micro-averaged precision, recall and
F1-score, for ’overlap’ match of event spans as
per the i2b2 evaluation script. TP, FP, FN counts
of overall performance are calculated for entity
spans, irrespective of entity tag. Systems are
also evaluated for performance in individual en-
tity classes and TP, FP, FN counts are compared
between the CRF and RNN+Embedding systems.
We perform five-fold cross validation for various
configurations of the baseline and RNN systems
on the training set. The results are presented in
Table 1 and Table 2.

The best performing CRF system i.e. Base-
line + Brown Clusters, achieves F1-score of 89.88.
Except for brown clusters, additional features de-
rived from distributional semantics, such as bina-
rized word embeddings (BinEmb), prototype em-
beddings (ProtoEmb) contribute marginally to per-
formance of the system. Pre-trained clinical em-

beddings improve F1 score by 11.93%, over ran-
dom initialization of RNNs. In terms of recall,
the RNN initialized with MIMIC embeddings is
found to perform remarkably well without hand-
engineered features. However, it fails to beat the
CRF system at F1-score. Comparative analysis of
individual entity classes reveals that the RNN im-
proves recall for evidential and clinical department
phrases by 5.44% and 8.32% respectively. It regis-
ters some drop in precision, but improves F1-score
by up to 3%. Clearly, RNNs are better suited for
detecting occurrence, evidential and clinical de-
partment phrases from clinical text.

Based on these results on the training set, we
build the hybrid sequence tagger where the best
performing CRF system is combined with RNN.
The former is trained to tag problem, test and treat-
ment and the latter is trained to tag rest of the three
entity classes. The results are merged in a combi-
nation module and overlapping predictions are re-
solved by prioritizing the first three classes. We
evaluate its performance on the i2b2 2012 test set.
Results are listed in Table 3 and 4.

The hybrid model improves recall by 2.36% and
F1-score by 0.56% over the best-performing CRF
system. Dramatic improvement in recall (as high
as 14%) is noted for some entities, but a similar
drop in precision is observed.

353



System TP FP FN Precision Recall F1 Score
Tang et al. (2013) - - - 93.74 86.79 90.13
Baseline + Brown Clusters 11664 647 1930 94.74 85.80 90.05
Hybrid CRF-RNN 11985 875 1609 93.20 88.16 90.61

Table 3: Performance of best performing CRF and Hybrid CRF-RNN on 2012 i2b2 test set

Entity Class System TP FP FN Precision Recall F1 Score
Occurrence Baseline + Brown Clusters 1509 489 991 75.53 60.36 67.10

Hybrid 1565 563 935 73.54 62.60 67.63
Evidential Baseline + Brown Clusters 370 76 226 82.96 62.08 71.02

Hybrid CRF-RNN 446 177 150 71.59 74.83 73.17
Clinical Department Baseline + Brown Clusters 557 109 176 83.63 75.99 79.63

Hybrid CRF-RNN 657 234 76 73.74 89.63 80.91

Table 4: Entity-level performance of best performing CRF and Hybrid CRF-RNN on 2012 i2b2 test set

5 Discussion

The hybrid architecture serves as a concept ex-
traction model with a predisposition for higher re-
call of clinical events, as compared to the CRF
system which exhibits better precision in perfor-
mance. On comparing errors, we found the %over-
lap between false negatives of CRF and RNN sys-
tems to be only about 52%. The CRF model is able
to exploit semantic, syntactic and orthographic in-
formation among others, while RNNs are only ini-
tialized with limited semantic information. Auto-
matic learning of syntactic structure and finer se-
mantic correlations is inherent to recurrent neural
architecture. However, this may be somewhat lim-
ited by our small corpus. This situation leads to
subtle disparities in performance of both systems.

The RNN is able to detect clinical departments
(which includes physician names, hospitals names
and clinical departments) with good recall value in
spite of being trained with only 997 data points.
CRF has lowest recall for clinical department,
among all classes that contain more noun phrases.
The RNN confuses higher percentage of Treat-
ment concepts as Occurrence than CRF, mostly
those which are verb phrases like ’excised’, ’intu-
bated’ etc. Instead of initializing all words with
clinical embeddings, the performance of RNN
may be improved by selectively initializing clin-
ical terms only. This can be done by filtering for
certain UMLS semantic groups/types and provid-
ing only those words with a pre-trained word vec-
tor. On the other hand, word embeddings help the
RNN in handling unseen vocabulary effectively.
For example, when RNN is trained to tag ’de-
creased’ as occurrence, it tags the word ’weaned’
correctly as occurrence in the test set. Under sim-

ilar conditions, CRF is unable to make the cor-
rect decision. Word vectors derived from a larger
biomedical corpus may enable the RNN to make
finer semantic distinctions.

Unlike RNN, CRF fails to recognize the oc-
casional long phrases such as ’normal appear-
ing portal veins and hepatic arteries’, even under
overlap matching criteria. We expect the LSTM
cells in RNN to capture long-term dependencies
from various ranges within a sentence, and our
hypothesis is confirmed by the test results. The
CRF operates within a pre-specified context win-
dow and is limited by its linear chain framework.
With a skip chain CRF, this situation can be reme-
died.

6 Conclusion & Future Work

This paper evaluates various methods for using
neural architecture in clinical entity recognition
and minimizing feature engineering. Benefits are
observed when the merits of structured predic-
tion model and RNN are fused into a hybrid ar-
chitecture after analysis of their cross-validation
performance. The hybrid model’s recall and F1
score surpass that of the state-of-art system we
have used for replication. Through error analysis,
we highlight some of the situations where RNNs
fare better such as longer concept length, unseen
clinical terms, semantically similar generic words,
proper nouns etc.

In future work, we will attempt to integrate
long-term dependencies within a sentence by im-
plementing the skip chain CRF model and explore
the efficient use of word embeddings for struc-
tured prediction. This clinical entity recognition
model will also be extended to a temporal evalua-
tion system.
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Abstract

In this paper, we describe a system for au-
tomatic construction of user disease pro-
gression timelines from their posts in on-
line support groups using minimal super-
vision. In recent years, several online sup-
port groups have been established which
has led to a huge increase in the amount of
patient-authored text available. Creating
systems which can automatically extract
important medical events and create dis-
ease progression timelines for users from
such text can help in patient health mon-
itoring as well as studying links between
medical events and users’ participation in
support groups. Prior work in this domain
has used manually constructed keyword
sets to detect medical events. In this work,
our aim is to perform medical event detec-
tion using minimal supervision in order to
develop a more general timeline construc-
tion system. Our system achieves an accu-
racy of 55.17%, which is 92% of the per-
formance achieved by a supervised base-
line system.

1 Introduction

In recent years, the steady shift towards a
consumer-centric paradigm in healthcare, in con-
junction with the meteoric rise of social network-
ing, has led to the establishment of several online
support groups and an increasing amount of avail-
able patient-authored text. Analyzing this text can
provide us an opportunity to study many impor-
tant issues such as how important medical events
affect people’s lives and how important changes
in their personal lives affect disease progression.
We can also study how important medical events

affect users’ participation in these online commu-
nities.

To perform such analyses on large-scale data,
there is a need to develop automated methods to
extract important personal medical events and as-
sociate them with dates from user posts in on-
line support groups. These extracted events and
dates can then be used to construct medical event
timelines for users and study links between user
participation or posting behaviors in online sup-
port groups and important personal medical events
(Wen and Rosé (2012)). Such automated methods
can also be used for patient health monitoring. In
this work, we propose a novel unsupervised ap-
proach to personal medical event extraction that
achieves an accuracy of 55.17%, which is 92% of
the performance of the most similar supervised ap-
proach on a cancer support forum corpus.

Prior work in personal medical event extraction
(Wen and Rosé (2012)) from user posts uses man-
ually constructed sets of keywords to detect med-
ical events from text. This limits the generality of
such systems, since using the system on a new cor-
pus requires prior knowledge about types of medi-
cal events, and the vocabulary used by users to de-
scribe these events. To make them more general,
we propose a data-driven personal medical event
extraction pipeline which detects medical events
with minimal supervision. This makes our sys-
tem independent of the corpus on which it is used
and reduces the manual effort required. We test
the performance of our system on the task of con-
structing cancer event timelines from the dataset
used by Wen and Rosé (2012). In spite of being al-
most completely unsupervised, our system reaches
92% of the performance achieved by a supervised
baseline system.

The rest of paper is organized as follows. Sec-
tion 2 describes prior work in event extraction and
temporal resolution which we leverage, while sec-
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tion 3 describes our datasets. Section 4 introduces
the architecture of our proposed system and sec-
tion 5 talks about the system modules in more de-
tail. Section 6 describes our experiments and eval-
uation, while section 7 presents a brief error anal-
ysis and describes possible future extensions. Sec-
tion 8 concludes the paper.

2 Related Work

Event extraction is a well-studied topic in natural
language processing. This has resulted in the de-
velopment of several off-the-shelf tools for event
extraction (Saurı́ et al. (2005), Chambers (2013),
Derczynski et al. (2016)). All these tools have
been developed for extraction of public events
from news corpora. Some prior work has also
studied extraction of public events from social me-
dia (Sakaki et al. (2010), Becker et al. (2010), Rit-
ter et al. (2012)). However, in this work, we want
to focus on extracting personal medical events for
users from their posts on online support groups us-
ing minimal supervision.

There has been some prior work on personal
event extraction from social media, especially
twitter )Li and Cardie (2014); Li et al. (2014)). Li
et al. (2014) developed a system for personal event
extraction from twitter using minimal supervision.
They used the presence of congratulations/ con-
dolence speech acts to detect personal event men-
tions in tweets and clustering based on the Latent
Dirichlet Algorithm (Blei et al. (2003)) to detect
personal event types. However, they did not fo-
cus specifically on medical events. While we also
want to build a system for personal event extrac-
tion from online support groups, our focus is on
identifying medical events. Hence, the techniques
used by Li et al. (2014) do not work very well
for us. Online support groups are not as person-
focused as twitter, so the presence of congratula-
tions/ condolence speech acts is not a strong sig-
nal for personal medical event detection. More-
over, as we show in section 6, LDA is unable to
perform well on personal medical event type de-
tection. So, we use a different technique for event
type detection, which is partly similar to the tech-
nique used by Huang et al. (2016). Our overall
system pipeline for data-driven medical event de-
tection with minimal supervision is partly inspired
by Li et al. (2014).

On the other hand, there has not been exten-
sive research on personal medical event extraction

from online support groups. Wen and Rosé (2012)
developed a system for medical event extraction
from online support groups. Their system used
manually constructed keyword sets for event ex-
traction. We propose a minimally supervised med-
ical event detection pipeline which can remove the
need to create these manual keyword sets.

Since we want to create event timelines for
users from their posts in online support groups,
we also need to perform temporal expression de-
tection and resolution as well as linking of tem-
poral expressions to events. Temporal expression
extraction and normalization is also a well-studied
area and several off-the-shelf systems are avail-
able (Strötgen and Gertz (2010), Chang and Man-
ning (2012), Derczynski et al. (2016)). More-
over, some systems perform both temporal res-
olution and linking of events with temporal ex-
pressions (Chambers (2013)). However, most of
these systems are developed for news data and do
not work very well with the informal writing style
used on social media. But there have been some
efforts to develop systems which work well for
this space. Wen et al. (2013) developed a tempo-
ral tagger and resolver for informal temporal refer-
ences on social media, but the system is not avail-
able for use. The HeidelTime system Strötgen
and Gertz (2010) also has a ”colloquial english”
setting which works well for temporal resolution
from social media data. To link events with tem-
poral expressions, we use the heuristics proposed
by Wen and Rosé (2012).

3 Dataset

We use two datasets in this paper. The first
dataset comprises of all posts from two groups
called ”Knitters with Breast Cancer” and ”Begin-
ners Knit-Along” from Ravelry1, a website for
fiber arts enthusiasts. ”Knitters with Breast Can-
cer” is one of the largest and most active breast
cancer groups on Ravelry. This group was started
in December 2008. As of December 2016, it had
426 members and 120,000 posts. ”Beginners Knit-
Along” is a group for knitting enthusiasts who
have just started learning how to knit. This group
was started in 2013. As of December 2016, it had
3274 members and 70,000 posts. The data from
these groups is used to create a list of medical
terms, based on vocabulary difference, which is
used in the medical event extraction module. We

1https://www.ravelry.com/
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Figure 1: Architecture of proposed system pipeline

do not use this data for system evaluation.
In order to facilitate comparison with previ-

ous work, we use a different dataset to evaluate
the performance of our system on the user time-
line construction task. This dataset comprises of
user posts from an online breast cancer community
called breastcancer.org. This dataset is a subset
2 of the annotated dataset used by Wen and Rosé
(2012). It comprises of major cancer events and
associated dates for 50 users, along with all posts
by these users. This dataset is much smaller in
comparison to Knitters with Breast Cancer, com-
prising only of 3293 posts.

4 System Description

Our system pipeline is similar to the pipeline used
by Wen and Rosé (2012), which is used as a base-
line to compare our system performance. It con-
sists of two main modules: medical event extrac-
tor and temporal resolver. However, there are a
few differences from the baseline system. We do
not use any filtering to remove sentences which
do not contain mentions of self-reported events.
Moreover, we use a different system for temporal
expression extraction and normalization since the
temporal resolved used by Wen and Rosé (2012) is
not available for use. Because of these differences,
we re-implement the baseline system in Wen and
Rosé (2012) as described in section 6 to facili-
tate a fair comparison. After re-implementation,
the only difference between the baseline and our
system lies in the medical event extractor mod-

2We use this subset because we could not get access to the
full dataset used in Wen and Rosé (2012)

ule. Instead of using manually designed keyword
sets for extracting sentences containing medical
events, we use a data-driven medical event ex-
traction pipeline with minimal supervision. Fig
1 shows the architecture of our proposed system.
We explain the modules for our proposed system
in more detail in subsequent sections.

5 Modules for Proposed System

Our timeline construction system consists of two
main modules: medical event extractor and tem-
poral resolver.

5.1 Medical Event Extractor
We propose a pipeline for data-driven medical
event detection using minimal supervision. Our
pipeline comprises of three stages:

• Medical Term Detection

• Medical Term Filtering

• Event Type Clustering

In the following sections, we describe the algo-
rithms used in these stages in more detail. We
present evaluation results for each stage in section
6.

5.1.1 Medical Term Detection
In this stage, our aim is to select sentences which
may contain mentions of a user’s personal medi-
cal events. we use a simple rule to perform this
selection: if a sentence contains a medical term,
it is selected as a candidate sentence for the sec-
ond stage of the pipeline. We experiment with two
different methods for medical term detection.
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The first method uses ADEPT MacLean and
Heer (2013), a medical term recognizer developed
specifically for patient-authored text, to detect the
presence of medical terms in sentences. All sen-
tences containing at least one medical term, as de-
tected by ADEPT, are chosen as candidate sen-
tences. The second method is based on vocabu-
lary difference between an online support group
and a non-illness related group (VOCAB). We cre-
ate term vocabularies from two groups on Rav-
elry: Knitters with Breast Cancer, a breast cancer
support group and Beginners’ Knit-Along, a non
illness-related group. We then create a list of terms
which occur at least once in Knitters with Breast
Cancer, but do not appear at all in Beginners’ Knit-
Along. All terms in this list are now considered
to be medical terms. Choosing two groups fo-
cusing on different interests from the same online
community to detect medical terms, mitigates the
problem of Ravelry-specific terms (such as Rav-
eler, Ravatar etc.) being mistakenly included in
the list. Using this term list, we perform candi-
date sentence extraction by choosing all sentences
which contain at least one of the terms from the
list.

Candidate sentences chosen by both methods
contain a lot of spurious sentences, since many
spurious terms are marked as medical terms by
these methods. Hence, the next stage in our
pipeline filters these candidate sentence sets.

5.1.2 Medical Term Filtering
In this stage, we filter out spurious terms to im-
prove the quality of the candidate sentence set. We
first discuss major sources of errors for both medi-
cal term detection methods and then discuss some
strategies we use to mitigate these errors. These
strategies are used to filter medical terms detected
by both systems, which in turn filters candidate
sentences selected by both.

We face one major issue while running the
ADEPT system on our data. The system manages
to correctly identify most important medical terms
from the text, but it also marks several words used
in non-medical contexts as medical terms. For ex-
ample, in the sentence ”I must learn to speak more
slowly than my brain thinks !”, the word ”brain”
is marked as a medical term, even though it not
being used in a medical context. Performing such
filtering is difficult, but we observe that when use
a combination of terms from both methods, some
of these errors get mitigated.

k Vocab Size
1 28136
5 6585
10 2833
20 1197

Table 1: Massive decrease medical term vocabu-
lary size with increasing value of k (the frequency
limit for filtering)

While the vocabulary difference-based method
does not fall into such context-based errors, it
has its own drawbacks. Several terms in the list
created via vocabulary difference are URLs, user
names, email addresses and telephone numbers.
We observe that such spurious terms are very in-
frequent. Hence, we perform filtering by remov-
ing all terms which occur with a frequency lower
than k in the Knitters with Breast Cancer group,
from our medical term list. We experiment with
different values of k. Table 1 shows the mas-
sive reduction in medical term vocabulary with in-
creasing value of k.

For further comparison, we evaluate the perfor-
mance of both methods on candidate sentence ex-
traction. These experiments and results are dis-
cussed further in section 6. Based on these results,
we use a combination of both methods to perform
medical event detection and filtering in the final
system.

5.1.3 Event Type Clustering
In this stage, we use clustering to perform medi-
cal event type detection. We consider all sentences
from the filtered set provided by the previous stage
to be sentences containing mentions of medical
events. This is an oversimplification since a sen-
tence may contain a medical term which may not
correspond to a medical event. For example, in
the sentence ”My onc gave me the choice, saying
she would rather ovrtreat than undertreat”, there
are several medical terms (onc, overtreat, under-
treat) but none of them are associated with med-
ical events. However, we still perform clustering
on the entire set, since such medical terms which
do not correspond to medical events form a sepa-
rate set of clusters which are later discarded. Af-
ter clustering, we manually label each cluster with
the medical event it corresponds to, and use these
clusters as keyword sets to only retain sentences
corresponding to each medical event. These sets
of sentences for each medical event correspond to
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what Wen and Rosé (2012) call ”date sentences”
and are used to extract the dates associated with
these events.

We experiment with two methods for clustering.
The first method uses Latent Dirichlet Allocation
(Blei et al. (2003)) to cluster the candidate set of
sentences. The use of this algorithm is motivated
by the observation that people use similar expres-
sions to describe the same medical events. How-
ever, as further discussed in section 6, we do not
get good results using this algorithm.

The second method focuses on clustering med-
ical terms instead of candidate sentences. We
use a two-pass hierarchical clustering algorithm
to cluster medical terms based on their Word2Vec
(Mikolov et al. (2013)) embeddings. The word
vectors used are pretrained on biomedical arti-
cles from Pubmed and PMC as well as English
Wikipedia, in order to ensure enough domain
specificity 3. We also experiment with k-means
clustering, but use agglomerative clustering for the
final system due to better performance. In the first
pass of agglomerative clustering, our main focus
is on weeding out medical terms which are not
linked to major cancer events. Hence, we run ag-
glomerative clustering on all medical terms in this
pass and manually inspect the produced clusters,
discarding those which do not contain any terms
corresponding to major cancer events. Thus, af-
ter the first pass, we are left with a list of terms,
of which most are associated with major cancer
events. This list of terms is then clustered during a
second pass of agglomerative clustering. The final
clusters produced by this pass are inspected and
labeled with the cancer event that they correspond
to. This method of clustering is able to identify
better clusters, as discussed further in section 6.
Hence, we use the keyword sets generated by this
method for the final system.

5.2 Temporal Resolver

This module detects temporal expressions in ev-
ery sentence, resolves those expressions to dates
and then associates them with medical events. It
has two phases: (1) temporal expression detec-
tion and resolution and (2) linking temporal ex-
pressions with events

3These pretrained word vectors are provided by
http://bio.nlplab.org/

5.2.1 Temporal Expression Detection and
Resolution

We use HeidelTime (Strötgen and Gertz (2010)), a
state-of-the-art temporal expression extractor and
resolver to perform temporal expression detection
and resolution on all candidate sentences extracted
by the medical event extraction module. We run
this system with the colloquial English setting,
since our data comes from online support groups.
Post timestamps are provided as document cre-
ation times.

5.2.2 Linking Temporal Expressions with
Events

We use the rules of thumb proposed by Wen and
Rosé (2012) to resolve temporal ambiguities, such
as multiple temporal expressions occurring in a
single sentence, for the baseline system. When
multiple temporal expressions occur in the same
sentence, the expression nearest to the event word
in the sentence is chosen as the correct one. When
an event is associated with multiple dates for the
same user, we choose the most frequent date as
the correct one.

6 Experimental Results and Evaluation

In this section, we first present our evaluation
of each module for the proposed event detec-
tion pipeline. We then describe the performance
achieved by our end-to-end system on the task of
constructing cancer event timelines for users.

6.1 Evaluation of the Medical Term
Detection Module

In this section, we evaluate the performance of
two techniques (ADEPT-based term detection and
vocabulary-based term detection) used in the med-
ical term detection module. Since our aim is to
replace the supervised sentence extraction phase
in Wen and Rosé (2012) with our unsupervised
pipeline while incurring minimal performance
loss, we perform a comparative evaluation of this
module. We use the sentence set extracted using
manually defined keyword sets used by Wen and
Rosé (2012) as our gold data. We measure perfor-
mance by computing precision and recall of candi-
date sentence sets extracted by both medical term
detection methods (ADEPT and VOCAB).Table
2 presents the precision, recall and F1 scores for
these methods. We also present the scores for can-
didate sentence extraction using our vocabulary-
based method before frequency-based filtering to
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Figure 2: Sample cancer event timeline for a user constructed using events and dates extracted by our
system

highlight the improvement achieved by filtering.
As we can see from the table, each method has
its own merits. ADEPT has extremely high preci-
sion but very poor recall, whereas our filtered term
list improves significantly on precision while los-
ing on recall. Hence, we combine both methods
by only selecting sentences which contain terms
marked as medical terms by both methods. As we
can see from the table, this strategy works best,
leading to an increase in precision without hurting
recall 4. This method is used in the final system.

6.2 Evaluation of the Clustering Module

We evaluate the performance of both methods
(LDA and Word2Vec-based agglomerative clus-
tering) used in the clustering module manually.
We look at the words in each cluster generated by
both clustering methods and label a cluster as cor-
responding to a certain cancer event, if most of
the words in the cluster are associated with that
event. For example, a cluster containing most
diagnosis-related words (”diagnose”, ”diagnosis”,
”diagnosed” etc.) is labeled as the ”Diagnosis”
event. On manual inspection of the clusters de-
tected by LDA, we observe that only four impor-
tant cancer events (chemotherapy, radiation, mas-
tectomy and diagnosis) out of eight major events
are identified. The main reason behind the poor
performance of this algorithm is that the candi-
date sentences being clustered are very short and
do not provide enough contextual information for
the algorithm. However, we cannot perform clus-
tering on the entire posts, since a single post may
describe multiple events. Moreover, most cancer
events co-occur with similar words and this further

4Increase in recall is observed because case-insensitive
matching is used to find common terms selected by both
ADEPT and VOCAB. This leads to the presence of some
words selected only by one method in the final set. Such
words however are case-variations of important words and
must not be discarded

hampers LDA performance. On the other hand,
a manual inspection of the clusters detected by
Word2Vec-based agglomerative clustering detects
six major cancer events (diagnosis, chemotherapy,
radiation, reconstruction, metastasis, recurrence)
very clearly. It also identifies a seventh event
which is a mixture of words related to lumpectomy
and mastectomy (it combines both these events
into a single event). We present some keyword sets
identified by this clustering algorithm for some
cancer events below:

• Chemotherapy: chemotherapy, adjuvant,
neoadjuvant, chemo, adriamycin, carbo-
platin, Taxol, herceptin, taxol, prednisone,
Herceptin

• Mastectomy/ Lumpectomy: hysterectomy,
lumpectomies, re-excision, mastectomy,
Mastectomy, lumpectomy, mastectomies

As we can see from the above examples, these key-
word sets are fairly coherent. 5

6.3 End-to-End System Evaluation
To evaluate our end-to-end system, we test it on
the user timeline construction task. As mentioned
in section 3, we use a dataset consisting of all posts
by a group of 50 users from breastcancer.org for
this experiment. This dataset also contains date
annotations for major cancer events for each user.
However, this dataset is very small and only con-
tains a total of 60 gold dates associated with cancer
events, since dates pertaining to all cancer events
for each user may not be available from their post-
ing histories.

We compare the performance of our system
with a re-implementation of the system described
by Wen and Rosé (2012). We need to re-
implement their system because we use different

5It is difficult to peform a quantitative evaluation of the
keyword sets since there is no gold standard
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Method Precision Recall F-Score
ADEPT 31.40 98.47 51.59
VOCAB (no filtering) 34.48 90.83 49.99
VOCAB (filtered) 47.46 84.17 60.45
ADEPT + VOCAB (filtered) 50.32 99.03 66.73

Table 2: Evaluation results for various methods used in the medical term detection module. For more
details about these methods, refer to sections 5.1.1 and 5.1.2

System Accuracy
(Wen and Rosé, 2012) 60
Our system 55.17

Table 3: Accuracy of date extraction for both sys-
tems on the cancer event timeline construction
task

strategies for sentence filtering and temporal reso-
lution, which can affect system performance. We
use HeidelTime (Strötgen and Gertz, 2010) for
temporal expression extraction and resolution. We
also do not filter sentences which do not contain
mentions of self-reported events. Hence, in order
to facilitate a fair comparison between our system
and (Wen and Rosé, 2012), we re-implement date
sentence extraction (extraction of sentences con-
taining medical events) as described in their paper,
do not perform sentence filtering and use Heidel-
Time for temporal resolution. This version of the
system is used as our baseline. We do this in or-
der to ensure that the only difference between both
systems lies in medical event extraction, which is
the main focus of our work. We measure system
performance based on accuracy, which is com-
puted as the number of dates correctly extracted by
the system divided by the number of dates present
in the gold data. Table 3 presents the performance
of both systems. From this comparison, we can
see that our medical event extraction pipeline, in
spite of being almost completely unsupervised, is
able to achieve almost 92% of the accuracy ob-
tained by the baseline system which uses super-
vised medical event extraction. However, the ac-
curacy of both systems is not high enough to be
used in practice.

Fig 2 shows a sample cancer event timeline cre-
ated for a user. These cancer event timelines for
users can be used to visualize patient disease tra-
jectories. They can also be used to visualize links
between important cancer events and user post-
ing trends in online support groups by plotting the

number of posts made by the user in each month
on the same timeline and observing whether users
tend to post more/ less during these events.

7 Error Analysis and Future Work

Since our dataset contains only 60 gold dates, our
system misses only 3 dates as compared to the
baseline system. Though the results of our current
system are encouraging, deeper analysis of the er-
rors made by the end-to-end system as well as the
event clusters detected by our pipeline presents
many shortcomings which should be addressed in
future work.

Our system manages to detect six out of eight
cancer events, but it is unable to distinguish be-
tween lumpectomy and mastectomy. Because of
this, our system extracts the same date for both
events. Though this is a small source of errors
for the current system because the dataset is very
small, this may turn out to be a large source of
errors for bigger datasets. This error also shows
that some medical events may be extremely sim-
ilar and our current system might not be able to
tease them apart. It would be desirable to come up
with better clustering techniques which can make
such fine distinctions.

Another source of errors for our system arises
from the use of word vectors trained on PubMed
and PMC articles. Since the word vectors are
trained on biomedical data they contain a lot of
medical terminology, but they do not contain ap-
propriate word vectors for a lot of colloquial med-
ical terms used in online support groups (eg:
”mets”, ”dx”). Hence such terms are not added
to the correct cluster. For example, the words
”metastatic” and ”mets” appear in different clus-
ters which is incorrect since they refer to the same
event (metastasis). Transferring pre-trained word
vectors from a biomedical corpus to data from an
online support group can help mitigate this issue,
which we plan to explore in the future.

An additional source of errors arises from the
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rules used to link temporal expressions to events.
While we have rules which take care of the situa-
tion in which multiple temporal expressions may
occur in the same sentence as the event, we ig-
nore scenarios in which multiple event words may
occur in a sentence with a single temporal expres-
sion. The current temporal rules will assign that
expression to all events, which may be wrong in
certain cases. For example, in the sentence ”Had
lumpectomy in November 2000, but because mar-
gins were not clear, and another small tumor was
found in the same breast, surgeon recommended
modified radical mastectomy”, two cancer events
(lumpectomy, mastectomy) are mentioned with
only one temporal expression (November 2000).
The temporal expression will be linked to both
events according to the current resolution rules,
whereas it should only be linked to lumpectomy.
Moreover, sometimes the sentences may contain
exactly one cancer event and one temporal expres-
sion. However, the temporal expression still does
not refer to the cancer event. For example, in the
sentence ”He died in Oct ’04, right after my bc di-
agnosis.”, the date October 2004 does not refer to
the user’s diagnosis event. These issues with tem-
poral resolution impact the performances of both
our system and the baseline system. Improving
strategies for linking events with temporal expres-
sions should help in tackling these issues.

8 Conclusion

In this paper, we propose a novel data-driven
pipeline for personal medical event extraction
from social media using minimal supervision,
which is able to achieve 92% of the performance
achieved by a supervised baseline. The extracted
medical events can be used to study and identify
links between user participation on online support
groups and important medical events in their lives.
While the results of our current system pipeline
for personal medical event extraction are encour-
aging, there is a lot of scope for further improve-
ment.
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Abstract

We study and compare two different ap-
proaches to the task of automatic assign-
ment of predefined classes to clinical free-
text narratives. In the first approach this
is treated as a traditional mention-level
named-entity recognition task, while the
second approach treats it as a sentence-
level multi-label classification task. Per-
formance comparison across these two
approaches is conducted in the form of
sentence-level evaluation and state-of-the-
art methods for both approaches are eval-
uated. The experiments are done on
two data sets consisting of Finnish clin-
ical text, manually annotated with re-
spect to the topics pain and acute confu-
sion. Our results suggest that the mention-
level named-entity recognition approach
outperforms sentence-level classification
overall, but the latter approach still man-
ages to achieve the best prediction scores
on several annotation classes.

1 Introduction

In relation to patient care in hospitals, clinicians
document the administrated care on a regular ba-
sis. The documented information is stored as clin-
ical notes in electronic health record (EHR) sys-
tems. In many countries and hospital districts,
a substantial portion of the information that clin-
icians document concerning patient status, per-
formed interventions, thoughts, uncertainties and
plans are written in a narrative manner using (nat-
ural) free text. This means that much of the pa-
tient information is only found in free-text form,
as opposed to structured or coded information (c.f.

∗These authors contributed equally.

standardized terminology, medications and diag-
nosis codes).

When it comes to information retrieval, man-
agement and secondary use, having the com-
puter automatically identify and extract informa-
tion from health records related to a given query or
topic is desirable. This could, for example, be in-
formation about pain treatment given to a patient,
or a patient group. Although free text is easy to
produce by humans and allows for great flexibility
and expressibility, it is challenging to have com-
puters automatically classify and extract informa-
tion from such text. The use of computers to auto-
matically extract, label and structure information
in free text is referred to as information extraction
(Meystre et al., 2008), with named-entity recogni-
tion as a sub-task (Patawar Maithilee, 2015; Quim-
baya et al., 2016). Due to the complexity of free
text, this task is commonly approached using man-
ually annotated text as training data for machine
learning algorithms (see e.g. Velupillai and Kvist
(2012)).

We present an ongoing work towards automated
annotation of text, i.e. labelling with pre-defined
classes/entity types, by first having the computer
learn from a set of manually annotated clinical
notes. The annotations concern two topics rele-
vant to clinical care: Pain and Acute Confusion.
To get a better insight into these topics and how
this is being documented, two separate data sets
have been manually annotated, one for each topic.
For each of the two topics, a set of classes has
been initially identified that reflect the information
which the domain experts are interested in. An ex-
ample sentence demonstrating the annotations is
presented in Figure 1. The ultimate aim of this
annotation work is to achieve improved documen-
tation, assessment, handling and treatment of pain
and acute confusion in hospitals (Heikkilä et al.,
2016; Voyer et al., 2008). Now we want to inves-
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tigate how to best train the computer to automati-
cally detect and annotate mentions of these topics
in new, unseen text by exploring various machine
learning methods.

We address this by testing and comparing two
different overall approaches:

• Named-entity recognition (NER), where we
have the computer attempt to detect the
mention-level annotation boundaries.

• Sentence classification (SC), where we have
the computer attempt to label sentences based
on the contained annotations.

The motivation for comparing these two ap-
proaches is that: (a) the experts are satisfied with
having the computer identify and extract informa-
tion on sentence level; and (b) we hypothesize that
several classes, in particular those reflecting the
more complex concepts, are easier for the com-
puter to identify when approached as a sentence
classification task. Further, we are not aware of
any other work where a similar comparison has
been reported. The methods and algorithms that
we explore are based on state-of-the-art machine
learning methods for NER and SC.

2 Data

Pain is something that most patients experience
to various degrees during or related to a hospital
stay. Pain experience is subjective and hence it can
be challenging for clinicians to properly assess if,
how and to what extent patients are experiencing
pain. Acute confusion is a mental state that pa-
tients may enter as a result of serious illness, infec-
tions, intense pain, anesthesia, surgery and/or drug
use. When clearly evident, this is commonly diag-
nosed as acute confusion or delirium (Fearing and
Inouye, 2009), which is identified as a mental dis-
order that affects perception, cognitivity, memory,
personality, mood, psychomotricity and the sleep-
wake rhythm. However, it can be challenging to
clearly identify acute confusion or delirium at the
point of care, in particular the milder cases. Still,
signs and symptoms can often be found in the free
text that clinicians document (Voyer et al., 2008),
and the same goes for pain (Gunningberg and Id-
vall, 2007).

Our annotated data consists of a random sam-
ple of 280 care episodes that were gathered from
patients who had an open heart surgery and who

were admitted to one university hospital in Finland
during the years 2005-2009. This sample includes
1327 days of nursing narratives and 2156 notes
written by physicians. The same sample was used
as data sets for both topics (i.e. pain and acute con-
fusion). An ethical approval and an organizational
permission from the hospital district was obtained
before the data collection.

Separate annotation schemes, reflecting the
classes and guidelines for the annotation work,
were iteratively developed based on the literature
for both topics. For pain the annotation scheme
has 15 classes while the acute confusion scheme
has 37 classes (see supplementary materials for
more details). The annotation schemes were ini-
tially tested and refined by having the annotators
annotate a separate data set of another 100 care
episodes (not included in this study). The annota-
tion task was conducted by four persons working
in pairs of two, so that all the text was annotated by
(at least) two annotators. This team of annotators
consisted of two domain experts and two non do-
main experts with an informatics background. At
the end, the annotators analyzed the made anno-
tations with respect to common consensus before
producing the final annotated data sets used in this
study. The annotations were conducted using the
brat annotation tool (Stenetorp et al., 2012).

The two data sets were individually divided
into training (60%), development (20%) and test
(20%) sets. As preprocessing of the data we to-
kenize and enrich the text with linguistic infor-
mation in the form of lemmas and part-of-speech
(POS) tags for each token. For this we use
the Finnish dependency parser (Haverinen et al.,
2014).

For training of word embeddings (word-level
semantic vectors), we used a large corpus consist-
ing of both physician and nursing narratives, ex-
tracted from the same university hospital (in Fin-
land). In total, this corpus consist of approxi-
mately 0.5M nursing narratives and 0.4M physi-
cian notes, which amounts to 136M tokens.

3 Experiment and Methods

Below (Section 3.1 and 3.2) we describe the meth-
ods, algorithm implementations and hyper param-
eters used in the two approaches, i.e., named-
entity recognition (NER) and sentence classifica-
tion (SC). In the Results section, Section 4, we
compare the scores achieved by these two ap-
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Figure 1: An artificial English example of the used pain annotations.

proaches for each of the two topics (i.e. pain and
acute confusion).

3.1 Named-entity recognition (NER)

In this approach we focus on methods for predict-
ing word-level annotation spans. More precisely
we explore two such methods that have shown
state-of-the-art performance in NER.

NERsuite Conditional random fields (CRFs) are
a class of sequence modeling methods that have
shown state-of-the-art performance in learning to
identify biomedical named entities in text (Cam-
pos et al., 2013). We use a named-entity recog-
nition toolkit called NERsuite (Cho et al., 2010),
which is built on top of CRFsuite (Okazaki, 2007).
For each of the two topics, one NERsuite model is
trained using the corresponding training sets and
the mentions are labeled using the common IOB
tagging scheme. As training features, we use the
original tokens, lemmas and POS tags. Although
NERsuite allows the user to adjust regularization
and label weight parameters, for this initial study
we have used the default hyperparameters. It is
worth noting that adjusting the regularization pa-
rameter is not as crucial for CRFs as it is for in-
stance for support vector machines and strong re-
sults can be achieved even with the default values.

Several of the annotated entities have overlap-
ping spans, e.g. the Finnish compound word rin-
takipu (chest pain) includes both pain and location
mentions, but the standard CRF implementations
are not able to do multi-label classification. Thus
we form combination classes from the full spans
of overlapping entities. This slightly distorts the
annotated spans as the original mentions may have
had only partial overlaps. Another option would
have been to train separate models for each class,
but as the number of classes is relatively high for
both topics, this would have been very impractical.

CNN-BiLSTM-CRF The second method that
we explore is an end-to-end neural model follow-
ing the approach by Ma and Hovy (2016), which
has produced state-of-the-art results for general
domain English NER tasks. This model uses a
CRF layer for the final predictions, but instead of

relying on handcrafted features it utilizes a bidi-
rectional recurrent neural network layer, with a
long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997; Gers et al., 2000) chain, over
input word embeddings. In addition to the input
word embeddings, a convolutional layer is used
over character embedding sequences to form an-
other encoding for each token. Thus, this model
is often called CNN-BiLSTM-CRF network. For
training the model we use the example implemen-
tation provided by the authors 1.

Training the CNN-BiLSTM-CRF is computa-
tionally much more demanding then a standard
CRF classifier and we have thus not ran an exhaus-
tive hyperparameter search. Instead, we use the
default values from the original paper except for
setting the LSTM state dimensionality to 100 and
learning rate to 0.05 as these produced slightly bet-
ter results than the default values. The word em-
beddings are initialized with a word2vec (Mikolov
et al., 2013) model trained on the large clinical
Finnish text corpus.

3.2 Sentence classification (SC)
In this approach, we regard the task as a multi-
label text classification task in which a sentence
can be associated with multiple labels. For this
task, we rely on artificial neural networks (ANN)
since they have been shown to achieve state-of-
the-art performance in text classification tasks (see
e.g. Zhang et al. (2015); Tang et al. (2015)).

Neural network architecture We tried several
neural network architectures, but report only the
architecture that performed best. For both of the
two topics, we apply a deep learning-based neural
network architecture that use three separate LSTM
chains: for the sequence of words, lemmas and
POS tags.

The network has three separate channels for the
words, lemmas and POS tags in the sentence. Each
channel receives a sequence (words, lemmas or
POS tags) as input. The items in the sequence are
then mapped into their corresponding vector rep-
resentations using a dedicated embedding look-up
layer. The sequence of vectors is then input to an

1https://github.com/XuezheMax/LasagneNLP
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LSTM chain and the last step-wise output of the
chain is regarded as the representation of the sen-
tence based on its words (or lemmas or POS tags).

Next, the outputs of the three channels are con-
catenated and the resulting vector is forwarded
into the classification (decision) layer, which has a
dimensionality equal to the number of annotation
classes. The sigmoid activation function is applied
on the output of the decision layer.

Training and optimization For implementation
we use the Keras deep learning library (Chollet,
2015), with Theano tensor manipulation library
(Bastien et al., 2012) as the back-end engine. We
use binary cross-entropy as the objective function
and the Adam optimization algorithm (Kingma
and Ba, 2014) for training the network. We ini-
tialize the embeddings for words and lemmas with
pre-trained vectors, trained using word2vec on the
Finnish clinical corpus. For hyper-parameter op-
timization, we do a grid search and evaluate each
model on the development set. To detect the best
number of epochs needed for training, we use
the early stopping method. Optimization is done
against the micro-averaged F-score.

To avoid overfitting, we apply dropout (Srivas-
tava et al., 2014) regularization with a rate of 20%
on the input gates and with a rate of 1% on the
recurrent connections of all LSTM units. In addi-
tion, we have set the dimensionality of the word,
lemma and POS tag embeddings to 300 and the di-
mensionality of the LSTMs’ output are also set to
300.

4 Results

We first evaluate the two NER methods on men-
tion level using a strict offset matching criteria.
The micro-averaged results are presented in Ta-
ble 1. The NERsuite model achieves F-scores of
73.10 and 48.11 on the test sets of pain and acute
confusion data set, respectively. Surprisingly the
CNN-BiLSTM-CRF model is not able to reach the
performance of the vanilla NERsuite on the pain
dataset even though it is able to utilize pre-trained
word embeddings. This might be due to the data
sets being limited to open heart surgery patients
and thus to a rather narrow vocabulary. Conse-
quently we do not train CNN-BiLSTM-CRF on
the confusion data. To analyse the performance of
the NER approach in relation to the SC approach,
we also convert the detected entity mentions to
sentence-level predictions. For this the predictions

Approach Precision Recall F-score
Pain

NERsuite 87.29 62.88 73.10
CNN-BiLSTM-CRF 79.30 63.80 70.71

Acute confusion
NERsuite 69.33 36.84 48.11

Table 1: Mention-level evaluation of the tested
NER approaches on the test sets of the Pain and
Acute confusion corpora. The reported numbers
are micro-averaged over the various classes.

from the best performing method, i.e. NERsuite,
is used.

Table 2 shows the sentence-level scores for both
the NER and SC approach. The best performing
neural network used in the SC approach achieves
slightly inferior results compared to the NER ap-
proach (when evaluated on sentence level). This
seems to somewhat falsify our hypothesis about
sentence-level classification methods potentially
performing better than mention-level NER meth-
ods when the task is approached as a sentence clas-
sification task. Still, in Table 3 we see that the SC
approach achieves best overall prediction scores
for several of the annotation classes (see also sup-
plementary materials). Based on our analysis so
far, it is difficult to say whether these classes (i.e.
the concepts they represents) are more “complex”
than the others, or if there are some other factors
affecting the results. In an attempt to achieve bet-
ter insight into this, we calculated the average an-
notation spans and vocabulary size associated with
the different classes. However, these numbers did
not show any clear trend.

Approach Pain Acute confusion
NER 78.61 59.41
SC 77.65 57.49

Table 2: Micro-averaged F-scores for the dif-
ferent approaches on the test sets of the pain and
acute confusion data sets. NERsuite was used to
produce the NER scores.

The actual pain mentions which are divided into
explicit, implicit and potential pain subcategories
all achieve relatively high performance, implicit
pain being the hardest to predict (see supplemen-
tary materials for more details). The other classes,
which describe additional information about the
pain mentions, are generally speaking harder to
detect than the actual pain mentions. The acute
confusion related entities seems to be much harder
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Approach Pain Acute confusion
NER 8 11
SC 7 8
Equal performance 0 18

Table 3: Counts showing the number of classes
that the various approaches performed best at pre-
dicting.

to predict due to the vague and sparse nature of
these concepts.

5 Discussion and Future Work

In this study we have gathered the initial results
for detecting mentions of pain and acute confu-
sion in Finnish clinical text. We also use a re-
laxed evaluation based on sentence level predic-
tions and experiment with approaches designed
specifically for this definition. Surprisingly the
NERsuite based mention-level approach outper-
forms all other tested methods, showing strong
performance and being the best suited alternative
for real-world applications. However, it might be
that these two approaches are complementary.

As the used datasets are limited to open heart
surgery patients, a critical future work direction
will be assessing the generalizability of the trained
models on larger sets of patient health records, and
from other hospital units. This study also reveals
that multiple classes in the annotation schemes, in
particular for acute confusion, need more manual
annotation data, i.e. more training examples, in or-
der to be reliably detected in an automatic manner.

As many of the classes can be considered as de-
scriptive attributes of the pain and acute confusion
mentions, but the relations have not been anno-
tated explicitly, another future work direction is to
investigate how often these relations are ambigu-
ous and whether the relation extraction could be
solved in an unsupervised fashion.
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tiina Heikkilä. We would also like to thank Juho
Heimonen for assisting us in preprocessing the
clinical text.

References
Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,

James Bergstra, Ian Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, David Warde-Farley, and Yoshua
Bengio. 2012. Theano: New features and speed im-
provements. arXiv preprint arXiv:1211.5590 (2012)
.

David Campos, Sérgio Matos, and José Luı́s Oliveira.
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English names Finnish names SC NER
A recurrent situation Toistuva tilanne 83.60 86.10
Care plan Suunnitelma 83.39 84.24
Implicit pain Implisiittinen kipu 74.64 73.68
Pain related issue Kipuun liittyva asia 54.69 54.51
Location of pain Sijainti 83.36 87.23
Pain Kipu 92.04 93.23
Pain intensity Voimakkuus 75.29 80.80
Pain management Kivunhoito 85.36 86.97
Patient education Ohjeistus 33.33 0.00
Potential pain Potentiaalinen kipu 93.69 95.58
Procedure Toimenpide 64.73 63.90
Quality of pain Laatu 59.33 71.07
Success of treatment Hoidon onnistuminen 73.74 64.56
Situation Tilanne 37.21 28.57
Time Aika 79.49 72.41

Micro-average 77.65 78.61

Table 4: Comparison of SC and NER for sentence classification, for pain corpus test set, evaluated on
micro-averaged F1-scores.

English Names Finnish Names SC NER
Abnormal level of consciousness Muu poikkeava tajunnan taso 28.57 0.00
Aggressiveness Aggressiivisuus vihaisuus 20.00 64.00
Appetite disturbance Ruokahalun hairio 57.35 59.02
Calming activity Rauhoittelu 0.00 0.00
Confusion Sekavuus 85.95 95.00
Delirium Delirium 0.00 0.00
Delusion Harhaisuus 34.29 27.59
Dementia Dementia 0.00 0.00
Desorientation Desorientaatio 66.67 89.86
Diagnosed Diagnosoitu 0.00 0.00
Disturbance in ability to focus Vaikea kiinnittaa huomiota 15.39 0.00
Disturbance in the quality of speech Puheen laadun hairiot 40.00 29.41
Drowsy Unelias 77.98 79.44
Falls - fall out of bed Kaatuminen Sangysta tippuminen 0.00 0.00
Hyper-alert Ylivalpas 0.00 0.00
Hyperactivity Hyperaktiivisuus 68.71 70.23
Hypoactivity Hypoaktiivisuus 26.67 22.22
Infusion line detachment Letkun irtoaminen 20.00 20.00
Memory disorder Muistiongelma 73.24 80.00
Not awakable Ei herateltavissa 0.00 0.00
Orientation to time and place Orientoiminen aikaan paikkaan 0.00 0.00
Other abnormal behavior Muu poikkeava kayttaytyminen 0.00 0.00
Other affective disturbance Muu tunnehairio 64.52 42.25
Other care activity Muu hoitotoimenpide 0.00 0.00
Other cognitive disturbance Muu kognitiivinen hairio 0.00 0.00
Other disturbance of attention Muu tarkkaavaisuuden hairio 0.00 0.00
Other incident Muu haittatapahtuma 0.00 0.00
Other symptom Muu oire 0.00 0.00
Pain management Kivunhoito 51.52 61.33
Problems with motor functions Motoriikan ongelmat 59.56 59.79
restraint - restraining Lepositeet sitominen 75.00 76.19
Sleep-wake disorder Unirytmin valverytmin hairiot 54.32 48.65
Slow rate of speech - Speechlessness Hidastunut puhe puhumattomuus 0.00 0.00
Substance induced delirium Substance induced delirium 0.00 0.00
Unappropriate behaviour Asiaankulumaton kayttaytyminen 9.52 10.26
Uncertain Epavarma 0.00 0.00
Unorganised thinking Ajatuksenkulun jarjestaytymattomyys 25.81 21.43

Micro-average 57.49 59.41

Table 5: Comparison of SC and NER for sentence classification, for acute confusion corpus test set,
evaluated on micro-averaged F1-scores.
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English Names Finnish Names Train Devel Test Total
A recurrent situation Toistuva tilanne 589 215 210 1014
Care plan Suunnitelma 517 176 170 863
Implicit pain Implisiittinen kipu 552 160 201 913
Pain related issue Kipuun liittyva asia 1058 377 372 1807
Location of pain Sijainti 1001 326 333 1660
Pain Kipu 1655 536 549 2740
Pain intensity Voimakkuus 1094 291 341 1726
Pain management Kivunhoito 1158 368 419 1945
Patient education Ohjeistus 11 3 4 18
Potential pain Potentiaalinen kipu 752 222 255 1229
Procedure Toimenpide 1423 478 468 2369
Quality of pain Laatu 323 100 125 548
Success of treatment Hoidon onnistuminen 226 75 102 403
Situation Tilanne 286 85 82 453
Time Aika 1257 386 426 2069

Overall 11902 3798 4057 19757
Tokens 437935 147444 153975 739354
Sentences 71390 23470 25123 119983
Documents 2084 697 702 3483

Table 6: Pain annotation counts per class.

English Names Finnish Names Train Devel Test Total
Abnormal level of consciousness Muu poikkeava tajunnan taso 11 9 6 26
Aggressiveness Aggressiivisuus vihaisuus 24 5 16 45
Appetite disturbance Ruokahalun hairio 229 84 76 389
Calming activity Rauhoittelu 6 4 6 16
Confusion Sekavuus 131 45 60 236
Delirium Delirium 4 1 1 6
Delusion Harhaisuus 37 16 25 78
Dementia Dementia 3 2 1 6
Desorientation Desorientaatio 77 25 38 140
Diagnosed Diagnosoitu 1 0 0 1
Disturbance in ability to focus Vaikea kiinnittaa huomiota 29 8 12 49
Disturbance in the quality of speech Puheen laadun hairiot 43 10 25 78
Drowsy Unelias 275 88 115 478
Falls - fall out of bed Kaatuminen Sangysta tippuminen 6 0 3 9
Hyper-alert Ylivalpas 3 1 1 5
Hyperactivity Hyperaktiivisuus 232 66 78 376
Hypoactivity Hypoaktiivisuus 103 35 44 182
Infusion line detachment Letkun irtoaminen 15 4 9 28
Memory disorder Muistiongelma 92 40 41 173
Not awakable Ei herateltavissa 15 7 6 28
Orientation to time and place Orientoiminen aikaan paikkaan 6 0 0 6
Other abnormal behavior Muu poikkeava kayttaytyminen 6 2 4 12
Other affective disturbance Muu tunnehairio 109 52 52 213
Other care activity Muu hoitotoimenpide 12 9 7 28
Other cognitive disturbance Muu kognitiivinen hairio 23 4 5 32
Other disturbance of attention Muu tarkkaavaisuuden hairio 10 1 3 14
Other incident Muu haittatapahtuma 10 3 5 18
Other symptom Muu oire 25 5 8 38
Pain management Kivunhoito 118 39 40 197
Problems with motor functions Motoriikan ongelmat 329 93 117 539
restraint - restraining Lepositeet sitominen 25 8 13 46
Sleep-wake disorder Unirytmin valverytmin hairiot 147 56 48 251
Slow rate of speech - Speechlessness Hidastunut puhe puhumattomuus 25 11 11 47
Substance induced delirium Substance induced delirium 1 0 0 1
Unappropriate behaviour Asiaankulumaton kayttaytyminen 81 22 33 136
Uncertain Epavarma 1 0 0 1
Unorganised thinking Ajatuksenkulun jarjestaytymattomyys 62 17 24 103

Overall 2326 772 933 4031
Tokens 434542 149387 155425 739354
Sentences 71146 23797 25040 119983
Documents 2080 698 705 3483

Table 7: Acute confusion annotation counts per class.
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Abstract

This paper describes the participation of
USTB PRIR team in the 2017 BioASQ
5B on question answering, including doc-
ument retrieval, snippet retrieval and con-
cept retrieval task. We introduce differ-
ent multimodal query processing strate-
gies to enrich query terms and assign d-
ifferent weights to them. Specifically, se-
quential dependence model (SDM), pseu-
do relevance feedback (PRF), fielded se-
quential dependence model (FSDM) and
Divergence from Randomness model (D-
FRM) are respectively performed on dif-
ferent fields of PubMed articles, sentences
extracted from relevant articles, the five
terminologies or ontologies (MeSH, GO,
Jochem, Uniprot and DO) to achieve better
search performances. Preliminary result-
s show that our systems outperform others
in the document and snippet retrieval task
in the first two batches.

1 Introduction

Due to the continuous growth of information pro-
duced in the biomedical domain, there is a particu-
larly growing demand for biomedical QA from the
general public, medical students, health care pro-
fessionals and biomedical researchers (Zweigen-
baum, 2003). They consult knowledge about the
natures, the preventions or the treatments of dis-
eases, or learn from research results of other re-
searchers. To some extent, biomedical QA is one
of the most significant applications of the exist-
ing real-world biomedical systems (Han and A-
thenikos, 2010).

Since 2013, BioASQ organizers has proposed a
community-based shared task which aims to eval-
uate the current solutions of a variety of QA sub-

tasks. Several benchmarks have been provided for
researchers to evaluate their QA systems. BioASQ
2017 Task 5B challenge (Tsatsaronis et al., 2015a)
is the fifth edition of the question answering task,
of which the phase A requires the evaluated sys-
tem to (i) semantically annotate the questions with
concepts from a set of designated terminologies
and ontologies (MeSH, GO, Jochem, Uniprot and
DO); and (ii) retrieve relevant articles, text s-
nippets, and RDF triples from designated article
repositories and ontologies (PubMed/MEDLINE
articles) with biomedical questions in natural lan-
guage provided by biomedical professionals or re-
searchers. The ground truth are manually anno-
tated by these experts with some annotated tools.
There are five batches of evaluation and in each
batch participants are provided with 100 natural
language questions and required to return at most
10 relevant documents, snippets, concepts to the
questions within 24 hours.

Over the past decade, a variety of approaches
have been proposed for biomedical question an-
swering (Bauer and Berleant, 2012). Generally,
a QA system typically consists of question pro-
cessing, document processing, and answer pro-
cessing phases, which are respectively in charge
of 1) converting natural language questions into
queries, 2) searching relevant documents, and 3)
extracting, ranking candidate answers and format-
ting them into expected answer type. (Han and
Athenikos, 2010; Holzinger et al., 2014). There
are several studies concerning the improvements
on query processing phase (Huang et al., 2006; Yu
et al., 2005; Kobayashi and Shyu, 2006) and doc-
ument processing phase (Cairns et al., 2011; Yu
and Cao, 2008). However for answer processing
phase, especially answer matching and ranking,
only some simple approaches in previous BioASQ
challenge have been proposed (Tsatsaronis et al.,
2015a; Mao and Lu, 2015). According to the
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above researches, the most challenges of biomed-
ical QA are three main issues, specifically 1) how
to generate query terms appropriately from natu-
ral language questions, 2) how to match relevant
documents or sentences when they use differen-
t expressions (maybe synonyms of keywords) and
3) how to measure and utilize the difference in im-
portance of query terms.

In order to address these challenges, in this pa-
per we propose a multi-strategy query processing
approach which combines several mature query
processing models according to the different char-
acteristics of data sources, which is also actually
the participation of our USTB PRIR team in the
BioASQ Task 5B phase A challenge1. Specif-
ically, in order to extract proper keywords and
generate queries, we perform stop-words removal,
noun extraction with Pos-of-Tagger (POS) and
stemming. For the missing issue caused by ex-
pressions, we utilize a thesaurus which is pro-
duced through computing the similarities between
the vector representations of each pairs of word-
s. Moreover for query keyword weighting, we
take the word sequences, different fields of appear-
ance, TF-IDF, etc into consideration for differen-
t BioASQ tasks. We evaluate our approach on
the BioASQ 2016 and 2017 benchmarks for docu-
ment, snippet, concept retrieval and experimental
results demonstrate our method outperforms the
baseline methods or other participants so far on
document, snippet and concept retrieval tasks.

2 Related Work

The participants of previous BioASQ challenge
have proposed several approaches for searching
relevant documents, snippets and concepts for
biomedical QA. One of the participants(Choi,
2015) proposed to utilize semantic concept en-
riched dependence model where the recognised
UMLS concepts in the query are used as additional
dependence features for ranking documents. An-
other team(Papanikolaou et al., 2014) developed
a figure-inspired text retrieval method as a way
of retrieving documents and text passages from
biomedical publications. For matching relevant s-
nippets, most participants works on similar meth-
ods of searching articles. An exception is the
framework proposed by NCBI(Mao et al., 2014),
which directly compute the cosine similarities be-
tween the questions and the sentences.

1http://bioasq.org

However, these methods focus on the match-
ing function or the ranking process, which ignores
the three challenges mentioned in the Introduc-
tion section. The natural language questions are
too raw to be regarded as query keywords and the
difference in importance of keywords should be
considered. Some re-ranking or learning-to-rank
based approaches works not well either for the
same reason because they rely much on the initial
ranking results.

3 Task 5B Phase A: Document Retrieval

3.1 The Framework Architecture

The framework of searching relevant documents is
shown in Figure 1, which includes document pre-
processing, query pre-processing, several rank-
ing models based on query expansion and term
weighting strategies.

3.2 Pre-Processing

3.2.1 Document Pre-processing
We download the entire database of MEDLINE
updated in Feb 2017 through the FTP service of
National Institutes of Health (NIH) which con-
tains 26,759,010 citations. These documents are
represented in JSON files which contains a vari-
ety of information, including journal information,
contents of title, author, abstract and keywords,
similar articles and comments. We analyze the
resources and select the following fields to rep-
resent the documents: ArticleTitle, AbstractText,
Title, MedlineTA, NameOfSubstance, Descriptor-
Name, QualifierName, Keyword and ISOAbbrevi-
ation. These fields are extracted from the docu-
ment resources and indexed with Galago, an open
source search engine2, which is developed as an
improved JAVA version of Indri. We also perform
stemming and stop-words removal work like other
IR applications, however unfortunately, the perfor-
mances seems worse during the training process.
As a result, we decide not to utilize these strate-
gies for document pre-processing.

3.2.2 Query Pre-Processing
As is mentioned above, one of the challenges is
how to automatically generate the query terms
from a natural language question. During query
pre-processing, we carry out a series of work to
extract the keywords of the user queries. There

2http://www.lemurproject.org/galago.
php
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Figure 1: The whole framework architecture of query generation method based on multimodal document
retrieval strategies

are several symbols which is unnecessary and un-
related to the requests so we filter out the symbol-
s in the first step. Note that the symbols which
may be a part of named entity cannot be removed.
Afterwards, stop words like “what” or “are” are
common in natural language questions and are not
suitable to feed into search engine so they are re-
moved according to a stop-words list. As usual,
the query terms are case-folded and normalized. In
addition, we used the Stanford-Postagger package
to identify nouns from queries and the MetaMap to
identify the biomedical concepts in query terms.

3.3 Ranking Models

3.3.1 Sequential Dependence Model
The traditional IR techniques in biomedical do-
main rely on a unigram Bag of Words (BoW) re-
trieval model. Each document in the collection of
candidates, as well as each query, is represented
by a set of words and the corresponding frequen-
cy based on the assumption that the appearance of
each pair of words are independent. Different se-
quence of queries is regarded as the same. Con-
sider an example of two documents that contain
all query keywords. It is obvious that the doc-
ument with the right sequence of terms appear-
ing in query is more likely to meet the demand.
Therefore, we introduce the Sequence Dependen-
cy Model (SDM) (Bonnefoy et al., 2012) to take
the sequence information into account when com-
puting the relevance between a document and a
query.

SDM is a special case of the Markov Random
Field (MRF) (Metzler and Croft, 2005). In order
to capture the information of a sentence, this mod-
el extracts the phrases in different ways, and gives
corresponding weights to different types of phras-
es to indicate their importance.

There are three features in the SDM to be con-
sidered: single-word features (a collection consist-
s of single-word, QT ), ordered bi-words phrase
features (the two words in a phrase appearing in
order,QO) and unordered window features (one or
several words can be allowed appearing between
the two words, QU ). Generally, the potential func-
tion for unigrams (single-word feature) looks as
follows:

fT (qi, D) = logP (qi|θD) = log
tfqi,D + µ

cfqi
|C|

|D|+ µ
(1)

where qi is a query term, D is a document,
tfqi,D is the frequency of qi in D, |D| is the doc-
ument length, µ is a Dirichlet prior, that is usually
set to the average document length in the collec-
tion, cfqi is the collection frequency of qi and |C|
is the total number of terms in the collection. Sim-
ilarly, for ordered and unordered bi-grams, the po-
tential functions are respectively as follows:

fO(qi, qi+1, D) = logP (#1(qi, qi+1)|θD)

= log
tf#1(qi,qi+1) + µ

cf#1(qi,qi+1)

|C|
|D|+ µ

(2)

fU (qi, qi+1, D) = logP (#uwN(qi, qi+1)|θD)

= log
tf#uwN(qi,qi+1) + µ

cf#1(qi,qi+1)

|C|
|D|+ µ

(3)

where #1(qi, qi+1) and #uwN(qi, qi+1) are re-
spectively the appearances of the exact phrase
qiqi+1 and the term qi, qi+1] within a window N
terms. Hence, the scoring function of a documen-
t in SDM is the combination of the above three
functions, shown as follows:
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scoreSDM = scoreSDM(QT , QO, QU , D)

= λT

|Q|∑
i=1

fT (qi, D)

+ λO

|Q|−1∑
i=1

fO(qi, qi+1, D)

+ λU

|Q|−1∑
i=1

fU (qi, qi+1, D)

(4)

Where Q is a sequence of keywords extracted
from a user query, D is a candidate document,
qi is the i-th query keyword of Q. fT ,fO,fU are
the maximum likelihood estimations of the corre-
sponding feature terms in documentD. λT ,λO,λU
are the features weights satisfy these conditions:

(1)0 ≤ λT , λO, λU ≤ 1 and λT + λO + λU = 1

(2)λT ≥ 0.6

(3)λO = 2λU

Often, λT = 0.85,λO = 0.1, λU = 0.05.

3.3.2 Fielded Sequential Dependence Model

As is mentioned, the candidate documents are
structured into several fields which contains dif-
ferent types of information. One of the limitations
of standard SDM for structured document retrieval
is that it considers term matches in different part-
s of a document as equally important (i.e. having
the same contribution to the final relevance score
of a document), thus disregarding the document
structure.

To adapt the MRF framework to multi-fielded
entity descriptions, we introduce (Zhiltsov et al.,
2015)’s approach from their FSDM model to re-
place a single document language model P (qi|θD)
with a mixture of language models (MLM) for
each document field. Consequently, the potential
function for unigrams in case of FSDM is:

f̃T (qi, D) = log
∑

j

wjP (qi|θj) (5)

where j represents the different fields, and the
P (qi|θj) is the language model in each individual
field. Similarly, we can compute f̃O(qi, qi+1, D)
and f̃O(qi, qi+1, D). Therefore, the scoring func-
tion of FSDM is as follows:

scoreFSDM = scoreFSDM(QT , QO, QU , D)

= λT

|Q|∑
i=1

f̃T (qi, D)

+ λO

|Q|−1∑
i=1

f̃O(qi, qi+1, D)

+ λU

|Q|−1∑
i=1

f̃U (qi, qi+1, D)

(6)

3.3.3 Pseudo Relevance Feedback

With the first-pass retrieval results, we assume that
the initially retrieved top-K documents are rele-
vant to questions, and their title and mesh fields
contain relevant terms to the original query (Zhang
et al., 2015a). Thus, for document retrieval, we
use the Pseudo Relevance Feedback (PRF) to en-
rich query terms from the top-K document initially
retrieved. The titles or mesh headings of the top-K
documents are extracted and then added to the o-
riginal query term set. However, the performance
of PRF can be affected by the quality of the initial
result, the number of pseudo-relevant documents
(top K), the number of expansion terms, and the
term re-weighting method applied. In our exper-
iments, we use K = 3 and extract all the words
in title or mesh headings as the expansion terms,
which results in the best performance.

3.3.4 Multimodal Strategies Combination

Since there are several strategies to enrich query
terms and optimize their weights, the final scor-
ing function is expected to make full use of these
strategies and combine these strategies effective-
ly. We take the importance of nouns, sequence
orders and crucial fields into consideration so our
weight optimization of query terms is based on
to noun extraction, sequential dependence mod-
el (SDM), Fielded sequential dependence model
(FSDM), and Pseudo Relevance Feedback (PRF).
According to massive experiments we find out
that for some questions, the original queries, noun
queries and enriched queries with PRF from rel-
evant articles are all useful to some degree. Fur-
thermore, we also find out that it is necessary to
both search in the full text of the document, and to
assign different weights to different fields at mean-
while. Hence, the final scoring function to search
relevant documents is shown as follows:
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Table 2: MAP performances compared with
BioASQ Task 5B document retrieval participants.

System Batch 1 Batch 2
sdm + NN + fsdm 0.1049 0.0850

sdm + NN + fsdm + PRF (mesh) 0.1086 0.0863
sdm + fsdm + PRF (mesh) 0.1032 0.0859

sdm + w2v 0.0928 0.0874
sdm 0.0952 0.0866

best of fdu 0.1072 0.0834
best of UNCC 0.1080 -
best of Olelo 0.0465 0.0318

best of KNU-SG 0.0413 0.0419
best of HPI 0.0307 0.0329

best of Others 0.0437 0.0265

score(Q,D) = λ1scoreSDM(Q,D) + λ2scoreFSDM(Q′, D)

+ λ3scoreSDM(Q′′, D)
(7)

where Q is the original query term set after query
pre-processing, Q′ represents the noun query term
set with noun extraction and the Q′′ stands for the
enriched query term set with PRF.

3.4 Experments

We evaluate our proposed method by using both
the benchmark datasets from the previous BioASQ
challenges and the current challenge. The opti-
mization of all parameters, including the weight-
ing paramters like wj in FSDM function and
hyper-parameters (e.g. λT , λO, λU , λ1, λ2, λ3) are
processed through tuning with the rules on train-
ing set (when evaluated on BioASQ Task 4B, the
training set includes 800 questions from BioASQ
2B and 3B; for BioASQ Task 5B, the training set
contains 500 more questions on BioASQ 4B). Ta-
ble 1 provides the results of our experiments in
BioASQ task 4B, and Table 2 provides the result-
s of our experiments in BioASQ Task 5B. The
sdm + w2v approach refers to our previous ap-
proach in (Zhang et al., 2015b). Obviously, our
proposed method shows greater performance com-
pared with baseline, SDM and FSDM and outper-
form than other participants in current challenge.

4 Task 5B Phase A: Snippet Retrieval

4.1 The Framework Architecture

The framework of searching relevant snippets is
shown in Figure 2, which includes pre-processing,
some additional ranking models which is different
from document retrieval.

4.2 Pre-Processing
The query pre-processing for snippets retrieval
is the same to the strategies for document re-
trieval, which includes unnecessary symbol re-
moval, stop-words removal, case-folding, noun
extraction and concept extraction with Metamap.

For the snippet pre-processing, we choose the
candidate snippets from the top-K documents of
the best performed document retrieval approach
on the basis of results of document retrieval. The
sentences with the field ArticleTitle and the field
abstract of these articles are separated through
some specific rules, which can be regarded as “s-
mall documents”. These sentences make up a pile
of new files with unstructured text. They are then
indexed by Galago for search in the next step.

4.3 Ranking Models
Different from document retrieval, the candidate s-
nippets are represented in unstructured text, which
makes some ranking models more difficult to uti-
lize (e.g. FSDM). Moreover, since they are much
shorter in length, they are more likely express
similar meaning with different expressions (e.g.
synonyms) which may emphasize the importance
of the issue of recognizing these relevant results.
Furthermore, the PRF method generally provides
massive expansion query terms, which may affect
the search performance of the short text so we give
up applying PRF as query expansion method.

In addition, we introduce DFRM from (Clin-
chant and Gaussier, 2011) as an additional term
weigting model to optimize the most appropriate
weight for query terms.

4.3.1 Divergence from Randomness Model
The Divergence from Randomness models (D-
FRM) are based on this simple idea: “The
more the divergence of the within-document term-
frequency from its frequency within the collec-
tion, the more the information carried by the word
t in the document d”. In other words the term-
weight is inversely related to the probability of
term-frequency within the document d obtained by
a model M of randomness:

weight(t|d) ∝ − log ProbM (t ∈ d|Collection) (8)

where the subscriptM stands for the type of mod-
el of randomness employed to compute the proba-
bility. In order to choose the appropriate modelM
of randomness, we can use different urn models.
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Table 1: MAP performances of system components on BioASQ Task 4B document retrieval.
Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

baseline 0.2056 0.2593 0.228 0.2324 0.2516
sdm 0.2214 0.2577 0.2436 0.2517 0.2935
fsdm 0.2156 0.2621 0.2228 0.2469 0.2728

sdm + fsdm 0.2269 0.2768 0.2447 0.2608 0.2968
sdm + NN + fsdm 0.2307 0.2741 0.2454 0.2632 0.2926

sdm + fsdm + PRF(title) 0.2337 0.2778 0.2455 0.265 0.2931
sdm + fsdm + PRF(mesh) 0.2372 0.2863 0.2564 0.2762 0.3019

sdm + NN + fsdm + PRF(mesh) 0.2436 0.2859 0.2465 0.2773 0.3083
sdm + NN + fsdm + PRF(title) 0.2377 0.2767 0.2429 0.2681 0.2985

sdm + NN + fsdm + mesh + PRF(mesh) 0.2440 0.2876 0.2505 0.2821 0.3059

Figure 2: The whole framework architecture of query generation method based on multimodal snippet
retrieval strategies

Table 3: Basic DFR Models.
D Divergence approximation of the binomial
P Approximation of the binomial
BE Bose-Einstein distribution
G Geometric approximation of the Bose-Einstein

I(N) Inverse Document Frequency model
I(F ) Inverse Term Frequency model
I(ne) Inverse Expected Document Frequency model

There are many ways to choose M , each of these
provides a basic DFR model. The basic models
are derived in Table 4.

If the model M is the binomial distribution,
then the basic model is P and the value can be
computed approximately as follows:

− log ProbP (t ∈ d|Collection) = − log(
TF
tf

)ptfqTF−tf

(9)

where TF is the term-frequency of the term t in
the collection, tf is the term-frequency of the ter-
m t in the document d, N is the number of docu-
ments in the collection, and p is 1

N and q = 1− p.

4.3.2 Multimodal Strategies Combination
Similar to document retrieval, the final scoring
function of snippet retrieval is expected to com-
bine these strategies together effectively. Due to
the reason of shorter text length the FSDM model
cannot be used and the default IR language model
performs not so satisfying for returning relevant s-
nippets, we construct the merging scoring function
to optimize the query term weights according to

the Term Frequency−Inverse Document Frequen-
cy (TF-IDF), sequential dependence model (SD-
M) and Divergence from Randomness model (D-
FRM). As mentioned above, we control the length
of queries to guarantee the performance, thus we
no longer use PRF for snippets retrieval when
merging the strategies. As the length of the queries
decreases, the divergence of importance of each
word becomes larger, so it is necessary to assign
the weights of query terms according to the differ-
ent importance. So we apply the DFRM method
or the TF-IDF method along with SDM to achieve
the results, which are respectively shown as fol-
lows:

score(Q,D) =(1− λ1 − λ2)scoreSDM(Q,D)

+ λ1scoreTF-IDF(Q,D)

+ λ2scoreDFRM(Q,D)

(10)

where the terms are weighted according to
corresponding strategies through the following
weighting function:

scoreTF-IDF/DFRM(Q,D) =
∑

t

scoreTF-IDF/DFRM(t,D) (11)

where t is the query term appearing in query Q.
It is worth noting that when conducting the exper-
iments we only consider λ1 = 0 or λ2 = 0 for
tuning parameters.

378



Table 4: MAP performances of system compo-
nents on BioASQ Task 4B snippet retrieval.

Batch 1 Batch 2 Batch 3
baseline 0.1003 0.1361 0.1275

sdm 0.1047 0.1368 0.1338
sdm + PRF 0.1044 0.1370 0.1327
sdm + NN 0.1023 0.1402 0.1347

sdm + NN + PRF 0.1030 0.1357 0.1307
sdm + DFRM 0.1193 0.1520 0.1469
sdm + TF-IDF 0.1087 0.1424 0.1357

Table 5: MAP performances compared with
BioASQ Task 5B snippet retrieval participants.

System Batch 1 Batch 2
sdm + NN 0.0458 0.0811

sdm + NN + PRF(mesh) 0.0439 0.0716
sdm + DFRM 0.0467 0.0898
sdm + TF-IDF 0.0463 0.0874

sdm 0.0452 0.0736
best of fdu - 0.0621

best of UNCC - -
best of Olelo 0.0260 0.0318

best of KNU-SG 0.0181 0.0362
best of HPI 0.0323 0.0335

best of Others 0.0249 0.0262

4.4 Experments

Similar to document retrieval, we evaluate the
method on the first 3 batches from the previ-
ous BioASQ challenge and the current challenge.
Similar to document retrieval, the optimization of
all parameters are processed through tuning with
the rules on training set. Table 4 provides the re-
sults of our experiments in BioASQ task 4B, and
Table 5 provides the results of our experiments in
BioASQ Task 5B. Obviously, our proposed merg-
ing strategy shows greater performance compared
with various components and achieve better result-
s than other particatants.

5 Task 5B Phase A: Concept Retrieval

Unlike the previous two tasks, the concept re-
trieval task is more like a named entity recogni-
tion task than an IR task. For each natural lan-
guage question, participants are required to re-
turn relevant concepts from five ontologies or ter-
minologies: MeSH, GO, Jochem, Uniprot and
DO. In other words, the task aims at recognizing
relevant biomedical concept within the question
and matching them with the concepts in the data
sources.

Since we have few experience in named enti-
ty recognition, we have to regard the task as an
IR problem and design three query processing ap-

Table 6: MAP performances of system compo-
nents on BioASQ Task 4B concept retrieval.

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5
Ours 0.1094 0.1124 0.1386 0.1174 0.1031
fdu - - 0.1566 0.1319 0.1004
HPI 0.0860 - 0.0863 0.0721 0.0439
oaqa - - 0.1067 0.1332 0.0915
auth 0.1433 0.0814 0.1361 0.1376 0.1066

proaches to generate appropriate query keywords
for the web search services provided by BioASQ
officials and implement the requested JSON file
according to the examples in the guidelines (N-
eves, 2014). The five URLs of web services are
utilized to post search requests for concepts and
obtain search results. The request consists of t-
wo basic elements: keywords, the query to feed
into search engine. Typically, this is a simple set
of phrases separated by spaces acting as queries
which may contain alphanumeric and punctuation
characters; page and concepts-per-page, to con-
trol the number of results since the search engine
may return thousands of concepts for one query.
Thus, a pagination mechanism is used. Specif-
ically, Page is a number representing the page
(batch of concepts) to be retrieved, and concepts-
per-page is a number representing the number of
concepts per page (Tsatsaronis et al., 2015b).

For concept retrieval, noun extraction, synonym
query expansion and pseudo relevance feedback
are respectively used. On the purpose of obtain-
ing the synonyms of query keywords, we down-
load the vector representations of vocabularies
produced through google word2vec tool (a word
embedding tool to train word vectors on corpora),
provided by BioASQ officials. We compute the
cosine similarity between each query keyword and
the word in the word list to find out the most se-
mantic related words. These words are regarded
as synonyms of the query keywords. We select the
top 10 concepts as the submitted results ordered by
descending predicted relevance score to the corre-
sponding queries.

Since the results for this subtask will only be
available after the manual assessment phase, we
only evaluate the proposed method on the BioASQ
4B with other participants or any runs submitted
off the evaluation. Table 6 provides the results of
our experiments in BioASQ Task 4B and the s-
tatistics indicate our approach shows fairly good
performance on all batches.
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6 Conclusion

In this paper, we describe how to utilize multi-
modal query processing strategies for biomedical
question answering applied to the participation of
our USTB PRIR team on phase A of BioASQ
Task 5B. According to the official results, our sys-
tem shows great robustness and effectiveness with
competitive performance among the participating
systems.

During the study of concept retrieval, we realize
that named entity recognition of biomedical con-
cepts may be helpful for the other tasks and so we
may focus on utilizing this in the future.
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