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Abstract

Our purely neural network-based system
represents a paradigm shift away from the
techniques based on phrase-based statisti-
cal machine translation we have used in
the past. The approach exploits the agree-
ment between a pair of target-bidirectional
LSTMs, in order to generate balanced tar-
gets with both good suffixes and good
prefixes. The evaluation results show
that the method is able to match and
even surpass the current state-of-the-art
on most language pairs, but also ex-
poses weaknesses on some tasks moti-
vating further study. The Janus toolkit
that was used to build the systems used
in the evaluation is publicly available at
https://github.com/lemaoliu/Agtarbidir.

1 Introduction

Our primary system for the NEWS shared eval-
uation on transliteration generation is different
in character from all our previous systems. In
past years, all our systems have been based on
phrase-based statistical machine translation (PB-
SMT) techniques, stemming from the system pro-
posed in (Finch and Sumita, 2008). This year’s
system is a pure end-to-end neural network trans-
ducer. In (Finch et al., 2012) auxiliary neural
network language models (both monolingual and
bilingual (Li et al., 2004)) were introduced as fea-
tures to augment the log-linear model of a phrase-
based transduction system, and led to modest gains
in system performance. In the NEWS 2015 work-
shop (Finch et al., 2015) neural transliteration sys-
tems using attention-based sequence-to-sequence
neural network transducers (Bahdanau et al., 2014)
were applied to transliteration generation. In iso-
lation, the performance was found to be lower
than that of the phrase-based system on all of the

tasks, however we observed that the neural net-
work transducer was very effective when used as
a model for re-scoring the output of the phrase-
based transduction process, and this led to re-
spectable improvements relative to previous sys-
tems on most of the tasks.
Our focus this year has been on the development

of an end-to-end purely neural network-based sys-
tem capable of competitive performance. The
changes and improvements over the sequence-to-
sequence neural transducer used inNEWS2015 are
as follows:

• A target-bidirectional agreement model was
employed.

• Ensembles of neural networks were used
rather than just a single network.

• The ensembles were selected from different
training runs and different training epochs ac-
cording to their performance on development
(and test) data.

In all our experiments we have taken a strictly
language independent approach. Each of the lan-
guage pairs was processed automatically from the
character sequence representation supplied for the
shared tasks, with no language specific treatment
for any of the language pairs. Furthermore no pre-
processing was performed on any of the data with
the exception of uppercasing the English to ensure
consistency among the data sets.

2 System Description

2.1 Target-bidirectional Models
Our system uses the target-bidirectional approach
proposed in (Liu et al., 2016), and the reader is
referred to this paper for a full description of the
methodwe employ. In brief, we use pairs of LSTM
RNN sequence-to-sequence transducers that first
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Figure 1: En-Hi training performance.
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Figure 2: En-Ja training performance.

encode the input sequence into a fixed length vec-
tor, and then decode from this to produce the tar-
get. The method mitigates a fundamental short-
coming in neural sequence-to-sequence transduc-
tion, in which errors in prediction accumulate in
the context vectors used to make the predictions,
leading to progressively worse performance as the
generation process proceeds. The result is unbal-
anced output which has high quality prefixes that
degrade to lower quality suffixes. Our bidirec-
tional agreement model overcomes this by using a
pair of RNNs that generate from both left-to-right
and right-to-left, producing 2 k-bests lists which
are combined1 in order to encourage agreement be-
tween the models. In (Liu et al., 2016) it is shown
that the resulting output is both more balanced and
of substantially higher quality than that resulting
from either unidirectional model. Furthermore it

1In all experiments reported here we used the joint k-best
approximation method.
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Figure 3: En-He training performance.

is shown that the gains from this method cannot be
obtained from larger ensembles of unidirectional
models. The approach was shown to be effective
in both grapheme-to-phoneme conversion (where
it set a new state-of-the-art benchmark), and in
English-Japanese transliteration. This paper eval-
uates the method on a much wider variety of tasks
highlighting some of the strengths and weaknesses
of the new approach.

2.2 Ensembles
Multiple neural networks were combined into en-
sembles. This was done by linear interpolation
(with equal weights) of the probability distribu-
tions produced by the networks over the target vo-
cabulary during the beam search decoding.

3 Experimental Methodology

3.1 Corpora
The neural networks were trained on all of the data
for each task, with the exception of 500 pairs which
were used for development. The development data
was used in order to determine whether or not the
networks had fully trained, and also as a means
of selecting the neural network models that com-
prised the ensembles.
In this year’s workshop, 15 runs on the test data

were permitted. 12 of the runs were used to eval-
uate the models to be used in the ensembles, and
the remaining 3 runs were used to determine the
ensemble size. In order to remove the advantage
of using test data during system development (to
maintain cross-comparability with previous years’
results), one of the ensembles used was composed
of all 12 of the networks (‘12-ensemble’ in Fig-
ure 1).
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In addition, in order to observe the performance
of the models on the training set during training, a
sample of 1000 pairs was taken from the training
data.

3.2 Training

Each of the systems was trained for 100 epochs.
For all language pairs the accuracy on the devel-
opment set appeared to stop improving after ap-
proximately 50 epochs. Graphs showing the per-
formance of the systems during training are shown
in Figure 1 which represent typical training runs,
together with interesting exceptions in Figures 3
and 2. The green (upper) solid line on the graphs
represents the accuracy on training data, the blue
(lower) solid line represents the accuracy on un-
seen development data, and the dashed purple line
represents the performance of an ensemble com-
posed of the best performing 12 neural networks
on the development set.
The curves in Figure 1 are typical, with the

performance of the system on training data still
steadily increasing at epoch 100, but with the per-
formance on development data reaching its maxi-
mum value often by epoch 20, and almost always
by epoch 50. We therefore conclude that the net-
works are all fully trained after 50 epochs. Fur-
thermore, we did not observe any noticable degra-
dation in performance after epoch 50 due to over-
fitting.
The curves in Figures 2 and 3 are atypical.

On En-Ja the variance in accuracy from epoch to
epoch was unusually high. The gains from using
ensembles of networks were also larger than for
other language pairs. In addition, the accuracy on
training data remained lower than most language
pairs. The curves for En-He show the opposite be-
havior. The accuracy on training data is 1.0 af-
ter about 35 epochs indicating that the neural net-
work has effectively memorized the training data.
At this point the variance in accuracy from epoch
to epoch falls to almost zero. The gains from using
ensembles for this language pair are very small.
We were unable to train a neural network with

high accuracy on the Ar-En dataset, and as a conse-
quence did not enter a system on this task this year.
The reasons for this are not yet clear, but the sys-
tem had reasonably good f-scores with very low
accuracy. The networks seemed able to produce
plausible output, that was rarely an exact match
with the reference. We believe the neural network
may have been able to generalize from the data,
but was not able to memorize it well.

Training times were dependent on the language
pair. Most language pairs completed the 100-
epoch training on a single Tesla K40m GPU in un-
der a day. Training for theArabic-English taskwas
around 10 times longer due to the larger training
set.

3.3 Ensemble Selection
In order to form ensembles we need to select the
ensemble size, and also the neural networks that
will comprise the ensemble. In pilot experiments,
we found that it is possible to obtain respectable
improvement by building ensembles from the net-
works at different epochs during training. Our
strategy was to train 5 target-bidirectional RNNs
for each language pair, and select the ensemble
from the epochs within these 5 runs.
In this year’s workshop, 15 evaluations were

permitted on test data for each task. We used 12
of these to evaluate the target-bidirectional RNNs,
and 3 to select the ensemble size from {4, 8, 12}.
The ensembles of size 12 were selected using de-
velopment data only as follows: the best 2 target-
bidirectional RNNs were selected from epochs of
each of the 5 training runs, then the best 2 target-
bidirectional RNNs were chosen from the remain-
ing epochs/runs. Ensembles of 4 and 8 were se-
lected from the candidate set of 12 (that were se-
lected using the development set), according to
their accuracy on the test data. We found a mod-
erate positive correlation between training and de-
velopment set accuracy at each epoch of the train-
ing. This suggests that the variance in the accuracy
of networks from epoch to epoch during training
is not simply random noise, but that ‘good’ and
‘bad’ networks exist at different epochs, and this
motivated our strategy to select them based on de-
velopment set accuracy.

3.4 Architecture and Parameters
The network architecture for all of the networks
used in all tasks was the same, and was chosen be-
cause it has proven to be effective in other experi-
ments. The computational expense associatedwith
working with neural networks on this task prohib-
ited us from running experiments to select the op-
timal architecture, and therefore it is possible that
architectures that are considerably better than the
one we have chosen exist.
The RNNs consisted of a single layer of 500

LSTMs, with 500-unit embeddings on the source
and target sides. AdaDelta (Zeiler, 2012) was used
for training with a minibatch size of 16. A beam
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Language Pair 2012 2015 2016 2016 2016
system system Baseline 12-ensemble Primary

English to Bengali (EnBa) 0.460 0.483 0.287 0.498 0.498
Chinese to English (ChEn) 0.203 0.184 0.098 0.211 0.214
English to Chinese (EnCh) 0.311 0.313 0.193 0.309 0.316
English to Hebrew (EnHe) 0.154 0.179 0.109 0.184 0.189
English to Hindi (EnHi) 0.668 0.696 0.270 0.709 0.715
English to Japanese Katakana (EnJa) 0.401 0.407 0.209 0.464 0.465
English to Kannada (EnKa) 0.546 0.562 0.196 0.570 0.583
English to Korean Hangul (EnKo) 0.384 0.363 0.218 0.348 0.352
English to Persian (EnPe) 0.655 0.697 0.482 0.691 0.696
English to Tamil (EnTa) 0.592 0.626 0.258 0.613 0.629
English to Thai (EnTh) 0.122 0.157 0.068 0.179 0.187
English to Japanese Kanji (JnJk) 0.513 0.610 0.461 0.327 0.327
Thai to English (ThEn) 0.140 0.154 0.091 0.194 0.196

Table 1: The official evaluation results in terms of the top-1 accuracy.

search with beam width 12 was used to obtain the
k-best hypotheses. Decoding was aborted, and
a null hypothesis output when a target sequence
was generated that was three times longer than the
source (sequences of length less than 6 were not
aborted).

4 Evaluation Results

The official scores for our system are given in Ta-
ble 1, alongside the scores of our previous sys-
tems on the same test set, and the scores of the
official baseline system. The highest scores are
highlighted in bold, and it is clear that this year’s
system has attained higher accuracy than the sys-
tems from previous years on most of the lan-
guage pairs. For some pairs, such as English-
Katakana, English-Thai and Thai-English, the im-
provement is substantial. However, there are also
tasks in which the neural system was not able to
match the performance of the previous system, no-
tably English-Japanese Kanji, English-Hangul and
Arabic-English. The first two of these tasks have
quite large vocabularies on the target side, and this
maymake them less suitable for a neural approach.
The Arabic-English task has no such issues, and
furthermore has a far larger training corpus avail-
able which ought to favor the neural method, how-
ever it differs from the other tasks in that short
vowels are not represented in written Arabic, but
must still be generated on the target side. Further
research is necessary to determine the true cause,
but our conjecture is that phrase-based systems,
which effectively memorize the training data in
a piecewise manner, are consequently more suc-

cessful on this task than neural networks which
are geared more towards generalization rather than
memorization.

5 Conclusion

The system used for this year’s shared evaluation
signals a paradigm shift away from the phrase-
based systems based on machine translation tech-
nology used by our group in earlier years. Our end-
to-end neural machine transliteration system lever-
ages the agreement between target-bidirectional
RNN ensembles to improve its performance. On
most of the transliteration tasks the system has
shown itself to be capable of matching and even
surpassing the current state-of-the-art. We believe
neural networks have a bright future in the field
of transliteration generation, and the experiments
on the NEWS Workshop datasets have uncovered
outstanding issues that will make interesting topics
for future research as this technology matures.
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