
Proceedings of WLSI/OIAF4HLT,
pages 70–75, Osaka, Japan, December 12 2016.

Between Platform and APIs: Kachako API for Developers

Yoshinobu Kano
Faculty of Informatics, Shizuoka University, Japan

kano@inf.shizuoka.ac.jp

Abstract

Different types of users require different functions in NLP software. It is difficult for a single
platform to cover all types of users. When a framework aims to provide more interoperability,
users are required to learn more concepts; users’ application designs are restricted to be compli-
ant with the framework. While an interoperability framework is useful in certain cases, some
types of users will not select the framework due to the learning cost and design restrictions. We
suggest a rather simple framework for the interoperability aiming at developers. Reusing an
existing NLP platform Kachako, we created an API oriented NLP system. This system loosely
couples rich high-end functions, including annotation visualizations, statistical evaluations, an-
notation searching, etc. This API do not require users much learning cost, providing customiza-
tion ability for power users while also allowing easy users to employ many GUI functions. 1

1 Introduction

A platform type of NLP software tends to provide rich GUI functions for easy users to help avoiding
burdensome tasks that are not essential for their purposes. However, power users require customization
ability in an API oriented way. There has been many efforts to create interoperable NLP systems, in-
cluding GATE (Cunningham et al., 2002), Taverna (Hull et al., 2006), Galaxy (Blankenberg et al., 2010),
Langrid (Ishida, 2006), Heart of Gold (Schäfer, 2006), PANACEA (Bel, 2010), etc.

UIMA (Unstructured Information Management Architecture) is an interoperability framework origi-
nally developed by IBM (Ferrucci et al., 2006), currently an open source project in Apache UIMA2.
Most of UIMA related works are UIMA component implementations, including OpenNLP, JulieLab
(Hahn et al., 2008), CCP BioNLP (Baumgartner Jr. et al., 2008), U-Compare (Kano et al., 2009),
UIMA-fr (Hernandez et al., 2010), DKPro (Müller et al., 2008), cTAKES (Savova et al., 2010), etc.

Among the UIMA based systems, Kachako (Kano, 2012b) provides many generic features useful for
developers to analyze and improve their applications. Unfortunately, these features are parts of a large
integrated system which are not easy for the developers to partially reuse. Furthermore, certain number
of developers avoid learning UIMA due to UIMA’s rich but complex higher interoperability concepts.

We suggest a simplified interface that just requires the so-called stand-off annotation style data struc-
ture. In order for developers to more easily reuse Kachako’s features, we built an API oriented NLP
system based on Kachako, changing to the simplified interface discarding its UIMA compliancy.

We describe points of the UIMA framework (Section 2), the features of the Kachako platform (Sec-
tion 3), and our suggested simple framework with actual API oriented system (Section 4), finally con-
cluding this paper (Section 5).

2 UIMA

We introduce the basic architecture of UIMA briefly in this section. We refer to the Java implementation
of Apache UIMA as UIMA here.

A tool is represented as a component in UIMA. A component is a processing unit of UIMA. In UIMA,
components are combined in a workflow. Processing order of components can be programmable, while
most workflows are simple pipelines. UIMA’s data structure, CAS (Common Analysis Structure), is in
the so-called stand-off format, which consists of a raw (text) data part and an annotation part. The Java
version of CAS is called JCas. An annotation should be typed by a type system, a user defined type

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/
2 http://uima.apache.org/

70

hierarchy. A component receives a CAS, may update the CAS and returns the CAS. A component may
have its input and output types specified. These types are defined in a UIMA’s type system descriptor
XML file by the user. Each type is also defined in a corresponding Java class. Basically, CAS should
include everything in UIMA. A CAS has one or more sofa (Subject OF Analysis, or sometimes called
view) to hold multi-modal information such as text and audio, original and translated text, etc.

As a whole, in order to use UIMA for combining various NLP tools, researchers should create work-
flows for combining tools and define types for connecting the input and output of these tools. When
running a UIMA workflow, users normally use UIMA’s workflow API where CAS creation and disposal
are controlled by the UIMA framework side, not by Java VM. A CAS is passed from component to
component, then disposed from the Java heap memory after returned by a final component of a workflow.
Therefore, developers need to pay attention not to hold any reference to content of a CAS after the CAS
finished a workflow, else memory leak occurs even this is a Java API. Its reason is explained as an
efficient memory usage by the Apache UIMA documentation. This makes a pitfall to developers.

3 Kachako Platform

The Kachako platform aims to provide automation features on top of the UIMA framework (Kano,
2012a)(Kano, 2012b). If the users can complete their tasks by GUI operations, most UIMA things are
obscured in Kachako. However, users are required knowledge of some UIMA concepts.

Roughly speaking, Kachako has four features: automatic workflow creation, automatic workflow ex-
ecution, Annotation Viewer GUI for result analysis with statistical table for comparison and evaluation,
Annotation Searcher to index and search the results. We explain each feature below.

As Kachako aims to provide automation features, installation, update and execution of the platform
itself is automatic in a web-based way. Kachako has its tens of own UIMA components that are also
ready-to-use by automatic installation feature. Users can also register their own UIMA components to
create a UIMA workflow using these UIMA components. Users can create a UIMA workflow automat-
ically or manually by selecting UIMA components. Figure 1 shows the Kachako’s workflow creation
GUI. Each round-bordered box corresponds to a UIMA component, which input ports are shown in the
right, output ports are shown in the right. These I/O ports are specific to Kachako, which ensures con-
nections between components. The automatic workflow creation feature uses these I/O information to
calculate (partial) workflow candidates when a start component and an end component are specified by
users. These ports may belong to different sofas, shown as thick coloured labels in Figure 1. Each com-
ponent may have configuration parameters, whose setting panel is available in this GUI.

Figure 1. A screenshot of workflow creation GUI. This complex example shows a workflow of the
History examination solver for the Todai Robot project (Kano, 2014).

71

Once a workflow is created, installation and execution of the workflow and its components are avail-
able automatically. As this is a UIMA workflow, workflow results are stored as CASes. Figure 2 shows
a screenshot of the Annotation Viewer GUI that fully visualizes contents of a CAS. The leftmost panel
shows the visualization result where each annotation is displayed as an underline with the raw text part.
Users can filter which annotation types to show in the middle panel. The rightmost panel shows all of
field values of annotations in a sortable way. Users can select a specific annotation to jump and highlight.

Figure 2. A screenshot of Annotation Viewer GUI.

Kachako has a comparison and evaluation feature where users can plug their own evaluation metrics
as UIMA components. Figure 3 shows an example of a comparison workflow. Purple boxes in the right
are evaluation components that receives a pair of input ports of same type, performs comparisons.

Figure 3. A screenshot of a comparison/evaluation workflow.

Figure 4. A screenshot of the Annotation Viewer for a comparison/evaluation workflow.

72

Figure 4 shows a result window of such an evaluation workflow. The upper-left panel shows statistics
for each CAS, e.g. numbers of annotations. The upper-right panel shows statistics of evaluation metrics,
e.g. precision, recall, and F-score while these metrics could be customized as shown in the figure. Com-
parison/evaluation components should be implemented by developers as there could be variety of dif-
ferent metrics depending on the individual developers’ purposes. The lower-left panel is the Annotation
Viewer, while sofa selector is shown in the left as this is a multi-sofa case. The Annotation Viewer
shows rather a complex example, where many inter-annotation links are shown as arcs. The lower-right
panel shows the feature values of annotations. Users can also highlight which specific annotation was
matched with respect to a given metric.

Annotation Searcher is an optional function in Kachako to enable indexing and searching of CAS
contents. As the example screenshots illustrate, annotations could be very complex, whose number can
be huge. It is not realistic to manually check interested patterns of annotations. However, existing search
engines assume to index textual information and simple values in their default. Annotation Searcher
provides a special function to search by region algebra (Clarke et al., 1995)(Jaakkola et al.,
1999)(Masuda et al., 2009) which can cover most of required complex queries, including AND/OR
operators, inter-annotation relationships of overlap, follow, include, etc., and inter-annotation links
while mixing with the normal textual search conditions. The Annotation Searcher is built on top of
Apache Solr/Lucece3 search engine, adding this region algebra feature in an efficient way, allowing
automatic parallel indexing/searching. The Annotation Searcher can be called by just checking an option,
receiving any CAS content to index its text and annotations. Search result can be shown in the Annota-
tion Viewer to highlight corresponding annotations.

4 Simplified Interoperability and Kachako API

We suggest a simplified interface for interoperability in order for the developers to more easily employ
the functions of Kachako platform. We built an API version of Kachako based on this interface.

Firstly, we discard functions related to the workflow construction. Discarded functions include the
automatic workflow creation and its GUI.

Secondly, we designed a pseudo JCas interface which is similar to the original UIMA JCas but just a
normal Java class. This pseudo JCas has a text part and an annotations part as same as the original JCas.
The annotations part assumes to hold instances of a pseudo TOP type or descendants we define. That is,
the original type system is defined as a Java class hierarchy. Developers are simply required to produce
this pseudo JCas to use the Kachako API functions.

By these designs, we could reuse the Kachako platform functions without much changes. Most of the
functions are now available as API by these changes. For example, if developers generate any pseudo
JCas, they can simply call the Annotation Searcher API to index and search the content of the pseudo
JCas. The Annotation Viewer GUI is available just reading the pseudo JCas. The comparison and eval-
uation features of the Annotation Viewer GUI is also available by storing groups of annotations.

Modifying existing components into this simplified API is straightforward, because we used similar
names for corresponding classes and methods. We discarded the original JCas’s index feature, because
the pseudo JCas could be extended to store any field, while the annotations part could be used as the
original indexed annotations. We have already modified a couple of Kachako UIMA components into
this new interface style, which simply required to change several lines of codes per component.

5 Conclusion and Future Work

Interoperability framework is useful but we need different level of interfaces depending on the types of
users. UIMA provides a good framework for NLP users but it also restricts users’ design due to its
workflow management system. Kachako, a UIMA based NLP platform, also suffers the same problem
just because it is compliant with UIMA. We build a new API oriented system reusing the Kachako
platform, where the interoperability interface is simplified to be only stand-off annotations. This new
system allows developers to use its functions without learning costs. Future work includes a new feature
to employ machine learning features.

3 https://lucene.apache.org/

73

Acknowledgement

This work was partially supported by MEXT Kakenhi.

Reference
Baumgartner Jr., W. A., Cohen, K. B. and Hunter, L. (2008). An open-source framework for large-scale,

flexible evaluation of biomedical text mining systems. J Biomed Discov Collab, 3(1), 1. Journal Article, .
doi:1747-5333-3-1 [pii]10.1186/1747-5333-3-1

Bel, N. (2010). Platform for automatic, normalized annotation and cost-effective acquisition of language
resources for human language technologies. panacea. Procesamiento del Lenguaje Natural, 45, 327–328.
article, .

Blankenberg, D., Von Kuster, G., Coraor, N., Ananda, G., Lazarus, R., Mangan, M., Nekrutenko, A. and Taylor,
J. (2010). Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol, Chapter
19, Unit 19 10 1-21. Journal Article, . doi:10.1002/0471142727.mb1910s89

Clarke, C. L. A., Cormack, G. V. and Burkowski, F. J. (1995). An Algebra for Structured Text Search and a
Framework for its Implementation. The Computer Journal, 38(1), 43–56. doi:10.1093/comjnl/38.1.43

Cunningham, H., Maynard, D., Bontcheva, K. and Tablan, V. (2002). GATE: A framework and graphical
development environment for robust NLP tools and applications. 40th Anniversary Meeting of the
Association for Computational Linguistics (pp. 168–175). Conference Proceedings, Philadelphia, USA.

Ferrucci, D., Lally, A., Gruhl, D., Epstein, E., Schor, M., Murdock, J. W., Frenkiel, A., Brown, E. W., Hampp,
T., et al. (2006). Towards an Interoperability Standard for Text and Multi-Modal Analytics. Report, IBM
Research Report.

Hahn, U., Buyko, E., Landefeld, R., Mühlhausen, M., Poprat, M., Tomanek, K. and Wermter, J. (2008). An
Overview of JCoRe, the JULIE Lab UIMA Component Repository. LREC’08 Workshop, Towards
Enhanced Interoperability for Large HLT Systems: UIMA for NLP (pp. 1–8). Conference Proceedings,
Marrakech, Morocco.

Hernandez, N., Poulard, F., Vernier, M. and Rocheteau, J. (2010). Building a French-speaking community
around UIMA, gathering research, education and industrial partners, mainly in Natural Language
Processing and Speech Recognizing domains. LREC 2010 Workshop of New Challenges for NLP
Frameworks. Conference Proceedings, Valletta, Malta.

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M. R., Li, P. and Oinn, T. (2006). Taverna: a tool for
building and running workflows of services. Nucleic Acids Res, 34(Web Server issue), W729-32. Journal
Article, . doi:34/suppl_2/W729 [pii]10.1093/nar/gkl320

Ishida, T. (2006). Language Grid: An Infrastructure for Intercultural Collaboration. Proceedings of the
International Symposium on Applications on Internet. Conference Paper, IEEE Computer Society.
doi:10.1109/saint.2006.40

Jaakkola, J. and Kilpeläinen, P. (1999). Nested Text-Region Algebra (techreport).

Kano, Y. (2012b). Kachako: a Hybrid-Cloud Unstructured Information Platform for Full Automation of Service
Composition, Scalable Deployment and Evaluation. the 1st International Workshop on Analytics Services
on the Cloud (ASC), the 10th International Conference on Services Oriented Computing (ICSOC 2012).
Shanghai, China.

Kano, Y. (2012a). Towards automation in using multi-modal language resources: compatibility and
interoperability for multi-modal features in Kachako. The Eighth edition of the International Conference
on Language Resources and Evaluation (LREC 2012). Istanbul, Turkey.

Kano, Y. (2014). Solving History Exam by Keyword Distribution: KJP System at NTCIR-11 QALab Task. the
11th NTCIR (NII Testbeds and Community for information access Research) workshop (pp. 530–531).

Kano, Y., Baumgartner, W. A., McCrohon, L., Ananiadou, S., Cohen, K. B., Hunter, L. and Tsujii, J. (2009). U-
Compare: share and compare text mining tools with UIMA. Bioinformatics, 25(15), 1997–1998. Journal
Article, . doi:10.1093/bioinformatics/btp289

74

Masuda, K. and Tsujii, J. (2009). Tag-Annotated Text Search Using Extended Region Algebra. IEICE
Transactions on Information and Systems, E92.D(12), 2369–2377. article, .
doi:10.1587/transinf.E92.D.2369

Müller, C., Zesch, T., Müller, M.-C., Bernhard, D., Ignatova, K., Gurevych, I. and Mühlhäuser, M. (2008).
Flexible UIMA Components for Information Retrieval Research. LREC 2008 Workshop “Towards
Enhanced Interoperability for Large HLT Systems: UIMA for NLP” (pp. 24–27). Conference Proceedings,
Marrakech, Morocco.

Savova, G. K., Masanz, J. J., Ogren, P. V, Zheng, J., Sohn, S., Kipper-Schuler, K. C. and Chute, C. G. (2010).
Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component
evaluation and applications. Journal of the American Medical Informatics Association : JAMIA, 17(5),
507–13. BMJ Publishing Group Ltd. doi:10.1136/jamia.2009.001560

Schäfer, U. (2006). Middleware for creating and combining multi-dimensional NLP markup. Proceedings of the
5th Workshop on NLP and XML: Multi-Dimensional Markup in Natural Language Processing,
NLPXML ’06 (pp. 81–84). inproceedings, Stroudsburg, PA, USA: Association for Computational
Linguistics. Retrieved from http://dl.acm.org/citation.cfm?id=1621034.1621050

75

