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Preface

Welcome to the Third Arabic Natural Language Processing Workshop held at EACL 2017 in Valencia,
Spain.

A number of Arabic NLP (or Arabic NLP-related) workshops and conferences have taken place in the
last few years, both in the Arab World and in association with international conferences. The Arabic
NLP workshop at EACL 2017 follows in the footsteps of these previous efforts to provide a forum for
researchers to share and discuss their ongoing work. This particular workshop is the third in a series,
following the First Arabic NLP workshop held at EMNLP 2014 in Doha, Qatar; and the Second Arabic
NLP workshop held at ACL 2015 in Beijing, China.

We received 47 submissions and selected 22 (47% acceptance rate) for presentation in the workshop. All
papers were reviewed by three reviewers on average. The number of submissions is over twice that of
the previous workshop in Beijing, which also had a higher acceptance rate (65%). Ten papers will be
presented orally and 12 as part of a poster session. The presentation mode is independent of the ranking of
the papers. The papers cover a diverse set of topics from Maltese and Arabic dialect processing to models
of semantic similarity and credibility analysis, advances in Arabic treebanking, and error annotation for
dyslexic texts.

The quantity and quality of the contributions to the workshop are strong indicators that there is a
continued need for this kind of dedicated Arabic NLP workshop.

We would like to acknowledge all the hard work of the submitting authors and thank the reviewers for
the valuable feedback they provided. We hope these proceedings will serve as a valuable reference for
researchers and practitioners in the field of Arabic NLP and NLP in general.

Nizar Habash, General Chair, on behalf of the organizers of the workshop.
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Identification of Languages in Algerian Arabic
Multilingual Documents

Wafia Adouane and Simon Dobnik
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University of Gothenburg, Sweden
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Abstract

This paper presents a language identifi-
cation system designed to detect the lan-
guage of each word, in its context, in
a multilingual documents as generated
in social media by bilingual/multilingual
communities, in our case speakers of Al-
gerian Arabic. We frame the task as
a sequence tagging problem and use su-
pervised machine learning with standard
methods like HMM and Ngram classifi-
cation tagging. We also experiment with
a lexicon-based method. Combining all
the methods in a fall-back mechanism and
introducing some linguistic rules, to deal
with unseen tokens and ambiguous words,
gives an overall accuracy of 93.14%. Fi-
nally, we introduced rules for language
identification from sequences of recog-
nised words.

1 Introduction

Most of the current Natural Language Process-
ing (NLP) tools deal with one language, assum-
ing that all documents are monolingual. Never-
theless, there are many cases where more than
one language is used in the same document. The
present study seeks to fill in some of the needs
to accommodate multilingual (including bilingual)
documents in NLP tools. The phenomenon of us-
ing more than one language is common in mul-
tilingual societies where the contact between dif-
ferent languages has resulted in various language
(code) mixing like code-switching and borrow-
ings. Code-switching is commonly defined as the
use of two or more languages/language varieties
with fluency in one conversation, or in a sentence,
or even in a single word. Whereas borrowing is

used to refer to the altering of words from one lan-
guage into another.

There is no clear-cut distinction between bor-
rowings and code-switching, and scholars have
different views and arguments. We based our work
on (Poplack and Meechan, 1998) where the au-
thors consider borrowing as the adaptation of lex-
ical items, with a phonological and morphological
integration, from one language to another. Oth-
erwise, it is a code-switching, at single lexical
item, phrasal or clausal levels, either the lexical
item/phrase/clause exists or not in the first lan-
guage.1 We will use “language mixing” as a gen-
eral term to refer to both code-switching and bor-
rowing.

We frame the task of identifying language mix-
ing as a segmentation of a document/text into se-
quences of words belonging to one language, i.e.
segment identification or chunking based on the
language of each word. Since language shifts can
occur frequently at each point of a document we
base our work on the isolated word assumption
as referred to by (Singh and Gorla, 2007) wherein
the authors consider that it is more realistic to as-
sume that every word in a document can be in a
different language rather than a long sequence of
words being in the same language. However, we
are also interested in identifying the boundaries of
each language use, sequences of words belonging
to the same language, which we address by adding
rules for language chunking.

This paper’s main focus is the detection of lan-
guage mixing in Algerian Arabic texts, written in
Arabic script, used in social media while its con-
tribution is to provide a system that is able to de-
tect the language of each word in its context. The
paper is organized as follows: in Section 2, we
give a brief overview of Algerian Arabic which is

1Refers to the first language the speakers/users use as their
mother tongue.
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a well suited, and less studied, language for detect-
ing language mixing. In Section 3, we present our
newly built linguistic resources, from scratch, and
we motivate our choices in annotating the data. In
Section 4, we describe the different methods used
to build our system. In Section 5, we survey some
related work, and we conclude with the main find-
ings and some of our future directions.

2 Algerian Arabic

Algerian Arabic is a group of North African Ara-
bic dialects mixed with different languages spoken
in Algeria. The language contact between many
languages, throughout the history of the region,
has resulted in a rich complex language compris-
ing words, expressions, and linguistic structures
from various Arabic dialects, different Berber va-
rieties, French, Italian, Spanish, Turkish as well as
other Mediterranean Romance languages. Mod-
ern Algerian Arabic is typically a mixture of Al-
gerian Arabic dialects, Berber varieties, French,
Classical Arabic, Modern Standard Arabic, and a
few other languages like English. As it is the case
with all North African languages, Algerian Ara-
bic is heavily influenced by French where code-
switching and borrowing at different levels could
be found.

Algerian Arabic is different from Modern Stan-
dard Arabic (MSA) mainly phonologically and
morphologically. For instance, some sounds in
MSA are not used in Algerian Arabic, namely the
interdental fricatives ‘ �H’ /T/, ‘ 	X’ /D/ and the glottal
fricative ‘ è’ /h/ at a word final position. Instead
they are pronounced as aspirated stop ‘ �H’ /t/, den-
tal stop ‘ X’ /d/ and bilabial glide ‘ð’ /w/ respec-

tively. Hence, the MSA word I. ë 	X /*hb/ “gold” is

pronounced/written as ‘ I. ëX ’ /dhb/ in Algerian
Arabic. Souag (2000) gives a detailed description
of the characteristics of Algerian Arabic and de-
scribes at length how it differs from MSA. Com-
pared to the rest of Arabic varieties, Algerian Ara-
bic is different in many aspects (vocabulary, pro-
nunciation, syntax, etc.). Maybe the main com-
mon characteristics between them is the use on
non-standard orthography where people write ac-
cording to their pronunciation.

3 Corpus and Lexicons

In this section, we describe how we collected and
annotated our corpus and explain the motivation
behind some annotation decisions. We then de-
scribe how we build lexicons for each language
and provide some statistics about each lexicon.

3.1 Corpus
We automatically collected content from various
social media platforms that we knew they use Al-
gerian Arabic. We included texts of various top-
ics, structures and lengths. In total, we collected
10,597 documents. On this corpus we ran an auto-
matic language identifier which is trained to dis-
tinguish between the most popular Arabic vari-
eties (Adouane et al., 2016). Afterwards, we only
consider the documents that were identified as Al-
gerian Arabic which gives us 10,586 documents
(215,843 tokens).2 For robustness, we further pre-
processed the data where we removed punctua-
tion, emoticons and diacritics, and then we nor-
malized it. In social media users do not use punc-
tuation and diacritics/short vowels in a consistent
way, even within the same text. We opt for such
normalization because we assume that such id-
iosyncratic variation will not affect language iden-
tification.

Based on our knowledge of Algerian Arabic
and our goal to distinguish between borrowing and
code-switching at a single lexical item, we de-
cided to classify words into six languages: Al-
gerian Arabic (ALG), modern standard Arabic
(MSA), French (FRC), Berber (BER)3, English
(ENG) and Borrowings (BOR) which includes for-
eign words adapted to the Algerian Arabic mor-
phology. Moreover, we grouped all Named Enti-
ties in one class (NER), sounds and interjections in
another (SND). Our choice is motivated by the fact
that these words are language independent. We
also keep digits to keep the context of words and
grouped them in a class called DIG.

In total, we have nine separate classes. First,
three native speakers of Algerian Arabic annotated
the first 1,000 documents (22,067 words) from
the pre-processed corpus, following a set of an-
notation guidelines which takes into account the
above-mentioned linguistic differences between

2We use token to refer to lexical words, sounds and digits
(excluding punctuation and emoticons) and word to refer only
to lexical words.

3Berber is an Afro-Asiatic language used in North Africa
and which is not related to Arabic.
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Algerian Arabic and Modern Standard Arabic. To
assess the quality of the data annotation, we com-
puted the inter-annotator agreement using the Co-
hen’s kappa coefficient (κ), a standard metric used
to evaluate the quality of a set of annotations in
classification tasks by assessing the annotators’
agreement (Carletta, 1996). The κ on the human
annotated 1,000 documents is 89.27%, which can
be qualitatively interpreted as “really good”.

Next, we implemented a tagger based on Hid-
den Markov Models (HMM) and the Viterbi algo-
rithm, to find the best sequence of language tags
over a sequence of words. The assumption is that
the context of the surrounding words and their lan-
guage tags will predict the language for the current
word. We apply smoothing – we assign an equal
low probability (estimated from the training data)
for unseen words – during training to estimate the
emission probability and compute the transmis-
sion probabilities. We trained the HMM tagger
on the human annotated 1,000 documents. We di-
vided the remaining corpus (non-annotated data)
into 9 parts (each part from 1-8 includes 1,000
documents and the last part includes 1,586 doc-
uments). We first used the trained tagger to au-
tomatically annotate the first part, then manually
checked/corrected the annotation. After that, we
added the checked annotated part to the already
existing training dataset and used that to annotate
the following part. We performed the same boot-
strapping process until we annotated all the parts.

The gradual bootstrapping annotation of new
parts of the corpus helped us in two ways. First, it
speeded up the annotation process which took five
weeks for three human annotators to check and
correct the annotations in the entire corpus com-
piled so far. It would take them far longer if they
started annotation without the help of the HMM
tagger. Second, checking and correcting the anno-
tation of the automatic tagger served us to analyse
the errors the tagger was making. The final re-
sult is a large annotated corpus with a human an-
notation quality which is an essential element for
learning useful language models. Table 1 shows
some statistics about the current annotated corpus.

Table 1: Statistics about the annotated corpus.

3.2 Lexicons
We asked two other Algerian Arabic native speak-
ers to collect words for each included language
from the web excluding the platforms used to build
the above-described corpus. We cleaned the newly
compiled word lists and kept only one occurrence
for each word, and we removed all ambiguous
words: words that occur in more than one lan-
guage. Table 2 gives some statistics about the final
lexicons that are lists of words that unambiguously
occur in a given language, one word per line in
a .txt file. Effectively, we see the role of dic-
tionaries as stores for exceptions, while for am-
biguous words we work towards a disambiguation
mechanism.

Table 2: Statistics about the lexicons.

4 Experiments and Results

In this section, we describe the methods and the
different experimental setups we used to build our
language identification tool. We analyze and dis-
cuss the obtained results. We start identifying
language at a word level and then we combine
words to identify the language of sequences. We
approach the language identification at the word
level by taking into account the context of these
words. We supplement the method with a lexicon
lookup approach and manually constructed rules.

To evaluate the performance of the system, we
divided the final human annotated dataset into two
parts: the training dataset which contains 10,008
documents (215,832 tokens) and the evaluation
dataset which contains 578 documents (10,107 to-
kens). None of the documents included in the eval-
uation dataset were used to compile the lexicons
previously described.

4.1 Identifying words
4.1.1 HMM Tagger
In Section 3.1 we describe an implementation of a
tagger based on Hidden Markov Models (HMM)
used as a helping tool to bootstrap data annotation.
Now, having an annotated corpus we are interested
in the performance of the tagger on our final fully
annotated corpus which we discuss here. We train
the HMM tagger on the training data and evaluate

3



it on the evaluation data. Table 3 shows the perfor-
mance of the tagger.

Category Precision (%) Recall (%) F-score (%)
ALG 87.10 89.96 88.50
BER 100 18.18 30.77
BOR 97.71 40.38 57.14
DIG 100 94.74 97.30
ENG 100 24.14 38.89
FRC 82.28 63.87 71.92
MSA 84.03 88.04 85.99
NER 84.07 61.69 71.16
SND 100 85.71 92.31

Table 3: Performance of the HMM tagger.

The overall accuracy of the tagger is 85.88%.
This quite high performance gives an idea about
how useful and helpful was the use of the HMM
tagger to annotate the data before the human
checking. The tagger also outperforms the ma-
jority baseline (#majority class / #total tokens)
which is 55.10%. From Table 3 we see that the
HMM tagger is good at identifying ALG and MSA
words, given an F-score of 88.50% and 85.99%
respectively.4 However, this performance dropped
with other categories, it is even lower than the ma-
jority baseline for BER and ENG.

The confusion matrix of the tagger (omitted
here due to space constraints) shows that all cat-
egories are confused either with ALG or MSA.
This can be explained by the fact that ALG and
MSA are the majority classes which means that
both emission and transmission probabilities are
biased to these two categories. The analysis of
the most frequent errors shows that errors can be
grouped into two types. The first type includes
ambiguous words. For example, in the sentence
É 	gYK
 �I�
J. Ë @ C 	g �PAg ø
 Qå��Ó ����AÖÏ @
/AlmAt$ m$ry HArs xlA Albyt ydxl/
“the football match is bought, the goal keeper al-
lowed the (goal) ball to enter”, the word ‘ �I �
 J. Ë @’
is “the goal” in French, the same word means “the
house” in MSA and “the room” in ALG. Also the
following word ‘É 	gYK
’ which means “ to enter” is

4We ignore the DIG and SND categories because we are
interested in lexical words. As explained above, we kept them
to keep the context of each word.

used with all the possible meanings of ‘ �I�
J. Ë @’ (en-
ter a house/ a room and ball enters). The second
type of errors relates to unseen words in the train-
ing data. Because of the smoothing we used, the
HMM tagger does not return ‘unseen word’. In-
stead, another tag is assigned, mostly ALG and
MSA. We could identify such words by setting
manually some thresholds, but it is not clear what
these should be.

The Precision is high for all unambiguous to-
kens, however the Recall is very low. To overcome
the limitation of the HMM tagger in dealing with
unseen words, we decided to explore other meth-
ods. Moreover, we want to reduce the uncertainty
of our tagger deciding what is an unseen word. We
found it difficult to set any threshold that is not
data-dependent. Therefore, we introduced a new
category called unknown UNK which is inspired
from active learning (Settles, 2009). We believe
that this should be used in all automatic systems
instead of returning a simple guess based on its
training model.

4.1.2 Lexicon-based Tagger
We devised a simple algorithm that performs a lex-
icon look-up and returns for each word the lan-
guage of the lexicon it appears in (note that lexi-
cons contain only unambiguous words). For SND,
we created a list of most common sounds like ‘

	 	® K. ’ “pff”, ‘ é ë ’ “hh”. For digits, we used the
isdigit method built-in Python. In the case
where a word does not appear in any lexicon, the
unknown UNK category is returned. This method
does not require training, but it requires good qual-
ity lexicons with a wide coverage. We evaluated
the lexicon-based tagger on the same evaluation
dataset and the results are shown in Table 4.

Category Precision (%) Recall (%) F-score (%)
ALG 97.39 81.55 88.77
BER 100 63.64 77.78
BOR 98.52 83.91 90.63
DIG 100 100 100
ENG 100 55.17 71.11
FRC 96.30 84.85 90.21
MSA 97.69 82.43 89.42
NER 97.46 74.68 84.56
SND 100 100 100

Table 4: Performance of the lexicon tagger.

The overall accuracy of the tagger is 81.98%.
From comparing the results shown in Table 4 and
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Table 3, it is clear that the Recall has increased
for all categories except for ALG and MSA. The
reason is that now we have the UNK category
where among the 10,107 tokens used for evalu-
ation, 1,610 words are tagged as UNK instead
of ALG or MSA. We examined the UNK words
and found that these words do not exist in the
lexicons. Either they are completely new words
or they are different spellings of already covered
words (which count as different words).

The confusion matrix of the lexicon-based
tagger (omitted here) shows that the most frequent
errors are between all categories and the UNK
category. The tagger often confuses between
ALG/MSA and MSA/ALG. It also occasionally
confuses between ALG/FRC and ALG/NER.
These errors could be explained by the fact that
the context of a word is ignored.
For example, in the sentence
èñ Ê¾ 	K ��A 	® J
 » A 	KQ k èñ ª ¢ �® J
 Ó C K. @ðC �® K. C K. A 	J Ëñ ¢ k
/HTwlnA blA bqlAwA blA myqTEwh HrnA
kyfA$ nklwh/ “they served us a dish of Baklava
without cutting it, we did not know how to eat it”,
the first “CK.” means “dish” in French and the sec-
ond “CK.” means “without” in MSA. In the sentence
éJ
Ê« A 	JËñËA�̄ ú
Í ��
 �®ÊK. ú
æ

��Ê¿ A 	KYg. ð
/wjdnA kl$y blqys ly qAlwlnA Elyh/ “we pre-
pared everything according to the measures they
(gave) told us”, the word “ � �
 �® Ê K. ” means “with
the measure” in ALG and it is a female name
(NER). Analysing the tagging errors indicates that
using lexicon-based tagger is not effective in deal-
ing with ambiguous words because it ignores the
context of words, and as known, the context is the
main means of ambiguity resolution.

4.1.3 n-gram Tagger

Our goal is to build a language tagger, at a word
level, which takes into account the context of each
word in order to be able to properly deal with am-
biguous words. At the same time, we want it to be
able to deal with unseen words. Ideally we want
it to return UNK for each word it did not see be-
fore. This is because we want to analyse the words
the tagger is not able to identify and appropriately
update our dictionaries.

The Natural Language Toolkit (NLTK) n-gram
POS tagger (Steven et al., 2009) is well suited for

further experimentation. First, the tagging princi-
ple is the same and the only difference is the set of
tags. Secondly, the NLTK Ngram tagger offers the
possibility of changing the context of a word up
to trigrams as well as the possibility of combining
taggers (unigram, bigram, trigram) with the back-
off option. It is also possible to select a single cat-
egory, for example the most frequent tag or UNK,
as a default tag in case all other options fail. This
combination of different taggers and the back-off
option leads to the optimization of the tagger per-
formance. We start with the method involving
most knowledge/context, if it fails we back off
progressively to a simpler method. Table 5 sum-
marizes the results of different configurations. We
train and evaluate on the same training and evalu-
ation sets as before.

Tagger Accuracy (%)
Unigram 74.89
Bigram 12.27
Trigram 07.97
BackOff(Trigram, Bigram, Unigram, ALG) 87.12
BackOff(Trigram, Bigram, Unigram, UNK) 74.95
Default (ALG) 52.12

Table 5: Performance of different n-gram tagger
configurations.

The use of bigram and trigram taggers alone has
a very little effect because of the data sparsety. It
is unlikely to find the same word sequences (bi-
gram, trigram) several times. However, chaining
the taggers has a positive effect on the overall per-
formance. Notice also that tagging words with the
majority class ALG performs less than the ma-
jority baseline, 52.12% compared to 55.10%. In
Table 6, we show the performance of the Back-
Off(Trigram, Bigram, Unigram, UNK) tagger in
detail.

Category Precision (%) Recall (%) F-score (%)
ALG 96.17 75.27 84.44
BER 100 27.27 42.86
BOR 99.24 41.01 58.04
DIG 100 94.74 97.30
ENG 100 20.69 34.29
FRC 97.38 60.61 74.71
MSA 97.45 79.48 87.55
NER 94.69 69.48 80.15
SND 100 85.71 92.31

Table 6: Performance of the BackOff(Trigram, Bi-
gram, Unigram, UNK) tagger.
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Compared to the previous tagger, this tagger
suffers mainly from the unseen words where 2,279
tokens were tagged as UNK. This could account
for the low Recall obtained for all categories.
There is also some confusion between MSA/ALG,
ALG/MSA and FRC/ALG.

4.1.4 Combining n-gram taggers and lexicons

The unknown words predicted by the Back-
Off(Trigram, Bigram, Unigram, UNK) tagger can
be replaced with words from our dictionaries.
First, we run the BackOff(Trigram, Bigram, Un-
igram, UNK), and then we run the lexicon-based
tagger to catch some of the UNK tokens. Table 7
summarizes the results.

Category Precision (%) Recall (%) F-score (%)
ALG 96.47 92.88 94.64
BER 100 81.82 90.00
BOR 99.28 86.44 92.41
DIG 100 100 100
ENG 100 90.91 95.24
FRC 98.95 88.08 93.20
MSA 98.42 93.64 95.97
NER 96.05 94.81 95.42
SND 100 100 100

Table 7: Performance of the tagger combining n-
gram and lexicons.

Combining information from the training data
and the lexicons increases the performance of the
language tagging for all categories, giving an over-
all accuracy of 92.86%. Still there are errors
that are mainly caused by unseen and ambiguous
words. Based on the confusion matrix of this tag-
ger (omitted here) the errors affect the same lan-
guage pairs as before.

All language tags are missing words that are
tagged as UNK words (in total 476 words). We
found that these words are neither seen in the train-
ing data nor covered by any existing lexicons new
words or different (even as spelling variants of
the existing words). Keeping track of the unseen
words, by assigning them the UNK tag, allows us
to extend the lexicons to ensure a wider coverage.

To test how data-dependent is our system, we
cross-validated it, and all the accuracies were close
to the reported overall accuracy of the system,
combining n-grams and lexicons, evaluated on the
evaluation data.

4.1.5 Adding rules

We analysed the lexicons and manually extracted
some features that would help us identify the lan-
guage, for instance the starting and the final se-
quence of characters of a word. The applica-
tion of these rules improved the performance of
the system, given an overall accuracy of 93.14%,
by catching some unseen vocabulary (the num-
ber of UNK dropped to 446). As shown in Ta-
ble 8, this hybrid tagger is still unable to deal with
unseen words in addition to confusing some lan-
guage pairs due to lexical ambiguity.

Table 8: Confusion matrix of the Hybrid Tagger.

4.2 Identifying sequences of words

Now that we have a model that predicts the cate-
gory of each token in a text, we added rules to la-
bel also non-linguistic words (punctuation (PUN)
and emoticons (EMO)). This helps us to keep the
original texts as produced by users as well as PUN
and EMO be might be useful for other NLP tasks
like sentiment and opinion analysis. Based on this
extended annotation, we designed rules to identify
the language of a specific segment of a text. The
output of the system is a chunked text (regardless
of its length) identifying language boundaries. It is
up to the user how to chunk language independent
categories, i.e. NER, DIG and SND, either sepa-
rately or include them in larger segments based on
a set of rules. For instance, the sentence

/wA$ ndyr yA nAs rAny twjwr rwtAr AlrAfAy
ntAEy mynwDny$/ mAm nryqlyh mA$y lA fwT
ntAEy/ “ what should I do people, I am always
late my alarm clock does not wake me up even I
set it , it is not my fault” is chunked as follows:
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Chunking text segments based on the language
is entirely based on the identification of the lan-
guage of each word in the segment. One of the
open questions is what to do when words tagged as
UNK are encountered. We still do not have a good
way to deal with this situation, so we leave them
as separate chunks UNK. Extending the training
dataset and the coverage of the current lexicons
would help to solve the problem.

5 Related Work

There is an increasing need to accommodate
multilingual documents in different NLP tasks.
Most work focuses on detecting different language
pairs in multilingual texts, among others, Dutch-
Turkish (Nguyen and Doğruöz, 2013), English-
Bengali and English-Hindi (Das and Gambäck,
2013), English-French (Carpuat, 2014), Swahili-
English (Piergallini et al., 2016). Since 2014, a
Shared Task on Language Identification in Code-
Switched Data is also organized (Solorio et al.,
2014).

Detecting language mixing in Arabic social me-
dia texts has also attracted the attention of the re-
search community. (Elfardy et al., 2013) propose
an automatic system to identify linguistic code
switch points between MSA and dialectal Arabic
(Egyptian). The authors use a morphological anal-
yser to decide whether a word is in MSA or DA,
and they compare the performance of the system to
the previous one (Elfardy and Diab, 2012) where
they used unsupervised approach based on lexi-
cons, sound-change rules, and language models.
There is also work on detecting language mixing
in Moroccan Arabic (Samih and Maier, 2016). In
contrast to the previous work on Arabic, our an-
notation scheme and the system make a distinc-
tion between code-switching and borrowing which
they do not consider. We also detect words in their
contexts and do not group them in a Mixed cat-
egory. To the best of our knowledge, we are not
aware of any similar system which identifies lan-
guage mixing in Algerian Arabic documents.

6 Conclusions and Future Work

We have presented a system for identifying the
language at word and long sequence levels in mul-
tilingual documents in Algerian Arabic. We de-

scribed the data and the different methods used to
train the system that is able to identify language of
words in their context between Algerian Arabic,
Berber, English, French, Modern Standard Arabic
and mixed languages (borrowings). The system
achieves a very good performance, with an over-
all accuracy of 93.14% against a baseline of the
majority class of 55.10%.

We discussed the limitations of the current
system and gave insights on how to overcome
them. The system is also able to identify lan-
guage boundaries, i.e. sequence of tokens, in-
cluding digits, sounds, punctuation and emoticons,
belonging to the same language/category. More-
over, it performs also well in identifying Named
Entities. Our system trained on a multilingual
data from multiple domains handles several tasks,
namely context sensitive language identification at
a word level (borrowing or code-switching), lan-
guage identification at long sequence level (chunk-
ing) and Named Entity recognition.

In the future, we plan to evaluate the automatic
lexicon extension, as well as use the system in
tasks such as error correction, Named Entity cate-
gorization(Person, Location, Product, Company),
topic identification, sentiment analysis and textual
entailment. We are currently extending our corpus
and annotating it with other linguistic information.
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Abstract

In this paper, we present a new and
fast state-of-the-art Arabic diacritizer that
guesses the diacritics of words and then
their case endings. We employ a Viterbi
decoder at word-level with back-off to
stem, morphological patterns, and translit-
eration and sequence labeling based di-
acritization of named entities. For case
endings, we use Support Vector Machine
(SVM) based ranking coupled with mor-
phological patterns and linguistic rules to
properly guess case endings. We achieve
a low word level diacritization error of
3.29% and 12.77% without and with case
endings respectively on a new multi-genre
free of copyright test set. We are mak-
ing the diacritizer available for free for re-
search purposes.

1 Introduction
Modern Standard Arabic (MSA) text is typically
written without diacritics (short vowels). During
reading, Arabic readers need to reintroduce dia-
critics to disambiguate words and to sound them
correctly given their context. Diacritics play two
main roles depending on their position in the word.
The final vowel in a word – case ending – which
typically appears on the last letter of the stem
indicates its syntactic role; while diacritics on
the rest of the letters indicate the lexical choice.
The role of diacritics is crucial for some appli-
cations such as text-to-speech (TTS) and can be
beneficial in other Arabic processing steps such
as part-of-speech (POS) tagging and word sense
disambiguation. A single word can have multi-
ple meaning given the different diacritized forms.
The word “Elm”1 could be viewed as a homo-

1Buckwalter encoding is used exclusively in the paper.

graph for different lexical items. The word can
be diacritized in the following ways: “Eilom”
(knowledge/science), “Ealam” (flag), “Ealima”
(he knew), “Eulima” (it was known), “Eal∼ama”
(he taught), etc. Beginners learning Arabic get ac-
customed to diacritics and gradually learn to dis-
ambiguate the text without them. For final diacrit-
ics, they can help disambiguate the syntactic roles
of words in sentences. Consider the syntactically
ambiguous sentence: “r>Y AlmElm Altlmy∗”.
It most likely means: “The teacher saw the stu-
dent” resulting in the diacritized version “ra>Y
AalomuEal∼imu Aalt∼ilomy∗a”, because Arabic
prefers placing the subject ahead of the object.
However, Arabic allows subjects and objects to
switch positions, and hence the meaning might
be “The student saw the teacher” with diacritized
form “r>Y AalomuEal∼ima Aalt∼ilomy∗u”.

In this paper we present a new state-of-the-art
Arabic diacritizer. The diacritizer works in two
cascaded steps: First, it guesses the diacritics for
the core of words – disambiguating lexical choice;
and then it guesses case endings – disambiguat-
ing syntactic roles. For the first step, we em-
ploy a Viterbi decoder at word-level with back-
off to stem, morphological patterns, and translit-
eration and sequence labeling based diacritization
of named entities. For the second, we employ
SVM-based ranking coupled with morphological
patterns and linguistic rules to properly guess case
endings.

The contributions of this work is as follows:

• We introduce a back-off scheme where OOV
words are diacritized using their morphological
patterns (a.k.a stem templates)

• We use transliteration mining coupled with se-
quence labeling to guess diacritics on Arabic
words based on how the words are transliterated
in English.
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• We employ SVM-based ranking to guess the ap-
propriate cased endings.

• We use morphological patterns and linguistic
rules to better guess case endings.

• We offer a new copyright-free multi-genre test
set to measure diacritization accuracy.

• We offer a state-of-the-art Arabic diacritizer that
is coded entirely in Java and can be used freely
for research purposes.

2 Background
2.1 Arabic Diacritization
Significant research has addressed diacritic
restoration/recovery or diacritization for Arabic
and some other Semitic languages which are typi-
cally written without short vowels. Diacritization
is essential for a variety of applications such as
TTS as well as educational tools for language
learners.
In earlier attempts for automatic diacritization,
Gal (2002) used a Hidden Markov Model for
diacritics restoration, tested on the Quran text,
and achieved 14% word error rate (WER). Vergyri
and Kirchhoff (2004) used acoustic features in
conjunction with morphological and contextual
constrains to train a diacritizer. They evaluated
their automatic diacritization system on two cor-
pora, namely FBIS and LDC CallHome ECA, and
reported a 9% diacritics error rate (DER) without
case ending, and 28% DER with case endings.
The difference between WER and DER is that
the latter measures the percentage of letters with
incorrect diacritics. Consequently, DER values
are typically lower than WER values. Nelken and
Shieber (2005) used a cascade of probabilistic
finite state transducers trained on the LDCs Arabic
treebank news stories (Part 2). The corpus con-
sists of 501 news stories collected from Al-Hayat
newspaper with a total of 144,199 words. The
cascade included a word-based language model, a
letter-based language model, and a morphological
model. This combination of probabilistic models
achieved an accuracy of 7.33% and 23.61% WER
without and with case ending respectively. Zitouni
et al. (2006) trained a maximum entropy model
for sequence classification to restore diacritics
for each character in a word. For training, they
used the LDCs Arabic Tree-bank (Part 3, version
1.0) diacritized corpus, which includes complete
vocalization (full diacritics including case ending)
for each word. The corpus is composed of 600

documents from the An-Nahar Newspaper with
a total of 340,281 words. The maxEnt system
achieved 5.5% DER and 18% WER on words
without case ending. Habash and Rambow (2007)
presented “MADA-D” a system that combines a
tagger and a lexeme language model. The system
showed that the morphological tagger along with
a 3-gram language model were able to achieve
the best performance of 5.5% and 14.9% WER
respectively for diacritized words without and
with case ending. We compare to their system
in our paper. Rashwan et al. (2009) introduced
a two layers stochastic system to automatically
diacritize Arabic text. The system combines both
morphological knowledge and the word full form
features. These information is exploited through
a maximum marginal probability on the full
form supplemented with linguistic factorization
model based on morphological analysis and POS
tagging. While the first is fast, the second one
used as a fall back is more accurate as it exploits
more inner knowledge from the word parts and the
context. Later work by Rashwan et al. (2015) used
deep learning to improve diacritization accuracy
and they reported a WER of 3.0% without case
ending and 9.9% WER for guessing case ending.
We compare to their system in our paper. Recent
work by Abandah et al. (2015) uses recurrent
neural networks to improve diacritization, and
they report results that are better than those of
MADA. Bebah et al. (2014) developed a hybrid
approach that utilizes the output of the open
source morphological Analyzer AlKhalil Morpho
System (Mohamed Ould Abdallahi Ould et al.,
2011) which outputs all possible diacritization
for each word analyzed out of context. These
outputs were then fed to an HMM to guess the
correct diacritized form. The system was trained
on a large body of text consisting of 2,463,351
vowelized words divided between NEMLAR cor-
pus (460,000 words), Tashkeela corpus (780,000
words), and RDI corpus (1,223,351 words). The
training was carried out with 90% of a corpus and
the remaining 10% composed of 199,197 words
was used for testing. The system achieved 9.93%
WER.
For more indepth survey on relevant work on
Arabic diacritization, Azmi and Almajed (2015)
provide a comprehensive survey. To the ex-
ception of Belinkov and Glass (2015) which
performed lower than the state-of-the-art when
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using a recurrent neural network for diacritiza-
tion, traditionally, works on diacritic restoration
rely on linguistic features and tools. MADA
(Morphological Analysis and Disambiguation for
Arabic) (Habash et al., 2009) and its successor
MADAMIRA (Pasha et al., 2014) are among the
few available tools for diacritization. The core of
MADA – MADAMIRA as well – utilizes morpho
syntactic features to select a proper analysis from
a list of potential analyses provided by the Buck-
walter Arabic Morphological Analyzer (BAMA)
(Buckwalter, 2004). Using a set of SVMs trained
on the Arabic Penn Treebank, MADAMIRA
selects the most probable features. The analysis
MADAMIRA selects consists of the diacritized
form along with other features such as its lexeme,
its morphological features, and English glossary.

2.2 ATB

The availability of diacritized text for training is
crucial. Much of the previous work on diacriti-
zation relied on using the Arabic Penn Treebank
(ATB). Though ATB is invaluable for many tasks
such as POS tagging and parsing, it is sub-optimal
for diacritization for the following reasons:
1. ATB is limited in terms of size with less than
570k tokens and in terms of diversity with 87,160
unique surface forms (excluding numerals). In
comparison, the AFP news corpus has approxi-
mately 765,890 unique tokens (Cole et al., 2001).
These limitation would lead to poor coverage.
2. ATB often uses inconsistent diacritizations.
For example the word “<nh” appears 27 as
“<in∼ahu” and 37 as “<inhu” where the first is
the correct one. Also, the diacritic sukon “o” is
sometimes omitted in ATB (ex. “kwbnhAgn” is
diacritized as: “kuwbinohAgin”); and default dia-
critics preceding long vowels are optionally used.
We thus used a large diacritized corpus that we
describe in Section 3.1. When comparing with
systems that were trained on the ATB, some pre-
processing is required, as we show later, to make
sure that we are not unfairly penalizing them.

3 Our Diacritizer

The diacritizer has two main components. The
first component recovers the diacritics for the core
word (i.e. word without case ending), and the sec-
ond only recovers the case ending. In this sec-
tion we describe: the training and test corpora we
used and how we processed them; the training of
our system that diacritizes core-words and guesses

case ending; and our results compared to those of
other systems that are described in the literature,
and some relaxations we applied during evaluation
to insure fair comparison.

3.1 Training and Test Corpora
For this work, we acquired a diacritized cor-
pus from a commercial vendor containing more
than 9.7 million tokens with approximately 194k
unique surface forms (excluding numbers and
punctuation marks). The corpus is composed
mostly of modern standard Arabic (approximately
7 million words) and covers many genres includ-
ing politics, economics, sports, science, etc., and
the remaining 2.7 million words are mostly reli-
gious text in classical Arabic. Thus the corpus is
well balanced and is considerably larger than the
ATB. We manually checked random samples from
the corpus and we estimate diacritization errors
to be less than 1%, and diacritization is thorough
with no omissions of sukon or optional diacritics.
We used the corpus to build several resources as
we describe in Section 3.2.

For testing, we used a new test set composed
of 70 WikiNews articles (majority are from 2013
and 2014) that cover a variety of themes, namely:
politics, economics, health, science and technol-
ogy, sports, arts, and culture. The articles are
evenly distributed among the different themes (10
per theme). The articles contain 18,300 words. We
compare our results to three different systems that
are described in the literature, where the authors
were kind enough to either diacritize our test set
or provide a working system. The systems were
those of Rashwan et al. (2015), Belinkov and
Glass (2015), and MADAMIRA (Habash et al.,
2009; Pasha et al., 2014). The first two are re-
cent systems and MADAMIRA is a popular tool
for processing Arabic.

3.2 Data Preparation
Given a word in the diacritized corpus, we pro-
duce multiple representations of it. To illustrate
the representations, we use the word “wakitAbi-
himo” (and their book) as our running example.
1. diacritized surface form (“wakitAbihimo”). 2.
diacritized surface form without case ending. To
remove case endings, we segment each word in
the corpus to its underlying clitics using the Farasa
segmenter (Darwish and Mubarak, 2016). For ex-
ample, given the diacritized word “wakitAbihimo”
(and their book), it would be segmented to the pre-
fix “wa”, stem “kitAbi”, and suffix “himo”. The
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case ending which is attached in this case to the
stem is removed, leading to “kitAb” and the full
surface form “wakitAbhimo”. A few things are
noteworthy here, namely that diacritized suffixes
are often affected by the case-ending (ex. if the
case ending in the this example was “u”, the suf-
fix would have been “humo”), and the case ending
may be on the attached noun suffix (ex. “p” or
“At”) and not on the last letter in the stem.
3. diacritized stem with and without case end-
ing, which would be ‘kitAbi” and ‘kitAb” respec-
tively for our example. If the surface form had
a noun suffix, then it was considered as part of
the stem. For example, the word “kitAbAt” (writ-
ings) is segmented as “kitAb+At”, where “At” is
the noun suffix indicating feminine plural marker.
In this example, the noun suffix is treated as if it is
a part of the stem.
4. diacritized template of surface form. This step
involves obtaining the root from which the word
is derived and the stem template. Arabic words
are typically derived from a set of a few thousand
roots by fitting the roots into stem templates. For
example, the word “kitAb” is derived by fitting the
root “ktb” into the template “fiEAl”. In our exam-
ple, the surface form template is “wafiEAlihimo”
and “wafiEAlhimo” with and without case ending
respectively. We again used the Farasa to obtain
the roots and stem templates.
5. diacritized stem template with and without case
ending. As shown before for the example, the stem
template is “fiEAl” and “fiEAli” with and without
case ending respectively.
Based on different representations, we created the
following dictionaries and language models:
1. surface form dictionary, which contained sur-
face forms without diacritics and seen diacritized
forms without case ending. For example, the un-
diacritized word “wktAbhm” has two seen dia-
critized forms, namely “wakitAbhimo” and “wak-
itAbhumo”. In this example, the diacritized form
of the suffix actually depends on the case ending.
We have a module that corrects for this when plac-
ing the case ending.
2. stem dictionary, which contains the stem with-
out diacritics and seen diacritized forms without
case ending. From our example, the stem “ktAb”
has the diacritized forms “kitAb” and “kut~Ab”.
3. surface form and stem templates without di-
acritics along with the most common (based on
statistics on the training corpus) diacritized tem-

plates. In our example, the template “wfEAlhm”
would be mapped to “wafiEAlihimo” and the tem-
palte “fEAl” to “fiEAl”.
4. a bigram surface form langauge model and a
unigram stem language model. Both are without
case ending.

3.3 Core word diacritization
For core-word diacritic recovery, our basic sys-
tem uses a bigram word model with back-off to
a stem unigram model, stem template-based di-
acritization, and a sequence labeling based stem
diacritization model. We experimented with a tri-
gram language model instead of a bigram model,
and the bigger model did not yield any gain.
3.3.1 Baseline System
In our baseline system, we used the bigram lan-
guage model using the word surface forms without
case endings. When given a sentence to diacritize,
we would build a lattice with all previously seen
diacritized forms for a word by consulting the pre-
viously constructed dictionary. If a word is not
seen before, it is left as is without any diacritics.
Then we use our bigram model and the Viterbi al-
gorithm to find the most likely path in the lattice.

In the following setups, different back-offs are
used when a word is not found in the dictionary.
3.3.2 Back-off to Stem
For a surface form that is not found in the surface
form dictionary, the surface form is segmented and
the stem is extracted. Then we search for the stem
in the stem dictionary, and we use the most proba-
ble stem diacritization using the stem unigram lan-
guage model. If found, then the prefixes are dia-
critized and attached to the stem. If not, the in-
put surface form is used. To attach the prefixes
and suffixes to the stems, some affixes have one
form (namely “w” (and), “f” (then), “s” (will), “b”
(with), and “l” (to)) and others change form de-
pending on the stem and the case ending. Those
that depend on the case ending (some attached
pronouns) are diacritized properly after we deter-
mine the case ending. One prefix that changes
form and affects the diacritic of the first letter in
the word is “Al” (the). Arabic has so-called lam
qamariyyah (literally meaning “moon l”) and lam
shamsiyyah (“sun l”), where the former is pro-
nounced normally and the later is not pronounced
with the first letter after it being stressed with a
“∼” (shaddah). An example of both are the words
“Aloqamar” (the moon) pronounced as alqamar
and “Al$∼amos” (the sun) pronounced as ashams.
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In the case of lam qamariyyah, it receives a “o” di-
acritic, and the lam shamsiyyah case it is left bare.

3.3.3 Back-off based on Template
If the surface form and stem do not appear in our
dictionaries, we attempt to diacritize using word
and stem templates. To do so, we generate the
equivalent undiacritized template for the surface
form. For example, given the word “wsEAlhm”
(and their coughing), we find that the underlying
root is “sEl” with “wfEAlhm” and “fEAl” being
the undiacritized surface form and stem templates
respectively. If the surface form template is found
in the previously constructed surface form tem-
plate dictionary, the most likely diacritized tem-
plate is used. In this example, this would be
“wafiEAlhimo”. If not, then we search the stem
template dictionary and use the most likely dia-
critized template (“fiEAl” for our example).
3.3.4 Automatically Diacritized

Transliterated Words
One of the important sources of words for which
no diacritization candidates exist in our dictionar-
ies and for which we can not obtain valid tem-
plates are foreign names. We devised a scheme to
automatically diacritize transliterated words using
transliteration mining and sequence labeling. The
intuition for automatic diacritization draws from
the fact that while short vowels are generally omit-
ted in Arabic text, English vowels are often ex-
plicit. For example, the name “klntn” is written in
English as “Clinton”. The vowels on the English
side imply that the proper Arabic diacritization is
“kolinotun”.

The automatic diacritization process has mul-
tiple steps. First, we need Arabic and En-
glish transliterations, which we could obtain from
Wikipedia cross-lingual links. To do so, we used
the Arabic Wikipedia snapshot from September
28, 2012 that has 348,873 titles including redi-
rects, which are alternative names to articles. Of
these articles, 254,145 have cross-lingual links to
English Wikipedia. To find which words in En-
glish and Arabic titles would be transliterations,
we used a transliteration miner akin to that of El-
Kahky et al. (2011) that was trained using 3,452
parallel Arabic-English transliteration pairs. We
aligned the word-pairs at character level using
GIZA++ and the phrase extractor and scorer from
the Moses machine translation package (Koehn et
al., 2007). The alignment produced mappings be-
tween English letter sequences and Arabic letter

sequences with associated mapping probabilities.
Given a word in the Arabic title, we produced all
its possible segmentations along with their asso-
ciated mappings into English letters. We retained
valid target sequences that produced a word in the
corresponding English title. We further filtered out
pairs where the transliteration probability was less
than 0.1, obtaining 125k transliterated pairs.

Second, we trained a sequence labeler that
would automatically assign the proper diacritic
for each Arabic letter in a name given its En-
glish rendition. We constructed a training set
of 500 Arabic-English transliteration pairs, where
the Arabic is fully diacritized. For each pair,
we used our transliteration miner to automatically
map each Arabic letter to one or more English let-
ters. Then given these mappings, we trained a
conditional random fields (CRF) model using the
CRF++ implementation (Kudo, 2005) using the
following features: Arabic Letter, English map-
ping, is first letter in word, is last letter in word,
and English is all vowels. The label was the ob-
served diacritic.

Third, given all the transliterations we found
from Wikipedia titles, we used the trained CRF
model to automatically diacritize the Arabic
words. In doing so, we were able to automati-
cally diacritize more than 68k Arabic translitera-
tions. We were not able to diacritize all of them
because the transliteration miner was not able to
fulfill the requirement that each Arabic letter was
to be mapped to one or more English letters.
An example diacritized name is “rAwlobinody”
(Rawalpindi), which does not exist in the diacriti-
zation dictionary. We took a sample of 200 words
that were automatically diacritized in this fashion
and the accuracy of diacritization was 79%. Per-
haps in the future we can utilize more training data
to further improve the accuracy.
3.3.5 Word Look-up
Another method that we employed entails building
a dictionary of words that we reckoned had only
one possible diacritization or one that dominated
all others. An example of this is the word “En”,
which has two diacritized forms namely “Eano”
(about) and “Ean~a” (appeared). The second di-
acrized form, though possible, is archaic. We
constructed a dictionary of such words using two
methods. First, we manually constructed a set of
about 393 Arabic prepositions, particles, and pro-
nouns with and without prefixes and suffixes. Ex-
ample entries in the dictionary include “fy” (in),
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“wfy” (and in), “fyhm” (in them), and “wfyh” (and
in it). In the second, we collected statistics on the
training corpus, and any word appearing at least 10
times with a diacritized form being used more than
90% of the time, we added the word and the dom-
inating diacritized form to our dictionary. Pick-
ing the dominant form is mostly safe particularly
in case such as words that start with prepositions.
In other cases such as “gzp” (Gaza), the dominant
form is “gaz∼apa”, while we know that it is pos-
sible for it to be diacritized as “gaz∼apu” (with
a different case ending). However, what we ob-
served in our corpus is that it overwhelmingly ap-
pears as part of the collocation “qTAE gzp” (Gaza
Strip), and the collocations forces “gzp” to have a
specific diacritized form.

3.3.6 Results

Table 1 shows the results for the baseline sys-
tem, the baseline with different back-off schemes,
and the baseline with back-off and word look-up.
We used the two common evaluation measures,
namely error rate at word level (WER) and error
rate at character/diacritic level (DER). As the re-
sults show, backing-off to using stems and word
or stem templates, using automatically diacritized
words, and using word look-up all had a posi-
tive effect on diacritizing core words. The most
improvement was achieved when backing-up to
stems and using word look-up. Automatically di-
acritized words had a smaller effect than we ex-
pected, because foreign named entities frequently
use long vowels that are inserted during translit-
eration instead of short vowels. For example,
“John” is typically transliterated as “jwno” (with
the long vowel “w”) rather than “juno”. Combin-
ing the different enhancements led to even greater
drops of 50% and 56% in WER and DER respec-
tively. Compared to systems in the literature, our
core word diacritizer is far ahead of MADAMIRA
and that of (Belinkov and Glass, 2015). How-
ever, we lag behind the system of Rashwan et al.
(2015). When score the output of different sys-
tems, we performed some relaxations to account
for differences in diacritization conventions. The
relaxations involved: removing default diacritics
on letters followed by long vowels as in “jwno”
where putting the diacritic “u” after “j” would be
redundant; assuming that a letter, that is not a long
vowel, with no diacritic to be followed by “o”; and
removing diacritics from the determiner “Al”.

System % WER % DER
B 6.64 2.40
S 4.69 1.44
T 5.96 1.90

TSL 6.56 2.39
WL 4.54 1.75

S+T+TSL 4.51 1.35
S+T+TSL+WL 3.29 1.06

MADAMIRA 6.73 1.91
Rashwan et al. (2015) 3.04 0.95

Belinkov and Glass (2015) 14.87 3.89

Table 1: Core word diacritization results for Base-
line (B) and with back-off to Stem (S), Template
based diacritization (T), and Transliteration and
Sequence Labeling based diacritization (TSL),
and Word look-up (WL).

3.4 Recovering Case Endings
Though the case ending of some words or word
types might be fixed, such as prepositions and past
tense verbs, case ending often depends on the role
a word plays in the sentence. Consider the follow-
ing examples: “*ahaba muHam∼adN” (Muham-
mad went) and “*ahaba >lY muHam∼adK” (he
went to Muhammad). The name “muHam∼ad”
is assigned the case “N” (nominative) when it is a
subject and “K” (genitive) when it is preceded by a
preposition “>lY”. Ascertaining case endings for
simple prepositional phrases may be easy, how-
ever determining if a word is a subject or an ob-
ject may be much hard. Though parsing can help
determine the role of words in a sentence, it is typ-
ically very slow and hence impractical for some
real life applications such as TTS.

To determine case endings, we use a linear
SVM ranking (SVMrank) model that is trained
on a variety of lexical, morphological, and syn-
tactic features. The advantage of an SVMrank

model is that it is very fast, and it has been shown
to be accurate for a variety of ranking problems
(Joachims, 2006). For training, we use the im-
plementation of Joachims (2006) with default pa-
rameter values. We also employ heuristics that in-
clude/exclude possible/impossible case ending to
be considered by the SVMrank model. In the fol-
lowing, we describe our ranking model and how
we determine which case endings to consider.
3.4.1 SVMrank Model
Here we describe the features we used for
SVMrank to determine the case endings of words.
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We use the Farasa segmenter and POS tagger (Dar-
wish and Mubarak, 2016) to determine some of
the morphological, lexical, and syntactic features.
To help explain the features, we use here the
running example “jrY Abn AljyrAn fy AlmlEb”
(the neighbors’ son ran in the playground), where
we will focus on assigning the case ending C
of the word “AljyrAn” (the neighbors), which
is segmented as “Al+jyrAn” and POS tagged as
“DET+NOUNmasculine,plural” by Farasa. All fea-
ture values are computed on our training corpus.
Position “0” is the current position, with “1” and
“-1” being the next and previous positions. The
features are as follows:
• P (C|word0) and P (C|stem0): this captures

the likelihood that case ending can appear
with the current word or stem respectively (ex.
P (C|AljyrAn) and P (C|jyrAn)).

• P (C|word−1), P (C|stem−1), P (C|word1),
and P (C|stem1): this captures the context
of the word (ex. P (C|Abn), P (C|Abn),
P (C|fy), and P (C|fy)).

• P (C|POSword0) and P (C|POSstem0): some
case endings are likely for some POS tags
and nearly impossible for others. For
example, “DET” precludes tanween {“N”,
“K”, “F”} (ex. P (C|POSDET+NOUN ) and
P (C|POSNOUN ))

• P (C|POSword−1), P (C|POSstem−1),
P (C|POSword1), and P (C|POSstem1):
this captures local contextual information
that may help in detecting some syntactic
constructs (ex. P (C|POSDET+NOUN ) and
P (C|POSNOUN ))

• p(C|gen/numword0), p(C|gen/numword−1),
and p(C|gen/numword1): gender and number
agreement may indicate dependency within a
sentence (ex. p(C|masc pl), p(C|masc sing),
and p(C|null)2).

• p(C|prefix0), p(C|POSprefix0),
p(C|suffix0), and p(C|POSsuffix0):
prefixes and suffixes may force or preclude
certain case endings (ex. p(C|Al), p(C|DET ),
p(C|null), p(C|null)).

• p(C|stem template0): Some stem templates
favor particular case endings over others.
For example, the template “mfAEyl” (as in
“msAHyq” (powders)) does not allow tanween
(ex. p(C|fElAn)).
2prepositions don’t have a gender or number

• p(C|last letterword0): the last letter in the
word may force or preclude certain case end-
ings. For example, “Y” does not accept any di-
acritics. For our running example, we compute
p(C|n).

• p(C|POS0, POSword−1 , diacriticword−1):
case endings are affected by the diacritic of the
previous word in the case of NOUN-ADJ con-
structs (ex. p(C|DET +NOUN, NOUN, u)).

• p(C|word,word−1): this helps capture collo-
cations or local constructs such as short prepo-
sitional phrases (ex. p(C|AbnAljyrAn)).

• p(C|POS,POSword−1 , POSword1) and
p(C|POS,POSword−1 , POSword−2): this can
help detect local constructs such as NOUN-
DET+NOUN which is often an idafa construct
(ex. p(C|DET + NOUN, NOUN, PREP )
and p(C|DET + NOUN, NOUN, V )).

3.4.2 Filtering Heuristics
Limiting the possible case endings that the model
has to rank can improve accuracy by disallowing
bad choices. We applied simple heuristics to limit
possible case endings to be scored by SVMRank.
Some of these are based on Arabic grammar, and
others are purely statistical.
• If a word or stem appears more than 1,000 times

in the training corpus, then restrict possible case
endings to those seen in the training corpus.
Though the threshold would not preclude other
cases, it is high enough to make other cases rare.

• If the POS of the stem is VERB then restrict to
{a, o, u, ∼a, ∼u, or null}.

• If stem POS is VERB and VERB is not present
tense, then restrict to {a, o, ∼a, or null}.

• If first suffix is “wn” or “yn” (either plural noun
suffix or plural pronoun), then restrict to {a}.

• If first suffix is “An” (dual noun suffix), then re-
strict to {i}.

• If stem POS is NOUN and more than 80% of
time the case ending was “o” in the training cor-
pus, then restrict to {o}. This is meant to cap-
ture foreign named entities, which by the con-
vention in the training corpus always get a case
ending of “o”.

• If word diacritized using the aforementioned
Transliteration mining and sequence labeling
method, then it is assumed to be a foreign named
entity and the case ending is restricted to {a} or
{null} if it ends with a “A, y, w, or Y”.
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• If suffix POS is CASE, then restrict to {F, ∼F}.
• If word contains non-Arabic letters, then restrict

to {null}.
• If the last letter in the stem is a long vowel “A,

y, w, or Y”, then restrict to {null}.
• If last letter in the stem is not a long vowel and

is not followed by a long vowel, then disallow
{null} to insure a case ending is chosen.

• If prefix POS has DET, then disallow tanween
{K, N, F, ∼K, ∼N, ∼F}.

• If word or stem POS appeared in training more
than 50 times, then restrict case ending to those
seen for the POS during training.

• If word or stem template appeared in training,
then restrict case ending to those seen for the
template during training.

• If stem-template matches “fwAEl, mfAEyl, or
mfAEl”, then disallow tanween.

• If a bigram appeared more than 1,000 in training
with a single case ending for both words in the
bigram, then restrict to the seen case endings.

• If the prefix does not have a DET and the follow-
ing word does, then assume an idafa construct
and disallow tanween.

• If the word matches “>n, <n, or lkn”, then re-
strict case ending to {o} only if followed by a
verb, and to {∼a} otherwise.

3.4.3 Results
Table 2 shows the results of full diacritization
including case ending with and without filtering
heuristics. As can be seen, filtering heuristics led
to 4.3% and 11.1% relative reduction in word and
character error rates respectively. We are doing
better than the other three systems. Though the
system of Rashwan et al. (2015) was more accu-
rate at core-word level, our system was doing a
better job in case ending recovery leading to better
overall diacritization.
3.5 Error Analysis
For error analysis, we inspected 500 random er-
rors from the WikiNews test set. The following
are those constituting more than 5% of the errors:
1. Core word diacritization errors: (21%) wrong
form – ex. “Eadol” (justice) instead of “Ead∼al”
(he adjusted); (8%) out of vocabulary – ex.
“Eab∼ady” (Abbady – proper name).
2. Case ending errors: (12%) wrong ADJ-NOUN
attachment – ex. “wzArp AlSHp AlSEwdyp”

System % WER % DER
SVMRank 13.38 3.98

SVMRank+Heuristics 12.76 3.54
MADAMIRA 19.02 5.42

Rashwan et al. (2015) 15.95 4.29
Belinkov and Glass (2015) 30.50 7.89

Table 2: Full word diacritization results of our
system using SVMRank only (SVMRank)
and SVMRank after using heuristics to
include/exclude possible/impossible case
endings (SVMRank+Heuristics).

(Saudi Health Ministry) where Saudi was attached
to health instead of Ministry; (14%) misidentifica-
tion of SUBJ or OBJ – ex. OBJ is mistaken for
a SUBJ because SUBJ is omitted, or SUBJ ap-
pears several words after VERB; (11%) words fol-
lowing conjunctions where their dependency is not
clear; (7%) appositions; (6%) substitution of tan-
ween with kasra or damma with kasra and damma
respectively {u↔N, i↔K}; (6%) attachments in
NOUN phrases with multiple subsequent nouns;
and (5%) the SUBJ of a nominal sentence switches
place with the predicate.

3.6 Implementation and Speed
The diacritizer is implemented entirely in Java
making it platform independent and is backwards
compatible to JDK 1.5. The diacritizer is pack-
aged as a single jar file that is 100 megabytes in
size. It is able to diacritize a test set composed of
500k words on an Intel i7 laptop with 16 gigabytes
of RAM in 3 minutes and 44 seconds (including
42 sec. loading time) with memory footprint of
2.2 gigabytes. The current implementation is sin-
gle threaded, so it does not make use of the multi-
ple cores. We are providing it for free for research
purposes.

4 Conclusion

In this paper we present a new state-of-the-art pub-
licly available Arabic diacritizer. It uses a Viterbi
decoder for word-level diacritization with back-
offs to stems and morphological patterns. It also
uses transliteration mining in conjunction with se-
quence labeling to diacritize named entities for
which we have English transliterations. For case
ending, it uses SVMRank coupled with filtering
heuristics. The diacritizer achieves 12.76% WER
and 3.54% DER on a new multi-genre free of
copyright test set.

16



References
Gheith A Abandah, Alex Graves, Balkees Al-Shagoor,

Alaa Arabiyat, Fuad Jamour, and Majid Al-Taee.
2015. Automatic diacritization of arabic text us-
ing recurrent neural networks. International Journal
on Document Analysis and Recognition (IJDAR),
18(2):183–197.

Aqil M Azmi and Reham S Almajed. 2015. A survey
of automatic arabic diacritization techniques. Natu-
ral Language Engineering, 21(03):477–495.

Mohamed Bebah, Chennoufi Amine, Mazroui Azzed-
dine, and Lakhouaja Abdelhak. 2014. Hybrid ap-
proaches for automatic vowelization of arabic texts.
arXiv preprint arXiv:1410.2646.

Yonatan Belinkov and James Glass. 2015. Arabic di-
acritization with recurrent neural networks. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2281–
2285, Lisbon, Portugal.

Tim Buckwalter. 2004. Buckwalter arabic morpho-
logical analyzer version 2.0. ldc catalog number
ldc2004l02, isbn 1-58563-324-0.

Andy Cole, David Graff, and Kevin Walker. 2001.
Arabic newswire part 1 corpus (1-58563-190-6).
Linguistic Data Consortium (LDC).

Kareem Darwish and Hamdy Mubarak. 2016. Farasa:
A new fast and accurate arabic word segmenter.
In Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC
2016), Paris, France, may. European Language Re-
sources Association (ELRA).

Ali El-Kahky, Kareem Darwish, Ahmed Saad Aldein,
Mohamed Abd El-Wahab, Ahmed Hefny, and
Waleed Ammar. 2011. Improved transliteration
mining using graph reinforcement. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 1384–1393.

Ya’akov Gal. 2002. An hmm approach to vowel
restoration in arabic and hebrew. In Proceedings of
the ACL-02 workshop on Computational approaches
to Semitic languages, pages 1–7. Association for
Computational Linguistics.

Nizar Habash and Owen Rambow. 2007. Arabic di-
acritization through full morphological tagging. In
Human Language Technologies 2007: The Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics; Companion
Volume, Short Papers, pages 53–56. Association for
Computational Linguistics.

Nizar Habash, Owen Rambow, and Ryan Roth. 2009.
Mada+ tokan: A toolkit for arabic tokenization, dia-
critization, morphological disambiguation, pos tag-
ging, stemming and lemmatization. In Proceedings
of the 2nd International Conference on Arabic Lan-
guage Resources and Tools (MEDAR), Cairo, Egypt,
pages 102–109.

Thorsten Joachims. 2006. Training linear svms in lin-
ear time. In ACM SIGKDD-2006, pages 217–226.
ACM.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the ACL on
interactive poster and demonstration sessions, pages
177–180. Association for Computational Linguis-
tics.

Taku Kudo. 2005. Crf++: Yet another crf toolkit. Soft-
ware available at http://crfpp. sourceforge. net.

Bebah Mohamed Ould Abdallahi Ould, Abde-
louafi Meziane, Azzeddine Mazroui, and Abdelhak
Lakhouaja. 2011. Alkhalil morphosys. In 7th In-
ternational Computing Conference in Arabic, pages
66–73, Riyadh, Saudi Arabia.

Rani Nelken and Stuart M Shieber. 2005. Arabic di-
acritization using weighted finite-state transducers.
In Proceedings of the ACL Workshop on Computa-
tional Approaches to Semitic Languages, pages 79–
86. Association for Computational Linguistics.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan M Roth.
2014. Madamira: A fast, comprehensive tool for
morphological analysis and disambiguation of ara-
bic. In LREC-2014, Reykjavik, Iceland.

Mohsen Rashwan, Mohammad Al-Badrashiny, Mo-
hamed Attia, and Sherif Abdou. 2009. A hybrid
system for automatic arabic diacritization. In The
2nd International Conference on Arabic Language
Resources and Tools, pages 54–60.

Mohsen Rashwan, Ahmad Al Sallab, M. Raafat, and
Ahmed Rafea. 2015. Deep learning framework
with confused sub-set resolution architecture for au-
tomatic arabic diacritization. In IEEE Transactions
on Audio, Speech, and Language Processing, pages
505–516.

Dimitra Vergyri and Katrin Kirchhoff. 2004. Au-
tomatic diacritization of arabic for acoustic mod-
eling in speech recognition. In Proceedings of
the workshop on computational approaches to Ara-
bic script-based languages, COLING’04, pages 66–
73, Geneva, Switzerland. Association for Computa-
tional Linguistics.

Imed Zitouni, Jeffrey S Sorensen, and Ruhi Sarikaya.
2006. Maximum entropy based restoration of ara-
bic diacritics. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and
the 44th annual meeting of the Association for Com-
putational Linguistics, pages 577–584. Association
for Computational Linguistics.

17



Proceedings of The Third Arabic Natural Language Processing Workshop (WANLP), pages 18–24,
Valencia, Spain, April 3, 2017. c©2017 Association for Computational Linguistics

Semantic Similarity of Arabic Sentences with Word Embeddings

El Moatez Billah Nagoudi
LIM - Laboratoire d’Informatique et de
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Abstract

Semantic textual similarity is the basis of
countless applications and plays an impor-
tant role in diverse areas, such as infor-
mation retrieval, plagiarism detection, in-
formation extraction and machine transla-
tion. This article proposes an innovative
word embedding-based system devoted to
calculate the semantic similarity in Arabic
sentences. The main idea is to exploit vec-
tors as word representations in a multidi-
mensional space in order to capture the se-
mantic and syntactic properties of words.
IDF weighting and Part-of-Speech tagging
are applied on the examined sentences to
support the identification of words that are
highly descriptive in each sentence. The
performance of our proposed system is
confirmed through the Pearson correlation
between our assigned semantic similarity
scores and human judgments.

Keywords: Semantic Sentences Similarity,
Word Embedding, Word Representations, Space
Vector Model.

1 Introduction

Text Similarity is an important task in several ap-
plication fields, such as information retrieval, pla-
giarism detection, machine translation, topic de-
tection, text classification, text summarization and
others. Finding similarity between two texts, para-
graphs or sentences, is based on measuring, di-
rectly or indirectly, the similarity between words.

There are two known types of words similar-
ity: lexical and semantic. The first one handles the
words as a stream of characters: words are sim-
ilar lexically if they share the same characters in
the same order (Manning et al., 2008). There are

many techniques of lexical similarity measures,
the most known are : Damerau-Levenshtein (Lev-
enshtein, 1966), Needleman Wunsch (Needleman
and Wunsch, 1970), LCS (Chvatal and Sankoff,
1975), JaroWinkler (Winkler, 1999), etc.

The second type aims to quantify the degree
to which two words are semantically related. As
an example they can be, synonyms, represent the
same thing or they are used in the same context.
The classical way to measure this semantic simi-
larity is by using linguistic resources, like Word-
Net (Miller, 1995), HowNet (Dong and Dong,
2003), BabelNet (Navigli and Ponzetto, 2012) or
Dbnary (Sérasset, 2015). However, the word em-
bedding techniques can be a more effective alter-
native to these linguistic databases (Mikolov et al.,
2013a).

In this article we focus our investigation on
measuring the semantic similarity between short
Arabic sentences using word embedding represen-
tations. We also consider the IDF weighting and
Part-of-Speech tagging techniques in order to im-
prove the identification of words that are highly
descriptive in each sentence.

The rest of this article is organized as follows,
the next section describes work related to word
representations in vector space. In Section 3,
we present three variants of our proposed word
embedding-based system. Section 4 describes the
experimental results of this study. Finally, our
conclusion and some future research directions are
drawn in Section 5.

2 Word Embedding Models

Words representations as vectors in a multidimen-
sional space allows to capture the semantic and
syntactic properties of the language (Mikolov et
al., 2013a). These representations can serve as a
fundamental building unit to many applications of
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Natural Language Processing (NLP). In the litera-
ture, several techniques are proposed to build vec-
torized space representations.

For instance, Collobert and Weston (2008) have
proposed a unified system based on a deep neu-
ral network architecture, and trained jointly with
many well known NLP tasks, including: Chunk-
ing, Part of Speech tagging, Named Entity Recog-
nition and Semantic Role Labeling. Their word
embedding model is stored in a matrix M ∈
Rd∗|D|, where D is a dictionary of all unique
words in the training data, and each word is em-
bedded into a d-dimensional vector. The sen-
tences are represented using the embeddings of
their forming words. A similar idea was indepen-
dently proposed and used by Turian et al. (Turian
et al., 2010).

Mnih and Hinton (2009) have proposed another
form to represent words in vector space, named
Hierarchical Log-Bilinear Model (HLBL). Like
virtually all neural language models, the HLBL
model represents each word with a real-valued
feature vector. For n-gram word-based, HLBL
concatenates the n − 1 first embedding words
(w1..wn−1) and learns a neural linear model to
predicate the last word wn.

Mikolov et al. (Mikolov et al., 2013c) have used
a recurrent neural network (RNN) (Mikolov et al.,
2010) to build a neural language model. The RNN
encode the context word by word and predict the
next word. The weights of the trained network are
used as the words embeddings vectors.

Mikolov et al. (Mikolov et al., 2013a) (Mikolov
et al., 2013b) have proposed two other approaches
to build a words representations in vector space.
using a simplified version of Bengio et al. (Ben-
gio et al., 2003) neural language mode. They
replaced the hidden layer by a simple projection
layer in order to boost performance. In their work,
two models are presented: the continuous bag-of-
words model (CBOW) (Mikolov et al., 2013a),
and the skip-gram model (SKIP-G) (Mikolov et
al., 2013b).

In the first one, the continuous bag of
word model CBOW (Mikolov et al., 2013a),
predicts a pivot word according to the con-
text by using a window of contextual words
around it. Given a sequence of words S =
w1, w2, ..., wi, the CBOW model learns to pre-
dict all words wk from their surrounding words
(wk−l, ..., wk−1, wk+1, ..., wk+l). The second

model SKIP-G, predicts surrounding words of the
current pivot word wk (Mikolov et al., 2013b).

Pennington et al. (Pennington et al., 2014) pro-
posed a Global Vectors (GloVe) to build a words
representations model, GloVe uses the global
statistics of word-word co-occurrence to build co-
occurrence matrix M . Then, M is used to cal-
culate the probability of word wi to appear in
the context of another word wj , this probability
P (i/j) represents the relationship between words.

3 System Description

3.1 Model Used
In (Mikolov et al., 2013a), all the methods
(Collobert and Weston, 2008), (Turian et al.,
2010), (Mnih and Hinton, 2009), (Mikolov et al.,
2013c) have been evaluated and compared, and
they show that CBOW and SKIP-G are signifi-
cantly faster to train with better accuracy com-
pared to these techniques. For this reason, we have
used the CBOW word representations for Arabic
model1 proposed by Zahran et al. (Zahran et al.,
2015). To train this model, they have used a large
collection from different sources counting more
than 5.8 billion words :

• Arabic Wikipedia (WikiAr, 2006).

• BBC and CNN Arabic corpus (Saad and
Ashour, 2010).

• The open parallel corpus (Tiedemann, 2012).

• Arabase Corpus (Raafat et al., 2013).

• Osac: Open source arabic corpora. (Saad and
Ashour, 2010)

• MultiUN corpus (Chen and Eisele, 2012)

• AGC Arabic Gigaword Corpus.

• King Saud University corpus (ksucorpus,
2012).

• Meedan Arabic corpus (Meedan, 2012).

• LDC Arabic newswire.

• Raw Quran text (Quran, 2007).

• KDE4 localization files (Tiedemann, 2009).

• Khaleej and Watan 2004 (Khaleej, 2004).

Training the Arabic CBOW model require
choice of some parameters affecting the resulting
vectors. All the parameters used by Zahran et al.
(Zahran et al., 2015) are shown in Table 1.

1https://sites.google.com/site/mohazahran/data
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The Arabic CBOW Model Parameters
Parameter Value

Vector size 300
Window 5
Sample 1e− 5
Hierarchical Softmax NO
Negative 10
Freq. thresh. 100

Table 1: Training configuration parameters

Where:

– Vector size: dimensionality of the word vec-
tors.

– Window: number of words considered
around the pivot word (context).

– Sample: threshold for sub-sampling of fre-
quent words.

– Hierarchical Softmax: approximation of the
full softmax used to predict words during
training.

– Negative: number of negative examples in
the training.

– Frequency threshold: threshold to discard
less frequent words.

3.2 Words Similarity

We used CBOW model in order to identify the
near matches between two words wi and wj

(e.g. synonyms, singular, plural, feminization
or closely related semantically). The similarity
between wi and wj is obtained by comparing their
vector representations vi and vj respectively. The
similarity between vi and vj can be evaluated
using the cosine similarity, euclidean distance,
Manhattan distance or any other similarity
measure functions. For example: let ” �éªÓAm.Ì'@”
(university), ”ZA�ÖÏ @” (evening) and ” �éJ
Ê¾Ë@” (faculty)
be three words. The similarity between them
is measured by computing the cosine similarity
between their vectors as follows:

sim(ZA�ÖÏ @, �éªÓAm.Ì'@) = cos(V (ZA�ÖÏ @), V (
�éªÓAm.Ì'@)) = 0.13

sim(
�éJ
Ê¾Ë@, �éªÓAm.Ì'@) = cos(V (

�éªÓAm.Ì'@), V (
�éJ
Ê¾Ë@)) = 0.72

That means that, the words ” �éJ
Ê¾Ë@” (faculty) and
” �éªÓAm.Ì'@” (university) are semantically closer than
”ZA�ÖÏ @ ” (evening) and ” �éªÓAm.Ì'@” (university).

3.3 Sentences similarity
Let S1 = w1, w2, ..., wi and S2 = w′1, w′2, ..., w′j
be two sentences, their word vectors are
(v1, v2, ..., vi) and (v′1, v′2, ..., v′j) respectively. We
have used three methods to measure the similar-
ity between sentences. Figure 1 illustrates an
overview of the procedure for computing the simi-
larity between two candidate sentences in our sys-
tem.

Figure 1: The architecture of the proposed system

In the following, we explain our proposed meth-
ods to compute the semantic similarity among sen-
tences.

3.3.1 No Weighting Method
A simple way to compare two sentences, is to sum
their words vectors. In addition, this method can
be applied to any size of sentences. The similarity
between S1 and S2 is obtained by calculating the
cosine similarity between V1 and V2, where:{

V1 =
∑i

k=1 vk

V2 =
∑j

k=1 v′k

For example, let S1 and S2 be two sentences:
S1 = ”

�éJ
Ê¾Ë@ úÍ@
	�ñK
 I. ë 	X” (Joseph went to college).

S2 = ”
�éªÓAj. ÊË A«Qå�Ó úæ	�Öß
 	�ñK
” (Joseph goes quickly

to university).

The similarity between S1 and S2 is obtained as
follows:
step 1: Sum of the word vectors
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V1 = V (
�éJ
Ê¾Ë@) + V (

	�ñK
) + V (I. ë 	X)
V2 = V (

�éªÓAj. ÊË) + V ( A«Qå�Ó) + V (úæ	�Öß
) + V (
	�ñK
)

step 2: Calculate the similarity
The similarity between S1 and S2 is obtained by
calculating the cosine similarity between V1 and
V2.

sim(S1, S2) = cos(V1, V2) = 0.71

In order to improve the similarity results, we
have used two weighting functions based on
the Inverse Document Frequency IDF (Salton
and Buckley, 1988) and the Part-Of-Speech tag-
ging (POS tagging) (Schwab, 2005) (Lioma and
Blanco, 2009).

3.3.2 IDF Weighting Method
In this variant, the Inverse Document Frequency
IDF concept is used to produce a composite
weight for each word in each sentence. The IDF
weighting of words (Salton and Buckley, 1988)
is traditionally used in information retrieval (Tur-
ney and Pantel, 2010) and can be employed in our
system. The idf weight serves as a measure of
how much information the word provides, that is,
whether the term that occurs infrequently is good
for discriminating between documents (in our case
sentences).

This technique uses a large collection of doc-
ument (background corpus), generally the same
genre as the input corpus that is to be semantically
verified. In order to compute the idf weight for
each word, we have used the BBC and CNN
Arabic corpus2 (Saad and Ashour, 2010) as a
background corpus. In fact, the idf of each word
is determined by using the formula:

idf(w) = log( S
WS )

where S is the total number of sentences in the
corpus and WS is the number of sentences con-
taining the word w. The similarity between S1 and
S2 is obtained by calculating the cosine similarity
between V1 and V2, cos(V1, V2) where:{

V1 =
∑i

k=1 idf(wk) ∗ vk

V2 =
∑j

k=1 idf(w′k) ∗ v′k

and idf(wk) is the weight of the word wk in the
background corpus.

2https://sourceforge.net/projects/ar-text-mining/
files/Arabic-Corpora/

Example: let’s continue with the sentences of the
previous example, and suppose that IDF weights
of their words are:

I. ë 	X 	�ñK
 �éJ
Ê¾Ë@ úæ	�Öß
 A«Qå�Ó �éªÓAm.Ì'@
0.27 0.37 0.31 0.29 0.22 0.34

step 1: Sum of vectors with IDF weights

V1 = V (
�éJ
Ê¾Ë@) ∗ 0.31 + V (

	�ñK
) ∗ 0.37 +V (I. ë 	X) ∗ 0.27

V2 = V (
�éªÓAm.Ì'@)∗0.34+V ( A«Qå�Ó)∗0.22+V (úæ	�Öß
)∗0.29

+V (
	�ñK
) ∗ 0.37

step 2: Calculate the similarity
The cosine similarity is applied to computed a
similarity score between V1 and V2.

sim(S1, S2) = cos(V1, V2) = 0.78

We note that the similarity result between the two
sentences is better than the previous method.

3.3.3 Part-of-speech weighting Method

An alternative technique is the application of the
Part-of-Speech tagging (POS tag) for identifica-
tion of words that are highly descriptive in each in-
put sentence (Schwab, 2005) (Lioma and Blanco,
2009). For this purpose, we have used the POS
tagger for Arabic language proposed by G. Bra-
ham et al. (Gahbiche-Braham et al., 2012) to esti-
mate the part-of-speech of each word in sentence.
Then, a weight is assigned for each type of tag in
the sentence. For example, verb = 0.4, noun =
0.5, adjective = 0.3, preposition = 0.1, etc.

The similarity between S1 and S2 is obtained in
three steps (Schwab, 2005) as follows:
step 1: POS tagging
In this step the POS tagger of G. Braham et
al. (Gahbiche-Braham et al., 2012) is used to es-
timate the POS of each word in sentence.{

Pos tag(S1) = Posw1 , Posw2 , ..., Poswi

Pos tag(S2) = Posw′
1
, Posw′

2
, ..., Posw′

j

The function Pos tag(Si) returns for each word
wk in Si its estimated part of speech Poswk

.

step 2: POS weighting
At this point we should mention that, the weight
of each part of speech can be fixed empirically.
Indeed, we based on the training data of SemEval-
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2017 (Task 1)3 to fix the POS weights.{
V1 =

∑i
k=1 Pos weight(Poswk

) ∗ vk

V2 =
∑j

k=1 Pos weight(Posw′
k
) ∗ v′k

where Pos weight(Poswk
) is the function which

return the weight of POS tagging of wk.

step 3: Calculate the similarity
Finally, the similarity between S1 and S2 is
obtained by calculating the cosine similarity
between V1 and V2 as follows:

sim(S1, S2) = cos(V1, V2)

Example: let us continue with the same example
above.

S1 = ”
�éJ
Ê¾Ë@ úÍ@

	�ñK
 I. ë 	X” (Joseph went to college).

S2 = ”
�éªÓAj. ÊË A«Qå�Ó úæ	�Öß
 	�ñK
” (Joseph goes quickly

to university).

and suppose that POS weights are:

verb noun noun prop adj prep
0.4 0.5 0.7 0.3 0.1

step 1: Pos tagging

The function Pos tag(Si) is applied to each sen-
tence.{

Pos tag(S1) = verb noun prop noun
Pos tag(S2) = noun prop verb adj noun

step 2: Sum of vectors with POS weighting

V1 = V (
�éJ
Ê¾Ë@) ∗ 0.5 + V (

	�ñK
) ∗ 0.7 + V (I. ë 	X) ∗ 0.4

V2 = V (
�éªÓAm.Ì'@) ∗ 0.5 + V ( A«Qå�Ó) ∗ 0.3 + V (úæ	�Öß
) ∗

0.4 + V (
	�ñK
) ∗ 0.7

step 3: Calculate the similarity

sim(S1, S2) = cos(V1, V2) = 0.82

4 Experiments And Results

4.1 Test Sample

In order to measure effectively the performances
of our system, a large collection are necessary. In
fact, we have used a dataset of 750 pairs of sen-
tences drawn from publicly Microsoft Research

3http://alt.qcri.org/semeval2017/task1/data/uploads/

Video Description Corpus (MSR-Video) (MSR-
video, 2016), and manually translated into Ara-
bic. The sentence pairs have been manually tagged
by four annotators, and the similarity score is the
mean of the annotators. This score is a float num-
ber between ”0” (indicating that the meaning of
sentences are completely independent) to ”1” (sig-
nifying meaning equivalence).

4.2 Preprocessing

In order to normalize the sentences for the seman-
tic similarity step, a set of preprocessing are per-
formed on the data set. All sentences went through
by the following steps:

1. Stop-word removal.
2. Remove punctuation marks, diacritics and

non letters.
3. We normalized


@ , @ ,

�
@ to @ and �è to è.

4. Replace final ø followed by Z with ø.
5. Normalizing numerical digits to the token

”Num”.

4.3 Results

To evaluate the performance of our system, our
three approaches were assessed based on their ac-
curacy on the 750 sentences in the MSR-Video
corpus. An example of our results is shown in Ta-
ble 2.

Sentence Pair Hum. Methods
No
Weig.

IDF POS

�éJ
Ê¾Ë@ úÍ@
	�ñK
 I. ë 	X 0.90 0.71 0.78 0.82

�éªÓAj. ÊË A«Qå�Ó úæ	�Öß
 	�ñK

	�KAêË @ úÎ« �HYj�J�K �è


@QÓ@ 0.35 0.65 0.45 0.40

	�KAêË @ úÎ« 	àA�KYj�JK
 	àAJ
�.�
��J.£ ú


	̄ �é 	KðQºªÖÏ @ I. ��
 Ég. P 0.0 0.15 0.13 0.13
	¬Aª�B @ �èPAJ
� ú


	̄ ��K. A���ÖÏ @

h. AJ
» AÖÏ @ © 	��� �è

@QÓ@ 0.92 0.55 0.67 0.72

Aêêk. ð úÎ« ��J
kA�ÖÏ @ © 	��� �è

@QÓ@

�éºÒ�Ë@ �HAJ.�Q�K ÉK
 	QK
 1.0 0.85 0.92 0.94
�éºÒ�Ë@ 	áÓ �HAJ.�Q��Ë @ ÉK
 	QK
 Ég. P
É 	®¢ÊË AK. A�J»


@Q�®K
 I. Ê¿ 0.20 0.82 0.87 0.88

H. C¾Ë@ 	á« AK. A�J» É 	®£

@Q�®K


Table 2: Example of sentence similarity results

The sentence pairs in Table 2, were selected ran-
domly from our dataset. It can be seen that the
similarity estimation provided by our system are
fairly consistent with human judgements. How-
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ever, the similarity score is not good enough when
two sentences share the same words, but with a
totally different meaning, like in the last pair of
sentences.

On the other hand, we calculate the Pearson cor-
relation between our assigned semantic similarity
scores and human judgements. The results are pre-
sented in Table 3.

Approach Correlation
Basic method 72.33 %

IDF-weighting method 78.20%
POS tagging method 79.69%

Table 3: Correlation results

These results indicate that when the no weight-
ing method is used the correlation rate reached
72.33%. Both IDF-weighting and POS tagging
approaches significantly outperformed the corre-
lation to more than 78% (respectively 78.2% and
79.69%).

5 Conclusion and Future Work

In this article, we presented an innovative word
embedding-based system to measure semantic re-
lations between Arabic sentences. This system
is based on the semantic properties of words in-
cluded in the word-embedding model. In order
to make further progress in the analysis of the se-
mantic sentence similarity, this article showed how
the IDF weighting and Part-of-Speech tagging are
used to support the identification of words that are
highly descriptive in each sentence. In the exper-
iments we have shown how these techniques im-
prove the correlation results. The performance of
our proposed system was confirmed through the
Pearson correlation between our assigned seman-
tic similarity scores and human judgements. As
future work, we can make more improvement in
the semantic similarity results by a smart hybridi-
sation between both IDF weighting and POS tag-
ging techniques.
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Abstract

Maltese is a morphologically rich lan-
guage with a hybrid morphological sys-
tem which features both concatenative
and non-concatenative processes. This
paper analyses the impact of this hy-
bridity on the performance of machine
learning techniques for morphological la-
belling and clustering. In particular, we
analyse a dataset of morphologically re-
lated word clusters to evaluate the differ-
ence in results for concatenative and non-
concatenative clusters. We also describe
research carried out in morphological la-
belling, with a particular focus on the verb
category. Two evaluations were carried
out, one using an unseen dataset, and an-
other one using a gold standard dataset
which was manually labelled. The gold
standard dataset was split into concatena-
tive and non-concatenative to analyse the
difference in results between the two mor-
phological systems.

1 Introduction

Maltese, the national language of the Maltese Is-
lands and, since 2004, also an official European
language, has a hybrid morphological system that
evolved from an Arabic stratum, a Romance (Si-
cilian/Italian) superstratum and an English adstra-
tum (Brincat, 2011). The Semitic influence is
evident in the basic syntactic structure, with a
highly productive non-Semitic component man-
ifest in its lexis and morphology (Fabri, 2010;
Borg and Azzopardi-Alexander, 1997; Fabri et
al., 2014). Semitic morphological processes still
account for a sizeable proportion of the lexicon
and follow a non-concatenative, root-and-pattern
strategy (or templatic morphology) similar to Ara-
bic and Hebrew, with consonantal roots combined

with a vowel melody and patterns to derive forms.
By contrast, the Romance/English morphologi-
cal component is concatenative (i.e. exclusively
stem-and-affix based). Table 1 provides an ex-
ample of these two systems, showing inflection
and derivation for the words eżamina ‘to exam-
ine’ taking a stem-based form, and gideb ‘to lie’
from the root

√
GDB which is based on a tem-

platic system. Table 2 gives an examply of ver-
bal inflection, which is affix-based, and applies to
lexemes arising from both concatenative and non-
concatenative systems, the main difference being
that the latter evinces frequent stem variation.

Table 1: Examples of inflection and derivation in
the concatenative and non-concatenative systems

Derivation Inflection
Concat.
eżamina eżaminatur eżaminatr-iċi, sg.f
‘examine’ ‘examiner’ eżaminatur-i, pl.
Non-Con.
gideb ‘lie’ giddieb giddieb-a, sg.f.√

GDB ‘liar’ giddib-in, pl.

Table 2: Verbal inflections for the concatenative
and non-concatenative systems.

eżamina gideb
√

GDB

‘examine’ ‘lie’
1SG n-eżamina n-igdeb
2SG t-eżamina t-igdeb

3SGM j-eżamina j-igdeb
3SGF t-eżamina t-igdeb
1PL n-eżamina-w n-igdb-u
2PL t-eżamina-w t-igdb-u
3PL j-eżamina-w j-igdb-u

To date, there still is no complete morpholog-
ical analyser for Maltese. In a first attempt at a
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computational treatment of Maltese morphology,
Farrugia (2008) used a neural network and fo-
cused solely on broken plural for nouns (Schem-
bri, 2006). The only work treating computa-
tional morphology for Maltese in general was by
Borg and Gatt (2014), who used unsupervised
techniques to group together morphologically re-
lated words. A theoretical analysis of the tem-
platic verbs (Spagnol, 2011) was used by Camil-
leri (2013), who created a computational gram-
mar for Maltese for the Resource Grammar Li-
brary (Ranta, 2011), with a particular focus on in-
flectional verbal morphology. The grammar pro-
duced the full paradigm of a verb on the basis of
its root, which can consist of over 1,400 inflective
forms per derived verbal form, of which traditional
grammars usually list 10. This resource is known
as Ġabra and is available online1. Ġabra is, to date,
the best computational resource available in terms
of morphological information. It is limited in its
focus to templatic morphology and restricted to
the wordforms available in the database. A further
resource is the lexicon and analyser provided as
part of the Apertium open-source machine transla-
tion toolkit (Forcada et al., 2011). A subset of this
lexicon has since been incorporated in the Ġabra
database.

This paper presents work carried out for Mal-
tese morphology, with a particular emphasis on
the problem of hybridity in the morphological sys-
tem. Morphological analysis is challenging for a
language like Maltese due to the mixed morpho-
logical processes existing side by side. Although
there are similarities between the two systems,
as seen in verbal inflections, various differences
among the subsystems exist which make a uni-
fied treatment challenging, including: (a) stem al-
lomorphy, which occurs far more frequently with
Semitic stems; (b) paradigmatic gaps, especially
in the derivational system based on semitic roots
(Spagnol, 2011); (c) the fact that morphological
analysis for a hybrid system needs to pay atten-
tion to both stem-internal (templatic) processes,
and phenomena occurring at the stem’s edge (by
affixation).

First, we will analyse the results of the unsu-
pervised clustering technique by Borg and Gatt
(2014) applied on Maltese, with a particular focus
of distinguishing the performance of the technique

1http://mlrs.research.um.edu.mt/
resources/gabra/

on the two different morphological systems. Sec-
ond, we are interested in labelling words with their
morphological properties. We view this as a clas-
sification problem, and treat complex morpholog-
ical properties as separate features which can be
classified in an optimal sequence to provide a final
complex label. Once again, the focus of the analy-
sis is on the hybridity of the language and whether
a single technique is appropriate for a mixed mor-
phology such as that found in Maltese.

2 Related Work

Computational morphology can be viewed as hav-
ing three separate subtasks — segmentation, clus-
tering related words, and labelling (see Ham-
marström and Borin (2011)). Various approaches
are used for each of the tasks, ranging from rule-
based techniques, such as finite state transduc-
ers for Arabic morphological analysis (Beesley,
1996; Habash et al., 2005), to various unsuper-
vised, semi- or fully-supervised techniques which
would generally deal with one or two of the sub-
tasks. For most of the techniques described, it is
difficult to directly compare results due to differ-
ence in the data used and the evaluation setting it-
self. For instance, the results achieved by segmen-
tation techniques are then evaluated in an informa-
tion retrieval task.

The majority of works dealing with unsuper-
vised morphology focus on English and assume
that the morphological processes are concatena-
tive (Hammarström and Borin, 2011). Goldsmith
(2001) uses the minimum description length al-
gorithm, which aims to represent a language in
the most compact way possible by grouping to-
gether words that take on the same set of suf-
fixes. In a similar vein, Creutz and Lagus (2005;
2007) use Maximum a Posteriori approaches to
segment words from unannotated texts, and have
become part of the baseline and standard evalua-
tion in the Morpho Challenge series of competi-
tions (Kurimo et al., 2010). Kohonen et al. (2010)
extends this work by introducing semi- and super-
vised approaches to the model learning for seg-
mentation. This is done by introducing a discrim-
inative weighting scheme that gives preference to
the segmentations within the labelled data.

Transitional probabilities are used to determine
potential word boundaries (Keshava and Pitler,
2006; Dasgupta and Ng, 2007; Demberg, 2007).
The technique is very intuitive, and posits that the
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most likely place for a segmentation to take place
is at nodes in the trie with a large branching factor.
The result is a ranked list of affixes which can then
be used to segment words.

Van den Bosch and Daelemans (1999) and
Clark (2002; 2007) apply Memory-based Learn-
ing to classify morphological labels. The latter
work was tested on Arabic singular and broken
plural pairs, with the algorithm learning how to as-
sociate an inflected form with its base form. Dur-
rett and DeNero (2013) derives rules on the basis
of the orthographic changes that take place in an
inflection table (containing a paradigm). A log-
linear model is then used to place a conditional
distribution over all valid rules.

Poon et al. (2009) use a log-linear model for
unsupervised morphological segmentation, which
leverages overlapping features such as morphemes
and their context. It incorporates exponential pri-
ors as a way of describing a language in an effi-
cient and compact manner. Sirts and Goldwater
(2013) proposed Adaptor Grammars (AGMorph),
a nonparametric Bayesian modelling framework
for minimally supervised learning of morpholog-
ical segmentation. The model learns latent tree
structures over the input of a corpus of strings.
Narasimhan et al. (2015) also use a log-linear
model, and morpheme and word-level features to
predict morphological chains, improving upon the
techniques of Poon et al. (2009) and Sirts and
Goldwater (2013). A morphological chain is seen
as a sequence of words that starts from the base
word, and at each level through the process of af-
fixation a new word is derived as a morphologi-
cal variant, with the top 100 chains having an ac-
curacy of 43%. It was also tested on an Arabic
dataset, achieving an F-Measure of 0.799. How-
ever, the system does not handle stem variation
since the pairing of words is done on the basis
of the same orthographic stem and therefore the
result for Arabic is rather surprising. The tech-
nique is also lightly-supervised since it incorpo-
rates part-of-speech category to reinforce potential
segmentations.

Schone and Jurafsky (2000; 2001) and Baroni
et al. (2002) use both orthographic and semantic
similarity to detect morphologically related word
pairs, arguing that neither is sufficient on its own
to determine a morphological relation. Yarowsky
and Wicentowski (2000) use a combination of
alignment models with the aim of pairing inflected

words. However this technique relies on part-of-
speech, affix and stem information. Can and Man-
andhar (2012) create a hierarchical clustering of
morphologically related words using both affixes
and stems to combine words in the same clusters.
Ahlberg et al. (2014) produce inflection tables by
obtaining generalisations over a small number of
samples through a semi-supervised approach. The
system takes a group of words and assumes that
the similar elements that are shared by the differ-
ent forms can be generalised over and are irrele-
vant for the inflection process.

For Semitic languages, a central issue in com-
putational morphology is disambiguation between
multiple possible analyses. Habash and Ram-
bow (2005) learn classifiers to identify different
morphological features, used specifically to im-
prove part-of-speech tagging. Snyder and Barzi-
lay (2008) tackle morphological segmentation for
multiple languages in the Semitic family and En-
glish by creating a model that maps frequently oc-
curring morphemes in different languages into a
single abstract morpheme.

Due to the intrinsic differences in the problem
of computational morphology between Semitic
and English/Romance languages, it is difficult
to directly compare results. Our interest in the
present paper is more in the types of approaches
taken, and particularly, in seeing morphologi-
cal labelling as a classification problem. Mod-
elling different classifiers for specific morpholog-
ical properties can be the appropriate approach for
Maltese, since it allows the flexibility to focus on
those properties where data is available.

3 Clustering words in a hybrid
morphological system

The Maltese morphology system includes two sys-
tems, concatenative and non-concatenative. As
seen in the previous section, most computational
approaches deal with either Semitic morphology
(as one would for Arabic or its varieties), or with
a system based on stems and affixes (as in Italian).
Therefore, we might expect that certain methods
will perform differently depending on which com-
ponent we look at. Indeed, overall accuracy fig-
ures may mask interesting differences among the
different components.

The main motivation behind this analysis is
that Maltese words of Semitic origin tend to have
considerable stem variation (non-concatenative),
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whilst the word formation from Romance/English
origin words would generally leave stems whole
(concatenative)2. Maltese provides an ideal sce-
nario for this type of analysis due to its mixed
morphology. Often, clustering techniques would
either be sensitive to a particular language, such as
catering for weak consonants in Arabic (de Roeck
and Al-Fares, 2000), or focus solely on English or
Romance languages (Schone and Jurafsky, 2001;
Yarowsky and Wicentowski, 2000; Baroni et al.,
2002) where stem variation is not widespread.

The analysis below uses a dataset of clusters
produced by Borg and Gatt (2014), who employed
an unsupervised technique using several interim
steps to cluster words together. First, potential
affixes are identified using transitional probabil-
ities in a similar fashion to (Keshava and Pitler,
2006; Dasgupta and Ng, 2007). Words are then
clustered on the basis of common stems. Clusters
are improved using measures of orthographic and
semantic similarity, in a similar vein to (Schone
and Jurafsky, 2001; Baroni et al., 2002). Since
no gold-standard lexical resource was available
for Maltese, the authors evaluated the clusters us-
ing a crowd-sourcing strategy of non-expert native
speakers and a separate, but smaller, set of clusters
were evaluated using an expert group. In the eval-
uation, participants were presented with a cluster
which had to be rated for its quality and corrected
by removing any words which do not belong to
a cluster. In this analysis, we focus on the ex-
perts’ cluster dataset which was roughly balanced
between non-concatenative (NC) and concatena-
tive (CON) clusters. There are 101 clusters in this
dataset, 25 of which were evaluated by all 3 ex-
perts, and the remaining by one of the experts. Ta-
ble 3 provides an overview of the 101 clusters in
terms of their size.

Immediately, it is possible to observe that
concatenative clusters tend to be larger in size
than non-concatenative clusters. This is mainly
due to the issue of stem variation in the non-
concatenative group, which gives rise to a lot of
false negatives. It is also worth noting that part of
the difficulty here is that the vowel patterns in the
non-concatenative process are unpredictable. For
example qsim ‘division’ is formed from qasam ‘to
divide’

√
QSM, whilst ksur ‘breakage’ is formed

from kiser ‘to break’
√

KSR. Words are con-
2Concatenative word formations would always involve a

recognisable stem, though in some cases they may undergo
minor variations as a result of allomorphy or allophomy.

Table 3: Comparison of non-concatenative and
concatenative clusters in expert group

Size NC CON
<10 53% (25) 26% (14)
10–19 23% (11) 37% (20)
20–29 13% (6) 15% (8)
30–39 2% (1) 9% (5)
>40 9% (4) 13% (7)
Total 47 53
Evaluated by all experts 13 13
Evaluated by one expert 34 40

structed around infixation of vowel melodies to
form a stem, before inflection adds affixes. In the
concatenative system there are some cases of al-
lomorphy, but there will, in general, be an entire
stem, or substring thereof, that is recognisable.

3.1 Words removed from clusters

As an indicator of the quality of a cluster, the
analysis looks at the number of words that ex-
perts removed from a cluster — indicating that
the word does not belong to a cluster. Table 4
gives the percentage of words removed from clus-
ters, divided according to whether the morpho-
logical system involved is concatenative or non-
concatenative. The percentage of clusters which
were left intact by the experts were higher for the
concatenative group (61%) when compared to the
non-concatenative group (45%). The gap closes
when considering the percentage of clusters which
had a third or more of their words removed (non-
concatenative at 25% and concatenative at 20%).
However, the concatenative group also had clus-
ters which had more than 80% of their words
removed. This indicates that, although in gen-
eral the clustering technique performs better for
the concatenative case, there are cases when bad
clusters are formed through the techniques used.
The reason is usually that stems with overlap-
ping substrings are mistakenly grouped together.
One such cluster was that for ittra ‘letter’, which
also got clustered with ittraduċi ‘translate’ and it-
tratat ‘treated’, clearly all morphologically unre-
lated words. However, these were clustered to-
gether because the system incorrectly identified it-
tra as a potential stem in all these words.
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Table 4: Number of words removed, split by con-
catenative and non-concatenative processes

By Percentage NC CON
0% 45% (33) 61% (49)
1–5% 1% (1) 1% (1)
5–10% 7% (5) 4% (3)
10–20% 5% (4) 11% (9)
20–30% 17% (12) 4% (3)
30–40% 8% (6) 4% (3)
40–60% 7% (5) 3% (2)
60–80% 10% (7) 9% (7)
over 80% 0% (0) 4% (3)

3.2 Quality ratings of clusters

Experts were asked to rate the quality of a cluster,
and although this is a rather subjective opinion, the
correlation between this judgement and the num-
ber of words removed was calculated using Pear-
son’s correlation coefficient. The trends are con-
sistent with the analysis in the previous subsec-
tion; table 5 provides the breakdown of the qual-
ity ratings for clusters split between the two pro-
cesses and the correlation of the quality to the per-
centage of words removed. The non-concatenative
clusters generally have lower quality ratings when
compared to the concatenative clusters. But both
groups have a strong correlation between the per-
centage of words removed and the quality rating,
clearly indicating that the perception of a cluster’s
quality is related to the percentage of words re-
moved.

Table 5: Quality ratings of clusters, correlated to
the percentage of words removed.

Quality NC CON
Very Good 17% (12) 28% (22)
Good 33% (24) 36% (29)
Medium 34% (25) 18% (15)
Bad 12% (9) 14% (11)
Very Bad 4% (3) 4% (3)
Correlation: 0.780 0.785

3.3 Hybridity in clustering

Clearly, there is a notable difference between
the clustering of words from concatenative and
non-concatenative morphological processes. Both
have their strengths and pitfalls, but neither of

the two processes excel or stand out over the
other. One of the problems with non-concatenative
clusters was that of size. The initial clusters
were formed on the basis of the stems, and due
to stem variation the non-concatenative clusters
were rather small. Although the merging pro-
cess catered for clusters to be put together and
form larger clusters, the process was limited to a
maximum of two merging operations. This might
not have been sufficient for the small-sized non-
concatenative clusters. In fact, only 10% of the
NC clusters contained 30 or more words when
compared to 22% of the concatenative clusters.
Limiting merging in this fashion may have re-
sulted in a few missed opportunities. This is be-
cause there’s likely to be a lot of derived forms
which are difficult to cluster initially due to stem
allomorphy (arising due to the fact that root-
based derivation involves infixation, and in Mal-
tese, vowel melodies are unpredictable). So there
are possibly many clusters, all related to the same
root.

The problem of size with concatenative clusters
was on the other side of the scale. Although the
majority of clusters were of average size, large
clusters tended to include many false positives. In
order to explore this problem further, one possibil-
ity would be to check whether there is a correlation
between the size of a cluster and the percentage of
words removed from it. It is possible that the un-
supervised technique does not perform well when
producing larger clusters, and if such a correlation
exists, it would be possible to set an empirically
determined threshold for cluster size.

Given the results achieved, it is realistic to state
that the unsupervised clustering technique could
be further improved using the evaluated clusters as
a development set to better determine the thresh-
olds in the metrics proposed above. This im-
provement would impact both concatenative and
non-concatenative clusters equally. In general, the
clustering technique does work slightly better for
the concatenative clusters, and this is surely due to
the clustering of words on the basis of their stems.
This is reflected by the result that 61% of the clus-
ters had no words removed compared to 45% of
the non-concatenative clusters. However, a larger
number of concatenative clusters had a large per-
centage of words removed. Indeed, if the qual-
ity ratings were considered as an indicator of how
the technique performs on the non-concatenative
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vs the concatenative clusters, the judgement would
be medium to good for the non-concatenative and
good for the concatenative clusters. Thus the per-
formance is sufficiently close in terms of qual-
ity of the two groups to suggest that a single un-
supervised technique can be applied to Maltese,
without differentiating between the morphological
sub-systems.

4 Classifying morphological properties

In our approach, morphological labelling is
viewed as a classification problem with each mor-
phological property seen as a feature which can be
classified. Thus, the analysis of a given word can
be seen as a sequence of classification problems,
each assigning a label to the word which reflects
one of its morphological properties. We refer to
such a sequence of classifiers as a ‘cascade’.

In this paper, we focus in particular on the
verb category, which is morphologically one of
the richest categories in Maltese. The main ques-
tion is to identify whether there is a difference in
the performance of the classification system when
applied to lexemes formed through concatenative
or non-concatenative processes. Our primary fo-
cus is on the classification of inflectional verb fea-
tures. While these are affixed to the stem, the prin-
cipal issue we are interested in is whether the co-
training of the classifier sequence on an undiffer-
entiated training set performs adequately on both
lexemes derived via a templatic system and lex-
emes which have a ‘whole’, continuous stem.

4.1 The classification system

The classification system was trained and initially
evaluated using part of the annotated data from
the lexical resource Ġabra. The training data
contained over 170,000 wordforms, and the test
data, which was completely unseen, contained
around 20,000 wordforms. A second dataset
was also used which was taken from the Maltese
national corpus (MLRS — Malta Language Re-
source Server3). This dataset consisted of 200
randomly selected words which were given mor-
phological labels by two experts. The words
were split half and half between Semitic (non-
concatenative) and Romance/English (concatena-
tive) origin. The verb category had 94 words, with
76 non-concatenative, and 18 concatenative. This
is referred to as the gold standard dataset.

3http://mlrs.research.um.edu.mt/

A series of classifiers were trained using an-
notated data from Ġabra, which contains detailed
morphological information relevant to each word.
These are person, number, gender, direct ob-
ject, indirect object, tense, aspect, mood and
polarity. In the case of tense/aspect and mood,
these were joined into one single feature, abbre-
viated to TAM since they are mutually exclusive.
These features are referred to as second-tier fea-
tures, representing the morphological properties
which the system must classify. The classification
also relies on a set of basic features which are au-
tomatically extracted from a given word. These
are stems, prefixes, suffixes and composite suf-
fixes, when available4, consonant-vowel patterns
and gemination.

A separate classifier was trained for each of the
second-tier features. In order to arrive at the ideal
sequence of classifiers, multiple sequences were
tested and the best sequence identified on the basis
of performance on held-out data (for more detail
see Borg (2016)). Once the optimal sequence was
established, the classification system used these
classifiers as a cascade, each producing the appro-
priate label for a particular morphological prop-
erty and passing on the information learnt to the
following classifier. The verb cascade consisted of
the optimal sequence of classifiers in the follow-
ing sequence: Polarity (Pol), Indirect Object (Ind),
Direct Object (Dir), Tense/Aspect/Mood (TAM),
Number (Num), Gender (Gen) and Person (Per).

The classifiers were trained using decision trees
through the WEKA data mining software (Hall et
al., 2009), available both through a graphical user
interface and as an open-source java library. Other
techniques, such as Random Forests, SVMs and
Naı̈ve Bayes, were also tested and produced very
similar results. The classifiers were built using the
training datasets. The first evaluation followed the
traditional evaluation principles of machine learn-
ing, using the test dataset which contained unseen
wordforms from Ġabra, amounting to just over
10% of the training data. This is referred to as
the traditional evaluation.

However, there are two main aspects in our sce-
nario that encouraged us to go beyond the tradi-
tional evaluation. First, Ġabra is made of auto-
matically generated wordforms, several of which

4Composite suffixes occur when more than one suffix is
concatenated to the stem, usually with enclitic object and in-
direct object pronouns, as in qatil-hu-li ‘he killed him for
me’.
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are never attested (though they are possible) in the
MLRS corpus. Second, the corpus contains several
other words which are not present in Ġabra, es-
pecially concatenative word formations. Thus, we
decided to carry out a gold standard (GS) evalu-
ation to test the performance of the classification
system on actual data from the MLRS corpus. The
evaluation in this paper is restricted to the verb cat-
egory.

4.2 Evaluation Results

We first compare the performance of the classi-
fication system on the test dataset collected from
Ġabra to the manually annotated gold standard
collated from the MLRS corpus. These results are
shown in fig. 1. The first three features in the cas-
cade — Polarity, Indirect Object and Direct Object
— perform best in both the traditional and gold
standard evaluations. In particular, the indirect ob-
ject has practically the same performance in both
evaluations. A closer look at the classification re-
sults of the words reveals that most words did not
have this morphological property, and therefore
no label was required. The classification system
correctly classified these words with a null value.
The polarity classifier on the other hand, was ex-
pected to perform better — in Maltese, negation
is indicated with the suffix -x at the end of the
word. The main problem here was that the clas-
sifier could apply the labels positive, negative or
null to a word, resulting in the use of the null label
more frequently than the two human experts.

The errors in the classification of the morpho-
logical property TAM were mainly found in the
labelling of the values perfective and imperative,
whilst the label imperfective performed slightly
better. Similarly, the number and gender classi-
fiers both had labels that performed better than
others. Overall, this could indicate that the data
representation for these particular labels is not ad-
equate to facilitate the modelling of a classifier.

As expected, the performance of the classifiers
on the gold standard is lower than that of a tra-
ditional evaluation setting. The test dataset used
in the traditional evaluation, although completely
unseen, was still from the same source as the train-
ing data (Ġabra) — the segmentation of words was
known, the distribution of instances in the differ-
ent classes (labels) was similar to that found in the
training data. While consistency in training and
test data sources clearly make for better results,

the outcomes also point to the possibility of over-
fitting, particularly as Ġabra contains a very high
proportion of Semitic, compared to concatenative,
stems. Thus, it is possible that the training data for
the classifiers did not cover the necessary breadth
for the verbs found in the MLRS corpus. To what
extent this is impacting the results of the classifiers
cannot be known unless the analysis separates the
two processes. For this reason, the analysis of the
verb category in the gold standard evaluation was
separated into two, and the performance of each
is compared to the overall gold standard perfor-
mance. This allows us to identify those morpho-
logical properties which will require more repre-
sentative datasets in order to improve their perfor-
mance. Figure 2 shows this comparison.

The first three classifiers — polarity, indirect
object and direct object — perform as expected,
meaning that the concatenative lexemes perform
worse than the non-concatenative. This confirms
the suspicion that the coverage of Ġabra is not suf-
ficiently representative of the morphological prop-
erties in the concatenative class of words. On the
other hand, the TAM and Person classifiers per-
form better on the concatenative words. However,
there is no specific distinction in the errors of these
two classifiers.

One overall possible reason for the discrep-
ancy in the performance between the traditional
and gold standard evaluation, and possibly also
between the concatenative and non-concatenative
words, is how the words are segmented. The test
data in the traditional evaluation setting was seg-
mented correctly, using the same technique ap-
plied for the training data. The segmentation for
the words in the MLRS corpus was performed au-
tomatically and heuristically, and the results were
not checked for their correctness, so the classifi-
cation system might have been given an incorrect
segmentation of a word. This would impact the re-
sults as the classifiers rely upon the identification
of prefixes and suffixes to label words.

5 Conclusions and Future Work

This paper analysed the results of the clustering
of morphologically related words and the mor-
phological labelling of words, with a particular
emphasis on identifying the difference in perfor-
mance of the techniques used on words of Semitic
origin (non-concatenative) and Romance/English
origin (concatenative).
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Figure 1: Comparison of the classification system using traditional evaluation settings and a gold stan-
dard evaluation.
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Figure 2: Comparison of the classifiers split between concatenative and non-concatenative words.

The datasets obtained from the clustering tech-
nique were split into concatenative and non-
concatenative sets, and evaluated in terms of their
quality and the number of words removed from
each cluster. Although generally, the cluster-
ing techniques performed best on the concatena-
tive set, scalability seemed to be an issue, with
the bigger clusters performing badly. The non-
concatenative set, on the other hand, had smaller
clusters but the quality ratings were generally
lower than those of the concatenative group. Over-
all, it seems that the techniques were geared more
towards the concatenative set, but performed at an
acceptable level for the non-concatenative set. Al-
though the analysis shows that it is difficult to find
a one-size-fits-all solution, the resulting clusters
could be used as a development set to optimise the
clustering process in future.

The research carried out in morphological la-
belling viewed it as a classification problem. Each
morphological property is seen as a machine learn-
ing feature, and each feature is modelled as a clas-
sifier and placed in a cascade so as to provide the
complete label to a given word. The research fo-
cussed on the verb category and two types of eval-
uations were carried out to test this classification
system. The first was a traditional evaluation us-
ing unseen data from the same source as the train-
ing set. A second evaluation used randomly se-
lected words from the MLRS corpus which were
manually annotated with their morphological la-
bels by two human experts. There is no complete
morphological analyser available for Maltese, so

this was treated as a gold standard. Since the clas-
sifiers were trained using data which is predomi-
nantly non-concatenative, the performance of the
classification system on the MLRS corpus was, as
expected, worse than the traditional evaluation.

In comparing the two evaluations, it was possi-
ble to assess which morphological properties were
not performing adequately. Moreover, the gold
standard dataset was split into two, denoting con-
catenative and non-concatenative words, to further
analyse whether a classification system that was
trained predominantly on non-concatenative data
could then be applied to concatenative data. The
results were mixed, according to the different mor-
phological properties, but overall, the evaluation
was useful to determine where more representa-
tive data is needed.

Although the accuracy of the morphological
classification system are not exceptionally high for
some of the morphological properties, the system
performs well overall, and the individual classi-
fiers can be retrained and improved as more rep-
resentative data becomes available. And although
the gold standard data is small in size, it allows
us to identify which properties require more data,
and of which type. One of the possible routes for-
ward is to extend the grammar used to generate the
wordforms in Ġabra and thus obtain more cover-
age for the concatenative process. However, it is
already clear from the analysis carried out that the
current approach is viable for both morphological
systems and can be well suited for a hybrid system
such as Maltese.

32



6 Acknowledgements

The authors acknowledge the insight and expertise
of Prof. Ray Fabri. The research work disclosed
in this publication is partially funded by the Malta
Government Scholarship Scheme grant.

References
Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2014. Semi-supervised learning of morphological
paradigms and lexicons. In Proceedings of the 14th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, Gothenburg,
Sweden 26–30 April 2014, pages 569–578.

Marco Baroni, Johannes Matiasek, and Harald Trost.
2002. Unsupervised discovery of morphologically
related words based on orthographic and semantic
similarity. In Proceedings of the ACL-02 workshop
on Morphological and phonological learning - Vol-
ume 6, MPL ’02, pages 48–57. Association for Com-
putational Linguistics.

Kenneth R. Beesley. 1996. Arabic finite-state mor-
phological analysis and generation. In Proceedings
of the 16th conference on Computational linguistics,
pages 89–94. Association for Computational Lin-
guistics.

Albert Borg and Marie Azzopardi-Alexander. 1997.
Maltese: Lingua Descriptive Grammar. Routledge,
London and New York.

Claudia Borg and Albert Gatt. 2014. Crowd-sourcing
evaluation of automatically acquired, morphologi-
cally related word groupings. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC’14).

Claudia Borg. 2016. Morphology in the Maltese lan-
guage: A computational perspective. Ph.D. thesis,
University of Malta.

Joseph M. Brincat. 2011. Maltese and other Lan-
guages. Midsea Books, Malta.

John J. Camilleri. 2013. A computational grammar
and lexicon for Maltese. Master’s thesis, Chalmers
University of Technology, Gothenburg, Sweden,
September.

Burcu Can and Suresh Manandhar. 2012. Probabilistic
hierarchical clustering of morphological paradigms.
In Proceedings of the 13th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 654–663. Association for Com-
putational Linguistics.

Alexander Clark. 2002. Memory-based learning of
morphology with stochastic transducers. In Pro-
ceedings of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
513–520.

Alexander Clark. 2007. Supervised and Unsuper-
vised Learning of Arabic Morphology. In Abdel-
hadi Soudi, Antal van den Bosch, Günter Neumann,
and Nancy Ide, editors, Arabic Computational Mor-
phology, volume 38 of Text, Speech and Language
Technology, pages 181–200. Springer Netherlands.

Mathias Creutz and Krista Lagus. 2005. Induc-
ing the morphological lexicon of a natural language
from unannotated text. In Proceedings of AKRR’05,
International and Interdisciplinary Conference on
Adaptive Knowledge Representation and Reasoning,
pages 106–113.

Mathias Creutz and Krista Lagus. 2007. Unsupervised
models for morpheme segmentation and morphol-
ogy learning. ACM Trans. Speech Lang. Process.,
4(1):1–34.

Sajib Dasgupta and Vincent Ng. 2007. High-
performance, language-independent morphological
segmentation. In NAACL HLT 2007: Proceedings
of the Main Conference, pages 155–163.

Anne N. de Roeck and Waleed Al-Fares. 2000. A mor-
phologically sensitive clustering algorithm for iden-
tifying Arabic roots. In Proceedings of the 38th An-
nual Meeting on Association for Computational Lin-
guistics, ACL ’00, pages 199–206. Association for
Computational Linguistics.

Vera Demberg. 2007. A language-independent unsu-
pervised model for morphological segmentation. In
Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 920–
927.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
Proceedings of the North American Chapter of the
Association for Computational Linguistics, pages
1185–1195.

Ray Fabri, Michael Gasser, Nizar Habash, George Ki-
raz, and Shuly Wintner. 2014. Linguistic introduc-
tion: The orthography, morphology and syntax of
semitic languages. In Natural Language Processing
of Semitic Languages, Theory and Applications of
Natural Language Processing, pages 3–41. Springer
Berlin Heidelberg.

Ray Fabri. 2010. Maltese. In Christian Delcourt and
Piet van Sterkenburg, editors, The Languages of the
New EU Member States, volume 88, pages 791–816.
Revue Belge de Philologie et d’Histoire.

Alex Farrugia. 2008. A computational analysis of the
Maltese broken plural. Bachelor’s Thesis, Univer-
sity of Malta.

M. L. Forcada, M. Ginestı́-Rosell, J. Nordfalk,
J. O’Regan, S. Ortiz-Rojas, J. A. Pérez-Ortiz,
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Abstract

We present CALIMAGLF, a Gulf Arabic mor-
phological analyzer currently covering over 2,600
verbal lemmas. We describe in detail the pro-
cess of building the analyzer starting from pho-
netic dictionary entries to fully inflected ortho-
graphic paradigms and associated lexicon and or-
thographic variants. We evaluate the coverage
of CALIMAGLF against Modern Standard Arabic
and Egyptian Arabic analyzers on part of a Gulf
Arabic novel. CALIMAGLF verb analysis token
recall for identifying correct POS tag outperforms
both the Modern Standard Arabic and Egyptian
Arabic analyzers by over 27.4% and 16.9% abso-
lute, respectively.

1 Introduction

Until recently, Dialectal Arabic (DA) was mainly
spoken with little to no publicly available written
content. Modern Standard Arabic (MSA) on the
other hand is the official language in more than
20 countries, where most written documents from
news articles, to educational materials and enter-
tainment magazines, are written in MSA. Hence,
most of the tools that are available for Natural
Language Processing (NLP) tasks are focused on
MSA. With the introduction of social media plat-
forms online, dialectal written content is being
produced abundantly. Using existing tools that
were developed for MSA on DA proved to have
limited performance (Habash and Rambow, 2006;
Khalifa et al., 2016). Having resources specific
to DA, such as morphological lexicons is impor-
tant for Arabic NLP tasks, such as part-of-speech
(POS) tagging and morphological disambiguation.
Recently, dialects such as Egyptian (EGY) and
Levantine (LEV) Arabic have been receiving in-
creasing attention. Morphological analyzers for

EGY and LEV proved to perform well when used
for morphological tagging (Eskander et al., 2016).
To our knowledge, there exist no full morpho-
logical analyzers for Gulf Arabic (GLF) that pro-
duce segmentation, POS analysis and lemmas. Al-
though we note the work of Abuata and Al-Omari
(2015) on developing a Gulf Arabic stemmer. In
this paper, we present CALIMAGLF,1 a morpho-
logical analyzer for GLF. In the current work, we
present the effort focusing on GLF verbs only. We
utilize a combination of computational techniques
in addition to explicit linguistic knowledge to cre-
ate this resource. We also evaluate it against wide
coverage tools for MSA and EGY. CALIMAGLF
verb analysis token recall in terms of identifying
correct POS tagging outperforms on both MSA
and EGY by over 27.4% and 16.9% absolute, re-
spectively. CALIMAGLF will be made publicly
available to researchers working on Arabic and
Arabic dialect NLP.2

The rest of this paper is organized as follows.
In Section 2 we review related literature, then we
briefly describe the main characteristics of GLF in
Section 3. In Section 4 we describe the approach
and the resources involved and evaluate in Sec-
tion 5. We conclude and discuss future work in
Section 6.

2 Related Work

2.1 Arabic Morphological Modeling

Much work has been done on Arabic morpholog-
ical modeling, covering a wide range of different
system designs. Earlier systems such as BAMA,
SAMA and MAGEAD (Buckwalter, 2004; Graff

1In Arabic �éÒÊ¿ kalimah̄ means ‘Word’. We follow the
naming convention from (Habash et al., 2012a) who devel-
oped CALIMAEGY since we are using the same format and
analysis engine for the databases we create.

2CALIMAGLF can be obtained from
http://camel.abudhabi.nyu.edu/resources/.
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et al., 2009; Habash and Rambow, 2006) were en-
tirely manually designed. Similarly, Habash et al.
(2012a) developed CALIMA, a morphological an-
alyzer for Egyptian Arabic (hence CALIMAEGY).
CALIMAEGY was developed based on a lexicon
of morphologically annotated data using several
methods and then manually verified. Further-
more, Salloum and Habash (2011) extended ex-
isting SAMA and CALIMAEGY resources using
hand crafted rules which extended affixes and cli-
tics based on matching on existing ones. Recently,
Eskander et al. (2013) developed a technique that
generates a morphological analyzer based on an
annotated corpus. They describe a technique in
which they define inflectional classes for lexemes
that represents morphosyntactic features in addi-
tion to inflected stems. They automatically ‘com-
plete’ these classes in a process called paradigm
completion. They also show that using manually
annotated iconic inflectional classes helps in the
overall performance. Using the aforementioned
paradigm completion technique, a Moroccan Ara-
bic and a Sanaani Yemeni Arabic morphological
analyzers were created (Al-Shargi et al., 2016).
And very recently Eskander et al. (2016) presented
a single pipeline to produce a morphological ana-
lyzer and tagger from a single annotation of a cor-
pus; they produced resources for EGY and LEV.
Other works that involve DA morphological mod-
eling include the work of Abuata and Al-Omari
(2015). Who developed a rule-based system to
segment affixes and clitics in GLF text. They com-
pare their results to other well known MSA stem-
mers.

In this paper, we create morphological
paradigms similar to the iconic inflectional
classes discussed by Eskander et al. (2013). Our
paradigms map from morphological features to
fully inflected orthographic forms. The paradigms
abstract over templatic roots; and lexical entries
are specified in a lexicon as root-paradigm pairs,
in a manner similar to the work of Habash and
Rambow (2006). We convert the paradigms to
the database representation used in MADAMIRA
(Pasha et al., 2014) and CALIMAEGY (Habash et
al., 2012a).

2.2 Dialectal Orthography

Due to the lack of standardized orthography guide-
lines for DA, and given the major differences from
MSA, dialects are usually written in ways that re-

flects the words’ pronunciation or etymological re-
lation to MSA cognates (Habash et al., 2012b),
and even then with a lot of inconsistency. Fur-
thermore, as with MSA, Arabic orthography ig-
nores the spelling of short vowel diacritics, thus
increasing the ambiguity of the written forms. As
a result, it is rather challenging to computationally
process raw DA text directly from the source, or
even agree on a common normalization. Habash
et al. (2012b) proposed a Conventional Orthogra-
phy for Dialectal Arabic (CODA) as part of a so-
lution allowing different researchers to agree on a
set of DA orthographic conventions for computa-
tional purposes. CODA was first defined for EGY,
but has been extended to Palestinian, Tunisian, Al-
gerian, Maghrebi and Gulf Arabic (Jarrar et al.,
2014; Zribi et al., 2014; Saadane and Habash,
2015; Turki et al., 2016; Khalifa et al., 2016). We
follow the conventions defined by Khalifa et al.
(2016) for CODA GLF.

2.3 Dialectal Arabic Resources

In addition to the above mentioned morphological
analyzers, there exist other resources such as dic-
tionaries and corpora for both DA and MSA. For
annotated MSA corpora, several developed such
as (Maamouri and Cieri, 2002; Maamouri et al.,
2004; Smrž and Hajič, 2006; Habash and Roth,
2009; Zaghouani et al., 2014).

Many efforts targeted DA, notably, EGY
(Gadalla et al., 1997; Kilany et al., 2002; Al-
Sabbagh and Girju, 2012; Maamouri et al., 2012b;
Maamouri et al., 2012a; Maamouri et al., 2014).
As for LEV, there exist morphologically annotated
corpora and a treebank (Jarrar et al., 2014; Jarrar
et al., 2016; Maamouri et al., 2006). Newly de-
veloped corpora for other dialects include (Mas-
moudi et al., 2014; Smaı̈li et al., 2014; Al-Shargi
et al., 2016; Khalifa et al., 2016) for Tunisian,
Algerian, Moroccan, Yemeni and Gulf Arabic re-
spectively. Other notable efforts targeted multi-
ple dialects such as the COLABA project, and the
Tharwa dictionary (Diab et al., 2010; Diab et al.,
2014). Parallel dialectal corpora by Bouamor et
al. (2014) and Meftouh et al. (2015), in addition to
the highly dialectal online commentary corpus by
Zaidan and Callison-Burch (2011).

Specifically for GLF, we use the Qafisheh Gulf
Arabic Dictionary (Qafisheh, 1997) as well as the
Gumar Corpus (Khalifa et al., 2016) in developing
our analyzer.
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3 Gulf Arabic

3.1 Background

From a linguistic point of view, Gulf Arabic refers
to the linguistic varieties spoken on the western
coast of the Arabian Gulf, that is Bahrain, Qatar,
and the seven Emirates of the United Arab Emi-
rates, as well as in Kuwait and the eastern region of
Saudi Arabia (Holes, 1990; Qafisheh, 1977). We
extend the use of the term ‘Gulf Arabic’ (GLF) to
include any Arabic variety spoken by the indige-
nous populations residing the six countries of the
Gulf Cooperation Council. In this paper, we focus
specifically on Emirati Arabic.

3.2 Orthography

Similar to other dialects, GLF has no standard or-
thography (Habash et al., 2012b). As such, words
may be written in a manner reflecting their pro-
nunciation or their etymological relationship to
MSA cognates. For example the word for ‘dawn’
/al-fayr/ may be written as Q�
 	®Ë @ Alfyr3(reflecting
pronunciation) or as Qj. 	®Ë @ Alfjr (reflecting its
MSA cognate). In this work we follow the same
CODA standards for GLF that were introduced
by the authors in (Khalifa et al., 2016) extend-
ing the original CODA in (Habash et al., 2012b).
We use CODA in developing the morphological
databases; but we also add support for non-CODA
variants and evaluate on raw non-CODA input.
Another challenge caused by Arabic orthography
in general (for MSA and other dialects including
GLF) is that Arabic orthography does not require
writing short vowel diacritics, which adds a lot of
ambiguity.

3.3 Morphology

GLF shares many of the same morphological com-
plexities of MSA and other Arabic dialects. Ara-
bic rich morphology is represented templatically
and affixationally with a number of attachable cl-
itics. This representation in addition to the fact
that short vowel diacritics are usually dropped in
text add to the text’s ambiguity. In comparison to
MSA, EGY and LEV, GLF shares and differs in
several aspects:

• Like MSA, but unlike EGY and LEV, GLF
has no negation enclitic marker, namely the

3All Arabic transliterations are provided in the Habash-
Soudi-Buckwalter transliteration scheme (Habash et al.,
2007).

�� iš ‘[negation]’ ending such as ����Ê�̄ AÓ mA
qultiš in EGY and LEV as opposed to �IÊ�̄ AÓ
mA qilt in GLF ‘I did not say’.

• Unlike MSA, but like EGY and LEV, GLF
has an indirect object enclitic which is written
separately in CODA (but not necessarily in
raw form), e.g., ½Ê�JÊ�̄ qultlik (CODA ½Ë �IÊ�̄
qult lik) in LEV and i. Ê�JÊ�̄ qiltlij (CODA

l .Ì �IÊ�̄ qilt lij) in GLF ‘I told you[FS]’.

• GLF has different imperfect verb subject
suffixes for second and third person plural
and second person feminine singular from
EGY and LEV, e.g. @ñËñ�®�K tquwlwA in EGY
and LEV and 	àñËñ�®�K tquwluwn in GLF for
‘you[P] say’; and ú
Íñ�®�K tquwliy in EGY

and LEV and 	á�
Ëñ�®�K tquwliyn in GLF for
‘you[FS] say’. It is interesting to note that
both forms exist in MSA where they indicate
different moods.

• GLF shares with EGY and LEV the absence
of the dual forms of the verb and imperfective
moods, both of which are present in MSA.

• Unlike MSA, GLF shares with EGY and
LEV the ambiguous forms of second mascu-
line singular and first person perfective verbs,
e.g., �I�. �J» katabt ‘I wrote or you wrote’ in
EGY, GLF and LEV; while MSA has katabtu
‘I wrote’ and katabta ‘you wrote’.

• GLF has different second person singular di-
rect object enclitics from EGY, LEV and
MSA. The second masculine singular form in
GLF ¼ ik, sounds like the second feminine
singular form in EGY and LEV, and is dif-
fernt from MSA’s ¼ ka; and the second femi-
nine singular form in GLF h. ij (pronounced
/itš/), is altogether different. For example,
LEV ½�J 	® �� šuftik maps to GLF i. �J 	® �� šiftij ‘I
saw you[FS]’.

• The future verbal particle in GLF is H. b
which is different from the MSA equivalent
(� sa), and can be easily confused with the
present progressive particle H. b in both EGY
and LEV in. GLF does not have a progressive
particle.
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4 Building CALIMAGLF

4.1 General Approach

Our goal is to build a morphological analysis
and generation model for GLF. We focus on verb
forms in this paper, but plan to extend the work
to other POS in the future. We employ two
databases that capture the full morphological in-
flection space from lemmas and morphological
features to fully inflected surface forms and in re-
verse. The two databases are (1) a collection of
root-abstracted paradigms which map from fea-
tures to root-abstracted stems, prefixes and suf-
fixes; and (2) a lexicon specifying verbal entries
in terms of roots and paradigm IDs. These two
structures together define for any verb all the pos-
sible analyses allowed within GLF morphology.
The two databases are then merged to create a full
model. The merging can be done as a finite state
machine. However, the implementation we chose
is a variant based on the BAMA/SAMA databases
following the representation used in MADAMIRA
(Pasha et al., 2014) and CALIMAEGY (Habash et
al., 2012a).

Next we discuss step by step the process we
took to build CALIMAGLF, starting with a pho-
netic dictionary all the way to building a fully
functional morphological analyzer that even mod-
els non-CODA spelling variants.

4.2 The Qafisheh Gulf Arabic Verb Lexicon

Our starting point is the Qafisheh Gulf Arabic
Verb Lexicon (QGAVL), which is a portion of the
Qafisheh (1997) dictionary. Each entry in the lex-
icon includes a root, perfective and imperfective
verb inflections, Verb Form (as in form II or VII)
and English gloss. See Table 1 for some exam-
ple entries. The Arabic entries are in a phonetic
representation and not in Arabic script. The verb
forms are only in third person masculine singular
inflection (PV3MS and IV3MS, for perfective and
imperfective aspect, respectively); and no clitics
are attached. In total, there are 2,648 verb entries.

4.3 Orthographic Mapping

The first step we took was to create the ortho-
graphic spelling of all the verb entries. This in-
cluded mapping to the appropriate vowel spelling
as well as following the CODA spelling rules for
stem consonants and morphemes. This step was

first done automatically and then checked manu-
ally for every entry. See Table 2 for an example
of the result of mapping the entries in Table 1.
We mapped the roots in two ways, one following
CODA and one reflecting a phonological spelling.
This information will be used later to make the an-
alyzer robust to non-CODA spellings.

4.4 PV-IV Pattern Extraction

Next, we identified for each verb its orthographic
inflected templatic pattern, i.e., the pattern that
would directly produce the surface form once the
root radicals are inserted. This approach to pat-
tern definition is most like the work of Eskander
et al. (2013) in it being a one shot application
of root-template merging to generate surface or-
thography. The approach differs from the work
of Habash and Rambow (2006), who use a large
number of rewrite rules for phonology, morphol-
ogy and orthography after inserting the roots into
the templates.

The pattern extraction was done automatically
and then manually checked. It was only done to
the forms available in the lexicon so far (PV3MS
and IV3MS). The PV-IV Pattern (perfective-
imperfective pattern) uses digits (e.g., 1,2,3,4,5)
to represent root radicals. In this pattern, all vow-
els and glottal stop (Hamza) forms are explicitly
spelled because they tend to vary within single
paradigms. For example, the first entry in Table 5
specifies the PV-IV Pattern 1A3-y1uw3, which
when merged with the root radicals qwl gener-
ates the perfective and imperfective forms qAl and
yquwl.

4.5 Basic Paradigm Construction

We identified 72 unique PV-IV patterns in the
lexicon, which represent 72 different paradigms.
Arabic Verb Forms (I, II, III, etc.) are too gen-
eral to capture the different variations within the
paradigms. That is due to the different root classes
(i.e. hamzated, hollow, defective, geminate and
sound); and other root-pattern interactions, such
as the different forms of Form VIII (Éª�J 	̄ @/H. Q���̄ @,
É«Y 	̄ @/QëX 	P@, Éª¢ 	̄ @/H. Q¢ 	�@, etc.). All of these
phenomena can be handled with orthographic,
phonological and morphological rules as was done
by Habash and Rambow (2006). However, here
we embedded the result of such rule application in
the paradigm directly. See Table 3 for counts of
PV-IV patterns per Verb Form.
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Root Perfective 3MS Imperfective 3MS Form English Gloss
gwl gaal yguul I to say, tell
syr saar ysiir I to leave, go
t.rš t.arraš yt.arriš II to send, forward s.th.

Table 1: Example of a Qafisheh Gulf Arabic Verb Lexicon Entry.

Phono Root CODA Root PV3MS IV3MS Form English Gloss
ÈñÃ Gwl Èñ�̄ qwl ÈA�̄ qAl Èñ�®K
 yquwl I to say, tell
Q�
� syr Q�
� syr PA� sAr Q�
��
 ysiyr I to leave, go
��Q£ Trš ��Q£ Trš ���Q£ Tar∼aš ���Q¢�
 yTar∼iš II to send, forward s.th.

Table 2: Orthographic mapping of the entries in Qafisheh Gulf Arabic Verb Lexicon. The Root is ortho-
graphically spelled in two ways reflecting phonology and etymology (CODA style); PV3MS and IV3MS
refer to the perfective and imperfective third masculine singular verb forms.

Verb Form ( 	à 	P �ð) BP Count

I (É �ª�	̄ ) 21

II (É ��ª�	̄ ) 6

III (É �«A�	̄ ) 3

IV (É �ª 	̄ �@) 3

V (É ��ª �	®�K) 5

VI (É �«A �	®�K) 6

VII (É �ª �	® 	K @�) 4

VIII (É �ª��J 	̄ @�) 10

IX (É
�
Ê �ª 	̄ @�) 1

X (É �ª 	®��J�@�) 7

Q (É
�
Êª�	̄ ) 3

Qt (É
�
Êª �	®�K) 3

Table 3: Basic Paradigm counts for every Verb
Form Class ( 	à 	Pð wazn).

We use the PV-IV patterns as keys (indices)
for the paradigms. We then proceed to build a
database of Basic Paradigms (BP). A BP is de-
fined as the complete set of possible morpholog-
ical features (except for clitic features) along with
the corresponding stem. The features included are
Aspect (perfective PV, imperfective IV, command
CV), Person (1, 2, 3), Gender (masculine M, fem-
inine F, unspecified U), and Number (singular S,
plural P). The total number of allowable feature
combinations is 19. The BP is defined in a similar
fashion to the iconic inflectional classes that was
defined by Eskander et al. (2013). Each form of
the BP is divided into prefix, stem template, and
suffix. See Table 4 for examples of two BPs.

4.6 Affixational Orthographic Rules

While we covered most of the orthographic,
phonological and morphological rules by embed-
ding them in the BPs, there are still a small number
of additional orthographic rules that apply to spe-
cific stem-suffix combinations. Specifically, suf-
fixes beginning with �H t and 	à n that attach to
stems ending with the same letter are modified as
a result of the orthographic gemination rule ( �è �Y ���Ë@
Shadda). For example the verb �H+ �Im� 	' naHat+t
‘I sculpted’ should be written as

��Im� 	' naHat∼;

and the verb A 	K+ 	áÖÞ 	� Daman+nA ‘we guaranteed’

should be written as A�	JÖÞ 	� Daman∼A. We auto-
matically identified all root-paradigm pairs that
cause the above rules to apply, and we created new
paradigms from them. For example, the root �Im� 	'
nHt is linked with the paradigm 1a2a3-yi12a3-t
and the root 	áÖÞ 	� Dmn is linked with the paradigm
1a2a3-yi12a3-n. This resulted in 32 additional
paradigms, bringing the total to 104 paradigms.

4.7 Lexicon Construction

From the set of PV-IV patterns, which we used as
paradigm keys, and the lexical entries converted
from QGAVL, we constructed our lexicon auto-
matically and then manually validated all the en-
tries. The lexicon consists of 2,648 entries that are
linked to the paradigms. See Table 5 for examples
of the lexical entries in previous tables. Each en-
try specifies the root (in phonological spelling and
CODA) as well as the paradigm key and gloss.
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Paradigm 1A3-y1uw3 Paradigm 1a2∼a3-y1a2∼i3
Morph.Feat. Prefix Stem Suffix Example Prefix Stem Suffix Example

PV1US 1i3 t �IÊ�̄ 1a2∼a3 t �I ���Q£
PV1UP 1i3 nA A 	JÊ�̄ 1a2∼a3 nA A 	J ���Q£
PV2MS 1i3 t �IÊ�̄ 1a2∼a3 t �I ���Q£
PV2FS 1i3 tiy ú


�æÊ�̄ 1a2∼a3 tiy ú

�æ ���Q£

PV2UP 1i3 tawA @ñ�JÊ�̄ 1a2∼a3 tawA @ñ�J ���Q£
PV3MS 1A3 ÈA�̄ 1a2∼a3 ���Q£
PV3FS 1A3 at �IËA�̄ 1a2∼a3 at �I ���Q£
PV3UP 1A3 awA @ñËA�̄ 1a2∼a3 awA @ñ ���Q£
IV1US Aa 1uw3 Èñ�̄ @ Aa 1a2∼i3 ���Q£@
IV1UP n 1uw3 Èñ�® 	K n 1a2∼i3 ���Q¢	�
IV2MS t 1uw3 Èñ�®�K t 1a2∼i3 ���Q¢��
IV3MS y 1uw3 Èñ�®K
 y 1a2∼i3 ���Q¢�

IV3FS t 1uw3 Èñ�®�K t 1a2∼i3 ���Q¢��
IV2FS t 1uw3 iyn 	á�
Ëñ�®�K t 1a2∼3 iyn 	á�
 ���Q¢��
IV2UP t 1uw3 uwn 	àñËñ�®�K t 1a2∼3 uwn 	àñ ���Q¢��
IV3UP y 1uw3 uwn 	àñËñ�®K
 y 1a2∼3 uwn 	àñ ���Q¢�


CV2MS 1uw3 Èñ�̄ 1a2∼i3 ���Q£
CV2FS 1uw3 iy ú
Íñ�̄ 1a2∼3 iy ú
æ

�� �Q£
CV2UP 1uw3 awA @ñËñ�̄ 1a2∼3 awA @ñ ���Q£

Table 4: Example of BP for a paradigm of Form I and another of Form II for the roots Èñ�̄ qwl and ��Q£
Trš respectively. The verb ÈA�̄ qAl means ‘he said’ and the verb ���Q£ Tar∼aš means ‘he sent’.

Phono Root CODA Root PV3MS IV3MS Paradigm Key Form English Gloss
ÈñÃ Gwl Èñ�̄ qwl ÈA�̄ qAl Èñ�®K
 yquwl 1A3-y1uw3 I to say, tell
Q�
� syr Q�
� syr PA� sAr Q�
��
 ysiyr 1A3-y1iy3 I to leave, go
��Q£ Trš ��Q£ Trš ���Q£ Tar∼aš ���Q¢�
 yTar∼iš 1a2∼a3-y1a2∼i3 II to send, forward s.th.

Table 5: Example of lexicon entries. For each entry there is: (a) a phonological root, which will be used
to model possible non-CODA variations, (b) a CODA root, (c) two verbal forms (PV3MS and IV3MS),
(d) the paradigm key, (e) Verb Form, and (f) English gloss.

4.8 Clitic Extension of the Basic Paradigms

At this point, we have a complete inflectional
model of GLF verbs except that they do not in-
clude any of the numerous clitics written attached
in Arabic. We define a set of rules for extending
the paradigms to include the clitics. Our exten-
sions include two types of resources.

Clitic Locations and Forms First is the list of
clitics with their morpheme POS (a la Buckwalter
tag) and their relative location around the basic
inflected verb, and any conditions for their appli-
cation. For example, the future particle proclitic
H. b appears immediately before the basic verb
form, but can only occur with imperfective verbs;
the conjunction proclitics ð wi ‘and’ and

	¬ fa

‘so’ can appear as the first clitics in any series of
clitics; and so on. All possible clitic combinations
are then applied to each form in the paradigm
along with the necessary spelling changes. The
negative proclitic AÓ mA and the indirect pronom-
inal enclitics introduced with the preposition È
are introduced as attached at this point (which is
non-CODA compliant). With this information,
we are able to model the verb ÑêËAîD.�JºJ
K. AÓð
w+mA+b+y-ktb+hA+l+hm ‘and+not+will+he-
write+it+for+them’ (the bolded substring is the
only element from the BP).

We extended the paradigms with a total of 25
clitics, including five proclitics which are ð wi
‘and’,

	¬ fa ‘so’, the future particle H. b ‘will’
and the two negation particles AÓ mA and B lA.
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For the enclitics, we extended with all possible
10 direct object enclitics which are: ú


	G ny ‘me’,

A 	K nA ‘us’ , h. ij ‘you[FS]’, ¼ ik ‘you[MS]’ , Aë hA

‘she’ ,Ñë hum ‘them’, 	áë hun ‘them[FP]’, Õ» kum

‘you[P]’, 	á» kun ‘you[FP]’ and their respective 10
indirect objects enclitics by adding the preposition
È li ‘for’. With all of the additional clitics and
their features, the total number of allowable fea-
ture combinations (or rows in the paradigms) in-
creases from 19 to 24,321 per paradigm.

Clitic Rewrite Rules We apply a number of
clitic rewrite rules which are mandated by CODA
spelling conventions. One example is the change
of the stem Alif Maqsura to Alif when it is not
word final. For example the basic verb Aë+øQ�� ��@
Aštrý+hA ‘he bought + it’ is rewritten as Aë@Q�� ��@
AštrAhA (ø ý → @ A). Another example is the
drop of the Alif of the plural suffix pronouns @ð wA
when it is not word final. For example, Aë+ @ðQ�� ��@
AštrwA+hA ‘they boaught + it’ is rewritten as
AëðQ�� ��@ AštrwhA ( @ð wA→ ð w).

4.9 Database Generation

To generate the database, we used the same
toolkit used in (Al-Shargi et al., 2016; Eskan-
der et al., 2016) which generates a morpho-
logical analyzer database in the representation
used in MADAMIRA (Pasha et al., 2014) and
CALIMAEGY (Habash et al., 2012a). The conver-
sion was straightforward once we converted our
paradigm and lexicon database to the forms ex-
pected by the database generation tool. This con-
version included providing a POS tag for every
prefix, stem and suffix. We use the Buckwalter
POS tag style used by many other databases for
Arabic morphology (Graff et al., 2009; Habash et
al., 2012a).

4.10 Extending to Non-CODA Variants

The generated database at this point expects only
CODA input, which is not realistic for dealing
with raw dialectal text. We extended the database
for the set of complex prefixes (pronoun prefixes
and proclitics), complex suffixes (pronoun suffixes
and enclitics) and stems. For the complex affixes
we used the same extensions used in (Habash et
al., 2012a) as we don’t have enough annotated
data to learn from. As for the stems, we in-
flected the phonological roots that correspond to

the CODA roots in the lexicon to their respective
stems, which are mapped to the CODA stems in
the database. With these extensions we will be
able to correctly model a non-CODA input like
ñK. AK
 yAbw ‘they brought’ as correct CODA form
@ñK. Ag. jAbwA.

5 Evaluation

5.1 Experimental Setup
Dataset We used a part of an Emirati novel in
raw text from the Gumar corpus. We contextu-
ally annotated all the verbs appearing in first 4,000
words of the novel – a total of 620 verbs. The an-
notation includes identifying the CODA spelling,
full Buckwalter tag and the morphemic segmenta-
tion. Table 6 shows an annotation example of one
sentence from the data.

In this work we only use one dataset for the
evaluation as we didn’t use any feedback from the
evaluation in the current state of work, i.e., this
was a blind test.

Metrics We report token recall on verbs only.
We report in terms of CODA spelling, segmen-
tation and POS. We report in two modes of in-
put: raw input and CODA compliant input of the
same text. Token recall counts the percentage of
the time one of the analyses returned by the mor-
phological analyzer given a particular input word
matches the gold analysis of the input word in
the aspect evaluated (e.g., CODA, segmentation or
POS). This is similar to the evaluation carried by
Habash and Rambow (2006).

Systems We used six different analyzers for our
experiments.

• SAMA analyzer for MSA (Graff et al., 2009).

• CALIMAEGY for EGY, which includes MSA
(Habash et al., 2012a).

• CALIMAGLF for GLF.

• CALIMAGLF-CODA is CALIMAGLF without
the extensions discussed in 4.10.

• CALIMAGLF extended with SAMA.

• CALIMAGLF extended with CALIMAEGY.

5.2 Results
SAMA performs the least amongst all systems
in all aspects which is consistent with results re-
ported by Habash and Rambow (2006) and Khal-
ifa et al. (2016). CALIMAEGY performs much
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Original Gulf Arabic
[[ 	Y 	gA�K]] [[ �HPA�]] I.

�®«ð ,, éJ
Ê« é ��A 	K ú
×A¢ 	̄ [[ �I	KA¿]] Q�
 	®Ë @ 	à@ 	X @ �Hñ� úÎ« :: ��
Ò	mÌ'@ ÐñK
 ::
[[AêË @Q�®�K]] ð [[ú
Î���@]] [[ �HPA�]] I.

�®« ð AëñK. @ �HQÓ ð AëñK. @ [[ �I«ð]] ð PðA ��
�I�
J. Ë @ [[ �I	J 	kX]] ð ��ñK
QË@ [[ �HQå	�k]] [[ �I�Ê 	g]] ÐñK
ð ,, éK


�
@ 	áÒ»

,, èQK. A� éJ
ëð ,, éËAmÌ'Aë úÎ« ÐñK
 É¿ ,, [[ é�J 	® 	¢ 	�]] ð [[ é�JËY«]] ð
English literal translation
Thursday, upon the call for the dawn prayer, Fattami [[was]] awakened; then she [[went]] and [[took]]
a shower and [[woke]] her father and step mother up; and then she [[went]] to [[pray]] and [[read]]
few verses; and when she [[finished]], she [[prepared]] breakfast and [[scented]] the house with incense
and [[fixed]] it and [[cleaned]] it; every day is the same and she is always patient.
Raw CODA Segmentation Full POS tag English Gloss
�I	KA¿ kAnt �I	KA¿ kAnt kAn+t PV+PVSUFF SUBJ:3FS she was
�HPA� sArt �HPA� sArt sAr+t PV+PVSUFF SUBJ:3FS she went	Y 	gA�K tAx*

	Y 	gA�K tAx* t+Ax* IV3FS+IV to take [3FS]
�I«ð wEt �I«ð wEt wE+t PV+PVSUFF SUBJ:3FS she woke someone up
�HPA� sArt �HPA� sArt sAr+t PV+PVSUFF SUBJ:3FS she went

ú
Î���@ AtSly ú
Î��� tSly t+Sly IV3FS+IV to pray [3FS]

AêË @Q�®�K tqrAlhA AêË @Q�®�K tqrAl hA t+qrA+l+hA IV3FS+IV+PREP+PRON 3FS to read for herself
�I�Ê 	g xlSt �I�Ê 	g xlSt xlS+t PV+PVSUFF SUBJ:3FS she finished
�HQå	�k HDrt �HQå	�k HDrt HDr+t PV+PVSUFF SUBJ:3FS she prepared
�I	J 	kX dxnt �I	J 	kX dxnt dxn+t PV+PVSUFF SUBJ:3FS she scented
é�JËY« Edlth é�JËY« Edlth Edl+t+h PV+PVSUFF SUBJ:3FS+PVSUFF DO:3MS she fixed it
é�J 	® 	¢ 	� nZfth é�J 	® 	¢ 	� nZfth nZf+t+h PV+PVSUFF SUBJ:3FS+PVSUFF DO:3MS she cleaned it

Table 6: Annotation example. In this sentence, there are total of 12 verbs marked with [[ ]]. For each
verb we provide the CODA spelling, morphemic segmentation and the full Buckwalter POS tag.

better than SAMA which is also consistent with
previous results (Khalifa et al., 2016; Jarrar et
al., 2014). CALIMAGLF outperforms both SAMA
and CALIMAEGY on all measured conditions.
The merged forms of CALIMAGLF (with SAMA
and CALIMAEGY) outperform CALIMAGLF. The
best system we have is the result of merging
CALIMAGLF and CALIMAEGY, which effectively
includes GLF, EGY and MSA. The evaluation
of CALIMAGLF-CODA highlights the added value
of our non-CODA modeling, which contributed
to over 11% absolute increase in recall (from
CALIMAGLF-CODA to CALIMAGLF) for raw input
on all evaluated conditions.

5.3 Error Analysis

We conducted an error analysis on the analyzed
verbs for CALIMAGLF. We identified three main
sources of errors. First are typos in the raw
text which lead to no possible analysis. Ex-
amples include �ÊK. @ Abls instead of ��. Ë@ Albs
‘I wear’ and ðñÊ 	gX@ Adxlww instead of @ñÊ 	gX@
AdxlwA ‘come in’. These kinds of errors are
around 19%. Second are non-CODA-compliant
input words that lead to different segmentations

and POS, e.g., the word ú
Î���@ AtSly (CODA

ú
Î��� t+Sly ‘she prays’) is analyzed as AtSl+y

‘call! [FS]’. These make up around 18% of
errors. Third are the out-of-vocabulary (OOV)
cases, which for us include words with lemmas
not in our lexicon, or words with affixes not
modeled in our paradigms. For example, we
encountered some EGY-like verbal constructions
that we did not expect to see in GLF: ú
ÎJ
Ëñ�®�K
tqwlyly ‘you[FS] tell me’ instead of ú
Î

	JJ
Ëñ�®�K tqw-

lynly, ú
Íð 	Y 	gA�K ‘you [P] take for me’ instead of

ú
Î
	Kð 	Y 	gA�K tAx*wnly. These cases are about 63%

of the errors. When we compare the performance
of our best system (CALIMAGLF+CALIMAEGY)
to CALIMAGLF, we note that the errors of the first
two types do not change, but there is a drop of 13%
absolute in the OOV error cases.

6 Conclusion and Future Work

We presented CALIMAGLF, a morphological ana-
lyzer for GLF currently covering over 2,600 verbal
lemmas. CALIMAGLF verb analysis token recall
with CODA input outperforms both SAMA and
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Raw Input CODA Input
Analyzer CODA Segmentation BW POS tag Segmentation BW POS tag

CALIMAGLF + CALIMAEGY 90.7 85.5 87.3 92.7 92.3
CALIMAGLF + SAMA 89.7 83.9 84.4 91.1 90.7

CALIMAGLF 89.7 81.8 81.5 88.7 87.7
CALIMAGLF-CODA 78.4 70.5 68.7 88.7 86.0

CALIMAEGY 83.7 70.8 65.7 78.9 70.8
SAMA 71.6 52.7 51.8 64.4 60.3

Table 7: Token recall evaluation on CODA matching, Buckwalter POS tag and morphemic segmentation.
Evaluation is on verbs only. The evaluated analyzers are (1) SAMA for MSA, (2) CALIMAEGY for EGY,
which includes MSA, (3) CALIMAGLF for GLF, and (4) CALIMAGLF-CODA, which is CALIMAGLF
without the extension discussed in 4.10.

an CALIMAEGY by over 27.4% and 16.9% abso-
lute, respectively, in terms of identifying correct
POS tag. We plan to morphologically annotate a
large portion of the Gumar corpus to learn differ-
ent spelling variations and grow the coverage of
lemmas. We also plan to extend CALIMAGLF be-
yond verbs using those annotations. We also plan
to use a similar building process to create morpho-
logical analyzers and lexicons for other dialects
given the availability of resources.
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Wajdi Zaghouani, Behrang Mohit, Nizar Habash, Os-
sama Obeid, Nadi Tomeh, Alla Rozovskaya, Noura
Farra, Sarah Alkuhlani, and Kemal Oflazer. 2014.
Large scale Arabic error annotation: Guidelines and
framework. In International Conference on Lan-
guage Resources and Evaluation (LREC 2014).

Omar F Zaidan and Chris Callison-Burch. 2011. The
Arabic online commentary dataset: an annotated
dataset of informal arabic with high dialectal con-
tent. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies: short papers-Volume
2, pages 37–41. Association for Computational Lin-
guistics.

Ines Zribi, Rahma Boujelbane, Abir Masmoudi,
Mariem Ellouze, Lamia Belguith, and Nizar Habash.
2014. A Conventional Orthography for Tunisian
Arabic. In Proceedings of the Language Resources
and Evaluation Conference (LREC), Reykjavik, Ice-
land.

45



Proceedings of The Third Arabic Natural Language Processing Workshop (WANLP), pages 46–54,
Valencia, Spain, April 3, 2017. c©2017 Association for Computational Linguistics

A Neural Architecture for Dialectal Arabic Segmentation

Younes Samih1, Mohammed Attia2, Mohamed Eldesouki3, Hamdy Mubarak3,
Ahmed Abdelali3, Laura Kallmeyer1 and Kareem Darwish3

1Dept. of Computational Linguistics,University of Düsseldorf, Düsseldorf, Germany
2Google Inc., New York City, USA

3Qatar Computing Research Institute, HBKU, Doha, Qatar
1{samih,kallmeyer}@phil.hhu.de

2attia@google.com
3{mohamohamed,hmubarak,aabdelali,kdarwish}@hbku.edu.qa

Abstract

The automated processing of Arabic dialects is
challenging due to the lack of spelling standards
and the scarcity of annotated data and resources
in general. Segmentation of words into their con-
stituent tokens is an important processing step for
natural language processing. In this paper, we
show how a segmenter can be trained on only 350
annotated tweets using neural networks without
any normalization or reliance on lexical features
or linguistic resources. We deal with segmenta-
tion as a sequence labeling problem at the charac-
ter level. We show experimentally that our model
can rival state-of-the-art methods that heavily de-
pend on additional resources.

1 Introduction

The Arabic language has various dialects and vari-
ants that exist in a continuous spectrum. This vari-
ation is a result of multiple morpho-syntactic pro-
cesses of simplification and mutation, as well as
coinage and borrowing of new words in addition
to semantic shifts of standard lexical items. Fur-
thermore, there was a considerable effect of the
interweave between the standard Arabic language
that spread throughout the Middle East and North
Africa and the indigenous languages in different
countries as well as neighboring languages. With
the passage of time and the juxtaposition of cul-
tures, dialects and variants of Arabic evolved and
diverged. Among the varieties of Arabic is so-
called Modern Standard Arabic (MSA) which is

the lingua franca of the Arab world, and is typi-
cally used in written and formal communications.
On the other hand, Arabic dialects, such as Egyp-
tian, Moroccan and Levantine, are usually spoken
and used in informal communications.

The advent of the social networks and the spread
of smart phones, yielded the need for dialect-
aware smart systems and motivated the research
in Dialectal Arabic such as dialectal Arabic iden-
tification for both text (Eldesouki et al., 2016)
and speech (Khurana et al., 2016), morphological
analysis (Habash et al., 2013) and machine trans-
lation (Sennrich et al., 2016; Sajjad et al., 2013).

Due to the rich morphology in Arabic and its
dialects, word segmentation is one of the most im-
portant processing steps. Word segmentation is
considered an integral part for many higher Arabic
NLP tasks such as part-of-speech tagging, parsing
and machine translation. For example, the Egyp-
tian word ��AîD.�JºÓð “wmktbhA$” meaning: “and
he didn’t write it”) includes four clitics surround-
ing the the verb (stem) “ktb”, and is rendered after
segmentation as “w+m+ktb+hA+$”. The clitics in
this word are the coordinate conjunction “w”, the
negation prefix “m”, the object pronoun “hA”, and
the post negative suffix “$”.

In this paper, we present a dialectal Egyp-
tian segmentater that utilizes Bidirectional Long-
Short-Term-Memory (BiLSTM) that is trained on
limited dialectal data. The approach was moti-
vated by the scarcity of dialectal tools and re-
sources. The main contribution of this paper is that
we build a segmenter of dialectal Egyptian using
limited data without the need for specialized lexi-

46



cal resources or deep linguistic knowledge that ri-
vals state-of-the-art tools.

Challenges of Dialectal Arabic

Dialectal Arabic (DA) shares many challenges
with MSA, as DA inherits the same nature of being
a Semitic language with complex templatic deriva-
tional morphology. As in MSA, most of the nouns
and verbs in Arabic dialects are typically derived
from a determined set of roots by applying tem-
plates to the roots to generate stems. Such tem-
plates may carry information that indicate mor-
phological features of words such POS tag, gen-
der, and number. Further, stems may accept pre-
fixes and/or suffixes to form words which turn
DA into highly inflected language. Prefixes in-
clude coordinating conjunctions, determiner, par-
ticles, and prepositions, and suffixes include at-
tached pronouns and gender and number markers.
This results in a large number of words (or surface
forms) and in turn a high-level of sparseness and
increased number of unseen words during testing.

In addition to the shared challenges, DA has its
own peculiarities, which can be summarized as
follows:

• Lack of standard orthography. Many of the
words in DA do not follow a standard ortho-
graphic system (Habash et al., 2012).

• Many words do not overlap with MSA as re-
sult of language borrowing from other lan-
guages (Ibrahim, 2006), such as éJ
 	̄ A¿ kAfiyh

“cafe” and ñ�KA�K tAtuw “tattoo”, or coinage,

such as the negative particles ��Ó mi$ “not”

and ��CK. balA$ “do not”. Code switching is
also very common in Arabic dialects (Samih
et al., 2016).

• Merging multiple words together by concate-
nating and dropping letters such as the word

��AêÊj. J
J.Ó mbyjlhA$ (he did not go to her),
which is a concatenation of “mA byjy lhA$”.

• Some affixes are altered in form from their
MSA counterparts, such as the feminine sec-
ond person pronoun ¼ k→ ú
» ky and the sec-

ond person plural pronoun Õç�' tm→ ñ�K tw.

• Some morphological patterns that do not ex-
ist in MSA, such as the passive pattern Aito-
faEal, such as Qå�º�K@ Aitokasar “it broke”.

• Introduction of new particles, such is the pro-
gressive H. b meaning ‘is doing’ and the post

negative suffix �� $, which behaves like the
French “ne-pas” negation construct.

• Letter substitution and consonant mutation.
For example, in dialectal Egyptian, the inter-
dental sound of the letter �H v is often sub-

stituted by either �H t or � s as in Q�
�J» kvyr

“much”→ Q�
�J» ktyr and the glottal stop is re-

duced to a glide, such as 	QKAg. jA}iz “possible”

→ 	QK
Ag. jAyiz. Such features is deeply stud-
ied in phonology under lenition, softening of
a consonant, or fortition, hardening of a con-
sonant.

• Vowel elongation, such as Ég. @P rAjil “man”

from Ég. P rajul, and vowel shortening, such

as AÖß
X dayomA “always” from AÖß
@X dAyomA.

• The use of masculine plural or singular noun
forms instead dual and feminine plural, drop-
ping some articles and preposition in some
syntactic constructs, and using only one form
of noun and verb suffixes such as 	áK
 yn in-

stead of 	àð wn and @ð wA instead of 	àð wn
respectively.

• In addition, there are the regular dis-
course features in informal texts, such as
the use of emoticons and character repe-
tition for emphasis, e.g. úÍððððððñ«X@
AdEwwwwwwwliy “pray for me”.

2 Related Work

Work on dialectal Arabic is fairly new compared
to MSA. A number of research projects were de-
voted to dialect identification (Biadsy et al., 2009;
Zbib et al., 2012; Zaidan and Callison-Burch,
2014). There are five major dialects including
Egyptian, Gulf, Iraqi, Levantine and Maghribi.
Few resources for these dialects are available such
as the CALLHOME Egyptian Arabic Transcripts
(LDC97T19), which was made available for re-
search as early as 1997. Newly developed re-
sources include the corpus developed by Bouamor
et al. (2014), which contains 2,000 parallel sen-
tences in multiple dialects and MSA as well as En-
glish translation.

47



For segmentation, Yao and Huang (2016) success-
fully used a bi-directional LSTM model for seg-
menting Chinese text. In this paper, we build
on their work and extend it in two ways, namely
combining bi-LSTM with CRF and applying on
Arabic, which is an alphabetic language. Mo-
hamed et al. (2012) built a segmenter based on
memory-based learning. The segmenter has been
trained on a small corpus of Egyptian Arabic com-
prising 320 comments containing 20,022 words
from www.masrawy.com that were segmented
and annotated by two native speakers. They re-
ported a 91.90% accuracy on the task of segmen-
tation. MADA-ARZ (Habash et al., 2013) is an
Egyptian Arabic extension of the Morphological
Analysis and Disambiguation of Arabic (MADA).
They trained and evaluated their system on both
Penn Arabic Treebank (PATB) (parts 1-3) and the
Egyptian Arabic Treebank (parts 1-5) (Maamouri
et al., 2014) and they reported 97.5% accuracy.
MARAMIRA1 (Pasha et al., 2014) is a new ver-
sion of MADA and includes as well the function-
ality of MADA-ARZ which will be used in this
paper for comparison. Monroe et al. (2014) used
a single dialect-independent model for segment-
ing all Arabic dialects including MSA. They argue
that their segmenter is better than other segmenters
that use sophisticated linguistic analysis. They
evaluated their model on three corpora, namely
parts 1-3 of the Penn Arabic Treebank (PATB),
Broadcast News Arabic Treebank (BN), and parts
1-8 of the BOLT Phase 1 Egyptian Arabic Tree-
bank (ARZ) reporting an F1 score of 95.13%.

3 Arabic Segmentation Model

In this section, we will provide a brief description
of LSTM, and introduce the different components
of our Arabic segmentation model. For all our
work, we used the Keras toolkit (Chollet, 2015).
The architecture of our model, shown in Figure 2
is similar to Ma and Hovy (2016), Huang et al.
(2015), and Collobert et al. (2011)

3.1 Long Short-term Memory

A recurrent neural network (RNN) belongs to a
family of neural networks suited for modeling se-
quential data. Given an input sequence x =
(x1, ..., xn), an RNN computes the output vector
yt of each word xt by iterating the following equa-
tions from t = 1 to n:

1MADAMIRA release 20160516 2.1

ht = f(Wxhxt +Whhht−1 + bh)
yt = Whyht + by

where ht is the hidden states vector, W de-
notes weight matrix, b denotes bias vector and
f is the activation function of the hidden layer.
Theoretically RNN can learn long distance de-
pendencies, still in practice they fail due the van-
ishing/exploding gradient (Bengio et al., 1994).
To solve this problem, Hochreiter and Schmidhu-
ber (1997) introduced the long short-term mem-
ory RNN (LSTM). The idea consists in augment-
ing the RNN with memory cells to overcome diffi-
culties with training and efficiently cope with long
distance dependencies. The output of the LSTM
hidden layer ht given input xt is computed via
the following intermediate calculations: (Graves,
2013):

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )
ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)
ht = ot tanh(ct)

where σ is the logistic sigmoid function, and i,
f , o and c are respectively the input gate, forget
gate, output gate and cell activation vectors. More
interpretation about this architecture can be found
in (Lipton et al., 2015). Figure 1 illustrates a sin-
gle LSTM memory cell (Graves and Schmidhuber,
2005)

Figure 1: A Long Short-Term Memory Cell.

3.2 Bi-directional LSTM
Bi-LSTM networks (Schuster and Paliwal, 1997)
are extensions to the single LSTM networks. They
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are capable of learning long-term dependencies
and maintain contextual features from the past
states and future states. As shown in Figure 2, they
comprise two separate hidden layers that feed for-
wards to the same output layer. A BiLSTM cal-
culates the forward hidden sequence

−→
h , the back-

ward hidden sequence
←−
h and the output sequence

y by iterating over the following equations:
−→
ht = σ(W

x
−→
h
xt +W−→

h
−→
h

−→
h t−1 + b−→

h
)

←−
ht = σ(W

x
←−
h
xt +W←−

h
←−
h

←−
h t−1 + b←−

h
)

yt = W−→
hy

−→
ht +W←−

hy

←−
ht + by

More interpretations about these formulas are
found in Graves et al. (2013a).

3.3 Conditional Random Fields (CRF)
Over the last recent years, BiLSTMs have
achieved many ground-breaking results in many
NLP tasks because of their ability to cope with
long distance dependencies and exploit contextual
features from the past and future states. Still when
they are used for some specific sequence classifi-
cation tasks, (such as segmentation and named en-
tity detection), where there is a strict dependence
between the output labels, they fail to generalize
perfectly. During the training phase of the BiL-
STM networks, the resulting probability distribu-
tion of each time step is independent from each
other. To overcome the independence assumptions
imposed by the BiLSTM and exploit these kind
of labeling constraints in our Arabic segmentation
system, we model label sequence logic jointly us-
ing Conditional Random Fields (CRF) (Lafferty
et al., 2001). CRF, a sequence labeling algorithm,
predicts labels for a whole sequence rather than
for the parts in isolation as shown in Equation 1.
Here, s1 to sm represent the labels of tokens x1 to
xm respectively, where m is the number of tokens
in a given sequence. After we have this probabil-
ity value for every possible combination of labels,
the actual sequence of labels for this set of tokens
will be the one with the highest probability.

p(s1...sm|x1...xm) (1)

p(~s|~x; ~w) =
exp(~w.~Φ(~x,~s))∑

~s′εSm exp(~w.~Φ(~x,~s′))
(2)

Equation 2 shows the formula for calculating the
probability value from Equation 1. Here, S is the

set of labels. In our case S ={B, M, E, S, WB},
whereB is the beginning of a token,M is the mid-
dle of a token, E is the end of a token, S is a single
character token, and WB is the word boundary. ~w
is the weight vector for weighting the feature vec-
tor ~Φ. Training and decoding are performed by the
Viterbi algorithm.

Note that replacing the softmax with CRF at the
output layer in neural networks has proved to be
very fruitful in many sequence labeling tasks (Ma
and Hovy, 2016; Huang et al., 2015; Lample et al.,
2016; Samih et al., 2016)

3.4 Pre-trained characters embeddings

A very important element of the recent success of
many NLP applications, is the use of character-
level representations in deep neural networks.
This has shown to be effective for numerous NLP
tasks (Collobert et al., 2011; dos Santos et al.,
2015) as it can capture word morphology and re-
duce out-of-vocabulary. This approach has also
been especially useful for handling languages with
rich morphology and large character sets (Kim et
al., 2016). We use pre-trained character embed-
dings to initialize our look-up table. Characters
with no pre-trained embeddings are randomly ini-
tialized with uniformly sampled embeddings. To
use these embeddings in our model, we simply re-
place the one hot encoding character representa-
tion with its corresponding 200-dimensional vec-
tor. Table 1 shows the statistics of data we used to
train our character embeddings.

Genre Tokens
Facebook posts 8,241,244
Tweets 2,813,016
News comments 95,241,480
MSA news texts 276,965,735
total 383,261,475

Table 1: character embeddings training data statis-
tics

3.5 BiLSTM-CRF for Arabic Segmentation

In our model we consider Arabic segmentation as
character-based sequence classification problem.
Each character is labeled as one of the five la-
bels B,M,E, S,WB that designate the segmen-
tation decision boundary. B,M,E,WB represent
Beginning, Middle, End of a multi-character seg-
ment, Single character segment, and Word Bound-
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Figure 2: Architecture of our proposed neural net-
work Arabic segmentation model applied to an ex-
ample word. Here the model takes the word qlbh,
“his heart” as its current input and predicts its cor-
rect segmentation. The first layer performs a look
up of the characters embedding and stacks them to
build a matrix. This latter is then used as the input
to the Bi-directional LSTM. On the last layer, an
affine transformation function followed by a CRF
computes the probability distribution over all la-
bels

ary respectively.
The architecture of our segmentation model,

shown in Figure 2, is straightforward. It comprises
the following three layers:

• Input layer: it contains character embeddings.

• Hidden layer: BiLSTM maps character repre-
sentations to hidden sequences.

• Output layer: CRF computes the probability
distribution over all labels.

At the input layer a look-up table is initialized
by pre-trained embeddings mapping each charac-
ter in the input to d-dimensional vector. At the
hidden layer, the output from the character embed-
dings is used as the input to the BiLSTM layer to
obtain fixed-dimensional representations for each
character. At the output layer, a CRF is applied
over the hidden representation of the BiLSTM to
obtain the probability distribution over all the la-
bels. Training is performed using stochastic gradi-
ent (SGD) descent with momentum 0.9 and batch

size 50, optimizing the cross entropy objective
function.

3.6 Regularization

Dropout Due to the relatively small size the
training data set and development data set, over-
fitting poses a considerable challenge for our Di-
alectal Arabic segmentation system. To make sure
that our model learns significant representations,
we resort to dropout (Hinton et al., 2012) to miti-
gate overfitting. The basic idea of dropout consists
in randomly omitting a certain percentage of the
neurons in each hidden layer for each presentation
of the samples during training. This encourages
each neuron to depend less on other neurons to
learn the right segmentation decision boundaries.
We apply dropout masks to the character embed-
ding layer before inputting to the BiLSTM and to
its output vector. In our experiments we find that
dropout with a rate fixed at 0.5 decreases overfit-
ting and improves the overall performance of our
system.

Early Stopping We also employ early stopping
(Caruana et al., 2000; Graves et al., 2013b) to mit-
igate overfitting by monitoring the model’s perfor-
mance on development set.

4 Dataset

We used the dataset described in (Darwish et al.,
2014). The data was used in a dialect identifica-
tion task to distinguish between dialectal Egyptian
and MSA. It contains 350 tweets with more than
8,000 words including 3,000 unique words writ-
ten in Egyptian dialect. The tweets have much di-
alectal content covering most of dialectal Egyptian
phonological, morphological, and syntactic phe-
nomena. It also includes Twitter-specific aspects
of the text, such as #hashtags, @mentions, emoti-
cons and URLs.

We manually annotated each word in this corpus
to provide: CODA-compliant writing (Habash et
al., 2012), segmentation, stem, lemma, and POS,
also the corresponding MSA word, MSA segmen-
tation, and MSA POS. We make the dataset2 avail-
able to researchers to reproduce the results and
help in other tasks such as CODA’fication of di-
alectal text, dialectal POS tagging and dialect to
MSA conversion. Table 2 shows an annotation ex-

2Dataset is available at http://alt.qcri.org/
resources/da_resources
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ample of the word ½Ëñ�®J
K. “byqwlk” (he is saying
to you).

Field Annotation
Orig. word ½Ëñ�®J
K. “byqwlk”

CODA ½Ë Èñ�®J
K. “byqwl lk”

Segmentation ¼+È Èñ�®K
+H. “b+yqwl l+k”

POS PROG_PART+V PREP+PRON
Stem È Èñ�®K
 “yqwl l”

lemma È ÈA�̄ “qAl l”

MSA ½Ë Èñ�®K
 “yqwl lk”

MSA Segm. ¼+È Èñ�®K
“yqwl l+k”

MSA POS V PREP+PRON

Table 2: Annotation Example

For the purpose of this paper, we skip
CODA’fication, and conduct segmentation on the
original words to increase the robustness of the
system. Therefore, the segmentation of the exam-
ple in Table 2 is given as½+Ë+ñ�®J
+K. b+yqw+l+k.
We need also to note that, by design, the perfective
prefixes are not separated from verbs in the current
work.

5 Experiments and Results

We split the data described in section 4 into 75
sentences for testing, 75 for development and the
remaining 200 for training.

The concept We followed in LSTM sequence
labeling is that segmentation is one-to-one map-
ping at the character level where each character
is annotated as either beginning a segment (B),
continues a previous segment (M), ends a segment
(E), or is a segment by itself (S). After the labeling
is complete we merge the characters and labels
together, for example @ñËñ�®J
K. byqwlwA is labeled
as “SBMMEBE”, which means that the word is
segmented as b+yqwl+wA. We compar results of
our two LSTM models (BiLSTM and BiLSTM-
CRF) with Farasa (Abdelali et al., 2016), an open
source segementer for MSA3, and MADAMIRA
for Egyptian dialect. Table 3 shows accuracy for
Farasa, MADAMIRA, and both of our models.

The results show that for this small test-
set BiLSTM-CRF (92.65%) performs better than

3Available for download from:
http://alt.qcri.org/tools/farasa/

System Accuracy
Farasa (Baseline4) 88.34 %
MADAMIRA 92.47 %
BiLSTM 86.27 %
BiLSTM-CRF 92.65 %

Table 3: F1 and accuracy results on the test
data. We consider Farasa our baseline. This table
compares between Farasa, BiLSTM models with
MADAMIRA

MADAMIRA (92.47%) by only 0.18% which is
not statistically significant. The advantage of our
system is that, unlike MADAMIRA which relies
on a hand-crafted lexicon, our system generalizes
well on unseen data. To illustrate this point, the
test set has 1,449 words, and 586 of them (40%)
are not seen in the training set. This shows how
well the system is robust with OOV words.

6 Analysis

MADAMIRA error analysis:
When analyzing the errors (109 errors) in

MADAMIRA, we found that they are most likely
due to lexical coverage or the performance of mor-
phological processing and variability.

• OOV words: e.g. �ËQK
@ñË@ AlwAyrls “the

wireless”, h. A�J ��AêË @ AlHA$tAj “the hashtag”.

• Spelling variation: e.g. ù¢ 	ªË@ AlgTY “the

cover”, úÎë

B l>hly “to Ahly”.

• Morphological inflection (imperative): e.g.
ø
 Y �� $dy “pull”, @ñ�̄ñ 	̄ fwqwA “wake up”.

• Segmentation ambiguity: e.g. éJ
Ë lyh meaning

“why” or “to him”, A 	JË AÓ mAlnA meaning “our
money” or “what we have”.

• Combinations not known to MADAMIRA:
e.g. ��AëñÊ 	®�®�JÓ mtqflwhA$ “don’t close it”,

@ñºÊ 	®�ð

@ >wSflkwA “I describe to you”.

• Different annotation convention: e.g. 	àA ��«
E$An “because” and èXPAî 	DË @ AlnhArdh “to-
day” are one token in our gold data but ana-
lyzed as two tokens in MADAMIRA.
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BiLSTIM Error analysis:
The errors in this system (199 errors) are

broadly classified into three categories:

• Confusing prefixes and suffixes with stem’s
constituent letters: e.g. é 	®J
¢Ë lTyfh “nice”,

ù
 ÖÏA« EAlmy “international”.

• Not identifying segments: e.g. H. PAK
 yArb “O

my Lord”, ú
×@Y�̄ qd Amy “in front of me”.

• The majority of errors (108 instances) are bad
sequences coming from invalid label com-
bination, like having an E or M without a
preceding B, or M without a following E. It
seems that this label sequence logic is not yet
fully absorbed by the system, maybe due to
the small amount of training data.

BiLSTIM-CRF Error analysis:
This model successfully avoids the invalid

sequence combinations found in BiLSTM. As
pointed out by (Lample et al., 2016), BiL-
STM makes independent classification decisions
which does not work well when there are inter-
dependence across labels (e.g., E or M must be
preceded by B, and M must be followed by E).
Segmentation is one such task, where indepen-
dence assumption is wrong, and this is why CRF
works better than the softmax in modeling tagging
decisions jointly, correctly capturing the sequence
logic.

The number of errors in BiLSTIM-CRF is re-
duced to 101 and the number of label sequences
not found in the gold standard is reduced to just
14, yet with all of them obeying the valid sequence
rules. The remaining errors are different from the
errors generated by BiLSTM, but they are simi-
lar in that the mistokenization happens due to the
system’s inability to decide whether a substring
(which out of context can be a valid token) is an in-
dependent token or part of a word, e.g. Q�
	m�'. bikhir

“is well’, ú
æ
��AÓ mA$iy “OK”.

7 Conclusion

Using BiLSTM-CRF, we show that we can build
an effective segmenter using limited dialectal
Egyptian Arabic labeled data without relying
on lexicons, morphological analyzer or linguis-
tic knowledge. The CRF optimizer for LSTM
successfully captures label sequence logic and

avoids invalid label combinations. The results ob-
tained are comparable to a state-of-the-art system,
namely MADAMIRA, or even better. Admittedly,
the small test set used in this work might not al-
low us to generalize the claim, and we plan to
run more expansive tests. Nonetheless, given that
there are no standard dataset available for this task,
objective comparison of different systems remains
elusive. A number of improvements can possi-
bly enhance the accuracy of our system further,
including exploiting large resources available for
MSA. Despite the differences dialects and MSA,
there is significant lexical overlap between MSA
and dialects. This is demonstrated by the accuracy
of Farasa which was built to handle MSA exclu-
sively, yet achieving 88.34% accuracy on the di-
alectal data. Thus, combining MSA and dialectal
data in training or performing domain adaptation
stands to enhance segmentation. Additionally, we
plan to carry these achievements further to explore
other dialects.
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Abstract

Dialectal Arabic (DA) is significantly dif-
ferent from the Arabic language taught in
schools and used in written communica-
tion and formal speech (broadcast news,
religion, politics, etc.). There are many
existing researches in the field of Arabic
language Sentiment Analysis (SA); how-
ever, they are generally restricted to Mod-
ern Standard Arabic (MSA) or some di-
alects of economic or political interest. In
this paper we focus on SA of the Tunisian
dialect. We use Machine Learning tech-
niques to determine the polarity of com-
ments written in Tunisian dialect. First,
we evaluate the SA systems performances
with models trained using freely available
MSA and Multi-dialectal data sets. We
then collect and annotate a Tunisian di-
alect corpus of 17.000 comments from
Facebook. This corpus shows a signif-
icant improvement compared to the best
model trained on other Arabic dialects or
MSA data. We believe that this first freely
available12 corpus will be valuable to re-
searchers working in the field of Tunisian
Sentiment Analysis and similar areas.

1 Introduction

Sentiment Analysis (SA) involves building sys-
tems that recognize the human opinion from a text
unit. SA and its applications have spread to many
languages and almost every possible domain such
as politics, marketing and commerce. With re-
gard to the Arabic language, it is worth noting
that the most Arabic social media texts are written
in Arabic dialects and sometimes mixed with for-
eign languages (French or English for example).

1This corpus is freely available for research purpose
2https://github.com/fbougares/TSAC

Therefore dialectal Arabic is abundantly present in
social media and micro blogging channels. In pre-
vious works, several SA systems were developed
for MSA and some dialects (mainly Egyptian and
middle east region dialects).

In this paper, we present an application of
sentiment analysis to the Tunisian dialect. One
of the primary problems is the lack of annotated
data. To overcome this problem, we start by using
and evaluating the performance using available
resources from MSA and dialects, then we cre-
ated and annotated our own data set. We have
performed different experiments using several
machine learning algorithms such as Multi-Layer
Perceptron (MLP), Naive Bayes classifier, and
SVM. The main contributions of this article are as
follows: (1) we present a survey of the available
resources for Arabic language SA (MSA and
dialectal). (2) We create a freely available training
corpus for Tunisian dialect SA. (3) We evaluate
the performance of Tunisian dialect SA system
under several configurations.

The remainder of this paper is organized as fol-
lows: Section 2 discusses some related works.
Section 3 presents the Tunisian dialect features
and its challenges. Section 4 details our Tunisian
dialect corpus creation and annotation. In section
4 we report our experimental framework and the
obtained results. Finally section 5 concludes this
paper and gives some outlooks to future work.

2 Related work

The Sentiment Analysis task is becoming increas-
ingly important due to the explosion of the number
of social media users. The largest amount of SA
research is carried for the English language, re-
sulting in a high quality SA tools. For many other
languages, especially the low resourced ones, an
enormous amount of research is required to reach
the same level of current applications dedicated
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to English. Recently, there has been a consider-
able amount of work and effort to collect resources
and develop SA systems for the Arabic language.
However, the number of freely available Arabic
datasets and Arabic lexicons for SA are still lim-
ited in number, size, availability and dialects cov-
erage.

It is worth mentioning that the highest propor-
tion of available resources and research publica-
tions in Arabic SA are devoted to MSA (Assiri et
al., 2015). Regarding Arabic dialects, the Middle
Eastern and Egyptian dialects received the lion’s
share of all research effort and funding. On the
other hand, very small amounts of work are de-
voted to the dialects of Arabian Peninsula, Arab
Maghreb and the West Asian Arab countries. Ta-
ble 1 summarizes the list of all freely available SA
corpora for Arabic and dialects that we were able
to find. For more details about previous works on
SA for MSA and its dialects, we refer the reader
to the extensive surveys presented in (Assiri et al.,
2015) and in (Biltawi et al., 2016).

From a technical point of view, the are two
approaches to address the problem of sentiment
classification: (1) machine learning based ap-
proaches and (2) lexicon-based approaches.

Machine learning approaches uses annotated
data sets to train classifiers. The sentiment clas-
sifier is built by extracting discriminative fea-
tures from annotated data and applying a Machine
learning algorithm such as Support Vector Ma-
chines (SVM), Naı̈ve Bayes (NB) and Logistic re-
gression etc. Generally, the best performance is
achieved by using n-grams feature, but also Part
of speech (POS), term frequency (TF) and syntac-
tic information can be used. (Shoukry and Rafea,
2012) examined two machine learning algorithms:
SVM and NB. The dataset is collected from the
Twitter social network using its API. Classifiers
are trained using unigram and bigram features and
the results show that SVM outperforms NB.

Another machine learning approach was used
in (Rushdi-Saleh et al., 2011b) where they build
the opinion corpus for Arabic (OCA) consisting
of movie reviews written in Arabic. They also cre-
ated an English version translated from Arabic and
called EVOCA (Rushdi-Saleh et al., 2011b). Sup-
port Vector Machines (SVMs) and Naive Bayes
(NB) classifiers are then used to create SA sys-
tems for both languages. The results showed that

both classifiers gives better results on the Arabic
version. For instance, SVM gives 90% F-measure
on OCA compared to 86.9% on EVOCA.

(Abdul-Mageed et al., 2012), have presented
SAMAR, a sentiment analysis system for Arabic
social media, which requires identifying whether
the text is objective or subjective before identi-
fying its polarity. The proposed system uses the
SVM-light toolkit for classification.

In lexicon-based approaches, opinion word lex-
icon are usually created. An opinion word lexi-
con is a list of words with annotated opinion po-
larities and through these polarities the application
determine the polarity of blocks of text. (Bay-
oudhi et al., 2015) presented a lexicon based ap-
proach for MSA. First, a lexicon has been built
following a semi automatic approach. Then, the
lexicon entries were used to detect opinion words
and assign to each one a sentiment class. This
approach takes into account the advanced linguis-
tic phenomena such as negation and intensifica-
tion. The introduced method was evaluated using
a large multi-domain annotated sentiment corpus
segmented into discourse segments. Another work
has been done in (Al-Ayyoub et al., 2015) where
authors built a sentiment lexicon of about 120,000
Arabic words and created a SA system on top of it.
They reported a 86.89% of classification accuracy.

3 Tunisian dialect and its challenges

The Arabic dialects vary widely in between re-
gions and to a lesser extent from city to city in
each region. The Tunisian dialect is a subset of
the Arabic dialects of the Western group usually
associated with the Arabic of the Maghreb and is
commonly known, as the ”Darija or Tounsi”. It
is used in oral communication of the daily life of
Tunisians. In addition to the words from Mod-
ern Standard Arabic, Tunisian dialect is charac-
terized by the presence of words borrowed from
French, Berber, Italian, Turkish and Spanish. This
phenomenon is due to many factors and historical
events such as the Islamic invasions, French colo-
nization and immigrations.

Nowadays, the Tunisian dialect is more often
used in interviews, telephone conversations and
public services. Moreover, Tunisian dialect is be-
coming very present in blogs, forums and online
user comments. Therefore, it is important to con-
sider this dialect in the context of Natural Lan-
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Corpus Size Language Source Reference
ASDT 10000 com MSA/dialects Twitter (Nabil et al., 2015)
OCA 500 doc MSA Webpages/Films (Rushdi-Saleh et al., 2011a)
BBN 1200 com Levant dialect Social media (Zbib et al., 2012)
LABR 63000 com MSA/dialects goodreads (Nabil et al., 2014)
ATT 2154 com MSA/dialects TripAdvisor (ElSahar and El-Beltagy, 2015)
HTL 15572 com MSA/dialects TripAdvisor (ElSahar and El-Beltagy, 2015)
MOV 1524 com MSA/dialects elcinema (ElSahar and El-Beltagy, 2015)
PROD 4272 com MSA/dialects souq (ElSahar and El-Beltagy, 2015)
RES 10970 com MSA/dialects qaym (ElSahar and El-Beltagy, 2015)
Twitter
DataSet

2000 com MSA/Jordanian Twitter (Abdulla et al., 2013)

Syria Tweets 2000 com Syrian Twitter (Mohammad et al., 2015)
MASC 8861 com dialects Jeeran/qaym/

Twit-
ter/Facebook/
Google Play

(Al-Moslmi et al., 2017)

Table 1: Publically available Arabic SA datasets. Sizes are presented by the number of documents (doc)
and commentaries (com).

guage Processing (NLP). The development of SA
system for Tunisian dialect faces many challenges
due to: (1) the very limited number of previous
research conducted in this dialect, (2) the lack
of freely available resources for SA in this di-
alect, (3) and the absence of standard orthogra-
phies (Maamouri et al., 2014) (Zribi et al., 2014)
and tools dedicated to this dialect.

Indeed, textual content of social networks is
characterized by an intense orthographic hetero-
geneity which made its processing a serious chal-
lenge for NLP tools. This heterogeneity is aug-
mented by the lack of normalization of dialec-
tal writing system. Moreover, social networks
communication is very impacted by the personal
experience of each user. For instance, Tunisian
users usually uses code-switching with English or
French which depends of their second language.

Table 2 presents an example to highlight the or-
thographic heterogeneity issue in Tunisian dialect.
The example presents the Tunisian dialect transla-
tion of the English expression ”how beautiful she
is! ”. The translation is a single word which could
be written using several spelling variants in Latin
or Arabic script in the context of social networks.

4 Data set collection and annotation

Being aware of the challenges related to the
tunisian dialect, we decided to create the first pub-
licly available SA data set for this dialect. This

Arabic script Latin script

Aa¡Á®"�a�

Aa¡Á®"�Aa�

Aa¡Á®"�� Aa�

Mahleha
Ma7lahe
Ma7leha
Ma7laha

Table 2: Example of Tunisian dialect spelling vari-
ants of an English expression.

data set is collected from Facebook users com-
ments. Tunisian are among the most active Face-
book Users in the Arab Region3. In fact, Tunisia
is the 8th Arabic country in terms of penetration
rates of Tunisian Facebook users, and almost tied
as 2nd in the region alongside the UAE (United
Arab Emirates) on the percentage of most active
users out of total users (Salem, 2017).

This corpus is collected from comments written
on official pages of Tunisian radios and TV chan-
nels namely Mosaique FM, JawhraFM, Shemes
FM, HiwarElttounsi TV and Nessma TV during a
period spanning January 2015 until June 2016.

The collected corpus, called TSAC (Tunisian
Sentiment Analysis Corpus), contains 17k user
comments manually annotated to positive and neg-
ative polarities. Table 4 shows the basic statistics.
In particular, we give the number of words, the
number of unique words and the average length of

3http://www.arabsocialmediareport.com/
home/index.aspx
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comments per polarity. We provide also the num-
ber of Arabic words and mixed comments.

Positive Negative
# Total Words 63874 49322
# Unique Words 24508 17621
AVG sentence length 7.22 6.00
# Arabic Words 13896 8048
# Mixed comments 98 48
# Comments 8215 8845

Table 3: Statistics of the TSAC corpus.

The collected corpus is characterized by the use
of informal and non-standard vocabulary such as
repeated letters and non-standard abbreviations,
the presence of onomatopoeia (e.g. pff, hhh, etc)
and non linguistic content such as emoticons. Fur-
thermore, the data set contains comments writ-
ten in Arabic scripts, Latin scripts known as Ara-
bizi (Darwish, 2014) and even a mixture of both.
TSAC is a multi-domain corpus consisting of the
text covering a maximum vocabulary from educa-
tion, social and politics domain.

Given the nature of the raw collected data we
did some cleaning before the annotation step. We
manually : (1) removed the comments that are
fully in other languages (French, English, etc.); (2)
deleted the user names; (3) deleted URLs and (4)
removed hash character from all Hashtags. Table
4, presents several examples for each polarity. We
also added the Buckwalter transliteration and the
English translation for the purpose of clarity.

5 Experiments and results

From machine learning perspective, the SA could
be represented as text classification problem (bi-
nary classification in our case). In this section we
present several experiments that we run in order to
find out (1) the most desirable machine learning
algorithms for our task and (2) the usefulness of
training data from MSA and other dialects for the
Tunisian dialect SA.

5.1 Training Data and features extraction
Table 5 presents the training and evalaution sets.
For each corpus we report the dialect, the num-
ber of comments per polarity (positive /negative)
and the vocabulary size (|V |). We used 3 dif-
ferent training corpus, OCA (Opinion Corpus
for Arabic), LABR (Large-scale Arabic Book
Review) and TSAC. The OCA corpus contains

500 movie reviews in MSA, collected from forums
and websites. It is divided into 250 positive and
250 negative reviews. In this work, we used a sen-
tence level segmented version of OCA corpus de-
scribed in (Bayoudhi et al., 2015)4. The LABR
corpus is freely available5 and contains over 63k
book reviews written in MSA and different Arabic
dialects. In our experiments we refer to this corpus
as mixed dialect corpus (D Mix). The evaluation
corpus is a held-out portion, randomly extracted
from the TSAC corpus to evaluate and compare
different SA systems on Tunisian dialect.

In the literature, different linguistic features are
generally extracted and successfully used for the
SA task. Given the absence of linguistic tools
(Part-of-Speech tagger, morphological analysers,
lemmatizers, parsers, etc) for Tunisian dialect, we
decided to run different classifiers using automati-
cally learned features.

A fixed-length vector is learned in an unsu-
pervised fashion using Doc2vec toolkit (Le and
Mikolov, 2014) which has been shown to be useful
for SA in English (Le and Mikolov, 2014). In this
work, each sentence is considered as a document
and represented, using Doc2vec, by a vector in a
multi-dimensional space.

5.2 Classifiers

In SA literature, the most widely used machine
learning methods are Support Vector Machines
(SVM) and Naive Bayes (NB). On top of these
methods, we investigated MLP classifier. All
the experiments were conducted in Python using
Scikit Learn6 for classification and gensim7 for
learning vector representation. The input of the
final sentiment classifier is the set of features vec-
tors from Doc2vec toolkit. The output is the senti-
ment class S ∈ {Positive, Negative}.

5.3 SA experiments and evaluation

To evaluate the performance of SA on the Tunisian
dialect validation set, we carried out several exper-
iments using various configuration.

Seven experiments were carried out for each
classifier depending on the training dataset: (1) us-
ing the Tunisian dialect training set, (2) using the

4Please contact Bayoudhi et al. to obtain a copy of the
OCA sentence level segmented corpus

5http://www.mohamedaly.info/datasets/
labr

6http://scikit-learn.org/
7https://radimrehurek.com/gensim/
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Label Script Example and Buckwalter transliteration English translation
Negative Arabic mlA hmjyp / Ty�m¡ ®� What Savagery
Positive Arabic mslsl rwEp / T�¤C �sls� Wonderful series
Negative Latin Bsaraha Eni mati3jibnich Really, I do not like
Positive Latin A7sen Moumethel ye3jebni barcha The best actor, I like it very much
Negative Mixed ma8ir ta3li9... �§AS� / fDAyH Scandal...No comment
Positive Mixed Bravo �¶�C �w} / Swp rA}E Well done great sound

Table 4: TSAC annotation examples. Arabic words are given with their Buckwalter transliteration.

Train set Evaluation set
Corpus Dialect Positive Negative | V | Positive Negative | V |
OCA MSA 4931 4931 32565 n/a n/a n/a
LABR D Mix 4880 4880 94789 n/a n/a n/a
TSAC TUN 7145 6515 28480 1700 1700 10791

Table 5: Training corpus. All trained systems are evaluated using the TSAC evaluated set.

Classifier Training set Positive Negative Error rate
P R P R

MSA 0.44 0.15 0.49 0.80 0.52
D Mix 0.50 0.84 0.52 0.17 0.49
TUN 0.77 0.77 0.77 0.76 0.23

SVM MSA D Mix 0.51 0.90 0.60 0.15 0.47
TUN MSA 0.74 0.83 0.80 0.71 0.23
TUN D Mix 0.68 0.76 0.73 0.64 0.30
ALL 0.71 0.81 0.78 0.66 0.26
MSA 0.43 0.28 0.46 0.62 0.55
D Mix 0.51 0.94 0.58 0.09 0.49
TUN 0.56 0.70 0.60 0.46 0.42

BNB MSA D Mix 0.51 0.98 0.67 0.05 0.49
TUN MSA 0.55 0.77 0.62 0.37 0.43
TUN D Mix 0.54 0.76 0.60 0.36 0.44
ALL 0.54 0.82 0.62 0.30 0.44
MSA 0.52 0.40 0.51 0.64 0.48
D Mix 0.51 0.75 0.53 0.28 0.49
TUN 0.78 0.78 0.78 0.78 0.22

MLP MSA D Mix 0.53 0.49 0.52 0.56 0.47
TUN MSA 0.76 0.78 0.77 0.76 0.23
TUN D Mix 0.75 0.77 0.76 0.75 0.24
ALL 0.74 0.77 0.76 0.73 0.25

Table 6: Results of Tunisian SA experiments using various classifiers with different training sets.

MSA training set, (3) using the mixed MSA and Arabic dialects training set and (4 to 7) using dif-
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ferent combination of these datasets.
The performance of our different SA experi-

ments are evaluated on the Tunisian dialect eval-
uation set and results are reported using precision
and recall measures. Precision and recall are de-
fined to express respectively the exactness and the
sensitivity of the classifiers.

5.4 Results and Discussion
The results of the different classifiers with differ-
ent experimental setups are presented in Table 6.
As expected, the best classification performance of
all the classifiers are obtained when the Tunisian
dialect SA system is trained using (or including)
the Tunisian dialect training set. We obtained an
error rate of 0.23 with SVM, 0.22 with MLP and
0.42 with BNB.

As shown in table 6 SVM and MLP obtain sim-
ilar results for all experimental setups. However,
lower results are obtained with BNB classifier. We
notice also no improvement when the SA sys-
tems are trained with additional training data from
LABR and OCA. Overall, poorer results are ob-
tained when SA systems are trained without the
TSAC corpus. This is mainly due to :

• The OCA and LABR data sets are limited to
one domain (movies and books respectively),
while the evaluation set is multi-domain.

• The OCA and LABR data sets are written
only in Arabic character, while the evaluation
set contains Latin character.

• The lexical differences between Tunisian di-
alect, MSA and other dialects.For example,
the English word beautiful, is written in
Tunisian: Ta�Aa§Åzi� /mizoyaAnap, in Egyp-
tian : ÅÁw"li� / Hilowapo and in MSA :
¿Talyima� / jamiylapN)

Table 7 shows several outputs of our SA system
with MLP classifier. We present examples for Pos-
itive and Negative classes and for both situation :
when SA predict the correct polarity and when SA
system fails.

6 Conclusions and feature work

In this paper we have presented the first freely
available annotated sentiment analysis corpus for
the Tunisian dialect. We have experimented and
presented several SA experiments with different
training configurations. Best results for Tunisian

SA are obtained using the Tunisian training cor-
pus. We believe that this corpus will help to boost
research on SA of Tunisian dialect and to explore
new techniques in this field. As future works we
would like to perform a deep analysis of system
outputs. We are planning also to work on the
TSAC corpus normalization and to extend the cor-
pus to include the neutral class.
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Abstract

Data generated on Twitter has become a
rich source for various data mining tasks.
Those data analysis tasks that are depen-
dent on the tweet semantics, such as sen-
timent analysis, emotion mining, and ru-
mor detection among others, suffer con-
siderably if the tweet is not credible, not
real, or spam. In this paper, we per-
form an extensive analysis on credibil-
ity of Arabic content on Twitter. We
also build a classification model (CAT) to
automatically predict the credibility of a
given Arabic tweet. Of particular orig-
inality is the inclusion of features ex-
tracted directly or indirectly from the au-
thor’s profile and timeline. To train and
test CAT, we annotated for credibility a
data set of 9, 000 Arabic tweets that are
topic independent. CAT achieved consis-
tent improvements in predicting the cred-
ibility of the tweets when compared to
several baselines and when compared to
the state-of-the-art approach with an im-
provement of 21% in weighted average F-
measure. We also conducted experiments
to highlight the importance of the user-
based features as opposed to the content-
based features. We conclude our work
with a feature reduction experiment that
highlights the best indicative features of
credibility.

1 Introduction

The Web has become a treasured source of opin-
ions, news and information about current events.
Twitter, Facebook, Instagram, and others play a

vital role in publishing such information. This im-
mense data has become a vital and rich source for
tasks such as popularity index, elections, opinion
mining, pro/con classification, emotion recogni-
tion, rumor detection, etc.

With the large scale of data generated on these
outlets, it is inevitable that the credibility of the
generated information would highly vary. This
would in turn influence the opinions of the readers
and the accuracy of the tasks performed on such
data. A recent study by (Allcott and Gentzkow,
2017) indicated that fake news published on so-
cial media during and before the American presi-
dential elections in November 2016, did have an
effect on voters, but was not the reason behind
the victory of Trump. Others suggest otherwise
and confirm that fake news made Trump president.
Take for instance an interview with the Washing-
ton Post, when fake news writer and promoter Paul
Horner said that ”I think Trump is in the White
House because of me”, hinting that his fake news
were believed by the voters and even adopted and
shared 1.

In this paper, we focus on tweets, being a main
source of news and opinions, and propose a model,
called CAT, that best classifies tweets as credible
or not. We adopt the Merriam Webster definition
of credibility that states: credibility is the quality
of being believed or accepted as true, real or hon-
est. CAT uses a binary classifier that classifies a
given tweet as either credible or not. CAT is built
on top of an exhaustive set of features which in-
cludes both content based and user-based features.
Content-based features are features extracted from
the tweet itself, for instance, sentiment, language,
and text cues, whereas user-based features are ex-
tracted from the tweet author, for instance, exper-

1https://goo.gl/3txvTd
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tise of the user generating the tweet, and the num-
ber of followers. In particular, we use 26 content-
based features and 22 user-based features.

To train and test our classifier, we extracted over
9, 000 Arabic tweets and annotated them with the
help of six well-paid human judges using a custom
crowd-sourcing platform. The 9, 000 tweets were
divided among the judges to obtain three annota-
tions for each tweet. The judges annotated each
tweet as either ”credible”, ”non-credible” or ”can’t
decide”. To assist the annotators in accurately as-
sessing the credibility of a given tweet, they were
provided with useful cues such as the tweet itself
and its author. While we based our experiments
on Arabic content, our credibility model is general
enough to predict the credibility of tweets in any
language provided that the necessary resources for
extracting some of the language dependent fea-
tures such as sentiment are available.

Predicting the credibility of tweets has been
previously studied to some extent. However, to
the best of our knowledge, none of the previous
work considered features from timeline or profile-
picture face detection to assess the credibility of a
given tweet. For example, (AlMansour, 2016) re-
lies on some features including the presence of a
profile picture to perform credibility assessment.
However, in our approach, we do not only evalu-
ate the presence of a profile picture, we also take
this feature one step further by using Google cloud
vision API to perform face detection and extract
textual information that might be available in the
picture. We compared CAT to several baselines
and to a recent state of-the-art approach, namely,
TweetCred (Gupta et al., 2014). CAT consis-
tently surpassed the accuracy of the baseline ap-
proaches. It also outperformed TweetCred with
an improvement of 16.7% in Weighted Average
F-measure. While TweetCred relies in its classifi-
cation on real-time features only, CAT utilizes the
authors history for any clues that might be helpful
in deciding on the credibility of the tweet.

Finally, most of the previous work on predict-
ing the credibility of tweets have been based on
annotated English tweets. In this paper, we pro-
pose a robust credibility classifier (CAT) that can
work for tweets in any language and we test it on a
relatively big data set of Arabic tweets. Our anno-
tated data set of 9, 000 Arabic tweets is made pub-
lic to act as a valuable resource for future research
in this area. Another credibility data set exists, but

it is smaller and topic dependent (Al Zaatari et al.,
2016).

2 Related Work

We broadly classified research on credibility into
the work done on Arabic content and that done on
English content. Credibility of Arabic content has
not received profound attention from researchers
and as such, this area has a lot of room for im-
provement. For English content, some researchers
tackled the problem of judging the credibility of
tweets. Others tackled the problem of judging the
credibility of tweet clusters, and others built clas-
sifiers to judge the credibility of tweet authors in-
stead of tweets. We overview each line of research
next.

Credibility of Arabic tweets: In (Sultan et al.,
2010), the authors propose a model to identify
credible Arabic news on Twitter. Their model re-
lies heavily on the similarity of the tweet con-
tent with collected news from reputable sources.
They collected both tweets and news articles on
trendy topics. After text processing, they repre-
sented both the tweet and the articles as TF-IDF
vectors. They relied on the cosine similarity mea-
sure between the tweet and the articles to deter-
mine the tweet’s credibility. The model is able to
predict credibility of previously discussed topics
on the web. Yet, it fails to assign credibility values
for tweets discussing breaking events.

Credibility of English Tweets: In (Gupta et
al., 2014), the authors developed the first real
time credibility analyzer through a semi super-
vised ranking model (TweetCred). They extracted
a total of 45 features, all of which can be extracted
in real time. Their feature set did not include fea-
tures related to a group of tweets. Neither did it
include user-based features that are dependent on
the previous tweet posts of a user. Next, the feature
vectors for all the annotated tweets were given as
input to SVM-Ranking algorithm as training data
set. They used the trained model as a backend for
their system. When a new Twitter feed comes in
real-time, the rank of the tweet is predicted us-
ing the learned model and displayed to the user
on a scale of 1 (low credibility) to 7 (high cred-
ibility). TweetCred relies in its classification on
real-time features only, such as, count of re-tweets,
and count of friends. CAT, however, utilizes the
tweeter’s history for any clues that might be help-
ful in deciding on the credibility of the tweet.
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In (Landis and Koch, 1977), the authors tackled
the same problem from another perspective where
they proposed an automated ranking scheme to
present the user with a ranked output of tweets
according to credibility. They used SVM ranking
scheme to rank the results according to the per-
ceived credibility of the information contained in
the tweet.

Credibility of tweet authors: In (Canini et al.,
2011), the authors designed an automatic tool to
rank social network users based on their credibility
and relevance to the query. They defined informa-
tion credibility of a source by expertise and topical
relevance of the source discussion topic. Expertise
is measured by calculating the proportion of ones
followers who are likely to be in the search results.
Relevance is measured using LDA topic modeling.
This work though fails when determining the ex-
pertise of the author, since some authors with high
social network status may be non-credible in gen-
eral, or non-credible when discussing certain top-
ics that they are not experts in, or biased with re-
spect to the topic being discussed. Add to that and
as will be concluded in our work, relying solely on
the author is not sufficient to decide on credibility.

Credibility of tweet clusters: In (Castillo et al.,
2011), the authors built an automatic tool to as-
sess the level of credibility of news topics. Their
credibility classifier relies on topic-based features
i.e. features extracted from a group of tweets and
not from individual tweets. In turn, the classifier
classifies a cluster of tweets or a topic as credible
or non credible While, this model is useful for de-
tecting rumor topics, it cannot detect non-credible
tweets within a credible topic. Next we discuss
our approach.

3 Methodology

The process of creating CAT and testing it passed
through multiple steps that include: data set col-
lection, data set annotation, feature engineering,
sentiment extraction, experimental evaluation, and
finally feature analysis. The following sections ex-
plain the details of every step.

3.1 Data Set Collection

The data collection started by querying twitter API
while specifying two conditions: the tweet should
be written in Arabic, and it should include a hash-
tag. We collected around 17 million tweets in a
period of two weeks. The next step was to per-

form data cleaning on the 17 million tweets. The
following data cleaning steps were performed: 1)
all tweets composed only of religious quotations
and versus were removed. To do this we used tri-
gram matching with dictionaries we created to re-
move tweets that have words such as 	à

�
@Q�®Ë @ , é<Ë @

(Alqr|n - The holy book of Muslims, Allh - God) or
words matching with Ahadeeth and Athkar found
in �éÊÓA ��Ë@ �éJ. �JºÖÏ @ - ”Maktabah Alshamelah” 2. 2)
all tweets that are ads were removed, 3) all tweets
that are composed of only emoticons or love/hate
words were removed, and 4) all tweets that were
sexual or composed of only badmouth words were
removed. These data cleaning steps were mainly
performed using regular expressions and also uti-
lizing a self-created list of words and emoticons.
We also removed all tweets that contain a hashtag
without any text appended to it and all retweets
to avoid duplication. Hence, a big portion of the
collected tweets were retweets. After data clean-
ing, we grouped the tweets by the hashtags obtain-
ing tweet clusters, each cluster containing related
tweets. To ensure the topic independence of our
data set, we randomly selected 10% of the tweets
in every cluster and grouped them to obtain a data
set of 9, 000 tweets that includes tweets addressing
a wide variety of topics. Besides retrieving tweet
text, metadata about the tweet and the tweet au-
thor were collected as well. We next describe the
annotation process.

3.2 Annotation

To facilitate the annotation process we developed
an in-house platform to collect annotations. While
there exits other crowd-sourcing platforms such
as Mechanical Turk and CrowdFlower, we relied
on our own platform due to limitations imposed
by existing platforms when dealing with Arabic
data. For each tweet to be annotated, we provided
the annotators with two URL links. The first link
provided the annotator with the tweet text as dis-
played on Twitter. This option provided annota-
tors with cues such as count of retweets, favorites
that the tweet received, and the authors screen
name. The second link provided the complete au-
thor profile as found on Twitter. The author profile
is rich with cues that annotators can use to make
their decisions. These cues include the follower
count, previous tweet posts, author’s profile im-
age, and in some cases a brief description about

2http://shamela.ws/
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the author. These two URLs (the tweet itself and
the tweet’s author profile) provided the annotators
with rich information that can aid them in decid-
ing whether a tweet is credible or not. Annotators
were asked to either label a tweet as ”credible” or
”non-credible”. They were also given the option
to select ”can’t decide” when they felt confused
or unsure. We also added the option of ”deleted”
since some authors delete their tweets after post-
ing them or Twitter blocks the account in which
case annotators will not be able to view the tweet.
Each tweet received three annotations from three
different annotators. Tweets that where labeled as
"can’t decide" by at least two annotators have been
discarded. A majority vote was used to decide on
the final labels of the tweets. In total, 60% of the
9, 000 tweets were annotated as credible and 40%
were annotated as non credible.

To ensure good annotation quality, seven anno-
tators were exposed to a tutorial session discussing
the annotation task before starting the annotation.
Each was given a sample set to annotate before be-
ing recruited to complete the full annotation task.
The sample set annotation was used to check the
quality of the annotation task. The sample set in-
cluded gold tweets which allowed us to test how
annotators performed on this task. Two groups,
each having three annotators were recruited to
complete the full task and received monetary com-
pensation for their annotations. During the full an-
notation task, we also injected gold tweets to as-
sess the quality of annotations. Moreover, the full
annotation task included repeated tweets, which
were used as an additional way to assess the qual-
ity of annotations i.e. certain tweets are repeated
twice in the data set and later we verified whether
the annotator annotated the same tweet similarly.
All annotators passed our gold tweets and were
generally consistent with their annotation across
repeated tweets. Each annotator had 10% of his
assigned tweets as repeated tweets. These tweets
were discarded form our data set to avoid confu-
sion on the classifier’s side.

To measure the inter-rater agreement per group,
we computed Fleiss’ kappa, which is used to mea-
sure agreement when there are more than two
raters. The kappa score between the three anno-
tators was 0.48. While there is no precise rule
for interpreting kappa scores, the work in (Lan-
dis and Koch, 1977) suggests that such a kappa
score translates to having a moderate agreement

between the annotators. Substantial agreement is
achieved with a kappa score greater than or equal
0.61. The achieved inter-rater agreement high-
lights the difficulty and subjectivity of this task.
Take for example the sample tweets in Table 1.
Example (a) is presenting the opinion of the tweet
author and since the opinion has no bad words
and is not very biased, the annotators considered it
credible. Example (b) is also presenting the opin-
ion of the tweet author, but the author said that he
has a proof and did not present it; consequently,
the annotators considered it as not credible. Ex-
ample (c) presents the tweet author’s point of view
that is against the Syrian regime, which some an-
notators who were subjective agreed with and an-
notated it as credible, while others did not and an-
notated the tweet as not credible. It is certainly
difficult to achieve higher agreement in tasks that
are very subjective and are affected by the annota-
tors background.

When grouping tweets by the day of creation,
we found that on average 40% of the tweets gen-
erated per day were non-credible tweets. This
highlights the importance of building a credibility
model for tweets.

3.3 Credibility Features

In this section, we discuss the content-based and
user-based features that were extracted from the
tweets. Our feature-set is composed of 48 fea-
tures broadly categorized into content-based and
user-based features. Content-based features are
features extracted from the tweet itself, whereas
user-based features are extracted from the tweet
author. Content-based features are composed of
26 features. These features are further grouped
into four subcategories, which are sentiment, so-
cial, meta, and textual features. The sentiment cat-
egory is composed of the tweet sentiment, whether
positive, negative or neutral. Sentiment has been
previously shown to be an indicator of credibility
(Castillo et al., 2011; ODonovan et al., 2012; Kang
et al., 2012) and hence included in the feature-set.
The social category captures the social aspects of
the tweet such as the count of user mentions, the
number of retweets, etc. which can be all indica-
tors of credibility. For instance, a tweet with many
retweets might be more credible than ones with
few or zero retweets. The meta category is com-
posed of a single feature which is the day at which
the tweet is posted, which might affect credibility
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(a)
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�
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wqwf AlEAlm mtfrjAF AmAm AlqDyh Alswryh mAhw <lA xwf mn vwrp $Ewbhm wlkn trkwA swryA ElY mAhy Elyh
ltkwn drsAF l$Ewbhm Alty tfkr bAlvwrh

‘the world not reacting to the Syrian war is because leaders are afraid from an uprising but their people, but the leaders
left Syria in its crisis so their people will think twice before doing an uprising themselves’

(b)

©£A�®Ë@ ÉJ
ËYË@ ø
 Y	J«ð �é 	J�J 	̄ �èPñ�K �éK
Pñ�Ë@ �èPñ�JË @
�
Cª 	̄

fElAF Alvwrp Alswryp vwrp ftnp wEndy Aldlyl AlqATE

‘the Syrian revolution is surely a sedition and i have the proof’

(c)

AK
Pñ� ú

	̄ A 	JÊë


@ Qå� 	� @ H. PAK
 . 	áK
YË@ ð ��C 	g


B@ ð éÔgQË@ Ñî 	DÓ �I« 	Q 	K �èñ�̄ Y�B@ ÐA 	¢ 	�

nZAm AlAsd qwp nzEt mnhm AlrHmh w Al>xlAq w Aldyn . yArb AnSr >hlnA fy swryA

‘The Syrian regime is deprived from ethics, mercy, and faith. May god bring victory to the Syrian people’

Table 1: (a) a credible tweet, (b) a non-credible tweet, (c) confusing tweet that can be credible or non-
credible

(weekday vs. weekend). Finally, the textual cate-
gory includes features such as the count of excla-
mation marks and the count of unique characters.

Here is the list of all the content-based features:
positive sentiment, negative sentiment, objectiv-
ity, count of mentions, has user mention, count
of retweets, tweet is a retweet, tweet is a reply,
retweeted, day of week, length of tweet in words,
count chars and count words, count of urls, length
of tweet in chars, count of hashtags, count of
unique words, count of unique chars, has hashtag,
has url, count of ?, count of !, has !, has ?, count of
ellipses, has stock symbol, count of special sym-
bols ($ !), used url shortner.

User-based features are composed of 22 fea-
tures. These features are further grouped into three
subcategories, which are network, meta, and time-
line. Network features include features that cap-
ture the connectivity between the tweet author and
other twitter users. For instance, the counts of
followers and friends, highlight the popularity of
the tweet author. Meta features include registra-
tion age of the author, profile picture, whether she
is a verified twitter user, etc. Timeline features
are features that are extracted from the author’s
previous tweet posts, for instance, the rate of ac-
tivity of the tweet author. Here is the list of all
the user-based features: count of followers, count
of friends, fo/fe, fe/fo, is verified, has descrip-
tion, length of description, has url, has default im-
age, does the image hold a face, length of screen
name, registration age, listed count, status count,
favorites count, tweet time spacing, status retweet

count, retweet fraction, average tweet length , av-
erage urls/mentions ratio in tweets, average num-
ber of hashtags, average tweet length, focus of user
on topic.

We extract such an exhaustive set of features
to study their actual impact on credibility assess-
ment. The extraction of most features requires
simple computations, with the exception of sen-
timent which is more complex (discussed next).

3.4 Sentiment Extraction

To extract the sentiment of a given tweet, we used
ArSenL (Badaro et al., 2014) which is an Arabic
sentiment lexicon. Four existing resources were
used in the creation of ArSenL: English Word-
Net (EWN) (Miller et al., 1990), Arabic Word-
Net (AWN) (Black et al., 2006), English Senti-
WordNet (ESWN) (Esuli and Sebastiani, 2006)
and the Standard Arabic Morphological Analyzer
(SAMA) (Maamouri et al., 2010). For each tweet,
we removed all non-Arabic tokens such as URLs,
user mentions, and hashtags. Next, a tweet was
tokenized and fed into MADAMIRA (Pasha et
al., 2014), a morphological analysis tool for Ara-
bic text. Finally using the lemma for each word
in the tweet, we extracted its corresponding pos-
itive, negative and objective scores from the Ar-
SenL lexicon. To compute the positive score of
the whole tweet we compute the average of all the
words’ positive sentiment in the tweet. The same
method is used to obtain the whole tweet’s neg-
ative and objective scores. Other more complex
methods can be used to find the tweet sentiment
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[(Hobeica et al., 2011), (Al Sallab et al., 2015),
(Badaro et al., 2015), (Baly et al., 2016), (Al Sal-
lab et al., in press 2017)], but we resorted to this
method for simplicity.

4 Performance Evaluation

In this section, we present the credibility classi-
fier (CAT) and evaluate it vs. multiple baselines
and another well-known method. We used the an-
notated data and the extracted features to train a
random forest decision tree classifier using scikit-
learn python library 3. A majority vote was used
to decide on the labels of the tweets. We validate
the applicability of our classifier (CAT) by doing
two different experimental setups. First, we com-
pare CAT to three baselines. Then, we compare
CAT to a state-of-the-art tweet credibility classi-
fier - TweetCred (Gupta et al., 2014).

4.1 CAT versus Baselines

In this experiment, we use the 9,000 annotated
tweets to train and test CAT. We trained our clas-
sifier using multiple machine-learning algorithms
such as NaÃŕve Bayes, SVM and Random For-
est Decision Tree, however, we only report the re-
sults of the highest attaining algorithm in terms
of Weighted Average F-measure (WAF-measure),
namely the Random Forest Decision Tree. The
Weighted Average F-measure is the sum of all F-
measures, each weighted according to the number
of instances with that particular class label. The
Weighted Average F-measure allows a fair com-
parison whilst taking into consideration the clas-
sifier performance within both credible and non-
credible classes. Using 10-fold cross validation,
CAT achieved a WAF-measure of 75.8%.

We compared the performance of CAT to three
common baselines. The first baseline is the strati-
fied baseline, where the classifier makes random
predication in accordance to the distribution of
credible and non-credible tweets in the training
set. Hence, if the training set includes 80% cred-
ible and 20% non-credible tweets, the stratified
baseline randomly predicts 80% of the test set to
be credible and 20% to be non-credible. The sec-
ond baseline is one that makes uniform predictions
such that both credible and non-credible classes
are equally likely. The third baseline is the ma-
jority class baseline. Such a classifier predicts all
tweets to belong to a single class and this class is

3http://scikit-learn.org/stable/

the majority class in the training set. Hence, if the
training set is mostly composed of credible tweets
then each instance in the test set will be labeled
credible. Table 2 presents the Weighted average
Precision, Recall, F-measure of our classifier CAT
in comparison to the three baselines. CAT con-
sistently surpassed the WAF-measure of the base-
line approaches indicating that the user-based and
content-based features we used are worthy indica-
tors of credibility. When considering the highest
WAF-measure among the baselines, CAT achieves
a percentage improvement of 47% over the best
baseline (difference / original number).

Classifier
Weighted
Average
Precision

Weighted
Average
Recall

Weighted
Average

F-measure
CAT 76.1% 76.3% 75.8%

Stratified 51.5% 51.3% 51.4%
Uniform 52.1% 50.5% 50.9%
Majority 35.6% 59.6% 44.6%

Table 2: CAT’s against baseline classifiers

4.2 CAT versus TweetCred

We aim to compare CAT to a competitive ap-
proach existing in the literature, namely Tweet-
Cred (Gupta et al., 2014). We treated both Tweet-
Cred and CAT as black boxes, and obtained the
credibility scores for each tweet in our data set
using TweetCred’s API and CAT’s classifier .
Consequently, we have two annotations for each
tweet, the first annotation obtained from CAT and
the second annotation obtained from TweetCred.
Given these two labels we compare the perfor-
mance of CAT to TweetCred. According to our
knowledge, TweetCred is the best work available
on credibility classification on Twitter.
TweetCred is a real-time web-based system for
assessing credibility. It relies in its classifica-
tion on features that can be extracted in real-time
only; hence TweetCred may assess a new twit-
ter feed in any language. Details of TweetCred
were presented in the related work section. Since
we could not receive TweetCred scores for some
of the tweets, we removed those tweets from the
experiment and re-evaluated CATs performance,
in order to keep the comparison fair. The scores
obtained from TweetCred API ranged from 1 to
7, where 1 indicates low credibility and 7 indi-
cates high credibility. To fairly compare CAT to
TweetCred we must project TweetCred’s credibil-
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ity scores to two values, namely credible or non-
credible. To determine the cut-off threshold below
which a tweet is non-credible using TweetCred,
we used our annotations and TweetCred scores to
train a decision tree. The cut-off threshold was
determined to be 3. Hence, any tweet receiving
a TweetCred score less than or equal to 3 is non-
credible and is credible otherwise. Table 3 depicts
the Weighted Average Precision, Recall, and the
WAF-measure of both TweetCred and CAT. CAT
outperforms TweetCred when classifying tweets
by 16.7% in terms of the percentage increase in
WAF-measure. Our intuition is that CAT outper-
formed TweetCred because TweetCred relies in its
classification on real-time features only, such as,
count of retweets and count of friends, while ig-
noring the tweet semantics and the author clues.

Classifier
Weighted
Average
Precision

Weighted
Average
Recall

Weighted
Average

F-measure
CAT 66.8% 67.1% 67.1%

TweetCred 58.6% 56.9% 57.5%

Table 3: CAT’s against TweetCred Classifier

5 Feature Analysis

5.1 Content-based vs. User-based features

In this section, we present comparative analysis
when training our classifier using content-based
features versus user-based features. The main
objective of this comparison is to know whether
content based features only or user-based fea-
tures only can be used as deciders for credibility.
We trained our classifier using user-based features
only and performed 10-fold cross validation. We
repeated the same experiment but using content-
based features only. As shown in table 4, a WAF-
measure of 68.9% was achieved when using user-
based features alone, which is 0.2% more than
the WAF-measure achieved when content-based
features were used alone. However, the best re-
sults are achieved when the features are combined.
Consequently, we cannot solely rely on the tweet
content alone or the author features alone to de-
cide on tweet credibility; rather a combination of
both cues is needed for a robust judgment.

5.2 Feature Reduction

In this section, we describe our feature reduction
experiment that aimed at retaining worthy fea-

Features
Weighted
Average
Precision

Weighted
Average
Recall

Weighted
Average

F-measure
user 69.7% 70.1% 68.9%

content 69.1% 68.5% 68.7%
CAT 76.1% 76.3% 75.8%

Table 4: CAT’s evaluation using different feature
sets

tures and discarding features that might be mis-
leading and harming the performance of our clas-
sifier. This process was composed of two steps.
Step 1 involved picking a subset of features, and
step 2 involved evaluating the efficiency of the se-
lected subset. These two steps were repeated until
the desired improvement was achieved.

For Step 1 (picking a subset of the features), we
used best-first search implementation available in
WEKA - a well established data mining tool - to
traverse the feature space (Hall et al., 2009). The
feature space was represented as a graph and each
node in the graph represented a possible combina-
tion of the available features. Hence, in total our
feature space contained 248 nodes. Edges connect-
ing the graph nodes were determined by the con-
tent of each subset node. A node had an edge to
another if the other node either added or removed
a feature from the node’s combination of features.
Traversing the graph starting from an empty node
(containing no features) and moving only along
the edges that add a feature to the current com-
bination is called forward traversal. On the other
hand, starting from a full node (containing all 48
features) and moving along the edges that remove
a feature from the current combination is called
backward traversal. We performed feature reduc-
tion with both forward and backward traversal sep-
arately.

For Step 2 (evaluating the chosen subset), af-
ter deciding on the search direction and picking
a starting node from the feature space graph, we
evaluate the efficiency of the node’s subset of
features as follows. We build a classifier using
the combination of features in the selected node
and we perform 10-fold cross validation and keep
track of the WAF-measure of the built classifier.
Feature reduction is an optimization problem and
we cannot predict how neighboring nodes will per-
form or whether a node will get us closer to our
goal or not. Traversing the whole graph and eval-
uating every possible node in the feature space
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will give us the best feature subset, but this is
not feasible. Consequently, we must determine
a stale state, that is, a state after which the algo-
rithm terminates graph traversal. The stale state
for this experiment was set to 100. Consequently,
the traversal algorithm terminated once it had ex-
panded 100 nodes that did not improve on the best
WAF-measure seen so far.

We evaluated around 1000-4000 subsets and the
selected feature subsets were each less than half
the original size, yet each outperformed the orig-
inal feature set when it comes to WAF-measure.
The best representative features were found to be
as follows:

• User Features: Follower count, listed count,
has description, has url, retweet fraction, av-
erage hashtags per tweet, average urls per
tweet, tweet spacing (in minutes), exper-
tise, average tweet length (in words), fol-
lower/friends ratio

• Content Features: count of url, negative sen-
timent score, count of exclamation, has url,
count of unique chars, count of hashtag,
count of ellipse

One of the features that was found to be highly
crucial in determining the credibility of a given
tweet is its sentiment, specifically the negative
sentiment. Also, five of the effective features are
related to URLs. For example, one of the features
that was found to be very useful is the presence
of a URL in the author’s Twitter profile linking
to her website. We found that 74% of the tweets
whose authors provided a URL were credible, in
contrast to only 47% of tweets whose authors’ pro-
files were missing a URL. We conclude that tweets
whose authors’ profiles contain URLs are more
likely to be credible than those that do not. We
also noticed that the presence of a URL in a tweet
is a very important feature. We found that 80%
of tweets that had a URL in them were credible,
whereas only 40% of tweets without a URL were
credible. The above highlights the importance of
the presence of a URL in both the tweet and in its
author’s profile. In addition, we also noticed that
not only the presence of a URL is important, but
also the count of URLs. For example, the average
URLs count per tweet is another crucial feature. It
is computed by looking at the previous tweet posts
for the tweet author and computing the count of
URLs she uses on average. We found that 88% of

the tweets that were generated by authors who had
an average of one URL per tweet in their history
were credible. Moreover, we found that only 39%
of tweets that did not have a URL linking to an
external source were credible. On the other hand,
79% and 100% of tweets with 1 and 2 URLs, re-
spectively, were annotated as credible.

All of the above are clear indicators of the im-
portance of the presence and the count of URLs
whether in the author profile, his/her past tweets
or in the tweet itself. Next, we highlight relevant
features extracted from the user timeline. Time-
line features are user features extracted from the
author’s tweet history. The original feature set in-
cluded 8 such features. To the best of our knowl-
edge none of these features have been previously
used for credibility classification. We found 5 fea-
tures from the user timeline to be highly effective
for credibility classification, namely retweet frac-
tion, average URLs per tweet, tweet spacing (in
minutes), average tweet length (in words), aver-
age hashtags per tweet. For instance, we observed
that 85% of the tweets whose authors had on av-
erage 1.25 hashtags in their history were credi-
ble. We also noticed that authors who had a high
retweet fraction had a higher probability of gener-
ating non-credible tweets.

Finally, while it is interesting and useful to
know what are the most relevant features for cred-
ibility, we were also interested in finding the least
important ones. To find such features we per-
formed the same steps used to find the most impor-
tant features for credibility classification however
instead of using the reduced feature sets, we used
their inverses. The inverse set of a reduced feature
set will include all features in the feature space that
have not been selected by feature reduction. One
feature that was missing from all the reduced sets
was the day of the week. This means that the day
at which the tweet is generated has no correlation
to its credibility and this is intuitive. Another ir-
relevant feature is the count and the presence of
a user mention. Also the count of character and
character to word ratio of the tweet were deemed
irrelevant to credibility classification.

6 Conclusion

In this paper, we presented a novel credibility
model for tweets called CAT. Our model is based
on a machine-learning approach, and makes use of
an exhaustive list of features, some of which are
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user based and some that are extracted from the
text of the tweet itself. Our feature set includes
many features extracted from the timeline of the
tweet’s author, which have never been looked at in
the context of credibility. To test the validity of
our model, we annotated a corpus of 9,000 Ara-
bic tweets that are topic independent. The anno-
tated corpus was used to train a binary classifier
that consistently outperformed all baselines and
a state-of-the-art approach in terms of Weighted
Average F-measure. We also conducted a thor-
ough analysis of the annotated corpus and care-
fully studied the effect of the various features on
credibility prediction. For future work, we plan to
incorporate Arabic specific features, for instance
part of speech (POS) tags, and check their effect
on classifying credibility. We also plan to try the
exact method with the same set of features on
tweets from other languages, and see if the pro-
posed classifier continues to perform well on lan-
guages other than Arabic.
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Abstract

This paper aims to develop a new classi-
fication of errors made in Arabic by those
suffering from dyslexia to be used in the
annotation of the Arabic dyslexia corpus
(BDAC). The dyslexic error classification
for Arabic texts (DECA) comprises a list
of spelling errors extracted from previous
studies and a collection of texts written
by people with dyslexia that can provide
a framework to help analyse specific er-
rors committed by dyslexic writers. The
classification comprises 37 types of er-
rors, grouped into nine categories. The
paper also discusses building a corpus of
dyslexic Arabic texts that uses the error
annotation scheme and provides an anal-
ysis of the errors that were found in the
texts.

1 Introducation

Gallagher and Kirk (1989) divided learning dis-
abilities into two types: developmental learning
disabilities and academic learning disabilities. De-
velopmental learning disabilities include attention,
memory, perceptual, perceptual-motor, thinking
and language disorders; while academic learning
disabilities include reading, spelling, handwriting,
arithmetic and writing expression disorders. This
paper focuses on spelling disabilities, with a focus
on the spelling difficulties encountered by people
suffering from dyslexia. The word dyslexia origi-
nates from the Greek and signifies “difficulty with
words” (Ghazaleh, 2011). Dyslexia International
(2014) has reported that dyslexia affects around
one in ten individuals.

Dyslexia has become a topic of debate in dif-
ferent fields, including education, psychology,
neuropsychology, linguistics and other sciences.

Some studies have attempted to analyse and ex-
plain textual errors committed by writers with this
condition, though to date there is no standard error
classification specifically for dyslexia errors.

Most of the studies carried out in this field did
not categorise the errors but focused only on list-
ing them. This study addresses this gap by devel-
oping a new dyslexia error classification system
based on the results of a number of dyslexia error
analysis studies as described in the next section.

This paper is organised as follows. Section 2
covers studies that discuss the errors caused by
dyslexia. Section 3 describes the classifications
used to annotate Arabic dyslexia errors. Sec-
tion 4 contains an evaluation of these classifica-
tions. Section 5 discusses building the Arabic
dyslexia corpus, followed by section 6 which ex-
plains the annotation process. Section 7 shows
the analysis of dyslexic errors. Lastly, some sug-
gestions for further work and conclusions are pre-
sented in Section 8.

2 Basis of dyslexic error classification for
Arabic texts (DECA)

The DECA developed for this study relies on the
findings of the studies mentioned below that dis-
cuss dyslexia errors from different aspects. For
instance, Burhan et al. (2014), discuss the errors
using a survey of teachers on which errors they be-
lieve are most common.

According to Ali (2011), spelling disabilities
often cause letter reversals, also known as mirror
writing and writing from left to right. As Arabic is
written from right to left, writing from left to right
can result in a correctly written sentence; mirror
writing causes the sentence to be reversed. Ali
(2011) also highlights other common errors in-
cluding omission, addition, substitution and trans-
position. Dyslexic students also have difficulties
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differentiating between letters with similar forms
and different sounds.

Abu-Rabia and Taha (2004) examined the
spelling mistakes made by speakers and writers of
Arabic. They compared dyslexia with two groups
of participants, namely, participants with, a young
readers’ group, matched with the dyslexic partici-
pants by reading level and an age-matched group.
The study revealed seven types of errors: phonetic
errors, semi-phonetic errors, dysphonetic errors,
visual letter confusion, errors relating to irregular
spelling rules, word omission and functional word
omission. Other errors included students spelling
an Arabic word according to how it is pronounced
in the local spoken dialect of Arabic that they use
in their day-to-day life, rather than using the cor-
rect Arabic spelling for it.

In order to examine the errors of female stu-
dents with dyslexia Alamri and Teahan (2013) cre-
ated a corpus of 1,067 words in a pilot project.
During analysis, they identified a number of com-
mon spelling errors, including but not limited to:
inability to specify the correct form of the Hamza;
difficulty in short and long vowels; Tanween and
exchanging 	  with 	� , 	� with 	  , �H with �è or

è and �è or è with �H .

Burhan et al. (2014) also studied common er-
rors made by students with learning disabilities;
however, they used the viewpoints of teachers to
identify the degree of common errors of 28 differ-
ent kinds of errors.

Abunayyan (2003) created a docu-
ment called “Error Analysis in Spelling -
ZCÓB @ �èXAÓ ú


	̄ Z A¢ 	k

B@ ÉJ
Êm�

�'”, which is used in

Saudi Arabia to analyse the spelling errors of
dyslexic students in primary schools, it contains
23 different error types.

The following are three studies that give a
brief overview of further studies, which examined
dyslexic errors, corpora or lists of errors in other
languages. These studies are relevant as they are
examples of error annotations language resources
that have been developed in other languages (al-
though as stated nothing similar has been done for
Arabic until now).

Pedler (2007) created a spelling correction pro-
gramme that focuses on errors in words commit-
ted by individuals with dyslexia. This version
comprises approximately 12,000 English words
and 833 marked-up errors. The corpus used in

this study comprised different resources, such as
homework, online typing texts, texts created by
dyslexic students studying for the IT NVQ and
texts created by students on the dyslexia mailing
list. Pedler (2007) created an English confused
words list defined as “a small group of words that
are likely to be confused with one another”, such
as ‘form’ and ‘from’. The list included 833 sets of
words which are regularly confused that were ex-
tracted from the corpus of texts written by people
with dyslexia.

Rello (2014) compiled a Spanish corpus
(Dyscorpus) comprising texts written by dyslexic
children aged 6-15 years. The corpus comprised
83 texts: 54 taken from school essays and home-
work exercises and 29 from parents of dyslexic
children, totalling 1,171 errors. Dyscorpus is an-
notated and provides a list of unique errors.

Rauschenberger et al. (2016) collected texts
written in German from homework exercises, dic-
tations and school essays. The corpus comprised
47 texts written by 8 to 17 year old students. The
texts contained a list of 1,021 unique errors. The
researchers created a new resource of German er-
rors and annotated errors with a combination of
linguistic characteristics.

3 Dyslexic error classification for Arabic
texts (DECA)

There seems to be a consensus among researchers
on some types of errors made by people suffering
from dyslexia, such as ‘omission’. However, some
types of errors are only reported in single studies,
for instance the ‘functional words omission’ error
reported by Abu-Rabia and Taha (2004). These
errors were excluded from this study because the
prospect of their appearance is limited.

Most of the types in the classification deal with
unique specificities of the Arabic language. The
system of Arabic writing contains characteristics
such as diacritics which does not exist in other
languages. However, there are some types in the
classification that occur in other languages, such
as omission, substitution and addition. A classifi-
cation of annotated errors was created for the Ara-
bic corpus of this study which can help researchers
of dyslexia in Arabic understand and identify error
types more easily.

The DECA classification comprises a list of er-
rors grouped into types and categories. The cat-
egory is more general than the type: it specifies
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whether the error occurs in the Hamza, in the Al-
madd, and so forth. Each error category is fur-
ther subdivided into a variable error type. The
nine error categories are “Hamza, Almadd, Con-
fusion, Diacritics, Form, Common error, Differ-
ences, Writing method, Letters written but not
pronounced (or Vice Versa)”. A category called
“Other” was also created to handle any error that
does not yet have a “tag”. The first version of the
classification contained 35 error types. In each cat-
egory, an error type called “Other” is added if the
errors are not listed in the category. Alfaifi et al.
(2013) suggests the use of two characters to repre-
sent the tag: the first specifying the category and
the second specifying the error type; for example,
in 	Ë


B@ úÎ« �è 	QÒêË @ (Alif Hamza Above), the tag

would be <HA>with the (H) indicating the cate-
gory �H@ 	QÒêË @ (Hamza), and the (A) indicating the

error type (Above) 	Ë

B@ úÎ« .

To illustrate further, if the erroneous word is QÒJ
�K
and the correct word is PAÖ �ß; thus, the writer would

write ø
 instead of the diacritical �H� and deleted

the letter @. The erroneous word has one wrong let-
ter added in one location and another correct letter
missing in another location. Therefore, to indicate
the two different types of errors, ( ) can be used
between the tags as follows: <DY AA>.

4 Evaluating the DECA

Pustejovsky and Stubbs (2012) suggest that on the
first round of annotations, it is best to select a
sample of corpus to annotate in order to find out
how well the annotation task works in practice.
This will also help to evaluate the comprehensive-
ness, appropriateness and clarity of the classifica-
tion and to determine if it serves the purpose of the
error analysis.

Following Pustejovsky and Stubbs (2012) ap-
proach, 5000 words were chosen as a sample. The
annotators used the classification Version 1 to an-
notate all errors completely manually, using the
original handwritten text before transcribing it into
an electronic form. They then provided a list of the
types of errors encountered that matched with the
classification and indicated if there were any new
types not listed in the classification. The findings
showed that all errors in the samples were anno-
tated using the classification, except for two new

types, which are “
	¬ðQmÌ'@ P@Qº�K - Repeated letters”

and “
	¬QmÌ'@ É¾ �� 	á�
K. ��K
Q 	®�JË @ úÎ« �èPY�®Ë@ ÐY«

é�JK
Aî 	E ð

@ é¢�ð ð


@ �éÒÊ¾Ë@ �éK
 @YK. ú


	̄ 	àA¿ @ 	X @ - Form

of the letter in the Beginning, Middle or End”.
Version 1 was edited to include these two errors.
Therefore, Version 2 of the classification con-
tained 9 categories and 37 errors types, as shown
in Table 1.

Following this exercise, questionnaires were
sent to two evaluators who had agreed to partic-
ipate in this study. The evaluators were primary
school teachers who teach children with learning
disabilities. They were given the DECA Version
2 and were asked to read through the list of error
categories and give feedback on whether they felt
it comprised all the errors committed by dyslexic
students and if the categories were appropriate.
They were also asked to read through the sample
text and tag it with the appropriate error tag.

Both evaluators found the correct tag for all
sentences, except for one sentence containing the
error word “Which -ú


�æÊË @” where one chose the

<FR>tag rather than <LT>. Both found the tags
to be appropriately named. When asked how eas-
ily they found the right tag, their answers ranged
from easy to difficult according to the sentence.
Moreover, they found that the table presented all
the types of dyslexic errors and that it was com-
prehensive.

5 Building the Arabic corpus (BDAC)

The size of the BDAC corpus is 27,136 words and
8000 errors in texts collected from Saudi Arabian
primary schools, online forms and texts provided
by parents. All participants were diagnosed with
dyslexia by professionals. The texts written by
dyslexics aged between 8 to 12 year olds, with
some texts written by youths aged 13. The BDAC
corpus contains texts written by both male and fe-
male students.

As some texts were handwritten, further work
is needed for transcription into an electronic form.
In addition, since some teachers or parents did not
transcribe the correct text that the dyslexic wrote,
further work is also required either by trying to
find the correct text or by choosing the word in ac-
cordance with the written text as much as possible.

An example of a handwritten text written by 10
year-old girl with dyslexia shown in Figure 1.
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Table 1: Dyslexic error classification for Arabic texts (DECA).

Figure 1: Text written by 10-year-old girl with
dyslexia.

In comparison with other languages, three stud-
ies carried out on different languages — English
(12,000 words), Spanish (1,171 words) and Ger-
man (1,021 words) (Pedler, 2007; Rello, 2014;
Rauschenberger et al., 2016) — provide strong ev-
idence that a small corpus of around 1,000 errors
can yield useful results.

6 Annotating the BDAC corpus

As Granger (2003) points out, error annotation is a
very tedious task that needs to be undertaken with
care, but it has an immensely significant outcome
as it makes it possible for the researcher to gain
quick access to particular error statistics.

In order to illustrate the annotation process, Fig-
ure 2 shows a screenshot of a Java program that
was created in order to speed up the annotation
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process. A Java program was developed to con-
vert (tokenise) the text into tokens. Each token is
located in a separate line, and the erroneous words
are manually annotated with each type of error
based on the classification and the correct spelling
of the erroneous word.

As shown in Figure 2, the text includes 43 to-
kens. In the example below, the first error is lo-
cated in token 2. Thus, the annotator chose to-
ken 2, as it is an error word, by double-clicking
on the error (token 2) in the text area labelled
“Raw Text ú
Î�B@ �	JË @”, then chose the correct

word from the text area labelled “Correct Text
iJ
j�Ë@ �	JË @” , again by double-clicking. Next,
the appropriate tag was selected from the list. Af-
ter that, “Apply -

	YJ
 	® 	J�K” is clicked, and it appears

in the “Raw Text ú
Î�B@ �	JË @” area as shown in

Figure 2. The procedure is repeated with each er-
ror found in the text. In the case of a word that
contains more than one type of error, as denoted
by token 6, the annotator can add another tag via
the “+” button, and choose another tag which is
separated by ( ). As a result, the annotation for
token 6 is:

Tn="6" CorrectForm="��. �J�̄

@" Tag="HA_MA" ErrorForm="��. �J�®�@"

Figure 2: Screenshot of Java program to aid man-
ual annotation process.

Each error token requires two annotations: one
for the correct word and the second for the error
type, as follows:

Tn="1" CorrectForm="�Ò ��Ë@" Tag="LS" ErrorForm="�ÖÞ�� @"

where:

• Tn = Token number (position of the word
within the sentence).

• CorrectForm = The correct spelling of the
word.

• Tag = Contains abbreviation of the error
type.

• ErrorForm = The error word.

The BDAC corpus (27,136 words) has been
fully annotated using DECA Version 2. The com-
bined information was ultimately converted to an
XML file as shown in Figure 3 below:

Figure 3: A sample of the XML format used for
the BDAC.

7 Analysis of Dyslexic Errors

Annotating the corpus has a significant advantage
in terms of being able to search for particular error
types or groups of errors in exactly the same way
as individual words are searched (Nicholls, 2003).
Once the annotation is carried out, corpus analy-
sis becomes the simple procedure of extracting the
tags or error and their corresponding target word.
Some errors occur more than others in the corpus.
Table 2 below shows the frequency of errors for
the top five errors.
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Error word Number of
Occurrences

On - C« 64

Which - ú

�æÊË @ 59

Which - ø

	YÊË @ 47

To - úÍ@ 35

That - ½Ë@ 	X 31

Table 2: Frequency of errors.

The correct form for the first error (C«) is

(úÎ«). The error type is (CA), which falls un-

der the “Confusion – ¡Ê	mÌ'@” category. The sec-
ond, third and fifth errors fall under the “Let-
ter written but not pronounced or vice versa –
�ºªË@ ð


@ ��¢	J�K Bð I. �Jº�K 	¬ðQk” category, for

which the correct forms are (ú

�æË@) (ø


	YË@) (½Ë 	X),

respectively. Finally, the fourth error falls under
the “Hamza – �H@ 	QÒêË @” category, where the correct

form is (úÍ@) and the error type is (HB).
The highest number of errors for specific

category was for the “Common errors –
�éªKA ��Ë@ ZA¢ 	k


B@” category with 2,717 error

words; followed by 1,621 errors in the “Hamza –
�H@ 	QÒêË @” category and 1,553 errors in the “Confu-

sion – ¡Ê	mÌ'@” category. The lowest two types of

errors fell within the “Differences – �HA 	̄ C�J 	kB@ ”

and “Form – �éÒÊ¾Ë@ É¾ �� ” categories.

The Alif Madd ( 	Ë

B@ YÓ) error was the

most frequent type of error making up 13.43%
of total number of errors. This is in con-
trast with Burhan et al. (2014) finding that
( �èPñ�ºÖÏ @ ÐCË@ Aî �D�®J.� @ 	X @ (È


@) �K. �èZðYJ.Ó �HAÒÊ¿)

are the most frequent type of errors made by
Arabic dyslexic students from the teachers’
viewpoint.

The most common errors in made by dyslexic
persons are addition (13.4%), omission (10.98%),
substitution (6.36%) and transposition (3.23%).
This contrasts with Alamri and Teahan’s (2013)
study which found that the highest number of er-
rors were errors of omission rather than addition.

Dyslexic people are popularly known
to confuse Tah and Tah Marbuta/Hah
(ZAêË @ ð


@ �é£ñK. QÖÏ @ Z A�JË @ð �ékñ�J 	®ÖÏ @ Z A�JË @ 	á�
K.), with

6.55% of the errors falling under this type of error.
This is consistent with Burhan et al. (2014) who
found that this type of error is noticeably more
apparent in the writing of people who suffer from
dyslexia.

8 Conclusion and recommendations for
further work

The DECA was introduced in response to the lack
of a standard classification for dyslexia errors in
Arabic. It was developed on the basis of prior
error classification studies. Two people assessed
the DECA classification for Arabic dyslexic errors
and found it to be reliable and effective. The last
version of the DECA includes 37 types of errors
classified under nine categories.

The findings could be helpful for the field
of pedagogy in general and for researchers of
dyslexia in particular. This classification is valu-
able and can serve as a springboard to provide im-
proved aid to this target group and also make the
annotators’ task less stressful.

Further work is required to improve the DECA
in collaboration with special education needs and
corpus linguistics specialists. Since the BDAC
was collated from writings of residents of only
one country (Saudi Arabia), one way to improve
the classification is by collecting further texts from
various countries. This may yield different types
of errors, which could then be added to the classi-
fication developed in this study as a standard error
classification which could be applied to other Ara-
bic dyslexia corpora.
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Abstract

In this paper, we introduce an enhance-
ment for speech recognition systems using
an unsupervised speaker clustering tech-
nique. The proposed technique is mainly
based on I-vectors and Self-Organizing
Map Neural Network (SOM). The input to
the proposed algorithm is a set of speech
utterances. For each utterance, we ex-
tract 100-dimensional I-vector and then
SOM is used to group the utterances to
different speakers. In our experiments,
we compared our technique with Nor-
malized Cross Likelihood ratio Clustering
(NCLR). Results show that the proposed
technique reduces the speaker error rate in
comparison with NCLR. Finally, we have
experimented the effect of speaker cluster-
ing on Speaker Adaptive Training (SAT) in
a speech recognition system implemented
to test the performance of the proposed
technique. It was noted that the proposed
technique reduced the WER over cluster-
ing speakers with NCLR.

1 Introduction

Arabic Automatic Speech Recognition (ASR) is
a challenging task, because of the dominance of
non-diacritized text material, the several dialects,
and the morphological complexity. Another fac-
tor that has a negative impact on the advance of
Arabic ASR research is the lack of open resources
to develop state of the art systems. During re-
cent years, it has been shown that, in large vo-
cabulary speech recognition systems, performance
were significantly improved using speaker adap-
tation. Nowadays, speaker adaptation techniques
are crucial in all the advanced speech recognition
systems. Speaker adaptation uses data from spe-

cific speaker to move the parameters of a speaker-
independent system towards a speaker dependent
one.

Speaker clustering which is defined as; an unsu-
pervised classification of voiced speech segments
based on speaker characteristics (Margarita et al.,
2008) is used to boost Speaker Adaptive training
in ASR systems. The target of clustering is assign-
ing a unique label to all speech segments uttered
by the same speaker.

In recent years, several speaker clustering meth-
ods have been proposed, ranging from hierarchical
ones, such as the bottom-up methods and the top-
down ones, to optimization methods, such as the
K-means algorithm and the self-organizing maps.
Self-Organizing Map (SOM) is considered as a
powerful tool for speaker clustering (Moattar and
Homayounpour, 2012).

In this paper, we introduce a fast automatic
speaker clustering technique based on SOM and
I-Vectors (Dehak et al., 2011) as input features.
Our proposed SOM has a feed-forward structure
with a single computational layer arranged in 2
dimensions (rows and columns). Assigning cor-
rect speaker identification for each utterance can
boost the adaptation performance in ASR systems.
We have compared our technique with the well-
known algorithm Normalized Cross Likelihood
Ratio (NCLR). Speaker Clustering using SOM has
notably reduced the word error rate of ASR results
over both clustering using NCLR and the baseline
system (were no speaker clustering performed).

The rest of the paper is organized as follows:
Section 2 provides a description of the system used
and explains the proposed fast automatic cluster-
ing algorithm; Section 3 describes the experimen-
tal results. The final conclusions are included in
section 4.
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Figure 1: NCLR Block Diagram

2 Speaker Clustering Experiments

2.1 NCLR Speaker Clustering

In order to perform speaker clustering we uti-
lized the technique proposed in (Rouvier et al.,
2013). The mentioned system uses the Normal-
ized Cross Likelihood Ratio (NCLR) which is de-
scribed in (Le et al., 2007) as: NCLR(Mi, Mj) =
1

Nj
log(L(Xi|Mi)

L(Xi|Mj)) + 1
Nj

log(L(Xj |Mj)
L(Xj |Mi)

) The term

L(Xj |Mj)
L(Xj |Mi)

measures how well speaker model Mi

scores with speaker data Xj relative to how well
speaker model Mj scores with its own data Xj .

Figure 1 shows the block diagram that describes
the clustering system mentioned above which we
used in our experiments.

Hierarchical Agglomerative Clustering
(HAC): Pre-segmented wave files are fed into
HAC system which uses the BIC (Bayesian
Information Criterion) measure (Chen and
Gopalakrishnan, 1998).

Viterbi Resegmentation: the Viterbi uses
GMM trained by Expectation Maximization (EM)
to refine speaker boundaries.

NCLR Clustering: speaker models are adapted
by a 512 diagonal GMM-UBM system. Af-
terwards NCLR is used to recombine adapted
speaker models.

2.2 SPEAKER CLUSTERING USING SOM

A self-organizing map (SOM) is a type of Neu-
ral Networks. It is trained using unsupervised
learning algorithm to produce map which is dis-
crete representation of the input training sam-
ples. SOMs operate in two main modes: training
and mapping. Training builds the map using in-

Figure 2: SOM Architecture

put training samples, this process is called vector
quantization, while mapping classifies a new input
vector.

I-vector Extraction:In recent years, many ap-
proaches have been proposed to enhance speaker
recognition system performance. The most pop-
ular are those based on generative models, like
Gaussian Mixture Models based on Universal
Background Model (GMM-UBM). Other gener-
ative models such as Eigen-voices, and the most
powerful one, the Joint Factor Analysis (JFA)
(Kenny et al., 2008), have been built on the suc-
cess of the GMM-UBM approach.

Unlike JFA, the idea consists in finding a low
dimensional subspace of the GMM super vector
space, named the total variability space that rep-
resents both speaker and channel variability. The
vectors in the low dimensional space are called I-
vectors. In 2008 NIST speaker recognition evalua-
tion (Wooters and Huijbregts, 2008), I-vector fea-
tures were used for the first time. The I-vectors
are smaller in size to reduce the execution time of
the recognition task while maintaining recognition
performance similar to that obtained with JFA.

SOM Clustering:Assigning correct speaker
identification for each utterance can boost the SAT
adaptation performance in ASR systems. For the
offline decoding task, we introduce a fast auto-
matic speaker clustering technique based on SOM
and I-Vectors as input features. Our used SOM
has a feed-forward structure with a single compu-
tational layer arranged in 2 dimensions (rows and
columns). Each neuron is fully connected to all
the source nodes in the input layer, as shown in
Figure 2.

In our experiments, we construct a SOM map
in which the number of rows is variable while the
number of columns is forced to be 1 column.

For each utterance, a 100 dimension I-vector
is calculated and considered as a spatially con-

80



Figure 3: SOM Clustering Flow Chart

tinuous feature vector to our clustering technique.
Figure 3 describes the flow chart of our proposed
method.

2.3 Clustering Results

We have run our experiments on the Development
data of the Multi Genre Broadcast MGB-2 chal-
lenge described in (Ali et al., 2016). The data
consists of 10 hours of Aljazeera TV Broadcast.
Table 1 illustrates the results of the NCLR cluster-
ing algorithm verses the proposed SOM technique.
The metric used to measure the systems’ perfor-
mance is the Speaker Error Rate (SER) defined in
(Anguera, 2006) as:

SER = ΣS
s=1(max(Nref(s),Nhyp(s))−Ncorrect(s))

ΣS
s=1dur(s).Nref

where S is the total number of segments where
both reference and hypothesis segment agree on
same speaker and Nref is the number of speakers
in segment s.

Table 1 shows SER of the proposed SOM tech-
nique verses the NCLR technique.

Metric SOM NCLR
SER 4.96% 5.42%

Table 1: SER of SOM clustering vs SER of NCLR

Figure 4: ASR Block Diagram

3 Automatic Speech Recognition (ASR)
System

We integrate the results of both Clustering tech-
niques we experimented with Automatic Speech
Recognition System (ASR).

3.1 ASR System Components
Figure 4 describes the block diagram of the ASR
system.

MFCCs HMM System: Context Dependent
HMM CD-HMM is trained over 500 hours of the
MGB Challenge training data. The model ob-
tained is used to force align training data.

Bottleneck Features (BNFs) : DNNs have
proved to be effective in Acoustic modeling (Hin-
ton et al., 2012). DNNs can be used either as the
main classifier for acoustic modeling or as a prior
step to extract acoustic features then train the main
classifier. We used both mentioned techniques.
After aligning all the given waves, a Deep Neural
Network consists of five 1500-neuron hidden lay-
ers, with a 40 neuron Bottleneck layer, was trained
on top of filter banks. 40 dimensional BNFs were
extracted from the BNF layer and used to train
SAT/HMM-DNN system.

Hybrid DNN-HMM and DNN-MPE: Finally
the 40 BNFs are extracted to train a hybrid DNN-
HMM followed by the discriminative training for
DNN (Vesel et al., 2013).
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Figure 5: Bottleneck Features Extraction

In our experiments we have used the Kaldi
toolkit (Povey et al., 2011) for acoustic modelling.

3.2 Impact of clustering on ASR

In our experiments, it has been proven that using
SOM improves the system performance by reduc-
ing WER.

Using the SOM to specify new speaker labels
for development data and replicating the decoding
process on different ASR system, the following
enhancements have been verified; First, for the SI-
tandem ASR system trained on top of BNFs + fM-
LLR features, the SOM clustering has given a rel-
ative reduction in WER by 3.05% over the tandem
BNFs +fMLLR (SI) where all speaker segments
per episode were given the same label. Moreover,
the mentioned system has given an absolute reduc-
tion of 1.16% over the tandem BNFs +fMLLR (SI)
integrated with NCLR (SI-NCLR) clustering tech-
nique.

Table 2 shows the Speaker Independent (SI) re-
sults of the GMM-HMM tandem system trained
over BNFs and fMLLR features.

Experiment WER
Tandem (BNFs + fMLLR) (SI) 37.91
Tandem (BNFs + fMLLR) (SI-NCLR) 37.41
Tandem (BNFs + fMLLR) (SI-SOM) 36.75

Table 2: Tandem GMM-HMM Speaker-
Independent results

Second, for the SD-tandem ASR system trained
on top of BNFs + fMLLR features, the SOM clus-
tering has given a relative reduction in WER by
4.22% over the tandem BNFs +fMLLR (SD). In

addition, the mentioned system has given an ab-
solute reduction of 1.52% over the tandem BNFs
+fMLLR (SD) (SD-NCLR).

Table 3 shows the Speaker Dependent (SD)
results of the GMM-HMM tandem system over
BNFs and fMLLR features.

Experiment WER
Tandem (BNFs + fMLLR) (SD) 36.00
Tandem (BNFs + fMLLR) (SD-NCLR) 34.96
Tandem (BNFs + fMLLR) (SD-SOM) 34.48

Table 3: Tandem GMM-HMM Speaker-
Dependent results

Third, for the hybrid DNN/HMM system
trained on top of fMLLR +BNFs with Sequence
Discriminative training criterion (DNN/HMM-
MPE), the SOM clustering gave a relative reduc-
tion of 3.84% in WER of the hybrid system that
used no clustering technique. In comparison with
the hybrid system where NCLR clustering was ap-
plied, the SOM gave a relative reduction in WER
of 1.87%.

Table 4 shows the final results of the hybrid
DNN-HMM trained with Minimum phoneme er-
ror rate criterion (MPE).

Clustering Technique WER
Tandem DNN/HMM-MPE (SD) 27.8
Tandem DNN/HMM-MPE (SD-NCLR) 27.24
Tandem DNN/HMM-MPE (SD-SOM) 26.73

Table 4: Hybrid DNN/HMM-MPE results

It is noticeable that the performance of the hy-
brid system improved after using the proposed
clustering technique.

4 Conclusion

In this paper, we have proposed an algorithm
for automatic speaker clustering based on Self-
Organizing Map. The performance of the new
algorithm has been compared with a well-known
technique of speaker clustering (Normalized Cross
Likelihood Ratio). The experimental results on
Multi Genre Broadcast data have shown notice-
able reduction in Speaker Error Rate. The clus-
tering algorithm has been integrated with state of
art Automatic Speech Recognition techniques to
boost Speaker adaptive training performance. It

82



is experimentally verified that the proposed tech-
nique achieved notable reduction in word error
rate compared to the traditional tandem system. In
addition, the proposed algorithm attained a reduc-
tion in word error rate in comparison with the re-
duction attained by NCLR clustering technique.
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Abstract

This paper sheds light on a system
that would be able to diacritize Ara-
bic texts automatically (SHAKKIL). In
this system, the diacritization prob-
lem will be handled through two lev-
els; morphological and syntactic pro-
cessing levels. The adopted morpho-
logical disambiguation algorithm depends
on four layers; Uni-morphological form
layer, rule-based morphological disam-
biguation layer, statistical-based disam-
biguation layer and Out Of Vocabulary
(OOV) layer. The adopted syntactic dis-
ambiguation algorithms is concerned with
detecting the case ending diacritics de-
pending on a rule based approach simu-
lating the shallow parsing technique. This
will be achieved using an annotated cor-
pus for extracting the Arabic linguistic
rules, building the language models and
testing the system output. This sys-
tem is considered as a good trial of the
interaction between rule-based approach
and statistical approach, where the rules
can help the statistics in detecting the
right diacritization and vice versa. At
this point, the morphological Word Er-
ror Rate (WER) is 4.56% while the mor-
phological Diacritic Error Rate (DER) is
1.88% and the syntactic WER is 9.36%.
The best WER is 14.78% compared to
the best-published results, of (Abandah
et al., 2015); 11.68%, (Rashwan et al.,
2015); 12.90% and (Habash et al., 2009);
13.60%.

1 Introduction

Modern Standard Arabic (MAS) is currently the
sixth most widely spoken language in the world

with estimated 422 million native speakers. It is
usually written without diacritics which makes it
difficult for performing Arabic text processing. In
addition, this often leads to considerable ambigu-
ity since several words that have different diacritic
patterns may appear identical in a diacritic-less
setting. In fact, a text without diacritics may bring
difficulties for Arabic readers. It is also problem-
atic for Arabic processing applications where the
lack of diacritics adds another layer of ambigu-
ity when processing the input data (Shaalan et al.,
2009).

Diacritics restoration is the problem of insert-
ing diacritics into a text where they are missing.
Predicting the correct diacritization of the Arabic
words elaborates the meaning of the words and
leads to better understanding of the text, which
in turn is much useful in several real life applica-
tions such as Information Retrieval (IR), Machine
Translation (MT), Text-to-speech (TTS), Part-Of-
Speech (POS) tagging and others.

For full diacritization of an Arabic words, two
basic components are needed:
1) Morphology-dependent that selects the best
internal diacritized form of the same spelling; e.g.
the word ÕÎ« “Elm” has different diacritized forms;

Õ
�
Î«� “Eilom” “science”, Õ

�
Î �« “Ealam” “flag”, �Õ

��
Î �«

“Eal˜ama” “taught” and �ÕÎ�
�« “Ealima” “knew”.

2) Syntax-dependent that detects the best syntac-
tic case of the word within a given sentence; i.e.
its role in the parsing tree of that sentence. For
example; �H� A��J
 	�� A�K
 ��QË @ �Õ

�
Î«�

��I �� �P �X “darasotu Eiloma
Alr˜iyADiy˜Ati” “I studied Mathematics” implies
the syntactic diacritic of the target word - which is
an “object” in the parsing tree - is “Fatha”, while
Ð�ñ

�
Ê �ª

�
Ë @ �©J
Ô�

�g. �H� A��J
 	�� A�K
 ��QË @ �Õ
�
Î«�

�YJ
 	®� �K
 “yufiydu Eilomu
Alr˜iyADiy˜Ati jamiyEa AloEuluwmi” “Mathe-
matics benefits all sciences” implies the syntactic
diacritic of the target word which is a “subject”
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in the parsing tree - is “Damma” (Rashwan et al.,
2009).

2 Related Work

Diacritic restoration has been receiving increas-
ing attention and has been the focus of several
studies. Different methods such as rule-based,
example-based, hierarchical, morphological and
contextual-based as well as methods with Hidden
Markov Models (HMM) and weighted finite state
machines have been applied for the diacritization
of Arabic text.

Among these trials, that are most prominent,
(Habash and Rambow, 2005; 2007a), (Zitouni et
al., 2006), (Diab et al., 2007), (Roth et al., 2008),
(Shaalan et al., 2008; 2009), (Habash et al., 2009),
(Rashwan et al., 2009;2011; 2014; 2015), (Met-
wally et al., 2016), (Abandah et al., 2015), (Chen-
noufi and Mazroui, 2016a; 2016b), and (Alansary,
2016a).

In addition, some software companies have de-
veloped commercial products for the automatic di-
acritization of Arabic; Sakhr Arabic Automatic
Diacritizer1, Xerox’s Arabic Morphological Pro-
cessor2 and RDI’s Automatic Arabic Phonetic
Transcriptor (Diacritizer/Vowelizer)3. Moreover,
there are also other free online available systems;
Meshkal Arabic Diacritizer4, Harakat Arabic Di-
acritizer5, Al-Du’aly6, Farasa7 and Google Tash-
keel which is no longer working where the tool is
not available now.

It has been noticed that most of the previous
systems use different statistical approaches in their
diacritization systems and few trials use the rule-
based approach. The difference between the cur-
rent proposed system and the others is the inter-
action between the rule-based approach and sta-
tistical approach using different machine learn-
ing techniques, where the rule-based can help the
statistical-based in detecting the right diacritiza-
tion and vice versa. In addition, extracting and
implementing some syntactic rules for case end-
ing restoration where, to our knowledge, none of
the previous systems make use of syntax with the

1http://aramedia.com/nlp2.htm [Acc. 12-2-2015].
2http://aramedia.com/diacritizer.htm [Acc. 12-2-2015].
3http://www.rdi-eg.com/technologies/arabic nlp.htm

[Acc. 12-2-2015].
4http://tahadz.com/mishkal [Acc. 4-4-2015].
5http://harakat.ae/ [Acc. 4-4-2015].
6http://faraheedy.mukhtar.me/du2alee/tashkeel [Acc. 20-

8-2016]
7http://qatsdemo.cloudapp.net/farasa/ [Acc. 28-12-2016]

exception of (Shahrour et al., 2015), (Chennoufi
and Mazroui, 2016b) and (Alansary, 2016a) who
have integrated syntactic rules.

3 System Data Sets
The used data in the current system was selected
from a Morphologically Annotated Gold Standard
Arabic Resource (MASAR) for MSA (Alansary,
2016b). The texts were selected from different
sources; Newspapers, Net Articles and Books.
Moreover, these selected texts covered more than
one genre. Each word is tagged with features,
namely, Lemma, Gloss, prefixes, Stem, Tag, suf-
fixes, Gender, Number, Definiteness, Root, Stem
Pattern, Case Ending, Name Entity and finally Vo-
calization. In the current proposed system, the
data is subdivided into three kinds of data sets:
a) “Training Data” about 450,000 words. b)
“Development Data” about 55,000 words, and c)
“Testing Data” about 55,000 words.

3.1 Extracting Arabic Linguistic Rules

It must be noted that extracting Arabic linguistic
rules is not an easy task where these rules must
be represented in a generalized format in a way
that simulates the concerned component of the lan-
guage. So these rules need to be constrained in a
certain order to avoid overlapping among them. In
this stage a number of rules related to morphology,
definiteness and case ending are extracted from the
training data set in a formalized and generalized
format and implemented in the system.

As concerning to morphological rules, we are
concerned with extracting some rules that help
in detecting the POS of a certain words depend-
ing on the preceding or succeeding POS tags or
word forms. In addition to the previous kind of
rules, other rules have been extracted to detect the
whole morphological analysis and hence the full
internal diacritization depending on the preceding
or succeeding POS tags or word forms. These
rules get only the correct solution for the words
context and consequently eliminate all wrong so-
lutions. In addition, they may get only one
morphological/diacritized form or get more than
one correct morphological analysis after elimi-
nating the wrong solutions. The extracted mor-
phological rules are of 11 categories; Preposi-
tional Phrases, Subjunctive Particles, Jussive Par-
ticles, Accusative Particles, Interrogative Parti-
cles, Pronouns, Verb Particles, Amendment Par-
ticle “l‘kin”, Time and Place Adverbs, Verbs and

85



Some Word Forms. In each category, a number of
sub rules are extracted and implemented.

One of these rules states that the accusative
particles “>an˜a/PART”, “li>an˜a/PART” and “ka
>an˜a/PART” that have empty suffix may be fol-
lowed by NOUN, PRON, PREP and some parti-
cles. Consequently, no ADJ, ADV, IV or PV (ex-
cept ‘layos/PV’) follows these stems as Rule (1)
shows:
Rule (1)
(Stem [Previous] % “>an˜a/PART” & Suf [Previ-
ous] = “”)
{ [Current]: @ Tag %“NOUN”
@ Tag = “PRON”
@ Tag = “PREP”
@ Stem = “layos/PV”
@ Stem = “lA/PART”
@ Stem = “mA/PART”
@ Stem = “lam/PART”
}

Ex. (1) shows that if the word form to be ana-
lyzed is “É 	� 	̄ @” “>fDl”, in this case the Rule (1)
will be applied and it will eliminate the PV, IV

and ADJ forms of this word; “
�

É �	��	̄ �@” “>afoDala”

“bestow”, “É
��	��	̄ �@” “>ufaD˜il” “prefer”, “É

��	��	̄ �@”

“>ufaD˜al” “be prefered”, and “É �	��	̄ �@” “>afoDal”
“better/best” and the nominal form of this word;

“É �	��	̄ �@” “>afoDal” “better/best” will be selected
and assigned to this word.

Ex. (1) hQ���®ÖÏ @ ñë �HAgQ���®ÖÏ @ É 	� 	̄ @ 	à

@ øQK
 ñê 	̄

ú
Í@PYJ
 	®Ë @
fahuwa yaraY >an˜a >afoDal AlomuqotaraHAt
huwa AlomuqotraH AlofiydorAliy
He believes that the best proposals is the federal
proposal

The realization of nominal case in Arabic is
complicated by its orthography, which uses op-
tional diacritics to indicate short vowel case mor-
phemes, and by its morphology, which does not
always distinguish between all cases. Addition-
ally, case realization in Arabic interacts heavily
with the realization of definiteness, leading to dif-
ferent realizations depending on whether the nom-
inal is indefinite, i.e., receiving nunation ( 	áK
ñ 	J�K),
definite through the determiner Al+ (È@+) or def-
inite through being the governor of an EDAFAH
possessive construction ( �é 	̄ A 	�@) (Habash et al.,

2007b). In addition, case ending realization in
Arabic interacts in some cases with other informa-
tion: 1. Word Patterns: the diptote word patterns
(

	¬Qå�Ë@ 	áÓ ¨ñ	JÒÖÏ @) refer to a category of nouns
and adjectives that have special case ending when
they are indefinite since they do not take tanween.
It must be noticed that when these words are defi-
nite, they take regular case ending diacritics.
2. Verb Transitivity: the transitivity of the
verbs helps sometimes in detecting the subject
(which receives nominative case ending) and ob-
ject (which receives the subjunctive case ending).
3. Feminine Plural Word Forms: in Arabic, the
object receives the case ending for the genitive
case instead of the subjunctive case; this is in the
case of those words end with “ �H@” “At/NSUFF”

“ÕËA�Ë@ �I	K ñÖÏ @ ©Ôg. ” (Fashwan, 2016). In order
to detect the case ending diacritics, a prior step is
done where some Arabic linguistic rules have been
extracted and implemented to detect the definite-
ness of each word depending on its context or its
selected morphological analysis. In addition, the
stem pattern of each stem has been detected de-
pending on its root, stem and lemma. Moreover,
the transitivity of each verb has been detected de-
pending on its lemma.

After that, some Arabic linguistic rules have
been extracted and implemented to detect the case
ending depending on a window of -/+ 3 words
around the focused word taking into considera-
tion the context, the selected morphological anal-
ysis, definiteness feature, stem pattern and verb’s
transitivity. The extracted case ending rules are
of 4 categories; rules for Detecting Case Ending
(MOOD) of the Imperfect Verbs, rules for detect-
ing the case ending of Noun Phrases, rules for
detecting the case ending of Adverb phrases and
rules for detecting the case ending of adjectival
phrases. One of these rules states that if there

is a noun phrase preceded by “ A ��Ó
�
@” “>am˜A” “as

for/concerning” or “B
� �ñ

�
Ë” “lawolA” “if not” then

the noun must be in nominative case taking into
consideration the definiteness feature; if the noun
is “INDEF” then the noun must receive nunation
(Tanween Damma ‘�'’), but if the noun is “DEF”
or “EDAFAH” then the noun must receive Damma
‘ �'’ as Rule (2) shows:
Rule (2)
((Stem [Previous] = “>am˜A/CONJ” (or) Stem
[Previous] = “lawolA/CONJ”) & NP/Tag [Cur-

86



rent] %“NOUN”)
(NP/Definiteness [Current] = “INDEF”)
{ [Current]: @ Case Ending/Syntactic Diacritic =
“N”
}
(NP/Definiteness [Current] = “DEF” (or)
NP/Definiteness [Current] = “EDAFAH”)
{ [Current]: @ Case Ending/Syntactic Diacritic =
“u”
}

In Ex. (2), the first condition of Rule (2) is
applied and the case ending diacritic of the word
“

���K
Y� ��” “SadiyqN” “friend” is Tanween Damma

‘�'’ ’N’. In Ex. (3), the second condition of Rule
(2) is applied and the case ending diacritic of the
word “

���K
Y� ��” “Sadiysqu” “friend” is Damma ‘ �'’
“u”.
Ex. (2) Q�

�Ó
�
B
�
AK.� ú


	G�
�Q��.

�	g
�
@ ú
Í�

���K
Y� �� B
� �ñ

�
Ë

lawolA SadiyqN liy >axobaraniy biAlo>amori
Except for a friend told me about this matter
Ex. (3) ��I.

�m
�Ì'@

��
É

�
¿ ú


��	æÓ�
�é
�
Ê�	̄ ú


�æ�
�
Ëñ �	® �£ ���K
Y� �� A�Ó

�
@

>am˜A Sadiyqu Tufuwlatiy falahu min˜iy kul˜u
AloHub˜i
As for my childhood friend, all the love from me

Table 1 shows the number of the extracted lin-
guistic rules for being used for both morphological
and syntactic processing levels. For more details
about these extracted rules, see (Fashwan, 2016).

Rules Type Rules No.
Morphological Rules 178
Syntactic Rules 473
Definiteness Rules 46
Total No. of Rules 697

Table 1: Extracted Rules Number.

3.1.1 Building the Language Models
To reach the best morphological/diacritized form
of the words to be analyzed statistically, there
are three processes have been used (sub-section
4.1.3). According to these processes a number
of Language Models (LM)s are built using the
training data set:
- POS LM: a quad gram LM of Pre-
fixes Tags Sufixes sequences used to detect
the best POS if there are more than one tag for
the word to be analyzed in relation to preceding
and succeeding (if found) POS(s). It is used in
building four smoothed language models using
Good-Turing Discounting, Kneser-Ney Smooting,

Witten-Bell Discounting and Katz Back-Off
Smoothing (Manning and Schütze, 1999) to select
the best technique.
- Word Form, Lemma, Tag and Stem LM:
a bi-gram LM of Word Lemma Stem Tag se-
quences used to detect the best lemma, tag or
stem of the word to be disambiguated taking into
consideration the word form itself.
- Word Form, Suffix Stem and Tag LM:
a bi-gram LM of Word Suffix Stem Tag se-
quences used to detect the best suffix of the word
to be disambiguated in relation to preceding
and succeeding (if found) suffixes taking into
consideration the word form itself.
4 SHAKKIL Diacritization System
In this system, the diacritization problem will be
handled through two levels; morphological pro-
cessing level (for detecting the internal diacritics)
and syntactic processing level (for detecting the
case ending diacritics).

The morphological processing level depends on
four layers. The first three layers are similar to
BASMA’s (Alansary, 2015). The first layer is di-
rect matching between the words that have only
one morphological analysis and their diacritized
forms, the second is disambiguating the input by
depending on contextual morphological rules, and
the third is disambiguating the input statistically
by using machine learning techniques. However,
the three layers in this algorithm are applied se-
quentially for the whole input, unlike BASMA’s
system that applies the layers word by word. In
each of these layers, a step towards the morpho-
logical diacritization of the input text is performed
as figure 1 shows. Moreover, this algorithm makes
use of the relations between the words and their
contexts, whether the preceding or the succeeding
words, but BASMA depends only on the morpho-
logical disambiguation of the preceding words.
In addition to these three layers, another layer is
used; the Out Of Vocabulary (OOV) layer.

The adopted syntactic algorithm is a rule based
approach that detects the main constituents of
the morphological analysis output and applies the
suitable syntactic rules to detect the case ending.
4.1 Morphological Processing Level
4.1.1 Uni-Morphological Form Layer
This layer is only concerned with words that have
only one diacritized form as well as one POS tag.
For example, the word “ÈC

��J� �kB�
�
@” “AliHotilAl”

“occupation” has only one diacritized form with
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Figure 1: General Design of SHAKKIL System.

only one POS tag; NOUN
In this layer, the adopted morphological dis-

ambiguation algorithm does not disambiguate the
words according to its word order in the text; how-
ever, it begins with matching directly all the words
that have uni-morphological/diacritized form and
assigns this analysis to the word. This layer is con-
sidered as the key for disambiguating other words
in the other layers whether they are the preceding
or the succeeding words. It may help in: 1) disam-
biguating the other words in the rule-based layer if
they are governed by a rule that provides one mor-
phological/diacritized form, 2) disambiguating the
other words in the statistical-based layer or 3) dis-
ambiguating the other words by the help of both
the rule-based layer and the statistical-based layer
if they are governed by a rule that provides more
than one morphological/diacritized form.

4.1.2 Rule Based Morphological
Disambiguation Layer

The main goal of implementing the morphological
rules is to help in eliminating the wrong solution
and making the searching problem easier while se-
lecting the best POS or a complete morphologi-
cal analysis of the non-disambiguated words and
hence detecting the internal diacritization. The ex-
tracted and implemented rules in this layer are of

two types:
1. Rules always help in providing only one
morphological/diacritized form for some non-
disambiguated words without the need to use the
statistical-based layer and word text orders. Most
of the rules of this type are concerned with the
relation between some non-disambiguated word
forms and the preceding or succeeding words.
2. Rules may provide one or more than one solu-
tion depending on the word form solutions’ vari-
ation. If the rule provides only one analysis so-
lution, then this analysis is assigned to the word
directly and there will be no need for applying
the statistical-based layer. However, if the applied
rule provides more than one solution (morpho-
logical/diacritized form) the statistical-based layer
will be applied in order to get the best solution,
depending on the solutions provided by the rules.
In the case of having more than one solution for
a certain word after applying the rule, following
the text word order is a must. The system will de-
pend on a window of -/+ 3 analyzed words around
this word to obtain the best solution through the
statistical-based layer, as sub-section 4.1.3 shows.
The disambiguated words in this layer by rules
only may help the statistical-based layer in disam-
biguating the succeeding word, if it is not analyzed
yet. In addition, the disambiguated words through
the statistical-based layer may be governed by a
rule that helps in disambiguating the succeeding
word if it is not analyzed yet.

4.1.3 Statistical Based Morphological
Disambiguation Layer

As mentioned before, to reach the best morpho-
logical/diacritized form of the words to be ana-
lyzed statistically, there are three processes have
been used. It must be noted that these processes
are not used in all cases while disambiguating the
word to be analyzed.
The first one is for getting the best POS score from
analysis solutions of the word to be analyzed in re-
lation to the preceding and succeeding (if found)
POS depending on some smoothing techniques.
The second one is for getting the best stem, tag
or lemma score with relation to the word form it-
self. It is used in two cases:
1) When the POS of the word’s analyses are the
same. 2) When the POS model detects best POS
and it is found that this POS has more than one
lemma or diacritized form.

The third one is for getting the best suffix score
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from analysis solutions for the word to be ana-
lyzed. It is used when the word to be disam-
biguated has more than one suffix. The top scoring
solution of the word is then selected.
4.1.4 Dealing with OOV Words
For predicting the OOV words, a prior step is
taken; preprocessing the stems of the training data.
The stems of the training data are used to get a
list of unique 4307 diacritized patterns with their
templates and frequencies. The patterns are pre-
pared by converting the consonants in the stem
to placeholder while keeping the vowels, hamazat
hamazat (“


@” “>”, “ @” “<”, “ ð” “&”, “ ø” “}”,

... etc.) and weak letters “ �éÊªË@ 	¬ðQk” “ø
 @ð”
“wAy”. In addition, POS of patterns are taken into
consideration as figure 2 shows.

Figure 2: Patterns List with their Diacritized
Patterns and Tags.

The POS helps, in some cases, in limiting the
scope of the search of the matched pattern, where,
for example, if the OOV word has been detected as
having “È@” “Al” at the beginning of it, this means
the system should search for the detected pattern
in the patterns of nouns or adjectives.

While detecting the input text analysis solu-
tions, each word is checked by the system to de-
termine whether it has analyses solutions from
BAMA or it is OOV. When the word form is
checked as OOV, the system switches to the OOV

module. In this module, the system tries to get
all word’s possible morphological constituents (a
combination of prefixes, stem and suffixes). Then,
it uses the list of detected stems and gets their
counterpart diacritized patterns.

The selected pattern is used to retrieve the suit-
able diacritic for the stem. Moreover, the sys-
tem chooses the POS tag of the diacritized pat-
tern and assign it to the diacritized stem where
each selected solution is added to text’s solutions.
While working in the morphological disambigua-
tion processing level, if the OOV word has more
than one matched POS tag, the system detects the
best one depending on step one and two of sub-
section (4.1.3).

It must be noted that there are no out of vo-
cabulary (OOV) words in MASAR data since they
are analyzed manually as if they are analyzed by
BAMA and then added in BAMA’s dictionaries so
that they would be analyzed correctly the next time
they are used.
4.2 Syntactic Processing Level
The task of the syntactic processing level is to pre-
dict the syntactic case of a sequence of morpho-
logically diacritized words given their POS tags,
definiteness, stem pattern and/or transitivity and
hence assigning the suitable case ending diacritics.
Some limitations violate the rules for setting the
case ending of syntactic diacritic, since the rules
are limited to use a window of -/+3 words before
the focused word.

Before diacritizing the word syntactically, its
POS tag is checked first. Using the POS tag of
the word, it is decided how the syntactic diacriti-
zation of this word should be handled. As men-
tioned before, the extracted rules in this level sim-
ulates one of the language processing approaches
that computes a basic analysis of sentence struc-
ture rather than attempting full syntactic analysis;
shallow syntactic parsing. It is an analysis of a
sentence which identifies the constituents (noun
groups, verb groups, prepositional groups adjecti-
val groups, adverbial groups), but does not specify
their internal structure, nor their role in the main
sentence.

The extracted rules for detecting the imper-
fect verb case ending, the case ending of noun, the
case ending of adjectives, the case ending of ad-
verbs and the case ending of some proper nouns
(sub-section 3.1) have been implemented in the
current proposed system, taking into consideration
the phrases in which each of the previous cate-
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gories occur.

5 Evaluation

A blind data set that is not part of the development
of the system is then used to evaluate the system
versus the gold annotated data. Two error rates
are calculated: diacritic error rate (DER) which
indicates how many letters have been incorrectly
restored with their diacritics, and word error rate
(WER) which indicates how many words have at
least one diacritic error. Table 2 shows the total
error rate of the system as a whole and WER and
DER for each layer in morphological processing
level and the percentage of words that has been
detected by the help of each layer using different
machine learning techniques.

The comparison between the different smooth-
ing techniques shows that Witten-Bell discounting
and Kneser-Ney smoothing techniques results are
close; however, Kneser-Ney smoothing technique
is the best one in detecting the best morpholog-
ical analysis (internal diacritic) and case ending
diacritics in the current proposed system. Conse-
quently, the Kneser-Ney smoothing technique is
used while comparing the results of the current
systems with other state of the art systems.

System Diacritized
Good-Turing &
Katz Back-off

Witten-Bell Kneser-Ney

Words% DER WER DER WER DER WER

1st Layer 55.86% 0.01% 0.02% 0.01% 0.02% 0.01% 0.02%

2nd Layer 9.53% 0.06% 0.15% 0.06% 0.15% 0.06% 0.15%

3rd Layer 28.75% 1.59% 3.85% 1.26% 3.09% 1.20% 2.86%

2nd&3rd Layers 5.86% 0.53% 1.32% 0.50% 1.37% 0.61% 1.53%

Morphological Level 100% 2.19% 5.34% 1.83% 4.63% 1.88% 4.56%

Case Ending — — 10.25% — 9.93% — 9.36%

Overall Results — — 15.59% — 14.56% — 13.92%

Table 2: System Evaluation Results.

5.1 Error Analysis

When checking the results, we find that the first
two layers of the proposed system have the lowest
WER and DER, then, the third layer. The statis-
tical based layer only gives the highest WER and
DER. In what follows, some error analysis in each
layer is reviewed:
- In the uni-morphological layer, it has been
found that the error rate is a result of some pos-
sessive nouns or present verbs that have affixed
possessive. In such words, the case ending dia-
critic is assigned within the word, not at its end.
For example, the word “ A�îD�P�A

�Ü �ß
” “yumArishA” “he
+ practice/pursue/exercise”, has three moods with
three different cases (‘ �'’ “u”, ‘ �'’ “a”, “' �'” “o”)
within the word form. When the system fails to

detect the suitable case ending diacritic according
to the context, the blind testing process counts this
wrong diacritic as a morphological (internal error)
not a syntactic error. If the testing process has been
done for the internal diacritics and syntactic case
separately, the results are expected to be enhanced.
- In the rule-based layer, the errors in this layer
happen for some reasons; the first is when the
word that is governed by a rule that makes the
succeeding or preceding word to be diacritized
wrongly. In EX. (4), the word “ 	à


@” “>n” is dia-

critized wrongly as “
��	à
�
@” “>an˜a” not “

�	à
�
@” “>ano”

according to this context. This leads to diacritize

the word “
��

É �	£” “Zal˜a” as “
��

É 	£� ” “Zil˜a” affected
by the rule mentioning that only nouns occurs af-

ter “
��	à
�
@”. The same problem appeared in the uni-

morphological form layer appears in this layer. In
addition, when the applied rule gives more than
one available solution and the statistical based
layer is used to select the best solution, the sta-
tistical based layer may choose a wrong one.

Ex. (4)
��è �YK
Y�

�« A�	Kð �Q��̄ ��
É 	£�

��	à
�
@ �Y �ª�K.

baEoda >an˜a Zil˜a quruwnAF EadiydapF
After that shadow many centuries
- In the statistical-based layer, although it can
predict the correct diacritized form in most of
cases even if the same word appears in the same
sentence with two different POS and diacritics, it
cannot, in other cases, predict the suitable diacritic
form. In Ex. (5) the same word “I. ËA£” “TAlb”
have been diacritized with two different diacritics
according to the context, where the first word is a
verb while the second one is a noun.

Ex. (5)
�

É
�
¾K.� ÐA �Ò�J�

�ëB�
�
AK.� Õæ
Ê�

�ª
���JË @ �ð �é�J
K.� Q

����Ë @ QK
 	P�
�ð �I.

�
ËA �£

Z@ �ñ �� �Y �g ú
�
Î �« I. Ë�A �£

TAlaba waziyr Alt arobiyap waAlt aEoliym
biAl{ihotimAm bikul TAlib EalaY Had sawA’
The Minister of Education demanded with the in-
terest for each student alike

In some other cases, the statistical-based layer
can predict the correct POS but it fails in detect-
ing the best lemma that helps to differentiate
among the different word forms diacritization. In
Ex. (6), the system fails to detect the correct dia-
critized form of the word “ �é 	¢ 	̄ AjÖÏ @” “AlmhAfZp”

where it should be “ �é �	¢ 	̄
� A �j�Ü

�
Ï @” “AlmuHAfiZap”

“the + governess”.
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Ex. (6) I. K� A
�	K 	á�
J
�

�ª��JK.� P@ �Q��̄ P@ �Y ��A�K.�
�é �	¢�	̄ A �j�Ü

�
Ï @ ��I�ÓA��̄ �ð

A�ê
�
Ë

wa qAmato AlomuHAfaZap bi<iSodAr qarAr
bitaEoyiyn nA}ib lahA
The issuance of the province’s decision to appoint
a deputy for her

Moreover, the statistical based layer may fail to
detect both correct POS and the correct diacritized
form of the word to be analyzed. In Ex. (7), the
input word “ú
Î«” “Ely” wrongly diacritized with

wrong POS where the system edited it to “ú
�
Î �«”

“EalaY/PREP” while it should be in this sentence
as “ �ú
Î�

�«” “Ealiy˜/NOUN PROP”. This wrong POS

and diacritization leads to have wrong case ending
for both this word and the succeeding one.

Ex. (7) Ð� @
�ñ �«

�
@ ��è �Qå��� �« Q�

�Ò �ª
�
Ë @ �	áÓ�

�	©
�
Ê�J. �K
 Q��


	ª� �� É�
�	®£� ú

�
Î �«

EalaY TifolK SagiyrK yabolug mino AloEumori
Ea$arapa >aEowAmK
A small child at the age of ten years

The problem of detecting the proper nouns is
similar to the previous problem where there are a
lot of words in Arabic that may be used as proper
nouns and nouns or adjectives. Predicting these
words wrongly leads to have wrong case ending
for both the word and the succeeding one.
- In the syntactic processing level, Assigning a
wrong POS, transitivity or definiteness to a word,
may lead to wrong syntactic case. In Ex. (8), the
word “

	¬Yë” “hadaf” “goal/target” has assigned
definiteness as “EDAFAH” as a result of consider-
ing “YJ
kð” “waHiyd” “alone” as “NOUN PROP”.

This problem leads to set the case ending as ‘'�’ “i”

not ‘'�’ “K”.
Ex. (8)

�YJ
k� �ð 	¬�
�Y �ë 	P� @

�Q �k@� ú

	̄
� h

�
A �j.

��	JË @ Ð�Y�
�« �Y �ª�K.

baEoda Eadami Aln˜ajaHi fiy <iHorAzi Hadafi
waHiydo
After the lack of success in achieving Waheed’s
goal

5.2 Comparing the System with Other State
of the Art Systems

In order to have an objective evaluation of the sys-
tem, the same testing data (LDC’s Arabic Tree-
bank) that was used in the other systems was used
to compare the results. It is a part of Arabic Tree
Bank part 3 (ATB3) from “An-Nahar” Lebanese
News Agency. It consists of 91 articles (about
52.000 word) covering the period from October

15, 2002 to December 15, 2002. In the testing pro-
cess, 51.63% of the words are diacritized in the
first layer, 5.56% of the words are diacritized by
rule-based layer only, 8.26% of the words are di-
acritized by both rule-based and statistical-based
layers, 32.99% of the words are diacritized by
statistical-based layer only, and finally 1.56% of
the word are diacritized in OOV layer. In OOV
layer, the system could predict the words with
WER of 11.2% and DER of 6.7%. Table 4 sum-
marizes the results of the current proposed system
in comparison with other systems.Total WER Ignoring Last

Systems WER DER WER DER

(Zitouni et al., 2006) 17.30% 5.10% 7.90% 2.50%

(Habash et al., 2009) 13.60% NA 5.20% NA

(Rashwan et al., 2015) 12.90% NA NA NA

(Abandah et al., 2015) 11.68% NA 3.54% 1.28%

(Metwally et al., 2016) 13.70% NA 4.3% NA

(Chennoufi and Mazroui, 2016b) NA NA 1.86% 0.71%

Current System 14.78% 4.11% 4.81% 1.93%

Table 3: Summary of the Comparison between
the State-Of-The-Art Systems.

The comparison indicates that (Abandah et al.,
2015), (Rashwan et al., 2015) and (Habash et
al., 2009) outperform the current system’s results.
However, the results are still close to (Metwally et
al., 2016).

6 Conclusion
In this work, we depend on Arabic morphological
rules as well as different machine learning tech-
niques for detecting the morphological diacritics
(internal diacritics). In addition, we adopt a rule-
based approach that depends on POS morphologi-
cal sequences, definiteness classifier, stem pattern
and verb transitivity for detecting the case ending
diacritics. Evaluation of the proposed system is
made in comparison with other best state of the art
systems. The best WER of the morphological di-
acritization achieved by the system is 4.81% and
the best syntactic diacritization achieved is 9.97%
compared to the best-published results. Since this
work is in progress, these results are expected to
be enhanced by extracting more Arabic linguis-
tic rules (morphological and syntactic), adding
more semantic features, using different machine
learning techniques for morphological and syn-
tactic processing levels and implementing the im-
provements by working on larger amounts of data.
For enhancing the OOV results more patterns with
more features need to be handled.
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Abstract

In this paper, we propose using a ”boot-
strapping” method for constructing a de-
pendency treebank of Arabic tweets. This
method uses a rule-based parser to create
a small treebank of one thousand Arabic
tweets and a data-driven parser to create
a larger treebank by using the small tree-
bank as a seed training set. We are able
to create a dependency treebank from un-
labelled tweets without any manual inter-
vention. Experiments results show that
this method can improve the speed of
training the parser and the accuracy of the
resulting parsers.

1 Introduction

Rule-based parsers have been developed and used
for decades in the NLP community. In such
parsers, linguistic rules are written to represent
knowledge about the syntactic structure of a lan-
guage. The parser produces the resulting parse
trees by applying these rules to input sentences.
It uses a dictionary or lexicon to store information
about each word in input text before applying the
linguistic rules. Although this kind of parser is
widely-used in a variety of NLP systems to pro-
vide deep linguistic analyses, they have disadvan-
tages: they are slow and it is time-consuming, ex-
pensive and tedious to construct dictionaries and
to write the rules by expert linguists and hard to
maintain them.

In recent years, data-driven parsers have been
widely used due to the availability of annotated
data such as the Penn Treebank (PTB) (Marcus et
al., 1993) and the Penn Arabic Treebak (PATB)
(Maamouri et al., 2004). These parsers are ro-
bust and produce state-of-the-art results compared
to rule-based ones. However, the reliance on anno-

tated data is one of the significant disadvantages of
using data-driven parsers because a large amount
of rich annotated data is not always available for
many languages and domains due to various fac-
tors (Ramasamy and Žabokrtskỳ, 2011).

In the domain of Arabic tweets, we decided to
use a data-driven approach, but for that a suit-
able collection of training data (treebank) should
be available for training, and to our knowledge no
such dataset has yet been created. For this rea-
son, we have developed a bootstrapping technique
for constructing a dependency treebank of the Ara-
bic tweets by using a rule-based parser (RBP) and
a data-driven parser (MaltParser). We are able
to create a dependency treebank from unlabelled
tweets without any manual intervention. Experi-
ments results show that using MaltParser and RBP
to construct a large training set (treebank) is bet-
ter in terms of speed of training and accuracy of
parsing than constructing it by using RBP only.

The rest of this paper is organised as follows: In
Section 2, we give an overview of the related work,
followed by a description of our bootstrapping ap-
proach in Section 3. In Section 4, we discuss the
evaluation, results and their analysis. In Section 5,
we reflect on the work described in the main paper.

2 Related Work

Although data-driven parsers have achieved state-
of-the-art results on well-formed texts, they have
not performed well on user-generated text because
the nature of the texts found in user-contributed
online forums rarely complies with the standard
rules of the underlying language, which makes
them challenging for traditional NLP tools, in-
cluding data-driven approaches, even if domain
adaptation techniques have been used (Seddah et
al., 2012).

The nature of the text content of Arabic tweets
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Figure 1: Length of tweets

is very mixed. It includes quite long sentences
(20% of sentences are 25 or more words. See
Figure 1) that are reasonably well-written (these
can be considerably longer than sentences in En-
glish tweets because of the fact that Arabic is
very economical with characters), very informal
material with large numbers of errors and neolo-
gisms, and material which is just complete non-
sense. Therefore, annotated data for well-edited
genres such as PTB and PATB is not suited to the
domain of tweets (Kong et al., 2014). As a re-
sult, there is an increasing interest in the devel-
opment of treebanks of user-generated text. These
are usually small manually annotated corpora: En-
glish Web Treebank (16K sentences) (Bies et al.,
2012), Tweebank Treebank (929 sentences) (Kong
et al., 2014), Spanish Web Treebank (2846 sen-
tences) (Taulé et al., 2015) and French Social Me-
dia Bank (FSMB) (1700 sentences) (Seddah et al.,
2012).

Our work is, to best of our knowledge, the first
step towards developing a dependency treebank
for Arabic tweets which can benefit a wide range
of downstream NLP applications such as informa-
tion extraction, machine translation and sentiment
analysis. We explore the idea that producing a
small treebank using a rule-based parser will suf-
fice to train an initial MALT-style parser, which we
can then use, in conjunction with the rule-based
parser, to produce a much larger treebank which
can be used to improve the performance of the
base parser.

We used RBP to produce a dependency tree-
bank partly to save effort instead of annotating it
manually but also to remove the nonsense from the
training data. If a tweet is just complete nonsense
(and very many are!), then even if we ascribed a
structure to them we would not want to use this
to train our data-driven parser, since this structure

will not be replicated in unseen tweets. Given that
the RBP will fail to provide an analysis of such
material, it acts as an automatic filter to remove
it. RBP is, however, quite slow and to construct
a large treebank using it is very time-consuming
and difficult to make a big treebank. Therefore,
we just use it to produce a small treebank as a seed
training for MaltParser and using a bootstrapping
technique to make a larger treebank out of it.

3 The Bootstrapping Method

Bootstrapping is used to create labelled train-
ing data from large amounts of unlabelled data
(Cucerzan and Yarowsky, 2002).

We use a rule-based chart parser (RBP) simi-
lar to the one described in (Ramsay, 1999). This
parser stops if it finds a complete analysis of a
tweet: if does not find a complete analysis after a
predetermined number of edges have been created,
it stops and returns the largest non-overlapping po-
tential fragments. We have no lexicon because
of the rapidly changing nature of tweets and the
presence of misspellings, both accidental and de-
liberate – tweets make use of a very open lexi-
con, to the point that even after you have looked
at over a million tweets you will still find that one
in ten words is unknown (Albogamy and Ramsay,
2015). Instead we use a tagger with a coarse-grain
tagset, simply labelling all nouns as NN, all verbs
as VB and so on. It is striking that even with-
out fine-grained subcategorisation labels (e.g. be-
tween intransitive, transitive and sentential com-
plement verbs) RBP produces good quality analy-
ses when it produces anything at all.

Because RBP looks for maximal fragments it
can also analyse tweets which actually consist of
more than one sentence with no punctuation be-
tween them. The following tweet for instance con-
sists of three separate sentences:

@alabbas75@DrA Farouk235
É¿ð YÒm× éËñ�Pð é<Ë @ I. m� 	' ð é<Ë @ YÒm�'.

��k @ 	Yë
Qå�ªË@ h. P@ñ 	k é<Ë @ 	áªËð É�QË@ð ZAJ
�. 	K

The RBP returns three sub trees (largest frag-
ments) that represent these sentences as we can see
in Figure 2.
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Figure 2: RBP segments a tweet to three fragments

We also use a data-driven parser (version
of MaltParser) with three basic data structures
a queue of unexamined words, a stack of
words that have been considered but which have
not been assigned heads, and a collection of
<head,relation,daughter> triples; and
with three basic actions, namely shift (move an
item from the queue to the stack), leftArc
(make the top item on the stack a daughter of the
head of the queue and remove it from the stack),
rightArc (make the head of the queue a daugh-
ter of the top item of the stack, remove the head of
the queue and move the top item of the stack back
to the queue) (Nivre et al., 2006).

The bootstrapping method (Figure 3) begins by
using RBP to parse an existing POS-tagged corpus
to create a small treebank of one thousand Arabic
tweets. Then, MaltParser is trained on the small
treebank which was created by RBP and used to
parse a much larger set of POS-tagged Arabic
tweets. During parsing, the RBP is used as a fil-
ter. To use it as a filter, we run the RBP but only
allow hypothesises that correspond to links that
were suggested by MaltParser so it produces a tree
if and only if that tree was produced by MaltParser.
As a result, all dependency analyses which do not
conform to the defined language rules are omit-
ted. All the resulting legal dependency trees are
moved to the training pool to create a larger tree-
bank. In Figure 4, MaltParser returns the whole
tree for a tweets, but RBP agrees only upon the sub
tree in the box. Finally, MaltParser is retrained on
the large treebank. One potential drawback of the

1.Create dependency trees for a seed set of
1K Arabic tweets by using the rule-driven
parser (an initial treebank).

2.Train MaltParser (a baseline model) on the
initial treebank.

3.Parse 10K Arabic tweets with the baseline
model and filter out all analyses which do
not conform to the language rules by using
RBP m1.

4.Train a new model on m1.
5.Test the new model on the reserved 1K test

set.

Figure 3: Bootstrapping approach

bootstrapping technique is that the parser can rein-
force its own bad behaviour. However, we control
this by parsing a large amount of data and then
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by using the largest legal fragments according to
the grammar for which a well-formed parse is ob-
tained and added to the training pool. By this way,
we make sure that the parser will not learn from
bad data.
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Figure 4: Using RBP as a Filter

4 Evaluation

The speed is a crucial factor to take into account
when parsing Arabic tweets since there are mil-
lions of tweets that need to be parsed. Therefore,
rule-based parsers are not suitable in this domain
because they are slow (as mentioned in the liter-
ature and proved by the first experiment below).
To parse Arabic tweets, we decided to use a data-

driven parser, namely MaltParser. However, this
kind of approaches needs training data (treebank).
Therefore, we did two experiments to construct a
treebank with a reasonable size. In the first exper-
iment we used RBP only whereas in the second
experiment we used RBP and MaltParser as de-
scribed in Section 3.

4.1 Experimental Setup

The corpus from which we extract our dataset is
an existing POS-tagged corpus taken from Twit-
ter. Twitter Stream API was used to retrieve tweets
from the Arabian Peninsula by using latitude and
longitude coordinates of these regions since Ara-
bic dialects in these regions share similar charac-
teristics and they are the closest Arabic dialects
to MSA. The corpus was tagged by the Arabic
tweets tagger described in (Albogamy and Ram-
say, 2016). We sampled 10K tagged tweets from
the corpus to experiment on them.

4.2 Results

In our experiments, we used two different strate-
gies to create a dependency treebank: using RBP
only and using RBP and MaltParser in a bootstrap-
ping technique. We do the evaluation on tweets
that RBP gives analyses for. The accuracy of other
tweets which do not have sensible analyses can-
not be tested because it is impossible to say what
the right answer would be. As we mentioned ear-
lier, one of the reasons of using RBP is to elim-
inate nonsense tweets then it is reasonable to test
only on filtered tweets because the vast majority of
other tweets are nonsense and do not have sensible
parsed trees.

In the first experiment, we used RBP to create
a treebank from 10K tagged tweets. Then, we
trained MaltParser on it. It took 20K seconds to
construct the treebank and the accuracy of Malt-
Parser after trained on the treebank is 68% (see
Table 1). In the second experiment, we ran RBP
on 1K tagged tweets to create a small treebank. It
took 1K seconds to construct the small treebank
and the accuracy of MaltParser after training on
the small treebank (which we are using as a base-
line model) is 64%. Then, the baseline model ran
on 10K Arabic tweets and RBP is used to filter
out all analyses which do not conform to the lan-
guage rules and it took 4K seconds to construct
larger treebank and the accuracy of MaltParser af-
ter training on the larger treebank is 71%. The
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Size
(words)

Strategy Accuracy
Training
time(sec)

162K RBP 68% 20K

Table 1: Constructing treebank by using RBP

Size
(words)

Strategy Accuracy
Training
time(sec)

15K RBP 64% 1K

162K
Bootstrapping
MALT+RBP

71% 4K

Table 2: Constructing treebank by bootstrapping

whole bootstrapping method took 5k seconds to
create a reasonable size treebank.

In both experiments, we are able to create a de-
pendency treebank from unlabelled tweets with-
out any manual intervention. Experiments results
show that using MaltParser and RBP in a boot-
strapping approach to construct a large training set
is better than constructing it by using RBP only in
terms of the speed of training and the construct-
ing the treebank (20K seconds to construct a 162K
treebank just using RBP, 5K seconds to construct
a treebank of the same size using RBP to analyse
15K words and MaltParser filtered by RBP to anal-
yse the remaining 147K) and the accuracy of pars-
ing (see Table 2). We tested on a reserved testset
of 1K tweets, using 5-fold cross validation.

The results of the tests on our parsing approach
yield an accuracy of 71%. We have compared
our parsing accuracy and the size of treebank
with similar work for English tweets (Kong et al.,
2014) and French social media data (Seddah et al.,
2012). Those two parsers yield accuracies 80%
and 67.8% respectively and the size of our tree-
bank is much larger than their treebanks. Our re-
sults show improvements over the performance of
French parsing for social media data and it is not
far behind English parsing for tweets. Moreover,
we did not use any manual intervention for creat-
ing our treebank whereas they used human anno-
tated data.

5 Conclusion

We have described a bootstrapping technique,
which uses a rule-based parser to construct a
small treebank of Arabic tweets based on an exist-
ing POS-tagged corpus, which then trains a data-
driven parser on this treebank to parse a much

larger pool of unlabeled Arabic tweets to create
a large treebank. The results reported from the
evaluation of this approach show that it can make
a reasonable size dependency treebank that con-
forms to the rules of the rule-based parser and im-
prove the speed of training and the accuracy of the
parsing. This method does not require annotated
data or human-supervised training.
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Abstract

Cross Language Information Retrieval
(CLIR) systems are a valuable tool to en-
able speakers of one language to search for
content of interest expressed in a different
language. A group for whom this is of par-
ticular interest is bilingual Arabic speakers
who wish to search for English language
content using information needs expressed
in Arabic queries. A key challenge in
CLIR is crossing the language barrier
between the query and the documents.
The most common approach to bridging
this gap is automated query translation,
which can be unreliable for vague or short
queries. In this work, we examine the
potential for improving CLIR effectiveness
by predicting the translation effectiveness
using Query Performance Prediction (QPP)
techniques. We propose a novel QPP
method to estimate the quality of transla-
tion for an Arabic-Engish Cross-lingual
User-generated Speech Search (CLUGS)
task. We present an empirical evaluation
that demonstrates the quality of our method
on alternative translation outputs extracted
from an Arabic-to-English Machine Trans-
lation system developed for this task. Fi-
nally, we show how this framework can be
integrated in CLUGS to find relevant trans-
lations for improved retrieval performance.

1 Introduction

The growing archives of online digital content
are increasingly diverse in style, media and the
language used. Within this content the balance
between use of languages is very uneven. An
important case of this effect is Arabic multimedia
content where the amount of content available
is proportionally very small. This results in a
significant demand from bilingual Arabic speakers
to access information in other languages, most

notably English. Cross Language Information
Retrieval (CLIR) is an effective tool to bridge the
language barrier between user search queries in
one language and the target documents in another
language (Oard and Diekema, 1998; Khwileh et al.,
2016). The simplest and most commonly adopted
approach in CLIR is to use machine translation
(MT) to translate the user’s query. In most cases,
MT is used as a black box as an input stage to an
otherwise unchanged monolingual search system
Many different MT systems have been studied in
CLIR research for different tasks, e.g. (Oard and
Hackett, 1998; Magdy and Jones, 2014). However,
no single MT system has been reported to be
effective for all CLIR tasks.

The effectiveness of an MT system for CLIR
is primarily evaluated by examining the retrieval
quality associated with the translated queries. We
follow this practice in this paper, by considering
translation quality in terms of measured IR
performance on an experimental test collection.
We investigation concentrates on a cross-lingual
user-generated speech search (CLUGS) task
(Khwileh et al., 2015). In this work, we propose
a prediction framework that utilises Query Per-
formance Prediction (QPP) methods to estimate
expected IR performance for specific query
translation based both on the translated query itself
and the output of the translation process. As part
of our investigation we explore the use of QPP to
select from an N-best list of alternative translations
for q query generated by an statistical MT systems.

In the next section we give some background
and describe the motivation behind our CLUGS
task. Section 3 gives an overview of the QPP
approaches that we study in this investigation.
Section 4 introduces our proposed prediction
framework for CLUGS. Section 5 outlines our
experimental settings. Section 6 evaluates the
proposed framework and section 7 shows this
approach can indeed be utilised for finding relevant
translations in CLUGS. Section 8 concludes,
together with some avenues for future work.
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2 Cross-lingual Arabic-to-English
Search for User-generated Speech

The current explosive growth in internet-based
social media networks content is creating massive
volumes of online multimedia content. This
includes User-Generated Speech (UGS) content
which is being uploaded to social media sites
websites such as YouTube and Facebook. These
increasing quantities of UGS data, together with its
complex and inconsistent structure, are creating the
need for sophisticated Spoken Content Retrieval
(SCR) systems to locate relevant material. This
presents new challenges and exciting opportunities
for IR research. SCR technologies require the com-
bination of speech processing technologies with IR
methods. SCR typically utilises Automatic Speech
Recognition (ASR) to generate text transcripts of
spoken audio. At a simple level, SCR can be con-
sidered as the application of IR techniques to ASR
transcripts. However, errors in ASR transcripts and
the nature of spoken content present significant
challenges for SCR (Larson and Jones, 2012).

Figure 1: Example of the content variation issue across
languages: Video search results for Arabic and English queries.

Beyond these challenges in SCR, further
challenges are raised in a multilingual search
setting. As noted earlier, one of the scenarios for
multilingual search is CLIR where a searcher uses
a query in one language to find relevant content
in another one, where relevant content in the query
language is either sparse or not available.

This is a particularly notable issue for Arabic
which is spoken by an estimated 420M speakers
in different countries, making it one of the most-
spoken languages in the world. Arabic has been the
language with the largest growth in Internet users
in the last decade with an estimated 2500% growth.
In 2016, there were an estimated 168M Internet
users with 45% Internet penetration (Internetworld-
stats.com, 2016). However, the Arabic content
available online is still minimal, estimated as being
less than 0.1% of the Internet content. The massive
gap between available content and speakers of the
language means that bilingual Arabic speakers will

often seek relevant content in another language. To
illustrate this situation consider the example in Fig-
ure 1. This shows the search engine with a simple
Arabic query �HAÓñÊªÖÏ @ ¨Ag. Q���@ Ñ 	¢	� ú


	̄ �èQå 	�Am×
and the equivalent English query Information
retrieval system lecture
The Google video search engine1 located more
than 29,000 matching results in English with all
top-ranked results being relevant with high-quality
metadata. However, for Arabic, only 203 matching
results were located with only one of the top-10
results indicated as relevant.

2.1 Related Work
Addressing CLIR for Arabic speakers provides a
real-world use case where research into improved
CLIR is important due to its linguistic challenges
and political importance (Darwish et al., 2014).

Relevant linguistic features include the complex-
ity of morphological and syntactic structures that
require special processing. Indeed, MT for Arabic
to English is considered one of the most difficult
challenges in CLIR, and effective techniques
working with special characteristics of the Arabic
language are required (Alqudsi et al., 2014).
Previous CLIR work on Arabic has been limited
to standard text-based TREC 2001/2002 CLEF2

tracks (Oard and Gey, 2002; Besançon et al., 2009;
Darwish et al., 2014). The data collections used
in these tasks were standard Text Arabic news
collection collected from AFP. Another larger AFP
newswire Arabic collection was released by the
INFILE Track in CLEF 2008/2009 (Besançon et
al., 2009), but unfortunately received no partic-
ipation. To date most work on Arabic CLIR has
actually focused on the other side of the story, i.e.
the retrieval of Arabic documents based on English
queries (English-to-Arabic CLIR). Which enabling
access to information from Arabic sources, does
not address the needs to Arabic speakers. In this
work, we study a CLIR task that enables Arabic
users to search for the relevant spoken content from
the English web. In previous work we investigated
the use of Google Translate 3 as a black box
off-the-self MT system for this task (2015) We
found that the main challenges of this task arise due
to noise in the search index for the user-generated
data, and how Arabic translation errors can
significantly harm retrieval effectiveness.

Despite the problems in translation problems
for CLIR encountered when using off-the-shelf

1Retrieved from www.google.com/video on 2016-12-01
2http://clef2016.clef-initiative.eu/
3https://cloud.google.com/translate/

101



MT systems such as Google and Bing Translate4,
have been observed to outperform open-box MT
systems developed by CLIR researchers for many
language pairs (Zhou et al., 2012). For instance,
during the CLEF 2009 workshop (Leveling et
al., 2009a; Leveling et al., 2009b), the best
performing non-off-the-shelf MT achieved just
70% of the performance achieved by Google
Translate. However, in our earlier work we found
that the use of black-box MT for Arabic is still
ineffective compared to other languages pairs
(such as French-to-English CLIR) (2015).

From examination of the behaviour of MT
systems, it is clear that while the “best” translation
produced by the MT does not always produce
the most effective translation for optimal CLIR
performance, better translations are often produced
with lower translation confidence by the MT
system. In this investigation, we seek to use
Query Performance Prediction (QPP) methods
developed in the IR community, to improve CLEF
effectiveness for Arabic-English search using
an open-box MT system. We then study the
effectiveness of this approach against standard
online black-box MT for a CLUGS search task. In
the next sections we describe these QPP techniques
and how we utilize them in our CLUGS task.

3 Query Performance Prediction

The motivation behind QPP methods in IR is to
estimate the performance of the query at retrieving
relevant documents. This inference can be used to
tune the retrieval settings to maximize the overall
system effectiveness. QPP is divided into pre-
and post-retrieval methods. In pre-retrieval QPP,
prediction is based on analysing the query difficulty
(Hauff et al., 2008; He and Ounis, 2004; He and
Ounis, 2006). The estimated query difficulty
defines that, given a certain query, whether relevant
content is hard (low retrieval performance) or
easy (high retrieval performance) to find. Thus,
difficulty can be used as an indication of the
retrieval performance of the current query. In
post-retrieval QPP, the retrieval results of the query
are analysed to estimate its performance (Kurland
et al., 2011; Shtok et al., 2012). Pre-retrieval
methods are more efficient than post-retrieval,
causing less overhead to the retrieval system since
no retrieval is required for the prediction. In
this work we study the application of both pre-
and post- methods QPP to predict the translation

4https://www.microsoft.com/en-
us/translator/translatorapi.aspx

quality of queries in CLIR. In the next sections we
describe the QPP approaches we use in this task.

3.1 Pre-retrieval QPP

Existing approaches to pre-retrieval QPP are based
on measuring the statistics/characteristics of the
query terms calculated over the index collection.
The most widely used and effective techniques
rely on the Inverse Document Frequency (IDF)
of query terms, called IDF-based QPP. IDF-based
QPP approaches are implemented by taking an
aggregation of the IDF values across the query
terms such as AvIDF (Average of IDF values), the
SUMIDF (the sum of all values) or MAXIDF (the
maximum value) (Cronen-Townsend et al., 2002).
The IDF value for a term in this work has generally
been calculated using the INQUERY formula
explained in (Allan et al., 1995) and (He and
Ounis, 2006). Another common IDF-based QPP is
the Averaged Inverse Collection Term Frequency
(avICTF) of the query terms (Plachouras et al.,
2004; He and Ounis, 2006). The formula for this
predictor is explained in detail in (He and Ounis,
2006). IDF-based predictors have shown positive
correlation with query performance over multiple
standard IR tasks (Plachouras et al., 2004; He and
Ounis, 2004; Hauff et al., 2008; Hauff, 2010).

Other pre-retrieval QPP methods are based on
analysing the linguistic features of the query terms
such as the the query length (AvQL) which is
based on the average number of content words
(non stop-words) in a query (He and Ounis, 2004;
Mothe and Tanguy, 2005; He and Ounis, 2006),
and Query Scope (QS) which makes use of the
document frequencies (DF) of the terms (He and
Ounis, 2004; He and Ounis, 2006). A higher DF
of the query terms indicates that they are very
common, and so probably not helpful for finding
relevant documents, as they would result in a lower
effectiveness of the query.

A more complex technique proposed by Zhao
et al. (2008), is the Summed Collection Query sim-
ilarity (SCQ). SCQ approaches utilise both Term
Frequency (TF) and IDF to predict the query per-
formance. Similar to the IDF-based QPP, there are
also three different aggregation methods of SQC
across the query terms. AvSQC, takes the average
across the query terms; SumSQC, which takes
the sum of all resultant similarities; and MaxSQC
which takes the maximum value among them.
SQC is explained in detail in (Zhao et al., 2008;
Hauff, 2010). Zhao et al. (2008) also proposed
another QPP method that is computationally more
expensive called VarTFIDF. which is based on
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the distribution of the TF.IDF weights (Zobel and
Moffat, 2006) across the query terms. Similar to
SQC and IDF QPP approaches, VarTFIDF QPP has
a three different versions (SUM,MAX,Avg) based
on the used aggregation across the query terms.

In this work, we argue that IDF is not a good
predictor for this task. This argument is also sup-
ported by our initial investigation of the problem
and the following hypothesis. By definition, IDF
gives a higher weight to unique terms across the
search collection. While this might be useful for a
retrieval model to rank documents, using IDF is not
reliable for QPP since it also gives high values for
translation candidates which are misleading terms.
We define misleaders as terms that are rare across
the collection (hence having high IDF values), but
not relevant to the topic of the current query. These
misleaders can result in query topic drift (Mitra et
al., 1998) and thus negatively impact on retrieval
effectiveness. Another source of misleader terms
is words which are Out-of-Vocabulary (OOV) with
respect to the MT. In this situation the MT system
produces incorrect translations of terms which the
MT system cannot by definition translate correctly.

To deal with misleaders arising from IDF issues,
we propose a new simple prediction technique
which we refer to as the Average Term Fluency
(AvgFL). Term fluency estimates whether a query
contains the same terms that appear in relevant doc-
uments. Higher fluency is assumed to lead to better
query-document matching, and hence improved
QPP effectiveness. We rely on the collection
frequency (cf) of each term to indicate its fluency
on the given collection D. The cf is normalized by
the DF to penalize non-helpful terms which appear
in all documents in collection. The proposed
AvgFL is calculated as shown in Equation (1);
where k is the number of t terms in query Q, cft
is the cf which is the number of times t appears
in the collection D. dft indicates the DF which is
the number of documents contains the term t.

AvgFL(Q)=
1
k

k∑
tεQ

(log(cft+1)/(log(dft+1)+1))

(1)

3.2 Post-Retrieval QPP

State-of-the-art post-retrieval QPP techniques use
information induced from analyzing the retrieval
scores Score(d) of the results set Dq

[res] produced
by retrieval method M , where Dq

[res] represents
the list of document ids retrieved for a query
together with their ranks Ri and scores Score(d)
sorted according to their relevancy to a query q.

In probabilistic terms, the resultant score
Score(d) of a document d represents the estimated
relevance probability r of a document d with
respect to q Score(d) ≡ P(d|q, r). These QPP
methods are based on analyzing the performance
of the top k ranked documents, which includes
all documents that have rankRi that is less than k
(∀dεDq

[res]dRi where 06ri6k) (Zhou and Croft,
2007; Shtok et al., 2012).

WIG is a well-established QPP technique based
on the weighted entropy of the top k ranked
documents (Zhou and Croft, 2007). This technique
works by comparing the scores of the top-k doc-
uments ∀dεDq

[k]Score(d) to that obtained by the
corpus Score(D). WIG is defined in equation (2).

WIG(q,M)= 1
k

∑
dεDk

1√
|q| (Score(d)−Score(D)) (2)

Another similar post-retrieval QPP technique
is the Normalised Query Commitment (NQC)
(Shtok et al., 2012). This technique is based on
estimating the potential amount of query drift
in the list of top k documents by measuring the
standard deviation of their obtained retrieval scores.
A high standard deviation indicates reduced
topic drift and hence probable improved retrieval
effectiveness. NQC is defined in equation (3)
where µ= 1

k

∑
dεDq [k]

Score(d).
NQC(q,M)= 1

Score(D)

√∑
dεDq

[k]
1
k
(Score(d)−Score(µ)

(3)
Both WIG and NQC are tuned to have a strong
linear relationship with the performance of the
query in which the only variable that needs to be
decided is the top-k documents.

For our task, we introduce a modified version of
the WIG called Weighted Relevancy Gain (WRG)
that focuses on the scores of the top-ranked as-
sumed relevant documents vs other top-ranked but
assumed non-relevant documents. Unlike previous
predictors, this approach assumes that the set top-k
documents Dq

[k] for each query is composed of
two subsets Dq

[rel] and Dq
[nrel] defined as follows:

Dq
[rel] is the set of rel relevant documents that

are assumed relevant for query q where ∀dεDq
[res]

(dRi where 0 6Ri6 rel < k), and Dq
[nrel] is the

set of documents that are assumed non-relevant
and ineffective for Relevancy. These documents
are ranked among the top-k documents and right
after the rel documents (rel < nrel < k) as in
∀dεDq

[res] (dRi where rel<Ri6nrel).
The WRG predictor aims to analyze the

quality of the rel documents by measuring the
likelihood that they contain significant variation.
This is estimated by measuring the weighted
entropy of the assumed rel documents against the
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top-ranked yet non-relevant nrel set of documents.
Unlike WIG, which uses the centroid of all
non-relevant documents (Score(D)), WRG uses
the centroid of the nrel documents scores :
Cnrel≡Cent(Score(Dq [nrel]))≡ 1

nrel

∑
dεDq

[nrel] Score(d)

as a reference point for estimating of the
effectiveness as shown in equation (4).

WRG(q,Drel)=
1
rel

∑
dεDrel

1√|q|( Cnrel

Score(d)
)

(4)
WRG requires 2 parameters: the number of rel
documents and the number of nrel documents to
perform the actual estimation.

4 Using QPP for CLUGS

We propose to utilize QPP for CLUGS as follows.
Assume Tq is an MT translated version of q and
Tq

[n] is the list of n-best translations generated
by an MT translation system T . Assuming Q is
the event of being an effective translation of q
for getting relevant content in CLUGS, the goal
of this prediction task is to estimate P(Tq|q,Q)
(the likelihood of the translation Tq given that a
relevance event happens for q), which seeks to
answer the following question :
What is the probability P(.) for each translation
candidate Tq from the top n-list generated by
translation system T being an effective translation
Q of a query q for CLUGS?
Our proposed framework relies on QPP to rank the
best translations Tq [n] generated by MT system T
based on the probability function P(Tq|q,Q). We
use the previously explained QPP methods in sec-
tion 3 to predict the retrieval effectiveness of each
translation candidate Tq. For example, we assume
that AvICTF can be taken as prediction function F
to indicate the effectiveness of translations candi-
dates Tq as P(Tq|q,Q) ≡ F(Tq) ≡ AvICTF (Tq).

5 Experimental Setup

In order to evaluate QPP for our CLUGS task
we configured three modules as follows. A CLIR
system, an MT system to generate the N-best
translations, and a QPP system to parse each query
candidate of the n-best list and assign a prediction
value to it.

The CLUGS task is similar to the one described
in (Khwileh et al., 2015). The task is based on the
blip1000 collection which contains 14,838 tran-
scripts automatically extracted using an ASR sys-
tem from videos which were uploaded to a video-
sharing website by 2,237 different uploaders, cover-
ing a 25 different topics (Schmiedeke et al., 2013).

For the query topic set, we use a modified
monolingual adhoc version of the 60 different
original English topics developed within the
MediaEval 2012 Search and Hyperlinking task5

which was developed by Khwileh et al. (2016).
To setup the CLIR system, similar to the

procedure adopted in our earlier investigation
(2015), we used two native Arabic (AR) speakers
who are also fluent on English (EN) to write their
equivalent versions of the queries in Arabic for
each of these EN topics.

We configured and trained an AR-to-EN MT
system to translate each AR query to EN. Our MT
system is a phrase-based (Koehn et al., 2003), that
is developed using the Moses Statistical Machine
Translation (SMT) toolkit (Koehn et al., 2007).
Word alignments in both directions were calculated
using a multi-threaded version of the GIZA++ 6

tool (Gao and Vogel, 2008). The parameters of our
MT system were tuned on a development corpus
using Minimum Error Rate Training (Och, 2003).
The AR-to-En MT system was trained using the
bilingual training corpora listed in Table 1 from
LDC for MSA (Modern Standard Arabic) training.
The size of the tuning set is 111.8K and 138.2K
of Arabic and English tokens. All AR data are
tokenised using MADA-ARZ version 0.4 (Habash
et al., 2013).

Corpus AR genre AR tokens EN tokens
bolt

Egyptian

1.70M 2.05M
thy 282k 362k
bbnturk 1.52M 1.58M
bbnegy 514k 588k

gale
MSA

4.28M 5.01 M
fouo 717 k 791k
ummah 3.61M 3.72M

iraqi Iraqi 1M 1.14M
bbnlev Levantine 1.59M 1.81M

Total 15.2M 17M
Table 1: The sizes and the genres of bilingual training corpora.

We extracted the top 100 translations list for
each query generated by the MT system. The
overall number of query candidates generated by
was 5,863 with an average of over 90 different
translations per query. These queries were used in
searching the EN ASR transcripts extracted from
the blip1000 collection.

The Terrier retrieval platform7 was used as the
IR component of our experimental setup. Stop

5http://www.multimediaeval.org/mediaeval2012/
6Available at http://www.cs.cmu.edu/˜qing/
7http://terrier.org/
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words were removed based on the standard Terrier
list, and stemming performed using the Terrier
implementation of Porter stemming. Retrieval was
carried out using the PL2 retrieval model using
the settings recommended for this CLUGS task
in Khwileh et al. (Khwileh et al., 2016), with
the empirically-determined hyper-parameters that
c=1.

5.1 Parameters
Tuning for the Post-retrieval QPP

As explained in section 3.2, post-retrieval QPP
methods require some parameters to be tuned. For
the experiments reported in this work, we used the
following approach to tune NQC, WIG and WRG.
We used the optimal paradigm, proposed in (Shtok
et al., 2012), that is based on using values of free
parameters that yield optimal prediction perfor-
mance for each predictor on set of queries. We
used the 60 monolingual EN queries as test set to
obtain these optimal parameters for each predictor.
Parameters k (in WIG and NQC), rel and nrel (in
WRG) were tuned through manual data sweeping
within the range of [5, 100] with an interval of
5, and through the range of [100,500] with an
interval of 50. The optimal k parameters obtained
for WIG was 10, while for NQC it was 150, these
are indeed similar to those recommended in (Shtok
et al., 2012). For the WRG, we found that 30 is
the optimal parameter for rel and 60 for nrel.

6 Evaluating Prediction Quality

The effectiveness of QPP methods is usually
evaluated by measuring correlation between
values assigned by the QPP method and the actual
performance, in terms of average precision (AP),
of each query. The quality of each predictor is
evaluated in our CLUGS task by measuring the
Pearson linear correlation coefficient ρ between
both the AP, which is measured using human
relevant assessment for each candidate translation
for extracted 100-best and the values assigned to
these queries by each prediction method. For each
predictor, we follow the implementation reported
in the citation shown in the first column of Table
2. For the SQC and VarTFIDF, we report only the
best result obtained out of the three aggregations
(Max, Avg and Sum) due to space limitations. In
addition to Pearson’s correlation, we also tested
Kendalls tau and Spearman correlations to report
the nonlinear relationship between these predictors
and the retrieval performance. The prediction
quality for each of these predictors on our CLUGS
task is shown in Table 2.

6.1 Pre-retrieval Quality

As can be seen from the results shown in Table 2,
IDF-based predictors are found to have the least
robustness across other predictors. The reliability
issue regarding misleading terms (as discussed in
section 3.1) significantly impacts the prediction
quality of these predictors. To further illustrate this
issue, consider the example query
. �I. K
ñË@ ©�̄ @ñÓ �ém.×QK. ð Õæ
Ò��JË �H@QK
ñ�J 	̄ñ�
This query has two candidates EN translations (T1
and T2) as follows:
T1 : “ �H@QK
ñ�J 	̄ñ�
for the development and web design” and
T2 : “ �H@QK
ñ�J 	̄ñ� for the development and design
internet”.

The main difference between these translations
is “web” vs “internet”. While the word “internet”
is more unique term with a higher IDF value, it
is considered as a misleader to this query since it
shifts the original topic of the query “web design”.
Thus, this has resulted in a query topic-drift, and
hence a false prediction of its performance.

In contrast, prediction quality is improved for
all QPP methods which are less focused on the
uniqueness of the terms and do not rely solely on
the IDF in its calculation (i.e. Qs, SQC). AvgFL
is shown to have the highest quality over all tested
QPP methods, showing a consistent statistically
significant prediction across different correlation
measures. This arises as result of its robustness in
utilising the fluency measure to discriminate be-
tween different translations, penalising these which
are OOV or very unique words in the collection.

6.2 Post-retrieval Quality

The post-retrieval QPP methods are more robust
and perform better than the pre-retrieval methods
overall. This is due to the fact that post-retrieval
methods are based on the actual scores of the
translations in which at least one retrieval run
was used for the prediction. Unlike, pre-retrieval
methods, post-retrieval requires exhaustive
parameter tuning, as explained in section 5.1. Both
parameter tuning and the time required to generate
the post-retrieval QPP was a major efficiency issue
by comparison to pre-retrieval QPR (average time
to generate the pre-retrieval QPPs was around 10%
to that of the post-retrieval QPPs). WRG has the
highest prediction quality across all predictors.
The robustness of WRG is due to the fact that it
relies on stronger evidence; which is the score of
the relevant documents. While NQC/WIG rely
only on one parameter, i.e. the top k ranked doc-
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Pearson Kendall’s tau Spearman’s
VarTFIDF (Zhou and Croft, 2007) -0.20 -0.165 -0.194

SCQ (Zhou and Croft, 2007) 0.248 0.137 0.201
Qs (He and Ounis, 2004) -0.319 -0.221 -0.29

AvQL (Mothe and Tanguy, 2005) -0.193 -0.126 -0.208
SumIDF (Cronen-Townsend et al., 2002) 0.069 0.110 0.163
AvgIDF (Cronen-Townsend et al., 2002) 0.030 0.086 0.128

MaxIDF (Scholer et al., 2004) -0.044 0.019 0.035
AvICTF (He and Ounis, 2006) 0.118 0.162 0.210

AvgFL (Equation 1) 0.446 0.313 0.395
WRG (Equation 4 ) 0.463 0.321 0.384
WIG (Equation 2 ) 0.405 0.260 0.333
NQC (Equation 3 ) 0.385 0.22 0.321

Table 2: Correlation Coefficients vs AP for each query translation from Ar-to-En vs each QPP. Correlation that are significant
at the 0.05 confidence level are marked in bold.

uments, WRG relies on further tuning of the top k
parameter into both the rel and nrel documents to
provide better estimation. This, on one hand, helps
WRG to identify relevant translations that can in
fact distinguish the relevant document from the
non relevant ones, but on the other hand, raises effi-
ciency concerns about WRG, since it takes almost
twice the time required for WIG/NQC tuning.

7 Finding
Relevant Translations in CLUGS

In this section, we investigate the potential for these
QPP techniques to be used in an adaptive CLIR
algorithm that is able to automatically identify the
most relevant translations. The main idea is to use
the translation candidate that is predicted to have
the highest retrieval effectiveness for each query.
Using the same settings explained in section 5, we
implement the adaptive CLIR algorithm as follows.
1. For each query, the MT system is used to

generate up to the 100-best possible translations
which form a selection pool.

2. QPP is used to score each translation candidate
from the selection pool based on its estimated
retrieval performance.

3. Retrieval is then performed using the translation
that is predicted to be most effective.
We investigate using all QPP methods 8 shown

in Table 2 to evaluate this adaptive CLIR algorithm.
We compare these adaptive CLIR techniques to

three baselines as follows:
Google translate as example of an off-shelf black-
box MT tool, similar to our work in (Khwileh et al.,
2015); SingleBest, which is the 1-best translation
output generated by Moses MT;
100BestAP, which uses the ground-truth data to get
the best performing translation in terms of AP from
the 100-best translations generated by Moses MT.

8We used the same parameters learned for post-retrieval
QPP in 5.1

The adaptive and baseline retrieval performance
results for the CLIR experiments are shown in
Table 3 in terms of the Mean Average Precision
(MAP) obtained. For clarity, we also report the
percentage of improvement over each of these
baselines as an additional columns (i.e. the over
SingleBest column indicates the improvement in
MAP over the SingleBest baseline).

The Baseline CLIR results from Table 3 show
that black-box Google MT out-performed the
SingleBest output from the open-box Moses by
11.8% which confirms the previously reported
results in (Leveling et al., 2009b) that using
black-box MT can be easier and more effective
than just using the Singlebest. On the other
hand, the result from the open-box with ideal AP
(100BestAP) confirms that the open-box MT can
indeed be improved by looking at other translations
candidates that are more relevant for CLIR.

The Adaptive CLIR using Pre-Retrieval block of
Table 3 shows how pre-retrieval QPP can be used to
find the best translation from the 100-best extracted.
This confirms the conclusion obtained from Table 2
where the proposed method is the most effective in
getting the single best translation for CLIR with ef-
fectiveness comparable to that of the black box MT
system and obtained 11% performance improve-
ment over the SingleBest baseline. The Adaptive
CLIR using Post-Retrieval block of Table 3 shows
how the post-retrieval QPP methods are the most
effective for finding the most effective translation
in CLIR. This confirms previously reported conclu-
sions on comparing pre-retrieval and post-retrieval,
i.e. that post-retrieval QPP is always more effective
(Hauff, 2010). The WRG predictor is the most ef-
fective with significant improvement 28% over the
SingleBest and 14% over the black-box. This also
confirms that the correlation results reported in Ta-
ble 2 where WRG has the highest correlation to AP
when it comes to predicting the translation quality.
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MAP over blackbox MT over SingleBest Over 100BestAP
Baseline CLIR

Off-shelf black-box 0.2535 - 11.8% -28.9% *
100BestAP 0.3566 28.9%* 57.3%* -
SingleBest 0.2267 -11.8% - -57.3%*

Adaptive CLIR using Post-Retrieval
WRG 0.2899 14.4% 27.9%* -18.7%
NQC 0.2379 -6.2% 4.9% -33.3%*
WIG 0.2423 -4.4% 6.9% -32.1%*

Adaptive CLIR using Pre-Retrieval
MAXIDF 0.2082 -17.9% -8.2% -41.6%*

QL 0.1827 -27.9%* -19.4%* -48.8%*
SumSQC 0.1995 -21.3%* -12.0% -44.1%*
AvgFL 0.2507 -1.1% 10.6% -29.7%*

avgICTF 0.2219 -12.5% -2.1% -37.8%*
SumVarTFIDF 0.1619 -36.1%* -28.6%* -54.6%*

Qs 0.2103 -17.0% -7.2% -41.0%*
Table 3: Baseline and adaptive CLIR results using both pre-retrieval and post-retrieval QPP. Percentages % with * indicate
statistically significant different change at 0.05 confidence level

Overall, results from Table 3 indicate that
QPP techniques can indeed help re-ranking the
translation candidates of open-box MT, and hence
improve its translation quality for CLIR purposes.
Both AvgFL and WRG predictors, which were
designed specifically for this task, served as an
adequate reference to find the most effective trans-
lations and improve over the SingleBest output that
is suggested originally by the MT system. How-
ever, none of the reported adaptive CLIR results
were able to match or even come close to the ideal
performance baseline (100BestAP). This suggests
that there is still scope for further improvement.
By contrast, these QPP methods are a stand-alone
IR metric that is completely unsupervised and
works on a query-by-query basis. Training a
machine-learning algorithm that combines several
QPPs together with other MT-based signals may
achieve more robust/accurate prediction for this
task. We leave this investigation for future work.

8 Conclusions

This paper has presented a framework for pre-
dicting translation quality for a CLUGS task.
We proposed a novel unsupervised approach
to estimate the effectiveness of a translation
when there is no human evaluation of retrieval
available. Our experimental investigation reveals
that IDF-based prediction is not effective for this
task because of the misleading very unique terms
which can result in unreliable prediction. We
proposed a new Pre-retrieval QPP technique for
this task called AvgFL that is designed to detect
misleading very unique and OOV words.

For post-retrieval QPP, we also proposed WRG
(Weighted Relevancy Gain) that is modified
version of the well-established WIG predictor

(Zhou and Croft, 2007) and tuned to focus on the
information entropy of the relevant documents.
Our experimental investigation reports the robust-
ness of these proposed approaches in predicting the
translation effectiveness for an Ar-to-En CLUGS
task over other state-of-art QPP methods. We
found that post-retrieval QPP can be more accurate
than pre-retrieval QPP for this task, although it
suffers from efficiency issues. Finally, our exper-
iments demonstrated how these predictors could
be utilised by a CLIR model that is adaptively able
to find the most-relevant translations for IR.

For future work, we plan to experiment with
combining different QPP techniques together with
other MT-based signals for improved prediction
quality. We also plan to use the proposed frame-
work to develop a new CLIR model to estimate the
translation quality from different MT systems with
different translation outputs.
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Abstract

Opinion mining in Arabic is a challeng-
ing task given the rich morphology of
the language. The task becomes more
challenging when it is applied to Twitter
data, which contains additional sources
of noise, such as the use of unstan-
dardized dialectal variations, the non-
conformation to grammatical rules, the
use of Arabizi and code-switching, and
the use of non-text objects such as im-
ages and URLs to express opinion. In
this paper, we perform an analytical study
to observe how such linguistic phenom-
ena vary across different Arab regions.
This study of Arabic Twitter character-
ization aims at providing better under-
standing of Arabic Tweets, and foster-
ing advanced research on the topic. Fur-
thermore, we explore the performance
of the two schools of machine learn-
ing on Arabic Twitter, namely the fea-
ture engineering approach and the deep
learning approach. We consider mod-
els that have achieved state-of-the-art per-
formance for opinion mining in English.
Results highlight the advantages of us-
ing deep learning-based models, and con-
firm the importance of using morphologi-
cal abstractions to address Arabic’s com-
plex morphology.

1 Introduction

Opinion mining, or sentiment analysis, aims at au-
tomatically extract subjectivity information from

text (Turney, 2002) whether at sentence or docu-
ment level (Farra et al., 2010). This task has at-
tracted a lot of researchers in the last decade due
to the wide range of real world applications that
are interested in harvesting public opinion in dif-
ferent domains such as politics, stock markets and
marketing.

Huge amounts of opinion data are generated, on
a daily basis, in many forums, personal blogs and
social networking websites. In particular, Twitter
is one of the most used social media platforms,
where users generally express their opinions on
everything from music to movies to politics and
all sort of trending topics (Sareah, 2015). Further-
more, Arabic language is the 5th most-spoken lan-
guage worldwide (UNESCO, 2014), and has re-
cently become a key source of the Internet content
with a 6,600% growth in number of users com-
pared to the year 2000 (Stats, 2016). Therefore,
developing accurate opinion mining models for
Arabic tweets is a timely and intriguing problem
that is worth investigating.

However, applying Natural Language Process-
ing (NLP) and learning opinion models for Arabic
Twitter data is not straightforward due to several
reasons. Tweets contain large variations of un-
standardized dialectal Arabic (DA), in addition to
significant amounts of misspellings and grammat-
ical errors, mainly due to their length restriction.
They also contain “Arabizi”, where Arabic words
are written using Latin characters. Due to the cul-
tural diversity across the Arab world, an opinion
model that is developed for tweets in one region
may not be applicable to extract opinions from
tweets in another region. Finally, tweets usually
contain special tokens such as hashtags, mentions,
multimedia objects and URLs that need to be han-
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dled appropriately, in order to make use of the sub-
jective information they may implicitly carry.

In this paper, we present a characterization
study of Twitter data collected from different Arab
regions, namely Egypt, the Levant and the Arab
Gulf. This study illustrates how the discussed
topics, the writing style and other linguistic phe-
nomena, vary significantly from one region to an-
other, reflecting different usages of Twitter around
the Arab world. We also evaluate the model that
ranked first at SemEval-2016 Task 4 (Nakov et al.,
2016) on “Sentiment Analysis in Twitter”. This
model is developed for opinion mining in English,
and uses feature engineering to extract surface,
syntactic, semantic and Twitter-specific features.
Therefore, we extract an equivalent feature set for
Arabic to train a model for opinion mining in Ara-
bic tweets. We compare this model to another
class of models that are based on deep learning
techniques. In particular, we use recursive deep
models that achieved high performances (Socher
et al., 2013; Tai et al., 2015). Experimental results
show the advantage of deep learning at learning
subjectivity in Arabic tweets without the need for
artificial features that describe the properties and
characteristics of Twitter data.

The rest of this paper is organized as follows.
Section 2 describes previous work on opinion min-
ing with particular focus on application to Twitter
data. Section 3 presents the characterization study
and highlights distinctive characteristics of tweets
collected from different Arab regions. Section 4
describes the opinion models that we evaluate in
this paper, and experimental results are presented
in Section 5. Conclusion is provided in Section 6.

2 Related Work

Opinion Mining models for Arabic are gener-
ally developed by training machine learning clas-
sifiers using different types of features. The
most common features are the word ngrams fea-
tures that were used to train Support Vector Ma-
chines (SVM) (Rushdi-Saleh et al., 2011; Aly
and Atiya, ; Shoukry and Rafea, 2012), Naı̈ve
Bayes (Mountassir et al., 2012; Elawady et al.,
2014) and ensemble classifiers (Omar et al., 2013).
Word ngrams were also used along with syntac-
tic features (root and part-of-speech n-grams) and
stylistic (letter and digit ngrams, word length,
etc.). These features performed well after reduc-
tion via the Entropy-Weighted Genetic Algorithm

(EWGA) (Abbasi et al., 2008). Sentiment lexicons
also provided an additional source of features that
proved useful for the task (Abdul-Mageed et al.,
2011; Badaro et al., 2014; Badaro et al., 2015).

Many efforts have been made to develop opin-
ion models for Arabic Twitter data and creat-
ing annotated Twitter corpora (Al Zaatari et
al., 2016). A framework was developed to han-
dle tweets containing Modern Standard Arabic
(MSA), Jordanian dialects, Arabizi and emoti-
cons, by training different classifiers under dif-
ferent features settings of such linguistic phe-
nomena (Duwairi et al., 2014). A distant-
based approach showed improvement over exist-
ing fully-supervised models for subjectivity clas-
sification (Refaee and Rieser, 2014a). A subjectiv-
ity and sentiment analysis (SSA) system for Ara-
bic tweets used a feature set that includes differ-
ent forms of the word (lexemes and lemmas), POS
tags, presence of polar adjectives, writing style
(MSA or DA), and genre-specific features includ-
ing the user’s gender and ID (Abdul-Mageed et
al., 2014). Machine translation was used to ap-
ply existing state-of-the-art models for English to
translations of Arabic tweets. Despite slight accu-
racy drop caused by translation errors, these mod-
els are still considered efficient and effective, es-
pecially for low-resource languages (Refaee and
Rieser, 2014b; Salameh et al., 2015).

A new class of machine learning models based
on deep learning have recently emerged. These
models achieved high performances in both Ara-
bic and English, such as the Recursive Auto En-
coders (RAE) (Socher et al., 2011; Al Sallab et
al., 2015), the Recursive Neural Tensor Networks
(RNTN) (Socher et al., 2013) and Generalized Re-
gression Neural Networks (GRNN) (Hobeica et
al., 2011; Baly et al., 2016).

Finally, we describe models that won SemEval-
2016 on “Sentiment Analysis in Tweets” in En-
glish (Nakov et al., 2016). For three-way classifi-
cation, the winner model is based on training two
Convolutional Neural Networks, and combining
their outputs (Deriu et al., 2016). These networks
share similar architectures but differ in the choice
of some parameters, such as the embeddings and
the number of convolution filters. As for five-way
classification, the winner model uses feature engi-
neering. It extracts a collection of surface, syntac-
tic, semantic and genre-specific features to train a
SVM classifier.
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3 Arabic Tweets Characterization

Developing opinion mining models requires un-
derstanding the different characteristics of the
texts that they will be applied to. For instance,
dealing with reviews requires different features
and methods compared to comments or tweets,
as each of these types have their own characteris-
tics. Furthermore, when dealing with Arabic data,
it is important to appreciate the rich cultural and
linguistic diversity across the Arab region, which
may translate into different challenges that need
to be addressed during model development. First,
we describe the general features of Twitter data,
and then we present an analysis of three sets of
tweets collected from main Arab regions: Egypt,
the Arab Gulf and the Levant.

Twitter is a micro-blogging website where peo-
ple share messages that have a maximum length
of 140 characters. Despite their small size, the
tweets’ contents are quite diverse and can be
made up of text, emoticons, URLs, pictures and
videos that are internally mapped into automat-
ically shortened URLs, as in Table 1, example
(a). Users tend to use informal styles of writ-
ing to reduce the length of the text while it can
still be interpreted by others. Consequently, Twit-
ter data become noisy as they contain significant
amounts of misspellings, and do not necessarily
follow the grammatical structure of the language,
as shown in Table 1, example (b). Arabizi and
code-switching are frequently used and observed
in tweets, as shown in Table 1, example (c). Hash-
tags are very common and are used to highlight
keywords, to track trending topics or events, to
promote products and services, and for other per-
sonal purposes including fun and sarcasm. Also,
“user mentions” are quite common and have dif-
ferent usages including tagging users in tweets to
start a conversation, replying to someone’s tweet
and giving credit for some media or source. Ta-
ble 1, example (d) shows how hashtags and men-
tions are used in Tweets. Finally, users can react
to a tweet in three different ways, either using (1)
“Like” by pressing the heart button, (2) “Reply”
by mentioning the author and typing their com-
ment in a new tweet, or (3) “Re-Tweet” by sharing
it to their own followers.

We manually analyzed three sets of tweets that
were retrieved from Egypt, the Arab Gulf and
the Levant, using the Twitter4J API (Yamamoto,
2014). We refer to these sets of tweets as “EGY”,

“GULF” and “LEV”, respectively, where each set
contains 610 tweets. Examples of tweets written
in each of the region’s dialect are shown in Table 1,
examples (e,f and g). We did not use a specific
query as a keyword, in order to retrieve tweets cov-
ering the different topics being discussed in each
region. We also did not use the API’s language
filter, in order to retrieve tweets that may be writ-
ten in Arabizi. For each set, one of the authors
analyzed the used languages, the discussed topics
and the presence of emoticons, sarcasm, hashtags,
mentions and elongation.

Table 2 shows the distribution of the different
topics in each set. Table 3 shows the different writ-
ing styles and languages that are used in each set.
Table 4 illustrates, for each set, the percentage of
tweets that contain special Twitter tokens.

EGY LEV GULF

Religion 20.0% 22.3% 32.1%
Personal 35.1% 58.9% 50.5%
Politics 3.6% 5.3% 4.4%
Sports 0.3% 6.9% 1.3%
Other news 2.9% 1.6% 1.9%
Spam 8.5% 3.4% 5.6%
Foreign 29.5% 1.6% 4.1%

Table 2: Topics discussed in each set.

LEV EGY GULF

MSA 28.5% 40.7% 55.7%
Local dialect 18.4% 31.5% 28.5%
Arabizi 0.7% 1.9% 0.0%
English 13.4% 7.2% 4.1%
Foreign 31.8% 1.6% 4.4%
N/A 7.2% 7.1% 7.2%

Table 3: Languages and writing styles in each set.

Special tokens EGY LEV GULF

User mentions 17.1% 31.6% 34.6%
Hashtags 7.5% 13.4% 13.7%
Emoticons 20.3% 30.9% 25.6%
Elongation 2.6% 8.2% 3.3%

Table 4: Use of special Twitter tokens in each set.

It can be observed that most of the tweets in
“GULF” are written in MSA, and to a less ex-
tent using the local dialect. Compared to the other
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(a) / / / https://t.co/aszVLSZIpx

(b)

9.0/10 Õæ
�J

�®�JË @ ù
 ªJ
J.£ñÓ 	á ��» @ð AÓ@PX é�KA 	̄ É�Ê�ÖÏ @ @ 	Yë ©K. A�KAÓ ú


�
ÎË @ �éJ
KAÒ 	J�
� �HAJ
�ñ�K

twSyAt synmA}yp Ally mA tAbE h∗A Almslsl fAth drAmA wAk$n mwTbyEy Altqyym 9.0/10

‘cinematic recommendations who did not follow this series has missed unreal drama and action assessment 9.0/10’

(c)
mat2lysh alkalm dah 5lyna saktin (example of Egyptian dialect Arabizi)

‘don’t say such a thing let’s keep quiet’

(d)

@drkh189 @nogah015 @Almogaz ù 	®»# �éËA¿ñËAK. H. ðQk A 	JJ
Ë @ñk ú

�
ÎË @ É¿

@drkh189 @nogah015 @Almogaz kl Ally HwAlynA Hrwb bAlwkAlp #kfY

‘@drkh189 @nogah015 @Almogaz all what’s happening around us are proxy wars #enough’

(e)

? ø
 X PAª�
�
BAK. Q�
�J» �HAg. Ag ð �éê» A 	̄ I. J
j. �
K. é�Ë Yg ú


	̄ ñë (example of tweet in Egyptian Arabic)

hw fy Hd lsh byjyb fAkhp w HAjAt ktyr bAl>sEAr dy?

‘is there still anybody who brings fruits and many other stuff with these prices?’

(f)

@Mnallhfc é 	̄Qª 	K AÓ ú

�
Í@ ��AK
ð A 	K @ ��.

	¬ðQªÓ éÊ¾ �� ��. ��ÒÊ« ù
 ÒÊ« (example of tweet in Arab Gulf dialect)

Elmy Elm$ bs $klh mErwf bs AnA wyA$ Al∼y mA nErfh

‘I know the same as you know, but it seems he is known but we don’t know him’

(g)

�éJ
 	��®Ë@ 	á« 	á �� 	�Ó ú

	̄ 	á�
ÊÓA« ��Ó �IK
ñ�K 	á�


�
Ê	m× ��Óð (example of tweet in Levantine)

wm$ mxl∼yn twyt m$ EAmlyn mn$n En AlqDyp

‘and they haven’t left a tweet without a mention of the case’

Table 1: Samples of tweets, with their English translations and transliterations2, highlighting the different
linguistic phenomena that can be observed in Twitter data.

sets, a significant amount of these tweets discuss
religious topics. It can also be observed that Ara-
bizi and code switching do not appear, and that
tweets written in English are rare. Regarding the
“EGY” set, MSA is less common compared to
“GULF”, and a significant number of tweets are
written using Egyptian Arabic. Most of the tweets
discuss personal matters (nearly 59%). Also, Ara-
bizi and code switching are rarely used. Finally,
emoticons and user mentions are more frequently
used compared to the other sets. As for the “LEV”
set, it can be observed that both MSA and DA are
used less than the other sets. Most of these tweets
discuss personal matter, while religious topics are
less discussed. A significant portion of the tweets
are written in English, and many are written in for-
eign languages that pertain to neighboring coun-
tries (e.g., Cyprus and Turkey). Finally, it can be
observed that elongation (letter repetition) is not
common in the collected sets of tweets, and that
Arabizi and code switching are infrequent as well.

This analysis confirms that Twitter is used
differently (different characteristics, features and

topics), across the Arab world. This implies that
different opinion models are needed to account for
the peculiarities of each region’s tweets.

4 Opinion Mining Models

In this section, we describe two models that
achieved state-of-the-art performances in opinion
mining. The first model won the SemEval-2016
Task 4 on “Sentiment Analysis in Twitter” (En-
glish), and uses feature engineering to train an
opinion classifier (Balikas and Amini, 2016). The
second model is based on modeling composition-
ality using deep learning techniques (Socher et al.,
2013). In this paper, we evaluate these models for
opinion mining in Arabic tweets.

4.1 Opinion Mining with Feature
Engineering

According to (Nakov et al., 2016; Balikas and
Amini, 2016), training a SVM with a collection
of surface, syntactic, semantic features achieved
state-of-the-art results on opinion mining in En-
glish tweets. Below, we describe the equivalent
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set of features that we extracted to train a similar
model for opinion mining in Arabic tweets.

• Character n-grams; n ∈ [3, 5].

• Word n-grams; n ∈ [1, 4]. To account for
the complexity and sparsity of Arabic lan-
guage, we extract lemma n-grams since lem-
mas have better generalization capabilities
than raw words (Habash, 2010).

• Counts of exclamation marks, question
marks, and both exclamation and question
marks.

• Count of elongated words.

• Count of negated contexts, defined by
phrases that occur between a negation parti-
cle and the next punctuation.

• Counts of positive emoticons and negative
emoticons, in addition to a binary feature in-
dicating if emoticons exist in a given tweet.

• Counts of each part-of-speech (POS) tag in
the tweet.

• Counts of positive and negative words
based on ArSenL (Badaro et al., 2014),
AraSenti (Al-Twairesh et al., 2016) and
ADHL (Mohammad et al., 2016) lexicons.

We also add to this set the two binary features
indicating the presence of user mentions and URL
or media content. Many of these features align
with the factors that we single out in the charac-
terization study presented in Section 3.

4.2 Opinion Mining with Recursive Neural
Networks

Most deep learning models for opinion mining are
based on the concept of compositionality, where
the meaning of a text can be described as a func-
tion of the meanings of its parts and the rules
by which they are combined (Mitchell and La-
pata, 2010). In particular, the Recursive Neu-
ral Tensor Networks (RNTN) model has proven
successful for opinion mining in English (Socher
et al., 2013). Figure 1 illustrates the application
of a RNTN to predict the sentiment of a three-
word sentence {C1, C2, C3}, where words are rep-
resented with vectors that capture distributional
syntactic and semantic properties (Bengio et al.,
2003; Collobert and Weston, 2008; Mikolov et al.,

Figure 1: The application of RNTN for opinion
prediction in a three-word sentence.

2013). Each sentence is represented in the form of
a binary parse tree. Then, at each node of the tree,
a tensor-based composition function combines the
child nodes’ vectors (e.g., C1, C2) and produces
the parent node’s vector (e.g., P1). This process
repeats recursively until it derives a vector for each
node Ci in the tree, including the root node that
corresponds to the whole sentence. These vectors
are then used to train a softmax classifier to pre-
dict the opinion distribution yCi ∈ RK for the text
represented by the ith node, where K is the num-
ber of opinion classes. Further details are available
in (Socher et al., 2013).

Training a RNTN model requires a sentiment
treebank; a collection of parse trees with sen-
timent annotations at all levels of constituency.
For English, the Stanford sentiment treebank was
developed to train the RNTN (Socher et al.,
2013). For Arabic, we developed the Arabic Senti-
ment Treebank (ArSenTB) by annotating ∼123K
constituents pertaining to 1,177 comments ex-
tracted from the Qatar Arabic Language Bank
(QALB) (Zaghouani et al., 2014).

5 Experiments and Results

In this section, we evaluate the performance of the
feature engineering and deep learning-based mod-
els for opinion mining in Arabic tweets. We fo-
cus on the task of three-way opinion classification,
where each tweet should be classified as positive,
negative or neutral.

5.1 Dataset and Preprocessing

For our experiments, we use the Arabic Sentiment
Twitter Data (ASTD) (Nabil et al., 2015) that con-
sists of 10,006 tweets belonging to Egyptian Twit-
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ter accounts. These tweets are annotated with four
labels: positive (799), negative (1,684), neutral
(832) and objective (6,691). Due to the highly
skewed distribution of the classes, and since our
focus is to perform opinion classification rather
than subjectivity classification, we excluded the
objective tweets, reducing the size of the data to
3,315 tweets with reasonable class distribution:
24% (positive), 51% (negative) and 25% (neutral).
This data is split into a train set (70%), a develop-
ment set (10%) and a test set (20%).

Each tweet is preprocessed by (1) replacing
user mentions and URLs with special “global” to-
kens, (2) extracting emoticons and emojis using
the “emoji” java library (Vdurmont, 2016) and
replacing them with special tokens (for this we
used the emojis sentiment lexicon from (Novak et
al., 2015), and prepared our own emoticons lex-
icon), (3) normalizing hashtags by removing the
“#” symbol and the underscores that are used to
separate words in composite hashtags, and (4) nor-
malizing word elongations (letter repetitions).

To extract features for the SVM classifier, we
performed lemmatization and POS tagging us-
ing MADAMIRA v2.1, the state-of-the-art mor-
phological analyzer and disambiguator in Ara-
bic (Pasha et al., 2014), that uses the Standard Ara-
bic Morphological Analyzer (SAMA) (Maamouri
et al., 2010). Since the evaluation corpus is in
Egyptian Arabic, we used MADAMIRA in the
Egyptian mode. It is worth noting that some recent
efforts have added Levantine to MADAMIRA, but
it is not public yet (Eskander et al., 2016).

5.2 Experimental Setting

We only included n-grams that occurred more than
a pre-defined threshold t, where t ∈ [3, 5]. Prelim-
inary experiments showed that using the radial ba-
sis function (RBF) kernel is better than using the
linear kernel. We used the development set to tune
the model’s parameters, namely the cost of mis-
classification and γ the width of the kernel, Then,
the model with the parameters that achieved the
best results is applied to the unseen test set.

As for the RNTN model, we generated word
embeddings of size 25 by training the skip-gram
embedding model (Mikolov et al., 2013) on the
QALB corpus, which contains nearly 500K sen-
tences. We train RNTN using ArSenTB, and then
apply the trained model to perform opinion clas-
sification in tweets. We alleviate the impact of

sparsity by training RNTN using lemmas, which
is similar to our choice of training SVM using
lemma n-grams.

Finally, the different models are evaluated us-
ing accuracy and the F1-score averaged across the
different classes.

5.3 Results

Table 5 illustrates the performances achieved
with the state-of-the-art models in feature en-
gineering (SVMall,lemmas) and deep learning
(RNTNlemmas). We compare to the following
baselines: (1) the majority baseline that auto-
matically assigns the most frequent class in the
train set, and (2) the SVM trained with word n-
grams (SVMbaseline), which has been a common
approach in the Arabic opinion mining literature.
To emphasize the impact of lemmatization, we
include the results of SVM trained with features
from (Balikas and Amini, 2016) and using word
instead of lemma n-grams (SVMall,words). We
also include the results of RNTN trained with raw
words (RNTNwords ).

Accuracy Average F1

Majority 51.0% 22.5%
SVMbaseline 55.7% 29.0%
SVMall ,words 49.5% 41.6%
SVMall ,lemmas 51.7% 43.4%
RNTNwords 56.2% 51.1%
RNTNlemmas 58.5% 53.6%

Table 5: Performance of the different models for
opinion mining, evaluated on the ASTD dataset.

Results in Table 5 show that augmenting SVM
with the different features from (Balikas and
Amini, 2016) achieved significant performance
improvement compared to the baseline SVM. It
can also be observed that using the lemma feature
to represent raw words contributes to this high per-
formance, and confirms the importance of lemmas
at reducing the lexical sparsity of Arabic language.
Finally, the RNTN achieves best performance al-
though it was trained on a dataset that is different
from the tweets that are used for testing. We ex-
pect the performance of RNTN to further increase
when it is trained on Twitter data. These results
confirm the advantage of recursive deep learning
that model semantic compositionality, over mod-
els that rely on feature engineering.
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6 Conclusion

In this paper, we described the main challenges of
processing Arabic language in Twitter data. We
presented a characterization study that analyzes
tweets collected from different Arab regions in-
cluding Egypt, the Arab Gulf and the Levant. We
showed that Twitter have different usages across
these regions.

We report the performance of two state-of-the-
art models for opinion mining. Experimental re-
sults indicate the advantage of using deep learn-
ing models over feature engineering models, as
the RNTN achieved better performances although
it was trained using a non-Twitter corpus. Re-
sults also indicate the importance of lemmatiza-
tion at handling the complexity and lexical spar-
sity of Arabic language.

Future work will include evaluating opinion
mining models on tweets from different Arab re-
gions and covering different topics. Also, we in-
tend to apply an automatic approach for analyz-
ing tweet characteristics instead of the manual ap-
proach. We will exploit existing tools and re-
sources for automatic identification of dialects in
tweets.

We aim to perform cross-region evaluations
to confirm whether different opinion models are
needed for different regions and dialects, or a gen-
eral model can work for any tweet regardless of
its origins. This effort involves the collection and
annotation of Twitter corpora for the different re-
gions analyzed above.
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Abstract

We present the MultiScript Phonetic
Search algorithm to address the problem
of language learners looking up unfamil-
iar words that they heard. We apply it
to Arabic dictionary lookup with noisy
queries done using both the Arabic and
Roman scripts. Our algorithm is based on
a computational phonetic distance metric
that can be optionally machine learned. To
benchmark our performance, we created
the ArabScribe dataset, containing 10,000
noisy transcriptions of random Arabic dic-
tionary words. Our algorithm outperforms
Google Translate’s “did you mean" fea-
ture, as well as the Yamli smart Arabic
keyboard.

1 Introduction

The research effort reported here was motivated
by the experience of second-language learners of
Arabic who, upon hearing an unfamiliar word,
would repeatedly guess different spelling varia-
tions until they either give up or find a word that
made sense in the context. In the data we col-
lected, subjects were only able to spell an Ara-
bic word correctly 35% of the time. This diffi-
culty arises because many Arabic phones are dis-
tinguished from each other only by phonetic fea-
tures that often do not exist in the learner’s na-
tive language, such as pharyngealization. Fur-
thermore, for a variety of reasons, both learners
and native speakers often write Arabic words im-
precisely using a variety of Roman-script conven-
tions, such as Arabizi (Darwish, 2014), and this
presents a difficult problem for disambiguating the
intended word.

We address this problem with a novel algorithm
MultiScript Search for phonetic searching across

Target word: Õæ

	j 	��� (tDxym)

	á�
 	jJ.£ Õæ
jJ.£ Õæ

	jJ. �K 	á�
 	jJ. �K

(Tbxyn) (TbHym) (tbxym) (tbxyn)
thabheem Tat7iim tohpriim tawbheem
ta'95eem topk’chim takreem tabheem

Table 1: Example of the Arabic dictionary lookup
task for both Arabic and Roman script.

multiple orthographies, and apply it to performing
dictionary lookup of Arabic words from noisy user
inputs in both the Arabic and Roman scripts. The
task of dictionary lookup here is defined as a user
hearing a single word and typing their best guess
of how it sounds in a system that will look the
word up in a dictionary. An example of how users
searched for the word Õæ


	j 	��� (tDxym)1 ‘magnifi-
cation’ is given in Table 1.

Our phonetic search algorithm can be generally
applied to any language-script pair and does not
require training data. But, we also present a ma-
chine learning method to boost the performance of
our algorithm if training data is available. The al-
gorithm first performs mapping from user input to
phones, and then it searches in the dictionary for
words that have a low phonetic distance from the
query. We investigate a number of algorithms for
both the grapheme-to-phoneme mapping, and also
for calculating phonetic distance.

To benchmark our lookup accuracy, we created
the ArabScribe dataset, which is comprised of al-
most 10,000 transcriptions from 103 participants
with different degrees of knowledge of Arabic.
The participants heard random Arabic dictionary
words and transcribed them using either the En-
glish or Arabic keyboards (i.e., in Roman script

1Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007).
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or in Arabic script). We benchmarked our system
against two widely used tools to look up unfamil-
iar Arabic words, Google Translate and the Yamli
Smart Arabic Keyboard. We show that we exceed
the performance of both tools.

The paper will proceed as follows. In Section 2
we discuss the related literature in transliteration,
spell correction and phonetic distance mapping. In
Section 3 we describe our high level algorithm and
the variations we tested. In Section 4 we describe
the ArabScribe dataset. Section 5 presents our
search recall results and our benchmark against the
Google and Yamli systems. In Section 6, we sum-
marize our findings and present a discussion on
potential future work.

2 Related Work

The principal contribution and distinction of our
work against previous work in the related areas
of transliteration and spelling correction is that we
are concerned with recovering from hearing errors
rather than errors arising from spelling or ambigu-
ous orthography. To our knowledge, there has not
been any empirical research into the accuracy of
the task of phonetic dictionary lookup of spoken
words.

Spelling Correction Within a single orthogra-
phy, a closely related problem is spellchecking.
Commonly used algorithms employ statistical and
edit-distance models over letters, phones or meta-
phone (Whitelaw et al., 2009; Kukich, 1992;
Damerau, 1964; Oflazer, 1996; Atkinson, 2005;
Philips, 1990; Toutanova and Moore, 2002). Our
algorithm is distinguished from these, in that we
are not only addressing the case where the user
doesn’t know how to spell the word, but the much
more challenging case where they have not heard
the sound correctly.

Whitelaw et al. (2009) describe the Google
spell check system which takes a statistical ap-
proach using massive unannotated web corpora.
Their dictionary of canonical terms contains the
most common tokens appearing online, and they
match misspelled words to their canonical form
using a combination of a language context and
Levenshtein edit distance. Then, they build a sta-
tistical model of how substrings change. Spelling
suggestions are scored as a function of the proba-
bility of the substring substitutions combined with
a language model. This statistical approach has
the advantage that it requires no formal language

definition, instead requiring a large amount of lin-
guistic data and computational resources. While
it is a very effective spell checker, it does not per-
form well on noisy user input of guessed spellings
of unfamiliar words as it is trained on web corpora
which are written by people who have a gener-
ally stronger command of the language and there-
fore errors are often due to typos rather than not
knowing how to spell the word. There is un-
fortunately no published material about the exact
method used by Google’s transliteration or Yamli
smart keyboard to map Roman-script input into
Arabic words.

In the context of spelling correction for Ara-
bic, there has been a large number of efforts and
resources (Shaalan et al., 2010; Alkanhal et al.,
2012; Eskander et al., 2013; Mohit et al., 2014;
Zaghouani et al., 2014) (among others).2 All of
these efforts focus on contextual spelling correc-
tion or conventionalization. In this work we con-
tribute a new data set, ArabScribe, that may be of
use in that area of research.

Transliteration Transliteration systems invari-
ably use either a direct mapping between sub-
strings in the two scripts (Al-Onaizan and Knight,
2002; AbdulJaleel and Larkey, 2003; El-Kahky et
al., 2011; Al-Badrashiny et al., 2014), or use an
intermediate script such as the International Pho-
netic Alphabet (IPA) (Brawer et al., 2010) or Dou-
ble Metaphones (Philips, 2000).

AbdulJaleel and Larkey (2003) proposed a sta-
tistical method for transliteration between Arabic
and English. It does statistical alignment of a cor-
pus of transliterated proper names, and produces
the probability of transliterations of short n-grams
between the two scripts. Then, input terms are seg-
mented into the available n-grams, and all possi-
ble transliterations are produced and scored based
on their joint probabilities. Habash (2009) used
an ambiguous mapping that utilized the sounds-
like indexing system Double Metaphones (Philips,
2000) combined with the direct mapping scores
defined by Freeman et al. (2006) to handle out-of-
vocabulary words in the context of Arabic-English
machine translation. Freeman et al. (2006) ex-
tended Levenshtein Edit Distance to allow for im-
proved matching of Arabic and English versions
of the same proper names. El-Kahky et al. (2011)
use graph reinforcement models to learn mapping

2For more information on Arabic natural language pro-
cessing, see Habash (2010).
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between characters in different scripts in the con-
text of transliteration mining.

Al-Badrashiny et al. (2014) present a similar
system where words are transcribed using a finite
state transducer constructed from an aligned par-
allel Arabizi-Arabic corpus. The disadvantage of
this and other learned methods (Ristad and Yiani-
los, 1998; Lin and Chen, 2002; Mangu and Brill,
1997; Jiampojamarn et al., 2009) is that they re-
quire aligned parallel corpora whereas our ap-
proach performs well without any data. We note
that training data for attempted dictionary lookup
of heard words is extremely scarce. Brawer et al.
(2010) present an automatic transliteration system
used to internationalize place names for Google
Maps. Their approach relies on hand crafting rule
sets, that map between orthographies and the IPA.
Their approach does not require any training data;
however, it requires expert knowledge of the writ-
ing system of different languages and is difficult
for languages like English, which do not have a
simple orthographic to phonetic mapping. How-
ever, it is advantageous because adding rules for
a single orthographic system allows translitera-
tion between all language pairs. As with the Ab-
dulJaleel system, this approach does not address
noisy information retrieval, where the target term
may be incorrectly heard or spelled.

Phonetic Similarity Models Several phonetic
similarity models have been discussed in the liter-
ature. In general, algorithms either directly com-
pare phonetic pairs, or make use of phonetic fea-
ture vectors. Our approach in this paper uses pho-
netic features vectors to compute phonetic similar-
ity.

Kuo et al. (2007) proposed a similarity model
between English and Mandarin Chinese using
phonetic confusion matrices. These are NxM ma-
trices, giving the similarity two phone sets of size
N and M. These similarities are generated statis-
tically, either through aligned transliterations that
have been converted to phones, or from errors pro-
duced in automatic speech recognition systems.
However, the size of these matrices grow quadrat-
ically with the size of the phone set, so can require
large amounts of training data.

Kondrak (2003) introduces an algorithm for
calculating phonetic distance using separate pho-
netic feature vectors for vowels and consonants,
with heuristic weights ascribed to each feature,
and then calculating the best alignment using

the Wagner-Fischer edit distance dynamic pro-
gramming algorithm (Wagner and Fischer, 1974).
There is a fixed cost for skipping a specific phone,
and otherwise a cost for substitutions of phones
proportionate to the difference in their weighted
feature vectors.

Sriram et al. (2004) present a generic method
for cross-linguistic search that shares the two
stage approach in this paper, with a grapheme-
to-phoneme model followed by matching in pho-
netic space with a distance metric. However, they
only describe a rule based grapheme-to-phoneme
system in abstract and do not present any sort
of performance evaluation for their algorithm.
Their search algorithm also requires the alignment
and calculation of phonetic distance of the query
against the entire database of search terms, which
can be prohibitively expensive for large query sets.

3 MultiScript Search Algorithm

Our algorithm operates in two stages. First, the
query term is converted from Arabic or Roman
script into several possible phone sequences using
several grapheme to phone conversion techniques.
Then we use a phonetic distance algorithm to do
search state enumeration based on a trie built from
a phonetic Arabic dictionary.

We test different variations of grapheme to
phone conversation techniques and phonetic dis-
tance metrics. For grapheme to phone conversion,
we investigate using a simple manually created fi-
nite state transducer, and using deep bi-directional
long short term recurrent neural networks. For
the phonetic distance metric, we investigate us-
ing simple Levenshtein edit distance, unweighted
phone feature vectors, and unweighted consonant
and vowel feature vectors. We also show a method
to train the system to produce weighted distance
costs for performance increase.

3.1 Grapheme to Phone Model

3.1.1 Finite State Transducer
We can define a very simple finite state trans-
ducer, which maps an orthographic input into a set
of one or more IPA string outputs. This FST is
compiled from a simple hand written list of rules
of many-to-many mapping between orthographic
substrings and single IPA phones. Creating such
a list only requires basic knowledge of the ortho-
graphic system of the script.

The Arabic script FST is relatively simple, with
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Figure 1: Overview of Phonetic Similarity Search algorithm

most consonants just mapping to a single IPA
output, but with one-to-many mappings for some
characters such as the long vowels. Our Arabic
FST contains all the rules described in Biadsy et
al. (2009).

The Roman script FST contains Arabizi-
specific heuristic mappings from one- or two-
character Roman-script strings into IPA found in
the Arabic language, e.g. gh mapping to /K/. It
also includes digits, such as 5 mapping to /x/ p
and 7 mapping to /è/ h. We also introduce the con-
straint that IPA phones that are repeated in the out-
put string are collapsed into a single phone, to deal
with doubled characters (i.e., H. A��J» ktAb /kutta:b/
‘authors’ is mapped to /kuta:b/).

3.1.2 BiLSTM Recurrent Neural Network
A common strategy for grapheme to phone map-
ping is to use recurrent neural networks trained
on parallel orthography to phonetic corpora. We
train a deep bidirectional long-short term memory
cells (LSTM), loosely based on the grapheme-to-
phoneme model presented by Rao et al. (2015).
Our RNN has two hidden layers, each containing
512 LSTM cells in both the forwards and back-
wards directions. We use the connectionist tempo-
ral classification cost (CTC) function to train the
network (Graves et al., 2006). The use of the CTC
cost function helps us avoid doing phone align-
ments between our parallel corpora. We decode
the neural net outputs using a beam search with
width 100, taking only the top 1 result.

We train on two different parallel corpora. The
first is the CMU pronouncing dictionary, a pho-

netic dictionary for English.3 We also train on
a hybrid corpus, which contains data from both
CMU dictionary and ArabScribe. We do not train
LSTM for Arabic orthography because there is
not enough variation in the mapping between the
script and the phonetic output to justify their use.

3.2 Search State Enumeration

Our goal is to find the words in the phonetic dic-
tionary with the lowest phonetic distance from
our query input encoded as phones. A naive ap-
proach would be to use the Wagner-Fischer dy-
namic programming algorithm to calculate the op-
timal alignment of insertions, deletions and sub-
stitutions, of our query against all terms in the dic-
tionary. However, the cost of this would be pro-
hibitive. Instead, we dynamically search for the
most phonetically similar words by maintaining a
set of search states against a phonetic trie contain-
ing our dictionary. An overview of the approach is
in Figure 1.

We first build a trie containing the phonetic rep-
resentation of all words in the Arabic dictionary.
We use the IPA as our phone set. For our dic-
tionary, we use fully diacritized lemmas from the
Buckwalter Morphological Analyzer (Buckwalter,
2004). We convert the fully diacritized Arabic into
phones using the simple rule based method pro-
posed in Biadsy et al. (2009). We store all these
terms in a trie data structure, where each node op-
tionally contains a set of words for which it is the
terminating node.

3http://www.speech.cs.cmu.edu/cgi-bin/
cmudict
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Given a user input, we convert it into one or
more phone strings, using one of our grapheme
to phone algorithms. For each of these phone
strings, we initialize a 4-tuple search state
(queryString, queryIndex, trieNode, cost)
which represent the IPA encoded query, the
index of the current phone in that string that is
being consumed, the current node in the trie and
the accumulated cost. For the initial search on
"qamuus" (Arabic for ‘dictionary’), one such
four-tuple might be: (kamus, 0, root, 0).

We then do search state enumeration until we
discover N final search states which are our re-
sults for a TopN search. The search state enumer-
ation process is illustrated in Figure 2. We define a
function Transition, that takes our search state s,
and returns a set S′ of zero or more search states.
Transition allows the search state to accept a sin-
gle insertion, deletion, or substitution edit as in the
Wagner-Fischer algorithm (Wagner and Fischer,
1974). The exact cost increase of each new search
state s depends on the phonetic distance algorithm
that we select.

Transition(s) = S′

S′ = Ins(s) ∪Del(s) ∪ Sub(s)
s′.cost ≥ s.cost ∀s′ ∈ S′

Ins(s) = { s′ |s′.tNode ∈ s.tNode.children }
Del(s) = { s′ |s′.qIndex = s.qIndex + 1 }
Sub(s) = { s′ |s′.qIndex = s.qIndex + 1 ∧

s′.tNode ∈ s.tNode.children }

We are looking for the words with the lowest
phonetic distance overall, or equivalently, the low-
est cost paths to final search states. A search state
is considered final if we have consumed all char-
acters in our query, and our resulting trie node is
the end of a dictionary word. These conditions can
be expressed as:

isF inal(s) =(s.qIndex == len(s.qString)
∧ s.tNode.word 6= NULL)

An optimization we use to prevent enumerating
the entire tree is using a min-heap, containing all
the search states we have seen. We always pop
the minimum search state, and therefore are guar-
anteed to traverse the global set of search states
in cost order. For searching a query that fully

matches a dictionary word, the number of transi-
tions to discover the first word is equal exactly to
the number of characters in the phonetic represen-
tation of that word.

If we use a Fibonacci heap as our min-heap,
the worst case complexity of this algorithm is
O(ldqlog(dl)), where d is the length of the longest
phonetic string in our dictionary, and l is the num-
ber of phones in our alphabet, and q is the length
of the query, considering a complete Trie. How-
ever, as this algorithm discovers search states in
cost order, in practice it is quite fast and does not
need to enumerate many states before termination.
It is also practical to implement a cost ceiling, af-
ter which transitions no longer need occur as you
are too phonetically distant to have meaningful re-
sults. In this case, the phonetic search can be guar-
anteed to always terminate in a reasonable time.

3.3 Phonetic Distance Metric

We present below three strategies for defining the
cost of insertion, deletion and substitution edits.

3.3.1 Levenshtein Distance

We investigate a naive approach where the cost of
all insertion, deletion and substitution operations
has a cost of 1. Thus, we find results that have
low edit distance to our query. This approach is
widely used in applications such as conventional
spell correction, transliteration similarity and mu-
sic information retrieval (Freeman et al., 2006;
Toussaint and Oh, 2016).

3.3.2 Phone Binary Feature Vector

Again we define the cost of insertion and dele-
tion edits to be 1. We represent phones using a
21-valued binary feature vector based on the Pan-
phon package (Mortensen, 2016). Each feature is
assigned either a value of + positive, - negative,
or 0 as not relevant. The cost of substitution is
then simply the distance between the two phones,
which is calculated by sum the weights of the rele-
vant non-zero features divided by the total weight
of all features that are relevant in at least one of the
two phones. For the untrained version, the weight
of all features is equal to 1.
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Figure 2: Search State Enumeration

D(p, q) =

∑
i

WiI(pi, qi)R(pi, qi)∑
i

WiR(pi, qi)

I(x, y) =

{
1, ifx == y

0, otherwise

R(x, y) =

{
1, if (x! = 0 ∨ y! = 0)
0, otherwise

Because we divide by the sum of all relevant
weights, the output of our distance function is al-
ways in the range of [0, 1], with D(x, x) = 0. To
improve performance, we introduce two language
specific rules. For Roman-script inputs, substi-
tutions between consonants and vowels are disal-
lowed; and for Arabic-script inputs, vowel inser-
tions are free, as Arabic is usually written without
short vowel diacritics.

3.3.3 Machine Learned Weights
A machine learning method is introduced to im-
prove the accuracy of phonetic search by fine tun-
ing the weights associated with inserting, deleting
and substituting phones on a corpus of transcrip-
tions. Each discrete phone p is given insertion and
deletion costs in the range [0, 10], while substitu-
tions are given the range [0, 1]. The higher range
for insertions and deletions is to allow insertion
and deletion errors to take a higher cost than sub-

stitutions; this prevents our algorithm from enu-
merating over many unlikely insertion and dele-
tions. A weight Wi is also assigned to each phone
feature, but our distance function D(p, q) still pro-
duces costs in the range [0, 1]. The weights are
trained such that the phonetic distance between a
given transcription and the actual word is mini-
mized relative to the phonetic distances between
the transcription and all other words in the train-
ing set.

We define an edit vector ~Et,w between a tran-
scription t and a word w as the sum of all edits
required in the shortest path between the phonetic
representations of t and w as calculated by the
Wagner-Fischer algorithm (Wagner and Fischer,
1974). We define an arbitrary but fixed ordering on
our set of phones P and on our phone features F .
Thus the first 2|P | indices of ~E represent the num-
ber of inserts and deletions on specific phones, and
the last |F | indices represent the number of times a
specific feature was different between two phones.

We construct an edit matrix for each transcrip-
tion Mt, where the first row M0

t is the edit vector
between the transcription and the target word, fol-
lowed by the edit vectors between the transcription
and all other words in our training set. For Arab-
Scribe, we use 41 phones and 21 phone features
so the dimension of ~E is 2(41) + 21 = 103. Our
training set contains 400 words, so our edit matrix
has dimensions (400, 103).
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To train, we initialize three weight variable vec-
tors for insertion ~Wi, deletion ~Wd and substitution
~Ws of length |P |, |P | and |F |, respectively. We
make a concatenated projected weight vector as
follows:

~Wproj = concatenate(10 · sigmoid(Wi),
10 · sigmoid(Wd),

W 2
s∑

i
W i

s
2 )

This makes ~Wproj align with ~E element-wise. We
do the sigmoid and division by squared sum op-
erations in order to force the cost of edits into the
ranges we specified above. Finally we define the
cost function for a given transcription t as:

Ct = exp(D ·
~Et,w · ~Wproj

Mt
~Wproj

)− 1

Where D is a scaling factor hyper-parameter that
punishes higher costs much more than lower costs,
therefore forcing the training to improve the more
difficult cases rather than over-optimizing the easy
cases. The optimal value is dependent on the data
size but we found D = 500 worked well for the
ArabScribe training set. Note Ct = 0 when t is a
perfect transcription.

We do batch gradient descent with early stop at
the point test performance drops. In our case, the
entire ArabScribe training set could fit in memory,
but for larger training sets stochastic gradient de-
scent is recommended.

4 The ArabScribe Dataset

In order to benchmark the performance of our al-
gorithms, and to provide training data for the bidi-
rectional LSTM and trained weight vectors, we
created the ArabScribe dataset of Arabic transcrip-
tions. This dataset is freely available for research
purposes.4

We randomly selected 500 MSA lemmas (the
words) from the list of lemmas in our dictionary,
the Buckwalter Arabic Morphological Analyzer
(BAMA) (Buckwalter, 2004). BAMA contains
36,918 lemmas total. Five native speakers were
recorded slowly and clearly speaking 100 words
each, covering all 500 entries. Then, 103 partic-
ipants listened to up to 100 words each. Each

4ArabScribe can be downloaded from http://camel.
abudhabi.nyu.edu/resources/.

No Experience 26
0-1 years of Arabic education 45
1-2 years of Arabic education 14
2+ years of Arabic education 6
Heritage speaker 3
Native speaker 9
Total 103

Table 2: ArabScribe participant skill levels

Arabic Script Roman Script
Train 654 1342
Test 2,580 5,357
Total 3,234 6,699

Table 3: ArabScribe transcription types

participant was assigned either the "English key-
board" (with digits and common punctuation) or
sometimes the "Arabic keyboard" (without diacrit-
ics) if they reported that they could type Arabic.
They were required to transcribe each word they
heard in a way that was most natural to them. We
collected 3,234 transcriptions with the Arabic key-
board (Arabic script) and 6,699 transcriptions with
the English keyboard (Roman Script).

We collected native language and Arabic skill
level of each participant were also collected. The
skill levels are:

1. No Arabic experience

2. 0-1 years of Arabic education

3. 1-2 years of Arabic education

4. 2+ years of Arabic education

5. Heritage speaker (some Arabic exposure
from family background but not fluent)

6. Native speaker

We tried to balance the dataset for having all
words transcribed by an equal number of partici-
pants at all skill levels with both the Arabic and
English keyboards. The transcriptions were also
divided into a 20% testing set comprised of 100
words, and a 80% training set comprised of the
other 400 words. Table 2 gives the the breakdown
of the range of Arabic skill levels of the partic-
ipants in our experiment; and Table 3 gives the
breakdown of the number of samples in the train
and test sets.
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Script Grapheme-to-Phone Distance Metric Top 1 Top 10
Roman EngLSTM Levenshtein 19.6% 21.3%
Roman HybridLSTM Levenshtein 20.5% 22.3%
Roman EngLSTM MultiScript Untrained 19.9% 37.1%
Roman HybridLSTM MultiScript Untrained 21.4% 36.8%
Roman FST Levenshtein 43.6% 49.1%
Roman FST MultiScript Untrained 36.8% 53.3%
Roman FST MultiScript Trained 46.0% 60.7%
Arabic - Exact Match 34.9% -
Arabic FST Levenshtein 54.7% 57.3%
Arabic FST MultiScript Untrained 54.4% 65.4%
Arabic FST MultiScript Trained 55.0% 69.0%

Table 4: Recall rates for different methods in TopN dictionary lookup

5 Experimental Results

To benchmark our phonetic search algorithm, we
search against each transcription from our test set
against the Arabic dictionary of all terms from
BAMA. We then look for the correct word in the
top 1 and top 10 results returned. We varied the
grapheme-to-phone technique and distance met-
ric, and performed the test on both the Roman and
Arabic script data. For grapheme-to-phone tech-
niques, we used the finite state transducers (FST)
for Arabic and Roman scripts. We also trained a
BiLSTM for Roman script only on either the En-
glish dictionary (EngLSTM) or a mix of the En-
glish dictionary and the ArabScribe training set
(HybridLSTM). For the distance metrics, we used
the Levenshtein distance metric, and the untrained
and trained varieties of the MultiScript algorithm.
The full results are listed in Table 4. Our Baseline
techniques are exact matching for Arabic Script
and searching using the FST with a Levenshtein
edit distance (Damerau, 1964) for Roman Script.
In general the LSTM based techniques performed
poorly compared to the FST techniques. Multi-
Script without training was similar in performance
to the Levenshtein distance metric. However, us-
ing a FST with trained MultiScript Search was the
best performer for both Roman and Arabic Script.
The top performing algorithms identified the tar-
get word within the top 10 results for 69.0% of
cases with Arabic script, and 60.7% of cases with
Roman script.

FSTs likely outperformed BiLSTMs because
the English LSTM is not capable of producing any
phones in the Arabic phone set, and it also cannot
recognize Arabizi special symbols such as punc-

tuation and digits. Training with some samples
from ArabScribe slightly boosted the LSTM per-
formance, but we hypothesize that the very small
size of this training set made it ineffective. How-
ever, a disadvantage of the FST approach, is that
it was tailored for the English-Arabic mapping,
and would not generalize well to searching against
other language pairs.

We found that for both Arabic and Roman script
inputs, the accuracy of the algorithm is much
higher for participants with more experience. This
is likely because they can hear the sounds more
accurately and also because they recognize more
of the words in the test set. Our recall rate for
advanced learners (2+ years of Arabic education)
was 87% for Arabic script input and 78.5% for Ro-
man script input. This search accuracy is in fact
slightly higher than what native speakers scored
which was 85.4% and 77.8% for Arabic and Ro-
man script, respectively. Users with Arabic expe-
rience found their desired word in the top 10 sig-
nificantly more often than beginner learners (0-1
years experience), whose recall rates were only
56.1% for Arabic script and 55.7% for Roman
script. The full recall rates of FST+MultiScript
search can be found in Table 5.

The instances in which MultiScript failed to
match were often because the user thoroughly mis-
heard the sound, or that there were too many real
Arabic words similar to the target word which all
were matched with low phonetic distance scores.
Some errors also arose due to our FST not being
complex enough to account for all the different
ways people write the sounds they hear.
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Arabic Experience Roman Arabic
Native Speaker 68.1% 84.4%
Heritage Speaker 63.3% No Data
Advanced (2+ years) 70.8% 87.2%
Intermediate (1-2 years) 53.3% 69.0%
Beginner (0-1 years) 55.7% 56.1%
No Experience 44.9% N/A

Table 5: Top 10 recall rates at different skill levels
for FST + MultiScript trained search.

Method Recall
Google Translate Roman Top 1 21.5%
MultiScript Roman Top 1 46.0%
Yamli Roman Top 10+ 44.5%
MultiScript Roman Top 10 60.7%
Google Translate Arabic Top 1 9.4%
MultiScript Arabic Top 1 31.0%

Table 6: Benchmarking against Google Translate
and Yamli on non-exact dictionary matches.

Benchmarking against Google and Yamli
Two popular tools that are commonly used by stu-
dents of Arabic to look up unfamiliar words are
Google Translate5, through the “did you mean fea-
ture", and the Yamli Smart Arabic Keyboard6. We
recognize that this comparison is not entirely fair
as these tools target a much larger problem do-
main. However, we do this comparison as these
are the tools most commonly used by students to
address this unfamiliar word lookup problem.

Google Translate sometimes offers a single cor-
rection for non-dictionary word inputs, so we
compare it to MultiScript top 1. For Arabic script
inputs, 35% of the inputs were spelled exactly
correctly, so we only measure rates of recovery
from spelling errors rather than the rate of finding
the correct word. The Yamli smart keyboard is a
transliteration system where users can type Arabic
using Roman letters, and it can return more than
10 suggestions per typed word, so we benchmark
it against MultiScript top 10.

The results of this comparative benchmark are
presented in Table 6. We significantly out-
performed both Google Translate and Yamli in this
specific dictionary lookup task for both Arabic and
Roman scripts.

5https://translate.google.com/
6http://www.yamli.com/arabic-keyboard/

6 Conclusion and Future Work

We have demonstrated a novel algorithm for per-
forming an efficient phonetic search against a large
Arabic dictionary using both the Roman and Ara-
bic scripts. We have also introduced the Arab-
Scribe dataset containing around 10,000 transcrip-
tion attempts of Arabic words in Roman and Ara-
bic scripts. A comparative benchmark shows that
our best setup significantly improves on the widely
used Google Translate "did you mean" feature, as
well as the Yamli Arabic smart keyboard.

Though our work was done for Arabic only, the
only language specific methods involved were the
finite state transducer rules and the system could
easily be extended to other languages and or-
thographies. Other extensions of this work would
be to apply these phonetic search algorithms in
targeted information retrieval for one or more or-
thographies. For example, it could be applied
in searching for names of people on Wikipedia,
or names of places in a mapping application. It
would also be interesting to see how the perfor-
mance of the system improves with much larger
scales of training data, and if using multivalued
phone features would improve the distance metric.
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Abstract

This paper focuses on comparing between
using Support Vector Machine based rank-
ing (SVMRank) and Bidirectional Long-
Short-Term-Memory (bi-LSTM) neural-
network based sequence labeling in build-
ing a state-of-the-art Arabic part-of-
speech tagging system. Using SVMRank

leads to state-of-the-art results, but with a
fair amount of feature engineering. Us-
ing bi-LSTM, particularly when combined
with word embeddings, may lead to com-
petitive POS-tagging results by automat-
ically deducing latent linguistic features.
However, we show that augmenting bi-
LSTM sequence labeling with some of the
features that we used for the SVMRank-
based tagger yields to further improve-
ments. We also show that gains realized
using embeddings may not be additive
with the gains achieved due to features.
We are open-sourcing both the SVMRank

and the bi-LSTM based systems for the re-
search community.

1 Introduction

Part-of-speech (POS) tagging is an important
building blocking in many natural language pro-
cessing applications such as parsing and named
entity recognition. An Arabic word is composed
of one or more segments (or clitics), which are
typically a stem to which prefixes and suffixes
may be attached. Arabic POS tagging involves
assigning appropriate in-context POS tags to each
clitic. Tagging can be done for each clitic in se-
quence or for all clitics in a word simultaneously.
Much work has been done on Arabic POS tag-
ging and many morphological and surface-level
features have been shown to improve tagging. Re-

cent work on sequence labeling using deep neural
networks, particularly using bidirectional Long-
Short-Term-Memory (bi-LSTM) and word em-
beddings, has been shown to be effective for POS
tagging in different languages, without the need
for explicit feature engineering. In essence, deep
neural networks may be able to capture latent lin-
guistic features automatically. In the context of
this work, we compare using a discriminative clas-
sification technique, namely Support Vector Ma-
chine based Ranking (SVMRank), that requires
significant feature engineering with bi-LSTM neu-
ral network with and without feature engineering
and word embeddings. We experiment with tag-
ging each clitic in context and with tagging all
clitics in a word collectively. We also compare
both systems with MADAMIRA, which is a state-
of-the-art Arabic POS tagging system. We show
that adding explicit features to the bi-LSTM neu-
ral network and employing word embeddings sep-
arately improve POS tagging results. However,
combining both explicit features and embeddings
together leads sub-optimal results. For testing, we
employ the so-called “WikiNews” test set which
is composed of freely available recent news arti-
cles in multiple genre (Abdelali et al., 2016). We
are making all resultant systems available as open-
source systems.

The contributions of this paper are as follows:

• We compare using SVMRank to using bi-
LSTM with and without feature engineering
and word embeddigns in Arabic POS tag-
ging. We show that feature engineering im-
proves POS tagging significantly.

• We explore the effectiveness of many fea-
tures including morphological and contextual
features for tagging each clitic or each word
in-context.
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• We open-source both Arabic POS taggers,
both of which are written entirely in Java.
The SVMRank-based system has a load time
of 5 seconds and can process about 2,000
word/second on an laptop with Intel i7 pro-
cessor with 16 GB of RAM.

2 Background

2.1 Challenges of Arabic Language

Arabic language is a Semitic language with com-
plex templatic derivational morphology. The Ara-
bic nouns, adjectives, adverbs, and verbs are typi-
cally derived from a closed set of approximately
10,000 roots of length 3, 4, or rarely 5 letters.
Arabic nouns and verbs are derived from these
roots by applying templates to the roots to gen-
erate stems. Such templates may carry informa-
tion that indicate morphological features of words
such POS tag, gender, and number. For exam-
ple, given a 3-letter root with 3 consonants CCC,
a valid template may be CwACC , where the in-
fix “wA” is inserted. This template is typically
an Arabic broken, or irregular, plural template for
a noun of template CACC or CACCp for mas-
culine or feminine respectively. Further, stems
may accept prefixes and/or suffixes to form words.
Prefixes include coordinating conjunctions, deter-
miner, and prepositions, and suffixes include at-
tached pronouns and gender and number mark-
ers. English POS tagging techniques face a prob-
lem when dealing with agglutinative and highly
inflected languages such as Arabic. This results
in a large number of words (or surface forms) and
in turn a high-level of sparseness and a large num-
ber of previously unseen words. Further, Arabic
words embed morphological information such as
gender and number and syntactic information such
as case and gender and number agreement.

Traditional Arab linguists divide Arabic words
into three classes, namely: nouns, verbs, and parti-
cles. Such coarse categorization is not suitable for
many higher NLP tasks such as parsing. There-
fore, more comprehensive tagsets have been cre-
ated to capture the morphological and syntactic as-
pects of the words in Arabic. For most, the number
of Arabic clitic-level POS tags is small, while the
number of valid composite word-level tags is typi-
cally large. The proposed clitic-level tagsets range
from simplified tagsets such as the CATiB tagset
(Habash and Roth, 2009; Habash et al., 2009a)
which has only six POS tags to more complex

tagsets such as that of the Penn Arabic Treebank
(ATB), which has 70 tags (Maamouri et al., 2004).
In our work, we elected to use the tagest proposed
by Darwish et al. (2014) which is a simplified ver-
sion of ATB tagset and uses 18 tags only.

2.2 Arabic POS Tagging

Most recent work on Arabic POS tagging has used
statistical methods. Diab (2009) used an SVM
classifier to ascertain the optimal POS tags. The
classifier was trained on the ATB data. Essentially,
they treated the problem as a sequence-labeling
problem. Another popular system for Arabic POS
tagging is MADAMIRA, which uses an underly-
ing morphological analyzer and is also trained on
the ATB (Habash et al., 2009b; Pasha et al., 2014).
We use MADAMIRA to compare to our work.
Darwish et al. (2014) introduced the use of stem
templates to improve POS tagging and to help as-
certain the gender and the number of nouns and
adjectives. They reported an accuracy of 98.1%
on ATB data when using gold segmentation and
employing different features such as word surface
forms, list matching, and stem-templates.

In recent developments, deep neural networks
were used to develop taggers that achieve good
POS tagging accuracy. Plank et al. (2016) used bi-
LSTM neural network to build taggers for 22 lan-
guages. The models achieved significant results
for morphologically complex languages including
Arabic. The models were built using the Univer-
sal Dependencies project v1.2 (Nivre et al., 2015)
data. Ling et al. (2015) used bi-LSTM (Hochre-
iter and Schmidhuber, 1997) combining words
and characters vector representations to achieve
comparable results to state-of-the-art English POS
tagging. Wang et al. (2015) used only word-
embeddings on a bi-LSTM neural network to train
a POS tagger; their approach achieved 97.26% ac-
curacy on WSJ testset. The highest accuracy re-
ported on this testset was 97.25% by Huang et al.
(2012) .

3 Our Part-of-Speech Taggers

Our Arabic part-of-speech (POS) tagging uses
the simplified ATB tag set proposed by (Darwish
et al., 2014) and shown in Table 1. The POS
tagger attempts to find the optimal tag for each
word in a sentence. We present here two differ-
ent approaches for POS tagging. The first uses
SVMRank to guess POS tags at the level of cli-
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POS Description POS Description
ADV adverb ADJ adjective
CONJ conjunction DET determiner
NOUN noun NSUFF noun suffix
NUM number PART particles
PREP preposition PRON pronoun
PUNC punctuation V verb
ABBREV abbreviation CASE alef of tanween fatha
JUS jussification attached to

verbs
VSUFF verb suffix

FOREIGN non-Arabic as well as
non-MSA words

FUT PART future particle “s” prefix
and “swf”

Table 1: Part-of-speech tag set of Farasa.

tics or words using clitic and word level features as
well as context-level features. The second uses Bi-
LSTM recurrent-neural-network with clitic level
features to guess POS tags at clitic level.

3.1 SVMRank-based POS Tagger
The POS tagger uses SVMrank (Joachims, 2006)
with a linear kernel to determine the best POS tag
for each word. It was trained on parts 1 (v. 4.1),
2 (v. 3.1), and 3 (v. 2) of the ATB (Maamouri et
al., 2004). Instead of testing the POS tagger on a
subset of the ATB, which may lead to artificially-
high results due to its limited lexical diversity,
we tested our system on the WikiNews test set,
which includes 70 WikiNews articles from 2013
and 2014 and composed of 18, 300 words that
are manually-segmented and POS tagged (Dar-
wish and Mubarak, 2016). The WikiNews test
set covers a variety of topics, namely: politics,
economics, health, science and technology, sports,
arts, and culture.We followed two paths for POS
tagging, namely:

• (Clitic) we guess the POS tag for each clitic
in a word, and then we combine the tags of
the clitics of a word.

• (Word) we guess the compound POS tag for
the whole word.

In both paths, we constructed a feature vector for
each possible POS tag for each clitic or word.
We supplied these vectors to SVMRank indicat-
ing which vector should rank highest given fea-
ture values. We then use SVMRank (Joachims,
2006) to learn feature weights. We use a linear
kernel with a trade-off factor between training er-
rors and margin equal to 100 (parameters tuned on

offline experiments carried out over a development
set that was set aside from ATB). All possible POS
tags for a clitic or a word are scored using the clas-
sifier, and the POS with the highest score is picked.

3.1.1 Tagging Clitics
Given a sentence composed of the clitics
c−n . . . c0 . . . cm, where c0 is the current clitic and
its proposed POS tag, we train the classifier using
the following features, which are computed using
the maximum-likelihood estimate on our training
corpus:

• p(POS|c0) and p(c0|POS).

• p(POS|c−i..c−1) and p(POS|c1..cj); i, j ∈
[1, 4].

• p(POS|c−iPOS ..c−1POS ) and
p(POS|c1POS ..cjPOS ); i, j ∈ [1, 4].
Since we don’t know the POS tags of these
clitics a priori, we estimate the conditional
probability as:∑

p(POS|c−1possible POS
..c−ipossible POS

) .

For example, if the previous clitic could
be a NOUN or ADJ, then p(POS|c−1) =
p(POS|NOUN) + p(POS|ADJ).

If the clitic is a stem, we also compute the fol-
lowing features:

• p(POS|stem template). Arabic words are
typically derived from a closed set of roots
that are placed in so-called stem templates to
generate stems. For example, the root ktb
can be fit in the template CCAC to generate
the stem ktAb (book). Stem templates may
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conclusively have one POS tag (e.g., yCCC
is always a V) or favor one tag over another
(e.g., CCAC is more likely a NOUN than an
ADJ). We used Farasa to determine the stem
template (Abdelali et al., 2016).

• p(POS|prefix) and p(POS|suffix).
Some prefixes and suffixes restrict the pos-
sible POS tags for a stem. For example, a
stem preceded by DET is either a NOUN or
an ADJ.

• p(POS|prefix, prev word prefix),
p(POS|prev word suffix) and
p(POS|prev word POS). Arabic has
agreement rules for noun phrases and idafa
constructs that cover definiteness, gender,
and number. Both these features help capture
agreement indicators.

• p(POS|MetaType). We assign each clitic a
“meta types”. The meta types can help the
classifier identify different POS tags. The
meta types are:

– NUM: If a clitic is a sequence of numer-
als or matches a gazetteer of numbers
spelled out in words.

– FOREIGN: If all characters are Latin.
– PUNCT: If it is composed of non-

letters.
– ARAB: If composed of Arabic letters

only.
– PREFIX: If it ends with “+” after seg-

mentation (ex. “Al+”).
– SUFFIX: If it starts with “+” after seg-

mentation (ex. “+h”).

3.1.2 Tagging Words
In this setup, we attempt to tag the entire word at
once instead of tagging each clitic separately. Sim-
ilar to the tagging of clitics in subsection 3.1.1, we
train SVMRank using word-level features. Given
a word sequence w−n...w0...wm, we used the fol-
lowing features:

• p(w0|POS) and p(POS|w0)

• p(POS|w0word template) – The word-
template here is the stem-template plus the
prefixes and suffixes. For example, the
stem of the “Al+ktAb” (the book) is “ktAb”
with the stem-template “fEAl”, and the
word-template is “Al-fEAl”.

• p(POS|MetaType) – This is the meta type
defined earlier with clitics, except that “PRE-
FIX” and “SUFFIX” meta types are ex-
cluded.

• p(POS|w0prefixes) – The prefixes are just
the prefixes that are attached to the word.

• p(POS|w0suffixes) – The suffixes are just
the suffixes that are attached to the word.

• p(POS|w0prefixes, w−1prefixes) – This
helps in capturing gender and number
agreement.

• p(POS|w0prefixes, w−1prefixes, w−1POS) –
This also helps in capturing gender and num-
ber agreement.

• p(POS|w−1suffixes)

• p(POS|w−1POS) – Since we don’t know
the POS tags of words a priori, we estimate
the conditional probability using the same
method we employed for clitics.

• p(POS|w−2POS , w−1POS)

• p(POS|w1POS , w2POS)

• p(POS|w1POS , w2POS , w3POS)

• p(POS|V erbOrNot) – For this feature, we
automatically analyzed all the unique words
in ten years worth of Aljazeera.net arti-
cles using Al-Khalil morphological analyzer
(Boudchiche et al., 2016). The articles
contains 95.4 million tokens including 613k
unique tokens. Given the different analyses
of Al-Khalil, if it analyzed a word as a verb
only, this feature is set to “V”. If it appears as
possibly a verb or some other POS, this fea-
ture becomes “possible-V”. Otherwise, the
feature is “not-V”. Al-Khalil attempts to pro-
vide all the possible analysis of a word, but
does not provide any ranking of the solutions.
Since this is a word-level feature and not a
clitic-level feature, we only used it in this
setup.

• P (POS|NounOrNot) – As with Ver-
bOrNot, this feature is also based on the Al-
Khalil analyzer, where the feature assumes
the values “Noun”, “possible-Noun”, or “not-
Noun”.
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• Word context features: p(POS|w−1),
p(POS|w1), p(POS|w−2, w−1),
p(POS|w−3, w−2, w−1), and
p(POS|w−4, w−3, w−2, w−1)

3.1.3 OOVs and pre-Filtering
For both clitic and word tagging, In case we could
not compute a feature value during training (e.g.,
a clitic was never observed with a given POS tag),
the feature value is assigned a small ε value equal
to 10−10. If the clitic is a prefix or a suffix,
then stem-specific features are assigned the same
ε value.

In order to improve efficiency and reduce the
choices the classifier needs to pick from, we em-
ploy some heuristics that restrict the possible POS
tags to be considered by the classifier: (i) If a word
is composed of one clitic, and the clitic is a num-
ber, restrict to “NUM”. We check if the clitic is
composed of digits or matches a gazetteer of num-
bers spelled out in words.
(ii) If a word is composed of Latin letters, restrict
to “FOREIGN”.
(iii) If punctuation, restrict to “PUNCT”.
(iv) If a clitic is a stem and we can figure out the
stem-template, restrict POS tags to those that have
been seen for that stem-template during training.
Similarly, if we can figure out the word-template,
we restrict POS tags to those that have been seen
for the word-template during training.
(v) If a clitic is a stem, restrict to POS tags that
have been seen during training given the prefixes
and suffixes of the word.

3.2 bi-LSTM Part-of-Speech Tagger
Bi-LSTM neural networks has been shown to be
very effective for tagging sequential data, e.g. lan-
guage modeling, speech utterances (Zen and Sak,
2015), handwritten text (Messina and Louradour,
2015), and scene text recognition (Hassanien,
2016). Further, word embeddings have demon-
strated their potential for capturing statistical
properties of natural language (Sutskever et al.,
2011; Wang et al., 2015; Palangi et al., 2016).
Along these directions, we modeled POS tagging
as a sequence to sequence learning problem. We
used a bi-LSTM neural-network model (Ling et
al., 2015) to learn the expected tagset given an
input for the model as a sequence of features
f1, ..., fn that could include word representations
–embeddings– as well. The expected output of the
network feed-forward states Sf

i contains the tag

sets information for the parts 0 to i, while the back-
forward state Sb

i contains the information for the
part i + 1 to n. The forward and backward states
are combined, for each output i as follows:
li = tanh(LfSf

i + LbSb
i + bl)

where Lf , Lb and bl denote the parameters for
combining the forward and backward states.
We experimented with a number of settings where
the clitic sequence was augmented with a subset of
features that includes character sequences, word
meta type, stem template (Darwish et al., 2014),
and also combined with 200 dimension word em-
beddings learned over the aforementioned collec-
tion of text containing 10 years of Al-Jazeera
articles1. To create the embeddings, we used
word2vec with continuous skip-gram learning al-
gorithm with an 8 gram window (Mikolov et al.,
2013)2. For the bi-LSTM experiments, we used
the Java Neural Network Library3, which is tuned
for POS tagging(Ling et al., 2015). We extended
the library to produce the additional aforemen-
tioned features.

4 Evaluation and Discussion

4.1 SVM Approach
We trained the POS tagger using the aforemen-
tioned sections of the ATB (Maamouri et al.,
2004). Testing was performed on the WikiNews
dataset (Darwish and Mubarak, 2016). Ta-
ble 2 reports on the accuracy of our POS tag-
ger on the WikiNews dataset and compares it to
MADAMIRA. The word-level SVM-based sys-
tem beats the clitic-level system by 0.4% ac-
curacy and achieves nearly identical results to
MADAMIRA (with less than 0.005% difference).
Using the word-level system has the advantage
of being able to capture more context than the
clitic-level system. We classified all the errors
from our best system (word-based segmentation).
The breakdown of the errors listed in Table 3
shows that confusion between ADJ and NOUN is
the most common mistake type with a combined
41.1% of the errors followed by mistakes in seg-
mentation. Common reasons for confusion be-
tween ADJ and NOUN include:

• Some words can assume either tag. For ex-
ample, the word “AstrAtyjyp” could mean
“strategy” or “strategic”.

1aljazeera.net
2code.google.com/archive/p/word2vec/
3https://github.com/wlin12/JNN
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State-of-the-art: MADAMIRA 95.3
System Truth Segmentation Farasa Segmentation
SVMRank (Clitic) 95.9 94.9
SVMRank (Word) 96.2 95.3
bi-LSTM (Clitic) 94.5 93.5
bi-LSTM (Clitic) w/embeddings 95.0 92.4
bi-LSTM (Clitic) w/features 96.1 95.0
bi-LSTM (Clitic) w/features + embeddings 95.5 94.7

Table 2: The accuracy of our POS tagger on the WikiNews dataset (Darwish and Mubarak, 2016) against
Madamira

• Arabic allows nouns to be omitted and adjec-
tives assume their syntactic roles. For exam-
ple, the word “AlErby” (“the Arab”) could be
used in the context of “qAl AlErby (“the Arab
said”) where it is implied that “the Arab man
said”, where the word “man” is omitted.

• on some occasions, adjectives may precede
the nouns they modify as in the words “¿kbr”
(“bigger than”).

• the adjective is separated from the noun it
modifies by several words.

Error Type Percentage
ADJ→ NOUN 26.3
Segmentation Errors 23.0
NOUN→ ADJ 14.8
V→ NOUN 11.2
NOUN→ V 5.5
PREP→ PART 3.0
NUM→ ADJ 2.2
CONJ→ PART 1.8
NUM→ NOUN 1.6

Table 3: Most common errors for best SVMRank

configuration

Verbs are often mislabeled as nouns or vice
versa. This is more problematic than the confusion
between nouns and adjectives, as the mislabeling
verbs can have a bigger impact on downstream ap-
plications such as parsing. Much of the errors stem
from either: words that could assume either POS
tag such as “tqy” meaining either “to protect from”
or “righteous”; and verbs that were not observed
in training, where the tagger would naturally pre-
fer the more common tag of “NOUN”. As the re-
sults in Table 2 show, using perfect segmentation
leads to improved POS tagging accuracy. This is

reflected in Table 3 where segmentation errors ac-
counts for 23% of the errors.

4.2 bi-LSTM Approach

Similar to the evaluation setup of the SVMRank-
based system, we modeled the ATB data into a se-
quence of clitics and the target was to learn the
POS tags. The clitics were obtained using either
gold ATB segmentation or from the Farasa Seg-
menter (Abdelali et al., 2016).

We augmented the input sequence with addi-
tional features that included the surface form of
the clitic, leading and trailing characters, word
meta type, and stem template. In additional exper-
iment, we included the word embeddings learned
for aforementioned corpus of Aljazeera.net, that
was segmented using the Farasa segmenter. Ta-
ble 2 shows the results for our bi-LSTM exper-
iments with gold and Farasa segmentation. As
expected, bi-LSTM was able to deliver competi-
tive results by capturing complex non-linear and
non-local dynamics in sequences (Hochreiter and
Schmidhuber, 1997). Results in Table 2 show that:

• Not surprisingly using non-gold segmenta-
tion decreased POS tagging accuracy. How-
ever, the drop is more pronounced than the
drop seen for the SVMRank-based system,
particularly when using embeddings where
the drop in accuracy was 2.6%.

• Though using either embeddings or features
lead to overall improvements, features lead
to bigger improvement than embeddings with
greater robustness in the presence of segmen-
tation errors.

• Using both features and embeddings together
lead to worse results.
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• The best bi-LSTM setup edged the SVMRank

clitic setup by 0.1%.

Table 4 summarizes the error types we observed
when using the best bi-LSTM system (using fea-
tures only and Farasa segmentation). The error
trends and the reasons for the errors for bi-LSTM
are similar to those of the SVMRank. We at-
tempted to extend bi-LSTM to perform word-level
tagging, but the results were very low (below 82%
accuracy). We plan to investigate the reasons for
such a drop.

Error Type Percentage
Segmentation errors 21.8
NOUN→ ADJ 17.6
ADJ→ NOUN 15.5
NOUN→ V 9.3
V→ NOUN 7.7
ADJ→ NUM 7.0
NUM→ NOUN 1.6
CONJ→ PART 1.3
NOUN→ NUM 1.0

Table 4: Most common errors for best bi-LSTM
configuration

5 Conclusion

This work presents two open source state-of-the-
art POS tagging systems that are trained using
standard ATB dataset (Maamouri et al., 2004) and
evaluated on the WikiNews test set (Abdelali et al.,
2016). In building the system we explored two ap-
proaches using Support Vector Machines (SVM)
and Bidirectional Long Short-Term Memory (bi-
LSTM). While the first is heavily dependent on
linguistically engineered features that are modeled
on linguistic knowledge, the second approach has
the ability to induce latent linguistic features. Our
experiments show that generic approaches might
reach considerably high results, but using linguis-
tic features may achieve higher results by encod-
ing domain knowledge and nuances that are diffi-
cult to induce from the data alone. Further, using
embeddings may lead to improved results, but not
as much as hand crafted features.
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Abstract

The success of machine learning for au-
tomatic speech processing has raised the
need for large scale datasets. However,
collecting such data is often a challenging
task as it implies significant investment in-
volving time and money cost. In this pa-
per, we devise a recipe for building large-
scale Speech Corpora by harnessing Web
resources namely YouTube, other Social
Media, Online Radio and TV. We illustrate
our methodology by building KALAM’DZ,
An Arabic Spoken corpus dedicated to Al-
gerian dialectal varieties. The preliminary
version of our dataset covers all major Al-
gerian dialects. In addition, we make sure
that this material takes into account nu-
merous aspects that foster its richness. In
fact, we have targeted various speech top-
ics. Some automatic and manual anno-
tations are provided. They gather use-
ful information related to the speakers and
sub-dialect information at the utterance
level. Our corpus encompasses the 8 ma-
jor Algerian Arabic sub-dialects with 4881
speakers and more than 104.4 hours seg-
mented in utterances of at least 6 s.

1 Introduction

Speech datasets and corpora are crucial for both
developing and evaluating Natural Language Pro-
cessing (NLP) systems. Moreover, such corpora
have to be large to achieve NLP communities ex-
pectations. In fact, the notion of "More data is
better data" was born with the success of modeling
based on machine learning and statistical methods.

The applications that use speech corpora can
be grouped into four major categories: speech
recognition, speech synthesis, speaker recogni-

tion/verification and spoken language systems.
The need for such systems becomes inevitable.
These systems include real life wingspan appli-
cations such as speech searching engines and re-
cently Conversational Agents, conversation is be-
coming a key mode of human-computer interac-
tion.

The crucial points to be taken into consideration
when designing and developing relevant speech
corpus are numerous. The necessity that a cor-
pus takes the within-language variability (Li et al.,
2013). We can mention some of them: The corpus
size and scope, richness of speech topics and con-
tent, number of speakers, gender, regional dialects,
recording environment and materials. We have at-
tempted to cover a maximum of these considera-
tions. We will underline each considered point in
what follows.

For many languages, the state of the art of
designing and developing speech corpora has
achieved a mature situation. On the other extreme,
there are few corpora for Arabic (Mansour, 2013).
In spite that geographically, Arabic is one of the
most widespread languages of the world (Behn-
stedt and Woidich, 2013). It is spoken by more
than 420 million people in 60 countries of the
world (Lewis et al., 2015). Actually, it has two
major variants: Modern Standard Arabic (MSA),
and Dialectal Arabic. MSA is the official language
of all Arab countries. It is used in administrations,
schools, official radios, and press. However, DA
is the language of informal daily communication.
Recently, it became also the medium of commu-
nication on the Web, in chat rooms, social media
etc. This fact, amplifies the need for language re-
sources and language related NLP systems for di-
alects.

For some dialects, especially Egyptian and Lev-
antine, there are some investigations in terms of
building corpora and designing NLP tools. While,
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very few attempts have considered Algerian Ara-
bic dialect. Which, make us affirm that the Al-
gerian dialect and its varieties are considered as
under-resourced language. In this paper, we tend
to fill this gap by giving a complete recipe to
build a large-size speech corpus. This recipe
can be adopted for any under-resourced language.
It eases the challenging task of building large
datasets by means of traditional direct recording.
Which is known as time and cost consuming. Our
idea relies on Web resources, an essential mile-
stone of our era. In fact, the Web 2.0, becomes
a global platform for information access and shar-
ing that allows collecting any type of data at scales
hardly conceivable in near past.

The proposed recipe is to build a speech cor-
pus for Algerian Arabic dialect varieties. For this
preliminary version, the corpus is annotated for
mainly supporting research in dialect and speaker
identification.

The rest of this paper is organized as follows.
In the next section, we review some related work
that have built DA corpora. In Section 3 we give a
brief overview of Algerian sub-dialects features.
Section 4 is dedicated to describe the complete
proposed recipe of building a Web-based speech
dataset. In Section 5, we show how this recipe
is narrated to construct a speech corpus for Alge-
rian dialectal varieties. The resulted corpus is de-
scribed in Section 6. We enumerate its potential
uses in Section 7

2 Related Work

In this section, we restricted our corpora review
to speech corpora dealing with Arabic dialects.
We classify them according to two criteria: col-
lecting method and Intra/Inter country dialect col-
lection context. They can be classified into five
categories according to the collecting method. In-
deed, it can be done by recording broadcast, spon-
taneous telephone conversations, telephone re-
sponses of questionnaires, direct recording and
Web-based resourcing. The second criterion dis-
tinguishes the origin of targeted dialects in ei-
ther Intra-country/region or Inter-country, which
means that the targeted dialects are from the same
country/region or dialects from different countries.
This criterion is chosen because it is harder to per-
form fine collection of Arabic dialects belonging
to close geographical areas that share many his-
toric, social and cultural aspects.

In contrast of relative abundance of speech cor-
pora for Modern Standard Arabic, very few at-
tempts have considered building Arabic speech
corpora for dialects. Table 1 reports some fea-
tures of the studied DA corpora. The first set of
corpora has exploited the limited solution of tele-
phony conversation recording. In fact, as far as
we know, development of the pioneer DA cor-
pus began in the middle of the nineties and it is
CALLFRIEND Egyptian (Canavan and Zipperlen,
1996). Another part of OrienTel project, cited
below, has been dedicated to collect speech cor-
pora for Arabic dialects of Egypt, Jordan, Mo-
rocco, Tunisia, and United Arab Emirates coun-
tries. In these corpora, the same telephone re-
sponse to questionnaire method is used. These
corpora are available via the ELRA catalogue 1.

The DARPA Babylon Levantine 2 Arabic speech
corpus gathers four Levantine dialects spoken by
speakers from Jordan, Syria, Lebanon, and Pales-
tine (Makhoul et al., 2005).

Appen company has collected three Arabic di-
alects corpora by means of spontaneous telephone
conversations method. These corpora 3 uttered by
speakers from Gulf, Iraqi and Levantine. With
a more guided telephone conversation recording
protocol, Fisher Levantine Arabic corpus is avail-
able via LDC catalogue 4. The speakers are se-
lected from Jordan, Lebanon, Palestine, Lebanon,
Syria and other Levantine countries.

TuDiCoI (Graja et al., 2010) is a spontaneous
dialogue speech corpus dedicated to Tunisian di-
alect, which contains recorded dialogues between
staff and clients in the railway of Sfax town,
Tunisia.

Concerning corpora that gather MSA and Ara-
bic dialects, we have studied some of them.
SAAVB corpus is dedicated to speakers from all
the cities of Saudi Arabia country using telephone
response of questionnaire method (Alghamdi et
al., 2008). The main characteristic of this corpus
is that, before recording, a preliminary choice of
speakers and environment are performed. The se-
lection aims to control speaker age and gender and
telephone type.

Multi-Dialect Parallel (MDP) corpus, a free

1Respective code product are ELRA-S0221, ELRA-
S0289, ELRA-S0183, ELRA-S0186 and ELRA-S0258.

2Code product is LDC2005S08.
3The LDC catalogue’s respective code product are

LDC2006S43, LDC2006S45 and LDC2007S01.
4Code product is LDC2007S02.
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Corpus Type Collecting Method Corpus Details

Al Jazeera
multi-dialectal Inter Broadcast news

57 hours, 4 major Arabic dialect groups
annotated using crowdsourcing

ALG-DARIDJAH Intra Direct Recording
109 speakers from 17 Algerian departments,
4.5 hours

AMCASC Intra Telephone conversations
3 Algerian dialect groups, 735 speakers, more
than 72 hours.

KSU Rich Arabic Inter

Guided telephone
conversations and Direct

recording.
201 speakers from nine Arab countries, 9
dialects + MSA.

MDP Inter Direct Recording
52 speakers, 23% MSA utterances, 77% DA
utterances, 32 hours, 3 dialects + MSA.

SAAVB Inter

Selected speaker before
telephone response of

questionnaire
1033 speakers; 83% MSA utterances, 17% DA
utterances, Size: 2.59 GB, 1 dialect + MSA

TuDiCoI Inter Spontaneous dialogue 127 Dialogues, 893 utterances, 1 dialect.

Fisher Levantine Inter
Guided telephone

conversations 279 conversations, 45 hours, 5 dialects.

Appen’s corpora Inter
Spontaneous telephone

conversations

3 dialects, Gulf: 975 conver, v 93 hours; Iraqi:
474 conver, v 24 hours; Levantine: 982
conver, v 90 hours.

DARPA Babylon
Levantine Inter

Direct recording of
spontaneous speech

164 speakers, 75900 Utterances, Size: 6.5 GB,
45 hours, 4 dialects.

OrienTel MCA Inter
Telephone response of

questionnaire

5 dialects, # speakers: 750 Egyptian, 757
Jordanian, 772 Moroccan, 792 Tunisian and
880 Emirates.

CALLFRIEND Inter
Spontaneous telephone

conversations
60 conversations, lasting between 5-30
minutes, 1 dialect.

Table 1: Speech Corpora for Arabic dialects.

corpus, which gathers MSA and three Arabic
dialects (Almeman et al., 2013). Namely, the
dialects are from Gulf, Egypt and Levantine.
The speech data is collected by direct recording
method.

KSU Rich Arabic corpus encompasses speakers
by different ethnic groups, Arabs and non-Arabs
(Africa and Asia). Concerning Arab speakers in
this corpus, they are selected from nine Arab coun-
tries: Saudi, Yemen, Egypt, Syria, Tunisia, Alge-
ria, Sudan, Lebanon and Palestine. This corpus is
rich in many aspects. Among them, the richness of
the recording text. In addition, different recording
sessions, environments and systems are taken into
account (Alsulaiman et al., 2013).

Al Jazeera multi-dialectal speech corpus, a
larger scale, based on Broadcast News of
Al Jazeera (Wray and Ali, 2015). Its annotation
is performed by crowd sourcing technology. It
encompasses the four major Arabic dialectal cat-
egories.

In an intra country context, there are two cor-

pora dedicated to Algerian Arabic dialect vari-
eties: AMCASC (Djellab et al., 2016) and ALG-
DARIDJAH (Bougrine et al., 2016). AMCASC cor-
pus, based on telephone conversations collecting
method, is a large corpus that takes three regional
dialectal varieties. While ALG-DARIDJAH cor-
pus is a parallel corpus that encompasses Algerian
Arabic sub-dialects. It is based on direct recording
method. Thus, many considerations are controlled
while building this corpus. Compared to AMCASC
corpus, the size of ALG-DARIDJAH corpus is re-
stricted.

According to our study of these major Arabic
dialects corpora, we underline some points. First,
these corpora are mainly fee-based and the free
ones are extremely rare. Second, almost exist-
ing corpora are dedicated to inter-country dialects.
Third, to the best of our knowledge, there is no
Web-based speech dataset/corpus that deals with
Arabic speech data neither for MSA nor for di-
alects. While for other languages, there are some
investigations. We can cite the large recent col-
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lection Kalaka-3 (Rodríguez-Fuentes et al., 2016).
This is a speech database specifically designed for
Spoken Language Recognition. The dataset pro-
vides TV broadcast speech for training, and audio
data extracted from YouTube videos for testing. It
deals with European languages.

3 Algerian Dialects: Brief Overview

Algeria is a large country, administratively divided
into 48 departments. Its first official language is
Modern Standard Arabic. However, Algerian di-
alects are widely the predominant means of com-
munication. In Figure 1, we depict the main Alge-
rian dialect varieties. In this work, we focus on
Algerian Arabic sub-dialects as they are spoken
by 75% to 80% of the population. The Algerian
dialect is known as Daridjah to its speakers.

Algerian Arabic dialects resulted from two Ara-
bization processes due to the expansion of Islam
in the 7th and 11th centuries, which lead to the ap-
propriation of the Arabic language by the Berber
population.

According to both Arabization processes, di-
alectologists (Palva, 2006), (Pereira, 2011) show
that Algerian Arabic dialects can be divided into
two major groups: Pre-Hilālı̄ and Bedouin di-
alects. Both dialects are different by many linguis-
tic features (Marçais, 1986) (Caubet, 2000).

Firstly, Pre-Hilālı̄ dialect is called a sedentary
dialect. It is spoken in areas that are affected by the
expansion of Islam in the 7th century. At this time,
the partially affected cities are: Tlemcen, Con-
stantine and their rural surroundings. The other
cities have preserved their mother tongue language
(Berber).

Secondly, Bedouin dialect is spoken in areas
which are influenced by the Arab immigration in
the 11th century (Palva, 2006) (Pereira, 2011).
Marçais (1986) has divided Bedouin dialect into
four distinct dialects: i) Sulaymite dialect which
is connected with Tunisian Bedouin dialects, ii)
Ma’qilian dialect which is connected with Moroc-
can Bedouin dialects, iii) Hilālı̄ dialect contains
three nomadic sub-dialects. Hilālı̄-Saharan that
covers the totality of the Sahara of Algeria, the
Hilālı̄-Tellian dialect which its speakers occupy a
large part of the Tell of Algeria, and the High-
plains of Constantine, which covers the north of
Hodna region to Seybouse river. iv) Completely-
bedouin dialect that covers Algiers’ Blanks, and
some of its near sea coast cities. Regarding to

Algerian Dialects

Tamazight

Kabyle

Shawiya

Tuareg

Mozabite

Chenoua

Zenati

Arabic

Pre-Hilāl̄ı

Bedouin

Hilāl̄ı

Saharan

Tellian

High-plains(Tell)

Ma’qilian

Sulaymite

Algiers-Blanks

Sahel-Tell

Figure 1: Hierarchical Structure of Algerian Di-
alects.

some linguistic differences, we have divided this
last dialect into two sub-dialects, namely Algiers-
Blanks and Sahel-Tell.

Arabic Algerian dialects present complex lin-
guistic features and many linguistic phenomena
can be observed. Indeed, there is many borrowed
words due to the deep colonization. In fact, Ara-
bic Algerian dialects are affected by other lan-
guages such as Turkish, French, Italian, and Span-
ish (Leclerc, 30 avril 2012). In addition, code
switching is omnipresent especially from French.

Versteegh et al. (2006) used four consonants
(the dentals fricative /t, d, d. / and a voiceless uvu-
lar stop /q/ ) to discriminate the two major groups:
Pre-Hilālı̄ and Bedouin dialect. In fact, he shows
that Pre-Hilālı̄ dialect are characterized by: /q/
is pronounced /k/ and the loss of inter-dentals
and pass into the dentals /t, d, d. /. For Alge-
rian Bedouin dialect, the four discriminative con-
sonants are characterized by: /q/ is pronounced
/g/ and the inter-dentals are fairly preserved. For
more details on Algerian linguistic features refer
to (Embarki, 2008) (Versteegh et al., 2006) (Har-
rat et al., 2016).
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4 Methodology

In this section, we first describe, in general way,
the complete recipe to collect and annotate a Web-
based spoken dataset for an under-resourced lan-
guage/dialect. Then, we illustrate this recipe to
build our Algerian Arabic dialectal speech corpus
mainly dedicated to dialect and speaker identifica-
tion.

Global View of the Recipe

The recipe described in the following can be easily
tailored according to potential uses of the corpus
and on the specificities of the targeted language
resources and its spoken community.

1. Inventorying Potential Web sources: First,
we have to identify sources that are the
most targeted by the communities of the lan-
guages/dialects in concerns. Indeed, depend-
ing on their culture and preferences, some
communities show preference for dealing
with some Web media over others. For exam-
ple, Algerian people are less used to use In-
stagram or Snapchat compared with Middle
Est and Gulf ones. Moreover, each country
has its own most used communication media.
For instance, some societies (Arabs ones) are
more productive on TVs and Radios, com-
pared with west communities that are more
present and productive on social media.

2. Extraction Process: In order to avoid crawl-
ing useless data, this steps is achieved by
three stages

(a) Preliminary Validation Lists: For each
chosen Web source, we define the main
keywords that can help automatically
search video/audio lists. When such
lists are established, a first cleaning is
performed keeping only the potential
suitable data. Sizing such lists depends
on the sought scale.

(b) Providing the collection script: For each
resource, we fix and implement the suit-
able way to collect data automatically.
Open Source tools are the most suit-
able. In fact, downloading a speech
from a streaming or from YouTube or
even from online Tv needs different
scripts. The same fact has to be taken
into account concerning their related

metadata 5 which are very useful for an-
notation.

(c) Downloading: This is a time consum-
ing task. Thus, it is important to con-
sider many facts such as preparing stor-
age and downloading the related meta-
data, . . .

(d) Cleaning: Now, the videos/audios are
locally available, a first scan is per-
formed in order to keep the most appro-
priate data to the corpus concerns. This
can be achieved by establishing a strat-
egy depending on the corpus future use.

3. Annotation and Pre-processing: For a tar-
geted NLP task, pre-processing the col-
lected speech/video can include segmenta-
tion, White noise removing. . . . Some annota-
tions can simply be provided from the related
metadata of the Web-source when they exist.
However, this task makes use of other anno-
tation techniques like crowdsourcing where
crowd are called to identify the targeted di-
alect/speaker or/and perform translations.

The method can be generalized to other lan-
guages/dialects without linguistic and cultural
knowledge of the regional language or dialect by
using video/audio search query based on the area
(location) of targeted dialect/language. Then use
the power of crowdsourcing to annotate corpus.

5 Corpus Building

For the context of the Algerian dialects, in order to
build a speech corpus that is mainly dedicated to
dialect/speaker identification using machine learn-
ing techniques, we have chosen several resources.

5.1 Web Sources Inventory

The main aim is to allow the richness of the cor-
pus. In fact, it is well known that modeling a spo-
ken language needs a set of speech data counting
the within-language/intersession variability, such
as speaker, content, recording device, communi-
cation channel, and background noise (Li et al.,
2013). It is desirable to have sufficient data that
include the intended intersession effects.

Table 2 reports the main Web sources that feed
our corpus. Let us observe that there are several

5YouTube video Metadata such as published_date, dura-
tion, description, category. . .
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speech Topics which allows capturing more lin-
guistics varieties. In fact, this inventory contains
"Local radio channels" resources. Fortunately,
each Algerian province has at least one local ra-
dio (a governmental one). It deals with local com-
munity concerns and exhibits main local events.
Some of their reports often use their own local di-
alect. It is the same case for amateur radios. Both,
these radio channels and Tvs are Web-streamed
live.

In addition, we have chosen some Algerian TVs
for which most programs are addressed to large
community. So, they use dialects. Finally, we
have targeted some YouTube resources such as Al-
gerian PodCasts, Algerian Tags, and channels of
Algerian YouTubers.

Source Sample Topics

Algerian Tv Ennahar News
El chorouk News, General
Samira, Bina Cook

Local Radios 48 departments
Social, local,
General

On YouTube

Algerian
PodCast Anes Tina

Politic, Culture,
Social

Algerian Khaled Fkir Blogs, Cook
YouTubers CCNA DZ Tips, Fun

Mesolyte
Advices, Beauty
Technology, Vlog

Algerian TAG – Advices, Tips
social discussions

Table 2: Main Sources of Videos

5.2 Extraction Process

Now having these Web sources, and as they are nu-
merous, we process in two steps in order to acquire
video/audio speech data. First, we drawn up lists
by crawling information mainly meta data about
existing data related to potential videos/audios that
potentially contain Algerian dialect speech. The
deployed procedure relies on mainly two different
scripts according to the Web resource type.

In order to collect speech data from local radio
channels, we refer back manually to the programs
of radio to select report and emission lists that are
susceptible to contain dialectal speech.

For data from YouTube, the lists are fed by us-
ing YouTube search engine through its Data API 6.

6YouTube Data API, https://developers.
google.com/YouTube/v3/

In addition, the extraction of related metadata are
performed using Python package BeautifulSoup
V 4 dedicated to Web crawling (Nair, 2014).

In order to draw up search queries, we have used
three lists. The first one Dep, contains the names
of the 48 Algerian provinces, spelled in MSA, di-
alect and French. While the second list Cat con-
tains the selected YouTube categories. Among the
actual YouTube categories, we have targeted: Peo-
ple & Blogs, Education, Entertainment, How-to &
Style, News & Politics, Non-profits & Activism cat-
egories, and Humor. The third list Comm_Word
contains a set of common Algerian dialect word
(called White Algerian terms) that are used by all
Algerians. These chosen set is reported in Ta-
ble 3. Then, we iterate searching using a search
query model that has four keywords. The first and
the second ones are from Dep and Cat lists re-
spectively. The remaining two keywords are se-
lected arbitrary from Comm_Word. This query
formulation can guarantee that speakers are from
the fixed province and the content topics are varied
thanks to YouTube topic classification.

Concerning Algerian TVs source, the search
queries are drawn up using mainly two keywords.
The first one is the name the channel and the sec-
ond word refers to the report name. In fact, a prior
list is filled manually with emission and report
names that uses dialects. Easily, videos from Al-
gerian YouTubers/Podcasts channels are searched
using the name of the corresponding author.

��@ð What É¿ A ��Ó Problems ��A�® 	K Discussion
	àA 	KQk. Journal �èQ�®mÌ'@ Injure ¼CK. Maybe

ú

�æJ
��
Q�K Electricity @Qå��
 Happen ø
 PA� Happened
�ék. P@X Colloquial �éK
QK
 	PX Algerian �èQå��YË@ Village
�èQå�� 	JË @ News

	¬ñ �� See ø
 QK
@ 	Qk. Algerian

QK
@ 	PX Algeria �éK
BñË Department ¼AJ. Ë @ Baccalaureat

Õæ
ÊK. ðQK. Problem �éÊ¿ AÓ food ½K
@Qå��ð Your Opinion

Table 3: Common Algerian terms used as Keywords

For all YouTube search queries, we selected the
first 100 videos (when available). When lists are
drawn up, we start the cleaning process that dis-
cards the irrelevant video entries. In fact, we re-
move all list entries whose duration is less than
5s. The videos whose topic shows that it doesn’t
deal with dialects are also discarded. This is done
by analyzing manually the video title then its de-
scription and keywords.

In addition, to be in compliance with YouTube
Terms of Services, first, we take into account the
existence of any Creative Commons license asso-
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ciated to the video.
The whole cleaning process leads us to keep

1182 Audios/videos among 4 000 retrieved ones.
Video’s length varies between 6s and 1 hour. The
cleaning task was carried out by the authors of this
paper.

Now, the download process is launched using
the resulting cleaned lists. Concerning the data
from radio channels, we script a planned recording
of the reports from the stream of the radio. Here
also the recording amount depends on the desired
scale.

Concerning the data from Radios, we deploy, in
the download script, mainly the VLC Media Player
tool 7 with the cron Linux command. In order
to download videos from YouTube, we have de-
ployed YouTube-dl 8 a command-line program.

5.3 Preprocessing and Annotation

A collection of Web speech data is not immedi-
ately suitable for exploration in the same way a
traditional corpus is. It needs more cleaning and
preprocessing. Let us recall, that our illustrative
corpus will serve for dialect/speaker identification
using machine learning techniques. For that pur-
pose, for each downloaded video, we have applied
the following processing:

1. Audio extraction: FFmpeg 9 tool is used
to extract the audio layer. In addition, the
SoX 10 tool, a sound processing program, is
applied to get single-channel 16 kHz WAV
audio files.

2. Non-speech segments removal: such as music
or white noise by running a VAD (Voice Ac-
tivation Detection) tool to remove as many as
possible.

3. Speaker Diarization: is performed to de-
termine who speaks when, and to assign
for each utterance a speaker ID. It is
achieved using VoiceID Python library based
on the LIUM Speaker Diarization frame-
work (Meignier and Merlin, 2010). The out-
put from VoiceID segmentation is a set of au-
dio files with information about speaker ID,
and utterance duration.

7VLC media player V 2.2.4 https://www.
videolan.org/vlc/

8YouTube-dl V3 http://YouTube-dl.org/
9FFmpeg http://www.ffmpeg.org/ V3.2

10SoX http://sox.sourceforge.net/

Number of Dialects 8

Total Duration 104.4 hours

Clean Speech Ratio 39, 15 %

Number of speakers 4881

Speech duration by Speaker 6s – 9hours

Table 4: Corpus Global Statistics.

For this preliminary version, most manual anno-
tations are made thanks to authors themselves with
the help of 8 volunteers. These In Lab annotations
concern assigning for each utterance the spoken
dialect, validation of speaker gender (previously
detected automatically by VoiceID). During these
manual annotations, we check that utterances deal
with dialect. Otherwise, they are discarded.

6 Corpus Main Features

First of all, we note that this preliminary version
of our corpus is collected and annotated in less
than two months, and the building is still an ongo-
ing process. A sample of our corpus is available
online 11. KALAM’DZ covers most major Ara-
bic sub-dialects of Algeria. Table 4 reports some
global statistics of the resulted corpus. Clean
Speech Ratio row gives the ratio of Speeches that
have good sound quality. The remaning portion of
speeches present some noise background mainly
music or they are recorded in outdoor. However,
they can be used to build dialect models in order
to represent the within-language variability.

More details on KALAM’DZ corpus are re-
ported in Table 5. Let us observe that some di-
alects are more represented. This is due to people
distribution and Web culture. For instance, Algiers
and Oran are metropolitan cities. So their produc-
tivity on the Web is more abundant.

In order to facilitate the deployment of
KALAM’DZ corpus, we have adopted the same
packaging method as TIMIT Acoustic-Phonetic
Continuous Speech Corpus (Garofolo et al.,
1993).

7 Potential Uses

KALAM’DZ built corpus can be considered as the
first of its kind in term a rich speech corpus for
Algerian Arabic dialects using Web resources. It
can be useful for many purposes both for NLP and
computational linguistic communities. In fact, it

11https://github.com/LIM-MoDos/KalamDZ
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Sub-Dialect Departments/Village # Speakers Web-sources (h)

Algerian
Tv

Local
Radios

On
YouTube

Total
(h)

Good
Quality (%)

Hilali-Saharan Laghouat, Djelfa, Ghardaia, Adrar, 1338 12.7 16.5 - 29.4 38.5
Bechar, Naâma’ South

Hilali-Tellian Setif, Batna, Bordj-Bou-Arreridj 605 3.6 - - 3.6 32.2

High-plains Constantine, Mila, Skikda 297 2.0 - - 2.0 42.7

Sidi-Bel Abbas, Saïda, Mascara, 421 4.1 - 20.7 24.8 38.3
Ma’qilian Relizane, Oran, Aïn Timouchent,

Tiaret, Mostaganem, Naâma’ North

Annaba, El-Oued, Souk-Ahras, 914 6.7 - 6.9 13.6 39
Sulaymite Tebessa, Biskra, Khanchela,

Oum El Bouagui, Guelma, El Taref

Algiers Blanks Algiers, Blida, Boumerdes, Tipaza 723 5.1 - 16.1 21.2 42.3

Sahel-Tell
Médea, Chlef, Tissemsilt, Ain
Defla 447 3.1 6.0 - 9.1 45.5

Pre-Hilālı̄ Tlemcen Nadrouma, Dellys, 136 0.7 - - 0.7 34.7
Jijel, Collo, Cherchell

Global 4881 38.2 22.5 43.7 104.4 39.1

Table 5: Distribution of speakers and Web-sources per sub-dialect in KALAM’DZ corpus.

Sub-
Dialect N&P Edu. Ent. H&S P&B Hum.

Hilali-
Saharan 29.4 - - - - -

Hilali-
Tellian 3.6 - - - - -

High-plains 2.0 - - - - -

Ma’qilian 4.1 1.5 - 7.4 10.2 1.6

Sulaymite 6.7 - - - 6.9 -

Algiers
Blanks 5.1 2.2 8.7 - 1.4 2.8

Sahel-Tell 9.1 - - - - -

Pre-Hilālı̄ 0.7 - - - - -

Total 60.7 3.7 8.7 7.4 19.5 4.4

Note: News & Politics (N&P), Educations (Edu.), En-
tertainment (Ent.), How-to & Style (H&S), People &
Blogs (P&B), and Humor (Hum.).

Table 6: Distribution of categories per dialect (in
hours).

can be used for building models for both speaker
and dialect identification systems for the Algerian
dialects. For linguistic and sociolinguistics com-
munities, it can serve as base for capturing dialects
characteristic.

All videos related to extracted audio data are
also available. This can be deployed to build an-
other corpus version to serve any image/video pro-
cessing based applications.

8 Conclusion

In this paper, we have devised a recipe in or-
der to facilitate building large-scale Speech cor-
pus which harnesses Web resources. In fact, the
used methodology makes building a Web-based
corpus that shows the within-language variability.
In addition, we have narrated this procedure for
building KALAM’DZ a speech corpus dedicated
to the whole Algerian Arabic sub-dialects. We
have been ensured that this material takes into ac-
count numerous speech aspects that foster its rich-
ness and provides a representation of linguistic va-
rieties. In fact, we have targeted various speech
topics. Some automatic and manual annotations
are provided. They gather useful information re-
lated to the speakers and sub-dialect information at
the utterance level. This preliminary KALAM’DZ
version encompasses the 8 major Algerian Ara-
bic sub-dialects with 4881 speakers and more than
104.4 hours.

Mainly developed to be used in dialect identifi-
cation, KALAM’DZ can serve as a testbed support-
ing evaluation of wide spectrum of NLP systems.

In future work, we will extend the corpus by
collecting Algerian sub-dialects uttered by Berber
native speakers. As the corpus building is still
an ongoing work, its evaluation is left to a future
work. In fact, we plan to evaluate the corpus on
dialects identification in intra-country context.

145



References
Mansour Alghamdi, Fayez Alhargan, Mohammed

Alkanhal, Ashraf Alkhairy, Munir Eldesouki, and
Ammar Alenazi. 2008. Saudi Accented Arabic
Voice Bank. Journal of King Saud University-
Computer and Information Sciences, 20:45–64.

K. Almeman, M. Lee, and A. A. Almiman. 2013.
Multi Dialect Arabic Speech Parallel Corpora. In
Communications, Signal Processing, and their Ap-
plications (ICCSPA), pages 1–6, Feb.

Mansour Alsulaiman, Ghulam Muhammad, Mo-
hamed A Bencherif, Awais Mahmood, and Zulfiqar
Ali. 2013. KSU Rich Arabic Speech Database.
Journal of Information, 16(6).

Peter Behnstedt and Manfred Woidich. 2013. Dialec-
tology.

S. Bougrine, H. Cherroun, D. Ziadi, A. Lakhdari,
and A. Chorana. 2016. Toward a Rich Arabic
Speech Parallel Corpus for Algerian sub-Dialects.
In LREC’16 Workshop on Free/Open-Source Arabic
Corpora and Corpora Processing Tools (OSACT),
pages 2–10.

Alexandra Canavan and George Zipperlen. 1996.
CALLFRIEND Egyptian Arabic LDC96S49.
Philadelphia: Linguistic Data Consortium.

Dominique Caubet. 2000. Questionnaire de di-
alectologie du Maghreb (d’après les travaux de W.
Marçais, M. Cohen, GS Colin, J. Cantineau, D. Co-
hen, Ph. Marçais, S. Lévy, etc.). Estudios de dialec-
tología norteafricana y andalusí, EDNA, 5(2000-
2001):73–90.

Mourad Djellab, Abderrahmane Amrouche, Ahmed
Bouridane, and Noureddine Mehallegue. 2016. Al-
gerian Modern Colloquial Arabic Speech Corpus
(AMCASC): regional accents recognition within
complex socio-linguistic environments. Language
Resources and Evaluation, pages 1–29.

Mohamed Embarki. 2008. Les dialectes arabes mod-
ernes: état et nouvelles perspectives pour la classifi-
cation géo-sociologique. Arabica, 55(5):583–604.

J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus,
D. S. Pallett, and N. L. Dahlgren. 1993. DARPA
TIMIT Acoustic Phonetic Continuous Speech Cor-
pus CDROM.

Marwa Graja, Maher Jaoua, and L Hadrich-Belguith.
2010. Lexical Study of A Spoken Dialogue Corpus
in Tunisian Dialect. In The International Arab Con-
ference on Information Technology (ACIT), Beng-
hazi, Libya.

Salima Harrat, Karima Meftouh, Mourad Abbas,
Khaled-Walid Hidouci, and Kamel Smaili. 2016.
An algerian dialect: Study and resources. Interna-
tional Journal of Advanced Computer Science and
Applications-IJACSA, 7(3).

Jacques Leclerc. 30 avril 2012. Algérie dans
l’aménagement linguistique dans le monde.

M. Paul Lewis, F. Simons Gary, and D. Fenning
Charles. 2015. Ethnologue: Languages of the
World, Eighteenth edition. Web.

H. Li, B. Ma, and K. A. Lee. 2013. Spoken language
recognition: From fundamentals to practice. Pro-
ceedings of the IEEE, 101(5):1136–1159, May.

J. Makhoul, B. Zawaydeh, F. Choi, and D. Stallard.
2005. BBN/AUB DARPA Babylon Levantine Ara-
bic Speech and Transcripts. Linguistic Data Consor-
tium (LDC). LDC Catalog Number LDC2005S08.

Mohamed Abdelmageed Mansour. 2013. The Ab-
sence of Arabic Corpus Linguistics: A Call for
Creating an Arabic National Corpus. Interna-
tional Journal of Humanities and Social Science,
3(12):81–90.

Philippe Marçais. 1986. Algeria. Leiden: E.J. Brill.

Sylvain Meignier and Teva Merlin. 2010. Lium spkdi-
arization: an open source toolkit for diarization. In
in CMU SPUD Workshop.

Vineeth G. Nair. 2014. Getting Started with Beautiful
Soup. Packt Publishing.

Heikki Palva. 2006. Dialects: classification. Encyclo-
pedia of Arabic Language and Linguistics, 1:604–
613.

C. Pereira. 2011. Arabic in the North African Re-
gion. In S. Weniger, G. Khan, M. P. Streck, and
J. C. E. Watson, editors, Semitic Languages. An In-
ternational Handbook, pages 944–959. Berlin.

Luis Javier Rodríguez-Fuentes, Mikel Penagarikano,
Amparo Varona, Mireia Diez, and Germán Bor-
del. 2016. Kalaka-3: a database for the assess-
ment of spoken language recognition technology on
youtube audios. Language Resources and Evalua-
tion, 50(2):221–243.

Kees Versteegh, Mushira Eid, Alaa Elgibali, Manfred
Woidich, and Andrzej Zaborski. 2006. Encyclo-
pedia of Arabic Language and Linguistics. African
Studies, 8.

Samantha Wray and Ahmed Ali, 2015. Crowdsource a
little to label a lot: Labeling a speech corpus of di-
alectal Arabic, volume 2015-January, pages 2824–
2828. International Speech and Communication As-
sociation.

146



Proceedings of The Third Arabic Natural Language Processing Workshop (WANLP), pages 147–156,
Valencia, Spain, April 3, 2017. c©2017 Association for Computational Linguistics

Not All Segments are Created Equal:
Syntactically Motivated Sentiment Analysis in Lexical Space

Muhammad Abdul-Mageed
School of Library, Archival, and Information Studies

University of British Columbia, Vancouver, BC
muhammad.mageed@ubc.ca

Abstract

Although there is by now a considerable
amount of research on subjectivity and
sentiment analysis on morphologically-
rich languages, it is still unclear how lex-
ical information can best be modeled in
these languages. To bridge this gap, we
build effective models exploiting exclu-
sively gold and machine-segmented lex-
ical input and successfully employ syn-
tactically motivated feature selection to
improve classification. Our best mod-
els achieve significantly above the base-
lines, with 67.93% and 69.37% accuracies
for subjectivity and sentiment classifica-
tion respectively.

1 Introduction

The task of subjectivity detection refers to identi-
fying aspects of language that are objective (i.e.,
I have a meeting at 2:00pm.) vs. those that ex-
press opinions, feelings, evaluations, and specula-
tions (Banfield, 1982; Wiebe, 1994) and hence are
subjective. Subjective language is further classi-
fied based on its sentiment into positive (e.g., The
new machines are revolutionary!), negative (e.g.,
The Syria war is terrifying!), neutral (e.g., The
new models may be released next week.), or, some-
times, mixed (e.g., I really like this phone, but it is
way too expensive!). The field of subjectivity and
sentiment analysis (SSA) is a very vibrant one and
there has been a flurry of research on especially the
English language (Wiebe et al., 2004; Liu, 2010;
Dave et al., 2003; Pang and Lee, 2008; Chao-
valit and Zhou, 2005; Zhuang et al., 2006). By
now, there is also a fair amount of work on mor-
phologically rich languages (MRL) (Tsarfaty et
al., 2010) like Arabic (Abdul-Mageed and Diab,
2011; Abdul-Mageed et al., 2011; Abdul-Mageed

and Diab, 2012; Abdul-Mageed et al., 2014; Aly
and Atiya, 2013; Refaee and Rieser, 2014; Nabil et
al., 2015; Salameh et al., 2015; Refaee and Rieser,
2016). SSA work on MRLs, however, is still in
an early stage as MRLs raise a range of questions
on their own. In the current work, we focus on an-
swering the question: “How it is that Arabic can be
modeled within lexical space?” More specifically,
we investigate the utility of teasing apart lexical in-
put based on grammatical criteria and empirically
weigh the contribution of features therein toward
SSA. The current work is a follow up on submitted
work (Abdul-Mageed, 2017) where we measure
both gold and machine-predicted tree-bank style
segmentation (Maamouri et al., 2004) on the two
tasks of subjectivity and sentiment.

Breaking down surface forms into their com-
ponent segments is known as segmentation. Seg-
mentation is possible when morphological bound-
aries within a word are identified. In the Penn
Arabic Treebank (ATB) (Maamouri et al., 2004),
a segment can be a stem, an inflectional affix,
or a clitic. For example, the surface word wbH-
snAthm (Eng. ’and by their virtues’) is segmented
as w+b+Hsn+At+hm with the prefixal clitics (w
and b, Eng. ’and’ and ’by’), the stem Hsn, the
inflection morpheme At, and the suffixal pronomi-
nal morpheme hm. In (Abdul-Mageed, 2017), we
have shown how reducing a word to its component
segments is a desirable measure for SSA since it
reduces the number of observed forms and hence
alleviates sparsity: The system does not see as
many forms at test time that have not been seen
at training time. Providing all lexical segmented
input to a classifier, however, may or may not be
an ideal procedure. In English, usually words like
‘a,’ ‘the,’ and ‘from’ are treated as stop words and
hence removed before classification. These tokens
are viewed as functional words that do not usu-
ally contribute to classification accuracy. Are there
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ways to break down the lexical space based on rel-
evant, if not comparable, grammatical grounds?
That is the question we seek to answer in the cur-
rent work. Overall, we make the following contri-
butions: (1) We present a new human-labeled ATB
dataset for SSA; (2) We introduce a new syntacti-
cally motivated feature selection method for SSA
on Arabic that can arguably also help classification
on other languages of rich morphology; and (3)
We present detailed linguistically-motivated (er-
ror) analyses of the behavior of the lexical models,
against the background of Arabic morphological
complexity.

The rest of this paper is organized as follows: In
Section 2, we describe our datasets and methods.
In Section 3, we present our results. In Section 4,
we provide a literature review, and in Section 5 we
conclude.

2 Dataset and Methods

Data: We gold-label a subset from each of the
first three parts of the ATB (i.e., the first 70
documents from ATB1V4.1, the first 50 docu-
ments from ATB2V3.1, and the first 58 documents
from ATB3V3.2) at the sentence level with tags
from the set {OBJ, subjective-positive (S-POS),
subjective-negative (S-NEG), subjective-mixed (S-
MIXED)}. The data belong to the newswire genre
and were manually labeled by the Linguistic Data
Consortium (LDC) for part-of-speech (POS), mor-
phology, gloss, and syntactic treebank annotation.
A single annotator, with a Ph.D. in linguistics
and a native Arabic fluency, labeled the data af-
ter being provided written guidelines and several
sessions of training and discussions with the au-
thors. We followed the guidelines in the literature
(Abdul-Mageed and Diab, 2011; Abdul-Mageed
and Diab, 2012). To ensure quality, 5% of the data
(n=250 sentences) was double labeled by a sec-
ond annotator. Inter-annotator agreement reached
83% without adjudication, and hence the first an-
notator’s decisions were judged sufficient. Table 1
shows class distribution in our data.

Procedure: We divide each of the three tree-
bank parts into 80% training, 10% development,
and 10% test. The training parts from each Tree-
bank are then added up to build TRAIN, the devel-
opment parts are added up to build DEV, and the
test parts are combined to build TEST. For our ex-
periments, results are reported both on DEV and
TEST. Importantly, only the DEV set is used for

Dataset OBJ S-P S-N S-M ALL
ATB1V4.1 582 183 188 39 992
ATB2V3.1 623 151 227 3 1,004
ATB3V3.2 1,472 462 414 6 2,354
ALL 2,677 796 829 48 4,350

Table 1: Data statistics. S-P= subjective positive
and S-N= subjective negative.

tuning classifier performance and error analyses.
TEST is used as a fully blind set. We follow a two-
stage classification process where the first stage is
to tease apart the OBJ and SUBJ classes, and the
second stage is to distinguish the S-POS and the
S-NEG classes. For this work, we do not handle
the MIXED class, since it is minimal in our data.

Settings: We use two settings based on text
preprocessing: Gold and machine-predicted. For
the gold setting, human-annotated segmentation
and morphosyntactic disambiguation as labeled by
LDC are exploited. For the machine-predicted set-
ting, we use the ASMA tool (Abdul-Mageed et
al., 2013), which renders state of the art segmen-
tation and morphosyntactic tagging for MSA. For
all the subjectivity and sentiment experiments, we
use SVMs with a linear kernel.

3 Results

3.1 Subjectivity with Lexical Filtering

As pointed out earlier, we follow up on previous
work (Abdul-Mageed, 2017) where we show the
utility of representing lexical input in the form of
segments. As such, we cite results from that work
with both surface word forms and segmented text
and compare the current work to these results. We
now set out to answer the question: “Are all seg-
ments equally useful to subjectivity and/or senti-
ment classification?” From a linguistics perspec-
tive, segmented lexical input can be viewed as
comprised of content segments (i.e., those corre-
sponding to verbs or nominals [nouns, adjectives,
and adverbs]) and functional segements (e.g., def-
inite articles). Content segments are often thought
to carry the important semantic content in a sen-
tence, and hence we investigate their utility for
SSA. In other words, we employ lexical filter-
ing: We filter out functional segments (e.g., cli-
tics and affixes after segmentation) and use con-
tent segments exclusively as classifier input. We
use the POS tags in Table 2 to identify content
segments. Table 3 shows results of subjectiv-
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OBJ SUBJ
Acc Avg-F Prec Rec F Prec Rec F

DEV surf 62.07 57.4 78.75 29.86 43.3 58.31 92.41 71.5
gold-segs 68.28 65.31 87.63 40.28 55.19 62.72 94.64 75.44
asma-segs 65.98 63.02 81.19 38.86 52.56 61.38 91.52 73.48
gold-cont 61.15 57.34 72.34 32.23 44.59 58.06 88.39 70.09
asma-cont 62.07 58.47 73.96 33.65 46.25 58.7 88.84 70.69
gold-cont-M1 68.28 65.71 84.76 42.18 56.33 63.03 92.86 75.09
asma-cont-M1 66.9 63.92 83.84 39.34 53.55 61.9 92.86 74.29

TEST surf 60.58 60.55 90.91 44.22 59.5 46.41 91.61 61.61
gold-segs 65.03 65 91.02 51.7 65.94 49.65 90.32 64.07
asma-segs 66.59 66.57 93.37 52.72 67.39 50.88 92.9 65.75
gold-cont 57.68 57.63 87.14 41.5 56.22 44.34 88.39 59.05
asma-cont 59.69 59.66 89.51 43.54 58.58 45.75 90.32 60.74
gold-cont-M1 66.15 66.12 92.26 52.72 67.1 50.53 91.61 65.14
asma-cont-M1 67.93 67.9 94.64 54.08 68.83 51.96 94.19 66.97

Table 3: Subjectivity classification with syntactically motivated feature selection. Th prefixes gold- and
asma- refer to Treebank-acquired and ASMA-acquired segments (i.e., -segs), content segments (i.e.,
-cont), and select content segments (i.e., -cont-M∗), respectively.

ity classification with both the gold and ASMA
syntactically motivated lexical filtering (gold-cont
and asma-cont, respectively) where only content
segments are provided as classifier input. For
this set of experiments, we use two baselines:
1) performance with surface word forms (surf),
and, (in order to compare to performance with
both gold- and ASMA-segmented text forms as
reported in (Abdul-Mageed, 2017)), 2) gold-segs
and 3) asma-segs, respectively.

As Table 3 shows, for subjectivity classification
with gold-cont, no improvement is acquired over
the surface word forms (surf). On DEV, gold-
cont is 0.92% accuracy below surf. On TEST,
gold-cont is at 2.90% accuracy below surf. Sim-
ilarly, apart from the OBJ class classification on
DEV (where 1.29% F1 gain is acquired), gold-
cont loses against surf across all evaluation met-
rics for both the OBJ and SUBJ classes. On TEST,
gold-cont is outperformed by surf with 3.28%
accuracy. Comparing the results acquired with
gold-cont to those acquired without lexical filter-
ing (i.e., with gold-segs and asma-segs) shows
that gold-cont causes classification losses on both
DEV and TEST. On DEV, gold-cont causes a clas-
sification loss with 7.13% accuracy compared to
gold-segs and 3.91% accuracy compared to asma-
segs. On TEST, gold-cont is outperformed by
gold-segs with 7.35% accuracy and also by asma-
segs with 6.90% accuracy. In addition, as Table 3

also shows, asma-cont is outperformed by asma-
segs and gold-segs on DEV. On TEST, asma-
cont is outperformed by surf (with 0.89% accu-
racy), asma-segs (6.90% accuracy), and gold-segs
(5.34% accuracy).

These results show that removing functional
segments is not a useful measure for subjectiv-
ity classification, regardless whether the segments
kept are gold (gold-cont) or ASMA-predicted
(asma-cont). As we show in (Abdul-Mageed,
2017), with regard to results acquired using gold-
segs and asma-segs as compared to surf, seg-
mented input text helps reduce data sparsity,
which partially accounts for classification im-
provement with these settings. The situation when
we remove functional segments as we do here is
different: Even though this type of lexical filter-
ing with both gold-cont and asma-cont does re-
duce sparsity significantly as compared to surf, as
is shown in Table 4, performance with these two
settings drops. This shows that data sparsity re-
duction is not the sole deciding factor as to classi-
fier performance, and that the removed functional
segments are important input for the subjectivity
task. This conclusion is clearly supported by the
fact that lexical filtering settings (i.e., gold-cont
and asma-cont) are outperformed by their segmen-
tation counterparts (i.e., gold-segs and asma-segs),
even though the differences in sparsity rates be-
tween the two are minimal.
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VERBS
VERB verb
PSEUDO VERB pseudo-verb
PV perfective verb
PV PASS perfective passive verb
IV imperfective verb
IV PASS Imperfective passive verb
CV imperative/command verb

NOMINALS
NOUN noun
NOUN NUM nominal/cardinal number
NOUN QUANT quantifier noun
NOUN.VN deverbal noun
NOUN PROP proper noun
ADJ adjective
ADJ COMP comparative adjective
ADJ NUM adjectival/ordinal number
ADJ.VN deverbal adjective
ADJ PROP proper adjective
ADV adverb
REL ADV relative adverb
INTERROG ADV interrogative adverb

Table 2: POS tags for content segments

TRAIN DEV
# types # types % OOV

surf 13,201 3,028 44.25%
gold-segs 6,254 2,006 22.88%
asma-segs 7,053 2,159 26.40%
gold-cont 6,124 1,916 23.49%
asma-cont 6,888 2,066 27.11%

Table 4: Type statistics and OOV percentages for
gold and ASMA-predicted content segments

To further help interpret the results, we perform
an investigation of the distribution of functional
segments in the TRAIN set for both gold-segs and
asma-segs. To help explain the distribution of
functional segments, we introduce the concept of
distributional relative frequency (RF): RF is the
frequency of these segments within a given class
divided by the total number of data points mak-
ing up that specific class. The distribution of func-
tional segments is calculated based on RF to cater
for the unbalanced class distribution in the TRAIN
data where the number of OBJ cases=1, 259 and
the number of SUBJ cases=3, 840. Also, RF is
calculated based on absolute values (i.e., after re-
ducing the segments of frequency > 1 to 1 [i.e.,

segments that are repeated multiple times in one
sentence are rendered to one occurrence only], to
match the presence vs. absence vectors). In ac-
quiring the RF of segments across both the OBJ
and SUBJ classes, we use a threshold parameter
specifying the number of times a segment occurs
in one of the two classes more than the other. This
parameter is used with values from the set {1, 2,
3, 4}.

Functional segments occur with different distri-
butions in the two classes. As extracted from gold-
segs TRAIN, there is a total of 160 functional seg-
ments out of which 99 occur in gold-segs DEV set.
On TRAIN, 60% (n=96) of functional segments
occur at least two times in one of the two classes
more than the other class, 48.75% (n=78) of them
occur at least three times, and 0.05% (n=8) of them
occur at least four times. On DEV, 57.57% (n=57)
of functional segments occur at least two times in
one of the two classes, 49.49% (n=49) of them
occur at least three times, and 45.45% (n=45) of
them occur at least four times. For ASMA, there is
similarly a discrepancy of distribution between the
functional segments occurring in the two classes:
Within the asma-segs training set, a total of 149
functional segments occur. For a considerable per-
centage of these segments (%=37.58, n=56), each
segment is found to occur with a relative frequency
that is four times or more in one of the two classes
than its occurrence in the other. When the rela-
tive frequency threshold is lowered to three times
or more, it is found that 41.61% (n=62) of these
functional segments satisfy this lowered threshold
of class distribution. When the relative frequency
threshold is lowered to two times or more, 57.05%
(n=85) of segments satisfy that threshold.

The different distribution of functional seg-
ments across the OBJ and SUBJ classes is linguis-
tically motivated, as these segments are related to a
host of linguistic phenomena that interact with ex-
pression of subjectivity. The following is a number
of such phenomena that we find to be used more
frequently with the SUBJ class:

Negation: Negation is used in natural language
for various purposes, including those related to the
’etiquette’ of involving in a conversation or po-
liteness (Brown and Levinson, 1987) in discourse.
For example, it is usually considered more polite
to say that something is ‘not good’ (and hence em-
ploy negation) rather than saying it is ‘bad.’ Nega-
tion is used in newswire discourse in various con-
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texts. For example, politicians use negation when
they ‘denounce’ an action or ‘deny’ a stance. Of-
ten times, contexts where negation is employed
would be more SUBJ than OBJ, based on the
distribution of negation particles in the TRAIN
and DEV data. Examples of negation particles
that occur more frequently in the SUBJ class are
lA (which negates imperfective verbs) lm (which
negates things in the past) and ln (which negates
things in the future).

Restriction: In situations where it is necessar-
ily to be precise, restrict a statement, stress a po-
sition, etc., employment of restriction particles is
useful. Restriction particles like <lA (Eng., ‘ex-
cept’) and <nmA (Eng. ‘but for’) are used more
with the SUBJ class in the data. An example sen-
tence where <lAis used in a SUBJ-POS context is
lA ysE Al <nsAn <lA <n yqdrhA (Eng. ‘One can
only appreciate it’).

Interactional resources: Writers use a num-
ber of linguistic resources, often referred to as
interactional resources (Hyland and Tse, 2004),
to engage readers in the argument in ways that
interact with expression of subjectivity. Interac-
tional resources include self-mentions via first per-
son pronouns, engagement markers like second
person pronouns, epistemic modality markers that
serve to convey how confident people are about
the ideational material they convey (Palmer, 1986)
(whether these are hedges like rbmA [Eng. ‘per-
haps’] or boosters like mwkd [Eng. ‘it is certain’]),
and attitude markers like llOsf (Eng. ‘unfortu-
nately’). Self-mentions and engagement mark-
ers are, more often than not, expressed via func-
tional segments in Arabic, namely first and sec-
ond person pronouns. Epistemic modality and atti-
tude markers are either expressed adverbially or as
phrases involving functional segments like prepo-
sitions. For example, the phrase mn Almdh$ On
(Eng. ‘it is surprising that’) acts as an attitude
marker. Filtering out functional segments removes
these interactional resources which are useful de-
vices for expression of subjectivity, leaving the
phrase as mdh$ (Eng. ‘surprising’), which carries
less intense polarity. This, in turn, adds to the clas-
sification drop.

Conditionals: In situations when a
writer/speaker needs to describe a hypothet-
ical scenario or condition on occurrence on
another, etc., conditionals are used. These, as
such, are not as much associated with facts as

they are with what the writer/speaker believes
is possible, likely, probable, etc. In this way,
they can be associated with hedges when they
are employed to restrict a claim. Conditionals
like <*A (Eng. ‘if’) and lw (Eng. ‘if’) are thus
distributed more frequently with the subjective
class.

3.2 Subjectivity with Syntactically Motivated
Feature Selection

In order to further investigate the utility of func-
tional segments for subjectivity classification, we
perform a set of experiments based on pointwise
mutual information (PMI) (Church and Hanks,
1989; Church and Hanks, 1990) feature selection
focused at these segments. PMI is a statistical
measure of the co-occurrence of two events that
captures the discrepancy between the probability
of their coincidence given their joint distribution
and their individual distributions. The PMI be-
tween a functional segment ‘fs’ and its class ‘c’
(e.g., the OBJ vs. the SUBJ class) is:

PMI(fs|c) = log2

p(fs|c)
p(fs)p(c)

(1)

PMI is a filter feature selection method that is
used to keep only features important to the classi-
fication process and filter out the rest. In the cur-
rent case, only functional segments that occur in
one of the two OBJ and SUBJ classes more than
the other with a relative frequency (RF) that is ≥
a certain threshold are kept for classification (in
addition to the content segments) while the rest
are filtered out. Experiments with PMI are run
with RF different threshold parameters from the
set {1, 2, 3, 4}. It is found that with an RF thresh-
old ≥ 1, PMI feature selection results in improve-
ments over all previous settings whether gold (i.e.,
gold-segs and gold-cont) or ASMA-predicted (i.e.,
asma-segs and asma-cont). Table 3 shows related
results. The experiments with only certain func-
tional segments filtered out with gold segmenta-
tion are referred to as gold-cont-M1 and those with
ASMA are referred to as asma-cont-M1, with the
suffix ‘M1’ standing for ‘modified’ with a thresh-
old of is ≥ 1 in both cases.

As Table 3 shows, modified lexical filtering
helps improve classification across the board over
surf, over comparable lexical filtering (i.e., gold-
cont and asma-cont), and over segmentation set-
tings (i.e., gold-segs and asma-segs). On DEV,
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gold-cont-M1 achieves identical accuracy scores
(i.e., 68.28%) as gold-segs. On TEST, gold-
cont-M1 improves 1.12% accuracy on gold-segs.
For ASMA-predicted settings, asma-cont-M1 im-
proves over asma-segs (with 0.92% accuracy on
DEV and 1.34% accuracy on TEST). Results of
modified lexical filtering show that some, but not
all, functional segments are important for subjec-
tivity classification. In addition to the linguistic
analysis provided earlier in this section about the
importance of some of the functional segments, it
is worth mentioning that filtering out all functional
segments also deprives the classifier of any ac-
cess to multiword expressions (MWE). Although
the sentences in the experiments reported above
are not represented beyond unigrams and hence
MWEs are not explicitly provided to the classi-
fier, there is still a possibility for the classifier to
benefit from these expressions when all segments
in a sentence are accessible. The following is an
example of an MWE carrying SUBJ content and
explanations of accompanying filtered out func-
tional segments: In the phrase wqf fy wjh (Eng.
‘he stood against’) removal of functional segment
preposition fy (Eng. ‘face’) results in the string
wqf+wjh (Eng. ‘he stood+face’). Again, these re-
sulting CONT segments do not carry SUBJ con-
tent themselves.

3.3 Sentiment with Lexical Filtering

Table 5 shows results of sentiment classification
with both gold lexical filtering (gold-cont) and
ASMA lexical filtering (asma-cont). For compar-
ison, earlier results with the segmented unfiltered
setting (gold-segs and gold-segs) and results with
syntactically motivated feature selection (which
we refer to as gold-cont-M1 and asma-cont-M1),
as is explained below, are also provided in Table
5. As the Table shows, on both DEV and TEST,
syntactically motivated lexical filtering (whether
gold-cont or asma-cont) improves classification
over surf. On DEV, gold-cont improves 1.98% ac-
curacy and asma-segs improves 3.29% accuracy
over surf. On TEST, gold-cont improves 4.51%
accuracy and asma-segs improves 2.71% accuracy
over surf. Comparing gold-cont to segmented text,
however, shows a trend similar to that of sub-
jectivity classification where segmentation with-
out lexical filtering is still competitive: On DEV,
gold-cont and asma-cont are both outperformed
by segmented text (i.e., both gold-segs and asma-

segs). On TEST, gold-cont outperforms gold-segs.
These results show that although lexical filtering is
able to outperform surf, it is not consistently useful
compared to segmented text. A consideration of
the data sparsity in DEV and TEST indicates that
there is no consistent correlation between the per-
centage of OOV segments and performance. For
example, although gold-cont has less OOV per-
centage than gold-segs and asma-segs on DEV, it
is still outperformed by these two settings.

Similar to subjectivity classification with lexical
filtering, we performed an analysis of the relative
frequency (RF) of functional segments as occur-
ring in segmented text across the S-POS and S-
NEG classes as is reported in Table 5. The analysis
shows a similar trend to that of subjectivity classi-
fication where functional segments have different
RF distribution across the two classes across both
the gold-segs and asma-segs settings.

In order to further investigate the utility of func-
tional segments for sentiment classification, again,
we perform a set of experiments based on PMI
(Church and Hanks 1989; 1990) feature selection
focused at these segments. Similar to subjectivity
classification above, all functional segments that
occurred in one or another of the two S-POS and
S-NEG classes with a PMI value more than that
of the other (i.e., with a relative frequency of ≥ a
threshold from the set {1, 2, 3, 4}) are kept unfil-
tered for this set of experiments. The best results
are achieved with the RF ≥ 1. As is reported in
Table 5, with this modified lexical filtering (gold-
cont-M1 and asma-cont-M1), an improvement is
gained on DEV as compared to surf, segmented
text settings (gold-segs and asma-segs), and lexi-
cal filtering (gold-cont and asma-cont). The case
is different, however, on TEST where no such im-
provement is possible with the modified lexical
filtering settings. Comparing the performance of
modified lexical filtering in the case of subjectiv-
ity classification as presented earlier to the current
performance of modified lexical filtering on senti-
ment classification shows a discrepancy of the util-
ity of modified/partial lexical filtering. This is the
case since the two classification tasks are different,
as expression of sentiment itself is different from
that of subjectivity. Functional segments are as-
sociated with subjective content in general regard-
less of the specific type of sentiment expressed, for
which case these segments do not play as much
of a role in distinguishing the S-POS from the S-
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S-POS S-NEG
Acc Avg- F Prec Rec F Prec Rec F

DEV surf 57.89 57.71 65.33 56.32 60.49 50.65 60 54.93
gold-segs 65.13 64.45 69.77 68.97 69.36 59.09 60 59.54
asma-segs 61.84 61.52 68.35 62.07 65.06 54.79 61.54 57.97
gold-cont 59.87 59.86 69.12 54.02 60.65 52.38 67.69 59.06
asma-cont 61.18 61.19 71.21 54.02 61.44 53.49 70.77 60.93
gold-cont-M1 66.45 66.11 72.5 66.67 69.46 59.72 66.15 62.77
asma-cont-M1 61.84 61.81 71.01 56.32 62.82 54.22 69.23 60.81

TEST surf 64.86 64.85 64.91 66.07 65.49 64.81 63.64 64.22
gold-segs 67.57 67.56 67.86 67.86 67.86 67.27 67.27 67.27
asma-segs 69.37 69.35 71.15 66.07 68.52 67.8 72.73 70.18
gold-cont 69.37 69.17 73.91 60.71 66.67 66.15 78.18 71.67
asma-cont 67.57 67.35 71.74 58.93 64.71 64.62 76.36 70
gold-cont-M1 64.86 64.85 64.91 66.07 65.49 64.81 63.64 64.22
asma-cont-M1 63.96 63.97 64.29 64.29 64.29 63.64 63.64 63.64

Table 5: Sentiment classification with syntactically motivated feature selection.

NEG classes as they do in distinguishing the OBJ
and SUBJ classes. What supports this analysis
is the fact that although the distribution of func-
tional segments differs from one class to another,
this distribution is not as pronounced with the RF
values 2, 3, and 4 as in the case of subjectivity
classification. For example, while on TRAIN and
DEV combined 58.785% of gold-segs occur with
an RF=2 in either the SUBJ or the OBJ classes,
only 43.155% of these with the same RF=2 occur
in either the S-POS or S-NEG classes (also as de-
rived from TRAIN and DEV combined). The sit-
uation is also similar with ASMA functional seg-
ments over TRAIN+DEV, where 56.075% occur
with an RF=2 in one or the other of subjectivity
classes whereas only 42.475% of them occur with
the same RF threshold in one or the other of the
two sentiment classes.

In order to better understand why it is that
full gold lexical filtering yields lower performance
than gold segmented data, we perform an error
analysis of the gold-cont cases (n=26) that are cor-
rectly classified by the gold-segs classifier on the
DEV set. The error analysis shows that there is
a host of linguistic phenomena that interact with
expression of sentiment as follows:

Negation: Negation particles belong to func-
tional segments and can cause a change of the po-
larity of content segments. When negation par-
ticles are absent, and hence not accessible to the
classifier unlike content segments that potentially
carry the opposite of the label of a sentence, clas-

sification errors occur.
Interactional resources: Only one category

of interactional resources (Hyland Tse, 2004) is
found to be most important to sentiment expres-
sion: First person pronouns. First person singular,
but more frequently, plural pronouns are found to
be used with higher distribution with the S-POS
class. This is specially the case since the data in-
volve discourse where politicians do their best try-
ing to draw a positive image of themselves and/or
the political entities they represent and hence cite
self. This is an example from the error analysis
data: qAl Alr}ys AlsngAly: ’lA xyAr OmAmnA swy
AltjmE’. (Eng. ‘The Senegalese president said:
“we have no other choice but uniting”.’)

The example is human-annotated with S-POS
and involves first person plural pronouns (e.g., the
possessive pronoun nA [Eng. ‘our’], the imperfec-
tive verb prefixal n- [Eng. ‘we’]) that is filtered
out with the lexical filtering setting (both gold-
cont and asma-cont) and hence the classifiers do
not have access to these as signals of positive sen-
timent, which results in the erroneous prediction.

The finding that full lexical filtering improves
over segmented text on TEST but not on DEV is
one that also calls for further investigation. An
error analysis of the examples (n=18) gold-cont
correctly identifies but gold-segs fails to predict
on DEV was performed to better interpret this
finding. Among these 18 examples (%=77.77)
are human-labeled as S-NEG and hence the gold-
cont classifier performs better on the S-NEG class.
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This indicates that expression of negative content
is more likely to be carried by content segments
rather than a combination of both functional and
content segments. The addition of certain func-
tional segments (i.e., those that occur with higher
RF with the S-POS class) is responsible for mis-
classification errors. For example, since the first
personal plural pronouns mentioned above (i.e.,
the possessive pronoun nA [Eng. ‘our’], the imper-
fective verb prefixal n- [Eng. ‘we’]) are more fre-
quently occurring with the S-POS class, they con-
tribute to causing the gold-segs classifier assigning
an S-POS tag to the following S-NEG sentence
that was rightly predicted with the gold-cont set-
ting: mqr bOnh ’ElynA On nEtrf bOn bED jwAnb
AlmEAhd p lyst wADHp’. (Eng. ‘Attesting that
“we must admit that some aspects of the treaty are
not clear”.’) -nA and n- have higer RF with the
POS class.

A close investigation of the examples wrongly
classified by gold-segs also shows that they all
carry (very) strong sentiment. Although sentiment
intensity is not manually labeled in the data and
the current work does not involve predicting de-
grees of intensity in data, it is worth discussing
this aspect as it relates to the current error anal-
ysis. Sentiment intensity in Arabic is primarily
expressed via content segments and hence these
content segments, rather than functional segments,
are the important signals in (very) strongly po-
larized examples. The following example that
carries a strong negative sentiment illustrates this
point: wtSwrhA bEbE yEml ElY IhAnp AlnAs wAl-
IsA’p IlY Alm$trkyn. (Eng. ‘And portrays it as
a monstrous ghost working to humiliate people
and wronging participants.’). In this last sentence,
the strong sentiment is carried by the content seg-
ments bEbE (Eng. ‘monstrous ghost’) and IsA’
(Eng. ‘wronging-related’) rather than by any func-
tional segments. This utility of content segments
in expressing strong sentiment makes them more
crucial for the task and adding functional segments
may be ‘distractive’ to the classifier especially in
S-NEG examples as the comparison between the
performance of gold-cont and gold-segs shows.

4 Related Work

Sentiment analysis has been a popular NLP task,
with a lot of work focused at mining movie and
product reviews (Dave et al., 2003; Hu and Liu,
2004; Turney, 2002). Recently, there has been

a number of SemEval tasks devoted to sentiment
(Rosenthal et al., 2014; Rosenthal et al., 2015;
Nakov et al., 2016).

For Arabic, early work includes (Abbasi et al.,
2008) who detect hostility in Arabic and English
web fora and (Abdul-Mageed et al., 2011) who
use gold-labeled morphological features and a po-
larity lexicon from the news domain. This cur-
rent work differs in that we use automatically pre-
dicted morphological features in addition to gold
features. (Abdul-Mageed et al., 2014) is also re-
lated to our work in that the we also investigate
ways to best represent lexical information, yet on
newswire data rather than social media. A num-
ber of studies have reported models using n-gram
features after preprocessing input data (Abdulla et
al., 2013; Aly and Atiya, 2013; ElSahar and El-
Beltagy, 2015; Mourad and Darwish, 2013; Saleh
et al., 2011). The focus of our work is different
in that we seek to break the space of lexical input
based on syntactic criteria and introduce a method
to weigh the informativity of the resulting spaces
via feature selection. We also have shown how lin-
guistic phenomena interact with sentiment expres-
sion via detailed error analyses of model output.

5 Conclusion

In this work, we introduced a new human-labeled
ATB dataset for SSA and investigated ways to
model subjectivity and sentiment in lexical space
in Arabic, a language of rich morphology. We
demonstrated how each of these tasks can be per-
formed with both gold and machine-predicted seg-
ments under different grammar-based conditions.
Our results show that not all lexical input is rel-
evant to the tasks and that some syntactically-
defined segments are more relevant to a given task
than another, thus motivating our syntactically
motivated feature selection method. We found
functional segments to be more vehicles for car-
rying subjective content than devices for commu-
nicating positive and negative content. Our de-
tailed error analyses helped uncover a host of lin-
guistic phenomena that interact in intricate ways
with both subjectivity and sentiment expression in
the Arabic newswire genre. Our results also show
that although subjectivity and sentiment are so-
cial meaning concepts (i.e., expressed at the levels
of semantics and pragmatics), modeling them can
benefit from knowledge at lower linguistics levels
in lexical space.
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Abstract

Automatic speech recognition for Arabic
is a very challenging task. Despite all the
classical techniques for Automatic Speech
Recognition (ASR), which can be effi-
ciently applied to Arabic speech recogni-
tion, it is essential to take into consider-
ation the language specificities to improve
the system performance. In this article, we
focus on Modern Standard Arabic (MSA)
speech recognition. We introduce the chal-
lenges related to Arabic language, namely
the complex morphology nature of the lan-
guage and the absence of the short vowels
in written text, which leads to several po-
tential vowelization for each graphemes,
which is often conflicting. We develop
an ASR system for MSA by using Kaldi
toolkit. Several acoustic and language
models are trained. We obtain a Word Er-
ror Rate (WER) of 14.42 for the baseline
system and 12.2 relative improvement by
rescoring the lattice and by rewriting the
output with the right Z hamoza above or

below @ Alif.

1 Introduction

The Arabic language is the fifth most widely spo-
ken language in the world with an estimated 295
million native speakers. It is one of the most mor-
phologically complex languages. Due to this, de-
veloping an Automatic Speech Recognition (ASR)
system for Arabic is a very challenging task.

Arabic language is characterized by the high
number of dialects used in daily communications.
There is a significant difference between these di-
alects and the Modern Standard Arabic (MSA),
which is used in newspapers and formal commu-

nication. In this article, we will describe our ASR
system for MSA implemented using Kaldi toolkit.

Kaldi is a state of the art toolkit for speech
recognition based on Weighted Finite State Trans-
ducers (WFST) (Povey et al., 2011; Mohri et al.,
2008). It includes multiple scripts and recipes for
most standard techniques. These recipes are avail-
able with many speech corpora and they are fre-
quently updated to support the latest techniques
like Deep Neural Networks (DNN).

In this work, several state of the art’s mod-
eling techniques are tested, namely the GMM-
HMM models, the DNN-HMM models and var-
ious techniques like: Maximum Mutual Informa-
tion (MMI) (Bahl et al., 1986), feature-space Max-
imum Likelihood Linear Regression (fMLLR)
(Povey and Saon, 2006) and Speaker Adaptive
Training (SAT) (Anastasakos et al., 1996). The
gain obtained after training each model will be re-
ported later on.

Our ASR system is built using several hours of
standard Arabic news broadcasts from corpora dis-
tributed by ELRA.

Another interesting treatment, proposed in this
article, is the auto-correction of Z hamoza in the
ASR system output in order to rectify the orthog-
raphy confusion of this symbol above or below @
Alif. The approach used is inspired from various
techniques proposed in the literature for detection
and correction of spelling errors. The particularity
of our approach is the use of the vector representa-
tion of words to retrieve the context and to correct
misspelled words.

In the next section, an overview about Arabic
language issues and some works proposed in the
literature to deal with those problems is presented.
Section 3 describes the different corpus used to
train the acoustic and language models, as well as
the data normalization process. Section 4 details
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the acoustic and language models. Finally, the ex-
perimental results are discussed in Section 5.

2 Related works

Even though classic techniques for ASR systems
can be efficiently applied to Arabic speech recog-
nition, it is necessary to take into account language
specificities to improve the system performance.
Arabic is a morphologically rich language. By
concatenating prefixes and suffixes to stems, other
words are obtained. The stem can be also decom-
posed into a root (generally a sequence of three
consonants) and a pattern of vowels and, possi-
bly, additional consonants. For example: the word
ÑîD.�JºK. ð wabikutubihim1 ”and with their books” is

composed of the two prefixes ð w ”and” and H.
b ”with”, the stem I. �J» kutub ”books”, which is

derived from the root I. �J» ktb ”to write” and the

suffixe Ñë hum ”their”. This explains the high
out-of-vocabulary (OOV) rate compared with En-
glish language which consequently leads to the in-
crease of the Word Error Rate (WER). To deal
with this issue, (Afify et al., 2006; Xiang et al.,
2006; Diehl et al., 2009; Ng et al., 2009) propose
to use morphological segmentation. They shown
that the results obtained with a large lexicon could
be achieved with a reduced one if morphological
decomposition is applied.

Another interesting approach investigates lan-
guage models based on morphological analysis.
Choueiter et al. (2006) used a morpheme-based
language modeling by exploiting a statistical seg-
mentation algorithm (Lee et al., 2003) to decom-
pose data. An automaton of type finite state
acceptor was used to allow legal sequences of
morphemes. With this approach, a 2.4% abso-
lute WER improvement was achieved by using a
medium vocabulary (less than 64k words) and a
morpheme n-gram model compared to a conven-
tional word-based model. However, by using a
large vocabulary (800k words), an absolute im-
provement of only 0.2% was achieved.

Likewise, the Factored Language Models
(FLMs) (Bilmes and Kirchhoff, 2003) was used to
improve the WER. In (El-Desoky et al., 2010), the
morphological decomposition was combined with
FLM to iron out the Arabic complex morphology.
A good improvement was shown by rescoring the

1We use Buckwalter transliteration to represent Arabic
words.

n-best list with a FLM based on partially decom-
posed words.

One more idiosyncrasy of the Arabic language
is that it is a consonantal language. It just has
three vowels, each of which has a long and short
form. Formal texts are generally written with-
out short vowels, consequently a single grapheme
word could have several possible pronunciations.
For example, the word I. �J» ktb could be pro-

nounced like: �I.
��J
�
» kataba ”write”, �I.

��J
�
» kutubN

”books” or �I. �J�
�
» Kutiba ”written by” and it also

has other potential diacritizations. This ambiguity
is solved by using the contextual information of
words. Even though the short vowels make easy
the pronunciation modeling, their use increases
the number of the entries in the vocabulary and
consequently the size of the language model. In
fact, El-Desoky et al. (2009) showed that the best
WER value is achieved by applying a morpholog-
ical decomposition on a non-diacritized vocabu-
lary. However, a nice improvement was shown in
(Kirchhoff and others, 2002) by using short vow-
els in data training transcripts.

Besides short vowels, another problem to be
taken into account in pronunciation modeling is
the geminated consonants. In fact, there are
cases where the consonant pronunciation should
be stressed, and this can frequently happen with
the prefix È@ Al ”the”. The solar consonants after
this prefix should be doubled (the solar consonants
are: �H t, �H v, X d,

	̈
g, P r, 	P z, � s, �� $, � S, 	�

D,   T, 	  Z, È l, 	à n). The matter of geminated
consonants was investigated in some studies. In
(Lamel et al., 2009), it has been shown that mod-
eling explicitly geminates improved a little bit the
system performance.

Another issue in Arabic concerns the omission
of the symbol Z hamoza which is pronounced but
often not written. This leads to a pronunciation
ambiguity. For example: the word I. ªË@ AlEb

could be pronounced I. ªË

@ >aloEab ”I play” if the

hamoza is above Alif

@ or I. ªË@ <ilEab ”play” if it

is below Alif @.

3 Data resources

The data presented in this section are utilized to
train acoustic and language models, to estimate the

158



different parameters and to test the performance of
the system.

3.1 Acoustic data

To train the acoustic model, a collection of spo-
ken transcribed data-set is required. In our case,
we used two corpora: Nemlar2 and NetDC3 dis-
tributed by ELRA. They consist of several hours
of Standard Arabic news broadcasts recorded in
linear PCM format, 16 kHz and 16 bits.

The data was splitted into three parts: one part
for training (Train), the second for tuning (Dev)
and the last one for evaluating the performance of
our system (Test). Table 1 illustrates some statis-
tics about the acoustic data.

Corpus Train Dev Test Total
Nemlar 33(83%) 3(08%) 3(9%) 40
NetDC 19(82%) 3(10%) 2(8%) 23
Total 52(83%) 6(09%) 5(8%) 63

Table 1: The acoustic data (hours).

The data splitting was done randomly by keep-
ing 52 hours for the Train, which is equivalent to
83% of data. 6 hours (9% of data) are used in the
Dev set and the rest (5 hours) is used in the Test
set. In order to balance the data selection between
the two corpora, two-thirds of the data is selected
from Nemlar corpus.

3.2 Textual data

The language model is trained by using two cor-
pora: GigaWord4 Arabic corpus and the acoustic
training data transcription.

GigaWord corpus was collected from nine
sources of information with a total of 1,000 mil-
lion word occurrences. The transcription of the
acoustic training data contains about 315k words.

As regards the lexicons, the Nemlar and NetDC
corpora are provided with phonetic lexicons in
Arabic SAMPA format, which has 34 phonemes
(3 vowels, 3 long vowels and 28 consonants). We
used them in the training task in order to specify
the pronunciation of each word in the transcription
of acoustic training data. The two lexicons have

2http://catalog.elra.info/product_
info.php?products_id=874

3http://catalog.elra.info/product_
info.php?products_id=13&language=fr

4https://catalog.ldc.upenn.edu/
LDC2011T11

79k pronunciation variants and 77k unique vow-
elized words, which is equivalent to an average of
1.02 pronunciation variants per word. The num-
ber of pronunciation variants per word is weak be-
cause all data transcripts and lexicons are written
with short vowels and thus each word will not have
various pronunciations.

In the recognition task, we used non-diacritized
data for training language model, therefore an-
other lexicon without short vowels is used. This
lexicon will be described in Section 4.2.

3.3 Data normalization

Several issues were encountered while process-
ing the textual corpora due to the Arabic spelling,
which is often ambiguous. Therefore, a normal-
ization step is necessary when processing the Ara-
bic text.

Most of the orthographical errors were treated
by using regular expression rules. In following,
some processing necessary for reducing the ambi-
guity of spelling and pronunciation are presented:

• All email addresses, url paths, special char-
acters (&lt;, $amp; ...), punctuations and non-
Arabic texts are removed.

• All diacritics representing short vowels or
consonant stressing are striped.

• All numbers are normalized and they are con-
verted into literal words.

• The prefix ð wa ”and” is separated from
words by using Farasa toolkit (Abdelali et al.,
2016) and all other prefixes: H. b,

	¬ f, È@ Al,

¼ k, È l and � s are concatenated to words.

• The stretched words are reduced to their orig-
inal form. For example: È@@ @ Ag. QË @ is replaced

by ÈAg. QË @ ”men”.

• A space is inserted after all words end by a�è ta marobuTa if it is attached to the next

word. For example: 	àQ�®Ë@ �éK
Aî 	E is replaced by
	àQ�®Ë@ �éK
Aî 	E nihAyat Aloqaron ”century end”.

• The time is literally written such as in the
following example: 15:30 is replaced by�é�®J
�̄ X 	àñ�KC�K ð �é�JËA�JË @ Alv∼livap wa valAvwn
daqyqap.
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• Some abbreviations are replaced by their cor-
responding meaning (see Table 2 for some
examples).

Abbre Word English gloss
% �éKAÖÏ @ ú


	̄ Percent
	̈ �H ���� 	JK
Q 	« �IJ
�̄ñ�K GMT
�H t�'
PA�K Date

�ë ø
 Qj. ë Islamic Calendar

¼. X ø
 Y	J» PBðX canadian dollar

� �é«A� Hour

X �é�®J
�̄ X Minute
�H �éJ
 	K A�K Second

Table 2: Abbreviations and their corresponding
meaning.

4 Modelization

In this section, the different steps involved in the
development of the DNN acoustic model is pre-
sented. Afterwards, the language modeling as-
pects and the various models developed are de-
tailed.

4.1 Acoustic model

The development of the acoustic model is based
on the Kaldi recipe. Our purpose here is to train
a DNN model, which perform well with respect to
the WER. For this, six different acoustic model-
ing systems are developed. For three of them, the
emission probability of the HMM states is mod-
eled by Gaussian Mixture Models (GMM) and for
the others, it is modeled by DNN models.

The acoustic features used are the Mel-
Frequency Cesptral Coefficients (MFCC) with
first and second order temporal derivatives. There-
fore, the feature vector dimension is 39.

Three GMM-HMM models are successively
trained. The first acoustic model (triphone1) is
trained using directly the MFCC features. A Lin-
ear Discriminative Analysis (LDA) followed by a
Maximum Likelihood Linear Transform (MLLT)
are applied to train the second acoustic model (tri-
phone2). For the third model (triphone3), the
Speaker Adaptive Training (SAT) transformation
with feature-space Maximum Likelihood Linear
Regression (fMLLR) are used to make the system
independent of speakers.

In order to take into account the influence of the
context on the acoustic realization of the phones,
all these models are triphone based models. The
last model (triphone3) has 100k Gaussians for
4,264 states.

The DNN-HMM systems are trained using
the frame-level cross entropy, sMBR criterion,
the senone generated from the last GMM-HMM
model (triphone3) and corresponding fMLLR
transforms. In total, three DNN models are
trained.

• DNN1 classifies frames into triphone-states,
i.e it estimates Probability Density Functions
(PDFs). DNN1 training is based on the cross-
entropy criterion.

• DNN2 and DNN3 are based on sMBR
sequence-discriminative training. The differ-
ence between the two models is the num-
ber of iterations used to train the model.
The sMBR sequence-discriminative training
is used to train the neural network to jointly
optimize for whole sentences instead of a
frame-based criterion.

The DNN models have 6 hidden layers and
2048 nodes per layer. The input layer has 440
nodes (40-dimensional fMLLR features spliced
across 5 frames on each side of the central frame)
and the output has 4,264 nodes. The number of
parameters to estimate is about 30.6 millions.

Figure 1 summarizes all the acoustic models of
our ASR system.

Speech
signal

MFCC,
∆ + ∆2

Triphone1 Triphone2 Triphone3

DNN1 DNN2 DNN3

LDA + MLLT SAT + fMLLR

sMBR criterion 4 iterations of sMBR

Features extraction

Cross entropy criterion

Figure 1: Acoustic model flow diagram.

4.2 Language modeling

A 2-gram Language Model (LM) is used to gener-
ate the lattice and a 4-grams LM is used to rescore
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this lattice. As the two text corpora available (Gi-
gaWord and transcripts of Train corpus) are unbal-
anced, a conventional training process is used. A
LM is first trained on each data set (one on Gi-
gaWord and one on transcripts). They are then
merged through a linear interpolation, where the
optimal weights are determined in order to max-
imize the likelihood of the transcripts of the Dev
set, which has a size of about 31k words.

For the 4-gram LM, which is used to rescore
the lattice, 10 LMs are interpolated. Nine of them
are trained on the different sources of GigaWord
corpus and the last one is trained on the transcripts
of the Train data. The interpolation coefficients
are again estimated on the transcripts of the Dev
data set.

The recognition vocabulary (lexicon) was gen-
erated by first keeping the 109k most frequent
words from GigaWord corpus and the words that
appear more than 3 times in the transcripts of
the Train corpus. Afterwards, only the words for
which pronunciation variants are in the Nemlar,
NetDC lexicons and the lexicon used in (Ali et
al., 2014) were kept. This process has generated
a lexicon having 95k unique grapheme words and
485k pronunciation variants, that is an average of
5.07 pronunciation variants per word. The high
number of pronunciation variants per word is due
to the fact that the lexicon entries do not contain
the indication of the short vowels. Hence several
pronunciation variants are possible for each word.
This lexicon was used as the vocabulary to train
the language models.

The SRILM toolkit (Stolcke, 2002) was used to
train the different LMs and all of them use Good-
Turing (Katz) (Katz, 1987) smoothing technique.
It is known that the Kneser-Kney smoothing (Chen
and Goodman, 1996) performs better than the
Katz technique. However, in (Chelba et al., 2010),
the authors showed through different experimental
setup that the Katz smoothing performs much bet-
ter than the Kneser-Kney smoothing for aggressive
pruning regimes, which is the case in our system.
In fact, due to memory constraints while compil-
ing the automaton used by Kaldi for speech de-
coding, we used 2-grams pruned language mod-
els to generate the lattice. The pruning was done
by keeping the n-grams with probability greater
than 10−9. The 4-grams language model was also
pruned according two approaches. The first ap-
proach is the same as the one used to prune the

2-grams LM and the second is based on stolcke
pruning technique (Stolcke, 2000). This second
pruned 4-grams LM is presented in Section 5.2.

The n-gram number and the perplexity calcu-
lated on the transcripts of the Dev data for various
models before and after pruning are presented in
Table 3.

n-gram unpruned pruned Stolcke
pruning

1-gram 95 589
2-grams 69 307k 20 164k 2 449k
3-grams 327 302k 22 283k 1 395k
4-grams 586 722k 4 967k 192k

(a) Number of n-grams in the interpolated language models.

n-gram Perplexity
2-gram 246.8
2-grams (pruned) 258.2
4-grams 178.5
4-grams (pruned) 189.5
4-grams (stolcke pruning) 214.6

(b) 2 and 4-grams models perplexity.

Table 3: Statistics about LMs used to generate and
to rescore the lattice.

5 Evaluations

This section presents the speech recognition re-
sults obtained with a 95k word lexicon for the
baseline system, and after rescoring the lattice. We
also proposed an approach to auto-correct the Z
hamoza above or below @ Alif to improve the per-
formance.

5.1 Baseline system
Speech recognition engines determine the word
sequence W which maximises the combination of
two scores: the acoustic score P (O|W ) and the
linguistic one P (W ). However, these two scores
are calculated on different data which leads to a
different scale of probabilities. In fact, the lan-
guage model score is greater than the one provided
by the acoustic model. The probabilities are ad-
justed as follows:

Ŵ = arg max
W

P (O|W )P (W )LM (1)

where LM is a fudge factor.
In order to estimate the best value of LM , we

used the transcripts of the Dev corpus. Figure 2
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presents the evolution of the WER with respect to
the language model weight LM for each acoustic
model.

10 12 14 16 18 20

13

15

17

19

LM

W
E
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(%

)

tri3
DNN1
DNN2
DNN3

Figure 2: WER evolution with respect to the lan-
guage model weight.

In Table 4, the best values of LM for each
acoustic model are presented, as well as the WER
calculated on the Dev (31,314 running words) and
the Test (31,726 running words) sets. Note that
the lattice, in this baseline system, is generated by
using the pruned 2-grams language model.

Model LMw Dev WER Test WER
tri3 17 16.69 17.65
DNN1 14 14.18 15.23
DNN2 14 13.76 14.61
DNN3 13 13.54 14.42

Table 4: WERs (%) for baseline systems (without
rescoring and by using the 2-grams LM).

As expected, DNN-HMM models perform bet-
ter than the GMM-HMM models. The best
WER value is 14.42 obtained by using the DNN3
model, which is based on four iterations of sMBR
sequence-discriminative training. It should be
noted that another GMM-HMM model is trained
by applying the Maximum Mutual Information
(MMI) criterion. By this, the WER decreased
from 17.65 to 16.86 (a relative improvement of
4%). By using the DNN model, a relative reduc-
tion in WER of 14% has been achieved with re-
spect to GMM-HMM model.

It should be also noted that OOV rate is about
2.35% for the Dev part and 2.54% for the Test.

5.2 Rescoring

Let’s recall that Kaldi is based on Weighted Finite
State Transducers (WFST) for decoding. Because

of this constraint, the decoding is done with a 2-
grams LM. One can expect that a rescoring using
a more detailed LM (e.g., 4-grams) would improve
performance. Thus, we applied a 4-grams rescor-
ing, but only on the DNN3 hypotheses.

WFST is an automaton, which has a set of states
and a unique start state. These states are inter-
connected by arcs, where each arc has an input
label, an output label and a weight. To accom-
plish the language model rescoring, Kaldi gener-
ally first subtract the old language model cost from
the global score and then add in the new language
model cost to avoid modifying the other parts of
the global score.

When using this approach, it is more accurate to
replace a 4-grams model by another 4-grams LM.
For this, we pruned the full 4-grams LM by using
stolcke pruning technique (Stolcke, 2000). This
technique is based on minimizing the relative en-
tropy between the full and the pruned model. We
get a model which represents only 30% of the orig-
inal model and consisting of 4 × 106 n-grams. It
should be noted that the pruning is done by us-
ing the pocolm toolkit5. We used this new model
to produce the lattice. Afterward, this lattice is
rescored by using a full 4-grams LM.

As in the baseline system, we estimate the im-
pact of the LM weight on the Dev data. The vari-
ation of the LM weight is illustrated in Figure 3.
We can remark that the smallest value of WER is
obtained for LM = 14.
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Figure 3: WER with respect to the language model
weight after rescoring the lattice.

The evolution of the WER with or without
rescoring is given in Table 5.

5https://github.com/danpovey/pocolm
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Model Dev WER Test WER
DNN3 14.65 15.32
DNN3+rescoring 13.07 14.02

Table 5: WERs (%) before and after rescoring
the whole lattice produced by using the 4-grams
pruned LM.

Rescoring the whole lattice with the 4-gram LM
leads to an absolute improvement of 1.58% on the
Dev set and 1.3% on Test corpus in comparison
to the system, where the lattice is produced using
the pruned 4-grams language model (the LM with
4× 106 n-grams).

We can also remark that producing the lattice
by using a pruned 2-grams LM gives better re-
sults than using a 4-grams LM pruned with an
aggressive pruning regimes. This is justified by
the number of n-grams in each model (the number
of n-grams in the 2-grams LM is 5 times greater
than the number of n-grams in the pruned 4-grams
LM).

6 Auto-correction of hamoza

The Z hamoza symbol is widely used in Arabic;
by analyzing the errors of our ASR system on the
Dev corpus, we noticed that one of the main errors
concerns the presence or not of this symbol above
or below @ Alif. Therefore, it seems interesting to
auto-correct the hamoza spelling.

Our approach is inspired from techniques pro-
posed in the literature to detect and auto-correct
the spelling errors. This issue is a common prob-
lem to all languages. In Arabic, the most fre-
quently occurring errors are editing errors and se-
mantic spelling errors. The first error type occurs
when a correctly spelled word is replaced by a
non-word, while in the semantic spelling errors,
the word is replaced by another correctly spelled
word (Alkanhal et al., 2012).

Several works have been proposed for spelling
auto-correction in Arabic. Most of these works are
based on the three steps described below.

Error detection: Techniques used in the liter-
ature for detecting Arabic spelling errors are es-
sentially based on two approaches: the language
rules (AlShenaifi et al., 2015; Shaalan et al., 2010;
Hassan et al., 2014) or a dictionary (Attia et al.,
2014; Zerrouki et al., 2014; Alkanhal et al., 2012).
For the first technique, detecting whether a word
is misspelled or not depends on morphological an-

alyzers. While the dictionary based technique de-
pends on a large word list that covers the most fre-
quently used words in the language.

The technique which we used to detect hamoza
error is the dictionary lookup, where the input
word is considered such as a non-word if it is not
found in the dictionary. The word list size used in
our case is 9.2 million fully inflected Arabic word
entries. It is developed by Attia et al. (2012) by
amalgamating various Arabic resources.

Production of hypotheses: The most common
used technique to produce candidates is based on
an edition distance, which measures the difference
between two sequences by calculating the num-
ber of required edits to transform a word into an-
other. As we just want to correct hamoza error, it
is not necessary to use an edition distance in our
case. In fact, to produce correction hypotheses,
we just considered words in the Arabic word list,
which have the same spelling as the wrong word
except for the hamoza above or below @ Alif (


@ and

@). For example: consider the misspelled word QÓ@
Aamara ”to order”, the candidate list contains the
two words QÓ


@ >amara ”to order” and QÓ

�
@ |miro

”commander”. It is clear that the misspelled word
has the same spelling as candidates except the two
letters


@ > and

�
@ |.

Error correction: for error correction i.e. se-
lecting the best solution among the list of candi-
dates, we tried to retrieve the words context by us-
ing word2vec (Mikolov et al., 2013). In fact, we
used the GigaWord corpus to train a cbow model
and to obtain word vectors, which are positioned
in a 200-dimensional space such that words that
share common contexts in the corpus are located
in close proximity to one another in the space. Af-
terwards, we used the cosine similarity to retrieve
the most similar word among the candidates.

Table 6 shows the results before and after cor-
recting the hamoza in the ASR system output.

Model Dev WER Test WER
Baseline 13.54 14.42
Correction 13.03 14.14
Rescoring 13.07 14.02
Rescoring+correction 12.26 13.45

Table 6: WERs (%) before and after correcting the
hamoza.
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From Table 6, note that the WER for the base-
line system is 14.42. It should be noted that the
lattice in this system is generated by using the 2-
grams LM. Correcting the hamoza errors in the
output of the baseline ASR system improves the
WER by 2%. Rescoring the lattice of the baseline
ASR system with a pruned 4-grams LM improves
the WER by 3% (14.02). The best WER (13.45) is
achieved by combining the two methods.

7 Conclusion

In this article, we described an ASR system for
MSA developed by using Kaldi toolkit. We pre-
sented the different acoustic models trained and
the text pre-processing done before training the
LMs. The best results are achieved by rescoring
the lattice, which is generated by using the DNN-
HMM model, a 4-grams pruned LM and a lexicon
of 95k words. This way we have obtained 3% rel-
ative improvement. In order to improve the system
output, we proposed an approach based on the dic-
tionary lookup to auto-correct the hamoza spelling
above or below Alif. Applying this approach, we
achieved an improvement of 12% relative in com-
parison to the baseline model.
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Abstract

We describe the process of creating NUDAR, a
Universal Dependency treebank for Arabic. We
present the conversion from the Penn Arabic Tree-
bank to the Universal Dependency syntactic repre-
sentation through an intermediate dependency rep-
resentation. We discuss the challenges faced in the
conversion of the trees, the decisions we made to
solve them, and the validation of our conversion.
We also present initial parsing results on NUDAR.

1 Introduction

Parsers have been used in many Natural Lan-
guage Processing (NLP) applications, such as au-
tomatic summarization, question answering, and
machine translation. This motivates the cre-
ation of treebanks on which these parsers can be
trained. Treebanks have two main different syn-
tactic representations. On one hand, there are
phrase structure (constituency) treebanks such as
the Penn Treebank (Marcus et al., 1993), and its
sister treebanks such as the Penn Arabic Treebank
(PATB) (Maamouri et al., 2004) and the Penn Chi-
nese Treebank (Xue et al., 2005). On the other
hand, there are dependency treebanks, such as
Columbia Arabic Treebank (CATiB) (Habash and
Roth, 2009), and the Prague Dependency Tree-
bank (PDT) (Hajič et al., 2001). Other treebanks
that followed the style of PDT are the Slovene
(Džeroski et al., 2006) and the Croatian (Berović
et al., 2012) treebanks, as well as the Prague Ara-
bic Dependency Treebank (PADT) (Smrž et al.,
2002; Hajič et al., 2004; Smrž et al., 2008).

Having these different syntactic representations
makes it difficult to compare treebanks, and pars-
ing results (Nilsson et al., 2007). This moti-
vated the creation of the Universal Dependency

(UD) syntactic representation, that aims to create
cross-linguistically consistent annotation guide-
lines that facilitate the creation of treebanks that
are built with the same label sets and structural
basis (Nivre, 2014; Pyysalo et al., 2015). In this
paper, we present the New York University Abu
Dhabi Universal Dependency Arabic Treebank, a
UD treebank for Arabic, which we dub NUDAR.1

2 Related Work

In this section we present the Universal Depen-
dency syntactic representation, as well as some
of the most prominent previous efforts on Modern
Standard Arabic (MSA) treebanks.

2.1 Universal Dependencies

UD is an open community effort. It builds on the
existing treebank structure of the Stanford depen-
dencies (De Marneffe et al., 2006; De Marneffe
and Manning, 2008; De Marneffe et al., 2014), as
well as the universal Google dependency scheme
(McDonald et al., 2013). In addition, it makes use
of the Google Universal Parts-of-Speech (POS)
Tagset (Petrov et al., 2011), and the morphosyn-
tactic tag set of the interset interlingua (Zeman,
2008).

The aim of UD is to facilitate the creation of
treebanks in different languages that are consis-
tent in their syntactic representation, while still
allowing the extension of the relations to accom-
modate for language-specific constructs. The tar-
get of UD is to facilitate the development of mul-
tilingual learning systems, and multilingual NLP,
as well as allow for comparative linguistic studies
and evaluation (Nivre et al., 2016).

In its last release of version 1.4, the UD tree-
bank collection contained 64 different treebanks,

1The noun Nudar PA �	��	� nuDAr is Arabic for ‘pure gold’.
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with over 10 other treebanks scheduled for re-
lease in the upcoming version 2.0. The treebanks
are in 47 languages, including Swedish (Nivre,
2014), Danish (Johannsen et al., 2015), Finnish
(Pyysalo et al., 2015), Estonian (Muischnek et
al., 2014), Norwegian (Øvrelid and Hohle, 2016),
Croatian (Agić and Ljubešić, 2015), Persian (Ser-
aji et al., 2016), Bulgarian (Osenova and Simov,
2015), Catalan and Spanish (Alonso and Zeman,
2016), as well as the Prague Arabic Universal De-
pendency Treebank (PAUDT), among others.

2.2 Arabic Treebanks

A number of treebanks exist for MSA. These tree-
banks vary in terms of their syntactic representa-
tion (constituency vs. dependency), richness of
annotation, and source of data. We discuss next
four treebanks that are relevant to this paper.

PATB: The Penn Arabic Treebank (Maamouri
et al., 2004; Maamouri et al., 2009) is a Lin-
guistic Data Consortium (LDC) project, for which
there are currently 12 parts for MSA. PATB con-
sists of constituency trees, the sources of which are
newswire articles from a variety of news sources.

CATiB: Columbia Arabic Treebank (Habash
and Roth, 2009) is a dependency treebank effort
that allows for faster annotation and uses "intu-
itive dependency structure representation and re-
lational labels inspired by traditional Arabic gram-
mar" (Habash, 2010). The basic CATiB treebank
uses six POS tags, and eight relational labels. It
contains 273K tokens that have been annotated di-
rectly in the CATiB representation, as well as the
entire PATB parts 1, 2, and 3 that were automati-
cally converted into CATiB representation.

PADT and PAUDT: The Prague Arabic Depen-
dency Tree 1.0 (Smrž et al., 2008) was published
in the LDC in 2004 (Hajič et al., 2004) and con-
sisted of about 114K tokens. The data in PADT
comes from part of the PATB parts 1 and 2, and
the Arabic Gigaword (Graff et al., 2006). Vari-
ants of that dataset were released for the CoNLL
2006 (60K tokens) and CoNLL 2007 (116K to-
kens, improved morphology) shared tasks. An ex-
tended dataset (282K tokens) was incorporated in
the HamleDT collection, where 30 treebanks were
first harmonized in the Prague annotation style,
later in Stanford dependencies (Rosa et al., 2014).
Finally, this dataset was converted to Universal

Dependencies and it has been part of UD releases
since UD 1.2, labeled simply “UD Arabic”.2

The annotation guidelines of PADT 1.0 were
derived from the Prague Dependency Treebank
(Czech), with some necessary adjustments to ac-
count for the differences between Arabic and
Czech. The original morphological and syntactic
disambiguation was done manually but the subse-
quent conversion steps were automatic.

Word forms in PADT are fully diacritized; in
PAUDT we preserve the diacritized as a useful ex-
tra attribute, but the main form is undiacritized, to
provide more natural training material for parsers.
Morphological tags were converted to the UD
tags and features, dependency relation types were
translated to the UD label set. Occasionally the
translation of labels relied on other sources such
as part of speech or even lemma. For example,
the PADT relation AuxM (modifying expression) is
used for prepositions (which are attached as case
or mark in PAUDT), for negative particles lA,
lam, lan3 (which ended up as neg in UD v1 and as
advmod in UD v2), for future particles sa, sawfa
(which are aux dependents in PAUDT) and also
for the negative copula laysa (cop in PAUDT).

Unlike UD, the Prague treebanks do not dis-
tinguish whether the dependent is a nominal or a
clause (nsubj vs. csubj, obj vs. ccomp etc.)
Heuristics have to be used here. At present, only
phrases headed by verbs are considered clausal;
clauses with non-verbal predicates without a cop-
ula are attached as if they were bare nominals. On
the other hand, when a copula is involved, we re-
attach it as a dependent of the non-verbal predi-
cate (in PADT, if the copula is present, it heads the
clause). Similarly, prepositions head prepositional
phrases in the Prague style but they are attached as
modifiers of their nouns in PAUDT.

Finally, coordination in the Prague style is al-

2In this paper we use UD to refer to the general shared
concept of Universal Dependency representation. For lan-
guage specific decision and treebanks we will use the name
of the treebanks, i.e. PAUDT or NUDAR.

3All Arabic transliterations are provided in the Habash-
Soudi-Buckwalter transliteration scheme (Habash et al.,
2007b). This scheme extends Buckwalter’s transliteration
scheme (Buckwalter, 2002) to increase its readability while
maintaining the 1-to-1 correspondence with Arabic orthogra-
phy as represented in standard encodings of Arabic, i.e., Uni-
code, CP-1256, etc. The following are the only differences
from Buckwalter’s scheme (which is indicated in parenthe-
ses): Ā

�
@ (|), Â


@ (>), ŵ ð' (&), Ǎ @ (<), ŷ ø' (}), h̄ �è (p),

θ �H (v), ð 	X (∗), š �� ($), Ď 	  (Z), ς ¨ (E), γ
	̈

(g), ý ø (Y),

ã �� (F), ũ �� (N), ı̃ �� (K), á �� (‘).
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ways headed either by a conjunction, or, if no con-
junction is present, by a punctuation symbol. All
conjuncts are at the same tree level. In PAUDT
these structures are transformed so that the first
conjunct is the head and all subsequent conjuncts
are attached to it.

Why Another Arabic Universal Dependency
Treebank? PAUDT is based on PADT, which is
a small treebank, compared to the existing PATB
treebank. Our aim is to make use of the automatic
conversion of PATB, parts 1, 2, and 3, into a richer
version of CATiB, and use it to create NUDAR.
This would allow us in the future to convert the
remaining parts of PATB, both in MSA and di-
alectal Arabic (such as Egyptian (Maamouri et al.,
2012)), as well as extend the existing CATiB tree-
bank that has no parallel in PATB’s constituency
representation.

3 NUDAR: NYUAD Universal
Dependency Arabic Treebank

In this section we describe the creation of
NUDAR, starting with the PATB. The conversion
strategy we adopt is to transform the constituency
PATB trees into the rich CATiB++ dependency
representation (Section 3.2). We then apply mor-
phological and syntactic transformations on these
trees – Section 3.3, and Section 3.4 respectively.

3.1 A Note on Tokenization and Datasets

The datasets that are currently included in
NUDAR are the PATB part 1, v4.1 (Maamouri et
al., 2010a), part 2, v3.1 (Maamouri et al., 2011),
and part 3, v3.2 (Maamouri et al., 2010b). The
tokenization followed in NUDAR is the same to-
kenization scheme followed in PATB, which tok-
enizes all the clitics, with the exception of the def-
inite article +È@ Al+ ‘the’ (Pasha et al., 2014). The
treebank contains 19K sentences, containing 738K
tokens. For our parsing experiment, we followed
the guidelines detailed by Diab et al. (2013), to
split the treebanks into TRAIN, DEV, and TEST.
The details of the sizes of the different datasets are
shown in Table 1.

3.2 From Constituency to Dependency

Our conversion pipeline starts from PATB, con-
verting it to a richer version of the Columbia Ara-
bic Treebank which we refer to as CATiB++. We
use the Columbia Arabic Conversion Tool v0.7

(Habash and Roth, 2009),4 that converts PATB
trees to the CATiB representation, with the ad-
dition of the semantic dashtags and the PATB
complete morphological tags (BW) (Buckwalter,
2004). We supplement the trees with additional
feature-value pairs representation in the style used
in the MADAMIRA morphological analyzer and
disambiguator (Pasha et al., 2014).

We chose to convert the treebanks through this
methodology to allow for the conversion of the
existing CATiB treebank that has no parallel in
PATB’s constituency representation. In the future,
we envision enriching the CATiB treebank with
the morphosyntactic features it lacks, using tech-
niques described by Alkuhlani et al. (2013).

3.3 Morphological Transformation

The mapping of the morphological features from
CATiB++ to NUDAR includes mapping the
NUDAR POS tag, as well as the set of features
that appear with each token. The mapping of POS
tags is done through a lookup that takes the CATiB
POS tag and the gold BW tag of the token stem,
and maps them to the equivalent NUDAR POS
tag. The lookup map is shown in Table 2. The
mapping of the morphological features uses an-
other lookup map, that is shown in Table 3.

3.4 Syntactic Transformation

UD and CATiB representations share a number
of similarities, both being dependency representa-
tions. However there are differences between them
that primarily arise from the basic focus on what a
dependency is, and affect the structure of the trees.
CATiB tries to represent a structure closer to tradi-
tional Arabic grammar analysis, which is more in-
terested in modeling the assignment of case. This
results in function words tending to head their
phrase structures more. In contrast, UD tends to
get closer to the meaning, and minimize differ-
ences between different languages that have dif-
ferent morphosyntactic structures (Nivre, 2016).

The CATiB and NUDAR representations use a
different set of labels that refer to very similar
concepts, although they use different forms. This
results in having a number of similar constructs
where we only need to map the labels without
modifying the structure.

4For more information on this tool, contact the second au-
thor.
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DEV TRAIN TEST ALL
Tokens Sentences Tokens Sentences Tokens Sentences Tokens Sentences

PATB1 16,881 447 16,586 487 133,813 3,585 167,280 4,519
PATB2 16,972 264 17,128 228 135,219 2,099 169,319 2,591
PATB3 40,092 1,275 40,411 1,248 321,787 10,105 402,290 12,628
Total 73,945 1,986 74,125 1,963 590,819 15,789 738,889 19,738

Table 1: The tokens and sentences in the current NUDAR Treebank, based on PATB parts 1, 2, and 3

3.4.1 Verbal Constructs
Verbal constructs representation in CATiB and
NUDAR are the same, except for the choice of
label. The verb heads the optional subject, zero
or more objects, and other modifiers. The label
used for the attachment between the subject and
the verb is SBJ in CATiB, and nsubj in NUDAR.
Any object is attached to the verb using the OBJ
relation in CATiB. In NUDAR, the first object
takes the label obj, and any other objects take the
label iobj. An example of a verbal sentence is
demonstrated in Figure 1.

In the case of passive verbs, the subject of
the passive verb takes the relation nsubj:pass.
CATiB marks passive verbs using the POS tag
VRB-PASS, and uses the relation SBJ for the sub-
ject.

CATiB
—————-

VRB
I. �J» ktb

‘(he-)wrote’

SBJ

NOM
ÈAg. QË @ AlrjAl

‘the-men’

OBJ

NOM
H. A�JºË@ AlktAb

‘the-book’

NUDAR
—————-

VERB
I. �J» ktb

‘(he-)wrote’

NSUBJ

NOUN
ÈAg. QË @ AlrjAl

‘the-men’

OBJ

NOUN
H. A�JºË@ AlktAb

‘the-book’

H. A�JºË@ ÈAg. QË @ I. �J»
kataba AlrijAlu AlkitAba
‘the men wrote the book’

Figure 1: Verb-Subject-Object Construct

3.4.2 Adjectival Constructs
A noun followed by an adjectival modifier main-
tains the same structure in both CATiB and
NUDAR, with the noun heading the adjectival
modifier. The label that this relation takes in
NUDAR is amod, as in the example in Figure 2.

3.4.3 Idafa Constructs
The Idafa construct can be used to mark the gen-
itive possessor, objects of preposition-like nom-
inal adverbs, and some quantification constructs
(Habash et al., 2009). Each of these cases is

CATiB
—————-

NOM
H. A�J» ktAb

‘book’

MOD

NOM
ÑêÓ mhm

‘important’

NUDAR
—————-

NOUN
H. A�J» ktAb

‘book’

AMOD

ADJ
ÑêÓ mhm

‘important’

ÑêÓ H. A�J»
kitAbũ muhim∼ũ
‘improtant book’

Figure 2: Adjectival Modifier Construct

treated differently. For the case of possessive con-
structs, such as in Figure 3, we extend the ex-
isting nmod UD label to the language-specific
nmod:poss label.

CATiB
—————-

NOM
H. AK. bAb
‘door’

IDF

NOM
�I�
J. Ë @ Albyt

‘the-house’

NUDAR
—————-

NOUN
H. AK. bAb
‘door’

NMOD:POSS

NOUN
�I�
J. Ë @ Albyt

‘the-house’

�I�
J. Ë @ H. AK.
bAbu Albayti

the door of the house

Figure 3: Idafa Construct: the genitive possessor

Nominal adverbs (e.g., ÐAÓ@ AmAm ‘front’, 	Ê 	g
xlf ‘behind’) are connected to their parents with
an Idafa relation (IDF) in CATiB. Since these
nominal-adverbs are tagged with the ADV POS
tag in NUDAR, this relation gets directly mapped
to advmod, as demonstracted in Figure 4.

The case of Idafa in quantification constructs
(Figure 6) will be discussed next with the other
number constructs.

3.4.4 Number Constructs
Number constructs take different relational labels
in the CATiB representation. A number5 heads the

5The numbers we discuss in this section are three and
above. The number one in Arabic (Yg@ð wAHd) is an ad-
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CATiB POS BW’ POS UD POS
NOM *SUFF_DO PRON
NOM ABBREV NOUN
NOM ADJ ADJ
NOM ADJ_COMP ADJ
NOM ADJ_NUM ADJ
NOM ADV ADV
NOM DEM_PRON DET
NOM DIALECT X
NOM FOREIGN X
NOM INTERJ INTJ
NOM INTERROG_ADV ADV
NOM INTERROG_PRON PRON
NOM LATIN X
NOM NOUN ADV if nom-prep
NOM NOUN NOUN if not nom-prep
NOM NOUN_NUM NUM
NOM NOUN_PROP PROPN
NOM NOUN_QUANT NOUN
NOM POSS_PRON PRON
NOM PRON PRON
NOM REL_ADV ADV
NOM REL_PRON PRON
NOM TYPO X
PROP !! PROPN
PNX NUMERIC_COMMA PUNCT
PNX PUNC PUNCT
PRT CONJ CCONJ
PRT CONNEC_PART PART
PRT DET DET
PRT FOCUS_PART PART
PRT FUT_PART AUX
PRT INTERJ INTJ
PRT INTERROG_PART PART
PRT JUS_PART PART
PRT NEG_PART PART
PRT PART PART
PRT PREP ADP
PRT PSEUDO_VERB CCONJ
PRT RC_PART PART
PRT RESTRIC_PART PART
PRT SUB_CONJ SCONJ
PRT VERB_PART AUX
PRT VOC_PART PART
UNK DIALECT X
UNK LATIN X
UNK TYPO X
VRB !! VERB

VRB-PASS !! VERB

Table 2: Part-of-Speech mapping from CATiB
POS and BW POS to NUDAR. BW’ denotes the
complete or partial match of the full BW tag set.
Entries marked with !! under BW’ POS means that
the relevant information is taken from the CATiB
POS tag only. Entries starting with * under the
BW means that there are multiple tags the contain
this partial tag, and that they all map to the same
UD POS. nom-prep is a function that determines
if the word falls under the list of nominal adverbs,
which are specified words that are tagged as nomi-
nals in CATiB and PATB, but behave like adverbs.

MADAMIRA UD
asp Aspect
cas Case
stt Definite
gen Gender
mod Mood
num Number
per Person
vox Voice
pos PronType, NumForm
bw Polarity

Table 3: Morphological features mapping from
CATiB to NUDAR

CATiB
—————-

NOM
ÐAÓ@ AmAm

‘front’

IDF

NOM
�I�
J. Ë @ Albyt

‘the-house’

NUDAR
—————-

NOUN
�I�
J. Ë @ Albyt

‘the-house’

ADVMOD

ADV
ÐAÓ@ AmAm

‘front’

�I�
J. Ë @ ÐAÓ@
AmAma Albayti

in front of the house

Figure 4: Idafa Construct: the object of a
preposition-like nominal adverb

word it modifies. The relation between the num-
ber and the noun is either Tamyiz - if the number
is between 11 and 99, as in Figure 5 or Idafa oth-
erwise, as in Figure 6. In NUDAR the noun heads
the number, and the relation is nummod in both
cases.

CATiB
—————-

NOM
	àñªK. P


@ Ârbςwn

‘forty’

TMZ

NOM
A�J�
K. baytA
‘house’

NUDAR
—————-

NOUN
A�J�
K. baytA
‘house’

NUMMOD

NUM
	àñªK. P


@ Ârbςwn

‘forty’

A�J�
K. 	àñªK. P

@

Ârbaςuwna baytAã
forty houses

Figure 5: Tamyiz Consrtuct: the numeral modifier
of numbers between 11 and 99

The relations between numbers in compound
number structures in CATiB are similar to the

jective, and will always be headed by the word it modifies.
Number two ( 	àA 	J�K @ AvnAn) can also be an adjective that at-
taches low to the word it modifies, or it can be part of the
noun’s morphology.
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CATiB
—————-

NOM�é�Ô 	g xmsh̄
‘five’

IDF

NOM
�HñJ
K. bywt
‘houses’

NUDAR
—————-

NOUN
�HñJ
K. bywt
‘houses’

NUMMOD

NUM�é�Ô 	g xmsh̄
‘five’

�HñJ
K. �é�Ô 	g
xamsah̄u buyuwtı̃

five houses

Figure 6: Idafa Construct: the numeral modifier

relations between numbers and the nouns they
modify. In this example, as shown in Figure 7,

	Ë@ Alf ‘thousand’ would be headed by 	àñªK. P

@

Ârbςwn ‘forty’ with the Tamyiz relation (TMZ) in
CATiB. However, in NUDAR, the subtree would
be headed by Alf, and Ârbςwn would be attached
to it with a compound relation.

CATiB
—————-

NOM
	àñªK. P


@ Ârbςwn

‘forty’

TMZ

NOM	Ë@ Alf
‘thousand’

IDF

NOM
�I�
K. byt

‘house’

MOD

NOM
Q�
J.» kbyr

‘big’

NUDAR
—————-

NOUN
�I�
K. byt

‘house’

NUMMOD

NUM	Ë@ Alf
‘thousand’

COMPOUND

NUM
	àñªK. P


@ Ârbςwn

‘forty’

AMOD

ADJ
Q�
J.» kbyr

‘big’

Q�
J.» �I�
K. 	Ë@ 	àñªK. P

@

Ârbaςwuna Alfa baytı̃ kabiyrı̃
forty thousand big houses

Figure 7: Compound Number Construct

3.4.5 Coordination Constructs
In CATiB, the coordinating conjunction heads the
sub-tree of the following phrase in a cascading
structure. In NUDAR, however, the construct is
flat, with all the coordinating conjunctions and
conjuncts being headed by the first conjunct of the
coordination construct. The coordinating conjunc-
tions take the relation cc, and the conjuncts take
the relation conj. The difference between the two
tree structures in illustrated in Figure 8.

It is also common for the coordinating con-
junctions in Arabic to be sentence-initial discourse
connectives ( �éJ
 	̄ A 	JJ���@ ð@ð/ �éJ
K @Y�JK. @ ð@ð) or interrup-
tives ( �éJ
 	�@Q��«@ ð@ð) (Habash et al., 2009). In these

cases, the coordinating conjunctions are depen-
dent on the root predicate of the sentence with the
relation cc.

CATiB
—————-

NOM
H. A�JºË@ AlktAb

‘the-book’

MOD

NOM

QÔg

B@ AlÂHmr
‘the-red’

MOD

PRT
+ð w+
‘and’

OBJ

NOM
ÕÎ�®Ë @ Alqlm
‘the-pen’

MOD

NOM

Xñ�

B@ AlÂswd

‘the-black’

NUDAR
—————-

NOUN
H. A�JºË@ AlktAb

‘the-book’

AMOD

ADJ

QÔg

B@ AlÂHmr
‘the-red’

CC

CCONJ
+ð w+
‘and’

CONJ

NOUN
ÕÎ�®Ë @ Alqlm
‘the-pen’

AMOD

ADJ

Xñ�

B@ AlÂswd

‘the-black’

Xñ�

B@ ÕÎ�®Ë @ð QÔg


B@ H. A�JºË@

AlkitAbu AlÂaHmaru waAlqalamu AlÂaswadu
‘the red book and the black pen’

Figure 8: Coordination Construct

3.4.6 Proper Name Constructs

Proper nouns having two or more nominal
elements have these elements linked using
the language-specific relation flat:name in
NUDAR. If a proper noun has more than two nom-
inal elements, they all are headed by the first el-
ement of the proper name, unlike CATiB, where
each element is headed by the one that precedes it,
as seen in Figure 9.

CATiB
—————-

PROP
¼@PAK. bArAk

‘Barack’

—

PROP	á�
�k Hsyn
‘Hussein’

—

PROP
AÓAK. ð@ AwbAmA

‘Obama’

NUDAR
—————-

PROPN
¼@PAK. bArAk

‘Barack’

FLAT:NAME

PROPN	á�
�k Hsyn
‘Hussein’

FLAT:NAME

PROPN
AÓAK. ð@ AwbAmA

‘Obama’

AÓAK. ð@ 	á�
�k ¼@PAK.
bArAk Husayn AwbAmA
Barack Hussein Obama

Figure 9: Proper Name Construct

Apposition is marked by the relation appos in
NUDAR, as in Figure 10, opposed to the MOD re-
lation it takes in CATiB.
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CATiB
—————-

PROP
��
KQË @ Alrŷys
‘the-president’

MOD

PROP
ú
¾K
QÓB@ AlAmryky

‘the-American’

MOD

PROP
¼@PAK. bArAk

‘Barack’

—

PROP
AÓAK. ð@ AwbAmA

‘Obama’

NUDAR
—————-

PROPN
��
KQË @ Alrŷys
‘the-president’

AMOD

PROPN
ú
¾K
QÓB@ AlAmryky

‘the-American’

APPOS

PROPN
¼@PAK. bArAk

‘Barack’

FLAT:NAME

PROPN
AÓAK. ð@ AwbAmA

‘Obama’

AÓAK. ð@ ¼@PAK. ú
¾K
QÓB@ ��
KQË @
Alraŷiysu AlÂamriykiyu bArAk AwbAmA

The American President, Barack Obama

Figure 10: Apposition Construct

3.4.7 Preposition Constructs
Prepositions in NUDAR are case-marking ele-
ments that are dependent on the element they in-
troduce. They attach low, unlike the CATiB struc-
ture. The label this relation takes is case, as can
be seen in Figure 11.

CATiB
—————-

VRB
I. �J» ktb

‘(he-)wrote’

SBJ

NOM
Ég. QË@ Alrjl
‘the-man’

OBJ

NOM
AK. A�J» ktAbA
‘a-book’

MOD

PRT
ú


	̄ fy

‘in’

OBJ

PROP	á�
¢�Ê 	̄ flsTyn
‘Palestine’

NUDAR
—————-

VERB
I. �J» ktb

‘(he-)wrote’

NSUBJ

NOUN
Ég. QË@ Alrjl
‘the-man’

OBJ

NOUN
AK. A�J» ktAbA
‘a-book’

NMOD

PROPN	á�
¢�Ê 	̄ flsTyn
‘Palestine’

CASE

ADP
ú


	̄ fy

‘in’

	á�
¢�Ê 	̄ ú

	̄ AK. A�J» Ég. QË@ I. �J»

kataba Alrajulu kitAbAã fiy filasTiyna
‘the man wrote a book in Palestine’

Figure 11: Prepositional Construct

3.4.8 Copular Constructs
The basic copular construct in Arabic does not in-
clude copular verbs. It has the same tree structure
in both CATiB and NUDAR. The predicate heads
the relation, and the subject attaches to it with the
label SBJ in CATiB and nsubj in NUDAR, as
seen in Figure 12.

Some so-called incomplete verbs in Arabic,
such as 	àA¿ kAn ‘to be’, and verb-like particles,
such as 	à@ Ǎn ‘indeed/verily’ act like the copula
verb be in English. Since copula verbs cannot be
the heads of clauses, they attach to their predi-
cates with the relation cop, like the example in
Figure 13.

CATiB
—————-

NOM
ÑêÓ mhm

‘important’

SBJ

NOM
H. A�JºË@ AlktAb

‘the-book’

NUDAR
—————-

ADJ
ÑêÓ mhm

‘important’

NSUBJ

NOUN
H. A�JºË@ AlktAb

‘the-book’

AÒêÓ H. A�JºË@
AlkitAbu muhim∼ũ

‘the-book (is) improtant’

Figure 12: Basic Copular Construct

CATiB
—————-

VRB	àA¿ kAn
‘(it-)was’

SBJ

NOM
H. A�JºË@ AlktAb

‘the-book’

PRD

NOM
AÒêÓ mhmA
‘important’

NUDAR
—————-

ADJ
AÒêÓ mhmA
‘important’

NSUBJ

NOUN
H. A�JºË@ AlktAb

‘the-book’

COP

VERB	àA¿ kAn
‘(it-)was’

AÒêÓ H. A�JºË@ 	àA¿
kAna AlkitAbu muhim∼Aã
‘the-book was improtant’

Figure 13: Copular Construct with Copular Verb

3.4.9 Subordinating Conjunction Constructs
Subordinating conjunctions introduce a finite
clause that is subordinate to another clause. As
with copula, they cannot head a clause. The sub-
ordinating clause’s predicate becomes the parent
of the subordinating conjunction, as shown in Fig-
ure 14.

CATiB
—————-

VRB
�IªÖÞ� smςt
‘I-heard’

OBJ

PRT
	à

@ Ân

‘that’

SBJ

NOM
¼+ +k
‘you’

PRD

VRB
�HQ 	̄ A� sAfrt

‘you-traveled

NUDAR
—————-

VERB
�IªÖÞ� smςt
‘I-heard’

CCOMP

VERB
�HQ 	̄ A� sAfrt

‘you-traveled

NSUBJ

PRON
¼+ +k
‘you’

MARK

SCONJ
	à

@ Ân

‘that’

�HQ 	̄ A� ½	K

@ �IªÖÞ�

samiςtu Âan∼aka sAfarta
‘I heard that you traveled’

Figure 14: Subordinating Conjunction Construct

3.4.10 Clausal Complement Constructs
Clauses that are a core argument of a verb are at-
tached to that verb with a ccomp or an xcomp
relation. The ccomp relation is used for clauses
that have their own subject, while xcomp refers
to clauses with a subject that is the same as the
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subject of the verb that heads them. An example
of a clause attaching with a ccomp relation is in
Figure 15.

3.5 Validation

During our conversion process, we selected a ran-
dom subset of 17 sentences, containing 608 to-
kens, from the TRAIN set. We manually created
a gold reference for this set, and we used it to
fine tune our convertor. After we froze the con-
version, we converted a randomly selected sub-
set of 82 sentences, containing 2,685 tokens, from
the TEST set, that we automatically converted into
NUDAR, and manually checked and fixed to cre-
ate a gold test set. This gold subset was used to test
the performance of the final version of the conver-
tor. The scores that we got in both subsets against
the gold were very high. We show the Labeled and
Unlabeled Attachment Scores (LAS and UAS re-
spectively) and Label Accuracy Score (LAcc) in
Table 4.

LAS UAS LAcc
Dev 98.5% 98.8% 99.3%
Test 98.0% 99.1% 98.3%

Table 4: Conversion scores against manually cre-
ated gold trees

An error analysis shows that the majority of the
errors originated from the gold annotations of the
PATB treebank. These errors are caused by ei-
ther having the wrong dashtag, or attachment in
the PATB trees (Habash et al., 2007a). A small
number of errors were caused either by bugs in the
conversion rules, or by missing rules.

3.6 Comparing PAUDT and NUDAR

A direct comparison between PAUDT and
NUDAR proved hard to perform. Even though
both treebanks follow the UD guidelines in gen-
eral, there were many differences originating from
the data sources, as well as from the interpretation
of the guidelines. The data in PAUDT comes from
portions of PATB parts 1 and 2, and from Ara-
bic Gigaword. The data in the current NUDAR
treebank comes from PATB parts 1, 2, and 3.
In total, NUDAR contains 1,834 documents, and
PAUDT contains 874 documents. The two tree-
banks overlap in 207 documents (based on doc-
ument IDs). Within these shared documents, we
find a number of differences such as PAUDT’s

inclusion of article titles and full stop sentence
segmentation, compared with missing article titles
and occasional trees covering multiple sentences
in NUDAR. Even among sentences that are sim-
ilarly segmented, we find many tokenization dif-
ferences: dates and times are tokenized differently
(e.g., 11-5 vs 11 - 5), as well as specific Arabic
words that are treated differently (e.g., AÒJ
 	̄ fyma
or AÓ ú


	̄ fy mA ‘in that’). Out of the shared 207

documents, only 335 sentences had the same tok-
enization, and these had additional differences in
POS choice as well as tree structures and labels.
We plan a more detailed comparison in the future
to help consolidate the two treebanks.

4 Parsing Experiment

We conducted some experiments to benchmark the
parsing scores in the NUDAR treebank. We also
compare the result of parsing directly in NUDAR
space to parsing in CATiB space then converting
to NUDAR representation.

For our parsing experiments, we used the Malt-
Parser (Nivre et al., 2006) to train an Arabic de-
pendency parser in the space of both CATiB and
NUDAR. We compared the output of the NUDAR
parser, to the results of converting the output of
the CATiB parser to NUDAR using the system de-
scribed in Section 3.

For the CATiB parser, we used the optimized
settings described by Shahrour et al. (2016), and
were able to achieve comparable results. We
used the gold CATiBex POS tags (Marton et al.,
2013), and gold morphological features derived
from gold BW tags, to train the parser on the
TRAIN dataset of PATB parts 1, 2, and 3. We
tested on the TEST dataset of the same treebank
parts. The output of the parser was then converted
to NUDAR representation.

For the NUDAR parser, we ran the MaltOpti-
mizer (Ballesteros and Nivre, 2012) on the full
TRAIN dataset of NUDAR. We used the optimized
settings to train and run our parser.

The results of these experiments are shown in
Table 5. The first row shows the result of train-
ing the MaltParser on the NUDAR training dataset
with the optimized settings. The second row
shows the results of training the MatlParser on the
CATiB training dataset, with the optimized set-
tings from Shahrour et al. (2016). Finally, the last
row shows the results of converting the output of
the CATiB parser to NUDAR representation.
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CATiB
—————-

VRB
ÈA�̄ qAl
‘said’

SBJ

NOM
YKA�®Ë @ AlqAŷd
‘the-leader’

MOD

PNX
: :
‘:’

OBJ

VRB
YK
Q 	K nryd
‘we-want’

MOD

PNX
" "
‘"’

OBJ

NOM
ÐC�Ë@ AlslAm

‘peace’

MOD

PNX
" "
‘"’

MOD

PNX
. .
‘.’

NUDAR
—————-

VERB
ÈA�̄ qAl
‘said’

NSUBJ

NOUN
YKA �®Ë @ AlqAŷd
‘the-leader’

PUNCT

PUNCT
: :
‘:’

CCOMP

VERB
YK
Q 	K nryd
‘we-want’

PUNCT

PUNCT
" "
‘"’

OBJ

NOUN
ÐC�Ë@ AlslAm

‘peace’

PUNCT

PUNCT
" "
‘"’

PUNCT

PUNCT
. .
‘.’

. "ÐC�Ë@ YK
Q 	K":YKA �®Ë @ ÈA�̄
qAla AlqAŷidu:"nuriydu AlsalAma".
‘The leader said: "we want peace."’

Figure 15: Clausal Complement Construct

Our results show that training a parser in
NUDAR space produces better results than train-
ing a parser in CATiB space and converting the
output to NUDAR representation. This can be at-
tributed to the fact that the output of the CATiB
parser does not produce the dashtags that are
present in CATiB++, which help in the conversion
process.

We also observe that the scores of the NUDAR
parser are slightly lower than the scores of the
CATiB parser. Although it is not possible to di-
rectly compare both parsers because of the differ-
ent structures, we hypothesize that the larger label
set in NUDAR (more than 40 labels compared to
the eight labels of CATiB), and factors related to
the structures, such as the longer distance between
words and their parents in NUDAR (4.4 on aver-
age compared to 3.5 in CATiB) may be harder for a
parser. We offer these insights as possible explana-
tions, with the assumption that measuring and con-
firming these hypotheses need more research. It is
also possible that further optimization will help in-
crease the scores achieved by the NUDAR parser.

System REF LAS UAS LAcc
NUDAR-Parser NUDAR-GOLD 81.9% 83.7% 93.8%
CATiB-Parser CATiB-Gold 83.1% 85.0% 94.3%
CATiB-Parser+converted NUDAR-GOLD 75.3% 80.0% 88.3%

Table 5: Scores for the NUDAR and CATiB pars-
ing and conversion experiments

5 Conclusion and Future Work

In this paper, we presented a fully automated con-
verter from PATB to the UD syntactic representa-
tion. The conversion includes converting the POS

tags and other morphological features, as well as
the dependency relations and tree structures to
UD, through a pipeline of conversion rules. The
work was validated through a manually checked
test set. We also present the results of an initial
parsing experiment. This treebank will be made
available as part of the UD v2.0 release as “UD
Arabic-NYUAD”.

In the future, we plan to improve the conversion
process, and to convert the remaining available
PATB parts, in both MSA and dialectal Arabic
into the UD syntactic representation. We also plan
on converting other Arabic dependency treebanks,
such as the CATiB treebank, and the Quranic tree-
bank (Dukes and Habash, 2010) into UD. This
will require enriching these treebanks with addi-
tional morphosyntactic features, as per the tech-
niques described by Alkuhlani et al. (2013). More
experiments on optimizing the parsing process are
planned, to make use of the available features to
improve the parsing results. Finally, we plan on
exploiting the NUDAR treebanks and parsers for
use in other areas of NLP such as machine trans-
lation.
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Abstract

In this paper we present a system for auto-
matic Arabic text diacritization using three
levels of analysis granularity in a layered
back off manner. We build and exploit di-
acritized language models (LM) for each
of three different levels of granularity:
surface form, morphologically segmented
into prefix/stem/suffix, and character level.
For each of the passes, we use Viterbi
search to pick the most probable diacriti-
zation per word in the input. We start
with the surface form LM, followed by the
morphological level, then finally we lever-
age the character level LM. Our system
outperforms all of the published systems
evaluated against the same training and
test data. It achieves a 10.87% WER for
complete full diacritization including lexi-
cal and syntactic diacritization, and 3.0%
WER for lexical diacritization, ignoring
syntactic diacritization.

1 Introduction

Most languages have an orthographical system
that reflects their phonological system. Orthogra-
phies vary in the way they represent word pro-
nunciations. Arabic orthography employs an al-
phabetical system that comprises consonants and
vowels. Short vowels are typically underspeci-
fied in the orthography. When present they ap-
pear as diacritical marks. Moreover, other phono-
logical phenomena are represented with diacritics,
such as letter doubling, syllable boundary mark-
ers, elongation, etc. In this paper, we are inter-
ested in restoring most of these diacritics, making
them explicit in the written orthography. This pro-
cess is referred to as diacritization/vowelization,
or ”tashkeel” in Arabic. Absence of these dia-

critics from the orthography renders the text ex-
tremely ambiguous. Accordingly, the task of di-
acritization is quite important for many NLP ap-
plications such as morphological analysis, text to
speech, POS tagging, word sense disambiguation,
and machine translation.

Moreover, from a human processing perspec-
tive, having the orthography reflect the diacritics
explicitly makes for better readability comprehen-
sion and pronunciation.

2 Linguistic Background

Unlike English, Arabic comprises an alphabet list
of 28 letters. Short vowels are not explicitly
marked in typical orthography as stand alone let-
ters. The Arabic orthographic system employs
a list of diacritics to express short vowels. The
Arabic writing system maybe conceived to com-
prise two levels: consonantal letters including
consonants and long vowels; and diacritics indi-
cating short vowels and other pronunciation mark-
ers which are typically written above and/or below
such consonantal letters.

The Arabic diacritics relevant to our study can
be characterized as follows:1

• Short vowels (a, i, u):2, corresponding to
the three short vowels (fatha ’a’, kasra ’i’,
damma ’u’). They can occur word medially
and/or word finally;

• Nunation “Tanween” (F, K, N): these occur
word finally only and they correspond to ei-
ther an an ’F’ , in ’K’, or an un ’N’ sound.
They indicate indefinite nominals as well as

1There are other diacritics that we don’t consider in the
context of this work.

2We use Buckwalter (BW) transliteration scheme to rep-
resent Arabic in Romanized script throughout the paper.
http://www.qamus.org/transliteration.htm
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they could mark adverbials and some frozen
expressions.

• Gemination (~), aka ”shaddah”: indicating
doubling of the preceding character;

• Sukoun o: marks the absence of a vowel,
typically appears between syllables, as well
as word finally to indicate jussive syntactic
mood for verbs.

Diacritization reflects morphological (including
phonology) and grammatical information. Ac-
cordingly, in this paper we make a distinction be-
tween the two types of diacritization as follows:

A) Morphological Diacritization: Reflect the
manner by which words are pronounced, not in-
cluding the word final diacritization except the last
letter diacritization. Morphological diacritization
could be further subdivided into:

• Word structure or lexical diacritization: this
represents the internal structure of words,
that distinguish different possible readings
of a phonologically ambiguous word (ho-
mograph) when the diacritics are miss-
ing. For instance, the Arabic word mlk
could have the following readings: ma-
lik (king), malak(angel/he possessed), mu-
lok(kingdom/property), milok(ownership), or
mal ak (gave possession to another);

• Inflectional diacritization: this represents the
morphophonemic level of handling affixa-
tions (prefixes, suffixes and clitics), how
morphemes interact with each other, making
possible morphophonemic changes which
are reflected in the phonological and ortho-
graphic systems. For example the Arabic
word qAblthm could be qAbalatohum (I met
them), qAbalotahum (you masc. met them),
qAbalatohum (she met them) or qAbaloti-
him(you fem. met them).

B) Syntactic Diacritization: Syntactic func-
tions are represented by adding one of short vow-
els or nunation to the end of most of Arabic words,
indicating the word’s grammatical function in the
sentence. For example, in a sentence like “zAra
Alwaladu zamiylahu” (the boy visited his col-
league), the diacritization of the last letters in the
words Alwaladu and zamiyla indicate the syntactic
roles of grammatical subject u, and grammatical
object a, respectively.

2.1 Levels of Diacritization
Although native speakers of Arabic can read the
majority of Arabic script without explicit dia-
critical marks being present, some diacritic sym-
bols in some cases are crucial in order to disam-
biguate/pronounce homographical words. Histor-
ically, diacritics were invented by Arabic gram-
marians more than 200 years after the emergence
of the Arabic writing system which was primarily
consonantal. In Modern Standard Arabic (MSA)
script, there are several levels of possible diacriti-
zation:

• No Diacritization: This level is completely
underspecified. The script is subject to ambi-
guity, especially with homographical words;

• Full Diacritization: The reverse where there
is complete specification, namely where each
consonant is followed by a diacritic. This
level is used more in classical and educa-
tional writing;

• Partial Diacritization: This level is any-
where in between the two previous levels,
typically writer dependent. In this case, the
writer adds diacritics where s/he deems fit
(Zaghouani et al., 2016).

2.2 Challenges
There are a number of challenges in Arabic dia-
critization, we can list some of them as follows:

• Morphological aspects: Some Arabic words
serve as a phrase or full sentence such as
waS alatohA (she delivered her), waS alo-
tuhA (I delivered her), and waS alotihA
(you feminine drove her);

• Syntactic aspects: Arabic is a free word-
order language, syntactic functions are real-
ized on the morphological level via word fi-
nal diacritization in most cases. However, we
note changes to the penultimate orthographic
realization of the consonants due to syntac-
tic position. For example, >abonA&uhu,
>abonA}ihi, and >abonA’ahu, all corre-
sponding to “his sons” but reflect differ-
ent syntactic case: nominative, genitive, ac-
cusative, respectively.

• Phonological aspects: The phonological
system exhibits assimilation in cases of af-
fixation word finally. For example the
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word final possessive suffix h meaning ”his”
in the following word takes on the same
vowel/diacritic as that of the lexeme it
is attached to: kitAbi+hi (his book) and
kitAbu+hu (his book). It is important to note
that the short vowel diacritic attached to the h
suffix has no semantic or syntactic interpreta-
tion, it is a pure assimilation vowel harmony
effect.

3 Approach

Figure 1 illustrates the system architecture of
our proposed solution for MSA Full diacritiza-
tion. Our approach relies on having fully dia-
critized data for building various types of lan-
guage models at training time: a word level lan-
guage model (WLM), a morpheme level language
model (MLM), a character+diacritic level lan-
guage model (CLM). The WLM is created in the
diacritized untokenized surface level words. We
experiment with 1-5 gram WLMs. The MLM
are created using the same WLMs but after tok-
enizing them into prefix, stem, and suffix compo-
nents where each is fully diacritized. Thus each
1 gram in the WLM is equivalent to 3 grams in
the MLM, i.e. this renders MLMs of 3, 6, 9, 12,
and 15, corresponding to the WLM of 1, 2, 3, 4,
5, respectively. Finally for CLMs, we are using
the WLMs but after segmenting them into char-
acters+associated diacritics. The maximum gram
size we managed to build is 20 grams. Thus, each
1 gram in the word level WLM is equivalent to 4
grams in the character level, given that the small-
est word in Arabic is two consonants long which
is equivalent to 4 characters, i.e. each consonant is
associated with at least one diacritic. This means
that the LMs we are experimenting with for the
character level are of sizes 4, 8, 12, 16, and 20
grams.

At test time, the undiacritized input text goes
through the following pipeline:

a) Word-Level Diacritization: In this step, we
leverage the WLM created at train time using all
possible diacritizations for each word in the input
raw text using the training data. If there are new
words (out of vocabulary [OOV]) that have not
been seen in the training data, they are tagged as
unknown (UNK). A lattice search technique (for
example: Viterbi or A* search) is then used to se-
lect the best diacritization for each word based on
context.

b) Morpheme Level Diacritization: The output
from the first step is being morphologically ana-
lyzed using SAMA (Maamouri et al., 2010). We
only keep the morphological analyses that match
the diacritization from the WLM. But if there is
any word that is tagged as UNK, we keep all of
its morphological analyses if they exist. If SAMA
failed to find a possible morphological solution for
any word (ex: non-Arabic word), it is marked as
UNK. The MLM is used via a lattice search tech-
nique to pick the best morphological solution for
each word; hence the best diacritization.

c) Character-Level Diacritization: If there are
still some UNK words after steps (a) and (b), the
CLM is used to find a plausible solution for them.

4 Experimental Setup

4.1 Data
Several studies have been carried out on the prob-
lem of full automatic diacritization for MSA. Five
of these studies, that also yield the most compet-
itive results despite approaching the problem in
different ways, use and report on the same ex-
act data sets. These studies are Zitouni et al.
(2006), Habash and Rambow (2007), Rashwan et
al. (2011), Abandah et al. (2015), and Belinkov
and Glass (2015). We will use the same data which
is LDC’s Arabic Treebank of diacritized news
stories-Part 3 v1.0: catalog number LDC2004T11
and ISBN 1-58563-298-8. The corpus includes
complete Full diacritization comprising both mor-
phological and syntactic diacritization. This cor-
pus includes 600 documents from the Annahar
News Text. There are a total of 340,281 words.
The data is split as follows into two sets:

• Training data comprising approximately
288K words;

• Test data (TEST): comprises 90 documents
selected by taking the last 15% of the total
number of documents in chronological order
dating from “20021015 0101” to “20021215
0045”. It comprises approximately 52K
words.

But having a single set TEST serving as both
test and dev data is not correct which is what pre-
vious studies have done. Therefore, we split the
data into three parts instead of two. We split off
10% of the training data and use it as a develop-
ment set, rendering our training data (TRAIN) to
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Figure 1: System Architecture.

comprise only 90% of the original training data.
We keep the same exact test data, TEST, as the
previous studies however. Accordingly, the new
current training data for this paper is roughly 259K
words and the development set (DEV) comprises
approximately 29K words. DEV is used for tuning
our system.

In all of our experiments, we use TRAIN to
train and build our models and DEV to find the
best configuration parameters. TEST is used as
held out data. It is only evaluated using the result-
ing best models on DEV.

4.2 Evaluation Metrics

We adopt the same metrics used by Zitouni et
al. (2006), Habash and Rambow (2007), Rash-
wan et al. (2011), Abandah et al. (2015), and Be-
linkov and Glass (2015). These are word error rate
(WER) and character error rate (CER). CER com-
pares the predicted words to the gold words on the
character level. WER compares the predicted di-
acritized word as a whole to the gold diacritized
word. If there is one error in a word, the whole
word is considered incorrect. All words are evalu-
ated including digits and punctuation. In the case
of morphological diacritization, word final diacrit-
ics are ignored. In the case of syntactic diacritiza-
tion only word final diacritics are considered. Fi-
nally in the Full diacritization case, both morpho-
logical and syntactic diacritization are considered.

4.3 Baselines

We compare our approach against the following
baselines:3

• Zitouni et al.: The best published results by
Zitouni et al. (2006);

3The descriptions of these baselines systems are in sec-
tion: 7-Related Work

• Habash et al.: The best published results by
Habash and Rambow (2007);

• Rashwan et al.: The best published results by
Rashwan et al. (2011);

• Abandah et al.: The best published results by
Abandah et al. (2015);

• Belinkov and Glass: The best published re-
sults by Belinkov and Glass (2015).

5 Evaluation

Table 1 illustrates the morphological and Full
(morphological+syntactic) diacritization perfor-
mance on DEV using the lattice search on the
word, morpheme, and character levels. The
language models are all built using the TRAIN
dataset.

The table shows five experiments using A*
search using 1, 2, 3, 4, and 5 grams LMs.4 And
two experiments using Viterbi search because the
implementation we have for the Viterbi search
supports 2 grams as a maximum size. The best
performance is yielded by the Viterbi algorithm
and 2-grams LMs (i.e. 2-grams for WLM, 6-
grams for MLM, and 8-grams for CLM). It yields
6.11% WER for Full diacritization (FULL), cor-
responding to 2.61% WER for morphological di-
acritization (MORPH), i.e. by ignoring word final
syntactic diacritics.

Table 2 compares the performance of our sys-
tem to the baselines systems. It shows that our
system is outperforming all of the published CER
and WER on “MORPH” level. On “FULL” level,
we outperform all of the baselines except (Aban-
dah et al., 2015). They are doing better on the syn-
tactic level diacritization. Their system is based

4Note: every 1-gram in word level is equivalent to 3-
grams morphological level and 4-grams in characters level
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FULL MORPH
Lattice Search Method LM-Size WER CER WER CER

Viterbi 1 6.67% 1.14% 3.13% 0.61%
Viterbi 2 6.11% 1.06% 2.61% 0.55%

A* 1 6.51% 1.09% 3.01% 0.57%
A* 2 6.28% 1.04% 2.77% 0.53%
A* 3 6.26% 1.04% 2.74% 0.53%
A* 4 6.26% 1.04% 2.74% 0.53%
A* 5 6.18% 1.03% 2.66% 0.51%

Table 1: System performance on DEV. The best setup is by using the Viterbi algorithm via 2 grams LMs.

on a deep bidirectional long short-term memory
(LSTM) model. These kinds of models can ex-
ploit long-range contexts; which could yield the
better performance on the syntactic diacritization
level. It is also worth mentioning that they are us-
ing a post-processing correction layer that applies
some rules to fix some of the diacritization errors
after the LSTM.

It should be highlighted, that in contrast to the
previous studies, TEST remained a complete held
out data set that was not explored at all during the
tuning phase of the system development, where for
the previous studies TEST was used as both a de-
velopment and test set.

6 Error Analysis

By reviewing the errors rendered by our system
and comparing them to the gold data we discov-
ered several issues in the training and test data that
affected the performance and evaluation results.
We list them as follows:

Undiacritized words: There are many cases in
both the training and test data where the words
are completely undiacritized. Since we rely on
fully diacritized texts to build our various language
models, this type of error affects our system in two
ways:

• Errors in the training data affect the quality
of the language models that are built;

• Errors in the test data decrease the accuracy
of our system because such cases are being
counted as incorrect even if they are cor-
rectly diacritized by our system. Upon man-
ual inspection, for example, our system ren-
ders the correct diacritization for the words:
xal af ”left behind/gave birth” and bAruwd
”gun powder” are counted as errors because

they are not diacritized at all in the gold test
data set).

Missing Case marker: 25.2% of the syntactic
diacritization errors are due to missing syntactic
diacritization from the gold TEST words. Table 3
illustrates some examples of that.

7 Related Work

Many research efforts addressed the problem of
automatic full Arabic diacritization, especially for
MSA.

Gal (2002) developed a statistical system using
HMM to restore Arabic diacritics and applied it
on the Holy Quran as a corpus. Their approach
did not include any language-specific knowledge.
This system achieved a WER of 86% for morpho-
logical diacritization without syntactic diacritiza-
tion.

El-Imam (2004) developed a comprehensive set
of well-defined language-dependent rules, that are
augmented by a dictionary, to be used in the tran-
scription of graphemes into phonemes.

Nelken and Shieber (2005) developed a proba-
bilistic model for Arabic diacritization using a fi-
nite state transducer, and trigram word and char-
acter based language models. Their approach
used the ATB and achieved 7.33% WER without
case endings (morphological diacritization) and
23.61% WER with case ending.

Ananthakrishnan et al. (2005) leveraged a word-
level trigram model combined with a four-gram
character language model. The authors used ATB
as training data and used the LDC TDT4 Broad-
cast News data set as test data. The reported word
accuracy using this model was 80.21%.

Zitouni et al. (2006) presented a statistical
model based on a Maximum Entropy framework.
Their approach integrates different sources of
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FULL MORPH
Training Data System WER CER WER CER
TRAIN+DEV Zitouni et al. 18.00% 5.50% 7.90% 2.50%
TRAIN+DEV Habash et al. 14.90% 4.80% 5.50% 2.20%
TRAIN+DEV Rashwan et al. 12.50% 3.80% 3.10% 1.20%
TRAIN+DEV Abandah et al. 9.07% 2.72% 4.34% 1.38%
TRAIN Belinkov and Glass N/A 4.85 N/A N/A
TRAIN Our System 10.90% 1.60% 3.10% 0.60%
TRAIN+DEV Our System 10.87% 1.60% 3.00% 0.59%

Table 2: Our System performance against baselines

Word POS
AlHumayoDiy∼ DET+NOUN PROP

mud∼ap NOUN+NSUFF FEM SG
waragom CONJ+NOUN
Eam∼An NOUN PROP

gayor NOUN
IixorAj NOUN

Table 3: Examples for the missing syntactic dia-
critics in TEST

knowledge including lexical, segment-based and
POS features. They achieved a CER of 5.5% and
a WER of 18.0% for morphological and syntac-
tic diacritization. By ignoring case endings, they
obtained a CER of 2.5% and a WER of 7.9%.

Elshafei et al. (2006) proposed a diacritic
restoration system which uses HMM for modeling
and a Viterbi algorithm to select the most proba-
ble diacritized form of a sentence. The result was
4.1% errors in the diacritical marking of letters.

Habash and Rambow (2007) proposed a dia-
critization system that is based on a lexical re-
source, combining a tagger and a lexeme language
model. The system gets a list with all potential
analysis for each word, then applies a series of
Support Vector Machine (SVM) classifiers to sev-
eral morphological dimensions, then combines the
various values for the dimensions to decide on the
final analysis chosen from among the various pos-
sible analyses provided by an underlying morpho-
logical analyzer such as BAMA. They achieved a
CER of 5.5% and a WER of 14.9% for morpho-
logical and syntactic diacritization. And CER of
2.2% and a WER of 5.5% by ignoring case end-
ings.

Shaalan et al. (2009) proposed a hybrid ap-
proach that relies on lexicon retrieval, a bigram

word level language model, and SVM classifica-
tion. The system achieves a reported WER of
12.16% for combined morphological and syntac-
tic diacritization.

Rashwan et al. (2011) developed a hybrid ap-
proach with a two-layer stochastic system. They
split the input sentence into smaller segments,
where each segment is consisting of at leas one
word. Then they use a WLM to diacritize the
segments that all of its words can be found in
the unigrams of the WLM. Another MLM is used
to diacritize the segments that are out of vocabu-
lary from the point of view if the WLM. The fi-
nal output is the combination of the all segments.
They achieved 12.5% WER and 3.8% for com-
bined morphological and syntactic diacritization.
And 3.1% WER and 1.2% CER by ignoring the
case ending.

Hifny (2012) developed a diacritic restoration
system which uses dynamic programming (DP),
n-gram language model, and smoothing. The au-
thor reported a WER of 3.4% for morphological
diacritization and a WER 8.9% for combined mor-
phological and syntactic diacritization.

MADAMIRA (Pasha et al., 2014) is a morpho-
logical analysis and disambiguation tool of Ara-
bic. It applies SVM and language models to pre-
dict the word’s morphological features. The dia-
critization accuracy of MADAMIRA is 86.3% on
MSA and 83.2% on the Egyptian dialect.

Abandah et al. (2015) trained a recurrent neural
network (RNN) to transcribe undiacritized Arabic
text with fully diacritized sentences. After that
they used some post-processing correction rules to
correct the output from the RNN. For example, if
the undiacritized word can be found in the training
data but its diacritization by the the RNN does not
exist, they replace the output diacritization by the
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variant from the training data leveraging a min-
imum edit distance algorithm. They achieved a
CER of 2.72% and a WER of 9.07% for morpho-
logical and syntactic diacritization. And CER of
1.38% and a WER of 4.34% by ignoring case end-
ings.

Belinkov and Glass (2015) developed a recur-
rent neural network with long-short term memory
(LSTM) layers for predicting diacritics in Arabic
text. They achieved a CER of 4.85% for morpho-
logical and syntactic diacritization.

Although the system of Rashwan et al. (2011)
looks close to our system, but there is a signif-
icant difference between the two systems. The
method they used of splitting the input sentence
into smaller segments and diacritizing each seg-
ment separate from others, results in information
loss yielding a suboptimal solution. Unlike, their
approach, we do not split the sentences at the OOV
words. Instead, we pass on the probability val-
ues of the unknowns. Therefore, even if there are
one or more words that are OOV from the point of
view of any of our LMs, the searching technique
remains able to benefits from surrounding words.

8 Conclusion

In this paper we introduce a hybrid approach to
full Arabic diacritization that leverages three un-
derlying language models on different levels of
linguistic representation with a filtering step that
relies on a morphological analyzer to find the most
probable diacritization for undiacritized surface
form Arabic text in context. The results show that
the presented approach outperforms all published
systems to date using the same training and test
data.
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Abstract

Determining the textual entailment be-
tween texts is important in many NLP
tasks, such as summarization, question an-
swering, and information extraction and
retrieval. Various methods have been
suggested based on external knowledge
sources; however, such resources are not
always available in all languages and their
acquisition is typically laborious and very
costly. Distributional word representations
such as word embeddings learned over
large corpora have been shown to capture
syntactic and semantic word relationships.
Such models have contributed to improv-
ing the performance of several NLP tasks.
In this paper, we address the problem of
textual entailment in Arabic. We employ
both traditional features and distributional
representations. Crucially, we do not de-
pend on any external resources in the pro-
cess. Our suggested approach yields state
of the art performance on a standard data
set, ArbTE, achieving an accuracy of 76.2
% compared to current state of the art of
69.3 %.

1 Introduction

Recently, there have been a number of studies ad-
dressing the problem of Recognizing Textual En-
tailment (RTE). The core problem is to recognize
semantic variability in textual expression, which
can potentially have the same meaning (Dagan
et al., 2010). Modeling this phenomenon has a
significant impact on various NLP applications,
such as question answering, machine translation,
and summarization. Textual Entailment (TE) can
be defined as a directional entailment relation be-
tween a pair of text fragments; if the meaning of

the Hypothesis (H) can be inferred from the Text
(T) (Dagan et al., 2006). Since the first PASCAL
RTE challenge (Dagan et al., 2006) to date, dif-
ferent approaches have been proposed. A popu-
lar trend is the use of supervised machine learning
approaches that rely on extracting a set of features
based on the underlying syntactic/semantic/lexical
relation between the TH pair. Most of the ap-
proaches have been applied and tested on English
TE.

Arabic, on the other hand, has relatively fewer
studies for entailment detection. It is one of the
most complex languages to process due to its mor-
phological richness and relatively free word or-
der as well as its diglossic nature (where the stan-
dard and the dialects mix in most genres of data).
Moreover, Arabic still lacks the large scale hand-
crafted computational resources that have come
in very handy for English such as a large Word-
Net (Miller, 1995) or a resource such as VerbO-
cean (Chklovski and Pantel, 2004). Hence build-
ing a reliable RTE system for Arabic poses more
challenges than those faced when dealing with En-
glish. Accordingly, in this paper, we propose an
approach that does not rely on such external re-
sources but rather on modeling word relations de-
rived from large scale corpora.

The rest of this paper is organized as follows:
Section 2 provides an overview of textual entail-
ment works in both English and Arabic, Section 3
describes the basic features and word distribu-
tional representation based features, Results and
an evaluation of the system are presented in Sec-
tion 4, and we conclude in Section 5.

2 Related Work

Since the start of the PASCAL RTE challenges
in 2005 up until 2011, a large number of meth-
ods and approaches have been proposed. The
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entailment judgment is typically cast as a clas-
sification decision: true entailment if the rela-
tion holds and false otherwise. Therefore, most
of the proposed systems have been based on ma-
chine learning approaches which model the entail-
ment relation over a variety of conventional fea-
tures varying from basic lexical features to deep
semantic features (Inkpen et al., ; Pakray et al.,
2011; Zanzotto and Moschitti, 2006; Malakasiotis
and Androutsopoulos, 2007). External semantic
resources such as WordNet and VerbOcean have
been extensively used to capture the semantic re-
lationships between words in the H and T, and
also to further enhance the entailment recognition
system (Iftene and Moruz, 2009; Mehdad et al.,
2009). Using such resources, the authors explic-
itly model lexical and semantic features (Zanzotto
et al., 2009; Sammons et al., 2009; Clinchant et al.,
2006; Mehdad et al., 2009; Wang and Neumann,
2008; Moschitti, 2006). Other methods rely on de-
pendency tree representations using different com-
putations ranging from basic common edge count
(Malakasiotis and Androutsopoulos, 2007) to syn-
tactic dependency analysis on corresponding text
pairs (Wang and Neumann, 2007).

Recent advances in modeling word representa-
tions are shown to be useful for many NLP tasks.
Zhao et al., (2015) investigated the effectiveness of
word embeddings in different tasks including TE.
The focus of this work is Arabic TE, which to the
best of our knowledge, has few studies in the en-
tailment literature. In 2011, Alabbas (2011) de-
velops the ArbTE system to assess existing TE
techniques when applied to Arabic TE. Later work
proposed the use of extended tree edit distance
with subtrees resulting in a more flexible match-
ing algorithm to identify TE in Arabic (Alabbas
and Ramsay, 2013). Moreover, others have looked
closely at negation and polarity as additional fea-
tures (AL-Khawaldeh, 2015) both of which re-
sulted in better Arabic TE recognition perfor-
mance, 61% and 69% accuracy, respectively.

3 Approach

Similar to previous approaches to the RTE, we
cast the problem as a binary classification task.
Namely, we identify if a T entails an H. We model
the problem within a supervised framework. We
rely on the following set of features in our model-
ing.

3.1 Features
1. Length: entailment is a directional relation

and in general T may include more informa-
tion, therefore, in most cases T and H are
similar in their length or H is shorter than T.
Therefore, the following set of features are
used to record the length information of a
given pair using the following measures:|B−
A|, |A∩B|, (|B|−|A|)

|A| , (|A|−|B|)
|B| , |A∩B|

|B| , where
|A| represents the number of unique instances
in A, |B −A| refers to the number of unique
instances that are in B but not in A, and
|A ∩ B| represents the number of instances
that are in both A and B. We applied them at
the token, lemma, and stem levels.

2. Similarity score: A similar pair is more likely
to share more words and hence the entailment
relation holds. Therefore, a two typical sim-
ilarity measures Jaccard (Jaccard, 1901) and
Dice (Dice, 1945) have been used to mea-
sure the similarity between the TH pair at the
token, lemma, and stem levels. In particular:
Jaccard(A, B) = |A∩B|

|A∪B| ;

and Dice(A, B) = 2|A∩B|
|A|+|B| .

3. Named Entity: Recognizing the similar-
ity and differences between name entity in-
stances in the pair plays an important role in
recognizing entailment. Therefore, we use
NERAr (Gahbiche-Braham et al., 2014) to
extract the following entities: Organization,
Person, and Location, then we represent each
of them as a bag of words and we use the
length based feature explained in 1 resulting
in 5 features for each named entity in the ex-
tracted categories. For example, if a loca-
tion name in T appears as ”The United State
of America” and in H appears as ”United
States” or ”America”. Then the length fea-
ture |A∩B|

|B| from 1 gives the percentage of
NEs overlapping between T and H; i.e. if
”United States” is the NE found, then the per-
centage overlap between the T and H is 40%,
and if the NE is ”America” then the percent-
age overlap is 20%.;

4. Word Embeddings: Word embeddings cap-
ture word meaning and paraphrases which
should overcome the lack of explicit lexical
overlap between the TH pair. We derive word
vector representations for about 556K words
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using the Word2vec (w2v) (Mikolov et al.,
2013) model built using the standard imple-
mentation,1 Namely, we use commonly set
parameters: the skip-gram architecture with
300 dimensions for the vectors, window size
set to 10. We use inverse document frequency
(IDF) scores as dimension values for the in-
put matrix to the w2v. For each TH pair, we
obtain the following features: 1. The co-
sine distance between the T and H vectors
which consider both matched and unmatched
words; and, b) The cosine distance between
the T-H and H-T vectors which consider un-
matched words only; specifically, they rep-
resent the words in T that are not in H and
vice versa, respectively. The latter provides
for additional evidence for the distance be-
tween T and H. Each vector is calculated as
follows:

V ector =
n∑

i=1

IDF (Wi) · w2v(Wi)

For example, given the following TH pair:2

T: lys bEAlm Algyb AlA Allh.
H: lA ydrk Algyb AlA Allh.
English Translation of Both T and H: Only
God knows the unseen.

The T-H vector in the above example is
the sum of two vectors: ”lA” and ”ydrk”,
which are the words in T and that are not in
H, each multiplied by its IDF score.

4 Experiments and Result

4.1 Data
We use the annotated data used in previous stud-
ies, ArbTE (Alabbas, 2013), which comprises 600
TH pairs in Modern Standard Arabic (MSA). The
ArbTE has been collected from news websites and
annotated for entailment manually (Alabbas and
Ramsay, 2012). For the word embedding models
we use Arabic Gigaword (Parker et al., 2011), the
Arabic Treebank (ATB) (Maamouri et al., 2008)
and Wikipedia.3

All the data, ArbTE and the data used for de-
riving the word embeddings, are preprocessed in

1http://code.google.com/p/word2vec
2examples are presented using the Buckwalter translitera-

tion system (Buckwalter, 2002)
3https://dumps.wikimedia.org/arwiki/20161120/

the same manner using the following preprocess-
ing steps: SPLIT (Al-Badrashiny et al., 2016) is
used to check if the word is a number, date, URL,
or punctuation. Then all URLs and punctuation
are removed and numbers and dates are normal-
ized to Num and Date, respectively. Next, Alef
and Yaa characters are normalized each to a sin-
gle form which is typical in large scale Arabic
NLP applications. For tokenization, lemmatiza-
tion and stemming we use MADAMIRA (Pasha et
al., 2014). We apply the D3 tokenization scheme
which segments determiners as well as proclitics
and enclitics; i.e. the D3 tokenization scheme is
similar to the ATB scheme with the extra tokeniza-
tion of the determiner Al. Finally, we remove stop
words based on a list,4 however, we keep negation
words as we believe they are important for TE. As
a side note, the resulting word vectors cover al-
most all the words in the ArabTE except for about
30 OOV words most of which are NE and we ig-
nore them during vector calculation.

4.2 Experimental Setup

Our system is a supervised model, therefore,
we experiment with multiple supervised frame-
works: an SVM classifier (LIBSVM), Logistic
Regression (LR) using specifically the LIBLIN-
EAR classifier, and Random Forest (RF). All
experiments are implemented using the WEKA
software package (Witten and Frank, 2005). All
classifiers yield relatively similar performance
with the LR classifier obtaining the best results,
which is expected since both the feature space
and the dataset are relatively small. Therefore, we
report results using LR only.

We report results on a development tuning set,
DEV, and a TEST set. We devised 3 training pro-
tocols: DEV1, DEV5, and DEV10. Given the size
of the labeled data, we run our experiments vary-
ing the training protocol and tuning steps while
keeping the TEST as a held out data set constant
for set ups DEV1 and DEV5. The tuning data,
DEV1, comprises 10% of the data, our TRAIN1
data corresponds to 80%, and TEST (held out) is
10% of the data. In the second set up, for DEV5
we calculate the average performance as measured
across 5-fold cross validation on 90% of the data.
In DEV10 we carry out our experiments with 10-
fold cross validation on the entire dataset so as to

4https://pypi.python.org/pypi/many-stop-words
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System DEV1 DEV10 DEV5 TEST

BOW1 58.75 59.07 59.3 65
BOW2 72.71 72.96 73 65

ETED1 (Alabbas, 2013) 60
ETED2 (Alabbas, 2013) 65.7

ETED+ABC (Alabbas, 2013) 67.3
ATE (AL-Khawaldeh, 2015) 61.7

SANATE (AL-Khawaldeh, 2015) 69.3
LR-WE 67.5 64.67 65.56 61.67
LR-TYP 76.66 74.33 74.44 68.33
LR-ALL 79.16 76.2 76.48 71.67

Table 1: Performance Accuracy % of our system on ArbTE datasets, along with results yielded by
comparative state of the art systems

compare to previous work. We report the results:
with typical features (length and similarity score,
named entity), specifically, without word embed-
dings, as TYP; with word embeddings features
alone, as WE; the last setting is with all features
combined, as ALL, both TYP and WE combined.

We report results on two baselines based on the
percentage of common words or lemmas between
T and H. BOW1 and BOW2 represent these base-
lines in Table 1. In BOW1, we represent the over-
lap score as binary score (0 or 1) according to a
predefined threshold of 75% overlap.5 In the sec-
ond baseline, BOW2, the word overlap score is
used but, different from BOW1, we use the clas-
sifier to determine the optimal threshold based on
the training data. As can be seen, BOW2 is higher
than BOW1 where a threshold is manually set; this
is an artifact of the nature of this dataset where
there is a high correlation between overlap per-
centage and the entailment relation, and the cut-
ting point for the entailment learned by the classi-
fier is optimal for this dataset. Therefore, we in-
clude both as baselines for the system.

Beside the baselines, Table 1 illustrates the re-
sults obtained by previous studies on the same
data set. We only have the 10 fold (DEV10) re-
sults from other systems. As illustrated, LR-ALL
condition yields the best results for all test con-
ditions consistently across all data sets improv-
ing over the baselines by a significant margin and
outperforms LR-TYP and LR-WE. Other sys-
tems (ETED1, ETED2, ETED+ABC, ATE, and
SANATE) have approached the Arabic TE in a dif-

5This is empirically determined in pervious studies in the
English RTE system and it has been also used as baseline in
the Arabic systems.

ferent way, wherein ETED systems the main focus
was on the impact of Tree Edit Distance (TED)
on the Arabic TE using different model extension,
and in ATE and SANATE systems the focus was
on the effect of negation and polarity on the Arabic
TE. Our system outperforms these systems signif-
icantly. Moreover, LR-TYP significantly outper-
forms LR-WE and achieves the best performance
among all runs and all three setups.

These results indicate that word embedding
based features enhance the accuracy by about 2%
increase from the TYP based system. The 10 fold
cross validation experimental set up is carried out
to compare our performance against previous stud-
ies, namely, employing the same experimental se-
tups in Alabbas (2013). We can see that our re-
sult outperforms other works when using TYP and
ALL which shows that not only the word embed-
ding but also the basic similarity features that have
been heavily implemented on the English system
have improved the result over the Arabic entail-
ment state of the art, along with explicit NE mod-
eling as a bag of words and the calculation of sim-
ilarity measures over it. On the other hand, the
word embedding based features alone yield com-
parable results to the other systems.

4.3 Error Analysis and Discussion

In our system, we use the text as a bag of words
and ignore their order. Also, we follow a simple
basic assumption: that is if the overlap between
the TH pair is high then the positive entailment
relation holds, and that it fails to hold otherwise.
As can be seen from the baseline in Table 1
this assumption works very well in this dataset.
When inspecting the dataset, it turns out that the
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Arabic dataset has this as a dominant phenomenon
meaning higher overlap induces entailment and
vice versa. Furthermore, the word embedding
features in our model help in the semantic inter-
pretation of the unmatched words which results
in a performance boost of the result as the pair
become closer or far apart in the vector space.
Thus, the type of errors inspected are for the more
complicated pairs. For example, our system failed
to detect the lack of entailment relation in the
following example:

T: AlElmA’ yHtArwn fy ASAbp AlnwE Algryb
mn bktryA <y kwlAy Alty Zhrt fy AlmAnyA
ntyjp AsthlAk xyAr mn AsbAnyA llnsA’ AlbAl-
gAt Akvr mn gyrhn
T-English-Translation: Scientists are confused
about a strange kind of E.coli that has emerged
in Germany as the result of the consumption
of cucumbers from Spain, which affects adult
women more than others.
H: bktryA AlxyAr fy AlmAnyA tSyb AlnsA’
Akvr mn AlrjAl
H-English-Translation: Cucumbers bacteria in
Germany affects women more than men.

In this example, the H has a specific piece
of information which is not in the text, yet our
system labels it as a true entailment. Furthermore,
NE features in our model are basic features that
do not apply any preprocessing or normalization
to, for example, map abbreviations, which leads
to some errors in our model. In addition, there are
different NLP phenomena we did not handle such
as co-reference resolution and syntactic parsing,
which we believe could improve the performance.

5 Conclusion

This paper shows our work to address the en-
tailment relation in under-resourced languages,
specifically Arabic. We have shown that the use
of word representation based features provides a
reasonable result when compared with other basic
surface level matching features. The key charac-
teristic of these features is the fact that they do
not depend on external language resources, but
are induced in the latent space, namely using a
word2vec model that can be easily generated in
any language, i.e. an advantage over the required
use of external resources. While we have only
studied the effect of such features on Arabic, they

can easily be applied to other languages. Although
the set we evaluated on was limited in size and to
types of phenomena that are usually related to en-
tailment, it was sufficient to confirm that, indeed,
word embeddings can be used to enhance textual
entailment in such languages. Finally, the current
system still has limitations including various ways
in which word embeddings could be incorporated.
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