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Abstract
Word sense induction (WSI) is the problem of
automatically building an inventory of senses
for a set of target words using only a text
corpus. We introduce a new method for em-
bedding word instances and their context, for
use in WSI. The method, Instance-context em-
bedding (ICE), leverages neural word embed-
dings, and the correlation statistics they cap-
ture, to compute high quality embeddings of
word contexts. In WSI, these context embed-
dings are clustered to find the word senses
present in the text. ICE is based on a novel
method for combining word embeddings us-
ing continuous Skip-gram, based on both se-
mantic and a temporal aspects of context
words. ICE is evaluated both in a new sys-
tem, and in an extension to a previous system
for WSI. In both cases, we surpass previous
state-of-the-art, on the WSI task of SemEval-
2013, which highlights the generality of ICE.
Our proposed system achieves a 33% relative
improvement.

1 Introduction

Ambiguity is pervasive in natural language and this
is particularly true of word meaning: a word string
may refer to several different concepts or senses.
Word sense induction (WSI) is the problem of us-
ing a text corpus to automatically determine 1) the
inventory of senses, and 2) which sense a particu-
lar occurrence of a word belongs to. This stands
in contrast to the related task of word sense disam-
biguation (WSD), which is concerned with linking
an occurrence of a word to an external sense inven-
tory, e.g. WordNet. The result of a WSI system

is a set of local sense labels, consistent within the
system but not linked to a universal set of labels.
A wide range of applications have been proposed
where WSI could be useful, ranging from basic lin-
guistic and lexicographical research (Nasiruddin et
al., 2014), machine reading (Etzioni et al., 2006)
and information retrieval (Véronis, 2004). WSI is of
particular interest in situations where standard lexi-
cal resources are unreliable or inapplicable, such as
when tracking changes of word meaning over time
(Mitra et al., 2014).

According to the distributional hypothesis (Har-
ris, 1954), word meaning is reflected in the set of
contexts in which a word occurs. This intuition
makes it natural to operationalize the meaning of a
word – and of its contexts – using a vector-space rep-
resentation, where geometric proximity corresponds
to similarity of meaning. A common approach used
in several successful WSI systems is to apply this ge-
ometric intuition and represent each context of a pol-
ysemous word as a vector, look for coherent clusters
in the set of context vectors, and let these define the
senses of the word. This approach was pioneered by
Schütze (1998) using second order co-occurrences
to construct the context representation. It is clear
that in order to be useful in a WSI system, a ge-
ometric representation of context meaning must be
designed in a way that makes clusters distinct.

Recently, neural embeddings, such as the popu-
lar Skip-gram model (Mikolov et al., 2013a), have
proven efficient and accurate in the task of embed-
ding words in vector spaces. As of yet, however,
neural embeddings have not been considered for rep-
resenting contexts in WSI. The systems that seem

25



most relevant in this context are those that train
multi-prototype embeddings: more than one embed-
ding per word (Huang et al., 2012). In particular,
Neelakantan et al. (2014) described a modified Skip-
gram algorithm that clusters instances on the fly, ef-
fectively training several vectors per word. How-
ever, whether this or any other similar approach is
useful if considered as a WSI system is still an open
question, since they have never been evaluated in
that setting.

We make the following contributions: (1) We de-
fine the Instance-context embedding (ICE), a novel
way for representing word instances and their con-
text. ICE combines vectors representing context
words using a novel weighting schema consisting of
a semantic component, and a temporal component,
see Section 3. (2) We propose two methods for using
our embeddings in word sense induction, see Sec-
tion 4. The first adopts a batch clustering scheme,
where senses are induced after the word embeddings
are computed. The number of senses is automat-
ically chosen, based on data. The second extends
an existing method for simultaneous embedding and
clustering of words (Neelakantan et al., 2014). We
show that our extension substantially improves the
model. (3) We evaluate both proposed methods in
the WSI task. We show that the two components of
our proposed weighting schema both contribute to
an increased overall performance. Further, we com-
pare our method to state-of-the-art methods on Task
13 of SemEval-2013, achieving a 33% relative im-
provement see, Section 6.

2 Context clustering

Context clustering is an approach to WSI in which
each instance of a word is represented by its con-
text, embedded in a geometric space. These con-
text embeddings are then clustered to form cen-
troids representing the different senses of the tar-
get word. The context clustering approach was pi-
oneered by Schütze (1998) who used second order
co-occurrences to construct the context embedding.
In this setting, the output of a WSI system is a set
Sw = {sw,1, . . . , sw,k} of k locally defined senses
of a word w, with corresponding sense embeddings
sw,j . We refer to Sw as the induced sense inven-
tory of w. The WSI problem is often paired with the

related task of word sense disambiguation (WSD),
concerned with linking a previously unseen occur-
rence of a word to an existing sense inventory. Given
an instance wi, of a possibly polysemous word, let
its context be represented by an embedding, ci. The
sense of wi is determined by finding the nearest
neighbor to ci, in the sense inventory Swi ,

sense(wi) = arg min
j : sj∈Swi

d(ci, sj) , (1)

where d(·, ·) is some distance function. In this
work, d is the cosine distance d(x,y) = 1 −
xTy/(‖x‖‖y‖). We proceed to review distributed
word embeddings, used in this work to create con-
text embeddings.

2.1 Distributed word embeddings

A word embedding is a continuous vector repre-
sentation that captures semantic and syntactic infor-
mation about a word. Such representations are of-
ten based on the distributional hypothesis of Harris
(1954), stating that the meaning of a word is largely
determined by the contexts in which it appears. For
word embeddings, this is realized by assigning sim-
ilar embeddings to words that appear in similar con-
texts. These representations can be used to unveil
multiple dimensions of similarity between words,
such as number, topic and gender (Mikolov et al.,
2013b). Word embeddings computed using neural
networks were introduced by Bengio et al. (2003)
and are often called neural word embeddings.

Continuous Skip-gram is an algorithm for com-
puting word embeddings that was introduced by
Mikolov et al. (2013a). This model has received a lot
of attention recently, being one of the models used
in the software package word2vec (Mikolov, 2013).
The model is trained to predict the context surround-
ing a given target word. Each word w is represented
by two vectors, one for when the word is the target,
denoted uw, and one for when it is in the context of
another word, denoted vw.

We follow the interpretation of the negative sam-
pling method for Skip-gram in Levy and Goldberg
(2014). Let D denote the observed data, as a set of
pairs of target and context words. Then, the prob-
ability of observing the pair (wc, wi) of a context
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word c and target word i in the data is,

p((wc, wi) ∈ D) =
1

1 + e−vT
c ui

, (2)

where ui is the vector representation of the target
word wi and vc is the vector representation of the
context word wc. The vectors ui and vc are re-
ferred to as word embeddings and context-word em-
beddings respectively. Training of the Skip-gram
model with negative sampling corresponds to find-
ing embeddings that maximize p((wc, wi) ∈ D)
for observed context pairs and p((wc, wi) 6∈ D)
for random (negative) context pairs. This is usually
achieved using stochastic gradient descent.

2.2 Clustering word instances

Clustering of vector-valued observations is a well-
studied subject. Perhaps the most widely used algo-
rithm for this purpose, k-means clustering, embod-
ies many of the intuitions and difficulties of the prob-
lem. In our setting, the vectors to cluster represent
instances of a single word and k corresponds to the
number of senses of the word. Clearly, k is highly
dependent on the word, and is not easily set by hand.
Although many algorithms have been proposed to
solve the problem for a given k, choosing k itself
remains a problem in its own right. The frequently
used Gap statistic (Tibshirani et al., 2000) gives a
method for solving this problem. Unfortunately, it
can be prohibitively slow for use in repeated clus-
tering of large numbers of points, as the method re-
lies on Monte Carlo simulations. Pham et al. (2005)
proposed an alternative method in which a function
defined by the cluster distortion for different values
of k, is used to evaluate cluster quality.

In the setting described above, the embeddings
are assumed to be computed before clustering
into senses. In contrast, Multi-sense Skip-gram
(MSSG) (Neelakantan et al., 2014) attempts to learn
several embeddings of a word, one for each of its
different senses, by extending the Skip-gram method
of Mikolov et al. (2013a). This involves a simulta-
neous embedding and clustering of word instances.
A drawback is that their method limits the training
of multi-sense embeddings to the M most common
words, forcing a complete re-training of the model
should a new word of interest appear.

3 Instance-context embeddings

We propose a new method for creating context
embeddings for WSI. The embeddings are based
on word embeddings and context-word embeddings
computed using the Skip-gram model as described
in Section 2.1. Our method differs from previous
approaches in that it assigns different weights to the
context words based on their influence on the mean-
ing of the target word.

More precisely, the context embedding (c) for
word instance i is computed as the weighed average
of the context-word embeddings representing sur-
rounding words

ci =
1
Z

∑
−T≤c≤T

c 6=0

ψi,cvc . (3)

Here, ψi,c is the weight for context word c, vc is the
context-word embedding for the same word and T is
the number of words, to the left and right, which are
considered part of the context of target word i. Z is
a normalizing factor to put ci on the unit sphere.

Perhaps the simplest weighting schema is the
uniform, or non-informative schema, ψuniform

i,c =
1

2T ∀i, c. Context embeddings using uniform weights
were used in the Multi-Sense Skip-Gram (MSSG)
model by Neelakantan et al. (2014) for computing
sense embeddings. However, in the context of WSI
it is not hard to imagine a situation where an in-
formed weighted sum would perform better. For
example, in the phrase ”the rock band” the word
”band” is clearly more indicative for the sense of
”rock” than the word ”the”, and should therefore
have a larger impact on the instance representa-
tion. To address this caveat we propose context
embeddings based on a novel weighting schema,
Instance-context embeddings (ICE), that leverages
co-occurrence statistics naturally captured by the
Skip-gram model.

3.1 Semantic context weights
The first component of ICE is based on the assump-
tion that context words that strongly correlate with
the target word is more important for the meaning
of the target word. In the example phrase from Sec-
tion 3, the word ”band” is clearly a strong indicator
for the presence of the word ”rock”, while the word
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”the” occurs everywhere in English text and will
therefore not have a strong correlation with ”rock”.

To leverage this idea, we use the Skip-gram output
probability, see (2), to weight context words by

ψsemantic
i,c =

1
1 + e−vT

c ui
, (4)

where vc is the context-word embedding for the
word c, and ui is the word embedding of target word
i. Using ψsemantic in (3) has the effect of assigning
bigger importance to context words that have a se-
mantic relation to the target word. Context words
that are not useful in characterizing the sense of the
target are weighted less. This is in stark contrast to
the uniform weighting schema.

Levy and Goldberg (2014) discovered an interest-
ing connection between the Skip-gram model and
Pointwise Mutual Information (PMI) (Church and
Hanks, 1990). Consider the optimizers of the Skip-
gram objective, word and context-word embeddings,
ui, vc, trained using k negative samples. Levy and
Goldberg showed that for sufficiently large dimen-
sionality, these vectors satisfy the following rela-
tion, ui

Tvc = PMI(wi, wc) − log k . Let σ(·)
be the logistic function. For vectors satisfying
the conditions stated above, we have ψsemantic

i,c =
σ(PMI(wi, wc)−log k) , establishing a connection
between the semantic weights applied to Skip-gram
embeddings, and PMI, a function frequently used for
measuring word similarity (Pantel and Lin, 2002).

3.2 Temporal context weights
Window functions are used to extract local informa-
tion from a sequence. In the context of NLP this
translates to extracting a phrase of a given length
from a larger text. The most common window func-
tion used in WSI is the rectangular window func-
tion, where T words are extracted from each side
of the target word. However, this approach is not
optimal. In part, because it ignores the distance be-
tween the target word and the context word, but also
because the sharp border makes the approach more
noisy with respect to the chosen T .

To address these issues we instead apply a tri-
angular window function to the context. This is
inspired by the Skip-gram model, where this is
achieved by uniformly sampling the context width
∈ {1 . . . T}. In our model we weight the context

words according to target word distance as

ψtemporal
i,c =

1
T

max(0, T − |i− c|) . (5)

3.3 Instance-context embeddings (ICE)

Finally, by combining the results of Section 3.1
and 3.2 we arrive at the definition of our proposed
weighting schema

ψice
i,c = ψsemantic

i,c ψtemporal
i,c . (6)

4 Word sense induction using ICE

We devise two methods for performing word sense
induction using ICE. The first is based on the
k-means clustering algorithm. Here, word and
context-word embeddings are computed using Skip-
gram. Then, context embeddings are computed
for all instances of a word, according to (3), and
clustered using k-means, with Pham’s heuristic for
choosing k (Pham et al., 2005), to form centroids
representing word senses. As clustering is per-
formed in batch, after embedding, we refer to this
method as ICE-kmeans.

The second method is an extension of the MSSG
model (Neelakantan et al., 2014), in which we dur-
ing training of the model embed word instances
using ICE. This improves the disambiguation per-
formed at every iteration of MSSG. As this method
performs the clustering in an online fashion, we re-
fer to this method as ICE-online. For this, we have
modified the code provided by Jeevan Shankar1.

5 Evaluation

We evaluate our methods for word sense induction
on shared task 13 of SemEval-2013, Word Sense
Induction for Graded and Non-Graded Senses (Ju-
rgens and Klapaftis, 2013). Henceforth, we let
“SemEval-2013” refer to this specific task. We also
investigate the influence of our weighting schema on
both methods. Further, we study qualitative proper-
ties of the word instance embeddings produced by
our method.

1https://bitbucket.org/jeevan shankar/multi-sense-
skipgram/
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5.1 SemEval-2013, Task 13

The SemEval-2013 (test) data contains 4664 in-
stances, each inflections of one of 50 lemmas (Ju-
rgens and Klapaftis, 2013). The competition in-
cluded both single-sense instances and instances
with a graded mixture of senses. Because the man-
ual annotations were deemed too poor, only 10% of
instances were labeled with multiple senses (Jurgens
and Klapaftis, 2013), which led the organizers to
publish results both for all instances, and for single-
sense instances only. For this reason, we consider
only single-sense instances. Each instance is rep-
resented by a phrase, annotated with part-of-speech
(POS) tags, comprising the word for which to deter-
mine the sense, and its context.

The rules of SemEval-2013 allowed the use of a
specific corpus, ukWaC, for training of the submit-
ted models. We have cleaned this corpus, remov-
ing formatting and making it lowercase. We extract
common n-grams from the corpus and include them
as entities in our vocabulary, e.g. Kuala Lumpur→
Kuala Lumpur. Frequency thresholds were set to 10
times for n = 1, 20 times for n = 2, and 50 times for
n ∈ {3, 4}. Longer phrases are not considered. Fol-
lowing SemEval-2013, we evaluate systems for un-
supervised WSI using two different scores, Fuzzy B-
Cubed (FBC) and Fuzzy Normalized Mutual Infor-
mation (FNMI) (Jurgens and Klapaftis, 2013). FBC
compares two fuzzy covers, clusterings of the data
with partial memberships, on a per-item basis. The
score is sensitive to cluster size skew. FNMI is a
generalization of normalized mutual information for
fuzzy covers. It measures the dependence between
two clusterings independently of cluster sizes. As as
a final, combined score, we compute the harmonic
mean (HM) of FBC and FNMI. To allow direct com-
parison with published results, we use the fuzzy
measures even though we only consider single-sense
instances.

We compare our results to two baselines from
SemEval-2013. “One sense” predicts that all in-
stances have the same sense. “One per instance”
predicts that every instance has its own sense.

5.2 Experimental setup

For ICE-kmeans, we train a 300 dimensional Skip-
gram model on the ukWaC corpus using standard

parameter settings. I.e. context width set to 20 (10
before and 10 after), and 10 negative samples. We
let the model iterate over the training data 9 times
to improve the embeddings. For sense induction, we
sample 1800 instances of very target word at ran-
dom, from the ukWaC corpus. Using more instances
did not improve the results in our experiments, how-
ever, for larger datasets this might not be valid. To
remain general, we opted not to use the POS tags
available in ukWaC, even though using them might
have improved the result. Also, due to the noisy na-
ture of the corpus, we exclude contexts where more
than 30% of the words contain non-alphabetic char-
acters. We cluster the selected instances using k-
means clustering with the heuristic of Pham et al.
(2005) for choosing k. For both ICE-kmeans and
ICE-online, when computing the ICE vectors, the
context width for was set to 20 when using the full
schema, see (6), and 10 otherwise, as the full schema
is less sensitive to irrelevant context words. For the
MSSG part of ICE-online, we use the parameters re-
ported in Neelakantan et al. (2014).

5.3 Current state-of-the-art

We compare the perfomance of our system to that of
state-of-the-art systems for WSI.

First, we compare to the systems with the current
best results on SemEval 2013 task 13 for single-
sense word instances, AI-KU and unimelb. AI-
KU (Baskaya et al., 2013) uses an approach based on
substitute word vectors, inferred using a statistical
language model. AI-KU achieved the highest FNMI
score of the systems submitted to SemEval-2013.
unimelb (Lau et al., 2013), who achieved the high-
est FBC score at SemEval-2013, is a system based
on the topic model Latent Dirichlet Allocation and
its non-parametric equivalent, Hierarchical Dirich-
let Processes. Word instances are clustered based on
the topic distributions inferred by the model.

The related problem of training neural embed-
dings of polysemous words was addressed by Huang
et al. (2012) and subsequently by Neelakantan et
al. (2014) with the model Multi-sense Skip-gram
(MSSG), see Section 2.2. As a second experiment
we extend MSSG for WSI. MSSG has not previ-
ously been used for WSI, however it produces one
word embedding for each word sense, and performs
a simple disambiguation procedure during training.
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MSSG is thus a natural candidate for comparison.
We use the standard variant of MSSG, as it achieved
the best overall results in the original paper Nee-
lakantan et al. (2014). MSSG disambiguates in-
stances by assigning them to the sense with em-
bedding closest to the average context-word vector
of the instance, i.e. using uniform weighting. We
use the parameters reported in Neelakantan et al.
(2014), with the number of senses per word set to
3. MSSG takes a parameter M specifying the num-
ber of words for which multiple sense vectors are
computed. Like in Neelakantan et al. (2014), we set
this parameter to M = 30000. We note that only 43
out of 50 lemmas in SemEval-2013 were in the M
most common words assigned multiple vectors by
the MSSG methods. For the remaining 7 words, a
single sense was predicted. Making sure all relevant
words are included is not trivial in practice, without
knowledge of the test set, as the training time of the
model depends greatly upon M .

6 Results

We report the results of all experiments below.

6.1 Qualitative evaluation of instance vectors

Consider the word “paper”. WordNet (Miller, 1995)
lists seven senses of “paper” as a noun: 1) a medium
for written communication, 2) an essay (especially
one written as an assignment), 3) a scholarly ar-
ticle describing the results of observations or stat-
ing hypotheses, 4) a daily or weekly publication on
folded sheets; contains news and articles and adver-
tisements, 5) a business firm that publishes newspa-
pers, 6) a material made of cellulose pulp derived
mainly from wood or rags or certain grasses, 7) the
physical object that is the product of a newspaper
publisher. Assigning an instance to one of these
senses can be challenging even for a human reader.

The word “paper” is one of the 50 lemmas in
the SemEval-2013 evaluation data with correspond-
ing instances that cover six of the senses listed in
WordNet. In Figure 1, we show context embed-
dings for these instances, plotted using the dimen-
sionality reduction tool t-SNE (Van der Maaten and
Hinton, 2008). Figure 1a represents context embed-
dings computed using a uniform average, and Fig-
ure 1b plots the instance context embeddings com-

puted with using ICE, as described in Section 3.
The colors and markers correspond to gold-standard
WordNet annotations provided by SemEval. The
size of a marker in Figure 1b is proportional to the
average ICE weight of words in the context of an
instance and is indicative of the confidence in the in-
stance vector. A low average ICE weight indicates
that the context is not predictive of the target word.

For the senses, “material”, “scholarly article”,
“newspaper” and “essay”, the instances in Figure 1b
are noticeably more clustered than in Figure 1a. This
shows that the senses of these words are better repre-
sented using ICE weighting for context embeddings
than a uniform schema.

6.2 Semeval WSI results
The results of the WSI evaluation on shared task 13
of SemEval-2013 are presented in Table 1. Here,
our system ICE-kmeans, and our MSSG extension
ICE-online, use the ICE weighting schema, see (6).
MSSG is the system presented in Neelakantan et al.
(2014) without modifications. AI-KU and unimelb
represent the best systems submitted to SemEval-
2013, and AI-KU the current state-of-the-art in WSI.

First, we note that ICE-kmeans achieves the over-
all best results with respect to both scores, corre-
sponding to a relative improvement of 31.1% in
FNMI and 15.9% in FBC. Further we note that the
previous best FBC and FNMI belong to different
methods. This is important since, as with precision
and recall, achieving a high score in one of these
measures can be achieved using a trivial baseline,
see the first two methods in Table 1. Hence, a bet-
ter benchmark, analogue to the F1-score, is the har-
monic mean (HM) of the two complementary scores.
Considering this our results are even more impres-
sive with a 33% relative improvement.

6.3 Semantic and temporal component of ICE
We evaluate the impact of using context embeddings
based on the different weighting schemas defined
in Section 3, over embeddings based on uniform
weights. The results are presented, as harmonic
mean and relative improvement over previous state-
of-the-art AI-KU, in Table 2.

First, we note that both variants of our full sys-
tem (ICE) offers a substantial relative improvement
over AI-KU. We note that the results are always
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(a) Uniform context embeddings (b) Instance-context embeddings (ICE)

Medium

Essay

Scholarly article

Newspaper

Newspaper firm

Material

Figure 1: Context embeddings for instances of the noun “paper” in the SemEval-2013 test data, plotted
using t-SNE. The legend refers to WordNet gold standard embeddings.

Method FBC(%) FNMI(%) HM

One sense 57.0 0 0
One per instance 0 4.8 0

Unimelb 44.1 3.9 7.2
AI-KU 35.1 4.5 8.0
MSSG 45.9 3.7 6.8

ICE-online 48.7 5.5 9.9
ICE-kmeans 51.1 5.9 10.6

Table 1: Results for single-sense instances on the
WSI task of SemEval-2013. HM is the harmonic
mean of FBC and FNMI.

better when using semantic weights, Eq (5), over
uniform, and always best when using the full ICE
schema, Eq (6). These results clearly indicate that
both the semantic and temporal weight components
contribute to a better system. We note that the k-
means systemis consistently better than the online
version. This conforms to expectations as the on-
line system has access to less information at every
cluster assignment. The two top left results (in gray)
correspond to the original MSSG system.

7 Conclusion

We have presented Instance-context embedding
(ICE), a method for embedding word instances and
their context for use in word sense induction (WSI).
At the heart of the system are instance representa-

tions based on neural embeddings of context words,
combined using a novel weighting schema.

We have shown that ICE is sucessful in represen-
tating instances of polysemous words, not just in our
own WSI system, but in an extension of an existing
model as well. In an evaluation on the WSI task
of SemEval-2013, our system beat previous state-
of-the-art methods, achieving a 33% relative im-
provement. Further, we have established the bene-
fits of using ICE over a uniform weighting schema,
by showing empirically that each of its components
contribute to a more accurate system.
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