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Abstract

Traditional name transliteration methods
largely ignore source context information
and inter-dependency among entities for
entity disambiguation. We propose a novel
approach to leverage state-of-the-art Entity
Linking (EL) techniques to automatically
correct name transliteration results, us-
ing collective inference from source con-
texts and additional evidence from knowl-
edge base. Experiments on transliterating
names from seven languages to English
demonstrate that our approach achieves
2.6% to 15.7% absolute gain over the
baseline model, and significantly advances
state-of-the-art. When contextual informa-
tion exists, our approach can achieve fur-
ther gains (24.2%) by collectively translit-
erating and disambiguating multiple re-
lated entities. We also prove that com-
bining Entity Linking and projecting re-
sources from related languages obtained
comparable performance as themethod us-
ing the same amount of training pairs in
the original languageswithout Entity Link-
ing.1

1 Introduction

In Machine Translation and Cross-lingual Infor-
mation Extraction tasks, an important problem
is translating out-of-vocabulary words, mostly
names. For some names, we can perform translit-
eration (Knight and Graehl, 1997; Knight and
Graehl, 1998), namely converting them to their ap-
proximate phonetic equivalents. Previous meth-
ods have generally followed the two-step approach
proposed by (Al-Onaizan and Knight, 2002):

1The transliteration systems are publicly available for re-
search purpose at http://nlp.cs.rpi.edu/transliteration/

Generating transliteration hypotheses based on
phoneme, grapheme or correspondence, and val-
idating or re-ranking hypotheses using language
modeling (Oh and Isahara, 2007) or Informa-
tion Extraction from the target language (Ji et al.,
2009).
In this paper, we focus on back-transliteration

from languages lacking in Natural Language Pro-
cessing (NLP) resources to English for two rea-
sons: (1) In NLP tasks such as name tagging, we
can take advantage of rich English resources by
transliterating a name to English. Our analysis
of 986 transliteration pairs from the Named Enti-
ties Workshop 2015 (NEWS2015) 2 Bengali de-
velopment set shows that 574 English names can
be found in the DBpedia 3, while only 47 Bengali
names exist in the same knowledge base (KB). (2)
Back-transliterating names in other languages to
English make them understandable by more users
since English is widely spoken as a global lingua
franca.
In this paper we analyze the following remain-

ing challenges from previous methods:
Challenge 1: Lack of Entity Grounding.

Previous methods developed for transliteration
benchmark tasks such as Named Entity Workshop
(NEWS) Shared Task (Li et al., 2009) usually fo-
cus on transliterating independent names without
properties (or contextual information). For exam-
ple, “Kalashnikov” and “Calashnikov” are both ac-
ceptable transliterations for “卡拉什尼科夫” (kǎ
lā shí ní kē fū) in terms of pronunciation. If
we know that it refers to a rifle series, however, we
should transliterate “卡” to “Ka” instead of “Ca”
here. Therefore, we propose to ground the translit-
eration results to a KB whenever the contexts are
available.

2http://www.colips.org/workshop/news2015/index.html
3http://dbpedia.org/resource/
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Challenge 2: Information-Losing. As pointed
out in (Knight and Graehl, 1998), the information-
losing problem of transliteration makes it difficult
to invert. For example, “la” and “ra” are two dis-
tinct sounds in English, while they usually collapse
to “拉” (lā) in Chinese, which lacks the English
“ra” sound.
To tackle these two challenges, we propose a

novel approach that links a given name to a KB
in target language, and subsequently exploits the
linking results to correct transliteration hypothe-
ses.

Name String Transliteration 1 Transliteration 2
雷诺 Renault Reno
léi nuò French automobile

manufacturer
city in Nevada

奥尼尔 (Eugene) O’Neill (Shaquille) O’Neal
ào ní ěr an American play-

wright
an American retired
basketball player

亚瑟 Arthur Usher
yà sè Arthur Pendragon Usher Raymond IV

Table 1: Chinese-to-English Transliteration Ex-
amples for Ambiguous Entities

Challenge 3: Lack of Context. Without spe-
cific context, a name string may refer to different
entities and thus should be transliterated to differ-
ent forms. Table 1 shows some instances which re-
quire entity disambiguation before transliteration.
Take the name “亚瑟” (yà sè) as an example, it
has several possible transliteration hypotheses. If
we find “雷基”(Lackey) in the same document, we
can apply collective inference to link their translit-
eration candidates to a KB. Since “James Lackey”
appears in the infobox of “Usher (Singer)”, we
take “Usher” and “Lackey” as transliterations for
“亚瑟” and “雷基” respectively.
Challenge 4: Lack of Training Pairs. Statis-

tical transliteration models usually rely on thou-
sands of name pairs for training. However, it might
be costly to collect required training data for low-
resource languages. To address this issue, we pro-
pose a simple but effective method which translit-
erates names in a low-resource language using a
model trained on one of its similar languages by
means of a character mapping table derived from
Unicode charts.

2 Approach Overview

Figure 1 illustrates the overall framework of our
approach, which consists of four steps as follows.
1. Training. We employ a many-to-many

Figure 1: Joint transliteration and linking model
framework.

alignment model (m2m-aligner) (Jiampojamarn et
al., 2007) to segment and align each transliteration
pair in the training data.
2. Transliteration. For each name in the

test set, we apply a joint source-channel model
(JSCM) (Li et al., 2004) to generate a list of
transliteration hypotheses, where the probabilities
of n-grams of transliteration unit pairs are esti-
mated from the alignment result.
3. Linking. We link each transliteration

hypothesis to an English KB using a language-
independent entity linker (Wang et al., 2015). If
context exists, we apply collective inference to link
multiple related names simultaneously.
4. Hypotheses Correction. Finally, we re-

vise each hypothesis using the surface forms of the
linked entities, and merge and rank the revised hy-
potheses.
The detailed techniques for each step will be

presented in the following sections.

3 Transliteration Hypotheses Generation

We use the joint source-channel model (JSCM)
proposed in (Li et al., 2004) as our baseline model.
Given a source name α consisting of a charac-

ters {x1, x2, ..., xa} and its transliteration β con-
sisting of b characters {y1, y2, ..., yb}, there exists
an alignment γ with K transliteration unit pairs
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⟨s, t⟩k = ⟨xixi+1...xi+p, yjyj+1...yj+q⟩, where
each s or t corresponds to one or more source or
target characters, respectively. The JSCM is an n-
gram model defined as

P (S, T ) = P (⟨s, t⟩1, ⟨s, t⟩2, ..., ⟨s, t⟩K)
= P (α, β, γ)

=
K∏

k=1

P (⟨s, t⟩k|⟨s, t⟩k−1
k−n+1)

We can formulate forward-transliteration and
back-transliteration as

β̄ = argmax
β,γ

P (α, β, γ)

ᾱ = argmax
α,γ

P (α, β, γ)

Table 2 shows that the performance of JSCM
on forward-transliteration (English to foreign lan-
guage) is comparable with state-of-the-art (Nico-
lai et al., 2015; Kunchukuttan and Bhattacharyya,
2015) on the NEWS2015 development sets,
thereby showing it is a simple but effective model.

Target DTL SEQ SMT P M T M+T JSCM
Hindi 43.5 40.4 36.8 38.8 41.0 37.0 40.5 38.5
Kannada 32.7 35.7 28.1 27.6 32.7 28.9 30.4 26.9
Bengali 37.1 37.8 34.9 35.4 38.2 34.5 36.4 37.1
Tamil 38.5 34.4 29.3 28.6 32.4 31.4 33.4 30.3
Hebrew 61.3 56.6 53.1 54.6 56.4 54.4 54.5 54.9
Thai 36.2 35.8 30.6 - - - - 28.9

Table 2: A comparison of different baseline sys-
tems on transliteration accuracy (%). Scores
of DTL (DirecTL+), SEQ (Sequitur), and
SMT (statistical machine translation) are reported
in (Nicolai et al., 2015). Scores of various
data representation methods, namely P (character),
M (character+boundary marker), T (bigram), and
M+T (bigram+boundary marker), are reported in
(Kunchukuttan and Bhattacharyya, 2015)

.

In our experiments, we estimate the conditional
probability P (⟨s, t⟩k|⟨s, t⟩k−1

k−n+1) from the align-
ment result generated by the many-to-many align-
ment model (m2m-aligner).
Originally designed for letter-to-phoneme con-

version, them2m-aligner has also been used in pre-
vious transliteration-related tasks (Jiampojamarn
and Kondrak, 2009; Jiampojamarn et al., 2009;
Dou et al., 2009; Cook and Stevenson, 2009; Ji-
ampojamarn et al., 2008). We apply the m2m-
alingner to the training data to obtain segmenta-
tions and alignments. For languages with a large

number of characters, training pairs may not cover
all characters. As a fallback option, we extend the
m2m-aligner’s output with pronunciations or ro-
manizations of characters out of the training data.
For example, if the Chinese character 孔 (kǒng)
is absent in the training set, we use kong as its
transliteration.

4 Entity Linking

We apply a state-of-the-art language-independent
Entity Linker (Wang et al., 2015) to link each
transliteration hypothesis to an English KB (DB-
Pedia in our experiment). For each entity name
mention m, this entity linker uses the surface form
dictionary ⟨f, e1, e2, ..., ek⟩, where e1, e2, ..., ek is
the set of entities with surface form f in the KB
according to their properties (e.g., labels, names,
aliases), to locate a list of candidate entities and ap-
ply salience ranking by an entropy based approach.
After that, it computes similarity scores for each
entity mention and candidate entity pair ⟨m, e⟩ and
re-ranks the candidate entities.

Figure 2: Collective Inference based Entity Link-
ing.

If the context is available, the linker adopts an
unsupervised collective inference approach which
links multiple entity mentions simultaneously and
selects corresponding entity candidates which are
most strongly connected in the KB as the final link-
ing results. Figure 2 shows the workflow of Col-
lective Inference based Entity Linking. It first con-
structs a Mention Context Graph Gm for all entity
mentions M = {m1,m2, ..., mn} which co-occur
within a context window4 and generates a ranked
entity candidate list for each entity mention. KB
can be represented as a graph Gk that consists of
entities as vertices and weighed relations as edges.
Hence, it also constructs a Candidate Graph which

4In this paper, we heuristically set the context window to
be previous and next three entity mentions.
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is a set of graphsGi
c(i = 1, 2, ..). Here, each graph

Gi
c represents a set of entity candidate for mentions

in M . Finally, it applies a Candidate Graph col-
lective validation approach that computes similar-
ity scores betweenGm andGi

c and selectsGi
c with

the highest score as the final linking results.
In our experiment, we first transliterate all men-

tions with the JSCM. During the entity linking
step, transliteration hypotheses of mentions within
a context windows are linked simultaneously.

5 Hypothesis Correction

With a linked entity set Ei for each transliteration
hypothesis βi, we revise βi using the entity surface
form based on following rules: (1) Split a translit-
eration hypothesis and the surface form of a linked
entity into tokens. (2) Compute string similarity
between every hypothesis token and entity token.
(3) Revise each hypothesis token to the its most
similar entity token.
For example, the top-1 transliteration hypoth-

esis of “พอร์เตอร์, แคเทอรีน แอนน์” (Thai, Poter,
Katherine Anne) is “Porter, Catherine Ann”, and
Katherine_Anne_Porter is one of the linked en-
tities. Katherine, Anne, and Porter are used
to revise Catherine, Ann, and Porter, respectively,
regardless of the token order.
We compute the score of the revised hypothe-

sis of transliteration βi and entity candidate cj as a
product of the transliteration score and the linking
score.

Figure 3: Hypothesis correction.

Figure 3 shows the top-5 transliteration hy-
potheses of “卡拉什尼科夫” (kǎ lā shí
ní kē fū, Kalashnikov), surface forms of top-
3 linked entities for each linkable hypothesis, and
the revised hypotheses. Identical revision results
from divergent transliteration hypotheses and en-
tity candidates are considered as the same hypoth-
esis, and their scores are summed. After merging

revised hypotheses, we rank them and select the
top-1 as the final transliteration, which in this ex-
ample is Kalashnikov (3.2).
Ambiguous names which refer to more than one

entity may be transliterated in different ways. If
the context is provided, we can eliminate ambi-
guity based on collective inference. For example,
in the sentence, “在拉斯维加斯及亨德森之后，
雷诺是内华达州人口第三多的城市 (Reno is
the third most populous city in the state of Nevada
after Las Vegas and Henderson),” the translitera-
tions of “雷诺” (léi nuò) include Reno, a city in
Nevada, Renault, a French automobile manufac-
turer, and Raynor, a virtual role in StarCraft. In
order to link it to the correct entity, we first in-
dependently transliterate all mentions, namely “拉
斯维加斯” (Las Vegas), “亨德森” (Henderson)，
“雷诺” (Reno) and “内华达” (Nevada). Then we
apply collective entity linking to these mentions.
Since Reno has explicit and strong relations with
Las Vegas (another city in Nevada), Henderson
(another city in Nevada) and Nevada (the state of
Reno) in the KB, it is ranked higher than other can-
didates by the linker.

6 Cross-lingual Projection

For low-resource languages, it is not feasible to di-
rectly apply this framework because manually col-
lecting transliteration training pairs takes consider-
able time and effort.
We observed that some related languages share

the same or similar character sets, linguistic char-
acteristics and transliteration conventions. For ex-
ample, a virama is employed to suppress the in-
herent vowel, namely schwa, of its preceding con-
sonant in many Indic scripts. In the light of this
fact, it is possible to transfer words or transliter-
ation rules across related languages and thereby
avoid collecting extra training data for each lan-
guage. Therefore, we propose a Unicode name-
based projection scheme that transfers IL words to
their character equivalents in a high-resource re-
lated language so that we can apply the translitera-
tion model trained for the high-resource language.
This method is very similar to our recent work on
building grapheme-to-phoneme models across re-
lated scripts (Deri and Knight, 2016).
In Unicode character code charts5, most vowels,

consonants and signs are assigned a name with the
following format:

5http://unicode.org/charts
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SCRIPT TYPE NAME
For example, Bengali independent vowel “অ”,

dependent vowel sign “ ু” and consonant “ক” are
named BENGALI LETTER A, BENGALI VOWEL
SIGN U and BENGALI LETTER KA, respectively.
Utilizing these Unicode character names as a

bridge, our approach consists of the following
steps: (1) For a low resource language L, select its
related language L′ whose transliteration pairs can
be extracted from existing resources with minimal
effort; (2) Construct a L to L′ character mapping
table based on Unicode character names; (3) Con-
vert a L name α to α′ using its corresponding L′

characters in the mapping table; (4) Transliterate
α′ with the model trained on pairs in L′.
To illustrate this idea, the following example

shows how to transliterate Hindi word “अमेरिका”
(America) using a Bengali-to-English translitera-
tion model.

Hindi Name Bengali Name
अ a অ a
क ka ক ka
म ma ম ma
र ra র ra
ा aa া aa
ि i ি i
े e ে e
् virama ্ virama

Table 3: Hindi to Bengali Mapping Table (Part)

First, we derive a mapping table from Unicode
charts of Hindi and Bengali scripts as the the Ta-
ble 3 shows. For example, the Hindi vowel आ
(DEVANAGARI LETTER AA) is mapped to its Ben-
gali counterpart ই (BENGALI LETTER AA).
Next, the Hindi word “अमेिरका” is converted

to “অমেরিকা” character by character following the
mapping table. Note that the result is not ex-
actly the same as “আমেরিকা”, the actual Bengali
word representing “America”. Finally, “অমেরিকা”
is transliterated into “America” using the Bengali-
to-English transliteration model.

Figure 4: Transliterate Hindi using Bengali model.

7 Experiments

In this section we will present experimental re-
sults for context-independent, context-dependent,
and cross-lingual projection settings respectively.

7.1 Context-Independent Transliteration
We train transliteration models of six languages
with the NEWS2015 data sets and use correspond-
ing development sets as our test set since the of-
ficial test sets are not publicly available. Addi-
tionally, because some source names lack matched
entities in DBpedia, we also evaluate with sub-
sets containing only linkable names, whose gold
transliterations match at least one entity in DBpe-
dia. Table 4 summarizes the data statistics6,7. We
evaluate the performance based on a strict accu-
racymetric by checking whether our top 1 hypoth-
esis of each name exactlymatches the ground-truth
transliteration.

Source Train Test Linkable
Hindi 11,946 997 606
Kannada 9,955 1,000 571
Bengali 13,855 986 574
Tamil 9,959 1,000 537
Hebrew 9,501 1,000 924
Thai 25,597 1,994 1,478

Table 4: # of name pairs in NEWS2015 data sets.

Source Overall Linkable only
JSCM +EL +LM JSCM +EL

Hindi 40.3 44.8 41.2 42.7 54.3
Kannada 29.8 37.6 34.2 30.0 41.5
Bengali 49.4 52.0 49.5 45.1 54.9
Tamil 20.2 29.0 24.6 23.5 41.5
Hebrew 21.5 37.2 27.5 21.7 38.0
Thai 29.3 44.0 32.8 29.3 44.8

Table 5: Back-transliteration accuracy on
NEWS2015 development sets (%).

We use JSCM as our baseline model, which has
comparable performance with other models used
in the NEWS Shared Task. Since we focus on
back-transliteration from low-resource languages
to English in this work, and only Thai has the
back-transliteration task and data set, we reverse
the source and target names of other languages in
our experiments. In addition, we train a unigram
language model (LM) from Gigaword8 to revise

6MSR India owns the English-Hindi, English-Tamil,
English-Kannada, English-Bengali and English-Hebrew task
corpora. http://research.microsoft.com/india

7NECTEC owns the Thai-English task corpus.
8https://catalog.ldc.upenn.edu/LDC2003T05
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Source Name Top-1 Hypothesis +EL Comment
Hindi गैरी Garri Garry vowel

वोर्पोमेर्न Vorpomern Vorpommern double consonants
Kannada �ಾಂ�ೆ¾ಕ�್ Manzrekar Manjrekar consonant

ಬು�ಾ�ೆ¡್® Butcharest Bucharest consonant
Bengali ক্যাম্পারডাউন Campardown Camperdown vowel

মুসোলিনী Musolini Mussolini double consonants
Tamil ஜெயதி Jayadi Jayati consonant

கல்யுக் Kalyuk Kalyug consonant
Hebrew קאלינינגראד Caliningrad Kaliningrad consonant

שישילוב Shishilov Shishelov vowel
Thai สกาลาแวก Scalawague Scalawag consonant

เฟอร์ลิงเกตติ Ferlinketi Ferlinghetti consonant

Table 6: Transliteration correction examples.

transliteration hypotheses and compare its perfor-
mance with the entity linker. Gigaword contains
4.16 billion words, 267 million named entities and
7.4 million unique named entities.
The overall performance is shown in Table 5.

We can see that entity linking improves the
transliteration accuracy for all languages, espe-
cially for the linkable subsets. Previous results on
back-transliteration are only available for Thai-to-
English, and our top-1 accuracy (44.0%) notably
advances the previous highest score (39.5%) re-
ported in (Nicolai et al., 2015). Besides, our ex-
periments show that the entity linker outperforms
the language model trained on a large corpus.
In Table 6, we list some correction examples for

languages we evaluate. Entity Linking has mainly
made three types of corrections as follows.
1. Double consonants. Repeated consonant let-

ters in English, such as “tt”, are usually transliter-
ated into a single character in languages not written
in Roman script. Since double consonants are less
frequent than single ones, statistical models tend
to back-transliterate a character into a single cor-
responding English letter, e.g., “斯”(sī) to “s” in-
stead of “ss”.
2. Consonant. Because some orthographies

lack characters to represent all English consonants,
different English consonants may correspond to
the same character in other languages. For exam-
ple, “k” and “g” are usually transliterated into “க”
in Tamil.
3. Vowel. The correspondences between En-

glish vowel letters and phonemes are complex. A
vowel letter may be pronounced in different ways,
e.g., the three a’s in banana, while distinct vowel

letters may have the same pronunciation, e.g., the
first e and second i in ingredient. Such inconsis-
tency makes back-transliteration from shallow or-
thographies more difficult.
Although entity linking explicitly improves the

transliteration quality, we observe that some cor-
rect transliteration hypotheses are mistakenly re-
vised due to the lack of context and correspond-
ing entities. For example, “लखपति” is correctly
transliterated to Lakhpati but subsequently revised
to Lakhpat because Lakhpati is absent in the KB.

7.2 Context-Dependent Transliteration
In order to evaluate context-dependent translitera-
tion, we train a Chinese-to-English transliteration
model on 44, 146 name pairs (Ji et al., 2009), and
use the Chinese-to-English Entity Discovery and
Linking data set in NIST TAC-KBP2015 evalua-
tion (Ji et al., 2015) since the NEWS2015 Chinese
data set only contains transliteration pairs without
any contextual information. This data set contains
160 documents and 11, 066 Chinese mentions, in-
cluding 1, 239 person names (469 unique ones).
Each name has a ground-truth transliteration de-
rived from English KB title.

JSCM Non-Collective Collective
32.9 56.4 57.1

Table 7: Impact of collective inference on translit-
eration (%).

Table 7 presents the results for person names.
We can see that by exploiting the contextual in-
formation, collective inference provides more ac-
curate entity linking and hence further enhances
transliteration.
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Figure 5: Transliteration accuracy score with dif-
ferent sizes of training pairs. The first language of
each pair is the language that the model is trained
on, and the second one is the test language.

7.3 Cross-lingual Projection

In projection experiments, we train transliteration
models on the NEWS2015 data sets described in
Section 7.1, and evaluate each with other lan-
guages using the projection approach proposed in
Section 6. Among the six languages, our results
show that the Hindi model is the best for transliter-
ating Bengali and Kannada names, while the Kan-
nada model is the best for transliterating Hindi
names. Learning curves of these three pairs de-
picted in Figure 5 show that it is feasible to translit-
erate names using a model trained on a related lan-
guage without extra data. For example, a train-

ing set of 10, 000 Hindi-English pairs achieves
the same performance as 4, 000 Kannada-English
pairs on transliterating Kannada names.
Nevertheless, we still observe a performance

gap between training from the related language
and the source language itself. This indicates
that after applying our character mapping-based
method, dissimilarities may still exist between the
representations of the same name from two re-
lated languages. For example, because “भ” is the
most similar Hindi character for Bengali charac-
ter “ভ”, we mapped “ভ” to “भ”. However, apart
from their common transliteration “bh”, “ভ” can
also be transliterated to “v”, such as “ভেঙ্কটেশ”
(Venkatesh), thereby leading to some incorrect
transliterations, e.g., “अभिनभास” (Abhinbhaas)
to “Abhinvass”. Another example is that the com-
bination of “ॉ” and “क” is usually transliterated
to “ock” in the Bengali training set, whereas its
Hindi equivalent “োক” is usually transliterated to
“och” or “ok”, and therefore “लॉकेट”(locket) is
incorrectly transliterated to “loket”. In addition,
representations referring to the same entity may
have divergent origins in different languages (e.g.,
“German” has variants including “Germanisch”,
“Deutsch”, “Alemannisch”, “niemy” and “Sach-
sen”).
However, we see that such performance gap can

be narrowed or filled by entity linking. In Fig-
ure 5, Kannada-Hindi w/EL and Hindi-Kannada
w/EL even outperform Hindi-Hindi w/o EL and
Kannada-Kannada w/o EL, respectively.
We also train combination models using differ-

ent sizes of pairs of a source language and 10, 000
pairs of its related language. Such a combination
dramatically improves the performance, which
means that by borrowing pairs from a related lan-
guage, we can develop a high-performance model
with only a small amount of transliteration pairs of
the source language.
We also find that it is difficult to construct map-

ping tables for Thai and Hebrew since they share
few similar character names with Hindi, Kannada,
Bengali, and Tamil. Additionally, despite of the
fact that Kannada and Tamil lie on the same lan-
guage family branch, they have evolved indepen-
dently for centuries and have different representa-
tions of sounds, which to some extent explainswhy
the projection between them is not as effective. For
example, in Kannnda script, there are different let-
ters for ka (ಕ) and ga (ಗ), whereas Tamil only uses
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one letter க (ka).

7.4 Remaining Challenges
Regardless of our improvement and promising re-
sults, the overall strict accuracy name translitera-
tion is still quite low. We categorize the remaining
challenges as follows.

• Name Segmentation. Some additional split-
ting or merging operations are needed for
some names. For example, “अग्निपुराण” in
Hindi should be transliterated into two tokens
“Agni Purana”.

• Source Language Specific Features. For
example, “-istan” is a common country suf-
fix in Turkish and Persian, and thus it can
be ignored during transliteration (e.g., when
transliterating “Gürcistan” in Turkish to En-
glish, we can focus on transliterating “Gürc”
to “Georgia”).

• Entity Profile. Name transliteration might
follow specific conventions based on the en-
tity’s origin, gender, title and characteristic.
For example, “Monroe” is transliterated to
“门罗” (mén luó) in “James Monroe”, the
fifth President of the United States, while “梦
露” (mèng lù) in “Marilyn Monroe”, a fa-
mous American actress, where “门”, “罗”,
“梦” and “露” refer to “door”, “net”, “dream”
and “dew”, respectively. For celebrities with
corresponding entities in the KB, the col-
lective inference method we employ can re-
solve the ambiguity and hence generate cor-
rect transliterations, while it does not work
for out-of-KB ones. In order to transliterate
such out-of-KB names, some of their proper-
ties, such as gender, need to be inferred from
the text.

8 Related Work

In terms of transliteration unit, existing machine
transliteration models can be classified into three
categories, phoneme-based (Knight and Graehl,
1997; Lee and Choi, 1998; Wan and Verspoor,
1998; Jung et al., 2000; Meng et al., 2001; Oh and
Choi, 2002; Virga and Khudanpur, 2003; Gao et
al., 2005), grapheme-based (Li et al., 2004; Zhang
et al., 2004; Ekbal et al., 2006; Ganesh et al., 2008;
Das et al., 2009; Chinnakotla et al., 2010; Finch
and Sumita, 2010), and hybrid (Al-Onaizan and

Knight, 2002; Bilac and Tanaka, 2004; Oh and
Choi, 2005; Oh et al., 2006; Kim et al., 1999).
Since names are inherently associated with en-

tities, it is natural to leverage entity linking to im-
prove name transliteration. To the best of our
knowledge, this is the first study using entity link-
ing results to revise transliteration hypotheses. We
also take the specific context of a name into con-
sideration to improve the quality of entity linking
and reduce ambiguity.
Additionally, to tackle the data sparsity chal-

lenge in low-resource languages, we propose a
simple but effective cross-lingual projection ap-
proach to take advantage of resources in related
languages. Similar cross-lingual projection meth-
ods based on data/annotation transfer have also
been exploited for other Natural Language Pro-
cessing tasks, including relation extraction, data
annotation, entity recognition, and grapheme-to-
phoneme models (Xia and Lewis, 2007; Padó and
Lapata, 2009; Kim et al., 2010; Faruqui and Ku-
mar, 2015; Deri and Knight, 2016).

9 Conclusions and Future Work

For many names we need to know the real-world
entities they refer to before generating their cor-
rect transliterations. In this paper we developed a
novel context-aware name transliteration approach
by leveraging Entity Linking and related language
projection. Experiments have demonstrated that
our approach can significantly enhance the translit-
eration performance. In the future we will explore
more knowledge from the KB such as types and
properties of entities to improve disambiguation
and transliteration. We will also aim to incorpo-
rate morphology analysis, acquire and incorporate
language-specific and culture-specific characteris-
tics to address the remaining challenges.
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