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Abstract

This paper presents an analysis of exist-
ing methods for the intrinsic evaluation of
word embeddings. We show that the main
methodological premise of such evalua-
tions is “interpretability” of word embed-
dings: a “good” embedding produces re-
sults that make sense in terms of tradi-
tional linguistic categories. This approach
is not only of limited practical use, but also
fails to do justice to the strengths of dis-
tributional meaning representations. We
argue for a shift from abstract ratings of
word embedding “quality” to exploration
of their strengths and weaknesses.

1 Introduction

The number of word embeddings is growing every
year. A new model is typically evaluated across
several tasks, and is considered an improvement if
it achieves better accuracy than its predecessors.
There are numerous real-use applications that can
be used for this purpose, including named entity
recognition (Guo et al., 2014), semantic role la-
beling (Chen et al., 2014), and syntactic parsing
(Chen and Manning, 2014).

However, different applications rely on differ-
ent aspects of word embeddings, and good per-
formance in one application does not necessarily
imply equally good performance on another. To
avoid laborious evaluation across multiple extrin-
sic tests a number of intrinsic tasks are used. Ide-
ally they would predict how a model performs in
downstream applications. However, it has been
shown that intrinsic and extrinsic scores do not al-
ways correlate (Tsvetkov et al., 2015; Schnabel et
al., 2015).

This study discusses the methodology behind
several existing intrinsic evaluations for word em-

beddings, showing that their chief premise is “in-
terpretability” of a model as a measure of its
quality. This approach has methodological is-
sues, and it also ignores the unique feature of
word embeddings - their ability to represent flu-
idity and fuzziness of meaning that is unattain-
able by traditional linguistic analysis. We argue
for a shift from absolute ratings of word embed-
dings towards more exploratory evaluations that
would aim not for generic scores, but for iden-
tification of strengths and weaknesses of embed-
dings, thus providing better predictions about their
performance in downstream tasks.

2 Existing Intrinsic Evaluations

2.1 Word Similarity and Relatedness Tests

The term “semantic relatedness” is used to refer to
any kind of semantic relation between words. The
degree of semantic relatedness reflects the degree
to which two words share attributes (Turney et al.,
2010, p. 149). Similarity is defined by Turney
as co-hyponymy (e.g. car and bicycle), whereas
Hill et al. (2015) define it as “the similarity rela-
tion is exemplified by pairs of synonyms; words
with identical referents” (e.g. mug and cup).

The widely used relatedness test sets include
WordSim-353 (Finkelstein et al., 2002) and MEN
(Bruni et al., 2014)1. The former contains 353
word pairs, and the latter - 3,000 word pairs with
their relatedness ratings by human annotators. On
the other hand, SimLex999 (Hill et al., 2015) spe-
cializes on semantic similarity.

The task in cases of both semantic relatedness
and semantic similarity is to rate the semantic
proximity of two words, usually with the cosine
similarity metric. The “best” model is the one

1Note that both of these sets also include semantically
similar words as a subset of semantic relatedness, e.g. “cathe-
dral, church” in MEN and “football, soccer” in WordSim.
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that comes closest to the ratings of human annota-
tors. Therefore these tests directly assesses inter-
pretability of the model’s output - to what extent it
mimics human judgments of semantic relations.

The immediate problem with the similarity and
relatedness tests is that distributional similarity
conflates not only semantic similarity and related-
ness, but also morphological relations and simply
collocations, and it is not clear whether a model
should generally score higher for preferring either
of them. Specializing on one of these relations
(Kiela et al., 2015) is certainly useful for specific
downstream applications, but it would not make a
word embedding either generally “good” or uni-
versally applicable.

Another concern is, traditionally, the
(un)reliability of human linguistic judgements,
which are subject to over 50 potential linguistic,
psychological, and social confounds (Schutze,
1996). With Amazon Mechanical Turk, typically
used to collect ratings, it is impossible to ensure
that the participants are native speakers, to get
accurate timing, or to control the environment in
which they provide responses. Inter-annotator
agreement provides an estimate of uniformity of
the data, but, if there is a general problem, we
would not detect it.

Semantic relatedness is particularly confusing
to rate. Consider WordSim scores for hyponymy
and hypernymy: “money, dollar” (8.42) vs “tiger,
mammal” (6.85). There is no theoretical ground
for rating either semantic relation higher; subjects
are likely to rank based on frequency, prototypi-
cality, and speed of association, and not “semantic
relatedness” per se.

It is also worth mentioning that word embed-
dings vary in the amount of frequency information
that they encode, and frequency can confound es-
timates of relatedness (Schnabel et al., 2015; Wil-
son and Schakel, 2015). Thus, depending on the
embedding, results of tests such as WordSim need
to be considered in the context of the corpus.

2.2 Comparative Intrinsic Evaluation

The comparative intrinsic evaluation for word
embeddings was introduced by Schnabel et al.
(2015). Several models are trained on the same
corpus, and polled for the nearest neighbors of
words from a test set. For each word, human raters
choose the most “similar” answer, and the model
that gets the most votes is deemed the best.

The advantage of this method is the possibility
to compare first, second, etc. nearest neighbors in
different models. However, it inherits the problem
with human interpretation of distributional simi-
larity, which we discussed above. Consider the
examples2 in table 1:

Target word GloVe SVD

1 phone telephone mobile
2 coffee tea drinks
3 grammar vocabulary grammatical
4 cohesiveness cohesion inclusiveness

Table 1: Examples of nearest neighbors in GloVe
and SVD

Subjects asked to choose the most “similar”
word would presumably prefer synonyms (word 1
in table 1), if any were present (thus the “best”
model would be the one favoring similarity over
relatedness). They would easily exclude the
clearly unrelated words (word 4 for SVD model).
But they would provide less reliable feedback on
“related” options, where the choice would be be-
tween different semantic relations (words 2,3).
Many answers would be subjective, if not random,
and likely to reflect frequency, speed of associ-
ation, and possibly the order of presentation of
words - rather than purely semantic factors that we
are trying to evaluate.

2.3 “Coherence” of Semantic Space
Schnabel et al. (2015) also suggested that a “good”
word embedding should have coherent neighbor-
hoods for each word vector. The test they pro-
posed consists in choosing two nearest neighbors
of a test word, and adding a random word. A hu-
man rater should be able to identify the “intruder”.
For example, in our GloVe the nearest neighbors
of true are indeed and fact; they are more seman-
tically related to each other than to a random word
taxi.

This test still relies on human interpretation, but
it is more likely to produce reliable results than the
methods discussed above. However, to apply it on

2Unless specified otherwise, the examples cited in this
study are derived from 2 word embeddings: GloVe (Pen-
nington et al., 2014) and SVD, trained at 300 dimensions,
window size 10. GloVe parameters: 100 iterations, xmax=
100, a = 3/4. The SVD (Singular Vector Decomposition)
model was built with Pointwise Mutual Information (PMI),
a = 1, using the co-occurrence extraction kernel by Drozd et
al. (2015). The 5B web-corpus combines Wikipedia (1.8B to-
kens), Araneum Anglicum Maius (1.2B) (Benko, 2014) and
ukWaC (2B) (Baroni et al., 2009).
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a large scale we would need to establish the size
of neighborhoods that should be coherent. This
number differs between words (see examples in ta-
ble 2), and a “better” model should recognize that
beautiful has more “good” neighbors than knob.
But it is hard to tell the exact number a priori, and
independently of a particular corpus.

beautiful write knob

lovely, 0.81 writing, 0.75 knobs, 0.60
gorgeous, 0.77 read, 0.72 gearshift, 0.48
wonderful, 0.64 written, 0.65 toggle, 0.41
magnificent, 0.63 want, 0.64 dials, 0.40
elegant, 0.61 wish, 0.62 dashboard, 0.38

Table 2: Nearest neighbors of beautiful, write and
knob in GloVe

2.4 Alignment with Linguistic Features
Tsvetkov et al. (2015) proposed the QVec sys-
tem that evaluates how well the dimensions of a
word embedding can be aligned with dimensions
of “linguistic” vectors (constructed from a seman-
tically annotated corpus)3. This system does not
involve human raters, but it still focuses on the
“interpretability”, as any linguistic categories are
themselves a product of a certain theoretical inter-
pretation of the language system.

The core assumption of QVec is that dimen-
sions of word embeddings correspond to linguis-
tic features (in this case, 41 supersenses of Word-
Net (Miller and Fellbaum, 1998) such as food or
motion). Each linguistic feature can be mapped
onto several dimensions of the word embedding,
but each dimension of the word embedding can be
mapped onto at most one linguistic feature. This
assumption could be challenged: it is not clear
why one dimension could not encode several lin-
guistic features, or even that a certain cluster or
pattern of dimensions could not correspond to one
or several linguistic features.

Crucially, the authors report that the correla-
tion of QVec with performance on different tasks
varies with vector dimensionality (0.32 for 50 di-
mensions, 0.78 for 300 and 0.60 for 1000 on the
sentiment analysis task). Such variation could be
explained by the intuition that in smaller word em-
beddings dimensions have to be multi-functional,

3See also (Faruqui et al., 2015) for decomposition of word
embeddings into sparse vectors to increase their correspon-
dence to linguistic features. Such vectors are reported to be
more “interpretable” to human annotators in the word intru-
sion task.

and in larger embeddings more complex patterns
of correspondence could be expected to occur.
And increasingly complex patterns are likely to
make decreasing amount of sense to humans.

3 General Methodological Concerns

3.1 Do Dimensions Have to Be Interpretable?

Although both people and word embeddings ac-
quire the meanings of words from context, there
are many important differences between human
semantic knowledge and what can be expected
from word embeddings. The latter depend on
corpora that are static, noisy, and small. Co-
occurrence frequencies do not mirror the frequen-
cies of events that give rise to natural language se-
mantics (e.g. “dog bites man” is less likely to be
mentioned than “man bites dog”) (Erk, 2016).

Thus even the most perfect word embedding is
unlikely to have exactly the same “concepts” as
us, or that their structure would mirror the cate-
gories of some linguistic theory. QVec proves that
to some extent the dimensions of the vector space
are indeed interpretable, but the point we would
like to make is this: by focusing on the structures
that we expect the word embeddings to have, we
might be missing the structures that they actually
have.

Figure 1 compares the overlap of dimensions
for 10 random words and 10 co-hyponyms in 300-
dimensional GloVe vectors (darker dimensions in-
dicate overlap between more words in the sam-
ple). It is clear that there are hundreds of fea-
tures relevant for felines. We could hypothesize
about them (“animal”? “nounhood”? “catness”?),
but clearly this embedding has more “feline” fea-
tures thanwhat we could find in dictionaries or
elicit from human subjects. Some of such fea-
tures might not even be in our conceptual inven-
tory. Perhaps there is a dimension or a group
of dimensions created by the co-occurrences with
words like jump, stretch, hunt, and purr - some
“feline behavior” category that we would not find
in any linguistic resource.

Distributional models are gradient by nature.
This makes them less interpretable, but also more
similar to connectionist cognitive models (Lenci,
2008). We do not know to what extent word em-
beddings are cognitively plausible, but they do of-
fer a new way to represent meaning that goes be-
yond symbolic approaches. We would be missing
the point if we were only seeking features that we
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10 felines: cat, lion, tiger, leopard, cougar, cheetah, lynx, 
bobcat, panther, puma

10 random words: emergency, bluff, buffet, horn, human, 
like, american, pretend, tongue, green
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Figure 1: Heatmap histogram of 10 random words and 10 co-hyponyms in GloVe

know from traditional linguistics.

3.2 Polysemy: the Elephant in the Room

Another general problem with all evaluations dis-
cussed above stems from the (lack of) treatment
of polysemy in word-level word embeddings. Do
we expect the vector for apple to be closer to com-
puter or to pear? The cosine similarity-based tests
choose only the “strongest” sense of a word in a
given corpus. Therefore the accuracy of the cur-
rent intrinsic evaluation methods also depends on
whether the relations in the test word pairs match
the distribution of senses of these words in a par-
ticular corpus. “Apple, pear” could be rated low,
and “apple, computer” - high, but preference for
either pair would say nothing about quality of the
word embedding itself.

One way to deal with this problem is to ex-
clude ambiguous words from tests, as it is done
in BLESS; but this would be hard to guarantee for
all corpora, it would significantly limit the tests
(as more frequent words tend to be more polyse-
mous), and it would avoid the issue rather than
deal with it. Alternatively, we could attempt word
sense disambiguation (Neelakantan et al., 2014;
Bartunov et al., 2015); but the accuracy would be
hard to guarantee, and we would need to provide
the mapping from the word senses in the test to the
word senses in the corpus.

The alternative is to embrace ambiguity as an
intrinsic characteristic of word embeddings. We
are looking for interpretable dimensions because
we are used to discrete linguistic features, and
similarly we are trying to bring meaning repre-
sentations in word embeddings down to neat lists
of word senses in dictionaries that we are used
to. But anyone who has done lexicographic work

knows that dictionaries are only an abstraction,
never complete or free of inconsistencies and sub-
jectivity. The distributional approach offers us a
novel way to capture the full continuum of mean-
ing (Erk, 2009). From this perspective, the prob-
lem with polysemy in tests for word embeddings
is not the polysemy itself, but the fact that we are
ignoring it with out-of-context test words and co-
sine similarity.

4 Back to the Drawing Board

4.1 What We Should Start Thinking About
To sum up, all intrinsic evaluations of word em-
beddings discussed above are based on the idea
of interpretability by humans, and suffer from the
problem of word ambiguity. We argue that both
problems stem from the underlying methodolog-
ical principle - the attempt to transfer the tradi-
tional lexicographic model of discrete word senses
and linguistic features onto the continuous seman-
tic space.

The reason that this methodology is so
widespread is that linguistics does not yet offer an
alternative, and finding one would require a lot of
(collaborative) work by both theoretical and com-
putational linguists. We will need to think of an-
swers to some very basic questions. For exam-
ple, how granular do we want our semantics to
be? (individual word senses? lexical groups?)
Should embeddings aim at separating word groups
as neatly as possible, or rather at blending them by
giving more weight to cases that would puzzle hu-
man annotators? The former would be easier to
work with from the point of view of downstream
applications; the latter would arguably provide a
truer model of language for the linguists.

With respect to “interpretability” of word em-
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beddings, the biggest question is the nature of
those potentially non-interpretable dimensions.
We can continue ignoring them and work only
with the ones we can understand (which could
prove to be enough for certain applications). The
alternative is to accept that from now on we will
not really understand our semantics, and delegate
the interpretation to machine learning algorithms.

4.2 What Can We Do Right Now?

The above discussion does not yet offer any al-
ternatives to current evaluations of word embed-
dings, but it does offer some insights about their
interpretation. Things that we can learn from ex-
isting tests include:

• the degree to which a word embedding en-
codes frequency information, and is likely to
be biased by it (Schnabel et al., 2015; Wilson
and Schakel, 2015);

• the richness of representations for rare words
(Wartena, 2014);

• performance on different size of corpora
(while more data is mostly better, we also
need “good” word embeddings for low-
resource languages);

• specialization for a particular type of relation
in distributional similarity, if any.

The last option is explored in such test sets as
BLESS (Baroni and Lenci, 2011) and EVALu-
tion (Santus et al., 2015). They include pairs of
words with different kinds of relations, such as
synonymy and meronymy, but no annotator rat-
ings. The word embeddings are queried on sim-
ilarity between these pairs of words. The distribu-
tion of similarity ratings across different relations
shows what linguistic relations are “favored” by
the given embedding. This approach can be fruit-
fully extended to other types of linguistic relations,
such as derivational morphology and frame rela-
tions.

Ideally, evaluations of a new model would also
include publishing results of systematic tests for
different parameters (Levy et al., 2015; Lai et al.,
2015) and types of context (Melamud et al., 2016),
as well as different types of linguistic relations
(Gladkova et al., 2016). This kind of data is of-
ten viewed as something simply to be used for
choosing a model for a particular task - but it does

also offer insights into its nature, and could help us
understand the deeper properties of word embed-
dings, which could eventually lead to new types of
tests.

None of these above-mentioned characteristics
of word embeddings provides a one-number an-
swer about how “good” a model is. But we can
take a more exploratory approach, identifying the
properties of a model rather than aiming to estab-
lish its superiority to others.

Lastly, when evaluating word embeddings we
should not forget that the result of any evaluation
is down to not only the embedding itself, but also
the test, the corpus, and the method of identify-
ing particular relations. Thus we cannot interpret,
e.g., a low score on analogy test as evidence that a
given model does not contain some linguistic fea-
ture: all it means is that we could not detect it with
a given method, and perhaps a different method
would work better (Drozd and Matsuoka, 2016).

5 Conclusion

This paper discusses the current methods of intrin-
sic evaluation of word embeddings. We show that
they rely on “interpretability” of the model’s out-
put or structure, and we argue that this might not
be the best approach, as it ignores the key features
of distributional semantics, and does not always
yield good predictions for how a word embedding
would perform on a downstream application. We
suggest focusing not on absolute ratings of ab-
stract “quality” of embeddings, but on exploration
of their characteristics.

We hope to draw attention of both compu-
tational and theoretical linguists to the need of
working together on new models of language that
would help us make better sense, and better use,
of word embeddings.
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