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Abstract

We evaluate the effectiveness of finite-
state tools we developed for automatically
annotating word stress in Russian unre-
stricted text. This task is relevant for
computer-assisted language learning and
text-to-speech. To our knowledge, this is
the first study to empirically evaluate the
results of this task. Given an adequate
lexicon with specified stress, the primary
obstacle for correct stress placement is
disambiguating homographic wordforms.
The baseline performance of this task is
90.07%, (known words only, no mor-
phosyntactic disambiguation). Using a
constraint grammar to disambiguate ho-
mographs, we achieve 93.21% accuracy
with minimal errors. For applications
with a higher threshold for errors, we
achieved 96.15% accuracy by incorporat-
ing frequency- based guessing and a sim-
ple algorithm for guessing the stress po-
sition on unknown words. These results
highlight the need for morphosyntactic
disambiguation in the word stress place-
ment task for Russian, and set a standard
for future research on this task.

1 Introduction

Lexical stress and its attendant vowel reduction are
a prominent feature of spoken Russian; the incor-
rect placement of stress can render speech almost
incomprehensible. This is because Russian word
stress is phonemic, i.e. many wordforms are dis-
tinguished from one another only by stress posi-
tion. This is the cause of considerable difficulty
for learners, since the inflecting word classes in-
clude complex patterns of shifting stress, and a
lexeme’s stress pattern cannot be predicted from
surface forms. Furthermore, standard written Rus-

sian does not typically mark word stress.1 With-
out information about lexical stress position, cor-
rectly converting written Russian text to speech is
impossible. Half of the vowel letters in Russian
change their pronunciation significantly, depend-
ing on their position relative to the stress. For
example the word dogovórom ‘contract.SG-INS’
is pronounced /d@g2vOr@m/, with the letter o real-
ized as three different vowel sounds. Determining
these vowel qualities is impossible without spec-
ifying the stress position. This is a problem both
for humans (e.g. foreign language students) and
computers (e.g. text-to-speech).

We identify three different types relations be-
tween word stress ambiguity and morphosyntactic
ambiguity. First, intraparadigmatic stress ambi-
guity refers to homographic wordforms belonging
to the same lexeme, as shown in (1).2

(1) Intraparadigmatic homographs
a. téla ‘body.SG-GEN’
b. telá ‘body.PL-NOM’

The remaining two types of stress ambiguity occur
between lexemes. Morphosyntactically incongru-
ent stress ambiguity occurs between homographs
that belong to separate lexemes, and whose mor-
phosyntactic values are different, as shown in (2).

(2) Morphosyntactically incongruent homo-
graphs
a. nášej ‘our.F-SG-GEN/LOC/DAT/INS’

našéj ‘sew on.IMP-2SG’
b. doróga ‘road.N-F-SG-NOM’

dorogá ‘dear.ADJ-F-SG-PRED’
1Texts intended for native speakers sometimes mark stress

on words that cannot be disambiguated through context. The-
oretically, a perfect word stress placement system could help
an author identify tokens which should be stressed for na-
tives: any token that cannot be disambiguated by syntactic or
semantic means should be marked for stress.

2Throughout this article, cyrillic is transliterated using the
scientific transliteration scheme.
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Morphosyntactically congruent stress ambiguity
occurs between homographs that belong to sepa-
rate lexemes, and whose morphosyntactic values
are identical, as shown in (3). This kind of stress
ambiguity is relatively rare, and resolving this am-
biguity would require the use of technologies such
as word sense disambiguation.

(3) Morphosyntactically congruent homo-
graphs
a. zámok ‘castle.SG-NOM’

zamók ‘lock.SG-NOM’
b. zámkov ‘castle.PL-GEN’

zamkóv ‘lock.PL-GEN’
c. ...

...

It should be noted that most morphosyntac-
tic ambiguity in unrestricted text does not result
in stress ambiguity. For example, novyj ‘new’
(and every other adjective) has identical forms
for F-SG-GEN, F-SG-LOC, F-SG-DAT and F-
SG- INS: nóvoj. Likewise, the form vypej has
multiple possible readings (including ‘drink.IMP’,
‘bittern.PL-GEN’), but they all have the same stress
position: výpej. We refer to this as stress-
irrelevant morphosyntactic ambiguity, since all
readings have the same stress placement.

In the case of unrestricted text in Russian,
most stress placement ambiguity is rooted in intra-
paradigmatic and morphosyntactically incongru-
ent ambiguity. Detailed part-of-speech tagging
with morphosyntactic analysis can help determine
the stress of these forms, since each alternative
stress placement is tied to a different tag sequence.
In this study we focus on the role of detailed part-
of-speech tagging in improving automatic stress
placement. We leave morphosyntactically congru-
ent stress ambiguity to future work because it is
by far the least common type of stress ambiguity
(less than 1% of tokens in running text), and dis-
ambiguating morphosyntactically congruent stress
requires fundamentally different technology from
the other approaches of this study.

1.1 Background and task definition

Automatic stress placement in Russian is simi-
lar to diacritic restoration, a task which has re-
ceived increasing interest over the last 20 years.
Generally speaking, diacritics disambiguate oth-
erwise homographic wordforms, so missing dia-
critics can complicate many NLP tasks, such as

text-to-speech. For example, speakers of Czech
may type emails and other communications with-
out standard diacritics. In order to generate speech
from these texts, they must first be normalized by
restoring diacritics. A slightly different situation
arises with languages whose standard orthogra-
phy is underspecified, like vowel quality in Arabic
or Hebrew. For such languages, the ‘restoration’
of vowel diacritics results in less ambiguity than
in standard orthography. For languages with in-
herently ambiguous orthography, it may be more
precise to refer to this as ‘diacritic enhancement’,
since it produces text that is less ambiguous than
the standard language. In this sense, Russian or-
thography is similar to Arabic and Hebrew, since
its vowel qualities are underspecified in standard
orthography.

Many studies of Russian text-to-speech and au-
tomatic speech recognition make note of the diffi-
culties caused by the shortcomings of their stress-
marking resources (e.g. Krivnova (1998)). Text-
to-speech technology must deal with the inherent
ambiguity of Russian stress placement, and many
articles mention disambiguation of one kind or an-
other, but to our knowledge no studies have em-
pirically evaluated the success of their approach.
Several studies have investigated methods for pre-
dicting stress position on unknown words. For ex-
ample, Xomicevič et al. (2008) developed a set
of heuristics for guessing stress placement on un-
known words in Russian. More recently, Hall and
Sproat (2013) trained a maximum entropy model
on a dictionary of Russian words, and evaluated
on wordlists containing ‘known’ and ‘unknown’
wordforms.3 Their model achieved 98.7% accu-
racy on known words, and 83.9% accuracy on un-
known words. The task of training and evaluat-
ing on wordlists is different from that of placing
stress in running text. Since many of the most
problematic stress ambiguities in Russian occur in
high-frequency wordforms, evaluations of word-
form lists encounter stress ambiguity seven times
less frequently than in running text (see discussion
in Section 4). Furthermore, working with running
text includes the possibility of disambiguating ho-
mographs based on syntactic context.

3Hall and Sproat (2013) randomly selected their training
and test data from a list of wordforms, and so a number of lex-
emes had wordforms in both the training and test data. Word-
forms in the test data whose sibling wordforms from the same
lexeme were in the training set were categorized as ‘known’
wordforms.
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So far, the implicit target application of the
few studies related to automatic stress placement
in Russian has been text-to-speech and automatic
speech recognition. However, the target applica-
tion of our stress annotator is in a different do-
main: language learning. Since standard Rus-
sian does not mark word stress, learners are fre-
quently unable to pronounce unknown words cor-
rectly without referencing a dictionary or similar
resources. In the context of language learning,
marking stress incorrectly is arguably worse than
not marking it at all. Because of this, we want our
stress annotator to be able to abstain from mark-
ing stress on words that it is unable to resolve with
high confidence.

1.2 Stress corpus

Russian texts with marked word stress are rel-
atively rare, except in materials for second lan-
guage learners, which are predominantly propri-
etary. Our gold-standard corpus was collected
from free texts on Russian language-learning web-
sites. This small corpus (7689 tokens) is represen-
tative of texts that learners of Russian are likely to
encounter in their studies. These texts include ex-
cerpts from well-known literary works, as well as
dialogs, prose, and individual sentences that were
written for learners.

Unfortunately, the general practice for marking
stress in Russian is to not mark stress on monosyl-
labic tokens, effectively assuming that all mono-
syllabics are stressed. However, this approach is
not well-motivated. Many words – both mono-
syllabic and multisyllabic – are unstressed, es-
pecially among prepositions, conjunctions, and
particles. Furthermore, there are many high-
frequency monosyllabic homographs that can be
either stressed or unstressed, depending on their
part of speech, or particular collocations. For ex-
ample, the token čto is stressed when it means
‘what’ and unstressed in the conjunction potomu
čto ‘because’. For such words, one cannot simply
assume that they are stressed on the basis of their
syllable count.

Based on these considerations, we built our
tools to mark stress on every word, both mono-
syllabic and multisyllabic. However, because our
gold-standard corpus texts do not mark stress on
monosyllabic words, we cannot evaluate our an-
notation of those words.

Similarly, some compound Russian words have

secondary stress, but this is rarely marked, if at
all, even in educational materials. Therefore, even
though our tools are built to mark secondary stress,
we cannot evaluate secondary stress marks, since
they are absent in our gold-standard corpus.

In order to test our word stress placement sys-
tem, we removed all stress marks from the gold-
standard corpus, then marked stress on the un-
stressed version using our tools, and then com-
pared with the original.

2 Automatic stress placement

State-of-the-art morphological analysis in Russian
is based on finite-state technology (Nožov, 2003;
Segalovich, 2003). To our knowledge, no existing
open-source, broad-coverage resources are avail-
able for analyzing and generating stressed word-
forms. Therefore, we developed free and open-
source finite-state tools capable of analyzing and
generating stressed wordforms, based on the well-
known Grammatical Dictionary of Russian (Zal-
iznjak, 1977). Our Finite-State Transducer4 (FST)
generates all possible morphosyntactic readings
of each wordform, and our Constraint Grammar5

(Karlsson, 1990; Karlsson et al., 1995) then re-
moves some readings based on syntactic context.
The ultimate success of our stress placement sys-
tem depends on the performance of the constraint
grammar. Ideally, the constraint grammar would
successfully remove all but the correct reading
for each token, but in practice some tokens still
have more than one reading remaining. There-
fore, we also evaluate various approaches to deal
with the remaining ambiguity, as described below.
Table 1 shows two possible sets of readings for
the token kosti, as well as the output of each ap-
proach described below. The first column exhibits
stress ambiguity between the noun readings and
the imperative verb reading. The second column
shows a similar set of readings, after the constraint
grammar has removed the imperative verb read-
ing. This results in only stress-irrelevant ambigu-
ity.

The bare approach is to not mark stress on
words with more than one reading. Since both sets
of readings in Table 1 have more than one reading,
bare does not output a stressed form.

4Using two-level morphology (Koskenniemi, 1983;
Koskenniemi, 1984), implemented in both xfst (Beesley and
Karttunen, 2003) and hfst (Linden et al., 2011)

5Implemented using vislcg3 constraint grammar parser
(http://beta.visl.sdu.dk/cg3.html).
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Readings: кость-N-F-SG-GEN kósti кость-N-F-SG-GEN kósti
кость-N-F-SG-DAT kósti кость-N-F-SG-DAT kósti
костить-V-IPFV-IMP kostí

bare kosti kosti
safe kosti kósti

randReading kósti (p=0.67) or kostí (p=0.33) kósti
freqReading kósti kósti

Table 1: Example output of each stress placement approach, given a particular set of readings for the
token kosti

The safe approach is to mark stress only on to-
kens whose morphosyntactic ambiguity is stress-
irrelevant. In Table 1, the first column has readings
that result in two different stress positions, so safe

does not output a stressed form. However, in the
second column, both readings have the same stress
position, so safe outputs that stress position.

The randReading approach is to randomly se-
lect one of the available readings. In the first col-
umn of Table 1, a random selection means that
kósti is twice as likely as kostí. The second column
of Table 1 contains stress-irrelevant ambiguity, so
a random selection of a reading has the same result
as the safe approach.

The freqReading approach is to select the read-
ing that is most frequent, with frequency data
taken from a separate hand-disambiguated corpus.
If none of the readings are found in the corpus,
then freqReading selects the reading with the tag
sequence (lemma removed) that is most frequent
in our corpus. If the tag sequence is not found in
our frequency list, then freqReading backs off to
the randReading algorithm. In the first column of
Table 1, freqReading selects kósti because the tag
sequence N-F-SG-GEN is more frequent than the
other alternatives. Note that for tokens with stress-
irrelevant ambiguity (e.g. the second column of
Table 1), randReading and freqReading produce
the same result as the safe method.

So far, the approaches discussed are dependent
on the availability of readings from the FST. The
focus of our study is on disambiguation of known
words, but we also wanted to guess the stress of
unknown tokens in order to establish some kind of
accuracy maximum for applications that are more
tolerant of higher error rates. To this end, we
selected a simple guessing method for unknown
words. A recent study by Lavitskaya and Kabak
(2014) concludes that Russian has default final
stress in consonant-final words, and penultimate

stress in vowel-final words.6 Based on this con-
clusion, the guessSyll method places the stress
on the last vowel that is followed by a consonant.7

This method is applied two unknown wordforms
in two approaches, randReading+guessSyll and
freqReading+guessSyll, which are otherwise
identical to randReading and freqReading, re-
spectively.

For our baseline, we take the out-
put of our morphological analyzer (with-
out the constraint grammar) in combina-
tion with the bare, safe, randReading,
freqReading, randReading+guessSyll, and
freqReading+guessSyll approaches. We also
compare our outcomes with the RussianGram8

plugin for the Google Chrome web browser.
RussianGram is not open-source, so we can only
guess what technologies support the service. In
any case, it provides a meaningful reference point
for the success of each of the methods described
above.

3 Results

We evaluated all multisyllabic words with marked
stress in the gold-standard corpus (N = 4048).
Since our approach is lexicon-based, some of
our results should be interpreted with respect to
how many of the stressed wordforms in the gold-
standard corpus can be found in the output of
the finite-state transducer. We refer to this mea-
sure as recall.9 Out of 4048 tokens, 3949 were

6There is some disagreement over how to define default
stress in Russian, cf. Crosswhite et al. (2003).

7Although this approach is simplistic, unknown words are
not the central focus of this study. More sophisticated heuris-
tics and machine-learning approaches to unknown words are
discussed in Section 4.

8http://russiangram.com/
9Our method of computing recall assumes that if even one

reading is output by the FST, then all possible readings are
present. We have not attempted to formally estimate how fre-
quently this assumption fails, but we expect such cases to be
rare.

Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) 176



approach accuracy% error% abstention% totTry% totFail%
noCG+bare 30.43 0.17 69.39 30.61 69.57
noCG+safe 90.07 0.49 9.44 90.56 9.93

noCG+randReading 94.34 3.36 2.30 97.70 5.66
noCG+freqReading 95.53 2.59 1.88 98.12 4.47

noCG+randReading+guessSyll 94.99 4.05 0.96 99.04 5.01
noCG+freqReading+guessSyll 95.83 3.46 0.72 99.28 4.17

CG+bare 45.78 0.44 53.78 46.22 54.22
CG+safe 93.21 0.74 6.05 93.95 6.79

CG+randReading 95.50 2.59 1.90 98.10 4.50
CG+freqReading 95.73 2.40 1.88 98.12 4.27

CG+randReading+guessSyll 95.92 3.33 0.74 99.26 4.08
CG+freqReading+guessSyll 96.15 3.14 0.72 99.28 3.85

RussianGram 90.09 0.79 9.12 90.88 9.91

Table 2: Results of stress placement task evaluation

found in the FST, which is equal to 97.55%. This
number represents the ceiling for methods rely-
ing on the FST. Higher scores are only achiev-
able by expanding the FST’s lexicon or by using
syllable-guessing algorithms. After running the
constraint grammar, recall was 97.35%, a reduc-
tion of 0.20%.

Results were compiled for each of the 13 ap-
proaches discussed above: without the constraint
grammar (noCG) x 6 approaches, with the con-
straint grammar (CG) x 6 approaches, and Russian-
Gram (RussianGram). Results are given in Ta-
ble 2. Each token was categorized as either an ac-
curate output, or one of two categories of failures:
errors and abstentions. If the stress tool outputs
a stressed wordform, and it is incorrect, then it is
counted as an ‘error’. If the stress tool outputs an
unstressed wordform, then it is counted as an ‘ab-
stention’. Abstentions can be result of either un-
known wordforms, or known wordforms with no
stress specified in our lexicon.

The two right-most columns in Table 2 combine
values of the basic categories. The term ‘totTry’
refers to the sum of the accuracy and error rate.
This number represents the proportion of tokens
on which our system output a stressed wordform.
In the case of noCG+bare, the accuracy% (30.43)
and error% (0.17) sum to the totTry% value of
30.61. The term ‘totFail’ refers to the sum of error
rate and abstention rate, which is the proportion of
tokens for which the system failed to output the
correct stressed form. In the case of noCG+bare,
the error% (0.17) and abstention% (69.39) sum to
the totFail% value of of 69.57 (rounded).

The noCG+bare approach achieves a baseline
accuracy of 30.43%, so roughly two thirds of the
tokens in our corpus are morphosyntactically am-
biguous. The error rate of 0.17% primarily rep-
resents forms whose stress position varies from
speaker to speaker (e.g. zavílis’ vs. zavilís’ ‘they
crinkled’), or errors in the gold-standard corpus
(e.g. verím ‘we believe’).

The noCG+safe approach achieves a 60% im-
provement in accuracy (90.07%), which means
that 89.39% of morphosyntactic ambiguity on our
corpus is stress-irrelevant. Interestingly, the Rus-
sianGram web service achieves results that are
very close to the noCG+safe approach.

Since the ceiling recall for the FST is 97.55%,
and since the noCG+safe approach achieves
90.07%, the maximum improvement that a con-
straint grammar could theoretically achieve is
7.48%. A comparison of noCG+safe and CG+safe

reveals an improvement of 3.14%, which is about
42% of the way to the ceiling recall.

The CG+randReading and CG+freqReading ap-
proaches are also limited by the 97.55% ceiling
from the FST, and their accuracies achieve im-
provements of 2.29% and 2.52%, respectively,
over CG+safe. However, these gains come at the
cost of error rates as much as 3.5 times higher
than CG+safe: +1.85% and +1.66%, respec-
tively. It is not surprising that CG+freqReading
has higher accuracy and a lower error rate than
CG+randReading, since frequency-based guesses
are by definition more likely to occur. The fre-
quency data were taken from a very small corpus,
and it is likely that frequency from a larger corpus
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would yield better results.
The guessSyll approach was designed to make

a guess on every wordform that is not found in
the FST, which would ideally result in an ab-
stention rate of 0%. However, the abstention
rates of approximately 0.7% are a manifesta-
tion of the fact that some words in the FST, es-
pecially proper nouns, have not been assigned
stress. Because the FST outputs a form – al-
beit unstressed – the guessSyll algorithm is not
called. This means that guessSyll is only guess-
ing on about 2% of the tokens. The improve-
ment on overall accuracy from CG+freqReading

to CG+freqReading+guessSyll is 0.42%, which
means that the guessSyll method guess was ac-
curate 21% of the time.

4 Discussion

One of the main points of this paper is to high-
light the importance of syntactic context in the
Russian word stress placement task. If your in-
tended application has a low tolerance for error,
the noCG+safe approach represents the highest ac-
curacy that is possible without leveraging syntac-
tic information for disambiguation (90.07%). In
other words, a system that is blind to morphosyn-
tax and contextual disambiguation cannot signif-
icantly outperform noCG+safe. It would appear
that this is the method used by RussianGram, since
its results are so similar to noCG+safe. Indeed, this
result can be achieved most efficiently without any
part-of-speech tagging, but through simple dictio-
nary lookup.

We noted in Section 1.1 that Hall and Sproat
(2013) achieved 98.7% accuracy on stress place-
ment for individual wordforms in a list (i.e. with-
out syntax). This result is 8.63% higher than
noCG+safe, but it is also a fundamentally differ-
ent task. Based on the surface forms in our FST
– which is based on the same dictionary used for
Hall and Sproat (2013) – we calculate that only
29 518 (1.05%) of the 2 804 492 wordforms con-
tained in our FST are stress-ambiguous. In our
corpus of unrestricted text, at least 7.5% of the to-
kens are stress-ambiguous. Therefore, stress am-
biguity is more than seven times more prevalent
in our corpus of unrestricted text than it is in our
wordform dictionary. Since the task of word stress
placement is virtually always performed on run-
ning text, it seems prudent to make use of sur-
rounding contextual information. The experiment

described in this paper demonstrates that a con-
straint grammar can effectively improve the accu-
racy of a stress placement system without signif-
icantly raising the error rate. Our Russian con-
straint grammar is under continual development,
so we expect higher accuracy in the future.

We are unaware of any other empirical evalu-
ations of Russian word stress placement in un-
restricted text. The results of our experiment
are promising, but many questions remain unan-
swered. The experiment was limited by proper-
ties of the gold-standard corpus, including its size,
genre distribution, and quality. Our gold-standard
corpus represents a broad variety of text genres,
which makes our results more generalizable, but
a larger corpus would allow for evaluating each
genre individually. For example, the vast majority
of Russian words with shifting stress are of Slavic
origins, so we expect a genre such as technical
writing to have a lower proportion of words with
stress ambiguity, since it contains a higher propor-
tion of borrowed words, calques, and neologisms
with simple stress patterns.

In addition to genre, it is also likely that
text complexity affects the difficulty of the stress
placement task. The distribution of different kinds
of syntactic constructions vary with text complex-
ity (Vajjala and Meurers, 2012), and so we expect
that the effectiveness of the constraint grammar
will be affected by those differences.

The resources needed for machine-learning –
such as a large corpus of Russian unrestricted
text with marked stress – are simply not avail-
able at this time. Even so, lexicon- and rule-based
approaches have some advantages over machine-
learning approaches. For example, we are able
to abstain from marking stress on tokens whose
morphosyntactic ambiguity cannot be adequately
resolved. In language-learning applications, this
reduces the likelihood of learners being exposed
to incorrect wordforms, and accepting them as au-
thoritative. Such circumstances can lead to con-
siderable frustration and lack of trust in the learn-
ing tool. However, in error-tolerant applications,
machine-learning does seem well-suited to plac-
ing stress on unknown words, since morphosyn-
tactic analysis is problematic.

The syllable-guessing algorithm guessSyll

used in this experiment was overly simplistic, and
so it was not surprising that it was only moderately
successful. More rigorous rule-based approaches
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have been suggested in other studies (Church,
1985; Williams, 1987; Xomicevič et al., 2008).
For example, Xomicevič et al. (2008) attempt to
parse the unknown token by matching known pre-
fixes and suffixes.

Other studies have applied machine-learning to
guessing stress of unknown words (Pearson et al.,
2000; Webster, 2004; Dou et al., 2009; Hall and
Sproat, 2013). For example, Hall and Sproat
(2013) achieve an accuracy of 83.9% with un-
known words. Their model was trained on a full
list of Russian words, which is not representative
of the words that would be unknown to a system
like ours, so it would be possible modify their ap-
proach to fit our application. Most of the com-
plicated word stress patterns are closed classes10,
so we could exclude closed classes of words from
the training data, leaving only word classes that
are likely to be similar to unknown tokens, such as
those with productive derivational affixes.

5 Conclusions

We have demonstrated the effectiveness of using
a constraint grammar to improve the results of a
Russian word stress placement task in unrestricted
text by resolving 42% of the stress ambiguity in
our gold-standard corpus. We showed that stress
ambiguity is seven times more prevalent in our
corpus of running text than it is in our lexicon, sug-
gesting the importance of context-based disam-
biguation for this task. As with any lexicon- and
rule-based system, the lexicon and rules can be ex-
panded and improved, but our initial results are
promising, especially considering the short times-
pan over which they were developed.

As this is the first empirical study of its kind,
we also discussed methodological limitations and
possibilities for subsequent research, including
collecting stressed corpora of varying text com-
plexity and/or genre, as well as implementing
and/or adapting established word stress-guessing
methods for unknown words.
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