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Abstract 

Automatic grammatical error detection for Chinese has been a big challenge for NLP researchers. 

Due to the formal and strict grammar rules in Chinese, it is hard for foreign students to master 

Chinese. A computer-assisted learning tool which can automatically detect and correct Chinese 

grammatical errors is necessary for those foreign students. Some of the previous works have 

sought to identify Chinese grammatical errors using template- and learning-based methods. In 

contrast, this study introduced convolutional neural network (CNN) and long-short term 

memory (LSTM) for the shared task of Chinese Grammatical Error Diagnosis (CGED). 

Different from traditional word-based embedding, single word embedding was used as input of 

CNN and LSTM. The proposed single word embedding can capture both semantic and syntactic 

information to detect those four type grammatical error. In experimental evaluation, the recall 

and f1-score of our submitted results Run1 of the TOCFL testing data ranked the fourth place in 

all submissions in detection-level. 

1 Introduction 

The growing global influence of China has prompted a surge of interest in learning Chinese as a foreign 

language (CFL) (Yu et al., 2014). The number of commonly used Chinese characters are about 2000, 

but there are a large number of corresponding vocabulary. In this way, some same words may have 

different meanings because of different contexts and moods. This has caused difficulties for foreigners 

to learn Chinese. However, while many learning tools of computer-assisted have been developed for 

students of English as a Foreign Language (EFL), there is relatively little support for CFL learners. 

Especially, these tools cannot automatically detect and correct Chinese grammatical errors. For example, 

although Microsoft Word has been integrated with robust English spelling and grammar checking for 

many years, the tools for Chinese are still primitive (Yu et al. 2014). The aim of Chinese Grammatical 

Error Diagnosis (CGED) shared task is to develop computer-assisted tools to help detect four types of 

grammatical errors in the written Chinese, including missing word (M), redundant word (R), word 

ordering error (W) and word selection error (S). 

The shared task is divided into three levels, including detection-, identification- and position-level. 

Detection-level task can be considered as a binary classification of a given sentence, i.e., correct or 

incorrect should be exactly as same as the gold standard. All error types will be treated as incorrect. 

Identification-level task could be considered as a multi-label classification task. In addition to the correct 

instance, all error types should be clearly identified. This level identified the error types for the wrong 

sentence. Besides identifying the error types, the position-level also judges the positions of erroneous 

range. Some of the previous works have sought to identify Chinese grammatical errors using template- 

and learning-based methods. 

Wu et al. (2010) proposed a combination of relative position and analytic template language model 

to detect Chinese errors written by American learners. Yu and Chen et al. (2012) used simplified Chinese 

corpus to study word ordering errors (W) in Chinese and proposed syntactic features, external corpus 

features and perturbation features for W detection. Cheng et al. (2014) detected and corrected word 
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ordering errors by using conditional random field (CRF) (Lafferty, 2010) and support vector machine 

(SVM) together with frequency learning from a large n-gram corpus. Zampieri et al. (2014) used 

frequent n-grams and news corpus as a reference corpus to detect errors in the written by CFL learners. 

Chen et al. (2015) used conditional random fields based on word attributes and grammar rules to detect 

Chinese syntax errors. However, there are several limitations of the existing methods, these methods on 

the one hand only consider part of the grammar rules, and the other hand only consider the order of the 

word or relationship. They didn’t consider the semantic relationship between words and the flexible 

expression and irregular grammar in Chinese.  

In this paper, we introduced convolutional neural network (CNN) and long-short term memory 

(LSTM) for the task of Chinese Grammatical Error Diagnosis. In contrast of traditional word-based 

embedding (Mikolov et al., 2013), single word embedding was used as input of CNN and LSTM, which 

is similar to character-level embedding in English. The proposed single word embedding can capture 

both semantic and syntactic information to detect those four type grammatical error. Then, the single 

word vectors were used to establish the sentence representation for detection-level and identification-

level tasks. In position-level, this paper also used single word embedding as input feature to train a 

multi-class support vector machine (SVM) to identify the error type of each word. The recall and f1-

score of the submitted results Run1 of the TOCFL testing data ranked the fourth place in all submissions 

in detection-level. In identification-level, the recall score also ranked in the fourth place.  

The remainder of this paper is organized as follows. Section 2 describes the learning method that used 

for Chinese grammatical error diagnosis. Section 3 shows the experimental results. Conclusions are 

drawn in section 4. 

2 Feature Selection and Error Detection 

The procedure for using single word embedding for each level grammatical error detection is described 

as follow. Given a large Chinese corpus, single word embedding are first trained through word2vec and 

fastText tools. Then, the obtained single word representations were input to CNN, LSTM and SVM for 

the mentioned three level diagnosis tasks. The following sub-sections explain the details of single word 

embedding and the CNN, LSTM and SVM models implementation. 

2.1 Single Word Embedding 

We use fastText (Bojanowski et al. 2016) and word2vec (Mikolov et al. 2013) toolkits to train single 

word embedding on Chinese Wikipedia corpus. 

Word2vec is a set of related models used to generate word embedding. These models are two-layer 

neural networks that are trained to reconstruct linguistic contexts of words. Word2vec toolkit takes large 

corpus text as its input and produces a high-dimensional null and each unique word in the corpus is 

assigned the corresponding vector in that space. In Chinese, a sentence may be generated to ambiguities 

segmentation, leading to different embedding results.  

 Example 1 “乒乓球拍卖完了” 

1. “乒乓球/拍卖/完了” (The auction of table tennis is over.) 

2. “乒乓球拍/卖/完了” (The paddles of table tennis are sold out.) 

 Example 2 “在这种环境下工作是太可怕了” 

1. “在/这种/环境/下工/是/太/可怕/了” 

2. “在/这种/环境/下/工作/是/太/可怕/了”(Working in such environment is horrible) 

  For Example 1, these two forms of segmentation are both syntactically and semantically. Even if the 

manual division of the sentences in Example 1 will be ambiguous. In this case, we can get correct 

sentence segmentation when taking the context into consideration. However, for example 2, only the 

second sentence segmentation is correct. Therefore, the segmented for Chinese word may produce 

ambiguities segmentation.  

  In addition, there are 696,326 words in the Chinese corpus of Chinese Wikipedia corpus. There are 

some uncertainties in the Chinese word segmentation, and it cannot completely cover the vocabulary of 

the training set. Such as “开一个” (open a), "上海"( Shanghai) did not appear directly in the corpus, but 
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these was split or integrated with other words, such as “开” (open), “一个”(one), "上海医院"( Shanghai 

Hospital). 

The grammatical rules of Chinese are different from English. The spaces between English words can 

be used to segment a sentence. In English, the method of word embedding acquires the characteristics 

of the sentence, but this method is not suitable for the Chinese sentences. Based on the characteristics 

of Chinese, a Chinese sentence without considering the context of the case can only use single word to 

segment the sentence. By using the single word embedding method, all Chinese sentences in corpus can 

be segmented into single words. Meanwhile, the single word embedding can be obtained by using either 

word2vec or fastText. Finally, we can get the text features of Chinese sentences. 

All words in the document are converted into vectors by lookup table, and the results are classified 

by linear classifier. As same as word2vec, fastText used n-grams to train embedding. The word vector 

will be derived from the n-grams. This improvement enhances the effect of the model on morphology, 

which means that the distance of similar words will be smaller. Thus, two different single word 

embedding are obtained by these two models.  

2.2 Grammatical Error Diagnosis Models 

Taking the single word embedding as input, the convolutional neural network (CNN) (LeCun, et al., 

1990), the recursive neural network (RNN) (Ronald, et al.,1989), and the long-short term memory 

(LSTM) (Hochreiter et al., 1997) were introduced to classify the sentences. The sequential LSTM model 

was shown in Fig. 1. 

The obtained single word vectors (word2vec and fastText) were fed to deep neural network models, 

such as CNN, RNN and LSTM. To tune the best performance, 5-folder cross-validation was applied. 
For unbalanced problem of positive and negative training samples in identification- and position-level, e.g. 

the number of train samples within R label is smaller L times than other classes, we divided the more 

abundant class into L distinct clusters. Then L classifiers were trained, where each classifier is trained on only 

one of the distinct clusters, but on all of the data from the rare class. That is, the data from rare class was used 

in the training of all L classifier. Finally, the averaging output of L models was considered as the final 

classification result. The cross-validation results of different models are shown in Table 1. Then, the 

support vector machine model is applied to find the error location in each error sentence.  

This paper completes the Shared Task requirement in the following three steps. 

 Determining the correctness of a sentence (detection-level). The method adopted in this paper 

is to segment each sentence in the training set by every single word, e.g. “你/开/一/个/庆/祝/会

/的/时/候/我/不/能/会/参/加/是/因/为/我/在/外/国/做/工/作”, so that each single word in a 

sentence corresponds to a single word vector. By using word2vec and fastText toolkit, we train 

single word embedding in the Chinese Wikipedia corpus. Then, we trained neural network 

models, such as CNN, RNN, and LSTM, to distinguish correct sentences from wrong sentences 

in training set. The trained models were then used to categorize each sentence in testing set into 

correct or wrong class. 

 Judge the four types of errors (identification-level). The method in this level can be considered 
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Fig. 1.  The sequential LSTM model 
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as a multi-label problem, which is something different with the detect-level. Each samples in this 

level contain only one or more error labels. Therefore, one-vs-all strategy were applied. It 

consists in fitting one classifier per class. For each classifier, the class (R, M, S and W) is fitted 

against all the other classes. One advantage of this approach is its interpretability. Since each 

class is represented by one classifier only, it is possible to categorize each sentence with more 

than one labels. For each error type, we trained a neural network model, such as CNN, RNN and 

LSTM to determine the error type in testing dataset. 

 Locate the wrong position (position-level). In this level, support vector machine (SVM) 

(Christopher, 1998) was used as classifier to locate the wrong position. As shown in Fig. 2, a 

single word with its context can be considered as a training sample, so that the word appeared in the 

middle can be judged whether the location is wrong or not. The size of slide window was set to 7 in 

our experiment. Then, single word embedding of 7 words were concatenated as a 1-D vector, and 

then fed into SVM. Since each position is assigned to one and only one label. That is, position can be 

either R, M, S, W or correct, but not both at the same time. Therefore, we trained a multi-class SVM 

to determine the error type of each word in testing sentence. 

3 Experimental Results 

3.1 Dataset 

Two Chinese corpus are given in this shared task: TOCFL and HSK. TOCFL is the traditional Chinese 

training set, and HSK is the simplified Chinese training set. Apart from the difference between 

traditional and simplified, there is almost no difference of grammar and expression. In the training set, 

each id corresponds to two sentences, including a wrong sentence, and a corrected formation of this 

sentence. The error type, as well as the location of the error range are also provided. Each wrong sentence 

may have one error type, or more. These data sets were preprocessed to extract the single words, the 

error types and the error positions. The TOCFL corpus consists of 10693 training texts and 3528 testing 

texts. Similarly, the HSK corpus consists of 10072 training texts and 3011 testing texts. 

3.2 Implement Details 

As previously mentioned, the proposed method includes neural network and single word embedding. 

The two parts may have their own parameters for optimization. We use fastText and word2vec toolkits 

to pre-train the word vector on Chinese Wikipedia corpus. 

The Chinese Wikipedia corpus is segmented by single words, we set the embedding dimension of each 

single word to 300. In this way, we can get 300-dimensional feature vectors for all single words in the 

corpus. There are 2563 single words in TOCFL training set and 2583 single words in HSK training set. 
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Fig. 2.  Single word embedding feature extraction for SVM 
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The two training sets have already contained the most commonly used 2000 Chinese characters. 

Therefore, this method can obtain the text feature for each sentence in the training set.  

We submitted three results for both TOCFL and HSK testing sets, the first submission (Run1) used 

the word representation trained by word2vec and classified by LSTM. The second submission (Run2) 

also used the LSTM to do the classification with word representation trained by fastText. Besides, the 

word representation of the third submission (Run3) was trained by word2vec and classified by CNN. 
The results can be obtained in three steps in Section 2.2. The sharing task has five evaluation indicators, 

they are false positive rate, accuracy (Acc), precision (Pr), recall (Re) and f1-score (F1).  

3.3 Experimental Results 

A total of 15 teams participated in the sharing of tasks, nine teams submitted the results of the operation 

in the final. For TOCFL training set, only 5 teams submitted the results of the operation. For the HSK 

test set, 9 teams have submitted the results of the operation. We have submitted three runs of results for 

both test sets. Table 2 shows the false positive rate. Table 3, Table 4 and Table 5 show the formal run 

results in detection-level, identification-level, and position-level respectively. 

  As shown in Table 2, the accuracy of the following two levels is reduced due to the high false positives. 

The results of Run1 and Run2 shows that the performance of word vectors trained by word2vec are 

better than that by fastText, since the fastText model makes the distance between similar words smaller. 

For example, the meaning of “trading” (贸易) is close to the “transaction” (交易) in Chinese, and 

word2vec can reflect this relationship. However, in the fastText, “trading” (贸易) is even more closer to 

“trade laws” (贸易法), which makes word vector by fastText cannot accurately reflect the sentence 

characteristics. Similarly, by comparing the results of Run1 and Run2, we can find that the classification 

performance of LSTM is better than CNN. Although CNN considers the local characteristics of the 

sentence, which makes it easy to high degree of similarity between the two sentences, LSTM can 

consider the relationship between the contexts of the sentence, which is particularly important in Chinese. 
Therefore, LSTM can capture the logical relationship between the sentences, e.g. cause and contrast 

relationship, etc. 
  Since the number of sentence in different label (correct and incorrect) is unbalanced, which will 

impact the result in all detection-, identification- and position-level. Hence, the wrong sentences are the 

majority in testing date. If all the sentences in the testing set are classified as wrong, the learning model 

will get high accuracy, precision, recall and f1-score, and even a higher false positive rate.  

4 Conclusion and Future work 

Since the grammar rules in Chinese are formal and strict, it is hard for foreign students to master Chinese. 

A computer-assisted learning tool which can automatically detect and correct Chinese grammatical 

errors is necessary for those foreign students. In this paper, neural network models, such as convolutional 

neural network (CNN) and long-short term memory (LSTM), were introduced for the task of Chinese 

Method 
Detection Level 

Accuracy Precision Recall F1 

LSTM 0.3769 0.3813 0.4088 0.3923 

RNN 0.4081 0.4053 0.4017 0.4013 

CNN 0.480 0.486 0.660 0.560 

Table 1: The cross-validation results of different methods using word2vec embedding 
 

Results 
False Positive Rate 

TOCFL HSK 

Run1 0.6289 0.5608 

Run2 0.5931 0.7122 

Run3 0.3382 0.271 

Average 0.5201 0.5147 

Table 2: The false positive rate results of different methods. 
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Grammatical Error Diagnosis. For capturing both semantic and syntactic information, we proposed the 

use of single word embedding as input of CNN and LSTM, which is similar to character-level 

embedding in English. In system evaluation, the recall and f1-score of our submitted results Run1 of the 

TOCFL testing data ranked the fourth place in all submissions in detection-level. 

By participating in this shared task for CGED, we have made a preliminary study in this area. The 

future work will focus on improving the accuracy of our models. 
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