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Abstract

We describe several systems for identi-
fying short samples of Arabic or Swiss-
German dialects, which were prepared for
the shared task of the 2017 DSL Workshop
(Zampieri et al., 2017). The Arabic data
comprises both text and acoustic files, and
our best run combined both. The Swiss-
German data is text-only. Coincidently,
our best runs achieved a accuracy of nearly
63% on both the Swiss-German and Ara-
bic dialects tasks.

1 Introduction

The 2017 Distinguishing Similar Languages
Workshop sponsored four shared tasks, and our
team participated in two of them: Arabic dialect
identification, and Swiss-German dialect identi-
fication. The Arabic dialect data includes Au-
tomatic Speech Recognition transcripts of broad-
casts, as well as the most helpful audio features,
which were provided as 400-dimensional I-vector
files. The raw audio data was also available for
download. The Swiss-German data consists of
transcripts only, transcribed to indicate pronuncia-
tion by human linguists.

The training set for Arabic comprises 14000
lines, totaling 1.7MB, each line labeled for one of
five dialect groups. In addition, 1524 lines totaling
318KB of development data were also provided.
The test set is 1492 lines.

We did not use the IS2016 data or the varDial3
shared task data, which have similar characteris-
tics, and might have improved the efficacy of train-
ing.

For the three Arabic runs, we prepared six dif-
ferent text-based classifiers, and five wave-file-
based classifiers, in addition to the two baseline
word and I-vector systems, and combined them in

two groups of four and one group of five classi-
fiers.

Our best run on the Arabic test data has
a weighted F1 score of 0.628; this run com-
bined some of our classifiers with the provided
svm multiclass baseline classifiers.

The Swiss-German data consists of 14478 lines
of data, totalling 700KB, labeled with one of four
dialects. We divided this into a 13032 line training
set, and two 723-line files for development. The
test set is 3638 lines.

Only two of the classifiers prepared for Arabic
were deployed on the Swiss-German test data. Our
best run on this data has an accuracy of 0.63 and a
weighted F1 score of 0.61.

2 Related Work

In Ferguson (1959), which introduced the term
diglossia into English, two of his four principal
examples are Arabic and Swiss-German. In these
languages, every educated native speaker has two
distinct languages, the mother tongue, and the lan-
guage of education.

In both instances, the languages have a pres-
tigous written form with a unified literary tradi-
tion, in which native speakers of all dialects are
educated. In some registers, the spoken language
of various regions is mutually unintelligible. At
more formal registers, the distinctions between
dialects include vocabulary shifts and phonemic
variations, but vocabulary is more similar to the
written language and communication is less diffi-
cult. For example, speakers using the more for-
mal registers of Arabic dialects often claim to
be speaking classical Arabic, albeit with an ‘ac-
cent’ – an accent which drops classical case mark-
ings, changes the vowels, and reassigns many
phonemes.

Among other applications for dialect recogni-
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tion, it might serve as a selector for acoustic and
language models for ASR, as shown in Najafian et
al. (2014), which achieved a 44% improvement in
word error rate after 43 seconds of accent identifi-
cation for British dialects.

Biadsy et al. (2009) distinguish four Arabic
dialects and MSA1 based on (audio) phone se-
quences; the phones were obtained by phone rec-
ognizers for English, German, Japanese, Hindi,
Mandarin, Spanish, and three different MSA
phone-recognizer implementations. The dialects
were distinguished by phoneme sequences, and
the results of classifications based on each phone-
recognizer were combined using a logistic regres-
sion classifier. They train on 150 hours per dialect
of telephone recordings. They report 61% accu-
racy on 5-second segments, and 84% accuracy on
120 second segments.

Zaidan and Callison-Burch (2011) describe
building a text corpus, based on reader commen-
tary on newspaper websites, with significant di-
alect content; the goal is to provide a corpus to
improve machine translation for Arabic dialects.
They used Amazon Mechanical Turk to provide
annotation for a portion of the corpus. Zaidan and
Callison-Burch (2014) describe the same work
in greater detail, including dialect classifiers they
built using the Mechanical Turk data for classes
and origin metadata as additional features. They
say these classifiers are ‘approaching human qual-
ity.’

ElFardy and Diab (2013) classify EGY2 and
MSA sentences from the Zaidan and Callison-
Burch (2011) corpus, that is, from text. Not only
is this a binary task, but orthographic hints, in-
cluding repeated long vowels, emojis and multiple
punctuation, give strong clues of the register, and
hence whether MSA is being employed. They do
a number of experiments comparing various pre-
processing schemes and different training sizes,
ranging from 2-28 million tokens. They achieve
80% – 86% accuracy for all of their attempts.

Malmasi et al. (2015) do Arabic dialect iden-
tification from text corpora, including the Multi-
Dialect Parallel Corpus of Arabic (Bouamor et
al., 2014) and the Arabic Online Commentary
database (Zaidan and Callison-Burch, 2011).

Hanani et al. (2015) perform recognition of sev-
eral Palestinian regional accents, evaluating four

1Modern Standard Arabic – the language of television
news programs.

2Egyptian dialect

different acoustic models, achieving 81.5% accu-
racy for their best system, an I-vector framework
with 64 Gaussian components.

Ali et al. (2016) developed the corpus on which
the DSL Arabic shared task is based. Their
own dialect detection efforts depended largely on
acoustical cues.

Arabic dialect recognition appeared in the 2016
edition of the workshop’s shared task (Malmasi et
al., 2016). The shared task data was text-only. Our
classifiers (Hanani et al., 2016) for that task gave
middling performance relative to other entrants,
but the best classifiers (Malmasi and Zampieri,
2016; Ionescu and Popescu, 2016) for the shared
task performed far below the best results reported
by some of the preceding researchers. Part of the
reason must be that the amount of training data for
the workshop is much smaller than that used by
some of the other researchers; the workshop data
also did not include the audio recordings on which
the transcripts are based.

3 Methodology and Data

The Arabic training and test data are excerpted
from the corpus described in Ali et al. (2016). The
provided .ivec files contain selected audio fea-
tures; a list of .wav files was also provided with
the training data, but not included in the distribu-
tion, presumably for reasons of space. We also
downloaded the .wav files, and build several clas-
sifiers using them, which were combined into our
run3 on the test data.

The Swiss-German data is excerpted from
Samardzic et al. (2016).

The two data sources differ in their presenta-
tion. The Arabic data seems to attempt to present
words in dictionary spelling, independent of how
they were pronounced. If a word is not present in
the dictionary, the transcript shows <UNK>, not
a phonetic transcription. For example, the particle

@ 	Yëh*A that, which is frequently pronounced @Yë
hdA that in Levantine, is always presented in its
MSA written form, which is of course how Levan-
tine speakers would write it – since they are edu-
cated to write standard Arabic, not to indicate their
regional dialect.
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In contrast, the Swiss-German transcripts are
intended for scholarly study of the contrasts be-
tween dialects. They use the transcription guide-
lines of Dieth (1986) for this purpose. The
spellings of words attempt to present those dialect
contrasts, so that the same standard German word
may be spelled in numerous different ways, de-
pending on the pronunciation. There is an attempt
in the transcription toward standardization, but it
is within the dialect, not aimed toward unifying
dialects. The result is that there is a large apparent
vocabulary difference between Swiss-German di-
alects, whereas the corresponding vocabulary dif-
ferences between Arabic dialects correspond to
usage shifts, rather than pronunciation shifts.

In the subsections which follow, we present
the methodology of each of our classifiers. We
combined several classifiers for each run, and we
present the fusion classifiers as well.

3.1 Word-focused baseline
This baseline classifier was provided with the
training data. It treats each training or test seg-
ment as a bag of words and n-grams. The script
which runs it preprocesses each segment into a line
of integers and occurrence counts, with each inte-
ger representing a single word or bigram. (The
setup program can be configured to use n-grams
as features up to n=6. However, if n is greater
than 3, the accuracy of the classifier declines;
the difference between n=2 and n=3 doesn’t
look significant, so we followed the default, us-
ing n=2.) The resulting files are processed by
Thorsten Joachim’s svm multiclass learn
(Tsochantaridis et al., 2004; Joachims, 2008) pro-
gram which produces a model file. This can
be used with the svm multiclass classify
program to provide an output for each test segment
with a best guess for the segment class and the
scores for all classes.

This word-focused baseline classifier was com-
bined with the I-vector baseline classifier, the
word-entropy classifier, and the character string
entropy classifier for ADI run1.

Applying the word-focussed baseline classifier
to the ADI development data gives an accuracy of
48%.

3.2 I-vector baseline
This baseline classifier was also provided with the
training data. It also uses svm multiclass.
The input files consist of one line per training or

test segment, with the class as the first integer on
the line, and the integers from 1 to 400, in order,
each with a real-valued feature value. The output
file, like that of the word-focused baseline classi-
fier, contains one line for each test segment, with
the first integer on the line the class with the high-
est score, followed by scores for this segment for
each class.

This classifier, applied standalone to the ADI
development data, gets an accuracy of 57%.

3.3 Word entropy

This classifier reads through the training file, and
builds a table of word, bigram, and trigram fre-
quencies for each dialect.3

Using the frequencies as estimates of the true
probability of the n-gram occurring in a test sam-
ple if the sample is in the corresponding dialect,
it estimates the probability that the sample is in
each of the dialects which appeared in training. In
other words, it creates n-gram language models for
each dialect, and for each test sentence chooses
the dialect with the best cross-entropy. The clas-
sifier can be configured to ignore words which oc-
cur less than m times. It can write files either in
vardial3 submission format, or in the input format
used by the Focal Multiclass toolkit, for combin-
ing its results with other classifiers.

This classifier is used alone for our GDI run1,
and in combination for our ADI run1.

On the ADI development data, this classifier
gives an accuracy of 52%, and on 723 lines of re-
served GDI data, it gives an accuracy of 84%.

On the test data, it is used standalone only on
GDI run1, where it shows an accuracy of 56%.

3.4 Character-string entropy

This classifier ignores word boundaries.4 It accu-
mulates statistics for all of the strings up to twenty-
five bytes long in the training file, except for those
strings which end in a UTF-8 sequence which is
broken by the 25-byte boundary. For each dialect,
it greedily attempts to pave the test strings with
strings from training, trying the longest strings
first. Once the test segment is completely cov-
ered by strings seen in training, a log-probability is

3The classifier is implemented by the file https:
//github.com/StephenETaylor/vardial4/
blob/master/wordfreq.py.

4The character-string entropy classifier is implemented
by https://github.com/StephenETaylor/
vardial4/blob/master/chars.c.
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computed by adding log-frequencies for the cov-
ering strings. The dialect with the largest log-
probability for the segment is selected as the di-
alect. When the classifier is configured for saving
scores, the log-probabilities for each dialect are
the scores for the test segment.

On the ADI development data, this classifier has
an accuracy of 44%. On the 723 lines of reserved
GDI training data, this classifier has an accuracy
of 79%.

For the test runs, it is used standalone on GDI
run2, where it achieves an accuracy of 63%.

3.5 Fusing estimates

To combine the estimates of the four classifiers
used for ADI run1, we used the Focal Multi-
class Toolkit (Brümmer, 2007), which is written
in MATLAB. We ported it to Octave (Eaton and
others, 2012), a trivial effort.5

The toolkit script calibrates the scores of the
four classifiers (the winning class is always the
largest, but the scores aren’t necessarily in the
same range, let alone a probability distribution)
then applies logistic regression to fit the various
scores to the known correct answers for the devel-
opment data. The same fitting is then used to com-
bine the scores of the classifiers on the test data.

It accepts files in precisely the format produced
by the baseline classifiers, so we modified the
word-entropy classifier and the character n-gram
entropy classifier to produce files in the same for-
mat. We wrote python scripts to convert the output
to the expected format for the workshop test runs.

3.6 ADI run2 combination

We used a combination of 4 classifiers on the sys-
tem level. All four of these classifiers used the
same features: character unigrams, bigrams, and
trigrams derived from the training data, presented
to the software as a feature vector.

Systems are:

• Naive Bayes with multinomial distribution

• SVM with RBF kernel

• Linear logistic regression

• Random forests with 300 trees
5See the goal test.f4 in the file https:

//github.com/StephenETaylor/vardial4/
blob/master/v17/dialectID/Makefile

All these classifiers were trained on the training
dataset part and tested on the development dataset
part. The feature vector used was built based on
character trigram model combined with word un-
igram model and word bigram model. The final
output was generated by applying voting (max was
chosen) on output of the four classifiers for each
class label. To build the language models (char-
acter trigram, word unigram, and word bigram) to
prepare the feature vector and to do the classifica-
tion process we used the Weka toolkit (Hall et al.,
2009), which is written in java.

On the ADI development data, this system gave
an accuracy of 52.03%. It is used in ADI run2,
where it achieves an accuracy of 32%.

3.7 Acoustic processing: ADI run3

3.7.1 Front-end Processing

Each utterance is divided into short frames by a
20-ms window progressing at a 10-ms frame rate;
then 19 Mel-scale Cepstral Coefficients (MFCC)
are extracted from each speech frame. Next,
Shifted-Delta Cepstra (SDC) with 7-3-1-7 config-
uration, are computed and appended to the MFCC
feature vectors resulting in feature vectors with di-
mension equal to 68. RASTA filtration is applied
to the power spectra. A simple energy-based voice
activity detection (VAD) was performed to discard
the non-speech frames.

Finally, Cepstral mean and variance normaliza-
tion (CMVN) was applied on the resulting 68-
dimensional feature vectors.

3.7.2 GMM-UBM AID

A Universal Background Model (UBM) GMM
(Gaussian Mixture Model) is trained on the acous-
tic features (68 feature vectors) extracted from all
training dataset of all Arabic dialects. The K-
means clustering algorithm is used for finding ini-
tial parameters of UBM GMM (means, diagonal
covariance matrices and weights).

A dialect-dependent GMM is obtained by MAP
adaptation (means only) of the UBM using the di-
alect specific enrollment features. This results in
one UBM model and one dialect-dependent model
for each of the target dialects. We have tried dif-
ferent numbers of Gaussians: 64, 256 and 2048.
Applying these three systems to the ADI develop-
ment data gives an accuracy of 35.6%, 36% and
40.16%, respectively.
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3.7.3 GMM Tokenization
This system is similar to the Phonotactic systems
in which a sequence of phones is extracted from
the speech waveform using a phone recognizer.
In GMM tokenization, the phone recognizer is re-
placed by a Multi-Dialect Model (MDM), which
is a GMM trained on training data of all dialects
(same UBM used in the GMM-UBM system de-
scribed above). For each utterance, a sequence of
GMM components (tokens) is extracted by repre-
senting each acoustic vector with the GMM com-
ponent which gives the highest log likelihood.

The n-gram components of the sequence of to-
kens generated from an utterance U can be repre-
sented as a D-dimensional vector p where, D is the
number of all n-grams (in our case GMM compo-
nents), Cj is the jth n-gram and the probability pj

of Cj is estimated using counts of n-grams,

pj =
Count(Cj)∑
i Count(Ci)

(1)

where the sum in (1) is performed over all n-grams
and Count(Cj) is the number of times the n-gram
Cj occurs in the produced sequence of tokens.

Before we apply the SVM, the probabilities
of the n-grams are estimated for each utterance.
Then, these probabilities are weighted to em-
phasize the most discriminative components (i.e.
those which occur frequently in one dialect and
infrequently in others). The n-gram components
which are common in most dialects, such as si-
lence or common phones, contain little discrim-
inative information and are de-emphasized. Nu-
merous weighting techniques are available for this
purpose, such as the Inverse Document Frequency
(IDF) from Information Retrieval (IR) and the
Log-Likelihood Ratio (LLR) weighting. The LLR
weighting wj for component Cj is given by:

wj = gj

(
1

P (Cj |all)

)
(2)

where gj is a function used to smooth and com-
press the dynamic range (for example, gj(x) =√

x, or gj(x) = log(x) + 1). p(Cj/all) is the
probability of n-gram component Cj across all di-
alects. The components which have zero occu-
pancy in all dialects are removed since they do
not carry any useful information. A benefit of
discarding these non-visited components is that it
reduces the feature dimension dramatically, par-
ticularly for the high order n-gram system as the

dimension of the n-gram increases exponentially
O(Mn) with GMM model order (M).

In addition, a feature selection technique is
needed to minimize the number of n-gram compo-
nents by keeping only those which are most dis-
criminative. This is particularly necessary in high
order n-gram systems because the dimension is in-
creased exponentially. Consequently, reducing the
number of n-gram components decreases the com-
putational cost and the required amount of mem-
ory. A powerful iterative feature selection algo-
rithm based on the SVM is proposed by Guyon
et al. (2002). This is applied to phone-based lan-
guage recognition with discriminative keyword se-
lection in Richardson and Campbell (2008), where
more details can be found. A similar algorithm is
applied on the bigram data of the GMM tokens.

For GMM tokenization, we have used UBM
with 256 and 2048 order. Due to resources lim-
itation, bigram and unigram of UBM with 256
components, but only unigram of UBM with 2048
components have been implemented. When ap-
plied to the ADI development data, the unigram,
bigram of 256 UBM and unigram of 2048 are
42%, 45.15% and 46.85%, respectively.

3.7.4 I-vector based system

I-vectors is a technique introduced in Dehak et
al. (2011) for speaker identification. This tech-
nique has also been proven to work well in lan-
guage and dialect identification (Martı́nez et al.,
2011; Hanani et al., 2015). An I-vector classifier
is based on a configuration determined by the size
of the UBM, the number of factor dimensions for
the total variability subspace, as well as the various
compensation methods to attenuate within-dialect
variability.

Feature vectors of each utterance in the training
data are used for adapting means of UBM (which
is trained on all available training data) in order
to estimate an utterance dependent GMM using
eigenvoice adaptation technique.

The eigenvoice adaptation technique assumes
that all the pertinent variability is captured by a
low rank rectangular, total variability matrix T.
Then the GMM supervector (vector created by
concatenating all mean vectors from the utterance
dependent GMM) for a given utterance can be
modeled as follows:

M = m + Tx + ǫ (3)
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where m is the UBM supervector, the I-vector x
is a random vector having a normal distribution
N(0, I), and the residual noise term ǫ ∼ N(0, Σ)
models the variability not captured by the matrix
T . In training total variability matrix for dialect
recognition, we assume that every utterance for a
given dialect is considered a different class. Addi-
tional details on the I-vector extraction procedure
are described in Dehak et al. (2011).

Linear Discriminant Analysis (LDA) is used for
reducing I-vectors dimension. The LDA proce-
dure consists of finding the basis that maximizes
the between classes variability while minimizing
the intra-dialect variability.

Recently, Gaussian-PLDA has been used to
make the I-vector distribution more normal, which
improves performance of I-vector system based on
standard LDA Bousquet et al. (2012). A Gaussian-
PLDA model has been trained on dimensionally-
reduced I-vectors of training data, and then used
for scoring in our I-vector system. In addition to
the text transcription and wav files of each utter-
ance, 400-dimensional I-vectors are provided with
the dataset released for VarDial 2017. These I-
vectors are extracted using a UBM with 2048 com-
ponents and Bottleneck features instead of the tra-
ditional MFCC and SDC (Shifted Delta Cepstral)
acoustic features. More details about the provided
I-vectors can be found in Ali et al. (2016). When
applied to the ADI development data and with set-
ting LDA dimension to four, the accuracy is 58%.

3.7.5 Acoustic Overall system
The best four acoustic sub-systems: GMM-UBM
with 2048 components; bigram of GMM tokeniza-
tion with 256 components; unigram with 2048
components; and I-vector system, are fused to-
gether to get the overall acoustic system, us-
ing Focal multi-class linear logistic regression
(Brümmer, 2007). The fusion parameters were
trained on the ADI Development data. The result-
ing system was used to classify the ADI testing
data (run 3 in the results of ADI task). In order
to have an idea how well the overall acoustic sys-
tem compared with the sub-systems, we divided
the development data of each dialect into two parts
(nearly equally). The fusion parameters were es-
timated using one part and applied to the second
part and vice versa. In this way, we got the sys-
tem performance on the development data without
overlapping between training and evaluation data.
The accuracy of the fused (overall acoustic) sys-

tem on the development data was 61%.

Table 1: Classifier Accuracy on ADI Development
Data, Test Sest

Section Described Dev. Set Test Set
3.1 0.48
3.2 0.57
3.4 0.44
3.3 0.52
3.5 0.63
3.6 0.52 0.32
3.7.2 0.40
3.7.3 (256 bigrams) 0.45
3.7.3 (2048 unigrams) 0.47
3.7.4 0.58
3.7.5 0.61 0.59

4 Results

There were six teams participating in the Arabic
Dialect Identification task for 2017; in contrast,
there were eighteen for 2016.

Given the reduced field, the rise of our team,
AHAQST, from 14th to 4th place, can be ascribed
in part to decreased competition! However, all the
teams who entered both shared tasks posted scores
for 2017 much better than their scores for 2016.

Table 2 shows the best results for each team for
the two years.

Table 2: 2017 versus 2016 ADI results
Team F1 2017 F1 2016
unibuckernel 0.763 0.51316

MAZA 0.717 0.51327

tubasfs 0.697 0.4728

ahaqst 0.628 0.4269

qcri mit 0.616 -new-
deepCybErNet 0.574 -new-

In our own case, some of the improvement is
due to combining the acoustic and the text data.
Table 3 shows our three ADI runs. run1 and run3
both use acoustic data, whereas run2 does not;
run3 uses only acoustic data, while run1 uses both
kinds.

The Swiss-German task was new this year, and
attracted attention from teams who also entered
other tasks, as shown in Table 4.

6Ionescu and Popescu (2016)
7Malmasi and Zampieri (2016)
8Çöltekin and Rama (2016)
9Hanani et al. (2016)
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Table 3: Performance of our merged classifiers
Run (Data) Accuracy F1 (mic) F1 (wt’d)
2 (Text) 0.3231 0.3231 0.3137
3 (Acoust.) 0.5932 0.5932 0.5861
1 (both) 0.6287 0.6287 0.628

Table 4: Participation of Swiss-German teams in
other tasks

Team GDI DSL ADI
MAZA 1 2
CECL 2 1
CLUZH 3
qcri mit 4 5
unibuckernel 5 1
tubasfs 6 4 3
ahaqst 7 4
Citius Ixa Imaxin 8 9
XAC Bayesline 9 3
deepCybErNet 10 11 6

It’s interesting to note the imperfect correlations
between the tasks, but they are less interesting than
the table makes them look, because on the GDI
task the accuracy for the best run of all the teams
except for the first and the last is within a range of
four percentage points.

Table 5 shows our two runs were more widely
separated than that, but only the best run for each
team contributes to the rank above.

Table 5: AHAQST results on GDI task

Run Accuracy F1 (micro) F1 (weighted)
run1 0.5621 0.5621 0.5484
run2 0.6289 0.6289 0.6143

The top run for the GDI task had an accuracy of
68%, and the bottom an accuraccy of 26%. Omit-
ting the bottom outlier, the weighted F1 scores of
the other nine teams are all within 1.35 standard
deviations of the mean. The range of values is not
nearly so interesting as we see for the ADI task.

We would expect the GDI task to be easier,
since only four classes need be distinguished, ver-
sus five for the ADI task, but it looks like there are
other factors at work. Since only the CLUZH team
entered only the GDI task, it may be that other
teams devoted less effort to the task, focussing
their primary attention on one of the other tasks.
Or it may be that there is something else at work.

Since our own classifiers performed much better
on our reserved training data, it may be that the
Swiss-German corpus is inhomogenous, and that
the test data is drawn from a part of the corpus
which is different in some way from the training
data.

However, a simpler theory for differing perfor-
mance is a topic bias. If the training sentences are
drawn from coherent conversation, one would ex-
pect neighboring sentences to have theme words
in common. Since both turns of a conversation
will normally be entirely in one dialect, rare theme
words are trained as dialect-unique, when in fact
they may have no relevance to dialect. Of course,
even when not dialect-specific, theme words may
still be helpful for distinguishing dialect. In the
training data, “Zürich” occurs only in instances
of the ZH dialect. While someone from Berne
may talk about Zürich, Berne is far more likely
to come up in their conversation. Similarly a par-
ticular restaurant or street is probably indicative of
their neighborhood.

5 Discussion

We were pleased to be able to so quickly put into
practice some of the ideas we considered for the
2016 workshop. But we ran out of time to imple-
ment others. For example, deep learning has fared
poorly in the shared tasks in the past, including
in our 2016 submission, but considering its suc-
cess in other machine learning tasks, it seems pos-
sible that there is an approach which will fare bet-
ter, even if the (relatively small by neural-network
standards) 1-2 megabyte training sets typical of
the two ADI tasks and one GDI task we’ve seen
continue to prevail.

Some of our negative results seem surprising.
Why does including larger word n-grams actually
hurt recall? At worst it is noise, and there are
plenty of other sources of noise.

We’d like to revisit tools which can provide ex-
planations of their behavior. For example, for
2016, one of our classifiers reported that the word
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ú

	æ ª K
yEny that is which is very common in all

varieties of Arabic was actually a useful predictor
for dialect, because although it is not uncommon
in MSA, it is very common in all the dialects. The
explanation doesn’t greatly improve the class dis-
crimination, but it is a nice converational tidbit.
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