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Introduction

The first day of the BioNLP 2014 workshop continues following the course set by the first ACL workshop
on Natural Language Processing in the Biomedical Domain that was held in 2002: BioNLP 2014
provides a venue for exploring challenges and techniques in processing biomedical language and brings
together researchers from computational linguistics and biomedical informatics. The submissions to
the first day of 2014 workshop organized by SIGBioMed were traditionally very strong and continued
demonstrating the considerable breadth of research in biomedical language processing. The 2014
workshop has accepted 12 full and short papers for oral presentations and 7 posters. The first day of the
workshop features a keynote that expands the scope of BioNLP beyond its already remarkable breadth

Keynote BioNLP as the Pioneering field of linking text, knowledge and data

Professor Jun’ichi Tsujii, Principal Researcher at Microsoft Research Asia (MSRA), Chair of Text
Mining and Scientific Director of the National Centre for Text Mining (NaCTeM) at the University of
Manchester, UK

The second day of the workshop features a paper submitted to the special track on NLP approaches
for assessment of clinical conditions. Kathleen C. Fraser presents the featured talk on using statistical
parsing to detect agrammatic aphasia. The track organizers, Thamar Solorio and Yang Liu, serve as
discussants.

The second day further features an exciting panel that brings together organizers of several shared
tasks in biomedical information retrieval and natural language processing. The panel introduces the
workshop participants to the long-standing and relatively new community-wide challenges in biomedical
and clinical language processing. It also provides an opportunity to discuss the future of the shared tasks
in this domain.

Panel Life cycles of BioCreative, BioNLP-ST, i2b2, TREC Medical tracks, and ShARe /CLEF/ SemEval

Lynette Hirschman & John Wilbur, Sophia Ananiadou, Ellen Voorhees, Ozlem Uzuner, Danielle Mowery
& Sumithra Velupillai & Sameer Pradhan

The second day of the BioNLP 2014 workshop concludes with two tutorials on the fundamental resources
widely used in the biomedical domain.

Tutorial 1 UMLS in biomedical text processing

Olivier Bodenreider, Branch Chief, Cognitive Science Branch, LHNCBC, NLM, NIH

Tutorial 2 Using MetaMap Alan R. Aronson, Senior Researcher, Cognitive Science Branch, LHNCBC,
NLM, NIH

Acknowledgments
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Abstract 

Zoonotic viruses, viruses that are trans-

mittable between animals and humans, 

represent emerging or re-emerging patho-

gens that pose significant public health 

threats throughout the world. It is there-

fore crucial to advance current surveil-

lance mechanisms for these viruses 

through outlets such as phylogeography. 

Phylogeographic techniques may be ap-

plied to trace the origins and geographical 

distribution of these viruses using se-

quence and location data, which are often 

obtained from publicly available data-

bases such as GenBank. Despite the abun-

dance of zoonotic viral sequence data in 

GenBank records, phylogeographic anal-

ysis of these viruses is greatly limited by 

the lack of adequate geographic metadata. 

Although more detailed information may 

often be found in the related articles refer-

enced in these records, manual extraction 

of this information presents a severe bot-

tleneck. In this work, we propose an auto-

mated system for extracting this infor-

mation using Natural Language Pro-

cessing (NLP) methods. In order to vali-

date the need for such a system, we first 

determine the percentage of GenBank rec-

ords with “insufficient” geographic 

metadata for seven well-studied zoonotic 

viruses. We then evaluate four different 

named entity recognition (NER) systems 

which may help in the automatic extrac-

tion of information from related articles 

that can be used to improve the GenBank 

geographic metadata. This includes a 

novel dictionary-based location tagging 

system that we introduce in this paper.  
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1 Introduction 

Zoonotic viruses, viruses that are transmittable 

between animals and humans, have become in-

creasingly prevalent in the last century leading to 

the rise and re-emergence of a variety of diseases 

(Krauss, 2003). In order to enhance currently 

available surveillance systems for these viruses, a 

better understanding of their origins and transmis-

sion patterns is required. This need has led to a 

greater amount of research in the field of phylo-

geography, the study of geographical lineages of 

species (Avise, 2000). Population health agencies 

frequently apply phylogeographic techniques to 

trace the evolutionary changes within viral line-

ages that affect their diffusion and transmission 

among animal and human hosts (Ciccozzi et al., 

2013; Gray and Salemi, 2012; Weidmann et al., 

2013). Prediction of virus migration routes en-

hances the chances of isolating the viral strain for 

vaccine production. In addition, if the source of 

the strain is identified, intervention methods may 

be applied to block the virus at the source and 

limit outbreaks in other areas.  

Phylogeographic analysis depends on the utili-

zation of both the sequence data and the location 

of collection of specific viral sequences.  Re-

searchers often use publicly available databases 

such as GenBank for retrieving this information. 

For instance, Wallace and Fitch (2008) used data 

from GenBank records to study the migration of 

the H5N1 virus in various animal hosts over Eu-

rope, Asia and Africa, and were able to identify 

the Guangdong province in China as the source of 

the outbreak.  However, the extent of phylogeo-

graphic modeling is highly dependent on the spec-

ificity of available geospatial information and the 

lack of geographic data more specific than the 

state or province level may limit phylogeographic 

analysis and distort results. In the previous exam-

ple, Wallace and Fitch (2008) had to use town-

level information to identify the source of the 

H5N1 outbreak; without specific location data, 

they would not have been able to identify the 

Guangdong province as the source. Unfortu-

nately, while there is an abundance of sequence 

data in GenBank records, many of them lack suf-

ficient geographic metadata that would enable 

specific identification of the isolate’s location of 

collection. A prior study conducted by Scotch et 

al. (2011) showed that the geographic information 

of 80% of the GenBank records associated with 

single or double stranded RNA viruses within tet-

rapod hosts is less specific than 1st level adminis-

trative boundaries (ADM1) such as state or prov-

ince.  

Though many of the records lack specific geo-

graphic metadata, more detailed information is of-

ten available within the journal articles referenced 

in them. However, manual extraction of this infor-

mation is time-consuming and cumbersome and 

presents a severe bottleneck on phylogeographic 

analysis. In this work, we investigate the potential 

of NLP techniques to enhance the geographic data 

available for phylogeographic studies of zoonotic 

viruses using NER systems. In addition to geo-

graphic metadata and sequence information, Gen-

Bank records also contain several other forms of 

metadata such as host, collection date and gene for 

each isolate. Journal articles that are referenced in 

these records often mention the location of isola-

tion for the viral sample in conjunction with re-

lated metadata (Figure 1 provides an example of 

such a case). Therefore, by allowing identification 

of location mentions along with mentions of re-

lated GenBank metadata in these articles, we be-

lieve that NER systems may help to accurately 

link each GenBank record to its corresponding lo-

cation of isolation and distinguish it from other lo-

cation mentions.  

Previously Scotch et al. (2011) evaluated the 

performance of BANNER (Leaman and Gonza-

lez, 2008) and the Stanford NER tool (Finkel et 

al., 2005) for automated identification of gene and 

location mentions respectively, in 10 full-text 

PubMed articles, each related to a specific Gen-

Bank record. They were both found to achieve f-

scores of less than 0.45, thereby establishing the 

need for NER systems with better performance 

and/or a larger test corpus (Scotch et al, 2011). In 

this study, we start by evaluating the state of geo-

graphic insufficiency for zoonotic viruses in Gen-

Bank records using a new automated approach. 

Next, we further expand upon the work done by 

Scotch et al. (2011) by building our own diction-

ary-based location-tagging system and evaluating 

its performance on a larger corpus corresponding 

to over 8,500 GenBank records for zoonotic vi-

ruses. In addition, we also evaluate the perfor-

mance of three other state-of-the-art NER tools 

for tagging gene, date and species mentions in this 

corpus. We believe that identification of these en-

tities will be useful for the future development of 

a system for extracting the location of collection 

of viral isolates from articles related to their re-

spective GenBank records.   
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Figure 1. Example of how the date, gene, and strain metadata within a GenBank record may be 

used to differentiate between two potential locations in a related article 

2 Methods 

The process undertaken to complete this study can 

be divided into three distinct stages: selection of 

the zoonotic viruses and extraction of relevant 

GenBank data related to each virus, computation 

of “sufficiency” statistics on the extracted data, 

and development/evaluation of NER systems for 

tagging location, gene, date and species mentions 

in full-text PubMed Central articles. A detailed 

description of each phase is given below. 

2.1 Virus Selection and GenBank Data Ex-

traction 

The domain of this study has been limited to zo-

onotic viruses that are most consistently docu-

mented and tracked by public health, agriculture 

and wildlife state departments within the United 

States. These viruses include influenza, rabies, 

hantavirus, western equine encephalitis (WEE), 

eastern equine encephalitis (EEE), St. Louis en-

cephalitis (SLE), and West Nile virus (WNV). 

The Entrez Programming Utilities (E-Utilities) 

was used to download the following fields from 

59,595 GenBank records associated with these vi-

ruses: GenBank Accession ID, PubMed Central 

ID, Strain name, Collection date and Country. 

These records were the result of a query per-

formed to retrieve all accession numbers related 

to the selected viruses which had at least one ref-

erence to a PubMed Central article. The results 

                                                 
1 Iso.org. [Internet]. Genève. c2013. Available from 

http://www.iso.org/iso/home/standards/country_codes.htm 

 

from the query was retrieved on August 22nd, 

2013.  

2.2 Sufficiency Analysis 

Database Integration: The data extracted from 

Genbank was used to compute the percentage of 

GenBank records that had insufficient geographic 

information for each of the selected viruses. In or-

der to perform this computation, we used data 

from the ISO 3166-1 alpha-2 1  table and the 

GeoNames database. The ISO 3166-1 alpha-2 is 

the International Standard for representing coun-

try names using two-letter codes. The GeoNames2 

database contains a variety of geospatial data for 

over 10 million locations on earth, including the 

ISO 3166-1 alpha-2 code for the country of each 

location and a feature code that can be used to de-

termine the administrative level of each location. 

To allow for efficient querying, we downloaded 

the main GeoNames table and the ISO alpha-2 

country codes table from their respective websites 

and stored them in a local SQL database. Prior to 

adding the ISO data to the database, some com-

monly used country names and their correspond-

ing country codes were added to the table since it 

only included a single title for each country. For 

example, the ISO table included the country name 

“United States” but not alternate names such as 

“USA”, “United States of America”, or “US”. Us-

ing the created database in conjunction with a par-

ser written in Java, we were able to retrieve most 

2 Geonames.org. [Internet]. Egypt. c2013. [updated 2013 

Apr 30] Available from http://www.geonamesorg/EG/ad-

ministrative-division-egypt.html 

Related PubMed Article 
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of the geographic information present within the 

records and classify each of them as sufficient or 

insufficient.   

 

 
 

Figure 2. Sufficiency Criteria 

 

Sufficiency Criteria: For the purpose of this 

project, we considered any geographical bound-

ary more specific than ADM1 to be “sufficient”. 

Based on this criterion, a feature code in 

GeoNames was categorized as sufficient only if it 

was absent from the following list of feature 

codes: ADM1, ADM1H, ADMD, ADMDH, PCL, 

PCLD, PCLF, PCLH, PCLI and PCLS. Evalua-

tion of the geographical sufficiency of a GenBank 

record was dependent upon whether the record in-

cluded a country name. A GenBank record with a 

country mention was called sufficient if the geo-

graphic information extracted from that record in-

cluded another place mention whose feature code 

fell within the class of sufficient feature codes and 

whose ISO country code matched that of the re-

trieved country. For instance, a GenBank record 

with the geographic metadata “Orange County, 

United States” will be called sufficient since the 

place “Orange County” has a sufficient feature 

code of “ADM2” and a country code of “US” 

which matches the country code of the retrieved 

country, “United States”. Place mentions with 

matching country codes often had several differ-

ent feature codes in GeoNames. Such places were 

only called sufficient if all feature codes corre-

sponding to the given pair of place name and 

country code were classified as sufficient. In cases 

where the GenBank record had no country men-

tion, the record was called sufficient only if all 

matching GeoNames entries for any of the places 

mentioned in it had sufficient feature codes. The 

sufficiency criteria were designed to ensure that a 

geographic location is only called sufficient if its 

administrative level was found to be more specific 

than ADM1 without any form of ambiguity. Fig-

ure 3 illustrates the pathways of geographical suf-

ficiency for GenBank records in a diagram. 

Sufficiency Computation: In order to obtain 

the geographic information for each Genbank rec-

ord, we used a Java parser which automatically 

extracted data from the “country” field of each 

record.  Since the “country” field typically con-

tained multiple place mentions divided by a set of 

delimiters consisting of comma, colon and hy-

phen, we first split this field using these delimit-

ers.  We then checked each string obtained 

through this process against the ISO country code 

table to determine whether it was a potential coun-

try name for the record’s location.  If the query 

returned no results, then the locally stored 

GeoNames table was searched and for each match 

found, the corresponding ISO country code and 

feature code were extracted.  Figure 4 shows a di-

agram of this process. 

 

 
 

Figure 3. Sufficiency Calculation Example 

 

In cases where no sufficient location data was 

found from the “country” field of a GenBank rec-

ord, the Java parser searched through its “strain” 

field. This was done because some viral strains 

such as influenza include their location of origin 

integrated into their names. For example, the in-

fluenza strain “A/duck/Alberta/35/76” indicates 

that the geographic origin of the strain is Alberta. 

The different sections of a strain field are sepa-

rated by either forward slash, parenthesis, comma, 

colon, hyphen or underscore and so we used a set 

of delimiters consisting of these characters to split 

this field. Each string thus retrieved was queried 

as before on the ISO country code table and the 

GeoNames table. GeoNames often returned 

matches for strings like ‘raccoons’ and ‘chicken’ 

which were actually meant to be names of host 

species within the “strain” field, and so a list of 
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Figure 4. Example of annotation including all four entities  

 

some of the most frequently seen host name men-

tions in these records was manually created and 

filtered out before querying GeoNames.  

Some of the place mentions contained very spe-

cific location information which resulted in 

GeoNames not finding a match for them. A list 

was created for strings like ‘north’, ‘south-east’, 

‘governorate’ etc. which when removed from a 

place mention may produce a match. In cases of 

potential place mentions which contained any one 

of these strings and for which GeoNames returned 

no matching result, a second query was performed 

after removal of the string. 

Evaluation of Sufficiency Computation: We 

manually annotated 10% of all influenza records 

in GenBank which reference at least one PubMed 

Central article as sufficient or insufficient based 

on our sufficiency criteria (5731 records). We 

then ran our program on these records and com-

pared system results with annotated results. 

2.3 Development/Evaluation of NER sys-

tems 

Creation of Gold Standard Corpus: We created 

a gold standard corpus consisting of twenty-seven 

manually-annotated full-text PubMed Central ar-

ticles in order to evaluate the performance of NER 

systems for tagging location, gene, species and 

date mentions in text. The articles corresponded to 

over 8,500 GenBank records and were randomly 

sampled using the subset of extracted GenBank 

records which contained a link to PubMed Central 

articles and had insufficient geographic metadata.  

Three annotators tagged the following four en-

tities in each article using the freely available an-

notation tool, BRAT (Stenetorp et al., 2012): gene 

names, locations, dates and species. Figure 4 pro-

vides an example of the manual annotation in 

BRAT. We annotated all mentions of each entity 

type, not only those relevant to zoonotic viruses, 

in order to evaluate system performance. A total 

of over 19,000 entities were annotated within this 

corpus. The number of tokens annotated was 

about 24,000. A set of annotation guidelines was 

created for this process (available upon request). 

Before creating the guidelines, each annotator in-

dividually annotated six common articles and 

compared and discussed their results to devise a 

reasonable set of rules for annotating each entity. 

After discussion, the annotators re-annotated the 

common articles based on the guidelines and di-

vided the remaining articles amongst themselves. 

The inter-annotator agreement was calculated for 

each pair of annotators. The annotated corpus will 

be made available at diego.asu.edu/downloads. 

Development of Automated Location Tag-

ger: We developed a dictionary-based NER sys-

tem using the GeoNames database for automated 

identification of location mentions in text. The 

dictionary used by this system, which we will 

hereby refer to as GeoNamer, was created by re-

trieving distinct place names from the GeoNames 

table and filtering out commonly used words from 

the retrieved set. Words filtered out include stop 

words such as ‘are’ and ‘the’, generic place names 

such as ‘cave’ and ‘hill’, numbers like ‘one’ and 

‘two’, domain specific words such as ‘biology’ 

and ‘DNA’, most commonly used surnames like 

‘Garcia’, commonly used animal names such as 

‘chicken’ and ‘fox’ and other miscellaneous 

words such as ‘central’. This was a crucial step 

since the GeoNames database contains a wide ar-

ray of commonly used English words which may 

cause a large volume of false positives if not re-

moved. The final dictionary consists of 5,396,503 

entries. In order to recognize place mentions in a 
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given set of text files, GeoNamer first builds a Lu-

cene index on the contents of the files. It then con-

structs a phrase query for every entry in the 

Geonames dictionary and runs each query on the 

Lucene index. The document id, query text, start 

offset and end offset for every match found is 

written to an output file. We chose this approach 

because of its simplicity and efficiency.  

Evaluation of NER Systems: Four different 

NER systems for identifying species, gene, date 

and location mentions in text were evaluated us-

ing the created gold standard. The evaluated sys-

tems include LINNEAUS (Gerner et al., 2010), 

BANNER, Stanford SUTime (Chang and Man-

ning, 2012) and GeoNamer. LINNEAUS, BAN-

NER and Stanford SUTime are widely-used, 

state-of-the-art open source NER systems for 

recognition of species, gene and temporal expres-

sions respectively. GeoNamer is the system we 

developed in this work for the purpose of tagging 

locations, as described earlier.  

3 Results 

3.1 Sufficiency Analysis 

The system for classifying records as sufficient or 

insufficient was found to have an accuracy of 72% 

as compared to manual annotation.  98% of the 

errors was due to insufficient records being called 

sufficient. The results of the sufficiency analysis 

are given in Table 1. 64% of all GenBank records 

extracted for this project contained insufficient 

geographic information. Amongst the seven stud-

ied viruses, WEE had the highest and EEE had the 

lowest percentage of insufficient records.  

 

Virus 

Type  

Number of 

Entries  

% Insuffi-

cient  

WEE  67  90  

Rabies  4450  85  

WNV  1084  79  

SLE  141  74  

Hanta  1745  66  

Influenza  51734  62  

EEE  374  51  

All  59595  64  

 

Table 1. Percentage of GenBank records with in-

sufficient geographic information for each zoon-

otic virus studied in this project 

3.2 Gold Standard Corpus 

The results for the comparison of the annota-

tions performed by our three annotators on 6 com-

mon papers can be found in Table 2. We used the 

F-score between each pair of annotators as a 

measure of inter-rater agreement and had over 

90% agreement with overlap matching and over 

86% agreement with exact matching in all cases. 

The final gold standard corpus contained approx-

imately 19,000 entities corresponding to approxi-

mately 24,000 tokens. 

 

Entity F-score 

(A,B) 

(Exact; 

Overlap) 

F-score 

(𝑨,𝑪) 
(Exact; 

Overlap) 

F-score  

(𝑩,𝑪) 
(Exact; 

Overlap) 

Date .975; 

.978 

.979; 

.987 

.962; 

.973 

Gene .914; 

.926 

.913; 

.932 

.911; 

.954 

Location .945; 

.961 

.907; 

.931 

.914; 

.935 

Species .909; 

.956 

.874; 

.940 

.915; 

.959 

Virus .952; 

.958 

.947; 

.966 

.947; 

.955 

Mean .939; 

.956 

.924; 

.951 

.930; 

.955 

 

Table 2. Frequency of Annotated Entities for 6 

common annotated papers 

3.3 Performance Analysis of NER Systems 

The performance metrics for the NER systems 

at tagging the desired entities in the test set are 

listed in Table 3. The highest performance was 

achieved by Stanford SUTime for date tagging. 

Tagging of genes had the lowest performance. 

 

Entity  Precision  

(Exact; 

Overlap)  

Recall 

(Exact; 

Overlap)  

F-score  

(Exact; 

Overlap)  

BAN-

NER  

0.070; 

0.239  

0.114; 

0.395  

0.087; 

0.297  

Geo-

Namer 

0.452; 

0.626  

0.658; 

0.783  

0.536; 

0.696  

LIN-

NEAUS  

0.853; 

0.962  

0.563; 

0.658  

0.678; 

0.781  

Stanford 

SUTime 

0.800; 

0853  

0.681; 

0.727  

0.736; 

0.785  

 

Table 3. Performance Statistics of NER 
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4 Discussion 

Based on our analysis, at least half of the Gen-

Bank records for each of the studied zoonotic vi-

ruses lack sufficient geographic information, and 

the proportion of insufficient records can be as 

high as 90%. Our automated system for classify-

ing records as insufficient or sufficient was found 

to have an accuracy of 72% with 98% of the errors 

being a result of insufficient records being called 

sufficient. Therefore, our computed estimate of 

insufficiency is very likely to be an underestima-

tion of the actual problem. The virus with the 

highest level of sufficiency, EEE, had a large 

number of records with county level information 

in the “country” field. However, the insufficient 

records for this virus typically contained no place 

mention, not even at the country level. A key rea-

son for our calculated percentage of sufficient 

GenBank records being higher for these seven vi-

ruses than what has been previously computed by 

Scotch et al. (2011) was the inclusion of the 

“strain” field. The “strain” field often contained 

specific location information which, when com-

bined with place mentions present within the 

“country” field, made the record geographically 

sufficient. The virus for which the inclusion of 

“strain” field had the greatest impact on boosting 

the sufficiency percentage was influenza. Most of 

the GenBank records associated with this virus 

had structured “strain” fields from which the par-

ser could easily separate place mentions using 

GeoNames. 

Although the sufficiency classifications pro-

duced by our system were correct most of the 

time, there were a few cases where a record got 

incorrectly labeled as insufficient even when it 

contained detailed geographic information. This 

typically happened because GeoNames failed to 

return matching results for these places. For in-

stance, the country field “India: Majiara,WB” was 

not found to be sufficient even though Majiara is 

a city in India because GeoNames has no entry for 

it. In some cases the lack of matching result was 

due to spelling variations of the place name. For 

instance the country field “Indonesia: Yogjakarta” 

was called insufficient since “Yogjakarta” is 

spelled as “Yogyakarta” in GeoNames. Some-

times the database simply did not contain the ex-

act string present in the GenBank record. For in-

stance, it does not have any entry for the place 

“south Kalimantan” but it contains the place name 

“kalimantan”. The number of sufficient records 

which were called insufficient by our system due 

to inexact matching were greatly mitigated by re-

moving strings such as “south” from the place 

mention, as described in the “Methods” section. 

Most of the NER systems performed signifi-

cantly better with overlap measures than with ex-

act-match measures. This is because our annota-

tion guidelines typically involved tagging the 

longest possible match for each entity and the au-

tomated systems frequently missed portions of 

each annotation. Stanford SUTime had the best 

overlap f-measure of 0.785, closely followed by 

LINNEAUS with an overlap f-measure of 0.781. 

Although Stanford SUTime was fairly effective at 

finding date mentions in text, it tagged all four-

digit-numbers such as “1012” and “2339” as 

years, leading to a number of false positives. The 

poor recall of LINNEAUS was mostly caused be-

cause the dictionary used by LINNEAUS tagged 

only species mentions in text while we tagged ge-

nus and family mentions as well. It also missed a 

lot of commonly used animal names such as mon-

key, bat, badger and wolf. GeoNamer was the 

third best performer with the highest recall but 

second lowest precision. This is because the 

GeoNames dictionary contains an extensively 

large list of location names, many of which are 

commonly used words such as “central”. Even 

though we filtered out a vast majority of these 

words, it still produced false positives such as 

“wizard”. However, its performance was consid-

erably better than that of the Stanford location tag-

ger used by Scotch et al. (2011) which was found 

to have a recall, precision and f-score of 0.26, 0.81 

and 0.39 respectively. The improved performance 

was achieved because of the higher recall of our 

system. The GeoNames dictionary provides an 

extensive coverage of all location mentions in the 

world and the Stanford NER system, which is a 

CRF classifier trained on a different dataset, was 

not able to recognize many of the place mentions 

present in full-text PMC articles related to Gen-

Bank records.  

BANNER showed the poorest performance 

amongst all the entity taggers evaluated in this pa-

per. In fact, the f-score we achieved for BANNER 

in this study was much lower that its past f-score 

of 0.42 within the domain of articles related to 

GenBank records for viral isolates (Scotch et al., 

2011).  As mentioned by Scotch et al. (2011), a 

key reason for BANNER’s poor performance in 

this domain is the difference between the data set 

used to train the BANNER model and the annota-

tion corpus used to test this system. The version 

of BANNER used in these two studies was trained 

on the training set for the BioCreative 2 Gene 
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Mention task, which comprised of 15,000 sen-

tences from PubMed abstracts. These abstracts of-

ten contained the full names for gene and protein 

mentions while the full-text articles we used 

mostly contained the abbreviated forms of gene 

names, which BANNER tended to miss. The arti-

cles also contained abbreviated forms of several 

entities such as viral strain name (e.g. H1N1) and 

species name (e.g. VEEV) which look similar to 

abbreviated gene names. Therefore, BANNER of-

ten misclassified these entities as gene mentions. 

A possible reason for BANNER having a much 

lower performance in this study than in the previ-

ous study conducted by Scotch et al (2011) is the 

presence of a large number of tables in the journal 

articles we selected. BANNER is a machine learn-

ing system based on conditional random fields 

which uses orthographic, morphological and shal-

low syntax features extracted from sentences to 

identify gene mentions in text. Such features do 

not help greatly for extraction from tables. There-

fore, BANNER was often not able to identify the 

gene mentions in the tables present within our cor-

pus, thereby producing false negatives. Moreover, 

it tagged several entries within the table as a single 

gene name, thereby producing false positives as 

well. This reduced both the recall and precision of 

BANNER. 

Although this study explores the problem of in-

sufficient geographic information in GenBank 

more thoroughly than past studies, the number of 

papers annotated as the gold standard is still lim-

ited. Thus, the performance of the taggers re-

ported can be construed as a preliminary estimate 

at best. The set of taggers and their performance 

seem to be adequate for a large-scale application, 

with the exception of BANNER. However, we did 

not make any changes to the BANNER system 

(specifically, re-training) since changes to it are 

not possible until sufficient data is annotated for 

retraining. 

5 Conclusions and Future Work 

It can be concluded that the majority of Gen-

Bank records for zoonotic viruses do not contain 

sufficient geographic information concerning 

their origin. In order to enable phylogeographic 

analysis of these viruses and thereby monitor their 

spread, it is essential to develop an efficient mech-

anism for extracting this information from pub-

lished articles. Automated NER systems may help 

accelerate this process significantly. Our results 

indicate that the NER systems LINNEAUS, Stan-

ford SUTime and GeoNamer produce satisfactory 

performance in this domain and thus can be used 

in the future for linking GenBank records with 

their corresponding geographic information. 

However, the current version of BANNER is not 

well-suited for this task. We will need to train 

BANNER specifically for this purpose before in-

corporating it within our system. 

We are currently altering the component of our 

program which classifies records as sufficient or 

insufficient in order to reduce the number of errors 

due to insufficient records being called sufficient. 

We are also manually looking through GenBank 

records for zoonotic viruses with insufficient geo-

graphic metadata and linking them to the location 

mentions in related articles which we deem to be 

the most likely location of collection for the given 

viral isolate. The resulting annotated corpus will 

be used to train and evaluate an automated system 

for populating GenBank geographic metadata. 

We have already covered all GenBank records re-

lated to Encephalitis viruses and close to 10% of 

all records related to Influenza which are linked to 

PubMed Central articles. The annotation process 

has revealed that a large proportion of the infor-

mation allowing linkage of GenBank records to 

geographic metadata is often present in tables 

within the articles in addition to textual sentences. 

Therefore, we have developed a Python parser for 

automatically linking GenBank records to loca-

tion mentions using tables from the HTML ver-

sion of the PubMed Central articles.  Future work 

will include further expansion of this annotation 

corpus and the development of an integrated sys-

tem for enhancing GenBank geographic metadata 

for phylogeographic analysis of zoonotic viruses.  
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Abstract
In this paper, we present a system for
recognizing temporal expressions related
to cell cycle phase (CCP) concepts in
biomedical literature. We identified 11
classes of cell cycle related temporal ex-
pressions, for which we made extensions
to TIMEX3, arranging them in an on-
tology derived from the Gene Ontology.
We annotated 310 abstracts from PubMed.
Annotation guidelines were developed,
consistent with existing time-related anno-
tation guidelines for TimeML. Two anno-
tators participated in the annotation. We
achieved an inter-annotator agreement of
0.79 for an exact span match and 0.82
for relaxed constraints. Our approach is
a hybrid of machine learning to recognize
temporal expressions and a rule-based ap-
proach to map them to the ontology. We
trained a named entity recognizer using
Conditional Random Fields (CRF) mod-
els. An off-the-shelf implementation of
the linear chain CRF model was used. We
obtained an F-score of 0.77 for temporal
expression recognition. We achieved 0.79
macro-averagee F-score and 0.78 micro-
averaged F-score for mapping to the on-
tology.

1 Introduction

Storing and processing temporal data in biomed-
ical informatics is important, but challeng-
ing (Zhou and Hripcsak, 2007; Augusto, 2005).
Biomedical data is often intrinsically associated
with time. For example, data from electronic med-
ical records are on a clinical timeline (Zhou and
Hripcsak, 2007) which links all information on the
progress of a patient’s status. Temporal reasoning
remains a challenge for medical information sys-
tems (Combi and Shahar, 1997). Conventionally,

dictionaries define time as “The continuous pas-
sage of existence in which events pass from a state
of potentiality in the future, through the present, to
a state of finality in the past” (Editorial Staff, un-
dated). This traditional linear concept of tempo-
rality does not adequately capture the cyclical na-
ture of some important biological processes, such
as the cell cycle and circadian rhythms. In this pa-
per, we describe a system for the recognition of
temporal expressions related to cell cycle phases
in biomedical literature. The cell cycle is a phe-
nomenon that a cell goes through during its growth
and replication. Its stages are depicted in Figure 1.
We treat each phase as a distinct time component
and we aim at recognizing expressions that de-
scribe them in biomedical literature, then mapping
them to an ontology of cell cycle phases and tran-
sitions. Specifically, we are interested in recog-
nizing expressions that contain one or more of the
concepts shown in Table 1, where the Gene Ontol-
ogy is taken as definitional of concepts related to
phases of the cell cycle.

Recognition of cell cycle phase concepts from
text is a non-trivial problem. Some of the ways
that they can be mentioned in text, such as inter-
phase, anaphase, and prophase are relatively un-
ambiguous and can be recognized and mapped to
an ontology using regular expressions. However,
as is often the case both in general language and in
biomedical language, many of the ways in which
they can be mentioned are highly ambiguous. For
example, M, which stands for mitosis, is often a
unit of measurement, as in . . . removal of histone
HI with 0,6 M NaCl. (PMID: 6183061) M could
also be an abbreviation of an author’s first name,
as in . . . Suzuki S, Nakata M. (PMID: 23844291) S,
which refers to S-phase or synthesis phase, could
also stand for an author’s first name, as well as
a protein name, as in . . . Protein S acts as a co-
factor for tissue factor pathway inhibitor. (PMID:
23841464). In addition, the word synthesis is in it-
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self ambiguous, even in the context of other men-
tions of cell cycle phases. In the following exam-
ples, it refers to something other than a cell cycle
phase:

• . . . histone synthesis by lymphocytes in G0
and G1. (PMID: 6849885)

• . . . metaphase-anaphase transition, as a re-
sult of fertilization, activation or protein syn-
thesis inhibition. (PMID: 9552372)

We treated recognition of temporal expressions
from literature as a named entity recognition
(NER) problem. Many approaches to named en-
tity recognition are based on machine learning
techniques. Nadeau and Sekine report that al-
though semi-supervised learning algorithms have
been employed in NER challenges, most systems
that perform well are built based on supervised
learning techniques (Nadeau and Sekine, 2007).
Based on this survey report, we used Conditional
Random Fields (CRFs) for the recognition phase
of our approach. The details of our methods are
described in section 4.2.

Figure 1: Schematic of the cell cycle. Outer ring:
I = Interphase, M = Mitosis; inner ring: M = Mi-
tosis, G1 = Gap 1, G2 = Gap 2, S = Synthesis; not
in ring: G0 = Gap 0/Resting [Wikipedia].

2 Motivation

A vast collection of biomedical literature in
PubMed/MEDLINE and other biomedical jour-
nal repositories is estimated to grow exponen-
tially (Hunter and Cohen, 2006), as shown in

Figure 2. Searching for papers specific to
a researcher’s interest in any domain is diffi-
cult. PubMed/MEDLINE allows search using
keywords, but until recently did not rank results by
document relevance. General-purpose search en-
gines such as Google and Bing rank their results,
but are not well-suited for search of specialized in-
formation related to genes and small molecules.
Building a specialized search engine exclusively
to search biomedical literature using genes and
small molecules as keywords could be very use-
ful, for instance, for cancer researchers.

Figure 2: Publication growth rate at Med-
line (Hunter and Cohen, 2006)

Our long term goal is to build a spe-
cialized search engine specific to cancer re-
search. The system will retrieve articles from
PubMed/MEDLINE and rank them according to
their relevance. The system will utilize gene, pro-
tein, and small molecule names as keywords in
document search. We are also interested in identi-
fying the phase(s) of the cell cycle during which
the gene is expressed. After detecting the ac-
tive phase(s) of a gene or gene product, the sys-
tem will link relevant documents to this gene from
PubMed/MEDLINE. In this paper we present our
first step towards that goal, which is extraction of
temporal expressions from biomedical literature.
Temporal expressions will be used to identify ac-
tive phases of genes or gene products.

3 Related Work

Automatic recognition of events and temporal ex-
pressions from text has attracted researchers from
areas such as computer science and linguistics.
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Concept ID Activities in each phase Synonyms
Interphase GO:0051325 The cell readies itself for meiosis or mitosis and the

replication of its DNA occurs.
karyostasis

G0 phase GO:0044838 Cells enter in response to cues from the cell’s envi-
ronment.

quiescence

G1 phase GO:0051318 Gap phase -
S phase GO:0051320 DNA synthesis takes place. S-phase, synthesis
G2 phase GO:0051319 Gap phase -
Mitosis GO:0007067 The nucleus of a eukaryotic cell divides -
Prophase GO:0051324 Chromosomes condense and the two daughter cen-

trioles and their asters migrate toward the poles of
the cell.

-

Metaphase GO:0051323 Chromosomes become aligned on the equatorial
plate of the cell.

-

Anaphase GO:0051322 The chromosomes separate and migrate towards the
poles of the spindle.

-

Telophase GO:0051326 The chromosomes arrive at the poles of the cell and
the division of the cytoplasm starts.

-

Table 1: Cell cycle phase concepts. Definitions from the Gene Ontology.

The results have contributed to the development
of diverse natural language processing applica-
tions, such as information extraction, information
retrieval, question-answering systems, text sum-
marization, etc. TimeML: Robust Specification of
Event and Temporal Expressions in Text (Puste-
jovsky et al., 2003) is a specification language for
annotation of events and temporal expressions in
human language. TimeML addresses specification
issues like time stamping, order of events, reason-
ing about events, and time expressions.

TempEval is one of the shared challenges in-
cluded in SemEval (Agirre et al., 2009) as of 2007.
It aims at advancing research on processing tem-
poral information. Primarily it focuses on three
tasks: event extraction and classification, temporal
expression extraction and normalization, and tem-
poral relation extraction (UzZaman et al., 2013).
However, this ongoing work on temporal evalu-
ation is based on language data collected from
the news. In the clinical domain, (Styler IV et
al., Undated; Palmer and Pustejovsky, 2012; Al-
bright et al., 2013) describe the THYME annota-
tion project. The scope and language of temporal-
ity related to the cell cycle is different from that of
both TempEval and the clinical domain, and sup-
ports (and demands) different types of reasoning,
specifically related to cyclical time.

Cyclical phenomena are ubiquitous in can-
cer development and progression. The connec-

tion between the cell cycle and cancer is well
known (Vermeulen et al., 2003; Kastan and
Bartek, 2004; Malumbres and Barbacid, 2009),
and the fact that the cell cycle is the main target
for cancer regulation, deregulation, and therapy
is well established (Vermeulen et al., 2003; Kas-
tan and Bartek, 2004; Malumbres and Barbacid,
2009). Circadian rhythms, rounds of chemother-
apy, remissions, and re-occurrences all have a
cyclic nature.Circadian rhythms have been inves-
tigated in the study of cancer treatment (Sahar and
Sassone-Corsi, 2009; Ortiz-Tudela et al., 2013;
Lengyel et al., 2009; Kelleher et al., 2014).

From the perspective of cancer research, identi-
fying cell cycle concepts in the literature is crucial
to being able to retrieve and explore information
related to cyclical biological processes like the cell
life cycle. From the natural language processing
perspective, the novelty of this work consists in
modeling cyclical time. To our knowledge, tempo-
ral event recognition grounded in a cyclical model
of time has not been previously proposed.

4 Methodology

4.1 Materials

We built a corpus of 360 abstracts, consisting of
70,570 words. The concepts are presented in Ta-
ble 1. We balanced our corpus by collecting arti-
cles from the PubMed/MEDLINE database using
the concepts individually as keywords. We used
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the PubMed/MEDLINE1 and BioMedLib search
engines2, two keyword-based search engines built
on top of MEDLINE, for this purpose. The fol-
lowing keywords were used to collect the abstracts
from PubMed and BioMedLib:

• interphase, G0, G0 phase, G1, G1 phase, syn-
thesis, S phase, G2, G2 phase

• Mitosis, M phase, prophase, metaphase,
anaphase, telophase

• checkpoint

The annotation guidelines addressed the follow-
ing issues:

• The goal of the project: the goal of the anno-
tation project was to develop a highly anno-
tated corpus specific to CCP concepts, which
will be used for automatic recognition and
classification.

• Specification of each tag: this is shown in
Figure 3.

• Tool used to annotate the project: We used
Knowtator (Ogren, 2006), a text annotation
tool built on top of the Protégé knowledge
representation system.

Modeling the phenomenon was the first step in
understanding the annotation process (Pustejovsky
and Stubbs, 2012). We modeled our corpus as a
triple, Model = <T, R, I>, as shown below:

• Model = <T, R, I> where T = terms, R = re-
lation between the terms, and I = interaction

• T = {Named Entity, time expression, not time
expression}
• R = {Named Entity ::= TIMEXCCP | not

TIMEXCCP}
• I = {TIMEXCCP = list of concepts from Ta-

ble 1 or checkpoints. Examples of check-
points are G1/G2 phase, S/G2 phase, etc.

TimeML is a specification for annotating hu-
man language in text (Pustejovsky et al., 2003).
TIMEX3 is defined in TimeML as a tag for cap-
turing dates, times, durations, and sets of dates and

1http://www.ncbi.nlm.nih.gov/pubmed/
2http://bmlsearch.com/

times. In our work we extended TIMEX3. We em-
ploy a single tag set called TIMEXCCP, where the
naming is intended to be consistent with existing
time-related tag sets. Figure 3 shows the attributes
and functions of the tag TIMEXCCP, as well as
examples of usage.

Figure 3: Attributes and functions of the TIMEX-
CCP tag.

Two annotators with training in the domain per-
formed the annotation. Inter-annotator agreement
was calculated as F-measure, following (Hripcsak
and Rothschild, 2005). Inter-annotator agreement
was 0.79 for an exact-span match and 0.82 for re-
laxed matching. The constraints, which are values
of the attributes, were not considered while com-
puting IAA for the latter case.

The annotation effort developed through sev-
eral iterations, applying the annotation devel-
opment cycle introduced by Pustejovsky and
Stubbs (Pustejovsky and Stubbs, 2012). This
methodology is depicted in Figure 4. It is called
the MATTER cycle, which stands for Model, An-
notation, Train, Test, Evaluation, Revise. The ad-
vantage of this methodology is that it allows us
to discover hidden specifications and refine them
during the MATTER cycle.

4.2 Methods

We are particularly interested in recognizing and
classifying temporal expressions in the literature.
For example, in the following sentence, taken from
Wikipedia, the recognition task is to recognize the
blue boxes as shown below and classify them. The
mapping task is to categorize the recognized tem-
poral expressions into the concepts shown in Ta-
ble 1.

"Microhomology-mediated end
joining (MMEJ) uses a Ku
protein and DNA-PK independent
repair mechanism, and
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Figure 4: The MATTER cycle (Pustejovsky and
Stubbs, 2012)

repair occurs during the
S phase of the cell cycle,
as oposed to the G0/G1 and
early S phases in NHEJ and
late S to G2 phases in HR."

... the S phase of the cell cycle, as opposed
to the G0/G1 and early S phases in NHEJ and

late S to G2 phase in HR.

In this example, there are four temporal expres-
sions: S, G0/G1, early S, and late S to G2. The
expression “S” is of the type S-phase or synthesis
phase according to the conceptual ontology in
Table 1. The expression “G0/G1” can be classified
as G0 and G1. Similarly, the expression “late S to
G2” can be of type S and G2.

Our approach is a hybrid of machine learning
and rule-based techniques. The machine learning
technique, which we refer to as the first layer, is
applied for temporal expression recognition. In
this layer, CRFs are trained to learn to recognize
the expressions from the list of features which is
shown below.

1. Word-level features:

• Is the word in uppercase?
• Is the first character of the word in up-

percase?
• Words themselves are also treated as

features.
• Length of the word.

2. Punctuation-related features:

• Does the word contain at least one of the
most common punctuation marks?

3. Digit-related features:

• Is the word a digit?
• Does the word contain a digit?

4. Does the word contain either of the follow-
ing: phase, arrest, entry? These words typi-
cally come before or after the cell cycle con-
cepts. For example, early mitosis, G0 phase.

5. Part-of-Speech tagging: Window size of 2
before and after the word.

6. Presence of concept modifiers before the
word. Modifiers include: early, mid, late,
early-mid.

Conditional Random Fields (CRFs) are one of
the probabilistic graphical model sequence tag-
ging techniques. They are understood as a sequen-
tial version of Maximum Entropy Models (Klinger
and Tomanek, 2007). One advantage of CRFs over
other probabilistic models like Hidden Markov
Models and Maximum Entropy Models for com-
plex systems is their support for features interact-
ing with one another. The linear chain CRF repre-
sentation is shown in Figure 5.

Figure 5: A linear chain Conditional Ran-
dom Field representation (Klinger and Tomanek,
2007).

In this representation, ~x is a vector of observa-
tions, also known as features in machine learn-
ing, and the yt’s are states or labels. In this lin-
ear chain model, a given state is dependent on its
previous, current, and next states. It is also in-
fluenced by the observations for that state. This
argument can be formulated as Equation 1. Ac-
cordingly, state prediction will be an optimization
of Equation 1. ψc(~x, ~y) are the factor matrices of
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the maximal cliques read from the factor graph in
Figure 5 (Klinger and Tomanek, 2007).

P (~y|~x) =
1

Z(~x)

∏
cεC

ψc(~x, ~y) (1)

We used the IOB format, which is the most com-
mon method of representation for sequence tag-
ging. In this format, I stands for the inside, O is
the outside, and B is the beginning of a temporal
expression. Table 2 shows an example of IOB la-
beling for the phrase . . . late S to G2 phase in HR.

token tag
. . . . . .
late B TIMEXCCP
S I TIMEXCCP
to I TIMEXCCP
G2 I TIMEXCCP

phase O
in O

HR O
. O

Table 2: IOB format representation of a segment
of a sentence.

The rule-based system is keyword-based. The
rules match simple cell cycle phase concepts. For
example, the phrase early S phase is classified as
synthesis, since there is S in it. The expression
G0/G1 phase is classified as a G0/G1 checkpoint.

5 Experimental setup

We split our dataset of more than 70K tokens into
80% training and 20% test sets. We used 5-fold
cross validation to balance the distribution of the
dataset. The number of positive instances for the
5 runs is shown in Figure 6. The expressions
S and synthesis are displayed separately, despite
their identical meaning, to allow for more granu-
lar evaluation of performance. The same rationale
applies to displaying M and mitosis separately.

The ratio of the individual concepts that we
have in the 5 runs is balanced, as shown in Fig-
ure 6. However, the training dataset is skewed,
since there are almost 98% negative labels, with
the remaining small portion as positive labels.
Among the approximately 10K test tokens, 180
of them are labeled as positive TIMEXCCP, but
the others are negative, i.e. they have the label
O. A positive TIMEXCCP in this case could be

B TIMEXCCP or I TIMEXCCP—beginning or
inside of a temporal expression.,

6 Results

Since the task consisted of two separate steps—
temporal expression recognition, and mapping or
normalization—in this section, we report our find-
ings independently. Our evaluation metrics are in
terms of precision P, recall R, and F-measure. The
system achieved precision P = 0.83, recall R =
0.72 and F = 0.77 for recognizing TIMEXCCP in
biomedical literature.

The temporal expression mapper, which is a
rule-based system, achieved a macro-averaged P=
0.90, R = 0.70, and F = 0.79 and a micro-averaged
P = 0.86, R = 0.71, and F = 0.78. The system per-
formance for the individual concepts is shown in
Figure 7.

7 Discussion

Some of the false positive predictions were due to
human annotation errors.

There were some conditions where the annota-
tors disagreed. For example, . . . early G1 to G2
phase. This examples addresses two questions that
should be explicitly mentioned in the annotation
guidelines:

• Does the modifier “early” modify only G1, or
both G1 and G2?

• Should there be an attribute for the range of
time from G1 to G2 in the annotation guide-
lines?

Our system achieved good performance on
both time expression recognition and mapping of
highly ambiguous concepts. In spite of the chal-
lenges presented by ambiguity, we obtained 0.85,
0.81, and 0.80 F-measures for recognizing and
mapping the concepts synthesis, M, and S, respec-
tively. The most informative features that con-
tribute to this score are the discriminating words
before and after a target token. These words are:
phase, arrest, and entry. They are often present
before or after CCP concepts. Also, presence of
modifiers is a good indication of CCP concepts.
For example, in the phase early S phase, the mod-
ifier early is one of the most informative features.
However, recognition of complex phrases as in
late S to G2 phase remained a challenge.

The challenges of complex temporal expres-
sions can be seen from a different perspective.
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Figure 6: Distribution of concepts in 5 runs.

Figure 7: Rule-based classification performance. Average score for 5 runs.

Mostly the system recognizes the individual con-
cepts within a complex phrase, but not the mod-
ifiers nor the words like prepositions within the
complex phrase. In the example given previously,
the system recognizes S and G2 but not the modi-
fier late, nor the preposition to. These challenges
could be tackled by having features that address
the modifiers as well as words within two con-
cepts.

We used a naive tokenizer that splits the text
into words based on white space. In the future,
we would like to test the system with other more
sophisticated tokenizers. We kept punctuation
marks in temporal expressions, for example, the
forward slash in G0/G1 phase. Presence of punc-
tuation marks, such as hyphen (-), forward slash
(/), comma (,) and single quote (’), within a token
is one of our features in training the machine learn-
ing algorithm to recognize temporal expressions.

8 Conclusions & Future work

Cell cycle phase concepts are time expressions,
and can be annotated in a fashion similar to
TimeML. In this work, we annotated a corpus with

cell cycle phase information. This corpus can be
used to train machine learning algorithms to pre-
dict cell cycle phase concepts. The concepts were
annotated using the TIMEXCCP tag, an extension
of TIMEX3, which has the following attributes:
value, modifier, set, and comments. The details
are in Figure 3.

We have developed a temporal expression rec-
ognizer and classifier based on a hybrid of ma-
chine learning and rule-based techniques. We pro-
pose a two-tiered architecture to solve temporal
expression recognition and mapping for CCP con-
cepts. The first tier recognizes temporal expres-
sions using CRFs. In the second tier, a rule-based
system classifies the concepts.

Some of the main future directions for this
works are testing the system with the addition of
more annotated data. We will focus on how we
can capture complex time expressions. This might
take us to redefining the annotation guidelines that
we have right now.
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Abstract 

Publication bias refers to the phenome-
non that statistically significant, “posi-
tive” results are more likely to be pub-
lished than non-significant, “negative” 
results. Currently, researchers have to 
manually identify negative results in a 
large number of publications in order to 
examine publication biases. This paper 
proposes an NLP approach for automati-
cally classifying negated sentences in bi-
omedical abstracts as either reporting 
negative findings or not. Using multino-
mial naïve Bayes algorithm and bag-of-
words features enriched by parts-of-
speeches and constituents, we built a 
classifier that reached 84% accuracy 
based on 5-fold cross validation on a bal-
anced data set. 

1 Introduction 

Publication bias refers to the phenomenon that 
statistically significant, “positive” results are 
more likely to be published than non-significant, 
“negative” results (Estabrook et al., 1991). Due 
to the “file-drawer” effect (Rosenthal, 1979), 
negative results are more likely to be “filed 
away” privately than to be published publicly.    

Publication bias poses challenge for an accu-
rate review of current research progress. It 
threatens the quality of meta-analyses and sys-
tematic reviews that rely on published research 
results (e.g., the Cochrane Review). Publication 
bias may be further spread through citation net-
work, and amplified by citation bias, a phenome-
non that positive results are more likely to be 
cited than negative results (Greenberg, 2009). 

To address the publication bias problem, some 
new journals were launched and dedicated to 

publishing negative results, such as the Journal 
of Negative Results in Biomedicine, Journal of 
Pharmaceutical Negative Results, Journal of 
Negative Results in Ecology and Evolutionary 
Biology, and All Results Journals: Chem. Some 
quantitative methods like the funnel plot (Egger 
et al., 1997) were used to measure publication 
bias in publications retrieved for a certain topic.  

A key step in such manual analysis is to exam-
ine the article abstracts or full-texts to see wheth-
er the findings are negative or not. For example, 
Hebert et al. (2002) examined the full text of 
1,038 biomedical articles whose primary out-
comes were hypothesis testing results, and found 
234 (23%) negative articles. Apparently, such 
manual analysis approach is time consuming. An 
accurate, automated classifier would be ideal to 
actively track positive and negative publications. 

This paper proposes an NLP approach for au-
tomatically identifying negative results in bio-
medical abstracts. Because one publication may 
have multiple findings, we currently focus on 
classifying negative findings at sentence level: 
for a sentence that contains the negation cues 
“no” and/or “not”, we predict whether the sen-
tence reported negative finding or not. We con-
structed a training data set using manual annota-
tion and convenience samples. Two widely-used 
text classification algorithms, Multinomial naive 
Bayes (MNB) and Support Vector Machines 
(SVM), were compared in this study. A few text 
representation approaches were also compared 
by their effectiveness in building the classifier. 
The approaches include (1) bag-of-words 
(BOW), (2) BOW with PoS tagging and shallow 
parsing, and (3) local contexts of the negation 
cues “no” and ‘not”, including the words, PoS 
tags, and constituents. The best classifier was 
built using MNB and bag-of-words features en-
riched with PoS tags and constituent markers. 
The best performance is 84% accuracy based on 
5-fold cross validation on a balanced data set. 
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2 Related work 

The problem of identifying negative results is 
related to several other BioNLP problems, espe-
cially on negation and scientific claim identifica-
tion.  
    The first relevant task is to identify negation 
signals and their scopes (e.g., Morante and 
Daelemans, 2008;2009; Farkas et al., 2010; 
Agarwal et al., 2011). Manually-annotated cor-
pora like BioScope (Szarvas et al., 2008) were 
created to annotate negations and their scopes in 
biomedical abstracts in support of automated 
identification. This task targets a wide range of 
negation types, such as the presence or absence 
of clinical observations in narrative clinical re-
ports (Chapman et al., 2001). In comparison, our 
task focuses on identifying negative findings on-
ly. Although not all negations report negative 
results, negation signals are important rhetorical 
device for authors to make negative claims. 
Therefore, in this study we also examine preci-
sion and recall of using negation signals as pre-
dictors of negative findings.  
    The second relevant task is to identify the 
strength and types of scientific claims. Light et 
al. (2004) developed a classifier to predict the 
level of speculations in sentences in biomedical 
abstracts. Blake (2010) proposed a “claim 
framework” that differentiates explicit claims, 
observations, correlations, comparisons, and im-
plicit claims, based on the certainty of the causal 
relationship that was presented. Blake also found 
that abstracts contained only 7.84% of all scien-
tific claims, indicating the need for full-text 
analysis. Currently, our preliminary study exam-
ines abstracts only, assuming the most important 
findings are reported there. We also focus on 
coarse-grained classification of positive vs. nega-
tive findings at this stage, and leave for future 
work the task of differentiating negative claims 
in finer-granularity. 

3 The NLP approach 

3.1 The definition of negative results 

When deciding what kinds of results count as 
“negative”, some prior studies used “non-
significant” results as an equivalent for “negative 
results” (e.g. Hebert et al., 2002; Fanelli, 2012). 
However, in practice, the definition of “negative 
results” is actually broader. For example, the 
Journal of Negative Results in Biomedicine 
(JNRBM), launched in 2002, was devoted to 
publishing “unexpected, controversial, provoca-

tive and/or negative results,” according to the 
journal’s website. This broader definition has its 
pros and cons. The added ambiguity poses chal-
lenge for manual and automated identification. 
At the same time, the broader definition allows 
the inclusion of descriptive studies, such as the 
first JNRBM article (Hebert et al., 2002).  

Interestingly, Hebert et al. (2002) defined 
“negative results” as “non-significant outcomes” 
and drew a negative conclusion that “prominent 
medical journals often provide insufficient in-
formation to assess the validity of studies with 
negative results”, based on descriptive statistics, 
not hypothesis testing. This finding would not be 
counted as “negative” unless the broader defini-
tion is adopted. 

In our study, we utilized the JNRBM articles 
as a convenience sample of negative results, and 
thus inherit its broader definition.          

3.2 The effectiveness of negation cues as 
predictors 

The Bioscope corpus marked a number of nega-
tion cues in the abstracts of research articles, 
such as “not”, “no”, “without”, etc. It is so far the 
most comprehensive negation cue collection we 
can find for biomedical publications. However, 
some challenges arise when applying these nega-
tion cues to the task of identifying negative re-
sults.   

First, instead of focusing on negative results, 
the Bioscope corpus was annotated with cues 
expressing general negation and speculations. 
Consequently, some negation cues such as “un-
likely” was annotated as a speculation cue, not a 
negation cue, although “unlikely” was used to 
report negative results like  

 
“These data indicate that changes in Wnt ex-
pression per se are unlikely to be the cause of 
the observed dysregulation of β-catenin ex-
pression in DD” (PMC1564412).  
 
Therefore, the Bioscope negation cues may 

not have captured all negation cues for reporting 
negative findings. To test this hypothesis, we 
used the JNRBM abstracts (N=90) as a conven-
ience sample of negative results, and found that 
81 abstracts (88.9%) contain at least one Bio-
scope negation cue. Note that because the 
JNRBM abstracts consist of multiple subsections 
“background”, “objective”, “method”, “result”, 
and “conclusion”, we used the “result” and “con-
clusions” subsections only to narrow down the 
search range.   
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Among the 9 missed abstracts, 5 used cues not 
captured in Bioscope negation cues: “insuffi-
cient”, “unlikely”, “setbacks”, “worsening”, and 
“underestimates”. However, the authors’ writing 
style might be affected by the fact that JNRBM 
is dedicated to negative results. One hypothesis 
is that the authors would feel less pressure to use 
negative tones, and thus used more variety of 
negation words. Hence we leave it as an open 
question whether the new-found negation cues 
and their synonyms are generalizable to other 
biomedical journal articles. 

The rest 4 abstracts (PMC 1863432, 1865554, 
1839113, and 2746800) did not report explicit 
negation results, indicating that sometimes ab-
stracts alone are not enough to decide whether 
negative results were reported, although the per-
centage is relatively low (4.4%). Hence, we de-
cided that missing target is not a major concern 
for our task, and thus would classify a research 
finding as positive if no negation cues were 
found.   

Second, some positive research results may be 
mistaken as negative just because they used ne-
gation cues. For example, “without” is marked as 
a negation cue in Bioscope, but it can be used in 
many contexts that do not indicate negative re-
sults, such as  

 
“The effects are consistent with or without the 
presence of hypertension and other comorbidi-
ties and across a range of drug classes.” 
(PMC2659734) 
 
To measure the percentage of false alarm, we 

applied the aforementioned trivial classifier to a 
corpus of 600 abstracts in 4 biomedical disci-
plines, which were manually annotated by Fan-
elli (2012). This corpus will be referred to as 
“Corpus-600” hereafter. Each abstract is marked 
as “positive”, “negative”, “partially positive”, or 
“n/a”, based on hypothesis testing results. The 
latter two types were excluded in our study. The 
trivial classifier predicted an abstract as “posi-
tive” if no negation cues were found. Table 1 
reported the prediction results, including the pre-
cision and recall in identifying negative results. 
This result corroborates with our previous find-
ing that the inclusiveness of negation cues is not 
the major problem since high recalls have been 
observed in both experiments. However, the low 
precision is the major problem in that the false 
negative predictions are far more than the true 
negative predictions. Hence, weeding out the 

negations that did not report negative results be-
came the main purpose of this preliminary study.  

 
 

Discipline #abstracts Precision Recall 
Psychiatry 140 .11 .92 
Clinical  
Medicine 

127 .16 .94 

Neuroscience 144 .20 .95 
Immunology 140 .18 .95 
Total 551 .16 .94 

 
Table 1: results of cue-based trivial classifier 

 

3.3 Classification task definition 

This preliminary study focuses on separating 
negations that reported negative results and those 
not. We limit our study to abstracts at this time. 
Because a paper may report multiple findings, 
we performed the prediction at sentence level, 
and leave for future work the task of aggregating 
sentence-level predictions to abstract-level or 
article-level. By this definition, we will classify 
each sentence as reporting negative finding or 
not. A sentence that includes mixed findings will 
be categorized as reporting negative finding. 

“Not” and “no” are the most frequent negation 
cues in the Bioscope corpus, accounting for more 
than 85% of all occurrences of negation cues. In 
this study we also examined whether local con-
text, such as the words, parts-of-speeches, and 
constituents surrounding the negation cues, 
would be useful for predicting negative findings. 
Considering that different negation cues may be 
used in different contexts to report negative find-
ings, we built a classifier based on the local con-
texts of “no” and “not”. Contexts for other nega-
tion cues will be studied in the future.  

Therefore, our goal is to extract sentences con-
taining “no” or “not” from abstracts, and predict 
whether they report negative findings or not. 

3.4 Training data 

We obtained a set of “positive examples”, 
which are negative-finding sentences, and a set 
of “negative examples” that did not report nega-
tive findings. The examples were obtained in the 
following way.  

Positive examples. These are sentences that 
used “no” or “not” to report negative findings. 
We extracted all sentences that contain “no” or 
“not” in JNRBM abstracts, and manually marked 
each sentence as reporting negative findings or 
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not. Finally we obtained 158 sentences reporting 
negative findings.  

To increase the number of negative-finding 
examples and add variety to writing styles, we 
repeat the above annotations to all Lancet ab-
stracts (“result” and “finding” subsections only) 
in the PubMed Central open access subset, and 
obtained 55 more such sentences. Now we have 
obtained 213 negative-finding examples in total. 

Negative examples. To reduce the workload 
for manual labeling, we utilized the heuristic rule 
that a “no” or “not” does not report negative re-
sult if it occurs in a positive abstract, therefore 
we extracted such sentences from positive ab-
stracts in “Corpus-600”. These are the negative 
examples we will use. To balance the number of 
positive and negative examples, we used a total 
of 231 negative examples in two domains (132 in 
clinical medicine and 99 in neuroscience) instead 
of all four domains, because there are not enough 
positive examples.  

Now the training data is ready for use. 

3.5 Feature extraction 

We compared three text representation methods 
by their effectiveness in building the classifier. 
The approaches are (1) BOW: simple bag-of-
words, (2) E-BOW: bag-of-words enriched with 
PoS tagging and shallow parsing, and (3) LCE-
BOW: local contexts of the negation cues “no” 
and ‘not”, including the words, PoS tags, and 
constituents. For (2) and (3), we ran the 
OpenNLP chunker through all sentences in the 
training data. For (3), we extracted the following 
features for each sentence: 
 
• The type of chunk (constituent) where 

“no/not” is in (e.g. verb phrase “VP”); 
 

• The types of two chunks before and after the 
chunk where “not” is in; 

 
• All words or punctuations in these chunks;  
 
• The parts-of-speech of all these words. 

 
See Table 2 below for an example of negative 

finding: row 1 is the original sentence; row 2 is 
the chunked sentence, and row 3 is the extracted 
local context of the negation cue “not”. These 
three representations were then converted to fea-
ture vectors using the “bag-of-words” representa-
tion. To reduce vocabulary size, we removed 
words that occurred only once.  

 

 
     
(1) 

Vascular mortality did not differ signifi-
cantly (0.19% vs 0.19% per year, p=0.7). 

(2) 

 "[NP Vascular/JJ mortality/NN ] [VP 
did/VBD not/RB differ/VB ] [ADVP sig-
nificantly/RB ] [PP (/-LRB- ] [NP 019/CD 
%/NN ] [PP vs/IN ] [NP 019/CD %/NN ] 
[PP per/IN ] [NP year/NN ] ,/, [NP 
p=07/NNS ] [VP )/-RRB- ] ./." 

(3) “na na VP ADVP PP   did not differ signif-
icantly    VBD RB VB RB” 

 
Table 2: text representations 

 

3.6 Classification result 

We applied two supervised learning algorithms, 
multinomial naïve Bayes (MNB), and Support 
Vector Machines (Liblinear) to the unigram fea-
ture vectors. We used the Sci-kit Learn toolkit to 
carry out the experiment, and compared the algo-
rithms’ performance using 5-fold cross valida-
tion. All algorithms were set to the default pa-
rameter setting.  
 

Representation MNB SVM 
Presence 

vs. 
absence 

BOW .82 .79 
E-BOW .82 .79 
LCE-BOW .72 .72 

tf 
BOW .82 .79 
E-BOW .84 .79 
LCE-BOW .72 .72 

Tfidf 
BOW .82 .75 
E-BOW .84 .73 
LCE-BOW .72 .75 

 
Table 3: classification accuracy  

 
Table 3 reports the classification accuracy. Be-
cause the data set contains 213 positive and 231 
negative examples, the majority vote baseline is 
.52. Both algorithms combined with any text rep-
resentation methods outperformed the majority 
baseline significantly. Among them the best clas-
sifier is a MNB classifier based on enriched bag-
of-words representation and tfidf weighting. Alt-
hough LCE-BOW reached as high as .75 accura-
cy using SVM and tfidf weighting, it did not per-
form as well as the other text representation 
methods, indicating that the local context with 
+/- 2 window did not capture all relevant indica-
tors for negative findings.  

Tuning the regularization parameter C in 
SVM did not improve the accuracy. Adding bi-
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grams to the feature set resulted in slightly lower 
accuracy. 

 

4 Conclusion 

In this study we aimed for building a classifier to 
predict whether a sentence containing the words 
“no” or “not” reported negative findings. Built 
with MNB algorithms and enriched bag-of-
words features with tfidf weighting, the best 
classifier reached .84 accuracy on a balanced 
data set.    
    This preliminary study shows promising re-
sults for automatically identifying negative find-
ings for the purpose of tracking publication bias. 
To reach this goal, we will have to aggregate the 
sentence-level predictions on individual findings 
to abstract- or article-level negative results. The 
aggregation strategy is dependent on the decision 
of which finding is the primary outcome when 
multiple findings are present. We leave this as 
our future work. 
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Abstract 

While machine learning methods for 

named entity recognition (mention-level 

detection) have become common, ma-

chine learning methods have rarely been 

applied to normalization (concept-level 

identification). Recent research intro-

duced a machine learning method for 

normalization based on pairwise learning 

to rank. This method, DNorm, uses a lin-

ear model to score the similarity between 

mentions and concept names, and has 

several desirable properties, including 

learning term variation directly from 

training data. In this manuscript we em-

ploy a dimensionality reduction tech-

nique based on low-rank matrix approx-

imation, similar to latent semantic index-

ing. We compare the performance of the 

low rank method to previous work, using 

disease name normalization in the NCBI 

Disease Corpus as the test case, and 

demonstrate increased performance as 

the matrix rank increases. We further 

demonstrate a significant reduction in the 

number of parameters to be learned and 

discuss the implications of this result in 

the context of algorithm scalability. 

1 Introduction 

The data necessary to answer a wide variety of 

biomedical research questions is locked away in 

narrative text. Automating the location (named 

entity recognition) and identification (normaliza-

tion) of key biomedical entities (Doğan et al., 

2009; Névéol et al., 2011) such as diseases, pro-

teins and chemicals in narrative text may reduce 

curation costs, enable significantly increased 

scale and ultimately accelerate biomedical dis-

covery (Wei et al., 2012a). 

Named entity recognition (NER) techniques 

have typically focused on machine learning 

methods such as conditional random fields 

(CRFs), which have provided high performance 

when coupled with a rich feature approach. The 

utility of NER for biomedical end users is lim-

ited, however, since many applications require 

each mention to be normalized, that is, identified 

within a specified controlled vocabulary.  

The normalization task has been highlighted in 

the BioCreative challenges (Hirschman et al., 

2005; Lu et al., 2011; Morgan et al., 2008), 

where a variety of methods have been explored 

for normalizing gene names, including string 

matching, pattern matching, and heuristic rules. 

Similar methods have been applied to disease 

names (Doğan & Lu, 2012b; Kang et al., 2012; 

Névéol et al., 2009) and species names (Gerner 

et al., 2010; Wei et al., 2012b), and the MetaMap 

program is used to locate and identify concepts 

from the UMLS MetaThesaurus (Aronson, 2001; 

Bodenreider, 2004). 

Machine learning methods for NER have pro-

vided high performance, enhanced system adapt-

ability to new entity types, and abstracted many 

details of specific rule patterns. While machine 

learning methods for normalization have been 

explored (Tsuruoka et al., 2007; Wermter et al., 

2009), these are far less common. This is partial-

ly due to the lack of appropriate training data, 

and also partially due to the need for a general-

izable supporting framework.  

Normalization is frequently decomposed into 

the sub-tasks of candidate generation and disam-

biguation (Lu et al., 2011; Morgan et al., 2008). 

During candidate generation, the set of concept 

names is constrained to a set of possible matches 

using the text of the mention. The primary diffi-

culty addressed in candidate generation is term 

variation: the need to identify terms which are 

semantically similar but textually distinct (e.g. 

“nephropathy” and “kidney disease”). The dis-

ambiguation step then differentiates between the 

different candidates to remove false positives, 

typically using the context of the mention and the 

article metadata. 
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Recently, Leaman et al. (2013a) developed an 

algorithm (DNorm) that directly addresses the 

term variation problem with machine learning, 

and used diseases – an important biomedical en-

tity – as the first case study. The algorithm learns 

a similarity function between mentions and con-

cept names directly from training data using a 

method based on pairwise learning to rank. The 

method was shown to provide high performance 

on the NCBI Disease Corpus (Doğan et al., 2014; 

Doğan & Lu, 2012a), and was also applied to 

clinical notes in the ShARe / CLEF eHealth task 

(Suominen et al., 2013), where it achieved the 

highest normalization performance out of 17 in-

ternational teams (Leaman et al., 2013b). The 

normalization step does not consider context, and 

therefore must be combined with a disambigua-

tion method for tasks where disambiguation is 

important. However, this method provides high 

performance when paired with a conditional ran-

dom field system for NER, making the combina-

tion a step towards fully adaptable mention 

recognition and normalization systems. 

This manuscript adapts DNorm to use a di-

mensionality reduction technique based on low 

rank matrix approximation. This may provide 

several benefits. First, it may increase the scala-

bility of the method, since the number of pa-

rameters used by the original technique is pro-

portional to the square of the number of unique 

tokens. Second, reducing the number of parame-

ters may, in turn, improve the stability of the 

method and improve its generalization due to the 

induction of a latent “concept space,” similar to 

latent semantic indexing (Bai et al., 2010). Final-

ly, while the rich feature approach typically used 

with conditional random fields allows it to par-

tially compensate for out-of-vocabulary effects, 

DNorm ignores unknown tokens. This reduces 

the ability of the model to generalize, due to the 

zipfian distribution of text (Manning & Schütze, 

1999), and is especially problematic in text 

which contains many misspellings, such as con-

sumer text. Using a richer feature space with 

DNorm would not be feasible, however, unless 

the parameter scalability problem is resolved. 

In this article we expand the DNorm method 

in a pilot study on feasibility of using low rank 

approximation methods for disease name nor-

malization. To make this work comparable to the 

previous work on DNorm, we again employed 

the NCBI Disease Corpus (Doğan et al., 2014). 

This corpus contains nearly 800 abstracts, split 

into training, development, and test sets, as de-

scribed in Table 1. Each disease mention is anno-

tated for span and concept, using the MEDIC 

vocabulary (Davis et al., 2012), which combines 

MeSH® (Coletti & Bleich, 2001) and OMIM® 

(Amberger et al., 2011). The average number of 

concepts for each name in the vocabulary is 5.72. 

Disease names exhibit relatively low ambiguity, 

with an average number of concepts per name of 

1.01. 

 
Subset Abstracts Mentions Concepts 

Training 593 5145 670 

Development 100 787 176 

Test 100 960 203 

 
Table 1. Descriptive statistics for the NCBI Disease 

Corpus. 

2 Methods 

DNorm uses the BANNER NER system 

(Leaman & Gonzalez, 2008) to locate disease 

mentions, and then employs a ranking method to 

normalize each mention found to the disease 

concepts in the lexicon (Leaman et al., 2013a). 

Briefly, we define   to be the set of tokens from 

both the disease mentions in the training data and 

the concept names in the lexicon. We stem each 

token in both disease mentions and concept 

names (Porter, 1980), and then convert each to 

TF-IDF vectors of dimensionality | |, where the 

document frequency for each token is taken to be 

the number of names in the lexicon containing it 

(Manning et al., 2008). All vectors are normal-

ized to unit length. We define a similarity score 

between mention vector   and name vector  , 

     (   ), and each mention is normalized by 

iterating through all concept names and returning 

the disease concept corresponding to the one 

with the highest score. 

In previous work,      (   )      , 

where   is a weight matrix and each entry     

represents the correlation between token    ap-

pearing in a mention and token    appearing in a 

concept name from the lexicon. In this work, 

however, we set   to be a low-rank approxima-

tion of the form        , where   and   

are both   | |  matrices,   being the rank 

(number of linearly independent rows), and 

  | | (Bai et al., 2010). 

For efficiency, the low-rank scoring function 

can be rewritten and evaluated as      (   )  
(  ) (  )     , allowing the respective    

and    vectors to be calculated once and then 

reused. This view provides an intuitive explana-

tion of the purpose of the  and   matrices: to 
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convert the sparse, high-dimensional mention 

and concept name vectors (  and  ) into dense, 

low dimensional vectors (as    and   ). Under 

this interpretation, we found that performance 

improved if each    and    vector was renor-

malized to unit length. 

This model retains many useful properties of 

the original model, such as the ability to repre-

sent both positive and negative correlations be-

tween tokens, to represent both synonymy and 

polysemy, and to allow the token distributions 

between the mentions and the names to be differ-

ent. The new model also adds one important ad-

ditional property: the number of parameters is 

linear in the number of unique tokens, potentially 

enabling greater scalability.  

2.1 Model Training 

Given any pair of disease names where one (  ) 

is for   , the correct disease concept for 

tion  , and the other,   , is for   , an incorrect 

concept , we would like to update the weight ma-

trix   so that            . Following 

Leaman et al. (2013a), we  iterate through each 

〈       〉 tuple, selecting   and   as the name 

for    and   , respectively, with the highest sim-

ilarity score to  , using stochastic gradient de-

scent to make updates to  . With a dense weight 

matrix  , the update rule is: if       
       , then   is updated as     
 ( (  )   (  ) ) , where   is the learning 

rate, a parameter controlling the size of the 

change to W. Under the low-rank approximation, 

the update rules are: if              , 

then   is updated as       (     )  , 

and   is updated as        (     ) , 

noting that the updates are applied simultaneous-

ly (Bai et al., 2010). Overfitting is avoided using 

a holdout set, using the average of the ranks of 

the correct concept as the performance measure-

ment, as in previous work. 

We initialize   using values chosen randomly 

from a normal distribution with mean 0 and 

standard deviation 1. We found it useful to ini-

tialize   as   , since this causes the representa-

tion for disease mentions and disease names to 

initially be the same.  

We employed an adaptive learning rate using 

the schedule      
 

   
, where   is the itera-

tion,    is the initial learning rate, and   is the 

discount (Finkel et al., 2008). We used an initial 

learning rate of       
  . This is much lower 

than reported by Leaman et al. (2013a), since we 

found that higher values caused the training to 

found that higher values caused the training to 

diverge. We used a discount parameter of    , 

so that the learning rate is equal to one half the 

initial rate after five iterations. 

3 Results 

Our results were evaluated at the abstract level, 

allowing comparison to the previous work on 

DNorm (Leaman et al., 2013a). This evaluation 

considers the set of disease concepts found in the 

abstract, and ignores the exact location(s) where 

each concept was found. A true positive consists 

of the system returning a disease concept anno-

tated within the NCBI Disease Corpus, and the 

number of false negatives and false positives are 

defined similarly. We calculated the precision, 

recall and F-measure as follows: 

  
  

     
     

  

     
     

   

   
 

We list the micro-averaged results in Table 2. 

 

Rank Precision Recall F-measure 

50 0.648 0.671 0.659 

100 0.673 0.685 0.679 

250 0.697 0.697 0.697 

500 0.702 0.700 0.701 

(Full) 0.828 0.819 0.809 

 

Table 2. Performance measurements for each 

model on the NCBI Disease Test set. Full corre-

sponds with the full-rank matrix used in previous 

work. 

4 Discussion 

There are two primary trends to note. First, the 

performance of the low rank models is about 

10%-15% lower than the full rank model. Sec-

ond, there is a clear trend towards higher preci-

sion and recall as the rank of the matrix increas-

es.  This trend is reinforced in Figure 1, which 

shows the learning curve for all models. These 

describe the performance on the holdout set after 

each iteration through the training data, and are 

measured using the average rank of the correct 

concept in the holdout set, which is dominated 

by a small number of difficult cases. 

Using the low rank approximation, the number 

of parameters is equal to     | |. Since   is 

fixed and independent of | |, the number of pa-

rameters is now linear in the number of tokens, 

effectively solving the parameter scalability 

problem. Table 3 lists the number of parameters 

for each of the models used in this study. 
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Figure 1. Learning curves showing holdout per-

formance at each iteration through the training 

data. 

 

Rank Parameters 

50 1.8×10
6
 

100 3.7×10
6
 

250 9.1×10
6
 

500 1.8×10
7
 

(Full) 3.3×10
8
 

 

Table 3. Number of model parameters for each 

variant, showing the low rank methods using 1 to 

2 orders of magnitude fewer parameters. 

 

There are two trade-offs for this improvement 

in scalability. First, there is a substantial perfor-

mance reduction, though this might be mitigated 

somewhat in the future by using a richer feature 

set – a possibility enabled by the use of the low 

rank approximation. Second, training and infer-

ence times are significantly increased; training 

the largest low-rank model (     ) required 

approximately 9 days, though the full-rank mod-

el trains in under an hour.  

The view that the   and   matrices convert the 

TF-IDF vectors to a lower dimensional space 

suggests that the function of   and   is to pro-

vide word embeddings or word representations – 

a vector space where each word vector encodes 

its relationships with other words. This further 

suggests that one way to provide higher perfor-

mance may be to take advantage of unsupervised 

pre-training (Erhan et al., 2010). Instead of ini-

tializing   and   randomly, they could be initial-

ized using a set of word embeddings trained on a 

large amount of biomedical text, such as with 

neural network language models (Collobert & 

Weston, 2008; Mikolov et al., 2013). 

5 Conclusion 

We performed a pilot study to determine whether 

a low rank approximation may increase the 

scalability of normalization using pairwise learn-

ing to rank. We showed that the reduction in the 

number of parameters is substantial: it is now 

linear to the number of tokens, rather than pro-

portional to the square of the number of tokens. 

We further observed that the precision and recall 

increase as the rank of the matrices is increased. 

We believe that further performance increases 

may be possible through the use of a richer fea-

ture set, unsupervised pre-training, or other di-

mensionality reduction techniques including fea-

ture selection or L1 regularization (Tibshirani, 

1996). We also intend to apply the method to 

additional entity types, using recently released 

corpora such as CRAFT (Bada et al., 2012). 
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Abstract

This paper presents a method for decom-
posing long, complex consumer health
questions. Our approach largely decom-
poses questions using their syntactic struc-
ture, recognizing independent questions
embedded in clauses, as well as coordi-
nations and exemplifying phrases. Addi-
tionally, we identify elements specific to
disease-related consumer health questions,
such as the focus disease and background
information. To achieve this, our approach
combines rank-and-filter machine learning
methods with rule-based methods. Our
results demonstrate significant improve-
ments over the heuristic methods typically
employed for question decomposition that
rely only on the syntactic parse tree.

1 Introduction

Natural language questions provide an intuitive
method for consumers (non-experts) to query for
health-related content. The most intuitive way
for consumers to formulate written questions is
the same way they write to other humans: multi-
sentence, complex questions that contain back-
ground information and often more than one spe-
cific question. Consider the following:

• Will Fabry disease affect a transplanted kidney?
Previous to the transplant the disease was be-
ing managed with an enzyme supplement. Will
this need to be continued? What cautions or ad-
ditional treatments are required to manage the
disease with a transplanted kidney?

This complex question contains three question
sentences and one background sentence. The fo-
cus (Fabry disease) is stated in the first question
but is necessary for a full understanding of the
other questions as well. The background sentence
is necessary to understand the second question:
the anaphor this must be resolved to an enzyme
treatment, and the predicate continue’s implicit ar-
gument that must be re-constructed from the dis-
course (i.e., continue after a kidney transplant).
The final question sentence uses a coordination
to ask two separate questions (cautions and addi-
tional treatments). A decomposition of this com-
plex question would then result in four questions:

1. Will Fabry disease affect a transplanted kidney?
2. Will enzyme treatment for Fabry disease need to

be continued after a kidney transplant?
3. What cautions are required to manage Fabry

disease with a transplanted kidney?
4. What additional treatments are required to man-

age Fabry disease with a transplanted kidney?

Each question above could be independently an-
swered by a question answering (QA) system.
While previous work has discussed methods for
resolving co-reference and implicit arguments in
consumer health questions (Kilicoglu et al., 2013),
it does not address question decomposition.

In this work, we propose methods for auto-
matically recognizing six annotation types use-
ful for decomposing consumer health questions.
These annotations distinguish between sentences
that contain questions and background informa-
tion. They also identify when a question sentence
can be split in multiple independent questions, and
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when they contain optional or coordinated infor-
mation embedded within a question.

For each of these decomposition annotations,
we propose a combination of machine learning
(ML) and rule based methods. The ML methods
largely take the form of a 3-step rank-and-filter
approach, where candidates are generated, ranked
by an ML classifier, then the top-ranked candidate
is passed through a separate ML filtering classi-
fier. We evaluate each of these methods on a set of
1,467 consumer health questions related to genetic
and rare diseases.

2 Background

QA in the biomedical domain has been well-
studied (Demner-Fushman and Lin, 2007; Cairns
et al., 2011; Cao et al., 2011) as a means for re-
trieving medical information. This work has typ-
ically focused, however, on questions posed by
medical professionals, and the methods proposed
for question analysis generally assume a single,
concise question. For example, Demner-Fushman
and Abhyankar (2012) propose a method for ex-
tracting frames from queries for the purpose of
cohort retrieval. Their method assumes syntactic
dependencies exist between the necessary frame
elements, and is thus not well-suited to handle
long, multi-sentence questions. Similarly, Ander-
sen et al. (2012) proposes a method for converting
a concise question into a structured query. How-
ever, many medical questions require background
information that is difficult to encode in a single
question sentence. Instead, it is often more natural
to ask multiple questions over several sentences,
providing background information to give context
to the questions. Yu and Cao (2008) use a ML
method to recognize question types in professional
health questions. Their method can identify more
than one type per complex question. Without de-
composing the full question into its sub-questions,
however, the type cannot be associated with its
specific span, or with other information specific to
the sub-question. This other information can in-
clude answer types, question focus, and other an-
swer constraints. By decomposing multi-sentence
questions, these question-specific attributes can be
extracted, and the discourse structure of the larger
question can be better understood.

Question decomposition has been utilized be-
fore in open-domain QA approaches, but rarely
evaluated on its own. Lacatusu et al. (2006)

demonstrates how question decomposition can im-
prove the performance of a multi-sentence sum-
marization system. They perform what we refer
to as syntactic question decomposition, where the
syntactic structure of the question is used to iden-
tify sub-questions that can be answered in isola-
tion. A second form of question decomposition is
semantic decomposition, which can semantically
break individual questions apart to answer them
in stages. For instance, the question “When did
the third U.S. President die?” can be semantically
decomposed “Who was the third U.S. President?”
and “When did X die?”, where the answer to the
first question is substituted into the second. Katz
and Grau (2005) discusses this kind of decompo-
sition using the syntactic structure, though it is not
empirically validated. Hartrumpf (2008) proposes
a decomposition method using only the deep se-
mantic structure. Finally, Harabagiu et al. (2006)
proposes a different type of question decomposi-
tion based on a random walk over similar ques-
tions extracted from a corpus. In our work, we
focus on syntactic question decomposition. We
demonstrate the importance of empirical evalua-
tion of question decomposition, notably the pit-
falls of heuristic approaches that rely entirely on
the syntactic parse tree. Syntactic parsers trained
on Treebank are particularly poor at both analyz-
ing questions (Judge et al., 2006) and coordination
boundaries (Hogan, 2007). Robust question de-
composition methods, therefore, must be able to
overcome many of these difficulties.

3 Consumer Health Question
Decomposition

Our goal is to decompose multi-sentence, multi-
faceted consumer health questions into concise
questions coupled with important contextual in-
formation. To this end, we utilize a set of an-
notations that identify the decomposable elements
and important contextual elements. A more de-
tailed description of these annotations is provided
in Roberts et al. (2014). The annotations are pub-
licly available at our institution website1. Here, we
briefly describe each annotation:

(1) BACKGROUND - a sentence indicating useful
contextual information, but lacks a question.

(2) QUESTION - a sentence or clause that indi-
cates an independent question.

1http://lhncbc.nlm.nih.gov/project/consumer-health-
question-answering
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Figure 1: Question Decomposition Architecture. Modules with solid green lines indicate machine learn-
ing classifiers. Modules with dotted green lines indicate rule-based classifiers.

(3) COORDINATION - a phrase that spans a set of
decomposable items.

(4) EXEMPLIFICATION - a phrase that spans an
optional item.

(5) IGNORE - a sentence indicating nothing of
value is present.

(6) FOCUS - an NP indicating the theme of the
consumer health question.

Further explanations of each annotation are pro-
vided in Sections 4-9. To convert these annota-
tions into separate, decomposed questions, a sim-
ple set of recursive rules is used. The rules enu-
merate all ways of including one conjunct from
each COORDINATION as well as whether or not
to include the phrase within an EXEMPLIFICA-
TION. These rules must be applied recursively to
handle overlapping annotations (e.g., a COORDI-
NATION within an EXEMPLIFICATION). Our im-
plementation is straight-forward and not discussed
further in this paper. The BACKGROUND and FO-
CUS annotations do not play a direct role in this
process, though they provide important contextual
elements and are useful for co-reference, and are
thus still considered part of the overall decompo-
sition process.

It should also be noted that some questions are
syntactically decomposable, but doing so alters
their original meaning. Consider the following
two question sentences:

• Can this disease be cured or can we only treat
the symptoms?
• Are males or females worse affected?

While the first example contains two “Can...”
questions and the second example contains the co-
ordination “males or females”, both questions are
providing a choice between two alternatives and
decomposing them would alter the semantic na-
ture of the original question. In these cases, we do
not consider the questions to be decomposable.
Data We use a set of consumer health ques-
tions collected from the Genetic and Rare Dis-
eases Information Center (GARD), which main-
tains a website2 with publicly available consumer-
submitted questions and professionally-authored
answers about genetic and rare diseases. We col-
lected 1,467 consumer health questions, consist-
ing of 4,115 sentences, 1,713 BACKGROUND sen-
tences, 37 IGNORE sentences, 2,465 QUESTIONs,
367 COORDINATIONs, 53 EXEMPLIFICATIONs,
and 1,513 FOCUS annotations. Questions with
more than one FOCUS are generally concerned
with the relation between diseases. Further infor-
mation about the corpus and the annotation pro-
cess can be found in Roberts et al. (2014).
System Architecture The architecture of our
question decomposition method is illustrated in

2http://rarediseases.info.nih.gov/gard
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Figure 1. To avoid confusion, in the rest of this
paper we refer to a complex consumer health ques-
tion simply as a request. Requests are sent to
the independent FOCUS recognition module (Sec-
tion 4), and then proceed through a pipeline that
includes the classification of sentences (Section 5),
the identification of separate QUESTIONs within
a question sentence (Section 6), the recognition
of COORDINATIONs (Section 7) and EXEMPLIFI-
CATIONs (Section 8), and the sub-classification of
BACKGROUND sentences (Section 9).
Experimental Setup The remainder of this pa-
per describes the individual modules in Figure 1.
For simplicity, we show results on the GARD data
for each task in its corresponding section. In all
cases, experiments are conducted using a 5-fold
cross-validation on the GARD data. The cross-
validation folds are organized at the request level
so that no two items from the same request will be
split between the training and testing data.

4 Identifying the Focal Disease

The FOCUS is the condition that disease-centered
questions are centered around. Many other dis-
eases may be mentioned, but the FOCUS is the dis-
ease of central concern. This is similar to the as-
sumption made about a central disease in Medline
abstracts (Demner-Fushman and Lin, 2007). Of-
ten the FOCUS is stated in the first sentence (typ-
ically a BACKGROUND) of the request while the
questions are near the end. The questions can-
not generally be answered outside the context of
the FOCUS, however, so its identification is a crit-
ical part of decomposition. As shown in Figure 1,
we use a 3-step process: (1) a high-recall method
identifies potential FOCUS diseases in the data, (2)
a support vector machine (SVM) ranks the FO-
CUS candidates, and (3) the highest-ranking can-
didate’s boundary is modified with a set of rules to
better match our annotation standard.

To identify candidates for the FOCUS, we use a
lexicon constructed from UMLS (Lindberg et al.,
1993). UMLS includes very generic terms, such as
disease and cancer, that are too general to exactly
match a FOCUS in our data. We allow these terms
to be candidates so as to not miss any FOCUS that
doesn’t exactly match an entry in UMLS. When
such a general term is selected as the top-ranked
FOCUS, the rules described below are capable of
expanding the term to the full disease name.

To rank candidates, we utilize an SVM (Fan et

E/R P R F1

1st UMLS Disorder E 19.6 19.0 19.3
R 28.2 27.4 27.8

SVM E 56.4 54.7 55.6
R 89.2 86.5 87.9

SVM + Rules E 74.8 72.5 73.6
R 89.5 86.8 88.1

Table 1: FOCUS recognition results. E = exact
match; R = relaxed match.

al., 2008) with a small number of feature types:

• Unigrams. Identifies generic words such as dis-
ease and syndrome that indicate good FOCUS

candidates, while also recognizing noisy UMLS
terms that are often false positives.
• UMLS semantic group (McCray et al., 2001).
• UMLS semantic type.
• Sentence Offset. The FOCUS is typically in the

first sentence, and is far more likely to be at the
beginning of the request than the end.
• Lexicon Offset. The FOCUS is typically the first

disease mentioned.

During training, the SVM considers any candidate
that overlaps the gold FOCUS to be correct. This
enables our approach to train on FOCUS examples
that do not perfectly align with a UMLS concept.
At test time, all candidates are classified, ranked
by the classifier’s confidence, and the top-ranked
candidate is considered the FOCUS.

As mentioned above, there are differences be-
tween how a FOCUS is annotated in our data and
how it is represented in the UMLS. We therefore
use a series of heuristics to alter the boundary to a
more usable FOCUS after it is chosen by the SVM.
The rules are applied iteratively to widen the FO-
CUS boundary until it cannot be expanded any fur-
ther. If a generic disease word is the only token
in the FOCUS, we add the token to the left. Con-
versely, if the token on the right is a generic dis-
ease word, it is added as well. If the word to the
left is capitalized, it is safe to assume it is part of
the disease’s name and so it is added as well. Fi-
nally, several rules recognize the various ways in
which a disease sub-type might be specified (e.g.,
Behcet’s syndrome vascular type, type 2 diabetes,
Charcot-Marie-Tooth disease type 2C).

We evaluate FOCUS recognition with both an
exact match, where the gold and automatic FOCUS

boundaries must line up perfectly, and a relaxed
match, which only requires a partial overlap. As a
baseline, we compare our results against a fully
rule-based system where the first UMLS Disor-
der term in the request is considered the FOCUS.
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We also evaluate the effectiveness of our bound-
ary altering rules by measuring performance with-
out these rules. The results are shown in Table 1.
The baseline method shows significant problems
in precision and recall. It is not able to ignore
noisy UMLS terms (e.g., aim is both a gene and
a treatment). The SVM improves upon the rule-
based method by over 50 points in F1 for relaxed
matching. Adding the boundary fixing rules has
little effect on relaxed matching, but greatly im-
proves exact matching: precision and recall are
improved by 18.4 and 17.8 points, respectively.

5 Classifying Sentences

Before precise question boundaries can be rec-
ognized, we first identify sentences that con-
tain QUESTIONs, as distinguished from BACK-
GROUND and IGNORE sentences. It should be
noted that many of the question sentences in our
data are not typical wh-word questions. About
20% of the questions in our data end in a period.
For instance:
• Please tell me more about this condition.
• I was wondering if you could let me know where

I can find more information on this topic.
• I would like to get in contact with other families

that have this illness.
We consider a sentence to be a question if it con-
tains any information request, explicit or implicit.

After sentence splitting, we identify sentences
using a multi-class SVM with three feature types:

• Unigrams with parts-of-speech (POS). Reduces
unigram ambiguities, such as what-WP (a pro-
noun, indicative of a question) versus what-
WDT (a determiner, not indicative).
• Bigrams.
• Parse tree tags. All Treebank tags from the syn-

tactic parse tree. Captures syntactic question
clues such as the phrase tags SQ (question sen-
tence) and WHNP (wh-word noun phrase).

The SVM classifier performs at 97.8%. For com-
parison, an SVM with only unigram features per-
forms at 97.2%. While the unigram model does a
good job classifying sentences, suggesting this is
a very easy task, the improved feature set reduces
the number of errors by 20%.

6 Identifying Questions

QUESTION recognition is the task of identifying
when a conjunction like and joins two independent
questions into a single sentence:

• [What causes the condition]QUESTION [and what
treatment is available?]QUESTION

• [What is this disease]QUESTION [and what steps
can I take to protect my daughter?]QUESTION

We consider the identification of separate QUES-
TIONs within a single sentence to be a differ-
ent task from COORDINATION recognition, which
finds phrases whose conjuncts can be treated in-
dependently. Linguistically, these tasks are quite
similar, but the distinction lies in whether the
right-conjunct syntactically depends on anything
to its left. For instance:

• I would like to learn [more about this condition
and what the prognosis is for a baby born with
it]COORDINATION.

Here, the right-conjunct starts with a question
stem (what), but is not a complete, grammatical
question on its own. Alternatively, this could be
re-formed into two separate QUESTIONs:

• [I would like to learn more about this
condition,]QUESTION [and what is the prognosis
is for a baby born with it.]QUESTION

We make this distinction because the QUESTION

recognition task requires one fewer step since the
boundaries extend to the entire sentence, prevent-
ing error propagation from an input module. Fur-
ther, the features that differentiate our QUESTION

and COORDINATION annotations are different.
The two-step process for recognizing QUES-

TIONs includes: (1) a high-recall candidate gener-
ator, and (2) an SVM to eliminate candidates that
are not separate QUESTIONs. The candidates for
QUESTION recognition are simply all the ways a
sentence can be split by the conjunctions and, or,
as well as, and the forward slash (“/”). In our data,
this candidate generation process has a recall of
98.6, as a few examples were missed where candi-
dates were not separated by one of the above con-
junctions.

To filter candidates, we use an SVM with three
features types:

• The conjunction separating the QUESTIONs.
• Unigrams in the left-conjunct. Identifies when

the left-conjunct is not a QUESTION, or when a
question is part of a COORDINATION.
• The right-conjunct’s parse tree tag. Recog-

nizes when the right-conjunct is an independent
clause that may safely be split.
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P R F1

QUESTION split recognition
Baseline 24.7 82.4 38.0
SVM 67.7 64.7 66.2
Overall QUESTION recognition
Baseline 87.3 92.8 90.0
SVM 97.7 97.4 97.5

Table 2: QUESTION recognition results.

For evaluation, we measure both the F1 score
for correct candidates, and the overall F1 for all
QUESTION annotations (i.e., all QUESTION sen-
tences). We also evaluate a baseline method that
utilizes the parse tree to recognize separate QUES-
TIONs by splitting sentences where a conjunction
separates independent clauses. The results are
shown in Table 2. The baseline method has good
recall for recognizing where a sentence should be
split into multiple QUESTIONs, but it lacks preci-
sion. This is largely because it is unable to differ-
entiate clausal COORDINATIONs such as the above
example, as well as when the left-conjunct is not
actually a separate question. For instance:

• Our grandson was diagnosed recently with this
disease and I am wondering if you could send
me information on it.

The SVM-based method can overcome this prob-
lem by looking at the words in the left-conjunct.
Both methods, however, fail to recognize when
two independent question clauses are asking the
same question but providing alternative answers:

• Will this condition be with him throughout his
life, or is it possible that it will clear up?

While there are methods for handling this issue
for COORDINATION recognition, addressed be-
low, recognizing non-splittable QUESTIONs re-
quires far deeper semantic understanding which
we leave to future work.

7 Identifying Coordinations

COORDINATION recognition is the task of identi-
fying when a conjunction joins phrases within a
QUESTION that can in be separate questions:

• How can I learn more about [treatments and
clinical trials]COORDINATION?
• Are [muscle twitching, muscle cramps, and

muscle pain]COORDINATION effects of having sil-
icosis?

Unlike QUESTION recognition, the boundaries of
a COORDINATION need to be determined as well
as whether the conjuncts can semantically be split

into separate questions. We thus use a three-step
process for recognizing COORDINATIONs: (1) a
high-recall candidate generator, (2) an SVM to
rank all the candidates for a given conjunction, and
(3) an SVM to filter out top-ranked candidates.

Candidate generation begins with the identifica-
tion of valid conjunctions within a QUESTION an-
notation. We use the same four conjunctions as in
QUESTION recognition: and, or, as well as, and
the forward slash. For each of these, all possi-
ble left and right boundaries are generated, so in
a QUESTION with 4 tokens on either side of the
conjunction, there would be 16 candidates. Addi-
tionally, two adjectives separated by a comma and
immediately followed by a noun are considered a
candidate (e.g., “a [safe, permanent]COORDINATION

treatment”). In our data, this candidate generation
process has a recall of 98.9, as a few instances ex-
ist in which a conjunction is not used, such as:

• I am looking for any information you have
about heavy metal toxicity, [treatment,
outcomes]EXEMPLIFICATION+COORDINATION.

To rank candidates, we use an SVM with the
following feature types:

• If the left-conjunct is congruent with the high-
est node in the syntactic parse tree whose right-
most leaf is also the right-most token in the left-
conjunct. Essentially, this is equivalent to say-
ing whether or not the syntactic parser agrees
with the left-conjunct’s boundary.
• The equivalent heuristic for the right-conjunct.
• If a noun is in both, just the left conjunct, just

the right conjunct, or neither conjunct.
• The Levenshtein distance between the POS tag

sequences for the left- and right-conjuncts.

The first two features encode the information a
rule-based method would use if it relied entirely
on the syntactic parse tree. The remaining features
help the classifier overcome cases where the parser
may be wrong.

At training time, all candidates for a given con-
junction are generated and only the candidate that
matches the gold COORDINATION is considered
a positive example. Additionally, we annotated
the boundaries for negative COORDINATIONs (i.e.,
syntactic coordinations that do not fit our annota-
tion standard). There were 203 such instances in
the GARD data. These are considered gold CO-
ORDINATIONs for boundary ranking only.

To filter the top-ranked candidates, we use an
SVM with several feature types:
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E/R P R F1

Baseline E 28.1 36.5 31.8
R 62.9 75.8 68.7

Rank + Filter E 38.2 34.8 36.4
R 78.5 69.0 73.5

Table 3: COORDINATION recognition results.
E = exact match; R = relaxed match.

• The conjunction.
• Unigrams in the left-conjunct.
• POS of the first word in both conjuncts. CO-

ORDINATIONs often have the same first POS in
both conjuncts.
• The word immediately before the candidate.

E.g., between is a good negative indicator.
• Unigrams in the question but not the candidate.
• If the candidate takes up almost the entire ques-

tion (all but 3 tokens). Typically, COORDINA-
TIONs are much smaller than the full question.
• If more than one conjunction is in the candidate.
• If a word in the left-conjunct has an antonym

in the right conjunct. Antonyms are recognized
via WordNet (Fellbaum, 1998).

At training time, the positive examples are drawn
from the annotated COORDINATIONs, while the
negative examples are drawn from the 203 non-
gold annotations mentioned above.

In addition to evaluating this method, we
evaluate a baseline method that relies entirely
on the syntactic parse to identify COORDINA-
TION boundaries without filtering. The results
are shown in Table 3. The rank-and-filter ap-
proach shows significant gains over the rule-based
method in precision and F1. As can be seen in
the difference between exact and relaxed match-
ing, most of the loss for both the baseline and ML
methods come in boundary detection. Most meth-
ods overly rely upon the syntactic parser, which
performs poorly both on questions and coordina-
tions. The ML method, though, is sometimes able
to overcome this problem.

8 Identifying Exemplifications

EXEMPLIFICATION recognition is the task of iden-
tifying when a phrase provides an optional, exem-
plifying example with a more specific type of in-
formation than that asked by the rest of the ques-
tion. For instance, the following contains both an
EXEMPLIFICATION and a COORDINATION:

• Is there anything out there that can help
him [such as [medications or alternative
therapies]COORDINATION]EXEMPLIFICATION?

We could consider this to denote 3 questions:

• Is there anything out there that can help him?
• Is there anything out there that can help him

such as medications?
• Is there anything out there that can help him

such as alternative therapies?

In the latter two questions, we consider the phrase
such as to now denote a mandatory constraint on
the answer to each question, whereas in the origi-
nal question it would be considered optional.

EXEMPLIFICATION recognition is similar to
COORDINATION recognition, and its three-step
process is thus similar as well: (1) a high-recall
candidate generator, (2) an SVM to rank all the
candidates for a given trigger phrase, and (3) a set
of rules to filter out top-ranked candidates.

Candidate generation begins with the identifica-
tion of valid trigger words and phrases. These in-
clude: especially, including, particularly, specifi-
cally, and such as. For each of these, all possible
right boundaries are generated, thus EXEMPLIFI-
CATIONs have far fewer candidates than COORDI-
NATIONs. Additionally, all phrases within paren-
theses are added as EXEMPLIFICATIONs. In our
data, this candidate generation process has a recall
of 98.1, missing instances without a trigger (see
the example also missed by COORDINATION can-
didate generation in Section 7).

To rank candidates, we use an SVM with the
following feature types:

• If the right-conjunct is the highest parse node
as defined in the COORDINATION boundary fea-
ture.
• If a dependency relation crosses from the right-

conjunct to any word outside the candidate.
• POS of the word after the candidate.

As with COORDINATIONs, we annotated bound-
aries for negative EXEMPLIFICATIONs matching
the trigger words and used them as positive exam-
ples for boundary ranking.

To filter the top-ranked candidates, we use two
simple rules. First, EXEMPLIFICATIONs within
parentheses are filtered if they are acronyms or
acronym expansions. Second, cases such as the
below example are removed by looking at the
words before the candidate:

• I am particularly interested in learning more
about genetic testing for the syndrome.

In addition to evaluating this method, we eval-
uate a baseline method that relies entirely on the
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E/R P R F1

Baseline E 28.9 62.3 39.5
R 39.5 84.9 53.9

Rank + Filter E 60.8 58.5 59.6
R 80.4 77.4 78.8

Table 4: EXEMPLIFICATION recognition results.
E = exact match; R = relaxed match.

syntactic parser to identify EXEMPLIFICATION

boundaries and performs no filtering. The re-
sults are shown in Table 4. The rank-and-filter
approach shows significant gains over the rule-
based method in precision and F1, more than dou-
bling precision for both exact and relaxed match-
ing. There is still a drop in performance when go-
ing from relaxed to exact matching, again largely
due to the reliance on the syntactic parser.

9 Classifying Background Information

BACKGROUND sentences contain contextual in-
formation, such as whether or not a patient has
been diagnosed with the focal disease or what
symptoms they are experiencing. This informa-
tion was annotated at the sentence level, partly be-
cause of annotation convenience, but also because
phrase boundaries are not always clear for medical
concepts (Hahn et al., 2012; Forbush et al., 2013).

A difficult factor in this task, and especially on
the GARD dataset, is that consumers are not al-
ways asking about a disease for themselves. In-
stead, often they ask on behalf of another individ-
ual, often a family member. The BACKGROUND

types are thus annotated based on the person of
interest, who we refer to as the patient (in the lin-
guistic sense). For instance, if a mother has a dis-
ease but is asking about her son (e.g., asking about
the probability of her son inheriting the disease),
that sentence would be a FAMILY HISTORY, as
opposed to a DIAGNOSIS sentence.

The GARD corpus is annotated with eight
BACKGROUND types:

• COMORBIDITY

• DIAGNOSIS

• FAMILY HISTORY

• ISF (information
search failure)

• LIFESTYLE

• SYMPTOM

• TEST

• TREATMENT

ISF sentences indicate previous attempts to find
the requested information have failed, and are a
good signal to the QA system to enable more in-
depth search strategies. LIFESTYLE sentences de-
scribe the patient’s life habits (e.g., smoking, ex-
ercise). Currently, the automatic identification of

Type P R F1 # Anns
COMORBIDITY 0.0 0.0 0.0 23
DIAGNOSIS 80.8 80.3 80.5 690
FAMILY HISTORY 67.4 38.4 48.9 151
ISF 75.0 65.9 70.1 41
LIFESTYLE 0.0 0.0 0.0 13
SYMPTOM 76.6 48.1 59.1 320
TEST 37.5 4.9 8.7 61
TREATMENT 87.3 35.0 50.0 137
Overall: Micro-F1: 67.3 Macro-F1: 39.7

Table 5: BACKGROUND results.

BACKGROUND types has not been a major focus
of our effort as no handling exists for it within our
QA system. We report a baseline method and re-
sults here to provide some insight into the diffi-
culty of the task.

BACKGROUND types are a multi-labeling prob-
lem, so we use eight binary classifiers, one for
each type. Each classifier utilizes only unigram
and bigram features. The results for the mod-
els are shown in Table 5. COMORBIDITY and
LIFESTYLE are too rare in the data (23 and 13
instances, respectively) for the classifier to iden-
tify. DIAGNOSIS questions are identified fairly
well because this is the most common type (690
instances) and because of the constrained vocabu-
lary for expressing a diagnosis. The performance
of the rest of the types is largely proportional to
the number of instances in the data, though ISF
performs quite well given only 41 instances.

10 Conclusion

We have presented a method for decomposing
consumer health questions by recognizing six an-
notation types. Some of these types are general
enough to use in open-domain question decom-
position (BACKGROUND, IGNORE, QUESTION,
COORDINATION, EXEMPLIFICATION), while oth-
ers are targeted specifically at consumer health
questions (FOCUS and the BACKGROUND sub-
types). We demonstrate that ML methods can
improve upon heuristic methods relying on the
syntactic parse tree, though parse errors are of-
ten difficult to overcome. Since significant im-
provements in performance would likely require
major advances in open-domain syntactic parsing,
we instead envision further integration of the key
tasks in consumer health question analysis: (1) in-
tegration of co-reference and implicit argument in-
formation, (2) improved identification of BACK-
GROUND types, and (3) identification of discourse
relations within questions to further leverage ques-
tion decomposition.
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Abstract

We apply semi-supervised topic modeling
techniques to detect health-related discus-
sions in everyday telephone conversations,
which has applications in large-scale epi-
demiological studies and for clinical in-
terventions for older adults. The privacy
requirements associated with utilizing ev-
eryday telephone conversations preclude
manual annotations; hence, we explore
semi-supervised methods in this task. We
adopt a semi-supervised version of Latent
Dirichlet Allocation (LDA) to guide the
learning process. Within this framework,
we investigate a strategy to discard irrel-
evant words in the topic distribution and
demonstrate that this strategy improves
the average F-score on the in-domain task
and an out-of-domain task (Fisher corpus).
Our results show that the increase in dis-
cussion of health related conversations is
statistically associated with actual medi-
cal events obtained through weekly self-
reports.

1 Introduction

There has been considerable interest in under-
standing, promoting, and monitoring healthy
lifestyles among older adults while minimizing the
frequency of clinical visits. Longitudinal studies
on large cohorts are necessary, for example, to un-
derstand the association between social networks,
depression, dementia, and general health. In this
context, detecting discussions of health are impor-
tant as indicators of under-reported health events
in daily lives as well as for studying healthy so-
cial support networks. The detection of medical
events such as higher levels of pain or discom-
fort may also be useful in providing timely clin-
ical intervention for managing chronic illness and

thus promoting healthy independent living among
older adults.

Motivated by this larger goal, we develop and
investigate techniques for identifying conversa-
tions containing any health related discussion. We
are interested in detecting discussions about med-
ication with doctors, as well as conversations with
others, where among all different topics being dis-
cussed, subjects may also be complaining about
pain or changes in health status.

The privacy concerns of recording and analyz-
ing everyday telephone conversation prevents us
from manually transcribing and annotating con-
versations. So, we automatically transcribe the
conversations using an automatic speech recog-
nition system and look-up the telephone number
corresponding to each conversation as a heuristic
means of deriving labels. This technique is suit-
able for labeling a small subset of the conversa-
tions that are only sufficient for developing semi-
supervised algorithms and for evaluating the meth-
ods for analysis.

Before delving into our approach, we discuss
a few relevant and related studies in Section 2
and describe our unique naturalistic corpus in Sec-
tion 3. Given the restrictive nature of our labeled
in-domain data set, we are interested in a clas-
sifier that generalizes to the unlabeled data. We
evaluate the generalizability of the classifiers us-
ing an out-of-domain corpus. We adopt a semi-
supervised topic modeling approach to address
our task, and develop an iterative feature selec-
tion method to improve our classifier, as described
in Section 4. We evaluate the efficacy of our ap-
proach empirically, on the in-domain as well as an
out-of-domain corpus, and report results in Sec-
tion 5.

2 Related Work

The task of identifying conversations where health
is mentioned differs from many other tasks in topic
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modeling because in this task we are interested in
one particular topic. A similar study is the work of
Prier and colleagues (Prier et al., 2011). They use
a set of predefined seed words as queries to gather
tweets related to tobacco or marijuana usage, and
then use LDA to discover related subtopics. Thus,
their method is sensitive to the seed words chosen.

One way to reduce the sensitivity to the manu-
ally specified seed words is to expand the set us-
ing WordNet. Researchers have investigated this
approach in sentiment analysis (Kim and Hovy,
2004; Yu and Hatzivassiloglou, 2003). However,
when expanding the seed word set using WordNet,
we need to be careful to avoid antonyms and words
that have high degree of linkage with many words
in the vocabulary. Furthermore, we can not ap-
ply such an approach for languages with poor re-
sources, where manually curated knowledge is un-
available. The other drawback of this approach is
that we can not use characteristics of the end task,
in our case health-related conversation retrieval,
to select the words. As an alternative method,
Han and colleagues developed an interactive sys-
tem where users selected the most relevant words
from a set, proposed by an automated system (Han
et al., 2009).

Another idea for expanding the seed words is
using the statistical information. Among statis-
tical methods, the simplest approach is to com-
pute pairwise co-occurrence with the seed words.
Li and Yamanishi ranked the words co-occurring
with the seed words according to information the-
oretic costs, and used the highest ranked words as
the expanded set (Li and Yamanishi, 2003). This
idea can be more effective when the co-occurrence
is performed over subsets instead, as in Hisamitsu
and Niwa’s work (Hisamitsu and Niwa, 2001).
However, it is computationally expensive to search
over subsets of words. Depending on the language
and task, heuristics might be applicable. An ex-
ample of this kind of approach is Zagibalov and
Carroll’s work on sentiment analysis in Chinese
(Zagibalov and Carroll, 2008).

Alternatively, we can treat the task of identify-
ing words associated with seed words as a cluster-
ing problem with the intuition that the seed words
are in the same cluster. An effective strategy to
cluster words into topics, is Latent Dirichlet Allo-
cation (LDA) (Blei et al., 2003) . However, LDA
is an unsupervised algorithm and the clustered top-
ics are not guaranteed to include the topic of inter-

est. The Seeded LDA, a variant of LDA, attempts
to address this problem by incorporating the seed
words as priors over the topics (Jagarlamudi et
al., 2012). However, the estimation procedure is
more complicated. Alternatively, in Topic LDA
(TLDA), a clever extension to LDA, Andrzejewski
and Zhu address this problem by fixing the mem-
bership of the words to valid topics (Andrzejewski
and Zhu, 2009). When the focus is on detecting
just one topic, as in our task, we can expand the
seed words more selectively using the small set of
labeled data and that is the approach adopted in
this paper.

3 Data

One interesting aspect of our study is the unique-
ness of our corpus, which is both naturalistic and
exhaustive. We recorded about 41,000 land-line
everyday telephone conversations from 56 volun-
teers, 65 years or older, over a period of approxi-
mately 6 to 12 months. Since these everyday tele-
phone conversations are private conversations, and
might include private information such as names,
telephone numbers, or banking information, we
assured the subjects that no one would listen to the
recorded conversations. Thus, we couldn’t manu-
ally transcribe the conversations; instead, we used
an Automatic Speech Recognition (ASR) system
that we describe here.

Automatic Speech Recognition System Con-
versations in our corpus were automatically tran-
scribed using an ASR system, which is structured
after IBM’s conversation telephony system (Soltau
et al., 2005). The acoustic models were trained
on about 2000 hours of telephone speech from
Switchboard and Fisher corpora (Godfrey et al.,
1992). The system has a vocabulary of 47K
and uses a trigram language model with about
10M n-grams, estimated from a mix of transcripts
and web-harvested data. Decoding is performed
in three stages using speaker-independent mod-
els, vocal-tract normalized models and speaker-
adapted models. The three sets of models are sim-
ilar in complexity with 4000 clustered pentaphone
states and 150K Gaussians with diagonal covari-
ances. Our system does not include discriminative
training and performs at a word error rate of about
24% on NIST RT Dev04 which is comparable to
state of the art performance for such systems. We
are unable to measure the performance of this rec-
ognizer on our corpus due to the stringent privacy
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requirements mentioned earlier. Since both cor-
pora are conversational telephone speech and the
training data contains large number of conversa-
tions (2000 hours), we expect the performance of
our recognizer to be relatively close to results on
NIST benchmark.

Heuristically labeling a small subset of conver-
sations For training and evaluation purposes, we
need a labeled set of conversations; that is, a set
of conversations where we know whether or not
they contain health-related discussions. Since the
privacy concerns do not allow for manually label-
ing the conversations, we used reverse look-up ser-
vice in www.whitepages.com. We sent the
phone number corresponding to each conversation
(when available) to this website to obtain informa-
tion about the other end of the conversation. Based
of the information we got back from this web-
site, we labeled a small subset of the conversations
which fell into unambiguous business categories.
For example, we labeled the calls to “hospital” and
“pharmacy” as health-related, and those to “car re-
pair” and “real estate” as non-health-related.

The limitations of the labeled set The labeled
set we obtained is small and restricted in type of
conversations. Since phone numbers are not avail-
able for many of the conversations we recorded,
and also because www.whitepages.com does
not return unambiguous information for many of
available phone numbers, we managed to label
only 681 conversations – 275 health-related and
406 non-health-related. This labeled set has an-
other limitation: it contains conversations to busi-
ness numbers only. In reality however, we are in-
terested in the much larger set of conversations
between friends, relatives, and other members of
subjects’ social support network. Thus, the gener-
alizability of the classifier we train is very impor-
tant.

Fisher Corpus To explicitly test the generaliz-
ability of our classifier, we use a second evaluation
set from Fisher corpus (Cieri et al., 2004). Fisher
corpus contains telephone conversations with pre-
assigned topics. There are 40 topics and only
one of them, illness, is health-related. We identi-
fied 338 conversations on illness, and sampled 702
conversations from the other 39 non-health topics.
Since we do not train on Fisher corpus, we call
it the out-of-domain task to apply our method on
Fisher corpus; as opposed to the in-domain task

which is to apply our method on the everyday tele-
phone conversations.

Extra information on subjects’ health In the
everyday telephone conversations corpus, we also
have access to the subjects’ weekly self-reports
on their medical status during the week indicating
medical events such as injury or going to emer-
gency room. We will use these pieces of infor-
mation to relate the health-related conversations to
actual medical events in the subjects’ lives.

4 Method

4.1 Overview

As we explained in Section 3, we can label a small
set of conversations in the everyday telephone con-
versations corpus as health-related vs. non-health
related. Using this labeled set we can train a sup-
port vector machine (SVM) to classify the con-
versations. In absence of feature selection, the
conversations are represented by a vector of tf-idf
scores for every word in the vocabulary where tf-
idf is a score for measuring the importance of a
word in one document of a corpus. As we see in
Section 5, such a classifier doesn’t generalize to
the out-of-domain Fisher task (i.e. when we test
the classifier on Fisher data set, we do not get good
precision and recalls). Generalizability is impor-
tant in our case, especially because the data we use
for training is limited in number and the nature of
conversations.

One way to improve generalization is to per-
form feature selection. That is, instead of using
tf-idf scores for the whole vocabulary, we would
like to rely only on features relevant to detecting
the health topic. We propose a new way for feature
selection for retrieving documents containing in-
formation about a specific topic when there is only
a limited set of labeled documents available. The
idea is to pick a few words highly related to the
topic of interest as seed words and to use TLDA
(Andrzejewski and Zhu, 2009) to force those seed
words into one (for example, the first) topic. In our
task, the topic of interest is health. So, we choose
doctor, medicine, and pain – often used while dis-
cussing health – as our seed words. Topics in LDA
based methods such as TLDA are usually repre-
sented using the n most probable words; where n
is an arbitrary number. So, the first candidate sets
for expanding our seed words are the sets of 50
most probable words in the topic of health in dif-

40



ferent runs of TLDA. As our experiments reveal,
these candidate sets contain many words that are
unrelated to health . To solve this problem, we use
the small labeled set of conversations to filter out
the unrelated words.

Figure 1 shows the proposed iterative algo-
rithm. The algorithm starts with initializing the
seed words to doctor, medicine, and pain. Then,
in each iteration, TLDA performs semi-supervised
topic modeling and returns the 50 most probable
candidate words in the health topic. We select a
subset of these candidate words which, if added
to the seed words, would maximize the average of
precision and recall on the train set for a simple
classifier. This simple classifier marks a conver-
sion as health related if, and only if, it contains at
least one of the seed words. The algorithm termi-
nates when the subset selection is unable to add
a new word contributing to the average of preci-
sion and recall. The tf-idf vector for the expanded
set represents the conversations in the classifica-
tion process.

It is worth mentioning that we train TLDA using
all 41000 unlabeled conversations, and chose the
number of topics, K, to be 20.

5 Experiments

In all of our experiments, we trained SVM
classifiers, with different features, to detect the
conversations on health using the popular lib-
SVM (Chang and Lin, 2011) implementation. We
chose the parameters of the SVM using a 30-fold
cross-validated (CV) grid search over the training
data. We also used a 4-fold cross validation over
the labeled set of conversations to maximize the
use of the relatively small labeled set. That is, we
trained the feature selection algorithm on 3-folds
and tested the resulting SVM tested on the fourth.
In in-domain task we always report the average
performance across the folds.

Table 1 shows the results of our experiments
using different input features. We report on re-
call, precision and F-measure in in-domain and
out-of-domain (Fisher) task as well as on average
F-measure of the two. The justification for consid-
ering the average F-measure is that we want our
algorithm to work well on both in-domain corpus
and Fisher corpus since we need to make sure that
our classifier is generalizable (i.e. it works well on
Fisher) and it works well on the private and natu-
ral telephone conversations (i.e. the ones similar

Figure 1: Expanding the set of seed words: in each
iteration, the current seed words are forced into
the topic of health to guide TLDA towards finding
more health related words. The candidate set con-
sists of the 50 most probable words of the topic of
health in TLDA. We investigate the gain of adding
each word of the candidate set to the seed words by
temporarily adding it to the seed words and look-
ing at the average of precision and recall on the
training set for a classifier that classifies a conver-
sation as health-related if and only if it contains at
least one of the seed words. We select the words
that maximize this objective and add them to the
seed words until no other words contributes to the
average precision and recall.

to the in-domain corpus)
When using the full vocabulary, the in-domain

performance (the performance on the everyday
telephone conversations data) is relatively good
with 75.1% recall and 83.5% precision. But the
out-of-domain recall (recall on the Fisher data set)
is considerably low at 2.8%. Ideally, we want
a classifier that performs well in both domains.
Rows 2 to 5 can be seen as steps to get to such
a classifier.

The second row shows the performance of the
other extreme end of feature selection: the fea-
tures include the manually chosen words doctor,
medicine, and pain only. While this leads to very
good out-of-domain performance, the in-domain
recall has dropped considerably. We trained
TLDA 30 times, and selected the 50 most probable
words in the health topic. The third row in Table 1
shows the average performance of SVM when us-
ing the tf-idf of these sets of words as the feature
vector on in-domain and out-of-domain tasks. Us-
ing the 50 most probable words in health topic sig-
nificantly improves average F-score (71%) across
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Recall Precision F-measure
Feature Words In-Domain Fisher In-Domain Fisher In-Domain Fisher Average
Full vocabulary
(no feature selection) 75.2 2.8 83.5 91.1 79.1 5.4 42.3
Initial words
(doctor, medicine, pain ) 45.1 69.2 94.8 94.5 61.1 79.9 70.5
50 most probable words in health
(average over 30 runs) 58.4 57.4 86.3 97.5 69.7 72.3 71.0
Words selected by our method
(average over 30 runs) 56.1 66.5 91.0 95.5 69.4 78.4 73.9
Union of all selected words
(across 30 runs) 67.7 69.4 87.8 95.1 76.5 80.2 78.3

Table 1: Performance of SVM classifiers using different feature selection methods. The In-Domain task
involves the everyday telephone conversations corpus. We call Fisher corpus out of domain, because no
example of this corpus was used in training.

both tasks over using the full vocabulary (42.3%)
but it is clear that this is only due to improvement
in out-of-domain task. Table 2 shows one set of
the 50 most probable words in health topic,the re-
sult of one run of TLDA. Evidently, these words
contain many irrelevant words. This is the motiva-
tion for our iterative algorithm.

Next, we evaluate the performance of our iter-
ative algorithm. The fourth row in Table 1 shows
the average performance of SVM using expanded
seed words that our algorithm suggested in 30
runs. Our algorithm improves the average F-score
by 3% comparing to the standard TLDA. This is
due to a 5% improvement in out-of-domain task
as opposed to a 0.3% performance decrease in in-
domain task.

Since our algorithm has a probabilistic topic
modeling component (i.e. TLDA), different runs
lead to different sets of expanded seed words. We
extract a union of all the words chosen over 30
runs and evaluate the performance of SVM using
this union set. This improves the performance of
our method further to achieve the best average F-
score of 78.3%, which is an 85% improvement
over using the SVM with full vocabulary. It is im-
portant to notice that the in-domain performance is
still lower than the full-vocabulary baseline by less
than 3% while the out-of-domain performance is
the best obtained. Once again, we are more inter-
ested in the average F-measure because we need
our algorithm to generalize well (work well on
out-of-domain corpus) and to work well on natural
private conversations (on the conversations similar
to the on-domain corpus).

Our last experiment tests statistical associa-
tion between health-related discussions in every-
day telephone conversations, and actual medical

pain, medicine, appointment, medical, doc-
tors, emergency, prescription, contact, med-
ication, dial, insurance, pharmacy, schedule,
moment, reached, questions, services, surgery,
telephone, record, appointments, options, ad-
dress, patient, advice, quality, tuesday, posi-
tion, answered, records, wednesday, therapy,
healthy, correct, department, ensure, numbers,
act, doctor, personal, test, senior, nurse, plan,
kaiser

Table 2: 50 most probable words in the topic of
health returned by one run of TLDA. The bold
words are the ones are hand-picked.

events in older adults. As mentioned in Section 3,
we have access to weekly self-reports on medical
events for subjects’ in everyday telephone conver-
sations corpus. We used our best classifier, the
SVM with union of expanded seed words, to clas-
sify all the conversations in our corpus into health-
containing and health-free conversations. We then
mark each conversation as temporally near a med-
ical event if a reported medical event occurred
within a 3-week time window. We chose a 3-week
window to allow for one report before and after
the event.

Table 3 shows the number of conversations in
different categories. At first glance it might seem
like the number of false positives or false nega-
tives is quite large but we should notice that be-
ing near a medical event is not the ground truth
here. We just want to see if there is any associa-
tion between occurrence of health-related conver-
sations and occurrence of an actual medical event
in lives of our subjects. We can see that 90.9%
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of the conversations are classified as health-related
but this percentage is slightly different for con-
versations near medical events(91.5%) vs. for the
other conversations (89.1). This slight difference
is significant according to χ2 test of independence
(χ2(df = 1, N = 47288) = 61.17, p < 0.001).

near a Classified as
medical event health-related non-health-related

yes 1348 11067
no 2964 31909

Table 3: Number of telephone conversations in
different categories. Each conversation is consid-
ered near a medical even if and only if there is
at least one self-report in a window of 3 weeks
around its date. Being near a medical event does
not reveal the true nature of the conversation and
thus is not the ground truth. So, there are no false
positive, true positive, etc. in this table.

6 Conclusions

In this paper, we investigated the problem of iden-
tifying conversations with any mention of health.
The private nature of our everyday telephone con-
versations corpus poses constraints on manual
transcription and annotation. Looking up phone
numbers associated with business calls, we labeled
a small set of conversations when the other end
was a business clearly related or unrelated to the
health industry. However, the labeled set is not
large enough for training a robust classifier. We
developed a semi-supervised iterative method for
selecting features, where we learn a distribution
of words on health topic using TLDA, and sub-
sequently filter irrelevant words iteratively. We
demonstrate that our method generalizes well and
improves the average F-score on in-domain and
out-of-domain tasks over two baselines, using full
vocabulary without feature selection or feature se-
lection using TLDA alone. In our task, the gener-
alization of the classifier is important since we are
interested in detecting not only conversations on
health with business (the annotated examples) but
also with others in subjects’ social network. Using
our classifier, we find a significant statistical as-
sociation between the occurrence of conversations
about health and the occurrence of self-reported
medical events.
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Abstract

FDA drug package inserts provide com-
prehensive and authoritative information
about drugs. DailyMed database is a
repository of structured product labels ex-
tracted from these package inserts. Most
salient information about drugs remains
in free text portions of these labels. Ex-
tracting information from these portions
can improve the safety and quality of drug
prescription. In this paper, we present a
study that focuses on resolution of coref-
erential information from drug labels con-
tained in DailyMed. We generalized and
expanded an existing rule-based coref-
erence resolution module for this pur-
pose. Enhancements include resolution of
set/instance anaphora, recognition of ap-
positive constructions and wider use of
UMLS semantic knowledge. We obtained
an improvement of 40% over the baseline
with unweighted average F1-measure us-
ing B-CUBED, MUC, and CEAF metrics.
The results underscore the importance of
set/instance anaphora and appositive con-
structions in this type of text and point out
the shortcomings in coreference annota-
tion in the dataset.

1 Introduction

Almost half of the US population uses at least one
prescription drug and over 75% of physician of-
fice visits involve drug therapy1. Knowing how
these drugs will affect the patient is very impor-
tant, particularly, to over 20% of the patients that
are on three or more prescription drugs1. FDA
drug package inserts (drug labels or Structured

1Centers for Disease Control and Preven-
tion: FASTSTATS - Therapeutic Drug Use:
http://www.cdc.gov/nchs/fastats/drugs.htm

Product Labels (SPLs)) provide curated informa-
tion about the prescription drugs and many over-
the-counter drugs. The drug labels for most drugs
are publicly available in XML format through Dai-
lyMed 2. Some information in these labels, such as
the drug identifiers and ingredients, could be eas-
ily extracted from the structured fields of the XML
documents. However, the salient content about in-
dications, side effects and drug-drug interactions,
among others, is buried in the free text of the
corresponding sections of the labels. Extracting
this information with natural language process-
ing techniques can facilitate automatic timely up-
dates to databases that support Electronic Health
Records in alerting physicians to potential drug in-
teractions, recommended doses, and contraindica-
tions.

Natural language processing methods are in-
creasingly used to support various clinical and
biomedical applications (Demner-Fushman et al.,
2009). Extraction of drug information is playing a
prominent role in these applications and research.
In addition to earlier research in extraction of med-
ications and relations involving medications from
clinical text and the biomedical literature (Rind-
flesch et al., 2000; Cimino et al., 2007), in the
third i2b2 shared task (Uzuner et al., 2010), 23
organizations have explored extraction of medica-
tions, their dosages, routes of administration, fre-
quencies, durations, and reasons for administra-
tion from clinical text. The best performing sys-
tems used rule-based and machine learning tech-
niques to achieve over 0.8 F-measure for extrac-
tion of medication names; however, the remain-
ing information was harder to extract. Researchers
have also tackled extraction of drug-drug interac-
tions (Herrero-Zazo et al., 2013), side effects (Xu
and Wang, 2014), and indications (Fung et al.,
2013) from various biomedical resources.

As for many other information extraction tasks,
2DailyMed: http://dailymed.nlm.nih.gov/dailymed/about.cfm
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extracting drug information is often made more
difficult by coreference. Coreference is defined as
the relation between linguistic expressions that are
referring to the same entity (Zheng et al., 2011).
Coreference resolution is a fundamental task in
NLP and can benefit many downstream applica-
tions, such as relation extraction, summarization,
and question answering. Difficulty of the task is
due to the fact that various levels of linguistic in-
formation (lexical, syntactic, semantic, and dis-
course contextual features) generally play a role.

Coreference occurs frequently in all types of
biomedical text, including the drug package in-
serts. Consider the example below:

(1) Since amiodarone is a substrate for
CYP3A and CYP2C8, drugs/substances
that inhibit these isoenzymes may decrease
the metabolism . . . .

In this example, the expression these isoenzymes
refer to CYP3A and CYP2C8. Resolving this
coreference instance would allow us to capture the
following drug interactions mentioned in the sen-
tence: inhibitors of CYP3A POTENTIATE amio-
darone and inhibitors of CYP2C8 POTENTIATE
amiodarone.

In this paper, we present a study that focuses on
identification of coreference links in drug labels,
with the view that these relations will facilitate
the downstream task of drug interaction recogni-
tion. The rule-based system presented is an exten-
sion of the previous work reported in Kilicoglu et
al. (2013). The main focus of the dataset, based
on SPLs, is drug interaction information. Coref-
erence is only annotated when it is relevant to ex-
tracting such information. In addition to evaluat-
ing the system against a baseline, we also manu-
ally assessed the system output for precision. Fur-
thermore, we also evaluated the system on a sim-
ilarly drug-focused corpus annotated for anaphora
(DrugNerAR) (Segura-Bedmar et al., 2010). Our
results demonstrate that set/instance anaphora res-
olution and appositive recognition can play a sig-
nificant role in this type of text and highlight some
of the major areas of difficulty and potential en-
hancements.

2 Related Work

We discuss two areas of research related to this
study in this section: processing of drug labels
and coreference resolution focusing on biomedi-
cal text. Drug labels, despite their availability and

the wealth of information contained within them,
remain underutilized. One of the reasons might be
the complexity of the text in the labels: in a review
of publicly available text sources that could be
used to augment a repository of drug indications
and adverse effects (ADEs), Smith et al. (2011)
concluded that many indication and adverse drug
event relationships in the drug labels are too com-
plex to be captured in the existing databases of in-
teractions and ADEs. Despite the complexity, the
labels were used to extract indications for drugs in
several studies. Elkin et al. (2011) automatically
extracted indications, mapped them to SNOMED-
CT and then automatically derived rules in the
form (”Drug” HasIndication ”SNOMED CT”).
Fung et al. (2013) used MetaMap (Aronson and
Lang, 2010) to extract indications and map them
to the UMLS (Lindberg et al., 1993), and then
manually validated the quality of the mappings.
Oprea et al. (2011) used information extracted
from the adverse reactions sections of 988 drugs
for computer-aided drug repurposing. Duke et
al. (2011) have developed a rule-based system that
extracted 534,125 ADEs from 5602 SPLs. Zhu
et al. (2013) extracted disease terms from five
SPL sections (indication, contraindication, ADE,
precaution, and warning) and combined the ex-
tracted terms with the drug and disease relation-
ships in NDF-RT to disambiguate the PharmGKB
drug and disease associations. A hybrid NLP sys-
tem, AutoMCExtractor, uses conditional random
fields and post-processing rules to extract medical
conditions from SPLs and build triplets in the form
of([drug name]-[medical condition]-[LOINC sec-
tion header]) (Li et al., 2013).

Coreference resolution in the biomedical do-
main was addressed in the 2011 i2b2/VA shared
task (Uzuner et al., 2012), and the 2011 BioNLP
Shared Task (Kim et al., 2012); however these
community-wide evaluations did not change much
the observation in the 2011 review by Zheng
et al. (2011) that only a handful of systems
were developed for handling anaphora and coref-
erence in clinical text and biomedical publica-
tions. Since this comprehensive article was pub-
lished, Yoshikawa et al. (2011) proposed two
coference resolution models based on support vec-
tor machine and joint Markov logic network to
aid the task of biological event extraction. Sim-
ilarly, Miwa et al. (2012) and Kilicoglu and
Bergler (2012) extended their biological event
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extraction pipelines using rule-based corefer-
ence systems that rely on syntactic information
and predicate argument structures. Nguyen et
al. (2012) evaluated contribution of discourse pref-
erence, number agreement, and domain-specific
semantic information in capturing pronominal and
nominal anaphora referring to proteins. An ef-
fort similar to ours is that of Segura-Bedmar et
al. (2010), who resolve anaphora to support drug-
drug interaction extraction. They created a cor-
pus of 49 interactions sections extracted from the
DrugBank database, having on average 40 sen-
tences and 716 tokens. They then manually anno-
tated pronominal and nominal anaphora, and de-
veloped a rule-based approach that achieve 0.76
F1-measure in anaphora resolution.

3 Methods

3.1 The dataset

We used a dataset extracted from FDA drug pack-
age labels by our collaborators at FDA interested
in extracting interactions between cardiovascu-
lar drugs. The dataset consists of 159 drug la-
bels, with an average of 105 sentences and 1787
tokens per label. It is annotated for three en-
tity types (Drug, Drug Class, and Substance) and
four drug interaction types (Caution, Decrease, In-
crease, and Specific). 377 instances of corefer-
ence were annotated. Two annotators separately
annotated the labels and one of the authors per-
formed the adjudication. The relatively low num-
ber of coreference instances is due to the fact that
coreference was annotated only when it would be
relevant to drug interaction recognition task. This
parsimonious approach to annotation presents dif-
ficulty in automatically evaluating the system, and
to mitigate this, we present an assessment of the
precision of our end-to-end coreference system, as
well. We split the dataset into training and test sets
by random sampling. Training data consists of 79
documents and the test set has 80 documents. We
used the training data for analysis and as the basis
of our enhancements.

3.2 The system

The work described in this paper extends and
refines earlier work, described in Kilicoglu et
al. (2013), which focused on disease anaphora and
ellipsis in the context of consumer health ques-
tions. We briefly recap that system here. The sys-
tem begins by mapping named entities to UMLS

Metathesaurus concepts (CUIs). Next, it identifies
anaphoric expressions in text, which include per-
sonal (e.g., it, they) and demonstrative pronouns
(e.g., this, those), as well as sortal anaphora (def-
inite (e.g., with the) and demonstrative (e.g., with
that) noun phrases). The candidate antecedents
are then recognized using syntactic (person, gen-
der and number agreement, head word matching)
and semantic (hypernym and UMLS semantic type
matching) constraints. Finally, the co-referent is
then selected as the focus of the question, which is
taken as the first disease mention in the question.

The coreference resolution pipeline used in the
current work, while enhanced significantly, fol-
lows the same basic sequence. The relatively sim-
ple approach of earlier work is generally sufficient
for consumer health questions; however, we found
it insufficient when it comes to drug labels. Aside
from the obvious point that the approach was lim-
ited to diseases, there are other stylistic differences
that have an impact on coreference resolution. In
contrast to informal and casual style of consumer
health questions, drug labels are curated and pro-
vide complex indication and ADE information in
a formal style, more akin to biomedical literature.
Our analysis of the training data highlighted sev-
eral facts regarding coreference in drug labels: (1)
the set/instance anaphora (including those involv-
ing distributive anaphora such as both, each, ei-
ther) instances are prominent, (2) demonstrative
pronominal anaphora is non-existent in contrast
to consumer health questions, (3) the focus-based
salience scoring is simplistic for longer texts. We
describe the system enhancements below.

3.2.1 Generalizing from diseases to drugs
and beyond

We generalized from resolution of disease coref-
erence only to resolution of coreference involv-
ing other entity types. For this purpose, we para-
materized semantic groups and hypernym lists as-
sociated with each semantic group. We general-
ized the system in the sense that new semantic
types and hypernyms can be easily defined and
used by the system. In addition to Disorder se-
mantic group and Disorder hypernym list defined
in earlier work, we used Drug, Intervention, Pop-
ulation, Procedure, Anatomy, and Gene/Protein
semantic groups and hypernym lists. Semantic
group classification largely mimics coarse-grained
UMLS semantic groups (McCray et al., 2001).
For example, UMLS semantic types Pharmaco-
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logic Substance and Clinical Drug are aggregated
into both Drug and Intervention semantic groups,
while Therapeutic or Preventive Procedure is as-
signed to Procedure group only. Drug hypernyms,
such as medication, drug, agent, were derived
from the training data.

3.2.2 Set/instance anaphora
Set/instance anaphora instances are prevalent in
drug labels. In our dataset, 19% of all anno-
tated anaphoric expressions indicate set/instance
anaphora (co-referring with 29% of antecedent
terms). An example was provided earlier (Ex-
ample 1). While recognizing anaphoric expres-
sions that indicate set/instance anaphora is not
necessarily difficult (i.e., recognizing these isoen-
zymes in the example), linking them to their an-
tecedents can be difficult, since it generally in-
volves correctly identifying syntactic coordina-
tion, a challenging syntactic parsing task (Ogren,
2010). Our identification of these structures re-
lies on collapsed Stanford dependency output (de
Marneffe et al., 2006) and uses syntactic and se-
mantic constraints. We examine all the depen-
dency relations extracted from a sentence and only
consider those with the type conj * (e.g., conj and,
conj or). For increased accuracy, we then check
the tokens involved in the dependency (conjuncts)
and ensure that there is a coordinating conjunc-
tion (e.g., and, or, , (comma), & (ampersand)) be-
tween them. Once such a conjunction is identified,
we then examine the semantic compatibility of the
conjuncts. In the case of entities, the compatibil-
ity involves that at the semantic group level. In the
current work, we also began recognizing distribu-
tive anaphora, such as either, each as anaphoric
expressions. When the recognized anaphoric ex-
pression is plural (as in they, these agents or either
drug), we allow the coordinated structures previ-
ously identified in this fashion as candidate an-
tecedents. The current work does not address a
more complex kind of set/instance anaphora, in
which the instances are not syntactically coordi-
nated, such as in Example (2), where such agents
refer to thiazide diuretics, in the preceding sen-
tence, as well as Potassium-sparing diuretics and
potassium supplements.

(2) . . . can attenuate potassium loss caused
by thiazide diuretics. Potassium-sparing
diuretics . . . or potassium supplements can
increase . . . . if concomitant use of

such agents is indicated . . .

3.2.3 Appositive constructions
Coreference involving appositive constructions3

are annotated in some corpora, including the
BioNLP shared task coreference dataset (Kim
et al., 2012) and DrugNerAR corpus (Segura-
Bedmar et al., 2010). An example is given below,
in which the indefinite noun phrase a drug and the
drug lovastatin are appositives.

(3) PLETAL does not, however, appear to cause
increased blood levels of drugs metabolized
by CYP3A4, as it had no effect on lovastatin,
a drug with metabolism very sensitive to
CYP3A4 inhibition.

In our dataset, coreference involving apposi-
tive constructions were generally left unannotated.
However, it was consistently the case that when
one of the items in the construction is annotated
as the antecedent for an anaphoric expression,
the other item in the construction was also anno-
tated as such. Therefore, we identified appositive
constructions in text to aid the antecedent selec-
tion task. We used dependency relations for this
task, as well. Identifying appositives is relatively
straightforward using syntactic dependency rela-
tions. We adapted the following rule from Kil-
icoglu and Bergler (2012):

APPOS(Antecedent,Anaphor) ∨
APPOS(Anaphor,Antecedent) ⇒

COREF(Anaphor,Antecedent)

where APPOS ∈ {appos, abbrev, prep including,
prep such as}. In our case, this rule becomes

(APPOS(Antecedent1,Antecedent2) ∨
APPOS(Antecedent2,Antecedent1)) ∧

COREF(Anaphor,Antecedent1) ⇒
COREF(Anaphor,Antecedent2)

which essentially states that a candidate is taken as
an antecedent, only if its appositive has been rec-
ognized as an antecedent. Additionally, semantic
compatibility between the items is required.

This allows us to identify their and Class Ia an-
tiarrhythmic drugs as co-referents in the following
example, due to the fact that the exemplification
indicated by the appositive construction between
Class Ia antiarrythmic drugs and disopyramide is
recognized, the latter previously identified as an
antecedent for their.

3We use the term “appositive” to cover exemplifications,
as well.
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(4) Class Ia antiarrhythmic drugs, such as
disopyramide, quinidine and procainamide
and other Class III drugs (e.g., amiodarone)
are not recommended . . . because of their
potential to prolong refractoriness.

3.2.4 Relative pronouns
Similar to appositive constructions, relative pro-
nouns are annotated as anaphoric expressions in
some corpora (same as those for appositives), but
not in our dataset. In the example below, the rela-
tive pronoun which refers to potassium-containing
salt substitutes.

(5) . . . the concomitant use of potassium-sparing
diuretics, potassium supplements, and/or
potassium-containing salt substitutes, which
should be used cautiously. . .

Since we aim for generality and this type of
anaphora can be important for downstream ap-
plications, we implemented a rule, again taken
from Kilicoglu and Bergler (2012), which simply
states that the antecedent of a relative pronominal
anaphora is the noun phrase head it modifies.

rel(X,Anaphor) ∧ rcmod(Antecedent,X) ⇒
COREF(Anaphor,Antecedent)

where rel indicates a relative dependency, and rc-
mod a relative clause modifier dependency. We
extended this in the current work to include the
following rules:

(6) (a) LEFT(Antecedent,Anaphor) ∧
NO INT WORD(Antecedent,Anaphor)
⇒ COREF(Anaphor,Antecedent)

(b) LEFT(Antecedent,Anaphor) ∧ rc-
mod(Antecedent,X)∧ LEFT(Anaphor,X)
⇒ COREF(Anaphor,Antecedent)

where LEFT indicates that the first argument is
to the left of the second and NO INT WORD in-
dicates that the arguments have no intervening
words between them.

3.3 Drug ingredient/brand name synonymy
A specific, non-anaphoric type of coreference,
between drug ingredient name and drug’s brand
name, is commonly annotated in our dataset. An
example is provided below, where COREG CR is
the brand name for carvedilol.

(7) The concomitant administration of amio-
darone or other CYP2C9 inhibitors such as
fluconazole with COREG CR may enhance
the -blocking properties of carvedilol . . . .

To identify this type of coreference, we use se-
mantic information from UMLS Metathesaurus.
We stipulate that, to qualify as co-referents, both
terms under consideration should map to the same
UMLS concept (i.e., that they are considered syn-
onyms). If the terms are within the same sentence,
we further require that they are appositive.

3.3.1 Demonstrative pronouns
Anaphoric expressions of demonstrative pronoun
type generally have discourse-deictic use; in other
words, they often refer to events, propositions de-
scribed in prior discourse or even to the full sen-
tences or paragraphs, rather than concrete objects
or entities (Webber, 1988). This fact was implic-
itly exploited in consumer health questions, since
the coreference resolution focused on diseases
only, which are essentially processes. However,
in drug labels, discourse-deictic use of demonstra-
tives is much more overt. Consider the sentence
below, where the demonstrative This refers to the
event of increasing the exposure to lovastatin.

(8) Co-administration of lovastatin and SAMSCA
increases the exposure to lovastatin and . . . .
This is not a clinically relevant change.

To handle such cases, we blocked entity an-
tecedents (such as drugs) for demonstrative pro-
nouns and only allowed predicates (verbs, nomi-
nalizations) as candidate antecedents.

3.3.2 Pleonastic it
We recognized pleonastic instances of the pronoun
it to disqualify them as anaphoric expressions (for
instance, it in It may be necessary to . . . ). Gen-
erally, lexical patterns involving sequence of to-
kens are used to recognize such instances (e.g.,
(Segura-Bedmar et al., 2010). We used a simple
dependency-based rule that mimics these patterns,
given below.

nsubj*(X,it) ∧ DEP(X,Y) ⇒ PLEONASTIC(it)

where nsubj* refers to nsubj or nsubjpass depen-
dencies and DEP is any dependency, where DEP
/∈ {infmod, ccomp, xcomp}.

3.3.3 Discourse-based constraints
Previously, we did not impose limits on how far
the co-referents could be from each other, since
the entire discourse was generally short and the
salient antecedent (often the topic of the question)
appeared early in discourse. This is often not the
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case in drug labels, especially because often intri-
cate interactions between the drug of interest and
other medications are discussed. Therefore, we
limit the discourse window from which candidate
antecedents are identified. Generally, the search
space for the antecedents is limited to the current
sentence as well as the two preceding sentences
(Segura-Bedmar et al., 2010; Nguyen et al., 2012).
In our dataset, we found that 98% of antecedents
occurred within this discourse window and, thus,
use the same search space. We make an exception
for the cases in which the anaphoric expression ap-
pear in the first sentence of a paragraph and no
compatible antecedent is found in the same sen-
tence. In this case, the search space is expanded to
the entire preceding paragraph.

We also extended the system to include different
types of salience scoring methods. For drug labels,
we use linear distance between the co-referents (in
terms of surface elements) as the salience score;
the lower this score, the better candidate the an-
tecedent is. Additionally, we implemented syn-
tactic tree distance between the co-referents as a
potential salience measure, even though this type
of salience scoring did not have an effect on our
results on drug labels.

Finally, we block candidate antecedents that
are in a direct syntactic dependency with the
anaphoric expression, except when the anaphor is
reflexive (e.g., itself ).

3.4 Evaluation

To evaluate our approach, we used a baseline simi-
lar to that reported in Segura-Bedmar et al. (2010),
which consists of selecting the closest preceding
nominal phrase for the anaphoric expressions an-
notated in their corpus. These expressions in-
clude pronominal (personal, relative, demonstra-
tive, etc.) and nominal (definite, possessive,
etc.) anaphora. We compared our system to
this baseline using the unweighted average of F1-
measure over B-CUBED (Bagga and Baldwin,
1998), MUC (Vilain et al., 1995), and CEAF (Luo,
2005) metrics, the standard evaluation metrics for
coreference resolution. We used the scripts pro-
vided by i2b2 shared task organizers for this pur-
pose. Since coreference annotation was parsimo-
nious in our dataset, we also manually examined a
subset of the coreference relations extracted by the
system for precision. Additionally, we tested our
system on DrugNerAR corpus (Segura-Bedmar et

al., 2010), which similarly focuses on drug inter-
actions. We compared our results to theirs, us-
ing as evaluation metrics precision, recall, and F1-
measure, the metrics that were used in their evalu-
ation.

4 Results and Discussion

With the drug label dataset, we obtained the best
results without relative pronominal anaphora reso-
lution and drug ingredient/brand name synonymy
strategies (OPTIMAL) and with linear distance
as the salience measure. In this setting, using
gold entity annotations, we recognized 318 coref-
erence chains, 54 of which were annotated in the
corpus. The baseline identified 1415 coreference
chains, only 10 of which were annotated. The im-
provement provided by the system over the base-
line is clear; however, the low precision/recall/F1-
measure, given in Table 1, should be taken with
caution due to the sparse coreference annotation
in the dataset. To get a better sense of how well
our system performs, we also performed end-to-
end coreference resolution and manually assessed
a subset of the system output (22 randomly se-
lected drug labels with 249 coreference instances).
Of these 249, 181 were deemed correct, yielding a
precision of 0.73. The baseline method extracted
1439 instances, 56 of which were deemed cor-
rect, yielding a precision of 0.04. The precision
of our method is more in line with what has been
reported in the literature (Segura-Bedmar et al.,
2010; Nguyen et al., 2012). For i2b2-style eval-
uation using the unweighted average F1 measure
over B-CUBED, MUC, and CEAF metrics, we
considered both exact and partial mention overlap.
These results, provided in Table 1, also indicate
that the system provides a clear improvement over
the baseline.

Metric Baseline OPTIMAL
With gold entity annotations
Unweighted F1 Partial 0.55 0.77
Unweighted F1 Exact 0.66 0.78
Precision 0.01 0.17
Recall 0.04 0.26
F1-measure 0.01 0.21

End-to-end coreference resolution
Precision 0.04 0.73

Table 1: Evaluation results on drug labels
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We also assessed the effect of various resolution
strategies on results. These results are presented in
Table 2.

Strategy F1-measure
OPTIMAL 0.21
OPTIMAL - SIA 0.21
OPTIMAL - APPOS 0.15
OPTIMAL + DIBS 0.16 (0.39 recall)

Table 2: Effect of coreference strategies

Disregarding set/instance anaphora resolution
(SIA) does not appear to affect the results by
much; however, this is mostly due to the fact that
the “instance” mentions are generally exemplifica-
tions of a particular drug class which also appear
in text. In the absence of set/instance anaphora
resolution, the system often defaults to these drug
class mentions, which were annotated more often
than not, unlike the “instance” mentions. Take the
following example:

(9) Use of ZESTRIL with potassium-sparing
diuretics (e.g., spironolactone, eplerenone,
triamterene or amiloride) . . . may lead to sig-
nificant increases . . . if concomitant use of
these agents . . .

Without set-instance anaphora resolution, the sys-
tem links these agents to potassium-sparing di-
uretics, an annotated relation. With set-instance
anaphora resolution, the same expression is linked
to individual drug names (spironolactone, etc.) as
well as the the drug class, creating a number of
false positives, which, in effect, offsets the im-
provement provided by this strategy.

On the other hand, recognizing appositive con-
structions (APPOS) appears to have a larger im-
pact; however, it should be noted that this is mostly
because it helps us expand the antecedent mention
list in the case of set/instance anaphora. For in-
stance, in Example (9), this strategy allows us to
establish the link between the anaphora and the
drug class (diuretics), since the drug class and in-
dividual drug name (spironolactone) are identified
earlier as appositive. We can conclude that, in gen-
eral, set/instance anaphora benefits from recogni-
tion of appositive constructions.

Recognizing drug ingredient/brand name syn-
onymy (DIBS) improved the recall and hurt the
precision significantly, the overall effect being

negative. Since this non-anaphoric type of coref-
erence is strictly semantic in nature and resources
from which this type of semantic information can
be derived already exist (UMLS, among others), it
is perhaps not of utmost importance that a coref-
erence resolution system recognizes such corefer-
ence.

We additionally processed the DrugNerAR cor-
pus with our system. The optimal setting for
this corpus was disregarding the drug ingredi-
ent/brand name synonymy but using relative pro-
noun anaphora resolution, based on the discus-
sion in Segura-Bedmar et al. (2010). Somewhat to
our surprise, our system did not fare well on this
corpus. We extracted 524 chains, 327 of which
(out of 669) were annotated in the corpus, yield-
ing a precision of 0.71, recall of 0.56, and F1-
measure of 0.63. This is about 20% lower than
their reported results. When we used their base-
line method (explained earlier), we obtained simi-
larly lower scores (precision of 0.18, recall of 0.45,
F1-measure of 0.26, about 40% lower than their
reported results). In light of this apparent discrep-
ancy, which clearly warrants further investigation,
it is perhaps more sensible to focus on “improve-
ment over baseline” (reported as 73% in their pa-
per and is 140% in our case).

We analyzed some of the annotations more
closely to get a better sense of the shortcomings
of the system. The majority of errors were due to
using linear distance as the salience score. For in-
stance, in the following example, they is linked to
ACE inhibitors due to proximity, whereas the true
antecedent is these reactions (itself an anaphor and
is presumably linked to another antecedent). It
could be possible to recover this link using prin-
ciples of Centering Theory (Grosz et al., 1995),
which suggests that subjects are more central than
objects and adjuncts in an utterance. Following
this principle, the subject (these reactions) would
be preferred to ACE inhibitors as the antecedent.

(10) In the same patients, these reactions were
avoided when ACE inhibitors were temporar-
ily withheld, but they reappeared upon inad-
vertent rechallenge.

Semantic (but not syntactic) coordination some-
times leads to number disagreement between the
anaphora and a true antecedent, as shown in Ex-
ample (11), leading to false negatives. In this ex-
ample, such diuretics refers to both ALDACTONE
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and a second diuretic; however, we are unable to
identify the link between them and the number dis-
agreement between the anaphora and either of the
antecedents blocks a potential coreference relation
between these items.

(11) If, after five days, an adequate diuretic re-
sponse to ALDACTONE has not occurred,
a second diuretic that acts more proximally
in the renal tubule may be added to the reg-
imen. Because of the additive effect of AL-
DACTONE when administered concurrently
with such diuretics . . .

5 Conclusion

We presented a coreference resolution system en-
hanced based on insights from a dataset of FDA
drug package inserts. Sparse coreference annota-
tion in the dataset presented difficulties in evaluat-
ing the results; however, based on various eval-
uation strategies, the performance improvement
due to the enhancements seems evident. Our re-
sults show that recognizing coordination and ap-
positive constructions are particularly useful and
that non-anaphoric cases of coreference can be
identified using synonymy in semantic resources,
such as UMLS. However, whether this is a task
for a coreference resolution system or a concept
normalization system is debatable. We exper-
imented with using hierarchical domain knowl-
edge in UMLS (for example, the knowledge that
lisinopril ISA angiotensin converting enzyme in-
hibitor) to resolve some cases of sortal anaphora.
Even though we did not see an improvement due
to using this type of information on our dataset,
further work is needed to assess its usefulness.
While the enhancements were evaluated on drug
labels only, they are not specific to this type of
text. Their portability to different text types is
limited only by the accuracy of underlying tools,
such as parsers, for the text type of interest and
the availability of domain knowledge in the form
of relevant semantic types, groups, hypernyms
for the entity types under consideration. The re-
sults also indicate that a more rigorous application
of syntactic constraints in the spirit of Centering
Theory (Grosz et al., 1995) could be beneficial.
Event (or clausal) anaphora and anaphora indicat-
ing discourse deixis, while rarely annotated in our
dataset, appear to occur fairly often in biomedical
text. These types of anaphora are known to be par-
ticularly challenging, and we plan to investigate

them in future research, as well.
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Abstract
An up-to-date problem list is useful for
assessing a patient’s current clinical sta-
tus. Natural language processing can help
maintain an accurate problem list. For in-
stance, a patient problem list from a clin-
ical document can be derived from indi-
vidual problem mentions within the clin-
ical document once these mentions are
mapped to a standard vocabulary. In
order to develop and evaluate accurate
document-level inference engines for this
task, a patient problem list could be gen-
erated using a standard vocabulary. Ad-
equate coverage by standard vocabularies
is important for supporting a clear rep-
resentation of the patient problem con-
cepts described in the texts and for interop-
erability between clinical systems within
and outside the care facilities. In this
pilot study, we report the reliability of
domain expert generation of a patient
problem list from a variety of clinical
texts and evaluate the coverage of anno-
tated patient problems against SNOMED
CT and SNOMED Clinical Observation
Recording and Encoding (CORE) Prob-
lem List. Across report types, we learned
that patient problems can be annotated
with agreement ranging from 77.1% to
89.6% F1-score and mapped to the CORE
with moderate coverage ranging from
45%-67% of patient problems.

1 Introduction

In the late 1960’s, Lawrence Weed published
about the importance of problem-oriented medi-
cal records and the utilization of a problem list
to facilitate care provider’s clinical reasoning by
reducing the cognitive burden of tracking cur-
rent, active problems from past, inactive problems

from the patient health record (Weed, 1970). Al-
though electronic health records (EHR) can help
achieve better documentation of problem-specific
information, in most cases, the problem list is
manually created and updated by care providers.
Thus, the problem list can be out-of-date con-
taining resolved problems or missing new prob-
lems. Providing care providers with problem list
update suggestions generated from clinical docu-
ments can improve the completeness and timeli-
ness of the problem list (Meystre and Haug, 2008).

In recent years, national incentive and standard
programs have endorsed the use of problem lists
in the EHR for tracking patient diagnoses over
time. For example, as part of the Electronic Health
Record Incentive Program, the Center for Medi-
care and Medicaid Services defined demonstra-
tion of Meaningful Use of adopted health infor-
mation technology in the Core Measure 3 objec-
tive as “maintaining an up-to-date problem list of
current and active diagnoses in addition to histor-
ical diagnoses relevant to the patients care” (Cen-
ter for Medicare and Medicaid Services, 2013).
More recently, the Systematized Nomenclature of
Medicine Clinical Terms (SNOMED CT) has be-
come the standard vocabulary for representing and
documenting patient problems within the clinical
record. Since 2008, this list is iteratively refined
four times each year to produce a subset of gen-
eralizable clinical problems called the SNOMED
CT CORE Problem List. This CORE list repre-
sents the most frequent problem terms and con-
cepts across eight major healthcare institutions in
the United States and is designed to support in-
teroperability between regional healthcare institu-
tions (National Library of Medicine, 2009).

In practice, there are several methodologies ap-
plied to generate a patient problem list from clin-
ical text. Problem lists can be generated from
coded diagnoses such as the International Statis-
tical Classification of Disease (ICD-9 codes) or

54



concept labels such as Unified Medical Language
System concept unique identifiers (UMLS CUIs).
For example, Meystre and Haug (2005) defined 80
of the most frequent problem concepts from coded
diagnoses for cardiac patients. This list was gen-
erated by a physician and later validated by two
physicians independently. Coverage of coded pa-
tient problems were evaluated against the ICD-9-
CM vocabulary. Solti et al. (2008) extended the
work of Meystre and Haug (2005) by not limit-
ing the types of patient problems from any list
or vocabulary to generate the patient problem list.
They observed 154 unique problem concepts in
their reference standard. Although both studies
demonstrate valid methods for developing a pa-
tient problem list reference standard, neither study
leverages a standard vocabulary designed specifi-
cally for generating problem lists.

The goals of this study are 1) determine how
reliably two domain experts can generate a pa-
tient problem list leveraging SNOMED CT from
a variety of clinical texts and 2) assess the cover-
age of annotated patient problems from this corpus
against the CORE Problem List.

2 Methods

In this IRB-approved study, we obtained the
Shared Annotated Resource (ShARe) corpus
originally generated from the Beth Israel Dea-
coness Medical Center (Elhadad et al., un-
der review) and stored in the Multiparameter
Intelligent Monitoring in Intensive Care, ver-
sion 2.5 (MIMIC II) database (Saeed et al.,
2002). This corpus consists of discharge sum-
maries (DS), radiology (RAD), electrocardiogram
(ECG), and echocardiogram (ECHO) reports from
the Intensive Care Unit (ICU). The ShARe cor-
pus was selected because it 1) contains a variety of
clinical text sources, 2) links to additional patient
structured data that can be leveraged for further
system development and evaluation, and 3) has en-
coded individual problem mentions with semantic
annotations within each clinical document that can
be leveraged to develop and test document-level
inference engines. We elected to study ICU pa-
tients because they represent a sensitive cohort that
requires up-to-date summaries of their clinical sta-
tus for providing timely and effective care.

2.1 Annotation Study

For this annotation study, two annotators - a physi-
cian and nurse - were provided independent train-
ing to annotate clinically relevant problems e.g.,
signs, symptoms, diseases, and disorders, at the
document-level for 20 reports. The annotators
were given feedback based on errors over two it-
erations. For each patient problem in the remain-
ing set, the physician was instructed to review the
full text, span the a problem mention, and map the
problem to a CUI from SNOMED-CT using the
extensible Human Oracle Suite of Tools (eHOST)
annotation tool (South et al., 2012). If a CUI did
not exist in the vocabulary for the problem, the
physician was instructed to assign a “CUI-less” la-
bel. Finally, the physician then assigned one of
five possible status labels - Active, Inactive, Re-
solved, Proposed, and Other - based on our pre-
vious study (Mowery et al., 2013) to the men-
tion representing its last status change at the con-
clusion of the care encounter. Patient problems
were not annotated as Negated since patient prob-
lem concepts are assumed absent at a document-
level (Meystre and Haug, 2005). If the patient
was healthy, the physician assigned “Healthy - no
problems” to the text. To reduce the cognitive bur-
den of annotation and create a more robust refer-
ence standard, these annotations were then pro-
vided to a nurse for review. The nurse was in-
structed to add missing, modify existing, or delete
spurious patient problems based on the guidelines.

We assessed how reliably annotators agreed
with each other’s patient problem lists using inter-
annotator agreement (IAA) at the document-level.
We evaluated IAA in two ways: 1) by problem
CUI and 2) by problem CUI and status. Since
the number of problems not annotated (i.e., true
negatives (TN)) are very large, we calculated F1-
score as a surrogate for kappa (Hripcsak and Roth-
schild, 2005). F1-score is the harmonic mean of
recall and precision, calculated from true posi-
tive, false positive, and false negative annotations,
which were defined as follows:

true positive (TP) = the physician and nurse prob-
lem annotation was assigned the same CUI
(and status)

false positive (FP) = the physician problem anno-
tation (and status) did not exist among the
nurse problem annotations
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false negative (FN) = the nurse problem anno-
tation (and status) did not exist among the
physician problem annotations

Recall =
TP

(TP + FN)
(1)

Precision =
TP

(TP + FP )
(2)

F1-score =

2
(Recall ∗ Precision)
(Recall + Precision)

(3)

We sampled 50% of the corpus and determined
the most common errors. These errors with
examples were programmatically adjudicated
with the following solutions:

Spurious problems: procedures
solution: exclude non-problems via guidelines

Problem specificity: CUI specificity differences
solution: select most general CUIs

Conflicting status: negated vs. resolved
solution: select second reviewer’s status

CUI/CUI-less: C0031039 vs. CUI-less
solution: select CUI since clinically useful

We split the dataset into about two-thirds train-
ing and one-third test for each report type. The re-
maining data analysis was performed on the train-
ing set.

2.2 Coverage Study
We characterized the composition of the reference
standard patient problem lists against two stan-
dard vocabularies SNOMED-CT and SNOMED-
CT CORE Problem List. We evaluated the cover-
age of patient problems against the SNOMED CT
CORE Problem List since the list was developed
to support encoding clinical observations such as
findings, diseases, and disorders for generating pa-
tient summaries like problem lists. We evaluated
the coverage of patient problems from the corpus
against the SNOMED-CT January 2012 Release
which leverages the UMLS version 2011AB. We
assessed recall (Eq 1), defining a TP as a patient
problem CUI occurring in the vocabulary and a

FN as a patient problem CUI not occurring in the
vocabulary.

3 Results

We report the results of our annotation study on
the full set and vocabulary coverage study on the
training set.

3.1 Annotation Study

The full dataset is comprised of 298 clinical doc-
uments - 136 (45.6%) DS, 54 (18.1%) ECHO,
54 (18.1%) RAD, and 54 (18.1%) ECG. Seventy-
four percent (221) of the corpus was annotated by
both annotators. Table 1 shows agreement overall
and by report, matching problem CUI and prob-
lem CUI with status. Inter-annotator agreement
for problem with status was slightly lower for all
report types with the largest agreement drop for
DS at 15% (11.6 points).

Report Type CUI CUI + Status
DS 77.1 65.5
ECHO 83.9 82.8
RAD 84.7 82.8
ECG 89.6 84.8

Table 1: Document-level IAA by report type for problem
(CUI) and problem with status (CUI + status)

We report the most common errors by frequency
in Table 2. By report type, the most common er-
rors for ECHO, RAD, and ECG were CUI/CUI-
less, and DS was Spurious Concepts.

Errors DS ECHO RAD ECG
SP 423 (42%) 26 (23%) 30 (35%) 8 (18%)
PS 139 (14%) 31 (27%) 8 (9%) 0 (0%)
CS 318 (32%) 9 (8%) 8 (9%) 14 (32%)
CC 110 (11%) 34 (30%) 37 (44%) 22 (50%)
Other 6 (>1%) 14 (13%) 2 (2%) 0 (0%)

Table 2: Error types by frequency - Spurious Problems (SP),
Problem Specificity (PS), Conflicting status (CS), CUI/CUI-
less (CC)

3.2 Coverage Study

In the training set, there were 203 clinical docu-
ments - 93 DS, 37 ECHO, 38 RAD, and 35 ECG.
The average number of problems were 22±10 DS,
10±4 ECHO, 6±2 RAD, and 4±1 ECG. There
are 5843 total current problems in SNOMED-CT
CORE Problem List. We observed a range of
unique SNOMED-CT problem concept frequen-
cies: 776 DS, 63 ECHO, 113 RAD, and 36 ECG
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by report type. The prevalence of covered prob-
lem concepts by CORE is 461 (59%) DS, 36
(57%) ECHO, 71 (63%) RAD, and 16 (44%)
ECG. In Table 3, we report coverage of patient
problems for each vocabulary. No reports were
annotated as “Healthy - no problems”. All reports
have SNOMED CT coverage of problem mentions
above 80%. After mapping problem mentions to
CORE, we observed coverage drops for all report
types, 24 to 36 points.

Report Patient Annotated with Mapped to
Type Problems SNOMED CT CORE
DS 2000 1813 (91%) 1335 (67%)
ECHO 349 300 (86%) 173 (50%)
RAD 190 156 (82%) 110 (58%)
ECG 95 77(81%) 43 (45%)

Table 3: Patient problem coverage by SNOMED-CT and
SNOMED-CT CORE

4 Discussion

In this feasibility study, we evaluated how reliably
two domain experts can generate a patient problem
list and assessed the coverage of annotated patient
problems against two standard clinical vocabular-
ies.

4.1 Annotation Study

Overall, we demonstrated that problems can be re-
liably annotated with moderate to high agreement
between domain experts (Table 1). For DS, agree-
ment scores were lowest and dropped most when
considering the problem status in the match crite-
ria. The most prevalent disagreement for DS was
Spurious problems (Table 2). Spurious problems
included additional events (e.g., C2939181: Mo-
tor vehicle accident), procedures (e.g., C0199470:
Mechanical ventilation), and modes of administra-
tion (e.g., C0041281: Tube feeding of patient) that
were outside our patient problem list inclusion cri-
teria. Some pertinent findings were also missed.
These findings are not surprising given on average
more problems occur in DS and the length of DS
documents are much longer than other document
types. Indeed, annotators are more likely to miss
a problem as the number of patient problems in-
crease.

Also, status differences can be attributed to mul-
tiple status change descriptions using expressions
of time e.g., “cough improved then” and modal-
ity “rule out pneumonia”, which are harder to

track and interpret over a longer document. The
most prevalent disagreements for all other doc-
ument types were CUI/CUI-less in which iden-
tifying a CUI representative of a clinical obser-
vation proved more difficult. An example of
Other disagreement was a sidedness mismatch
or redundant patient problem annotation. For
example, C0344911: Left ventricular dilatation
vs. C0344893: Right ventricular dilatation or
C0032285: Pneumonia was recorded twice.

4.2 Coverage Study

We observed that DS and RAD reports have higher
counts and coverage of unique patient problem
concepts. We suspect this might be because other
document types like ECG reports are more likely
to have laboratory observations, which may be
less prevalent findings in CORE. Across document
types, coverage of patient problems in the corpus
by SNOMED CT were high ranging from 81%
to 91% (Table 3). However, coverage of patient
problems by CORE dropped to moderate cover-
ages ranging from 45% to 67%. This suggests that
the CORE Problem List is more restrictive and
may not be as useful for capturing patient prob-
lems from these document types. A similar report
of moderate problem coverage with a more restric-
tive concept list was also reported by Meystre and
Haug (2005).

5 Limitations

Our study has limitations. We did not apply a tra-
ditional adjudication review between domain ex-
perts. In addition, we selected the ShARe corpus
from an ICU database in which vocabulary cover-
age of patient problems could be very different for
other domains and specialties.

6 Conclusion

Based on this feasibility study, we conclude that
we can generate a reliable patient problem list
reference standard for the ShARe corpus and
SNOMED CT provides better coverage of patient
problems than the CORE Problem List. In fu-
ture work, we plan to evaluate from each ShARe
report type, how well these patient problem lists
can be derived and visualized from the individ-
ual disease/disorder problem mentions leveraging
temporality and modality attributes using natu-
ral language processing and machine learning ap-
proaches.
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Abstract

Medical coding is a process of classify-
ing health records according to standard
code sets representing procedures and di-
agnoses. It is an integral part of health
care in the U.S., and the high costs it
incurs have prompted adoption of natu-
ral language processing techniques for au-
tomatic generation of these codes from
the clinical narrative contained in elec-
tronic health records. The need for effec-
tive auto-coding methods becomes even
greater with the impending adoption of
ICD-10, a code inventory of greater com-
plexity than the currently used code sets.
This paper presents a system that predicts
ICD-10 procedure codes from the clinical
narrative using several levels of abstrac-
tion. First, partial hierarchical classifica-
tion is used to identify potentially rele-
vant concepts and codes. Then, for each
of these concepts we estimate the confi-
dence that it appears in a procedure code
for that document. Finally, confidence val-
ues for the candidate codes are estimated
using features derived from concept confi-
dence scores. The concept models can be
trained on data with ICD-9 codes to sup-
plement sparse ICD-10 training resources.
Evaluation on held-out data shows promis-
ing results.

1 Introduction

In many countries reimbursement rules for health
care services stipulate that the patient encounter
must be assigned codes representing diagnoses
that were made for and procedures that were per-
formed on the patient. These codes may be as-
signed by general health care personnel or by spe-
cially trained medical coders. The billing codes

used in the U.S. include International Statisti-
cal Classification of Diseases and Related Health
Problems (ICD) codes, whose version 9 is cur-
rently in use and whose version 10 was scheduled
for adoption in October 20141, as well as Current
Procedural Terminology (CPT) codes. The same
codes are also used for research, internal book-
keeping, and other purposes.

Assigning codes to clinical documentation of-
ten requires extensive technical training and in-
volves substantial labor costs. This, together with
increasing prominence of electronic health records
(EHRs), has prompted development and adoption
of NLP algorithms that support the coding work-
flow by automatically inferring appropriate codes
from the clinical narrative and other information
contained in the EHR (Chute et al., 1994; Heinze
et al., 2001; Resnik et al., 2006; Pakhomov et al.,
2006; Benson, 2006). The need for effective auto-
coding methods becomes especially acute with the
introduction of ICD-10 and the associated increase
of training and labor costs for manual coding.

The novelty and complexity of ICD-10 presents
unprecedented challenges for developers of rule-
based auto-coding software. Thus, while ICD-9
contains 3882 codes for procedures, the number
of codes defined by the ICD-10 Procedure Cod-
ing System (PCS) is greater than 70,000. Further-
more, the organization of ICD-10-PCS is funda-
mentally different from ICD-9, which means that
the investment of time and money that had gone
into writing auto-coding rules for ICD-9 proce-
dure codes cannot be easily leveraged in the tran-
sition to ICD-10.

In turn, statistical auto-coding methods are con-
strained by the scarcity of available training data
with manually assigned ICD-10 codes. While this
problem will be attenuated over the years as ICD-
10-coded data are accumulated, the health care

1The deadline was delayed by at least a year while this
paper was in review.
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industry needs effective technology for ICD-10
computer-assisted coding in advance of the imple-
mentation deadline. Thus, for developers of statis-
tical auto-coding algorithms two desiderata come
to the fore: these algorithms should take advantage
of all available training data, including documents
supplied only with ICD-9 codes, and they should
possess high capacity for statistical generalization
in order to maximize the benefits of training mate-
rial with ICD-10 codes.

The auto-coding system described here seeks
to meet both these requirements. Rather than
predicting codes directly from the clinical narra-
tive, a set of classifiers is first applied to identify
coding-related concepts that appear in the EHR.
We use General Equivalence Mappings (GEMs)
between ICD-9 and ICD-10 codes (CMS, 2014)
to train these models not only on data with human-
assigned ICD-10 codes, but also on ICD-9-coded
data. We then use the predicted concepts to de-
rive features for a model that estimates probabil-
ity of ICD-10 codes. Besides the intermediate ab-
straction to concepts, the code confidence model
itself is also designed so as to counteract sparsity
of the training data. Rather than train a separate
classifier for each code, we use a single model
whose features can generalize beyond individual
codes. Partial hierarchical classification is used for
greater run-time efficiency. To our knowledge, this
is the first research publication describing an auto-
coding system for ICD-10-PCS. It is currently de-
ployed, in tandem with other auto-coding mod-
ules, to support computer-assisted coding in the
3MTM360 EncompassTMSystem.

The rest of the paper is organized as follows.
Section 2 reviews the overall organization of ICD-
10-PCS. Section 4.1 outlines the run-time process-
ing flow of the system to show how its components
fit together. Section 4.2 describes the concept con-
fidence models, including the hierarchical classi-
fication components. Section 4.3 discusses how
data with manually assigned ICD-9 codes is used
to train some of the concept confidence models.
Section 4.4 describes the code confidence model.
Finally, Section 5 reports experimental results.

2 ICD-10 Procedure Coding System

ICD-10-PCS is a set of codes for medical proce-
dures, developed by 3M Health Information Sys-
tems under contract to the Center for Medicare and
Medicaid Services of the U.S. government. ICD-

10-PCS has been designed systematically; each
code consists of seven characters, and the charac-
ter in each of these positions signifies one partic-
ular aspect of the code. The first character des-
ignates the “section” of ICD-10-PCS: 0 for Med-
ical and Surgical, 1 for Obstetrics, 2 for Place-
ment, and so on. Within each section, the seven
components, or axes of classification, are intended
to have a consistent meaning; for example in the
Medical and Surgical section, the second charac-
ter designates the body system involved, the third
the root operation, and so on (see Table 1 for a
list). All procedures in this section are thus clas-
sified along these axes. For instance, in a code
such as 0DBJ3ZZ, the D in the second position in-
dicates that the body system involved is the gas-
trointestinal system, B in the third position always
indicates that the root operation is an excision of a
body part, the J in the fourth position indicates that
the appendix is the body part involved, and the 3 in
the fifth position indicates that the approach is per-
cutaneous. The value Z in the last two axes means
than neither a device nor a qualifier are specified.

Character Meaning
1st Section
2nd Body System
3rd Root Operation
4th Body Part
5th Approach
6th Device
7th Qualifier

Table 1: Character Specification of the Medical
and Surgical Section of ICD-10-PCS

Several consequences of the compositional
structure of ICD-10-PCS are especially relevant
for statistical auto-coding methods.

On the one hand, it defines over 70,000 codes,
many of which are logically possible, but very rare
in practice. Thus, attempts to predict the codes as
unitary entities are bound to suffer from data spar-
sity problems even with a large training corpus.
Furthermore, some of the axis values are formu-
lated in ways that are different from how the cor-
responding concepts would normally be expressed
in a clinical narrative. For example, ICD-10-PCS
uses multiple axes (root opreration, body part, and,
in a sense, the first two axes as well) to encode
what many traditional procedure terms (such as
those ending in -tomy and -plasty) express by a
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single word, while the device axis uses generic
categories where a clinical narrative would refer
only to specific brand names. This drastically lim-
its how much can be accomplished by matching
code descriptions or indexes derived from them
against the text of EHRs.

On the other hand, the systematic conceptual
structure of PCS codes and of the codeset as a
whole can be exploited to compensate for data
sparsity and idiosyncracies of axis definitions by
introducing abstraction into the model.

3 Related work

There exists a large literature on automatic clas-
sification of clinical text (Stanfill et al., 2010). A
sizeable portion of it is devoted to detecting cate-
gories corresponding to billing codes, but most of
these studies are limited to one or a handful of cat-
egories. This is in part because the use of patient
records is subject to strict regulation. Thus, the
corpus used for most auto-coding research up to
date consists of about two thousand documents an-
notated with 45 ICD-9 codes (Pestian et al., 2007).
It was used in a shared task at the 2007 BioNLP
workshop and gave rise to papers studying a va-
riety of rule-based and statistical methods, which
are too numerous to list here.

We limit our attention to a smaller set of re-
search publications describing identification of an
entire set of billing codes, or a significant por-
tion thereof, which better reflects the role of auto-
coding in real-life applications. Mayo Clinic was
among the earliest adopters of auto-coding (Chute
et al., 1994), where it was deployed to assign
codes from a customized and greatly expanded
version of ICD-8, consisting of almost 30K diag-
nostic codes. A recently reported version of their
system (Pakhomov et al., 2006) leverages a com-
bination of example-based techniques and Naı̈ve
Bayes classification over a database of over 20M
EHRs. The phrases representing the diagnoses
have to be itemized as a list beforehand. In an-
other pioneering study, Larkey & Croft (1995) in-
vestigated k-Nearest Neighbor, Naı̈ve Bayes, and
relevance feedback on a set of 12K discharge
summaries, predicting ICD-9 codes. Heinze et
al (2000) and Ribeiro-Neto et al (2001) describe
systems centered on symbolic computation. Jiang
et al (2006) discuss confidence assessment for
ICD-9 and CPT codes, performed separately from
code generation. Medori & Fairon (2010) com-

bine information extraction with a Naı̈ve Bayes
classifier, working with a corpus of about 20K dis-
charge summaries in French. In a recent paper,
Perotte et al (2014) study standard and hierarchi-
cal classification using support vector machines on
a corpus of about 20K EHRs with ICD-9 codes.

We are not aware of any previous publications
on auto-coding for ICD-10-PCS, and the results
of these studies cannot be directly compared with
those reported below due to the unique nature of
this code set. Our original contributions also in-
clude explicit modeling of concepts and the ca-
pability to assign previously unobserved codes
within a machine learning framework.

4 Methods

4.1 Run-time processing flow

We first describe the basic run-time processing
flow of the system, shown in Figure 1.

Figure 1: Run-time processing flow

In a naı̈ve approach, one could generate all
codes from the ICD-10-PCS inventory for each
EHR2 and estimate their probability in turn, but
this would be too computationally expensive. In-
stead, the hypothesis space is restricted by two-

2We use the term EHR generically in this paper. The sys-
tem can be applied at the level of individual clinical docu-
ments or entire patient encounters, whichever is appropriate
for the given application.

61



level hierarchical classification with beam search.
First, a set of classifiers estimates the confidence
of all PCS sections (one-character prefixes of the
codes), one per section. The sections whose con-
fidence exceeds a threshold are used to generate
candidate body systems (two-character code pre-
fixes), whose confidence is estimated by another
set of classifiers. Then, body systems whose con-
fidence exceeds a threshold are used to generate
a set of candidate codes and the set of concepts
expressed by these codes. The probability of ob-
serving each of the candidate concepts in the EHR
is estimated by a separate classifier. Finally, these
concept confidence scores are used to derive fea-
tures for a model that estimates the probability of
observing each of the candidate codes, and the
highest-scoring codes are chosen according to a
thresholding decision rule.

The choice of two hierarchical layers is partially
determined by the amount of training data with
ICD-10 codes available for this study, since many
three-character code prefixes are too infrequent to
train reliable classifiers. Given more training data,
additional hierarchical classification layers could
be used, which would trade a higher risk of recall
errors against greater processing speed. The same
trade-off can be negotiated by adjusting the beam
search threshold.

4.2 Concept confidence models

Estimation of concept confidence – including the
confidence of code prefixes in the two hierarchi-
cal classification layers – is performed by a set of
classifiers, one per concept, which are trained on
EHRs supplied with ICD-10 and ICD-9 procedure
codes.

The basis for training the concept models is
provided by a mapping between codes and con-
cepts expressed by the codes. For example, the
code 0GB24ZZ (Excision of Left Adrenal Gland,
Percutaneous Endoscopic Approach) expresses,
among other concepts, the concept adrenal gland
and the more specific concept left adrenal gland.
It also expresses the concept of adrenalectomy
(surgical removal of one or both of the adrenal
glands), which corresponds to the regular expres-
sion 0G[BT][234]..Z over ICD-10-PCS codes.
We used the code-to-concept mapping described
in Mills (2013), supplemented by some additional
categories that do not correspond to traditional
clinical concepts. For example, our set of concepts

included entries for the categories of no device
and no qualifer, which are widely used in ICD-10-
PCS. We also added entries that specified the de-
vice axis or the qualifier axis together with the first
three axes, where they were absent in the original
concept map, reasoning that the language used to
express the choice of the device or qualifier can be
specific to particular procedures and body parts.

For data with ICD-10-PCS codes, the logic used
to generate training instances is straightforward.
Whenever a manually assigned code expresses a
given concept, a positive training instance for the
corresponding classifier is generated. Negative
training instances are sub-sampled from the con-
cepts generated by hierarchical classification lay-
ers for that EHR. As can be seen from this logic,
the precise question that the concept models seek
to answer is as follows: given that this particular
concept has been generated by the upstream hier-
archical layers, how likely is it that it will be ex-
pressed by one of the ICD-10 procedure codes as-
signed to that EHR?

In estimating concept confidence we do not at-
tempt to localize where in the clinical narrative
the given concept is expressed. Our baseline
feature set is simply a bag of tokens. We also
experimented with other feature types, including
frequency-based weighting schemes for token fea-
ture values and features based on string matches of
Unified Medical Language System (UMLS) con-
cept dictionaries. For the concepts of left and right
we define an additional feature type, indicating
whether the token left or right appears more fre-
quently in the EHR. While still rudimentary, this
feature type is more apt to infer laterality than a
bag of tokens.

A number of statistical methods can be used
to estimate concept confidence. We use the
Mallet (McCallum, 2002) implementation of `1-
regularized logistic regression, which has shown
good performance for NLP tasks in terms of ac-
curacy as well as scalability at training and run-
time (Gao et al., 2007).

4.3 Training on ICD-9 data

In training concept confidence models on data
with ICD-9 codes we make use of the General
Equivalence Mappings (GEMs), a publicly avail-
able resource establishing relationships between
ICD-9 and ICD-10 codes (CMS, 2014). Most cor-
respondences between ICD-9 and ICD-10 proce-
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dure codes are one-to-many, although other map-
ping patterns are also found. Furthermore, a code
in one set can correspond to a combination of
codes from the other set. For example, the ICD-
9 code for combined heart-lung transplantation
maps to a set of pairs of ICD-10 codes, the first
code in the pair representing one of three possible
types of heart transplantation, and the other rep-
resenting one of three possible types of bilateral
lung transplantation.

A complete description of the rules underlying
GEMs and our logic for processing them is beyond
the scope of this paper, and we limit our discussion
to the principles underlying our approach. We first
distribute a unit probability mass over the ICD-
10 codes or code combinations mapped to each
ICD-9 code, using logic that reflects the struc-
ture of GEMs and distributing probability mass
uniformly among comparable alternatives. From
these probabilities we compute a cumulative prob-
ability mass for each concept appearing in the
ICD-10 codes. For example, if an ICD-9 code
maps to four ICD-10 codes over which we dis-
tribute a uniform probability distibution, and a
given concept appears in two of them, we assign
the probability of 0.5 to that concept. For a given
EHR, we assign to each concept the highest prob-
ability it receives from any of the codes observed
for the EHR. Finally, we use the resulting concept
probabilities to weight positive training instances.
Negative instances still have unit weights, since
they correspond to concepts that can be unequivo-
cably ruled out based on the GEMs.

4.4 Code confidence model

The code confidence model produces a confidence
score for candidate codes generated by the hierar-
chical classification layers, using features derived
from the output of the code confidence models
described above. The code confidence model is
trained on data with ICD-10 codes. Whenever a
candidate code matches a code assigned by hu-
man annotators, a positive training instance is gen-
erated. Otherwise, a negative instance is gener-
ated, with sub-sampling. We report experiments
using logistic regression with `1 and `2 regulariza-
tion (Gao et al., 2007).

The definition of features used in the model re-
quires careful attention, because it is in the form of
the feature space that the proposed model differs
from a standard one-vs-all approach. To elucidate

the contrast we may start with a form of the feature
space that would correspond to one-vs-all classi-
fication. This can be achieved by specifying the
identity of a particular code in all feature names.
Then, the objective function for logistic regression
would decompose into independent learning sub-
problems, one for each code, producing a collec-
tion of one-vs-all classifiers. There are clear draw-
backs to this approach. If all parameters are re-
stricted to a specific code, the training data would
be fragmented along the same lines. Thus, even
if features derived from concepts may seem to en-
able generalization, in reality they would in each
case be estimated only from training instances cor-
responding to a single code, causing unnecessary
data sparsity.

This shortcoming can be overcome in logistic
regression simply by introducing generalized fea-
tures, without changing the rest of the model (Sub-
otin, 2011). Thus, in deriving features from scores
of concept confidence models we include only
those concepts which are expressed by the given
code, but we do not specify the identity of the code
in the feature names. In this way the weights for
these features are estimated at once from training
instances for all codes in which these concepts ap-
pear. We combine these generalized features with
the code-bound features described earlier. The lat-
ter should help us learn more specific predictors
for particular procedures, when such predictors
exist in the feature space.

While the scores of concept confidence mod-
els provide the basis for the feature space of the
code confidence model, there are multiple ways in
which features can be derived from these scores.
The simplest way is to take concept identity (op-
tionally specified by code identity) as the fea-
ture name and the confidence score as the feature
value. We supplement these features with features
based on score quantization. That is, we thresh-
old each concept confidence score at several points
and define binary features indicating whether the
score exceeds each of the thresholds. For both
these feature types, we generate separate features
for predictions of concept models trained on ICD-
9 data and concept models trained on ICD-10 data
in order to allow the code confidence model to
learn how useful predictions of concept confidence
models are, depending on the type of their training
data.

Both the concept confidence models and the
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code confidence model can be trained on data with
ICD-10 codes. We are thus faced with the ques-
tion of how best to use this limited resource. The
simplest approach would be to train both types of
models on all available training data, but there is a
concern that predictions of the concept models on
their own training data would not reflect their out-
of-sample performance, and this would mislead
the code confidence model into relying on them
too much. An alternative approach, often called
stacked generalization (Wolpert, 1992), would be
to generate training data for the code confidence
model by running concept confidence models on
out-of-sample data. We compare the performance
of these approaches below.

5 Evaluation

5.1 Methodology

We evaluated the proposed model using a cor-
pus of 28,536 EHRs (individual clinical records),
compiled to represent a wide variety of clinical
contexts and supplied with ICD-10-PCS codes by
trained medical coders. The corpus was annotated
under the auspices of 3M Health Information Sys-
tems for the express purpose of developing auto-
coding technology for ICD-10. There was a total
of 51,082 PCS codes and 5,650 unique PCS codes
in the corpus, only 76 of which appeared in more
than 100 EHRs, and 2,609 of which appeared just
once. Multiple coders worked on some of the doc-
uments, but they were allowed to collaborate, pro-
ducing what was effectively a single set of codes
for each EHR. We held out about a thousand EHRs
for development testing and evaluation, each, us-
ing the rest for training. The same corpus, as well
as 175,798 outpatient surgery EHRs with ICD-9
procedure codes submitted for billing by a health
provider were also used to train hierarchical and
concept confidence models.

We evaluated auto-coding performance by a
modified version of mean reciprocal rank (MRR).
MRR is a common evaluation metric for systems
with ranked outputs. For a set of Q correct out-
puts with ranks ranki among all outputs, standard
MRR is computed as:

MRR =
1
Q

Q∑
i=1

1
ranki

For example, a MRR value of 0.25 means that
that the correct answer has rank 4 on average. This

metric is designed for tasks where only one of the
outputs can be correct. When applied directly to
tasks where more than one output can be correct,
MRR unfairly penalizes cases with multiple cor-
rect outputs, increasing the rank of some correct
outputs on account of other, higher-ranked outputs
that are also correct. We modify MRR for our task
by ignoring correct outputs in the rank computa-
tions. In other words, the rank of a correct output
is computed as the number of higher-ranked incor-
rect outputs, plus one. This metric has the advan-
tage of summarizing the accuracy of an auto-coder
without reference to a particular choice of thresh-
old, which may be determined by business rules or
research considerations, as would be the case for
precision and recall.

One advantage of regularized logistic regres-
sion is that the value of 1 is often a near-optimal
setting for the regularization trade-off parameter.
This can save considerable computation time that
would be required for tuning this parameter for
each experimental condition. We have previously
observed that the value of 1 consistently produced
near-optimal results for the `1 regularizer in con-
cept confidence models and for the `2 regularizer
in the code confidence models, and we have used
this setting for all the experiments reported here.
For the code confidence model with `1-regularized
logistic regression we saw a slight improvement
with weaker regularization, and we report the best
result we obtained for this model below.

5.2 Results
The results are shown in Table 2. The top MMR
score of 0.572 corresponds to a micro-averaged F-
score of 0.485 (0.490 precision, 0.480 recall) when
the threshold is chosen to obtain approximately
equal values for recall and precision3. The best
result was obtained when:

• the concept models used bag-of-tokens fea-
tures (with the additional laterality features
described in Section 4.2);

• both concept models trained on ICD-9 data
and those trained on ICD-10 data were used;

• the code confidence model was trained on
data with predictions of concept models
trained on all of ICD-10 data (i.e., no

3To put these numbers into perspective, note that the aver-
age accuracy of trained medical coders for ICD-10 has been
estimated to be 63% (HIMSS/WEDI, 2013).
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data splitting for stacked generalization was
used);

• the code confidence model used all of the fea-
ture types described in Section 4.4;

• the code confidence model used logistic re-
gression with `2 regularization.

We examine the impact of all these choices on
system performance in turn.

Model MRR
All data, all features, `2 reg. 0.572
Concept model training:

Trained on ICD-10 only 0.558
Trained on ICD-9 only 0.341

Code model features:
One-vs-all 0.519
No code-bound features 0.553
No quantization features 0.560

Stacked generalization:
half & half data split 0.501
5-fold cross-validation 0.539

Code model algorithm:
`1 regularization 0.528

Table 2: Evaluation results. Each row after the
first correponds to varying one aspect of the model
shown in the first row. See Section 5.3 for details
of the experimental conditions.

5.3 Discussion

Despite its apparent primitive nature, the bag-of-
token feature space for the concept confidence
models has turned out to provide a remarkably
strong baseline. Our experiments with frequency-
based weighting schemes for the feature values
and with features derived from text matches from
the UMLS concept dictionaries did not yield sub-
stantial improvements in the results. Thus, the use
of UMLS-based features, obtained using Apache
ConceptMapper, yielded a relative improvement
of 0.6% (i.e., 0.003 in absolute terms), but at the
cost of nearly doubling run-time processing time.
Nonetheless, we remain optimistic that more so-
phisticated features can benefit performance of the
concept models while maintaining their scalabil-
ity.

As can be seen from the table, both concept
models trained on ICD-9 data and those trained on

ICD-10 data contributed to the overall effective-
ness of the system. However, the contribution of
the latter is markedly stronger. This suggests that
further research is needed in finding the best ways
of exploiting ICD-9-coded data for ICD-10 auto-
coding. Given that data with ICD-9 codes is likely
to be more readily available than ICD-10 training
data in the foreseeable future, this line of investi-
gation holds potential for significant gains in auto-
coding performance.

For the choice of features used in the code con-
fidence model, the most prominent contribution is
made by the feature that generalize beyond spe-
cific codes, as discussed in Section 4.4. Adding
these features yields a 10% relative improvement
over the set of features equivalent to a one-vs-
all model. In fact, using the generalized features
alone (see the row marked “no code-bound fea-
tures” in Table 2) gives a score only 0.02 lower
than the best result. As would be expected, gener-
alized features are particularly important for codes
with limited training data. Thus, if we restrict
our attention to codes with fewer than 25 training
instances (which account for 95% of the unique
codes in our ICD-10 training data), we find that
generalized features yielded a 25% relative im-
provement over the one-vs-all model (0.247 to
0.309). In contrast, for codes with over 100 train-
ing instances (which account for 1% of the unique
codes, but 36% of the total code volume in our
corpus) the relative improvement from generalized
features is less than 4% (0.843 to 0.876). These
numbers afford two further observations. First,
the model can be improved dramatically by adding
a few dozen EHRs per code to the training cor-
pus. Secondly, there is still much room for re-
search in mitigating the effects of data sparsity
and improving prediction accuracy for less com-
mon codes. Elsewhere in Table 2 we see that
quantization-based features contribute a modest
predictive value.

Perhaps the most surprising result of the series
came from investigating the options for using the
available ICD-10 training data, which act as train-
ing material both for concept confidence models
and the code confidence model. The danger of
training both type of models on the same corpus
is intuitively apparent. If the training instances
for the code model are generated by concept mod-
els whose training data included the same EHRs,
the accuracy of these concept predictions may not
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reflect out-of-sample performance of the concept
models, causing the code model to rely on them
excessively.

The simplest implementation of Wolpert’s
stacked generalization proposal, which is intended
to guard against this risk, is to use one part of the
corpus to train one predictive layer and use its pre-
dictions on the another part of the corpus to train
the other layer. The result in Table 2 (see the
row marked “half & half data split”) shows that
the resulting increase in sparsity of the training
data for both models leads to a major degradation
of the system’s performance, even though at run-
time concept models trained on all available data
are used. We also investigated a cross-validation
version of stacked generalization designed to mit-
igate against this fragmentation of training data.
We trained a separate set of concept models on the
training portion of each cross-validation fold, and
ran them on the held-out portion. The training set
for the code confidence model was then obtained
by combining these held-out portions. At run-
time, concept models trained on all of the avail-
able data were used. However, as intuitively com-
pelling as the arguments motivating this procedure
may be, the results were not competitive with the
baseline approach of using all available training
data for all the models.

Finally, we found that an `2 regularizer per-
formed clearly better than an `1 regularizer for the
code confidence model, even though we set the `2
trade-off constant to 1 and tuned the `1 trade-off
constant on the development test set. This is in
contrast to concept confidence models, where we
observed slightly better results with `1 regulariza-
tion than with `2 regularization.

6 Conclusion

We have described a system for predicting ICD-
10-PCS codes from the clinical narrative con-
tained in EHRs. The proposed approach seeks to
mitigate the sparsity of training data with manu-
ally assigned ICD-10-PCS codes in three ways:
through an intermediate abstraction to clinical
concepts, through the use of data with ICD-9
codes to train concept confidence models, and
through the use of a code confidence model
whose parameters can generalize beyond individ-
ual codes. Our experiments show promising re-
sults and point out directions for further research.
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Abstract

We present an active learning method for
placing the event mentions in an operative
note into a pre-specified event structure.
Event mentions are first classified into ac-
tion, peripheral action, observation, and
report events. The actions are further clas-
sified into their appropriate location within
the event structure. We examine how uti-
lizing active learning significantly reduces
the time needed to completely annotate a
corpus of 2,820 appendectomy notes.

1 Introduction

Operative reports are written or dictated after ev-
ery surgical procedure. They describe the course
of the operation as well as any abnormal find-
ings in the surgical process. Template-based and
structured methods exist for recording the opera-
tive note (DeOrio, 2002), and in many cases have
been shown to increase the completeness of sur-
gical information (Park et al., 2010; Gur et al.,
2011; Donahoe et al., 2012). The use of natural
language, however, is still preferred for its expres-
sive power. This unstructured information is typi-
cally the only vehicle for conveying important de-
tails of the procedure, including the surgical in-
struments, incision techniques, and laparoscopic
methods employed.

The ability to represent and extract the infor-
mation found within operative notes would enable

∗Most of this work was performed while KR was at the
University of Texas at Dallas.

powerful post-hoc reasoning methods about surgi-
cal procedures. First, the completeness problem
may be alleviated by indicating gaps in the sur-
gical narrative. Second, deep semantic similarity
methods could be used to discover comparable op-
erations across surgeons and institutions. Third,
given information on the typical course and find-
ings of a procedure, abnormal aspects of an oper-
ation could be identified and investigated. Finally,
other secondary use applications would be enabled
to study the most effective instruments and tech-
niques across large amounts of surgical data.

In this paper, we present an initial method for
aligning the event mentions within an operative
note to the overall event structure for a procedure.
A surgeon with experience in a particular proce-
dure first describes the overall event structure. A
supervised method enhanced by active learning is
then employed to rapidly build an information ex-
traction model to classify event mentions into the
event structure. This active learning paradigm al-
lows for rapid prototyping while also taking ad-
vantage of the sub-language characteristics of op-
erative notes and the common structure of opera-
tive notes reporting the same type of procedure. A
further goal of this method is to aid in the eval-
uation of unsupervised techniques that can auto-
matically discover the event structure solely from
the narratives. This would enable all the objectives
outlined above for leveraging the unstructured in-
formation within operative notes.

This paper presents a first attempt at this ac-
tive learning paradigm for structuring appendec-
tomy reports. We intentionally chose a well-
understood and relatively simple procedure to en-
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sure a straight-forward, largely linear event struc-
ture where a large amount of data would be eas-
ily available. Section 3 describes a generic frame-
work for surgical event structures and the particu-
lar structure chosen for appendectomies. Section 4
details the data used in this study. Section 5 de-
scribes the active learning experiment for filling in
this event structure for operative notes. Section 6
reports the results of this experiment. Section 7
analyzes the method and proposes avenues for fur-
ther research. First, however, we outline the small
amount of previous work in natural language pro-
cessing on operative notes.

2 Previous Work

An early tool for processing operative notes was
proposed by Lamiell et al. (1993). They develop
an auditing tool to help enforce completeness in
operative notes. A syntactic parser converts sen-
tences in an operative note into a graph structure
that can be queried to ensure the necessary surgical
elements are present in the narrative. For appen-
dectomies, they could determine whether answers
were specified for questions such as “What was
the appendix abnormality?” and “Was cautery or
drains used?”. Unlike what we propose, they did
not attempt to understand the narrative structure of
the operative note, only ensure that a small num-
ber of important elements were present. Unfortu-
nately, they only tested their rule-based system on
four notes, so it is difficult to evaluate the robust-
ness and generalizability of their method.

More recently, Wang et al. (2014) proposed a
machine learning (ML) method to extract patient-
specific values from operative notes written in
Chinese. They specifically extract tumor-related
information from patients with hepatic carcinoma,
such as the size/location of the tumor, and whether
the tumor boundary is clear. In many ways this is
similar in purpose to Lamiell et al. (1993) in the
sense that there are operation-specific attributes to
extract. However, while the auditing function pri-
marily requires knowing whether particular items
were stated, their method extracts the particular
values for these items. Furthermore, they em-
ploy an ML-based conditional random field (CRF)
trained and tested on 114 operative notes. The pri-
mary difference between the purpose of these two
methods and the purpose of our method lies in the
attempt to model all the events that characterize a
surgery. Both the work of Lamiell et al. (1993)

and Wang et al. (2014) can be used for complete-
ness testing, and Wang et al. (2014) can be used
to find similar patients. The lack of understand-
ing of the event structure, however, prevents these
methods from identifying similar surgical methods
or unexpected surgical techniques, or from accom-
plishing many other secondary use objectives.

In a more similar vein to our own approach,
Wang et al. (2012) studies actions (a subset of
event mentions) within an operative note. They
note that various lexico-syntactic constructions
can be used to specify an action (e.g., incised, the
incision was carried, made an incision). Like our
approach, they observed sentences can be catego-
rized into actions, perceptions/reports, and other
(though we make this distinction at the event men-
tion level). They adapted the Stanford Parser
(Klein and Manning, 2003) with the Specialist
Lexicon (Browne et al., 1993) similar to Huang
et al. (2005). They do not, however, propose any
automatic system for recognizing and categoriz-
ing actions. Instead, they concentrate on evalu-
ating existing resources. They find that many re-
sources, such as UMLS (Lindberg et al., 1993) and
FrameNet (Baker et al., 1998) have poor coverage
of surgical actions, while Specialist and WordNet
(Fellbaum, 1998) have good coverage.

A notable limitation of their work is that they
only studied actions at the sentence level, look-
ing at the main verb of the independent clause.
We have found in our study that multiple actions
can occur within a sentence, and we thus study ac-
tions at the event mention level. Wang et al. (2012)
noted this shortcoming and provide the following
illustrative examples:

• The patient was taken to the operating room
where general anesthesia was administered.

• After the successful induction of spinal anes-
thesia, she was placed supine on the operat-
ing table.

The second event mention in the first sentence
(administered) and the first event mention in the
second sentence (induction) are ignored in Wang
et al. (2012)’s study. Despite the fact that they
are stated in dependent clauses, these mentions
may be more semantically important to the narra-
tive than the mentions in the independent clauses.
This is because a grammatical relation does not
necessarily imply event prominence. In a further
study, Wang et al. (2013) work toward the creation
of an automatic extraction system by annotating
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PropBank (Palmer et al., 2005) style predicate-
argument structures on thirty common surgical ac-
tions.

3 Event Structures in Operative Notes

Since operations are considered to be one of the
riskier forms of clinical treatment, surgeons fol-
low strict procedures that are highly structured and
require significant training and oversight. Thus,
a surgeon’s description of a particular operation
should be highly similar with a different descrip-
tion of the same type of operation, even if writ-
ten by a different surgeon at a different hospital.
For instance, the two examples below were writ-
ten by two different surgeons to describe the event
of controlling the blood supply to the appendix:

• The 35 mm vascular Endo stapler device was
fired across the mesoappendix...

• The meso appendix was divided with electro-
cautery...

In these two examples, the surgeons use different
lexical forms (fired vs. divided), syntactic forms
(mesoappendix to the right or left of the EVENT),
different semantic predicate-argument structures
(INSTRUMENT-EVENT-ANATOMICALOBJECT

vs. ANATOMICALOBJECT-EVENT-METHOD),
and even different surgical techniques (stapling or
cautery). Still, these examples describe the same
step in the operation and thus can be mapped to
the same location in the event structure.

In order to recognize the event structure in op-
erative notes, we start by specifying an event
structure to a particular operation (e.g., mastec-
tomy, appendectomy, heart transplant) and create
a ground-truth structure based on expert knowl-
edge. Our goal is then to normalize the event men-
tions within a operative note to the specific surgi-
cal actions in the event structure. While the lex-
ical, syntactic, and predicate-argument structures
vary greatly across the surgeons in our data, many
event descriptions are highly consistent within
notes written by the same surgeon. This is es-
pecially true of events with little linguistic vari-
ability, typically largely procedural but necessary
events that are not the focus of the surgeon’s de-
scription of the operation. An example of low-
variability is the event of placing the patient on
the operating table, as opposed to the event of ma-
nipulating the appendix to prepare it for removal.
Additionally, while there is considerable lexical
variation in how an event is mentioned, the ter-

minology for event mentions is fairly limited, re-
sulting in reasonable similarity between surgeons
(e.g., the verbal description used for the dividing
of the mesoappendix is typically one of the fol-
lowing mentions: fire, staple, divide, separate, re-
move).

3.1 Event Structure Representation

Operative notes contain event mentions of many
different event classes. Some classes correspond
to actions performed by the surgeon, while oth-
ers describe findings, provide reasonings, or dis-
cuss interactions with patients or assistants. These
distinctions are necessary to recognizing the event
structure of an operation, in which we are primar-
ily concerned with surgical actions. We consider
the following event types:

• ACTION: the primary types of events in an
operation. These typically involve physi-
cal actions taken by the surgeon (e.g., cre-
ating/closing an incision, dividing tissue), or
procedural events (e.g., anesthesia, transfer
to recovery). With limited exceptions, AC-
TIONs occur in a strict order and the ith AC-
TION can be interpreted as enabling the (i +
1)th ACTION.

• P ACTION: the peripheral actions that are
optional, do not occur within a specific place
in the chain of ACTIONs, and are not consid-
ered integral to the event structure. Examples
include stopping unexpected bleeding and re-
moving benign cysts un-connected with the
operation.

• OBSERVATION: an event that denotes the
act of observing a given state. OBSERVA-
TIONs may lead to ACTION (e.g., the ap-
pendix is perforated and therefore needs to
be removed) or P ACTIONs (e.g., a cyst is
found). They may also be elaborations to pro-
vide more details about the surgical method
being used.

• REPORT: an event that denotes a verbal in-
teraction between the surgeon and a patient,
guardian, or assistant (such as obtaining con-
sent for an operation).

The primary class of events that we are interested
in here are ACTIONs. Abstractly, one can view a
type of operation as a directed graph with specified
start and end states. The nodes denote the events,
while the edges denote enablements. An instance
of an operation then can be represented as some
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Figure 1: Graphical representation of a surgical
procedure with ACTIONs A, B, C , D, E, and F ,
OBSERVATION O, and P ACTION G. (a) strict
surgical graph (only actions), (b) surgical graph
with an observation invoking an action, (c) surgi-
cal graph with an observation invoking a periph-
eral action.

path between the start and end nodes.
In its simplest form, a surgical graph is com-

posed entirely of ACTION nodes (see Figure 1(a)).
It is possible to add expected OBSERVATIONs
that might trigger a different ACTION path (Fig-
ure 1(b)). Finally, P ACTIONs can be represented
as optional nodes in the surgical graph, which may
or may not be triggered by OBSERVATIONs (Fig-
ure 1(c)). This graphical model is simply a con-
ceptual aid to help design the action types. The
model currently plays no role in the automatic
classification. For the remainder of this section
we focus on a relatively limited surgical proce-
dure that can be interpreted as a linear chain of
ACTIONs.

3.2 Appendectomy Representation

Acute appendicitis is a common condition requir-
ing surgical management, and is typically treated
by removing the appendix, either laparoscopically
or by using an open technique. Appendectomies
are the most commonly performed urgent surgi-
cal procedure in the United States. The procedure
is relatively straight-forward, and the steps of the
procedure exhibit little variation between differ-
ent surgeons. The third author (MS), a surgeon
with more than 20 years of experience in pedi-
atric surgery, provided the following primary AC-
TIONs:

• APP01: transfer patient to operating room
• APP02: place patient on table
• APP03: anesthesia
• APP04: prep
• APP05: drape
• APP06: umbilical incision
• APP07: insert camera/telescope
• APP08: insert other working ports
• APP09: identify appendix
• APP10: dissect appendix away from other

structures
• APP11: divide blood supply
• APP12: divide appendix from cecum
• APP13: place appendix in a bag
• APP14: remove bag from body
• APP15: close incisions
• APP16: wake up patient
• APP17: transfer patient to post-anesthesia

care unit

In the laparoscopic setting, each of these actions is
a necessary part of the operation, and most should
be recorded in the operative note. Additionally,
any number of P ACTION, OBSERVATION, and
REPORT events may be interspersed.

4 Data

In accordance with generally accepted medical
practice and to comply with requirements of The
Joint Commission, a detailed report of any surgical
procedure is placed in the medical record within
24 hours of the procedure. These notes include the
preoperative diagnosis, the post-operative diagno-
sis, the procedure name, names of surgeon(s) and
assistants, anesthetic method, operative findings,
complications (if any), estimated blood loss, and a
detailed report of the conduct of the procedure. To
ensure accuracy and completeness, such notes are
typically dictated and transcribed shortly after the
procedure by the operating surgeon or one of the
assistants.

To obtain the procedure notes for this study,
The Children’s Medical Center (CMC) of Dal-
las electronic medical record (EMR) was queried
for operative notes whose procedure contained the
word “appendectomy” (CPT codes 44970, 44950,
44960) for a preoperative diagnosis of “acute ap-
pendicitis” (ICD9 codes 541, 540.0, 540.1). At
the time of record acquisition, the CMC EMR had
been in operation for about 3 years, and 2,820
notes were obtained, having been completed by 12
pediatric surgeons. In this set, there were 2,757
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Surgeon Notes Events Words
surgeon1 8 291 2,305
surgeon2 311 16,379 134,748
surgeon3 143 6,897 57,797
surgeon4 400 8,940 62,644
surgeon5 391 15,246 114,684
surgeon6 307 9,880 77,982
surgeon7 397 10,908 74,458
surgeon8 34 2,401 20,391
surgeon9 2 100 973
surgeon10 355 9,987 89,085
surgeon11 380 14,211 135,215
surgeon12 92 2,417 19,364
Total 2,820 97,657 789,646

Table 1: Overview of corpus by surgeon.

laparoscopic appendectomies and 63 open proce-
dures. The records were then processed automat-
ically to remove any identifying information such
as names, hospital record numbers, and dates. For
the purposes of this investigation, only the sur-
geon’s name and the detailed procedure note were
collected for further study. Owing to the complete
anonymity of the records, the study received an ex-
emption from the University of Texas Southwest-
ern Medical Center and CMC Institutional Review
Boards. Table 1 contains statistics about the distri-
bution of notes by surgeon in our dataset.

5 Active Learning Framework

Active learning is becoming a more and more
popular framework for natural language annota-
tion in the biomedical domain (Hahn et al., 2012;
Figueroa et al., 2012; Chen et al., 2013a; Chen et
al., 2013b). In an active learning setting, instead of
performing manual annotation separate from auto-
matic system development, an existing ML classi-
fier is employed to help choose which examples
to annotate. Thus, human annotators can focus on
examples that would prove difficult for a classifier,
which can dramatically reduce overall annotation
time. However, active learning is not without pit-
falls, notably sampling bias (Dasgupta and Hsu,
2008), re-usability (Tomanek et al., 2007), and
class imbalance (Tomanek and Hahn, 2009). In
our work, the purpose of utilizing an active learn-
ing framework is to produce a fully-annotated cor-
pus of labeled event mentions in as small a period
of time as possible. To some extent, the goal of
full-annotation alleviates some of the active learn-
ing issues discussed above (re-usability and class
imbalance), but sampling bias could still lead to
significantly longer annotation time.

Our goal is to (1) distinguish event mentions in
one of the four classes introduced in Section 3.1

(event type annotation), and (2) further classify ac-
tions into their appropriate location in the event
structure (on this data, appendectomy type anno-
tation). While most active learning methods are
used with the intention of only manually labeling
a sub-set of the data, our goal is to annotate every
event mention so that we may ultimately evaluate
unsupervised techniques on this data. Our active
learning experiment thus proceeds in two paral-
lel tracks: (i) a traditional active learning process
where the highest-utility unlabeled event mentions
are classified by a human annotator, and (ii) a
batch annotation process where extremely simi-
lar, “easy” examples are annotated in large groups.
Due to small intra-surgeon language variation, and
relatively small inter-surgeon variation due to the
limited terminology, this second process allows us
to annotate large numbers of unlabeled examples
at a time. The batch labeling largely annotates un-
labeled examples that would not be selected by the
primary active learning module because they are
too similar to the already-labeled examples. After
a sufficient amount of time being spent in tradi-
tional active learning, the batch labeling is used
to annotate until the batches produced are insuf-
ficiently similar and/or wrong classifications are
made. After a sufficent number of annotations are
made with the active learning method, the choice
of when to use the active learning or batch anno-
tation method is left to the discretion of the anno-
tator. This back-and-forth is then repeated itera-
tively until all the examples are annotated.

For both the active learning and batch labeling
processes, we use a multi-class support vector ma-
chine (SVM) using a simple set of features:

F1. Event mention’s lexical form (e.g., identified)
F2. Event mention’s lemma (identify)
F3. Previous words (3-the, 2-appendix, 1-was)
F4. Next words (1-and, 2-found, 3-to, 4-be,

5-ruptured)
F5. Whether the event is a gerund (false)

Features F3 and F4 were constrained to only return
words within the sentence.

To sample event mentions for the active learner,
we combine several sampling techniques to ensure
a diversity of samples to label. This meta-sampler
chooses from 4 different samplers with differing
probability p:

1. UNIFORM: Choose (uniformly) an unlabeled
instance (p = 0.1). Formally, let L be the
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set of manually labeled instances. Then, the
probability of selecting an event ei is:

PU(ei) ∝ δ(ei /∈ L)

Where δ(x) is the delta function that returns
1 if the condition x is true, and 0 otherwise.
Thus, an unlabeled event has an equal prob-
ability of being selected as every other unla-
beled event.

2. JACCARD: Choose an unlabeled instance bi-
ased toward those whose word context is least
similar to the labeled instances using Jac-
card similarity (p = 0.2). This sampler pro-
motes diversity to help prevent sampling bias.
Let Wi be the words in ei’s sentence. Then
the probability of selecting an event with the
JACCARD sampler is:

PJ(ei) ∝ δ(ei /∈ L) min
ej∈L

[(
1− Wi ∩Wj

Wi ∪Wj

)α]
Here, α is a parameter to give more weight to
dissimilar sentences (we set α = 2).

3. CLASSIFIER: Choose an unlabeled instance
biased toward those the SVM assigned low
confidence values (p = 0.65). Formally, let
fc(ei) be the confidence assigned by the clas-
sifier to event ei. Then, the probability of se-
lecting an event with the CLASSIFIER sam-
pler is:

PC(ei) ∝ δ(ei /∈ L)(1− fc(ei))

The SVM we use provides confidence values
largely in the range (-1, 1), but for some very
confident examples this value can be larger.
We therefore constrain the raw confidence
value fr(ei) and place it within the range [0,
1] to achieve the modified confidence fc(ei)
above:

fc(ei) =
max(min(fr(ei), 1),−1) + 1

2

In this way, fc(ei) can be guaranteed to be
within [0, 1] and can thus be interpreted as a
probability.

4. MISCLASSIFIED: Choose (uniformly) a la-
beled instance that the SVM mis-classifies
during cross-validation (p = 0.05). Let f(ei)
be the classifier’s guess and L(ei) be the
manual label for event ei. Then the proba-
bility of selecting an event is:

PM(ei) ∝ δ(ei ∈ L)δ(f(ei) 6= L(ei))

Event Type Precision Recall F1

ACTION 0.79 0.90 0.84
NOT EVENT 0.75 0.82 0.79

OBSERVATION 0.71 0.57 0.63
P ACTION 0.66 0.40 0.50
REPORT 1.00 0.58 0.73

Active Learning Accuracy: 76.4%
Batch Annotation Accuracy: 99.5%

Table 2: Classification results for event types. Ex-
cept when specified, results are for data annotated
using the active learning method, while the batch
annotation results include all data.

The first annotation was made using the UNIFORM

sampler. For every new annotation, the meta-
sampler chooses one of the above sampling meth-
ods according to the above p values, and that sam-
pler selects an example to annotate. For each se-
lected sample, it is first assigned an event type. If it
is assigned as an ACTION, the annotator further as-
signs its appropriate action type. The CLASSIFIER

and MISCLASSIFIED samplers alternate between
the event type and action type classifiers. These
four samplers were chosen to balance the tra-
ditional active learning approach (CLASSIFIER),
while trying to prevent classifier bias (UNIFORM

and JACCARD), while also allowing mis-labeled
data to be corrected (MISCLASSIFIED). An eval-
uation of the utility of the individual samplers is
beyond the scope of this work.

6 Results

For event type annotation, two annotators single-
annotated 1,014 events with one of five event types
(ACTION, P ACTION, OBSERVATION, REPORT,
and NOT EVENT). The classifier’s accuracy on
this data was 75.9% (see Table 2 for a breakdown
by event type). However, the examples were cho-
sen because they were very different from the cur-
rent labeled set, and thus we would expect them to
be more difficult than a random sampling. When
one includes the examples annotated using batch
labeling, the overall accuracy is 99.5%.

For action type annotation, the same two anno-
tators labeled 626 ACTIONs with one of the 17 ac-
tion types (APP01–APP17). The classifier’s accu-
racy on this data was again a relatively low 72.2%
(see Table 3 for a breakdown by action type).
However, again, these examples were expected to
be difficult for the classifier. When one includes
the examples annotated using batch labeling, the
overall accuracy is 99.4%.
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Action Type Precision Recall F1

APP01 0.91 0.77 0.83
APP02 1.00 0.67 0.80
APP03 1.00 0.67 0.80
APP04 0.95 0.95 0.95
APP05 1.00 1.00 1.00
APP06 0.79 0.72 0.76
APP07 0.58 0.58 0.58
APP08 0.65 0.75 0.70
APP09 0.82 0.93 0.87
APP10 0.63 0.73 0.68
APP11 0.50 0.50 0.50
APP12 0.61 0.56 0.58
APP13 0.94 0.94 0.94
APP14 0.71 0.73 0.72
APP15 0.84 0.79 0.82
APP16 0.93 0.81 0.87
APP17 0.84 0.89 0.86

Active Learning Accuracy: 71.4%
Batch Annotation Accuracy: 99.4%

Table 3: Classification results for action types.

7 Discussion

The total time allotted for annotation was approxi-
mately 12 hours, split between two annotators (the
first author and a computer science graduate stu-
dent). Prior to annotation, both annotators were
given a detailed description of an appendectomy,
including a video of a procedure to help asso-
ciate the actual surgical actions with the narrative
description. After annotation, 1,042 event types
were annotated using the active learning method,
90,335 event types were annotated using the batch
method, and 6,279 remained un-annotated. Sim-
ilarly, 658 action types were annotated using the
active learning method, 35,799 action types were
annotated using the batch method, and 21,151 re-
mained un-annotated. A greater proportion of ac-
tions remained un-annotated due to the lower clas-
sifier confidence associated with the task. Event
and action types were annotated in unison, but we
estimate during the active learning process it took
about 25 seconds to annotate each event (both the
event type and the action type if classified as an
ACTION). The batch process enabled the annota-
tion of an average of 3 event mentions per second.

This rapid annotation was made possible by
the repetitive nature of operative notes, especially
within an individual surgeon’s notes. For exam-
ple, the following statements were repeated over
100 times in our corpus:

• General anesthesia was induced.
• A Foley catheter was placed under sterile

conditions.
• The appendix was identified and seemed to

be acutely inflamed.

The first example was used by an individual sur-
geon in 95% of his/her notes, and only used three
times by a different surgeon. In the second exam-
ple, the sentence is used in 77% of the surgeon’s
notes while only used once by another surgeon.
The phrase “Foley catheter was placed”, however,
was used 133 times by other surgeons. In the con-
text of an appendectomy, this action is unambigu-
ous, and so only a few annotations are needed to
recognize the hundreds of actual occurrences in
the data. Similarly, with the third example, the
phrase “the appendix was identified” was used in
over 600 operative notes by 10 of the 12 surgeons.
After a few manual annotations to achieve suffi-
cient classification confidence, the batch process
can identify duplicate or near-duplicate events that
can be annotated at once, greatly reducing the time
needed to achieve full annotation.

Unfortunately, the most predictable parts of a
surgeon’s language are typically the least inter-
esting from the perspective of understanding the
critical points in the narrative. As shown in the
examples above, the highest levels of redundancy
are found in the most routine aspects of the op-
eration. The batch annotation, therefore, is quite
biased and the 99% accuracies it achieves cannot
be expected to hold up once the data is fully an-
notated. Conversely, the active learning process
specifically chooses examples that are different
from the current labeled set and thus are more dif-
ficult to classify. Active learning is more likely to
sample from the “long tail” than the most frequent
events and actions, so the performance on the cho-
sen sample is certainly a lower bound on the per-
formance of a completely annotated data set. If
one assumes the remaining un-annotated data will
be of similar difficulty to the data sampled by the
active learner, one could project an overall event
type accuracy of 97% and an overall action type
accuracy of 89%. This furthermore assumes no
improvements are made to the machine learning
method based on this completed data.

One way to estimate the potential bias in batch
annotation is by observing the differences in the
distributions of the two data sets. Figure 2 shows
the total numbers of action types for both the
active learning and batch annotation portions of
the data. For the most part, the distributions
are similar. APP08 (insert other working ports),
APP10 (dissect appendix away from other struc-
tures), APP11 (divide blood supply), APP12 (di-
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Figure 2: Frequencies of action types in the active learning (AL) portion of the data set (left vertical axis)
and the batch annotation (BA) portion of the data set (right vertical axis).

vide appendix from cecum), and APP14 (remove
bag from body) are the most under-represented in
the batch annotation data. This confirms our hy-
pothesis that some of the most interesting events
have the greatest diversity in expression.

In Section 2 we noted that a limitation of the an-
notation method of Wang et al. (2012) was that a
sentence could only have one action. We largely
overcame this problem by associating a single sur-
gical action with an event mention. This has one
notable limitation, however, as occasionally a sin-
gle event mention corresponds to more than one
action. In our data, APP11 and APP12 are com-
monly expressed together:

• Next, the mesoappendix and appendix is
stapledAPP11/APP12 and then the appendix is
placedAPP13 in an endobag.

Here, a coordination (“mesoappendix and ap-
pendix”) is used to associate two events (the sta-
pling of the mesoappendix and the stapling of
the appendix) with the same event mention. In
the event extraction literature, this is a well-
understood occurrence, as for instance TimeML
(Pustejovsky et al., 2003) can represent more than
one event with a single event mention. In practice,
however, few automatic TimeML systems handle
such phenomena. Despite this, for our purpose the
annotation structure should likely be amended so
that we can account for all the important actions
in the operative note. This way, gaps in our event
structure will correspond to actual gaps in the nar-
rative (e.g., dividing the blood supply is a critical
step in an appendectomy and therefore needs to fit
within the event structure).

Finally, the data in our experiment comes from
a relatively simple procedure (an appendectomy).
It is unclear how well this method would general-
ize to more complex operations. Most likely, the

difficulty will lie in actions that are highly ambigu-
ous, such as if more than one incision is made.
In this case, richer semantic information will be
necessary, such as the spatial argument that indi-
cates where a particular event occurs (Roberts et
al., 2012).

8 Conclusion

With the increasing availability of electronic oper-
ative notes, there is a corresponding need for deep
analysis methods to understand the note’s narra-
tive structure to enable applications for improving
patient care. In this paper, we have presented a
method for recognizing how event mentions in an
operative note fit into the event structure of the ac-
tual operation. We have proposed a generic frame-
work for event structures in surgical notes with a
specific event structure for appendectomy opera-
tions. We have described a corpus of 2,820 opera-
tive notes of appendectomies performed by 12 sur-
geons at a single institution. With the ultimate goal
of fully annotating this data set, which contains al-
most 100,000 event mentions, we have shown how
an active learning method combined with a batch
annotation process can quickly annotate the ma-
jority of the corpus. The method is not without
its weaknesses, however, and further annotation is
likely necessary.

Beyond finishing the annotation process, our ul-
timate goal is to develop unsupervised methods
for structuring operative notes. This would en-
able expanding to new surgical procedures without
human intervention while also leveraging the in-
creasing availability of this information. We have
shown in this work how operative notes have lin-
guistic characteristics that result in parallel struc-
tures. It is our goal to leverage these characteris-
tics in developing unsupervised methods.
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Abstract

Free text notes typed by primary care
physicians during patient consultations
typically contain highly non-canonical
language. Shallow syntactic analysis of
free text notes can help to reveal valu-
able information for the study of disease
and treatment. We present an exploratory
study into chunking such text using off-
the-shelf language processing tools and
pre-trained statistical models. We evalu-
ate chunking accuracy with respect to part-
of-speech tagging quality, choice of chunk
representation, and breadth of context fea-
tures. Our results indicate that narrow con-
text feature windows give the best results,
but that chunk representation and minor
differences in tagging quality do not have
a significant impact on chunking accuracy.

1 Introduction

Clinical text contains rich, detailed information of
great potential use to scientists and health service
researchers. However, peculiarities of language
use make the text difficult to process, and the pres-
ence of sensitive information makes it hard to ob-
tain adequate quantities for developing processing
systems. The short term goal of most research
in the area is to achieve a reliable language pro-
cessing foundation that can support more complex
tasks such as named entity recognition (NER) to a
sufficiently reliable level.

Chunking is the task of identifying non-
recursive phrases in text (Abney, 1991). It is a
type of shallow parsing that is a less challeng-
ing task than dependency or constituency parsing.
This makes it likely to give more reliable results on
clinical text, since there is a very limited amount of
annotated (or even raw) text of this kind available
for system development. Even though chunking

does not provide as much syntactic information as
full parsing, it is an excellent method for identify-
ing base noun phrases (NP), which is a key issue
in symptom and disease identification. Identify-
ing symptoms and diseases is at the heart of har-
nessing the potential of clinical data for medical
research purposes.

There are few resources that enable researchers
to adapt general domain techniques to clinical text.
Using the Harvey Corpus1 – a chunk annotated
clinical text language resource – we present an ex-
ploratory study into adapting general domain tools
and models to apply to free text notes typed by UK
primary care physicians.

2 Related Work

The Mayo Clinic Corpus (Pakhomov et al., 2004)
is a key resource that has been widely used as
a gold standard in part-of-speech (POS) tagging
of clinical text. Based on that corpus and the
Penn TreeBank (Marcus et al., 1993), Coden et al.
(2005) present an analysis of the effects of domain
data on the performance of POS tagging mod-
els, demonstrating significant improvements with
models trained entirely on domain data. Savova
et al. (2010) use this corpus for the development
of cTAKES, Mayo Clinic’s processing pipeline for
clinical text.

Fan et al. (2011) show that using more diverse
clinical data can lead to more accurate POS tag-
ging. They report that models trained on clinical
text datasets from two different institutions per-
form on each of the datasets better than both mod-
els trained only on the same or the other dataset.

Fan et al. (2013) present guidelines for syntac-
tic parsing of clinical text and a clinical Treebank
annotated according to them. The guidelines are
designed to help the annotators handle the non-
canonical language that is typical of clinical text.

1An article describing the corpus is currently under re-
view.
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3 Data

The Harvey Corpus is a chunk-annotated corpus
consisting of pairs of manually anonymised UK
primary care physician (General Practitioner, or
GP) notes and associated Read codes (Bentley et
al., 1996). Each Read code has a short textual
gloss. The purpose of the codes is to make it easy
to extract structured data from clinical records.
The reason we include the codes in the corpus is
that GPs often use their glosses as the beginning of
their note. Two typical examples (without chunk
annotation for clarity) are shown below.

Birth details | | Normal deliviery Girl
Weight - 3. 960kg Apgar score @ 1min
- 9 Apgar score @ 5min - 9 Vit K given
Paed check NAD HC - 34. 9cm Hip test
performed

(1)

Chest pain | | musculoskel pain last w/e,
nil to find, ecg by paramedic no change,
reassured, rev sos

(2)

The corpus comprises 890 pairs of Read codes
and notes, each annotated by medical experts us-
ing a chunk annotation scheme that includes non-
recursive noun phrases (NPs), main verb groups
(MVs), and a common annotation for adjectival
and adverbial phrases (APs). Example (3) be-
low illustrates the annotation. The majority of
the records (750) were double blind annotated by
medical experts, after which the resulting annota-
tion was adjudicated by a third medical expert an-
notator.

[Chest pain]NP | | [musculoskel pain]NP

[last w/e]NP, [nil]AP to [find]MV, [ecg]NP

by [paramedic]NP [no change]NP,
[reassured]MV, [rev]MV [sos]AP

(3)

Inter-annotator agreement was 0.86 f-score, tak-
ing one annotator to be the gold standard and the
other the candidate. We calculate the f-score ac-
cording to the MUC-7 (Chinchor, 1998) specifica-
tion, with the standard f-score formula. The calcu-
lation is kept symmetric with regard to the choice
of gold standard annotator by limiting the counting
of incorrect categories to one per tag, and equat-
ing the missing and spurious categories. For ex-
ample, three words annotated as one three-token
chunk by annotator A and three one-token chunks
by annotator B will have one incorrect and two
missing/spurious elements.

The rest of the records are a by-product of the
training process. Ninety records were triple anno-
tated by three different medical experts with the
help of a computational linguist, and fifty records
were double annotated by a medical expert – alone
and together with a computational linguist.

It is important to note that the text in the corpus
is not representative of all types of GP notes. It is
focused on text that represents the dominant part
of day-to-day notes, rather than standard edited
text such as copies of letters to specialists and
other medical practitioners.

Even though the corpus data is very rich in in-
formation, its non-canonical language means that
it is very different from other clinical corpora
such as the Mayo Clinic Corpus (Pakhomov et al.,
2004) and poses different challenges for process-
ing. The GP notes in the Harvey Corpus can be
regarded as groups of medical ‘tweets’ meant to
be used mainly by the author. Sentence segmenta-
tion in the classical sense of the term is often im-
possible, because there are no sentences. Instead
there are short bursts of phrases concatenated to-
gether often without any indication of their bound-
aries. The average length of a note is roughly 30
tokens including the Read code. This is in con-
trast to notes in other clinical text datasets, which
range from 100 to 400 tokens on average (Fan et
al., 2011; Pakhomov et al., 2004). As well as typ-
ical clinical text characteristics such as domain-
specific acronyms, slang, and abbreviations, punc-
tuation and casing are often misleading (if present
at all), and some common classes of words (e.g.
auxiliary verbs) are almost completely absent.

4 Chunking

State-of-the-art text chunking accuracy reaches an
f-score of 95% (Sun et al., 2008). However, this
is for standard, edited text, and relies on accurate
POS tagging in a pre-processing step. However,
the characteristics of GP-written free text make ac-
curate part of speech (POS) tagging and chunking
difficult. Major problems are caused by unknown
tokens and ambiguities due to omitted words or
phrases.

We evaluate two standard chunking tools, Yam-
Cha (Kudo and Matsumoto, 2003) and CRF++2,
selected based on their support for trainable con-
text features. The tools were applied to the Har-

2http://crfpp.googlecode.com/svn/
trunk/doc/index.html
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POS YamCha IOB YamCha BEISO CRF++ IOB CRF++ BEISO
ARKIRC 75.35 76.63 σ1.04 76.87 σ2.91 75.87 σ1.64 76.23 σ1.99
ARKTwitter – 76.72 σ2.11 77.53 σ1.65 76.63 σ2.36 77.23 σ1.06
ARKRitter 75.70 76.59 σ2.01 76.72 σ2.11 76.63 σ1.05 77.17 σ1.77
cTAKES 82.42 75.32 σ2.52 75.85 σ2.02 75.43 σ1.79 75.53 σ1.90
GENIA 80.63 71.70 σ2.27* 74.86 σ1.41 74.16 σ2.03* 74.19 σ1.72
RASP – 74.24 σ1.84 75.10 σ1.31 75.63 σ2.33 75.76 σ2.18
Stanford 80.68 76.40 σ1.69 76.36 σ2.92 75.95 σ1.25 75.94 σ1.91
SVMTool 76.40 74.32 σ2.57 74.30 σ2.71 74.66 σ1.77 74.68 σ2.28
Wapiti 73.39 74.74 σ2.29 74.78 σ1.33 73.59 σ2.62 73.83 σ2.31

baseline – 69.66 σ1.89* 69.76 σ1.24 67.05 σ1.15* 68.65 σ1.41

Table 1: Chunking results using YamCha and CRF++ on data automatically POS tagged using nine
different models; the baseline is with no tagging. The IOB and BEISO columns compare the impact
of two chunk representation strategies. The POS column indicates the part-of-speech tagging accuracy
for a subset of the corpus. Asterisks indicate pairs of significantly different YamCha and CRF++ results
(t-test with 0.05 p-value).

vey Corpus with automatically generated POS an-
notation. Given the small amount of data and
the challenges presented above, we expected that
our results would be lower than those reported by
Savova et al. (2010). The aim of these experi-
ments is to find the best performance obtainable
with standard chunking tools, which we will build
on in further stages of our research.

We conducted pairs of experiments, one with
each chunking tool, divided into three groups: the
first investigates the effects of choice of POS tag-
ger for training data annotation (Section 4.1); the
second compares two chunk representations (Sec-
tion 4.2); and the third searches for the optimal
context features (Section 4.3). All feature tuning
experiments were conducted on a development set
and tested using 10-fold cross-validation on the
rest of the data. We used 10% of the whole data
for the development set and 90% of the remain-
ing data for a training sample during development.
This guarantees the development model is trained
on the same amount of data as the testing model.

4.1 Part-of-Speech Tagging

We evaluated and compared the results yielded
by the two chunkers, having applied each of
seven off-the-shelf POS taggers. Of these tag-
gers, cTAKES (Savova et al., 2010) and GENIA
(Tsuruoka et al., 2005) are the only ones trained
on data that resembles ours, which suggests that
they should have the best chance of performing
well. We also selected a number of other taggers
while trying to diversify their algorithms and train-

ing data as much as possible: the POS tagger part
of the Stanford NLP package (Toutanova et al.,
2003) because it is one of the most successfully
applied in the field; the RASP tagger (Briscoe
et al., 2006) because of its British National Cor-
pus (Clear, 1993) training data; the ARK tagger
(Owoputi et al., 2013) because of the terseness of
the tweet language; and the SVMTool (Giménez
and Màrquez, 2004) and Wapiti (Lavergne et al.,
2010) because they use SVM and CRF algorithms.
Our baseline model uses no part of speech infor-
mation.

Using the Penn TreeBank tagset (Marcus et al.,
1993), we manually annotated a subset of the cor-
pus of comparable size to the development set. Us-
ing this dataset we estimated the tagging accuracy
for all models that support that tagset (omitting
RASP and ARK Twitter since they use different
tagsets). In this evaluation, cTAKES is the best
performing model, followed closely by the Stan-
ford POS tagger and GENIA.

The results in Table 1 show that the differ-
ences between chunking models trained on differ-
ent POS annotations are small and mostly not sta-
tistically significant from each other. However, all
the results are significantly better than the base-
line, apart from those based on the GENIA tagger
output.

4.2 Chunk Representation

The dominant chunk representation standard in-
side, outside, begin (IOB) introduced by Ramshaw
and Marcus (1995) and established with the
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CoNLL-2000 shared task (Sang and Buchholz,
2000) takes a minimalistic approach to the rep-
resentation problem in order to keep the number
of labels low. Note that for chunking representa-
tions the total number of labels is the product of
the chunk types and the set of representation types
plus the outside tag, meaning that for IOB with
our set of three chunk types (NP, MV, AP) there
are seven labels.

Alternative chunk representations, such as be-
gin, end, inside, single, outside (BEISO)3 as used
by Kudo and Matsumoto (2001), offer more fine-
grained tagsets, presumably at a performance cost.
That cost is unnecessary unless there is something
to be gained from a more fine-grained tagset at de-
coding time, because the two representations are
deterministically inter-convertible. For instance,
an end tag could be useful for better recognising
boundaries between chunks of the same type. The
BEISO tagset model looks for the boundary be-
fore and after crossing it, while an IOB model
only looks after. This should give only a small
gain with standard edited text because the chunk
type distribution is fairly well balanced and punc-
tuation divides ambiguous cases such as lists of
compound nouns. However, the Harvey Corpus
is NP-heavy and contains many sequences of NP
chunks that do not have any punctuation to mark
their boundaries.

We evaluated the two chunk representations in
combination with each POS tagger. Table 1 shows
that the differences between the results for the
two representations are small and never statisti-
cally significant. We also evaluated the two chunk
representations with different amounts of training
data. The resulting learning curves (Figure 1) are
almost identical.

4.3 Context Features

We approached the feature tuning task by first ex-
ploring the smaller feature space of YamCha and
then using the trends there to constrain the fea-
tures of CRF++. YamCha has three groups of fea-
tures responsible for tokens, POS tags and dynam-
ically generated (i.e. preceding) chunk tags. For
all experiments we determined the best feature set
by exhaustively testing all context feature combi-
nations within a predefined range. We used the
same context window for the token and tag fea-
tures in order to reduce the search space. Given

3Also sometimes abbreviated IOBSE

Feature Set CV Dev
W-1-W1, T-1-T1, C-1 77.28 σ1.9 75.28
W-1-W1, T-1-T1, C-2-C-1 77.27 σ2.6 74.70
W-1-W2, T-1-T2, C-1 76.86 σ1.5 74.08
W-2-W1, T-2-T1, C-2 76.46 σ1.3 74.00
W-1-W1, T-1-T1, C-2 76.89 σ2.1 73.92
W-2-W1, T-2-T1, C-3-C-1 76.52 σ0.9 73.91
W-1-W1, T-1-T1, C-3-C-1 77.02 σ2.0 73.90
W-2-W2, T-2-T2, C-1 77.03 σ1.9 73.86
W-1-W1, T-1-T1, C-3 77.15 σ1.5 73.63
W-3-W1, T-3-T1, C-2-C-1 75.71 σ1.9 73.63

Table 2: Development set and 10-fold cross-
validation results for the top ten feature sets of
YamCha models trained on ARKTwitter POS an-
notation. Token features are represented with
W, POS features with T, and dynamically gener-
ated chunk features with C. None of the cross-
validation results are significantly different from
each other (t-test with 0.05 p-value).

the terseness of the text we expected that wider
context windows of more than three tokens would
not be beneficial to the model, and therefore did
not consider them. Our experiments using Yam-
Cha confirmed this hypothesis and showed a con-
sistent trend among all experiments in favouring a
window of -1 to +1 for tokens and slightly wider
for chunk tags (see Table 2).

CRF++ provides a more powerful feature con-
figuration allowing for unary and pairwise4 fea-
tures of output tags. The unary features allow the
construction of token or POS tag bigrams and tri-
grams in addition to the standard context windows.
The feature tuning search space with so many pa-
rameters is enormous, which required us to use our
findings from the YamCha experiments to trim it
down and make it computationally feasible. First,
we decreased the search window of all features by
one in each direction from -3:3 to -2:2. Second, we
used the top scoring POS model from the first ex-
perimental runs to constrain the features even fur-
ther by selecting only the top one hundred for the
rest of the models.

We could not identify the same uniform trend in
the top feature sets as we could with YamCha. Our
results ranged from very small context windows
to the maximum size of our search space. How-

4The unary and pairwise features of output tags are re-
ferred to as unigram and bigram features of output tags on
the CRF++ web page. Although this is correct, it can also
be confused with unigrams and bigrams of tokens, which are
expressed as unary (unigram) output tag features.
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Figure 1: Chunking results for YamCha IOB and
BEISO models with increasing amounts of train-
ing data.

ever, we noticed that BEISO feature sets tend to
be smaller than the IOB ones. We also found that
the pairwise features normally improve the results.

5 Discussion and Future Work

We were surprised that the experiments did not
show a clear correlation between POS tagging ac-
curacy and chunking accuracy. On the other hand,
the chunking results using POS tagged data are
significantly better than the baseline, except when
using the GENIA tagger output. The small dif-
ferences between training sets of similar POS ac-
curacy could be explained due to the non-uniform
impact of the wrong POS tag on the chunking pro-
cess. Some mistakes such as labelling a noun as
a verb in the middle of a NP chunk are almost
sure to propagate and cause further chunking er-
rors, whereas others may have minimal or no ef-
fect, for example labelling a singular noun as a
proper noun. An error analysis of verb tags and
noun tags (Table 3) shows that the ARK models
tend to make more mistakes that keep the anno-
tation within the same tag group compared to the
GENIA model (see column pairs 1 and 3, and 2
and 4). This is a possible explanation for the lower
accuracy of the chunking model trained on data
tagged by GENIA.

Our experiments showed that the models using
the two chunk representations did not perform sig-
nificantly differently from each other. We also
showed that this conclusion is likely to hold if

Model Ngroup Vgroup Nouns Verbs
ARKIRC 67.17 78.26 88.26 85.99
ARKTwitter - - 86.97 88.71
ARKRitter 68.57 77.29 90.64 85.02
cTAKES 83.93 62.80 93.85 69.08
GENIA 81.56 61.83 92.03 71.01
RASP - - 84.59 83.58
Stanford 80.30 73.42 91.89 83.09
SVMTool 69.97 70.04 90.08 80.19
Wapiti 65.64 66.66 87.84 74.87

Table 3: Detailed view of the POS model re-
sults focusing on the noun and verb tag groups.
The leftmost two columns of figures show accura-
cies over tags in the respective groups; the right-
most two columns show the accuracies of the same
groups if all tags in a group are replaced with a
group tag, e.g. V for verbs5.

more training data were available.
There are a number of ways we could improve

chunking accuracy besides increasing the amount
of training data. Although our results do not show
a clear trend, Fan et al. (2011) demonstrate that the
domain of part-of-speech training data has a sig-
nificant impact on tagging accuracy, which could
potentially impact chunking results if it decreases
the number of errors that propagate during chunk-
ing. An important problem in that area is dealing
with present and past participles, which are almost
sure to cause error propagation if mislabelled (as
nouns or adjectives, respectively). Participles are
more ambiguous in terse contexts lacking auxil-
iary verbs, which are natural disambiguation indi-
cators. Another direction in processing that could
contribute to better chunking is better token and
sentence segmentation. Finally, unknown words,
which may potentially have the largest impact on
chunking accuracy, could be dealt with using a
generic solution such as feature expansion based
on distributional similarity.
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Abstract

The dual process model (Evans, 2008)
posits two types of decision-making,
which may be ordered on a continuum
from intuitive to analytical (Hammond,
1981). This work uses a dataset of nar-
rated image-based clinical reasoning, col-
lected from physicians as they diagnosed
dermatological cases presented as images.
Two annotators with training in cognitive
psychology assigned each narrative a rat-
ing on a four-point decision scale, from in-
tuitive to analytical. This work discusses
the annotation study, and makes contribu-
tions for resource creation methodology
and analysis in the clinical domain.

1 Introduction

Physicians make numerous diagnoses daily, and
consequently clinical decision-making strate-
gies are much discussed (e.g., Norman, 2009;
Croskerry, 2003, 2009). Dual process theory pro-
poses that decision-making may be broadly cat-
egorized as intuitive or analytical (Kahneman &
Frederick, 2002; Stanovich & West, 2000). Fur-
ther, scholars argue that decision-making may be
ordered on a continuum, with intuitive and analyt-
ical at each pole (Hamm, 1988; Hammond, 1981).

Determining the decision strategies used by
physicians is of interest because certain styles may
be more appropriate for particular tasks (Ham-
mond, 1981), and better suited for expert physi-
cians rather than those in training (Norman, 2009).
Language use can provide insight into physician
decision style, as linguistic content reflects cogni-
tive processes (Pennebaker & King, 1999).

While most clinical corpora focus on patients
or conditions, physician diagnostic narratives have
been successfully annotated for conceptual units
(e.g., identifying medical morphology or a differ-
ential diagnosis), by Womack et al. (2013) and

McCoy et al. (2012). Crowley et al. (2013) cre-
ated an instructional system to detect cognitive bi-
ases in clinical decision-making, while Coderre et
al. (2003) used protocol analysis on think-aloud
diagnostic narratives, and found that features of
intuitive reasoning implied diagnostic accuracy.

In this study, speech data were collected from
physicians as they diagnosed dermatological cases
presented to them as images. Physician verbaliza-
tions were annotated for decision style on a four-
point scale from intuitive to analytical (Figure 1).
Importantly, cognitive psychologists were brought
into the loop for decision style annotation, to take
advantage of their expertise in decision theory.

Figure 1: The decision-making continuum, show-
ing the four-point rating scale. The example nar-
ratives were by two physicians for the same image
(used with permission from Logical Images, Inc.),
both correct in diagnosis. (I=Intuitive, BI=Both-
Intuitive, BA=Both-Analytical, A=Analytical).

This work describes a thorough methodology
applied in annotating a corpus of diagnostic nar-
ratives for decision style. The corpus is a unique
resource – the first of its kind – for studying and
modeling clinical decision style or for developing
instructional systems for training clinicians to as-
sess their reasoning processes.

This study attempts to capture empirically
decision-making constructs that are much-

83



Figure 2: Overview of annotation methodology. Conclusions from the pilot study enhanced the main
annotation study. To ensure high-quality annotation, narratives appeared in random order, and 10% (86)
of narratives were duplicated and evenly distributed in the annotation data, to later assess intra-annotator
reliability. Questionnaires were also interspersed at 5 equal intervals to study annotator strategy.

discussed theoretically. Thus, it responds to the
need for investigating subjective natural language
phenomena (Alm, 2011). The annotated corpus is
a springboard for decision research in medicine,
as well as other mission-critical domains in which
good decisions save lives, time, and money.

Subjective computational modeling is particu-
larly challenging because often, no real ‘ground
truth’ is available. Decision style is such a
fuzzy concept, lacking clear boundaries (Hamp-
ton, 1998), and its recognition develops in psy-
chologists over time, via exposure to knowledge
and practice in cognitive psychology. Interpreting
fuzzy decision categories also depends on mental
models which lack strong intersubjective agree-
ment. This is the nature, and challenge, of cap-
turing understandings that emerge organically.

This work’s contributions include (1) present-
ing a distinct clinical resource, (2) introducing a
robust method for fuzzy clinical annotation tasks,
(3) analyzing the annotated data comprehensively,
and (4) devising a new metric that links annotated
behavior to clinicians’ decision-making profiles.

2 Corpus Description

In an experimental data-collection setting, 29
physicians (18 residents, 11 attendings) narrated
their diagnostic thought process while inspecting
30 clinical images of dermatological cases, for a
total of 8681 narratives. Physicians described ob-
servations, differential and final diagnoses, and
confidence (out of 100%) in their final diagno-
sis. Later, narratives were assessed for correctness
(based on final diagnoses), and image cases were
evaluated for difficulty by a dermatologist.

3 Corpus Annotation of Decision Style

The corpus was annotated for decision style in a
pilot study and then a main annotation study (Fig-

1Two physicians skipped 1 image during data collection.

ure 2).2 Two annotators with graduate training
in cognitive psychology independently rated each
narrative on a four-point scale from intuitive to an-
alytical (Figure 1). The two middle labels reflect
the presence of both styles, with intuitive (BI) or
analytical (BA) reasoning being more prominent.
Since analytical reasoning involves detailed exam-
ination of alternatives, annotators were asked to
avoid using length as a proxy for decision style.

After the pilot, the annotators jointly dis-
cussed disagreements with one researcher. Inter-
annotator reliability, measured by linear weighted
kappa (Cohen, 1968), was 0.4 before and 0.8 af-
ter resolution; the latter score may be an upper
bound on agreement for clinical decision-making
annotation. As both annotators reported using
physician-provided confidence to judge decision
style, in subsequent annotation confidence men-
tions had been removed if they appeared after the
final diagnosis (most narratives), or, if intermixed
with diagnostic reasoning, replaced with dashes.
Finally, silent pauses3 were coded as ellipses to
aid in the human parsing of the narratives.

4 Quantative Annotation Analysis

Table 1 shows the annotator rating distributions.4

I BI BA A
A1 89 314 340 124
A2 149 329 262 127

Table 1: The distribution of ratings across the
4-point decision scale. I=Intuitive, BI=Both-
Intuitive, BA=Both-Analytical, A=Analytical;
A1=Annotator 1, A2=Annotator 2; N=867.

Though Annotator 1’s ratings skew slightly
more analytical than Annotator 2, a Kolmogorov-

2Within a reasonable time frame, the annotations will be
made publicly available as part of a corpus release.

3Above around 0.3 seconds (see Lövgren & Doorn, 2005).
4N = 867 after excluding a narrative that, during annota-

tion, was deemed too brief for decision style labeling.
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Factor A1 (Avg) A1 (SD) A2 (Avg) A2 (SD)
Switching between decision styles 1.0 0.0 3.6 0.9
Timing of switch between decision styles 1.6 0.5 4.2 0.4
Silent pauses (...) 2.0 0.0 3.6 0.5
Filled pauses (e.g. uh, um) 2.0 0.7 3.6 0.5
Rel. (similarity) of final & differential diagnosis 2.8 0.4 3.2 0.8
Use of logical rules and inference 3.2 0.8 2.2 0.4
False starts (in speech) 3.4 0.9 2.4 0.9
Automatic vs. controlled processing 3.4 0.5 4.0 0.0
Holistic vs. sequential processing 3.6 0.5 4.4 0.5
No. of diagnoses in differential diagnoses 4.0 0.0 1.6 0.5
Word choice 4.0 0.7 2.6 0.5
Rel. (similarity) of final & first-mentioned diagnosis 4.0 0.0 4.0 0.0
Perceived attitude 4.0 0.7 4.0 0.0
Rel. timing of differential diagnosis in the narrative 4.2 0.8 2.8 0.8
Degree of associative (vs. linear, ordered) processing 4.2 0.4 3.8 0.4
Use of justification (e.g. X because Y) 4.2 0.4 4.0 0.0
Perceived confidence 4.4 0.5 4.2 0.4

Table 3: Annotators rated each of the listed factors as to how often they were used in annotation, on a
5-point Likert scale from for no narratives (1) to for all narratives (5). (Some factors slightly reworded.)

Smirnov test showed no significant difference be-
tween the two distributions (p = 0.77).

WK %FA %FA+ 1 N
A1 - A2 .43 50% 94% 867
A1 - A1 .64 67% 100% 86
A2 - A2 .43 50% 95% 86

Table 2: Inter- and intra-annotator reliability, mea-
sured by linear weighted kappa (WK), percent full
agreement (%FA); and full plus within 1-point
agreement (%FA+1). Intra-annotator reliability
was calculated for the narratives rated twice, and
inter-annotator reliability on the initial ratings.

As shown in Table 2, reliability was moderate to
good (Altman, 1991), and inter-annotator agree-
ment was well above chance (25%). Indeed, an-
notators were in full agreement, or agreed within
one rating on the continuum, on over 90% of nar-
ratives. This pattern reveals fuzzy category bound-
aries but sufficient regularity so as to be mea-
surable. This is in line with subjective natural
language phenomena, and may be a consequence
of imposing discrete categories on a continuum.5

Annotator 1 had better intra-annotator reliability,
perhaps due to differences in annotation strategy.

5Nonetheless, affect research has shown that scalar repre-
sentations are not immune to variation issues (Alm, 2009).

5 Annotator Strategy Analysis

Five questionnaires evenly spaced among the nar-
ratives asked annotators to rate how often they
used various factors in judging decision style (Ta-
ble 3). Factors were chosen based on discussion
with the annotators after the pilot, and referred to
in descriptions of decision styles in the annotator
instructions; the descriptions were based on char-
acteristics of each style in the cognitive psychol-
ogy literature (e.g., Evans, 2008). Factors with
high variability (SD columns in Table 3) reveal
changes in annotator strategy over time, and fac-
tors that may influence intra-annotator reliability.

Both annotators reported using the rel. (similar-
ity) of final & first-mentioned diagnosis, as well as
perceived attitude, perceived confidence, and use
of justification, to rate most narratives. Types of
processing were used by both sometimes; this is
important since these are central to the definitions
of decision style in decision-making theory.

Differences in strategies allow for the assess-
ment of annotators’ individual preferences. Anno-
tator 1 often considered the no. of diagnoses in the
differential, and rel. timing of the differential, but
Annotator 2 rarely attended to them; the opposite
pattern occurred with respect to switching between
decision styles, and the timing of the switch.

The shared high factors reveal those consis-
tently linked to interpreting decision style, despite
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the concept’s fuzzy boundaries. In contrast, the id-
iosyncratic high factors reveal starting points for
understanding fuzzy perception, and for further
calibrating inter-annotator reliability.

6 Narrative Case Study

Examining particular narratives is also instructive.
Of the 86 duplicated narratives with two ratings
per annotator, extreme agreement occurred for 22
cases (26%), meaning that all four ratings were ex-
actly the same.6 Figure 3 (top) shows such a case
of intuitive reasoning: a quick decision without re-
flection or discussion of the differential. Figure
3 (middle) shows a case of analytical reasoning:
consideration of alternatives and logical inference.

Figure 3: Narratives for which annotators were in
full agreement on I (top) and A (middle) ratings,
vs. in extreme disagreement (bottom).

In the full data set (initial ratings), there were
50 cases (6%) of 2-point inter-annotator disagree-
ment and one case of 3-point inter-annotator dis-
agreement (Figure 3, bottom). This latter narra-
tive was produced by an attending (experienced
physician), 40% confident and incorrect in the fi-
nal diagnosis. Annotator 1 rated it analytical,
while Annotator 2 rated it intuitive. This is in
line with Annotator 1’s preference for analytical
ratings (Table 1). Annotator 1 may have viewed
this pattern of observation → conclusion as logi-
cal reasoning, characteristic of analytical reason-
ing. Annotator 2 may instead have interpreted the
phrase it’s so purple it makes me think of a vas-
cular tumor...so i think [...] as intuitive, due to
the makes me think comment, indicating associa-
tive reasoning, characteristic of intuitive thinking.
This inter-annotator contrast may reflect Annota-

6There were no cases where all four labels differed, fur-
ther emphasizing the phenomenon’s underlying regularity.

tor 1’s greater reported use of the factor logical
rules and inference (Table 3).

7 Physician Profiles of Decision Style

Annotations were also used to characterize physi-
cians’ preferred decision style. A decision score
was calculated for each physician as follows:

dp =
1
2n

n∑
i=1

(rA1i + rA2i) (1)

where p is a physician, r is a rating, n is total
images, and A1, A2 the annotators. Annotators’
initial ratings were summed – from 1 for Intuitive
to 4 for Analytical – for all image cases for each
physician, and divided by 2 times the number of
images, to normalize the score to a 4-point scale.
Figure 4 shows the distribution of decision scores
across residents and experienced attendings.

Residents exhibit greater variability in decision
style. While this might reflect that residents were
the majority group, it suggests that differences in
expertise are linked to decision styles; such differ-
ences hint at the potential benefits that could come
from preparing clinical trainees to self-monitor
their use of decision style. Interestingly, the over-
all distribution is skewed, with a slight preference
for analytical decision-making, and especially so
for attendings. This deserves future attention.

Figure 4: Decision score distribution by expertise.

8 Conclusion

This study exploited two layers of expertise:
physicians produced diagnostic narratives, and
trained cognitive psychologists annotated for de-
cision style. This work also highlights the impor-
tance of understanding annotator strategy, and fac-
tors influencing annotation, when fuzzy categories
are involved. Future work will examine the links
between decision style, expertise, and diagnostic
accuracy or difficulty.
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Abstract

One of the most important features of
health care is to be able to follow a pa-
tient’s progress over time and identify
events in a temporal order. We describe
initial steps in creating resources for au-
tomatic temporal reasoning of Swedish
medical text. As a first step, we focus
on the identification of temporal expres-
sions by exploiting existing resources and
systems available for English. We adapt
the HeidelTime system and manually eval-
uate its performance on a small subset
of Swedish intensive care unit documents.
On this subset, the adapted version of Hei-
delTime achieves a precision of 92% and
a recall of 66%. We also extract the most
frequent temporal expressions from a sep-
arate, larger subset, and note that most ex-
pressions concern parts of days or specific
times. We intend to further develop re-
sources for temporal reasoning of Swedish
medical text by creating a gold standard
corpus also annotated with events and tem-
poral links, in addition to temporal expres-
sions and their normalised values.

1 Introduction

One of the most important features of health care
is to be able to follow patient progress over time
and identify clinically relevant events in a tempo-
ral order. In medical records, temporal informa-
tion is stored with explicit timestamps, but it is
also documented in free text in the clinical nar-
ratives. To meet our overall goal of building ac-
curate and useful information extraction systems
in the health care domain, our aim is to build re-
sources for temporal reasoning in Swedish clini-
cal text. For instance, in the example sentence
MR-undersökningen av skallen igår visade att

den vä-sidiga förändringen i thalamus minskat i
volym. (“The MRI-scan of the scull yesterday
showed that the left (abbreviated) side change in
thalamus has decreased in volume”), a temporal
reasoning system should extract the event (MRI-
scan of the scull) and the temporal expression
(yesterday), and be able to normalise the time ex-
pression to a specific date and classify the tempo-
ral relation.

In this pilot study we focus on the identifi-
cation of temporal expressions, utilising existing
resources and systems available for English. A
temporal expression is defined as any mention
of dates, times, durations, and frequencies, e.g.
“April 2nd”, “10:50am”, “five hours ago”, and
“every 2 hours”. When successfully identifying
such expressions, subsequent anchoring in time is
made possible.

Although English and Swedish are both Ger-
manic languages, there are some differences that
are important to take into account when adapt-
ing existing solutions developed for English to
Swedish, e.g. Swedish is more inflective and is
more compounding than English.

The purpose of this study is to initiate our work
on temporal reasoning for Swedish, and to evalu-
ate existing solutions adapted to Swedish. These
are our first steps towards the creation of a refer-
ence standard that can be used for evaluation of
future systems.

2 Background

Temporal reasoning has been the focus of several
international natural language processing (NLP)
challenges in the general domain such as ACE1,
TempEval-2 and 3 (Verhagen et al., 2010; Uz-
Zaman et al., 2013), and in the clinical domain
through the 2012 i2b2 challenge (Sun et al., 2013).
Most previous work has been performed on En-

1http://www.itl.nist.gov/iad/mig/tests/ace/
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glish documents, but the TempEval series have
also included other languages, e.g. Spanish. For
temporal modelling, the TimeML (Pustejovsky
et al., 2010) guidelines are widely used. The
TimeML standard denotes events (EVENT), tem-
poral expressions (TIMEX3) and temporal rela-
tions (TLINK).

For English, several systems have been devel-
oped for all or some of these subtasks, such as
the TARSQI Toolkit (Verhagen et al., 2005) and
SUTime (Chang and Manning, 2012). Both these
tools are rule-based, and rely on regular expres-
sions and gazetteers. The TARSQI Toolkit has
also been developed for the clinical domain: Med-
TTK (Reeves et al., 2013).

In other domains, and for other languages, Hei-
delTime (Strötgen and Gertz, 2012) and TIMEN
(Llorens et al., 2012) are examples of other rule-
based systems. These are also developed to be
easily extendable to new domains and languages.
HeidelTime ranked first in the TempEval-3 chal-
lenge on TIMEX3:s, resulting in an F1 of 77.61
for the task of correctly identifying and normalis-
ing temporal expressions.

HeidelTime was also used in several participat-
ing systems in the i2b2 challenge (Lin et al., 2013;
Tang et al., 2013; Grouin et al., 2013) with suc-
cess. Top results for correctly identifying and nor-
malising temporal expressions in the clinical do-
main are around 66 F1 (Sun et al., 2013). The
system has also been adapted for French clinical
text (Hamon and Grabar, 2014).

3 Methods

The HeidelTime system was chosen for the ini-
tial development of a Swedish temporal expres-
sion identifier. Given that its architecture is de-
signed to be easily extendible for other languages
as well as domains, and after reviewing alternative
existing systems, we concluded that it was suitable
for this pilot study.

3.1 Data

We used medical records from an intensive care
unit (ICU) from the Stockholm EPR Corpus, a
clinical database from the Stockholm region in
Sweden2 (Dalianis et al., 2012). Each medi-
cal record (document) contains all entries (notes)

2Study approved by the Regional Ethical Review Board
in Stockholm (Etikprövningsnämnden i Stockholm), permis-
sion number 2012/834-31/5

about one patient a given day. The document con-
tains notes written by both physicians and nurses.
They also contain headings (e.g. Daganteckn-
ing (“Daily note”), Andning (“Breathing”)) and
timestamps for when a specific note/heading was
recorded in the medical record system. These are
excluded in this analysis.

Three subsets from this ICU dataset were used:
1) two randomly selected documents were used for
analysing and identifying domain specific time ex-
pressions and regular expressions to be added in
the adaptation of HeidelTime (development set),
2) a random sample of ten documents was used for
manual analysis and evaluation (test set), and 3) a
set of 100 documents was also extracted for the
purpose of empirically studying the types of tem-
poral expressions found in the data by the adapted
system (validation set).

3.2 Adaptation of HeidelTime and
Evaluation

The available resources (keywords and regular ex-
pression rules) in the HeidelTime system were ini-
tially translated automatically (Google translate3)
and manually corrected. Regular expressions were
modified to handle Swedish inflections and other
specific traits. An initial analysis on two separate,
randomly selected ICU notes (development set)
was performed, as a first step in adapting for both
the Swedish language and the clinical domain.

Results on the system performance were manu-
ally evaluated on the test set by one computational
linguistics researcher by analysing system outputs:
adding annotations when the system failed to iden-
tify a temporal expression, and correcting system
output errors. A contingency table was created
for calculating precision, recall and F1, the main
outcome measures. Moreover, the top most fre-
quent temporal expressions found by the system
on a separate set were extracted (validation set),
for illustration and analysis purposes.

4 Results

We report general statistics for the ICU corpus, re-
sults from the adaptation and evaluation of Hei-
delTime for Swedish (HTSwe) on the test set, and
the most frequent temporal expressions found by
HTSwe in a separate set of 100 ICU documents
(validation set).

3http://translate.google.se
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4.1 Data: ICU corpus
General statistics for the test set used in this study
is shown in Table 1. On average, each document
consists of 54.6 sentences, and each sentence con-
tains on average 8.7 tokens (including punctua-
tion). We observe that some sentences are very
short (min = 1), and there is great variability in
length, as can be seen through the standard devia-
tion.

# min - max avg ± std
Sentences 540 35 - 80 54.6±14.1
/document
Tokens 4749 1 - 52 8.7±5.7
/sentence

Table 1: General statistics for the test set (ten
ICU documents) used in this study. Minimum,
maximum, average and standard deviation for sen-
tences per document and tokens (including punc-
tuation) per sentence.

4.2 Adaptation and evaluation of
HeidelTime: HTSwe

The main modifications required in the adapta-
tion of HeidelTime to Swedish (HTSwe) involved
handling definite articles and plurals, e.g. adding
eftermiddag(en)?(ar)?(na)? (“afternoon”, “the af-
ternoon”/“afternoons”/“the afternoons”). From
the analysis of the small development set, some
abbreviations were also added, e.g. em (“after-
noon”). Regular expressions for handling typical
ways dates are written in Swedish were added, e.g.
“020812” and “31/12 -99” (day, month, year). In
order to avoid false positives, a rule for handling
measurements that could be interpreted as years
(e.g. 1900 ml) was also added (a negative rule).

Results from running HTSwe on the test set are
shown in Table 2. HTSwe correctly identified 105
temporal expressions, but missed 55 expressions
that should have been marked, and classified 9
expressions erroneously. In total, there are 160
TIMEX3s. Overall performance was 92% preci-
sion, 65% recall and F1 = 77%.

The main errors were due to faulty regular ex-
pressions for times, e.g. 13-tiden (“around 13 PM)
and missing keywords such as dygn (“day” - a
word to indicate a full day, i.e. 24 hours) and
lunchtid (“around lunch”). Some missing key-
words were specific for the clinical domain, e.g.
efternatten (“the after/late night”, typical for shift

indication). There were also some partial errors.
For instance, i dag (“today”) was only included
with the spelling idag in the system, thus generat-
ing a TIMEX3 output only for dag.

TIMEX3 Other
∑

Annotator Annotator
TIMEX3 105 9 114
HTSwe
Other 55 4580 4635
HTSwe∑

160 4589 4749

Table 2: Contingency table, TIMEX3 annotations
by the annotator and the adapted HeidelTime sys-
tem for Swedish (HTSwe) on the test set. “Other”
means all other tokens in the corpus. These results
yield a precision of 92%, a recall of 66%, and F1
= 77% for HTSwe.

On the validation set, 168 unique time expres-
sions were found by the system, and 1,178 in total.
The most frequent expressions all denote parts of
days, e.g. idag (“today”), nu (“now”), and natten
(“the night”), see Table 3. Specific times (mostly
specific hours) were also very common. Thus,
there were many translated expressions in the Hei-
delTime system that never occurred in the data.

TIMEX3 N %
idag (“today”) 164 14%
nu (“now”) 132 11%
natten (“the night”) 117 10%
morgonen (“the morning”) 96 8%
em (“afternoon”, abbreviated) 82 7%
kvällen (“the evening”) 74 6%
igår (“yesterday”) 49 4%
fm (“morning”, abbreviated) 34 3%
morgon (“morning”) 30 3%
natt (‘night”) 26 2%
Total 1178 100%

Table 3: Most frequent (top ten, descending or-
der) TIMEX3s found by HTSwe on the validation
set (100 ICU documents). Total = all TIMEX3:s
found by HTSwe in the entire validation set. There
were 168 unique TIMEX3s in the validation set.

5 Discussion and Conclusion

We perform an initial study on automatic identifi-
cation of temporal expressions in Swedish clinical
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text by translating and adapting the HeidelTime
system, and evaluating performance on Swedish
ICU records. Results show that precision is high
(92%), which is promising for our future develop-
ment of a temporal reasoning system for Swedish.
The main errors involve regular expressions for
time and some missing keywords; these expres-
sions will be added in our next iteration in this
work. Our results, F1 = 77%, are lower than state-
of-the-art systems for English clinical text, where
the top-performing system in the 2010 i2b2 Chal-
lenge achieved 90% F1 for TIMEX3 spans (Sun
et al., 2013). However, given the small size of this
study, results are encouraging, and we have cre-
ated a baseline system which can be used for fur-
ther improvements.

The adaptation and translation of HeidelTime
involved extending regular expressions and rules
to handle Swedish inflections and specific ways of
writing dates and times. Through a small, initial
analysis on a development set, some further ad-
ditions and modifications were made, which led
to the correct identification of common TIMEX3s
present in this type of document. A majority of
the expressions translated from the original system
was not found in the data. Hence, it is worthwhile
analysing a small subset to inform the adaptation
of HeidelTime.

The ICU notes are an interesting and suit-
able type of documentation for temporal reason-
ing studies, as they contain notes on the progress
of patients in constant care. However, from the re-
sults it is evident that the types of TIMEX3 expres-
sions are rather limited and mostly refer to parts
of days or specific times. Moreover, as recall was
lower (66%), there is clearly room for improve-
ment. We plan to extend our study to also include
other report types.

5.1 Limitations

There are several limitations in this study. The cor-
pus is very small, and evaluated only by one an-
notator, which limits the conclusions that can be
drawn from the analysis. For the creation of a ref-
erence standard, we plan to involve at least one
clinician, in order to get validation from a domain
expert, and to be able to calculate inter-annotator
agreement. The size of the corpus will also be in-
creased. We have not evaluated performance on
TIMEX3 normalisation, which, of course, is cru-
cial for an accurate temporal reasoning system.

For instance, we have not considered the category
Frequency, which is essential in the clinical do-
main to capture e.g. medication instructions and
dosages. Moreover, we have not annotated and
evaluated events. This is perhaps the most im-
portant part of a temporal reasoning system. We
plan to utilise existing named entity taggers de-
veloped in our group as a pre-annotation step in
the creation of our reference standard. The last
step involves annotating temporal links (TLINK)
between events and TIMEX3:s. We believe that
part-of-speech (PoS) and/or syntactic information
will be a very important component in an end-to-
end system for this task. We plan to tailor an exist-
ing Swedish PoS tagger, to better handle Swedish
clinical text.

5.2 Conclusion

Our main finding is that it is feasible to adapt Hei-
delTime to the Swedish clinical domain. More-
over, we have shown that the parts of days and
specific times are the most frequent temporal ex-
pressions in Swedish ICU documents.

This is the first step towards building resources
for temporal reasoning in Swedish. We believe
these results are useful for our continued endeav-
our in this area. Our next step is to add further
keywords and regular expressions to improve re-
call, and to evaluate TIMEX3 normalisation. Fol-
lowing that, we will annotate events and temporal
links.

To our knowledge, this is the first study on tem-
poral expression identification in Swedish clinical
text. All resulting gazetteers and guidelines in our
future work on temporal reasoning in Swedish will
be made publicly available.
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Abstract

The MIMIC II database contains
1,237,686 clinical documents of vari-
ous kinds. A common task for researchers
working with this database is to run
MetaMap, which uses the UMLS
Metathesaurus, on those documents
to identify specific semantic types of
entities mentioned in them. However,
this task is computationally expensive
and time-consuming. Research in many
groups could be accelerated if there were
a community-accessible set of outputs
from running MetaMap on this document
collection, cached and available on the
MIMIC-II website. This paper describes a
repository of all MetaMap output from the
MIMIC II database, publicly available,
assuming compliance with usage agree-
ments required by UMLS and MIMIC-II.
Additionally, software for manipulating
MetaMap output, available on Source-
Forge with a liberal Open Source license,
is described.

1 Introduction

1.1 The MIMIC II database and its textual
contents

The Multiparameter Intelligent Monitoring in In-
tensive Care II (MIMIC-II) database is a public-
access intensive care unit database that contains
a broad array of information for over 33,000 pa-
tients. The data were collected over a 7 year pe-
riod, beginning in 2001 from Boston’s Beth Is-
rael Deaconess Medical Center (Saeed et al, 2011;
Goldberger et al., 2000).

Of particular interest are the 1,237,686 clini-
cal documents, which are broadly classified into
the following four groups: MD notes, discharge
summaries, radiology reports and nursing/other.

Each free-text note contains information describ-
ing such things as a given patient’s health, ill-
nesses, treatments and medications, among others.

1.2 Motivation for the resource: MetaMap
runtimes

Part of the motivation for making this resource
publicly available is that considerable resources
must be expended to process it; if multiple groups
can share the output of one processing run, the sav-
ings across the community as a whole could be
quite large. To illustrate why this would be valu-
able from a resources perspective, we provide here
some statistics on the performance of MetaMap.

Random samples of each category (10% each)
were chosen and Monte Carlo simulation was per-
formed (1,000 iterations per note) to obtain the
running times presented below. The clinical notes
ranged from a minimum of 0 words to a maximum
of 6,684 (some of the notes were 0 bytes because
the note for a particular patient and day contained
no text). The mean, median and mode per doc-
ument processed by MetaMap were 17, 5 and 2
seconds, respectively, with a minimum of 1 and a
maximum of 216 seconds.

Figure 1 below plots the number of words
against processing times in seconds for each of the
of notes, sampled as mentioned above.

The majority of the processing was done on a
Sun Fire X4600M2 server with 16 (4 x Quad-
Core AMD Opteron(tm) Processor 8356 cores,
2.3GHz), 128GB memory and 12 TB of disk stor-
age, currently running Fedora Core 17 Linux.
(An Apple MacBook Pro and a Windows desktop
server were also used to speed processing. The
analysis of the random sample of notes was per-
formed in its entirety on the Sun machine, thereby
providing consistent results for the data in Figure
1.)
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Figure 1: MetaMap Runtimes

1.3 Motivation for the resource:
reproducibility

Any large-scale run of MetaMap over a huge doc-
ument collection will have occasional failures, etc.
The odds of any two runs having the same out-
put are therefore slim. Moreover, there is po-
tential variability in how documents are prepro-
cessed for use with MetaMap. Using this reposi-
tory of MetaMap outputs will ensure reproducibil-
ity of experiments and also preclude the neces-
sity of performing the same preparatory work and
MetaMap processing on the same data.

1.4 Motivation for the resource: semantic
types

The creation of the MIMIC-II repository is an in-
termediate step in our research. We are extracting
the semantic types found in each clinical note in
an attempt to determine if there exists evidence of
subdomains across the categories used by MIMIC-
II to group the notes.

2 Materials and Methods

2.1 Materials

MetaMap is a program developed at the National
Library of Medicine (NLM) that maps biomedical
concepts to the UMLS Metathesaurus and reports
on the corresponding semantic types.1 The pro-
gram is used extensively by researchers in the field
of biomedical text mining. See Aronson, 2001;
Aronson and Lang, 2010.

1Users of MetaMap must comply with the UMLS
Metathesaurus license agreement (https://uts.nlm.
nih.gov/license.html).

Although our focus is on the clinical notes con-
tained in a single table, noteevents, MIMIC-II is
both a relational database (PostgreSQL 9.1.9) con-
taining 39 tables of clinical data and bedside mon-
itor waveforms and the associated derived param-
eters and events stored in flat binary files (with
ASCII header descriptors). For each Intensive
Care Unit (ICU) patient, Saeed et al. (2011) col-
lected a wide range of data including inter alia
laboratory data, therapeutic intervention profiles,
MD and nursing progress notes, discharge sum-
maries, radiology reports, International Classifica-
tion of Diseases, 9th Revision codes, and, for a
subset of patients, high-resolution vital sign trends
and waveforms. All data were scrubbed for per-
sonal information to ensure compliance with the
Health Insurance Portability and Accountability
Act (HIPAA). These data were then uploaded to a
relational database thereby allowing for easy ac-
cess to extensive information for each patient’s
stay in the ICU (Saeed et al.). A more detailed
description of the use of the MIMIC-II database
may be found in(Clifford et al. , 2012).

The abbreviated schema in Table 1 below shows
that each ID uniquely identifies a note along with a
SubjectID, a Category and Text.2 We added the ID
attribute to noteevents as a primary key because
SubjectID, Category and Text are not keys. Thus,
a particular patient might have many notes and
many categories but each note is uniquely iden-
tified.

Attribute Type Cardinality Sample Values
ID integer unique 1, 2, 3, 4...

SubjectID integer many to one ID 95, 100, 100, 99,
Category character varying(26) many to one ID radiology

Text text many to one ID interval placement of ICD

Table 1: Schema MIMIC-II noteevents table.

As mentioned above, the notes in the MIMIC-II
database are categorized as MD reports, radiology
reports, discharge summaries and nursing/other
reports. The contents of these notes varied greatly.
The MD and nursing notes tended to be short and
unstructured with a number of abbreviations and
misspellings, whereas the radiology reports were
longer, more structured and showed fewer errors.

The MIMIC-II version used for this research is
2.6 (April 2011; 32,536 subjects).

The distribution of reports with summary statis-
tics is below in Table 2.

2The full noteevents table has ten other attributes such as
admission date, various timestamps and patient information
but these were not relevant to our research.
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MD Discharge Radiology Nursing Totals
min words 0 0 0 0 0
max words 632 6684 2760 632 6684

median words 108 963.5 174 108 135
average words 131.6 1009.2 265.5 131.6 194.7

total notes 23,270 31,877 383,701 798,838 1,237,686

Table 2: MIMIC-II Clinical Note Summary Stats.

2.2 Methods

We used MetaMap to process the clinical notes in
order to find semantic concepts, the latter of which
are being used in our current research. For the
work in this paper, we used MetaMap 2013 with
the 2013AB database.

Before processing the notes with MetaMap,
a number of preparatory steps were taken. As
mentioned above, a primary key was added to
the noteevents table to provide a unique id for
each note. A Python script then queried the
database extracting each note and storing it in a
file named according to the following convention:
uniqueID subjectID category.txt where uniqueID
is the primary key value from the noteevents ta-
ble, subjectID is the unique number assigned to
each patient and category is one of the four cate-
gories mentioned above.

Each of the notes was then processed by a Bash
shell script to remove blank lines and control char-
acters. (This important step was added after a sig-
nificant amount of processing had already taken
place. If this is not done, a number of prob-
lems arise when running MetaMap). Finally, all
files with 0 bytes were removed. These files were
present because many tuples in the noteevents ta-
ble contained clinical note entries with no data.

The number of options available when running
MetaMap is considerable so we chose those that
would provide a full and robust result set which
would be useful to a wide range of researchers. In
our first run, we limited the threshold for the Can-
didate Score to 1,000. However, for the repository,
no threshold was set so that a full range of output
is provided. 3

The output is in XML in order to structure the
data systematically and provide an easier and con-
sistent way to parse the data. Although we chose
XML initially, we intend to provide the same data
in plain text and Prolog formats, again to provide
utility to a broad range of researchers.

In order to process all files, a Bash shell script

3The exact MetaMap command we used was
metamap13 –XMLf –silent –blanklines 3 filename.txt

was created that called MetaMap on each note and
created a corresponding XML file, named accord-
ing to the same convention as that for notes but
with the txt extension replaced by xml.

3 Results

3.1 The repository of MetaMap output

The repository for the MetaMap output contains
an XML file for each note that originally contained
text in the MIMIC-II database. Each XML file
contains a wealth of information about each note
and a discussion of this is beyond the scope of
this paper (see http://metamap.nlm.nih.
gov/Docs/MM12_XML_Info.shtml).

For our research, we are interested in the se-
mantic types associated with phrases identified by
MetaMap. Below is a section from output file
768591 19458 discharge.xml. This is a discharge
summary for subject 19458 with a unique note id
of 768591. The note contained the phrase “Admis-
sion Date” which MetaMap matched with a candi-
date score of 1000 and indicated that it is a tempo-
ral concept (tmco).

Ultimately, the MetaMap output files will be up-
loaded to the PhysioNet website and made avail-
able to the public.4 The files will be organized in
a fashion similar to the original data files on the
site. Namely, data are grouped by subject ids and
compressed in archives with approximately 1000
files each.

<Candidate>
<CandidateScore>-1000</CandidateScore>
<CandidateCUI>C1302393</CandidateCUI>
<CandidateMatched>Admission date

</CandidateMatched>
<CandidatePreferred>Date of admission

</CandidatePreferred>
<MatchedWords Count="2">
<MatchedWord>admission</MatchedWord>
<MatchedWord>date</MatchedWord>
</MatchedWords>
<SemTypes Count="1">
<SemType>tmco</SemType>
</SemTypes>

The original note contained 975 lines, whereas
the MetaMap xml file contained 248,198. Thus
it is obvious that there is a very large amount of
MetaMap output that we don’t consider but which
may be of interest to other researchers.

4Subject again to the data usage agreement.
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3.2 A Python module for manipulating
MetaMap output

In order to make information in the XML files ac-
cessible to others, we developed a Python module
(parseMM xml.py) containing a number of meth-
ods or functions that allow one to parse the XML
tree and extract relevant information.

Although we will add more functionality as
needed and requested, at this point the following
methods are implemented:

• parseXMLtree(filename) – parses the con-
tents of filename and returns a node repre-
senting the top of the document tree.

• getXMLsummary(XMLtree) – summarizes
the data contained in the parsed XML tree.
The summary contains top-level elements
and their corresponding text. The output is
much like that contained in typical MetaMap
text output.

• getCUIs(XMLtree) – returns the MetaMap
CUIs found in the XML tree along with the
matching concepts.

• getNegatedConcepts(XMLtree) – returns
negated concepts and their corresponding
CUIs.

• getSemanticTypes(XMLtree) – returns
matched concepts, their CUIs, the candidate
scores and the semantic types associated
with the concept.

• findAttribute(attribute) – searches the docu-
ment tree for an attribute of the user’s choos-
ing. Returns the attributes with their corre-
sponding text values.

We chose Python to create our module be-
cause of its ease of use and its multi-platform
capabilities. Once Python is installed and the
parseMM xml.py is placed in a directory along
with the MetaMap xml file which is to be ana-
lyzed, retrieving relevant information is relatively
straightforward. 5

5Under most circumstances, Python is already installed
on the Mac OS X and Linux operating systems.

A stylized version of our code is presented be-
low.

# Parse XML tree and return semantic
types.

import parseMM_xml
xml_tree = \
parseXMLtree("noteid_subid_category.xml")
semTypes = getSemanticTypes(xml_tree)

print(semTypes)

A truncated listing of the output:

CandidateCUI – C0011008
CandidateMatched – Date
1 – SemType – Temporal Concept
CandidateCUI – C2348077
CandidateMatched – Date
2 – SemType – Food

In order to fully test the robustness of our mod-
ule, we will do further unit and regression testing,
in addition to providing more exception handling.
Ultimately, the code will be available on Source-
Forge, an Open Source web source code repository
available at www.sourceforge.net.
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Abstract

In this paper, we present preliminary re-
sults obtained using a system based on co-
occurrence of drug-effect pairs as a first
step in the study of detecting adverse drug
reactions and drug indications from social
media texts. To the best of our knowl-
edge, this is the first work that extracts
this kind of relationships from user mes-
sages that were collected from an online
Spanish health-forum. In addition, we also
describe the automatic construction of the
first Spanish database for drug indications
and adverse drug reactions.

1 Introduction

The activity of Pharmacovigilance (science de-
voted to the detection and prevention of any possi-
ble drug-related problem, including adverse drug
effects) has gained significant importance in the
recent decades, due to the growing number of drug
safety incidents (Bond and Raehl, 2006) as well as
to their high associated costs (van Der Hooft et al.,
2006).

Nowadays, the major medicine regulatory agen-
cies such as the US Food and Drug Administra-
tion (FDA) or the European Medicines Agency
(EMA) are working to create policies and prac-
tices to facilitate the reporting of adverse drug re-
actions (ADRs) by healthcare professionals and
patients. However, several studies have shown that
ADRs are under-estimated because many health-
care professionals do not have enough time to use
the ADR reporting systems (Bates et al., 2003;
van Der Hooft et al., 2006; McClellan, 2007) .
In addition, healthcare professionals tend to re-
port only those ADRs on which they have abso-
lute certainty of their existence. Unlike reports
from healthcare professionals, patient reports of-
ten provide more detailed and explicit information

about ADRs (Herxheimer et al., 2010). Neverthe-
less, the rate of ADRs reported by patients is still
very low probably because many patients are still
unaware of the existence of ADR reporting sys-
tems. In addition, patients may feel embarrassed
when describing their symptoms.

In this paper, we pose the hypothesis that
health-related social media can be used as a com-
plementary data source to the ADR reporting sys-
tems. In particular, health forums contain a large
number of comments describing patient experi-
ences that would be a fertile source of data to de-
tect unknown ADRs.

Several systems have been developed for ex-
tracting ADRs from social media (Leaman et al.,
2010; Nikfarjam and Gonzalez, 2011). However
to the best of our knowledge, only one work in the
literature has focused on the detection of ADRs
from social media in Spanish (Segura-Bedmar et
al., 2014). Indeed, it is only concerned with the
detection of mentions of drugs and their effects,
without dealing with the extraction of the relation-
ships between them. In this paper, we extend this
existing work in order to extract drug indications
and adverse drug reactions from user comments in
a Spanish health-forum.

The remaining of this paper is structured as fol-
lows: the next section surveys related work on
ADR detection from social media. Section 3 de-
scribes the creation of a gold-standard corpus we
used for our experiments. Sections 4 and 5 re-
spectively describe the techniques employed and
their results. Lastly, some conclusive remarks and
future perspectives are given in Section 6.

2 Related Work

In recent years, the application of Natural Lan-
guage Processing (NLP) techniques to mine drug
indications and adverse drug reactions from texts
has been explored with promising results, mainly
in the context of drug labels (Gurulingappa et al.,
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2013; Li et al., 2013; Kuhn et al., 2010; Fung et al.,
2013), biomedical literature (Xu and Wang, 2013),
medical case reports (Gurulingappa et al., 2012)
and health records (Friedman, 2009; Sohn et al.,
2011). However, as it will be described below, the
extraction of these drug relationships from social
media has received much less attention.

To date, most of research on drug name recogni-
tion concerns either biomedical literature (Segura-
Bedmar et al., 2013; Krallinger et al., 2013) or
clinical records (Uzuner et al., 2010), thus leaving
unexplored this task in social media texts.

To our knowledge, there is no work in the lit-
erature that addresses the extraction of drug in-
dications from social media texts. Regarding the
detection of ADRs, Leaman et al., (2010) devel-
oped a system to automatically recognize adverse
effects in user comments from the DailyStrength1

health-related social network. A corpus of 3,600
comments was manually annotated with a total
of 1,866 drug conditions, including beneficial ef-
fects, adverse effects, indications and others. This
study focused only on a set of four drugs, and
thereby, drug name recognition was not addressed.
The system used a dictionary-based approach to
identify adverse effects and a set of keywords in
order to distinguish adverse effects from the other
drug conditions. The dictionary consisted of 4,201
concepts, which were collected from several re-
sources such as the COSTART vocabulary (FDA,
1970), the SIDER database (Kuhn et al., 2010),
the MedEffect database 2 and a list of colloquial
phrases manually collected from the comments.
The system achieved a precision of 78.3% and a
recall of 69.9% (an f-measure of 73.9%).

Later, Nikfarjam and Gonzalez (2011) applied
association rule mining to extract frequent pat-
terns describing opinions about drugs. The rules
were generated using the Apriori tool, an imple-
mentation of the Apriori algorithm (Agrawal et al.,
1994) for association rule mining. The main ad-
vantage of this approach over the dictionary based
approach is that the system is able to detect terms
not included in the dictionary. The results of this
study were 70.01% precision and 66.32% recall,
for an f-measure of 67.96%.

Benton et al.,(2011) collected a lexicon of lay
medical terms from websites and databases about
drugs and their adverse effects to identify drug ef-

1http://www.dailystrength.org/
2http://www.hc-sc.gc.ca/dhp-mps/medeff/index-eng.php

fects. Then, the authors applied the Fishers exact
test (Fisher, 1922) to find all the drug-effect pairs
that co-occurred independently by chance in a cor-
pus of user comments. To evaluate the system, the
authors focused only on the four most commonly
used drugs to treat breast cancer. Precision and
recall were calculated by comparing the adverse
effects from their drug labels and the adverse ef-
fects obtained by the system. The system obtained
an average precision of 77% and an average recall
of 35.1% for all four drugs.

To the best of our knowledge, the system de-
scribed in (Segura-Bedmar et al., 2014) is the only
one that has dealt with the detection of drugs and
their effects from Spanish social media streams.
The system used the Textalytics tool3, which fol-
lows a dictionary-based approach to identify en-
tities in texts. The dictionary was constructed
based on the following resources: CIMA4 and
MedDRA5. CIMA is an online information center
maintained by the Spanish Agency for Medicines
and Health Products (AEMPS). CIMA provides
information on all drugs authorized in Spain,
though it does not include drugs approved only in
Latin America. CIMA contains a total of 16,418
brand drugs and 2,228 generic drugs. Many brand
drugs have very long names because they include
additional information such as dosages, mode and
route of administration, laboratory, among oth-
ers (for example, ESPIDIFEN 400 mg GRANU-
LADO PARA SOLUCION ORAL SABOR ALBARI-
COQUE). For this reason, brand drug names were
simplified before being included in the dictionary.
After removing the additional information, the re-
sulting list of brand drug names consisted of 3,662
terms. Thus, the dictionary contained a total of
5,890 drugs. As regards to the effects, the au-
thors decided to use MedDRA, a medical multi-
lingual terminology dictionary about events asso-
ciated with drugs. MedDRA is composed of a five
levels hierarchy. A total of 72,072 terms from the
most specific level, ”Lowest Level Terms” (LLTs),
were integrated into the dictionary. In addition,
several gazetteers including drugs and effects were
collected from websites such as Vademecum6, a
Spanish online website that provides information
to patients on drugs and their side effects, and

3https://textalytics.com/
4http://www.aemps.gob.es/cima/
5http://www.meddra.org/
6http://www.vademecum.es/
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the ATC system7, a classification system of drugs.
Thus, the dictionary and the two gazetteers con-
tained a total of 7,593 drugs and 74,865 effects.
The system yielded a precision of 87% for drugs
and 85% for effects, and a recall of 80% for drugs
and 56% for effects.

3 The SpanishADR corpus

Segura-Bedmar et al., (2014) created the first
Spanish corpus of user comments annotated with
drugs and their effects. The corpus consists of
400 comments, which were gathered from Fo-
rumClinic8, an interactive health social platform,
where patients exchange information about their
diseases and their treatments. The texts were man-
ually annotated by two annotators with expertise
in Pharmacovigilance. All the mentions of drugs
and effects were annotated, even those contain-
ing spelling or grammatical errors (for example,
hemorrajia (haemorrhage)). An assessment of the
inter-annotator agreement (IAA) was based on the
F-measure metric, which approximates the kappa
coefficient (Cohen, 1960) when the number of true
negatives (TN) is very large (Hripcsak and Roth-
schild, 2005). This assessment revealed that while
drugs showed a high IAA (0.89), their effects point
to moderate agreement (0.59). This may be due
to drugs have specific names and there are a lim-
ited number of them, however their effects are ex-
pressed by patients in many different ways due to
the variability and richness of natural language.
The corpus is available for academic purposes9.

In this paper, we extend the Spanish corpus to
incorporate the annotation of the relationships be-
tween drugs and their effects. In particular, we
annotated drug indications and adverse drug reac-
tions. These relationships were annotated at com-
ment level rather than sentence level, because de-
termining sentence boundaries in this kind of texts
can be problematic since many users often write
ungrammatical sentences. Guidelines were cre-
ated by two annotators (A1, A2) and a third an-
notator (A3) was trained on the annotation guide-
lines. Then, we split the corpus in three subsets,
and each subset was annotated by one annotator.
Finally, IAA was measured using kappa-statistic
on a sample of 97 documents randomly selected.
These documents were annotated by the three an-

7http://www.whocc.no/atc ddd index/
8http://www.forumclinic.org/
9http://labda.inf.uc3m.es/SpanishADRCorpus

notators and annotation differences were analysed.
As Table 1 shows, the resulting corpus has 61

drug indications and 103 adverse drug reactions.
The average size of a comment is 72 tokens. The
average size of a text fragment describing a drug
indication is 34.7 tokens and 28.2 tokens for ad-
verse drug reactions.

Annotation Size
drugs 188
effect 545
drug indication 61
adverse drug reaction 103

Table 1: Size of the extended SpanishADR corpus.

As it is shown in Table 2, the IAA figures clearly
suggest that the annotators have high agreement
among them. We think that the IAA figures were
lower with the third annotator because he did not
participate in the guidelines development process,
and maybe, he was not trained well enough to per-
form the task. The main source of disagreement
among the annotators could arise from consider-
ing whether a term refers to a drug effect or not.
This is due to some terms are too general (such as
trastorno (upset), enfermedad (disease), molestia
(ache)). The annotators A1 and A2, in general,
ruled out all the relation instances where these
general terms occur, however they were consid-
ered and annotated by the third annotator.

A2 A3
A1 0.8 0.69
A2 - 0.68

Table 2: Pairwise IAA for each combination of
two annotators. IAA was measured using Cohens’
kappa statistic

4 Methods

In this contribution, some refinements to the sys-
tem (Segura-Bedmar et al., 2014) are proposed.
The error analysis performed in (Segura-Bedmar
et al., 2014) showed that most of false positives
for drug effects were mainly due to the inclu-
sion of MedDRA terms referring to procedures
and tests in the dictionary. MedDRA includes
terms for diseases, signs, abnormalities, proce-
dures and tests. Therefore, we decided not to in-
clude terms corresponding to the ”Procedimientos
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médicos y quirúrgicos” and ”Exploraciones com-
plementarias” categories since they do not repre-
sent drug effects. Thus, we created a new dic-
tionary that only includes those terms from Med-
DRA that actually refer to drug effects. As in the
system (Segura-Bedmar et al., 2014), we applied
the Textalytics tool, which follows a dictionary-
based approach, to identify drugs and their ef-
fects occurring in the messages. We created a
GATE10 pipeline application integrating the Tex-
talytic module and the gazetteers collected from
the Vademecum website and the ATC system pro-
posed in (Segura-Bedmar et al., 2014).

In addition, we created an additional gazetteer
in order to increase the coverage. We developed a
web crawler to browse and download pages related
to drugs from the MedLinePlus website11. Un-
like Vademecum, which only contains information
for drugs approved in Spain, MedLinePlus also
includes information about drugs only approved
in Latin America. Terms describing drug effects
were extracted by regular expressions from these
pages and then were incorporated into a gazetteer.
Then, the new gazetteer was also integrated into
the GATE pipeline application to identify drugs
and effects. Several experiments with different
settings of this pipeline are described in the fol-
lowing section.

The main contribution of this paper is to pro-
pose an approach for detecting relationships be-
tween drugs and their effects from user comments
in Spanish. The main difficulty in this task is that
although there are several English databases such
as SIDER or MedEffect with information about
drugs and their side effects, none of them are avail-
able for Spanish. Moreover, these resources do
not include drug indications. Thus, we have au-
tomatically built the first database, SpanishDrug-
EffectBD, with information about drugs, their drug
indications as well as their adverse drug reactions
in Spanish. Our first step was to populate the
database with all drugs and effects from our dic-
tionary. Figure 1 shows the database schema.
Active ingredients are saved into the Drug ta-
ble, and their synonyms and brand names into the
DrugSynset table. Likewise, concepts from Med-
DRA are saved into the Effect table and their syn-
onyms are saved into the EffectSynset table. As
it is shown in Figure 1, the database is also de-

10http://gate.ac.uk/
11http://www.nlm.nih.gov/medlineplus/spanish/

signed to store external ids from other databases.
Thus, drugs and effects can be linked to external
databases by the tables has externalIDDrug and
has externalIDDrug, respectively.

To obtain the relationships between drugs
and their effects, we developed several web
crawlers in order to gather sections describing
drug indications and adverse drug reactions from
drug package leaflets contained in the follow-
ing websites: MedLinePlus, Prospectos.Net12 and
Prospectos.org13. Once these sections were down-
loaded, their texts were processed using the Text-
Alyticis tool to recognize drugs and their effects.
As each section (describing drug indications or ad-
verse drug effects) is linked to one drug, we de-
cided to consider the effects contained in the sec-
tion as possible relationships with this drug. The
type of relationship depends on the type of section:
drug indication or adverse drug reaction. Thus for
example, a pair (drug, effect) from a section de-
scribing drug indications is saved into the DrugEf-
fect table as a drug indication relationship, while if
the pair is obtained from a section describing ad-
verse drug reactions, then it is saved as an adverse
drug reaction. This database can be used to au-
tomatically identify drug indications and adverse
drug reactions from texts. Table 3 shows the num-
ber of drugs, effects and their relationships stored
into the database.

Concepts Synonyms
drugs 3,244 7,378
effects 16,940 52,199
drug indications 4,877
adverse drug reactions 58,633

Table 3: Number of drugs, effects, drug indica-
tions and adverse drug effects in the SpanishDrug-
EffectBD database.

As regards to the extraction of the relationships
between drugs and their effects occurring in the
corpus, first of all, texts were automatically an-
notated with drugs and effects using the GATE
pipeline application. Then, in order to generate
all possible relation instances between drugs and
their effects, we considered several sizes of win-
dow: 10, 20, 30, 40 and 50. Given a size n, any
pair (drug, effect) co-occurring within a window
of n-tokens are treated as a relation instance. Af-

12http://www.prospectos.net/
13http://prospectos.org/
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Figure 1: The SpanishDrugEffectBD database schema

terwards, each relation instance is looked up in the
DrugEffect table in order to determine if it is a pos-
itive instance and if this is the case, its type: drug
indication or adverse drug reaction.

5 Experiments

Several experiments have been performed in order
to evaluate the contribution of the proposed meth-
ods and resources. Table 4 shows the results for
the named entity recognition task of drugs and ef-
fects using the dictionary integrated into the Tex-
tAlytic tool. The first row shows the results with
the dictionary built from the CIMA and MedDRA
resources, while the second one shows the results
obtained using the new dictionary in which those
MedDRA terms corresponding to ”Procedimien-
tos médicos y quirúrgicos” and ”Exploraciones
complementarias” categories were ruled out. As
it can be seen in this table, the new dictionary per-
mits to obtain a significant improvement with re-
spect to the original dictionary. For effect type,
precision was increased almost a 40% and re-
call a 7%. As regards to the contribution of the
gazetteers, the coverage for effects improves al-
most a 6% but with significant decrease in preci-
sion of almost 21%. Regarding to the detection of

drugs, the use of gazetteers improves slightly the
precision and achieves a significant improvement
in the recall of almost 35%.

The major cause of false negatives for drug ef-
fects was the use of colloquial expressions (such
as ’me deja ko’ (it makes me ko)) to describe an
adverse effect. These phrases are not included in
our dictionary. Another important cause was the
dictionary and gazetteers do not cover all the lex-
ical variations of a same effect (for example de-
presión (depression), depresivo (depress), me de-
primo (I get depressed)). In addition, many false
negatives were due to spelling mistakes (for ex-
ample hemorrajia instead of hemorragia (haemor-
rhage)) and abbreviations (depre is an abbreviation
for depresión (depression)).

Regarding to the results for the relation extrac-
tion task, Table 5 shows the overall results ob-
tained using a baseline system, which considers
all pairs (drug, effect) occurring in messages as
positive relation instances, and a second approach
using the SpanishDrugEffectBD database (a rela-
tion instance is positive only if it is found into the
database). In both experiments, a window size of
250 tokens was used. The database provides a high
precision but with a very low recall of only 15%.
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Approach Entity P R F1

Dictionary
drugs 0.84 0.46 0.60
effect 0.45 0.38 0.41

New dictionary
drugs 0.84 0.46 0.60
effect 0.84 0.45 0.59

New dictionary plus gazetteers
drugs 0.86 0.81 0.84
effect 0.63 0.51 0.57

Table 4: Precision, Recall and F-measure for named entity recognition task.

As it can be seen in Table 6, when the type of the
relationship is considered, the performance is even
lower.

Approach P R F1
Baseline 0.31 1.00 0.47
SpanishDrugEffectBD 0.83 0.15 0.25

Table 5: Overall results for relation extraction task
(window size of 250 tokens).

Relation P R F1
Drug indication 0.50 0.02 0.03
Adverse drug reaction 0.65 0.11 0.18

Table 6: Results for drug indications and adverse
drug reactions using only the database (window
size of 50 tokens).

Figure 2 shows an example of the output of our
system using the database. The system is able to
detect the relationship of indication between al-
prazolman and ansiedad (anxiety), but fails in de-
tecting the adverse drug reaction between alpra-
zolman and dependencia (dependency). The ad-
verse drug reaction between lamotrigina and ver-
tigo is detected.

The co-occurrence approach provides better re-
sults than the use of the database. Table 7 shows
the results for different size of windows. As it was
expected, small sizes provide better precision but
lower recall.

6 Conclusion

In this paper we present the first corpus where
400 user messages from a Spanish health social
network have been annotated with drug indica-
tions and adverse drug reactions. In addition, we
present preliminary results obtained using a very
simple system based on co-occurrence of drug-
effect pairs as a first step in the study of detecting

Size of window P R F1
10 0.71 0.24 0.36
20 0.59 0.53 0.56
30 0.52 0.69 0.59
40 0.47 0.77 0.58
50 0.44 0.84 0.58

Table 7: Overall results for relation extraction task
using the co-occurrence approach considering dif-
ferent window sizes.

adverse drug reactions and drug indications from
social media streams. Results show that there is
still much room for improvement in the identifica-
tion of drugs and effects, as well as in the extrac-
tion of drug indications and adverse drug rections.

As it was already mentioned in Section 2, the
recognition of drugs in social media texts has
hardly been tackled since most systems were fo-
cused on a given and fixed set of drugs. Moreover,
little research has been conducted to extract rela-
tionships between drugs and their effects from so-
cial media. Most systems for extracting ADRs fol-
low a dictionary-based approach. The main draw-
back of these systems is that they fail to recog-
nize terms which are not included in the dictio-
nary. In addition, the dictionary-based approach
is not able to handle the large number of spelling
and grammar errors in social media texts. More-
over, the detection of ADRs and drug indications
has not been attempted for languages other than
English. Indeed, automatic information extraction
from Spanish-language social media in the field of
health remains largely unexplored.

Social media texts pose additional challenges
to those associated with the processing of clin-
ical records and medical literature. These new
challenges include the management of meta-
information included in the text (for example as
tags in tweets)(Bouillot et al., 2013), the detection
of typos and unconventional spelling, word short-
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Figure 2: An example of the output of the system using the database.

enings (Neunerdt et al., 2013; Moreira et al., 2013)
and slang and emoticons (Balahur, 2013), among
others. Another challenge that should be taken
into account is that while clinical records and med-
ical literature can be mapped to terminological re-
sources or biomedical ontologies, lay terminology
used by patients to describe their treatments and
their effects, in general, is not collected in any ter-
minological resource, which would facilitate the
automatic processing of this kind of texts.

In this paper, we also describe the automatic
creation of a database for drug indications and ad-
verse drug reactions from drug package leaflets.
To the best of our knowledge, this is the first
database available for Spanish. Although the use
of this database did not improve the results due
to its limited coverage, we think that the database
could be a valuable resource for future efforts.
Thus, we plan to translate the database into an on-
tology and to populate it with more entities and re-
lationships. As future work, we plan the following
tasks:

• To create a lexicon containing idiomatic ex-
pressions used by patients to express drug ef-
fects.

• To use techniques such as lemmatization and
stemming to cope with the problem of lexical
variability and to resolve abbreviations.

• To integrate advanced matching methods ca-
pable of dealing with the spelling error prob-
lem.

• To increase the size of the corpus.

• To apply a SVM classification approach to
extract relationships between drugs and their
effects.

We hope our research will be beneficial to
AEMPS as well as to the pharmaceutical indus-
try in the improvement of their pharmacovigilance
systems. Both the corpus and the database are
freely available online14 for research purposes.
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dra Bringay, Dino Ienco, Stan Matwin, Pascal Pon-
celet, Mathieu Roche, and Maguelonne Teisseire.
2013. How to extract relevant knowledge from
tweets? In Information Search, Integration and Per-
sonalization, pages 111–120. Springer.

Jacob Cohen. 1960. A coefficient of agreement
for nominal scales. Educational and Psychological
Measurement, 20(1):37–46.

FDA. 1970. National adverse drug reaction directory:
Costart (coding symbols for thesaurus of adverse re-
action terms). Rock-Irvine, Charles F, Sharp,) r,
MD, Huntington Memorial Hospital, Stuart l, Sil-
verman, MD, University of California, los Angeles,
West los Angeles-Veterans Affairs Medical Center,
Osteoporosis Medical Center.

Ronald A Fisher. 1922. On the interpretation of chi-
squared from contingency tables, and the calcula-
tion of p. Journal of the Royal Statistical Society,
85(1):87–94.

Carol Friedman. 2009. Discovering novel adverse
drug events using natural language processing and
mining of the electronic health record. In Artificial
Intelligence in Medicine, pages 1–5. Springer.

Kin Wah Fung, Chiang S Jao, and Dina Demner-
Fushman. 2013. Extracting drug indication infor-
mation from structured product labels using natural
language processing. Journal of the American Med-
ical Informatics Association, 20(3):482–488.

Harsha Gurulingappa, Abdul Mateen-Rajput, Luca
Toldo, et al. 2012. Extraction of potential adverse
drug events from medical case reports. J Biomed
Semantics, 3(1):15.

Harsha Gurulingappa, Luca Toldo, Abdul Mateen Ra-
jput, Jan A Kors, Adel Taweel, and Yorki Tayrouz.
2013. Automatic detection of adverse events to pre-
dict drug label changes using text and data min-
ing techniques. Pharmacoepidemiology and drug
safety, 22(11):1189–1194.

A Herxheimer, MR Crombag, and TL Alves. 2010.
Direct patient reporting of adverse drug reactions. a
twelve-country survey & literature review. Health
Action International (HAI)(Europe). Amsterdam.

George Hripcsak and Adam S Rothschild. 2005.
Agreement, the f-measure, and reliability in infor-
mation retrieval. Journal of the American Medical
Informatics Association, 12(3):296–298.

Martin Krallinger, Florian Leitner, Obdulia Rabal,
Miguel Vazquez, Julen Oyarzabal, and Alfonso Va-
lencia. 2013. Overview of the chemical compound
and drug name recognition (chemdner) task. In
BioCreative Challenge Evaluation Workshop vol. 2,
page 2.

Michael Kuhn, Monica Campillos, Ivica Letunic,
Lars Juhl Jensen, and Peer Bork. 2010. A side ef-
fect resource to capture phenotypic effects of drugs.
Molecular systems biology, 6(1).

Robert Leaman, Laura Wojtulewicz, Ryan Sullivan,
Annie Skariah, Jian Yang, and Graciela Gonzalez.
2010. Towards internet-age pharmacovigilance: ex-
tracting adverse drug reactions from user posts to
health-related social networks. In Proceedings of
the 2010 workshop on biomedical natural language
processing, pages 117–125. Association for Compu-
tational Linguistics.

Qi Li, Louise Deleger, Todd Lingren, Haijun Zhai,
Megan Kaiser, Laura Stoutenborough, Anil G Jegga,
Kevin Bretonnel Cohen, and Imre Solti. 2013. Min-
ing fda drug labels for medical conditions. BMC
medical informatics and decision making, 13(1):53.

Mark McClellan. 2007. Drug safety reform at
the fdapendulum swing or systematic improvement?
New England Journal of Medicine, 356(17):1700–
1702.

Silvio Moreira, Joao Filgueiras, and Bruno Martins.
2013. Reaction: A naive machine learning approach
for sentiment classification. In Proceedings of the
7th InternationalWorkshop on Semantic Evaluation
(SemEval 2013), page 490.

Melanie Neunerdt, Michael Reyer, and Rudolf Mathar.
2013. A pos tagger for social media texts trained on
web comments. Polibits, 48:59–66.

Azadeh Nikfarjam and Graciela H Gonzalez. 2011.
Pattern mining for extraction of mentions of adverse
drug reactions from user comments. In AMIA An-
nual Symposium Proceedings, volume 2011, page
1019. American Medical Informatics Association.

Isabel Segura-Bedmar, Paloma Martı́nez, and Marıa
Herrero-Zazo. 2013. Semeval-2013 task 9: Ex-
traction of drug-drug interactions from biomedical
texts (ddiextraction 2013). Proceedings of Semeval,
pages 341–350.

Isabel Segura-Bedmar, Ricardo Revert, and Paloma
Martnez. 2014. Detecting drugs and adverse events
from spanish social media streams. In Proceedings
of the 5th International Louhi Workshop on Health
Document Text Mining and Information Analysis
(Louhi 2014).

Sunghwan Sohn, Jean-Pierre A Kocher, Christopher G
Chute, and Guergana K Savova. 2011. Drug side ef-
fect extraction from clinical narratives of psychiatry
and psychology patients. Journal of the American
Medical Informatics Association, 18(Suppl 1):i144–
i149.

105
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Abstract

This work focuses on signs and symptoms
recognition in biomedical texts abstracts.
First, this specific task is described from a
linguistic point of view. Then a method-
ology combining pattern mining and lan-
guage processing is proposed. In the ab-
sence of an authoritative annotated cor-
pus, our approach has the advantage of
being weakly-supervised. Preliminary ex-
perimental results are discussed and reveal
promising avenues.

1 Introduction

Our work is part of the Hybride1 Project, which
aims to expand the Orphanet encyclopedia. Or-
phanet is the reference portal for information on
rare diseases (RD) and orphan drugs, for all audi-
ences. A disease is considered rare if it affects less
than 1 person in 2,000. There are between 6,000
and 8,000 RD. 30 million people are concerned in
Europe. Among its activities, Orphanet maintains
an RD encyclopedia by manually monitoring sci-
entific publications. Hybride Project attempts to
automatically acquire new RD-related knowledge
from large amounts of scientific publications. The
elements of knowledge about a disease are varied:
onset, prevalence, signs and symptoms, transmis-
sion mode, disease causes (etiology).

In this article, we investigate the automatic
recognition of signs and symptoms in abstracts
from scientific articles. Although named entity
recognition in the biomedical domain has been
extensively studied, signs and symptoms seem to
have been left aside, for there is very little work on
the subject. First, the linguistic issue of our study
is presented in section 2, then the state of the art
and the description of our lexical resources in sec-
tion 3. Then our corpus and general method are

1http://hybride.loria.fr/

presented in section 4. First experiments are intro-
duced in section 5. Finally, the work to come is
presented in section 6.

2 Signs and symptoms

Signs and symptoms both refer to the features of a
disease, except that a symptom (or functional sign)
is noticed and described by a patient, whilst a clin-
ical sign is observed by a healthcare professional.
In thesauri and medical ontologies, these two no-
tions are generally put together in the same cate-
gory. Moreover, in texts –particularly in our cor-
pus of abstracts from scientific articles– there is
no morphological or syntactic difference between
sign and symptom. The difference is only seman-
tic, so it is impossible for non-specialists in the
medical field to tell the difference from the linguis-
tic context alone. In example (1), clinical signs are
in bold and symptoms are italicized.

(1) Cluster headache (CH) is a primary
headache disease characterized by re-
current short-lasting attacks of excruci-
ating unilateral periorbital pain accom-
panied by ipsilateral autonomic signs
(lacrimation, nasal congestion, ptosis,
miosis, lid edema, and eye redness).

Furthermore, the diagnosis is established by the
symptoms and the clinical signs together. We did
not, therefore, try to distinguish them.

Signs and symptoms take on the most varied lin-
guistic forms, as is noticeable in the corpus (which
will be described in more detail below). In its sim-
plest form, a sign or symptom is a noun, which
may be extended by complements, such as adjec-
tives or other nouns (example 2). They also appear
in other, more complex, forms, ranging from a sin-
gle phrase to a whole sentence (example 3).

(2) With disease progression patients
additionally develop weakness and

107



wasting of the limb and bulbar mus-
cles.

(3) Diagnosis is based on clini-
cal presentation, and glycemia
and lactacidemia levels, after a
meal (hyperglycemia and hypo-
lactacidemia), and after three to
four hour fasting (hypoglycemia and
hyperlactacidemia).

In addition to their variety, the linguistic units
representing signs and symptoms present some
syntactic ambiguities, particularly ambiguities
concerning prepositional attachment and coordi-
nation scope. In example (2), the first occur-
rence of “and” is ambiguous, for we don’t know
if “weakness” and “wasting” should be grouped
together as a single manifestation of the disease,
or if “weakness” on the one hand and “wasting of
the limbs and bulbar muscles” on the other hand
are two separate entities, as annotated here.

In addition to these syntactic ambiguities, two
annotation difficulties also arise. The first one con-
sists in correctly delimiting the linguistic units of
the signs and symptoms (example 4a). We agreed
with experts in the field that, generally, pieces
of information such as adjectives of intensity or
anatomical localizations were not part of the units;
nevertheless, this information is interesting in that
it provides the linguistic context for the signs and
symptoms. The second difficulty concerns ellip-
tical constructions: where two signs can be dis-
tinguished, only one can be annotated because the
two nouns have an adjective in common (exam-
ple 4b).

(4) In the severe forms, paralysis (4a)
concerns the neck, shoulder, and proxi-
mal muscles, followed by involvement
of the muscles of the distal upper ex-
tremities, the diaphragm and respiratory
muscles, which may result in respira-
tory compromise or arrest (4b).

Eventually, the last difficulty that was met dur-
ing the corpus observation is the semantic ambi-
guity existing between sign or symptom and dis-
ease denominations. A disease can be the clinical
sign of another disease. A clinical sign may be
included in a disease name or conversely. In ex-
ample (5), the clinical sign is in bold and the name
of the disease is underlined.

(5) The adult form results in progressive
limb-girdle myopathy beginning with
the lower limbs, and affects the respira-
tory system.

3 State of the art

Signs and symptoms have seldom been studied
for themselves in the field of biomedical informa-
tion extraction. They are often included in more
general categories such as “clinical concepts”
(Wagholikar et al., 2013), “medical problems”
(Uzuner et al., 2011) or “phenotypic information”
(South et al., 2009). Moreover, most of the studies
are based on clinical reports or narrative corpora
–the Mayo Clinic corpus (Savova et al., 2010) or
the 2010i2b2/VA Challenge corpus (Uzuner et al.,
2011)–, except for the Swedish MEDLEX Cor-
pus (Kokkinakis, 2006), which comprises teaching
material, guidelines, official documents, scientific
articles from medical journals, etc. Our work aims
at scientific monitoring and is therefore based on a
corpus of abstracts from scientific articles.

Most of the information extraction systems de-
veloped in the works previously cited use lexi-
cal resources, such as the Unified Medical Lan-
guage System (UMLS) or Medical Subject Head-
ings (MeSH) thesauri for the named entity extrac-
tion task. The UMLS comprises over 160 con-
trolled vocabularies such as MeSH, which is a
generic medical thesaurus containing over 25,000
descriptors. However, as Albright et al. (2013)
pointed out, UMLS was not originally designed
for annotation, so some of the semantic types over-
lap. They add that “the sheer size of the UMLS
schema increases the complexity of the annotation
task and slows annotation, while only a small pro-
portion of the annotation types present are used.”
That is why they decided to work with UMLS se-
mantic groups instead of types, except for signs
and symptoms –originally a semantic type in the
Disorders semantic group–, that they used inde-
pendently.

In a genetic disease context, a sign or symp-
tom may be phenotype-related. A phenotype is
all the observable characteristics of a person, such
as their morphology, biochemical or physiological
properties. It results from the interactions between
a genotype (expression of an organism’s genes)
and its environment. As many rare diseases are
genetic, many signs and symptoms may be found
in lists of phenotype anomalies. For that reason,
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we chose to use the Human Phenotype Ontology
– HPO (Khler et al., 2014) as a lexical resource.
To our knowledge, HPO has not yet been used
in any study on signs and symptoms extraction.
Nevertheless, it should be recalled that phenotype
anomalies are not always clinical signs, and signs
or symptoms are not all phenotype-related. Even
so, we decided to use HPO as a lexical resource
because it lists 10,088 terms describing human
phenotype anomalies and can be easily collected.

Just a very few studies take advantage of consid-
ering the linguistic contexts of sign and symptom
entities. Kokkinakis (2006), after a first annotation
step of his corpus with MeSH, states that 75% of
the signs and symptoms co-occur with up to five
other signs and symptoms in a sentence. This al-
lowed him to develop new annotation rules. We
can also mention the MedLEE system (Friedman,
1997), which provides, for each concept, its type
(e.g. “problem”), value (e.g. “pain”) and modi-
fiers such as the degree (e.g. “severe”) or the body
location (e.g. “chest”).

As far as we are concerned, our approach is
based on the combination of NLP and pattern min-
ing techniques. We will see that the linguistic con-
texts mentioned above are part of the patterns au-
tomatically discovered with our text mining tool.

4 Corpus and general method

As mentioned above, HPO was selected as the
lexical resource for this project. With the list of
phenotype anomalies as queries, we compiled a
corpus of 306,606 abstracts from the MEDLINE
database with the PubMed search engine. These
abstracts are from articles published within the last
365 days. They consist of an ID, a title and a para-
graph. Then, we applied HPO and kept only the
sentences containing a unit annotated as a sign or
symptom. As already pointed out, signs and symp-
toms are not all phenotype-related, so our pre-
annotation is incomplete. Nonetheless, this first
annotation is quick and cheap, and it initiates the
process.

Figure 1 illustrates the successive steps in the
approach. In step 1, HPO (f) is used to annotate a
first corpus (a) by a single projection of HPO terms
onto the texts. This annotated corpus provides a
first learning corpus (b) to discover patterns (c) by
a text mining method (step 2; this method is de-
tailed below). These patterns are then validated by
an expert (step 3), as linguistic patterns (d). Step

Figure 1: Iterative process of our sign and symp-
tom extraction method

4 consists in using these patterns to annotate new
corpora (e) and extract new terms (here with the
semantic type of sign or symptom), which will
be added to the resources (f). The process is fi-
nally repeated (back to step 1, with enriched lexi-
cal resources). This incremental process has the
advantage of being weakly-supervised and non-
dependent on the corpus type.

Sequential pattern mining was first introduced
by Agrawal et al. (1995) in the data mining field.
It was adapted to information extraction in texts by
Béchet et al. (2012). It is a matter of locating, in a
set of sequences, sequences of items having a fre-
quency above a given threshold (called “support”).
Pattern mining is done in an ordered sequence of
items base, where each sequence corresponds to a
text unit (the sentence here). An item represents a
word in this sequence, generally the inflected form
or the lemma or even the part of speech if the aim
is to identify generic patterns. A number of param-
eters can be adapted along with the application.

Contrary to classical Machine Learning ap-
proaches which produce numerical models that are
unintelligible for humans, data mining allows the
discovery of symbolic patterns which can be inter-
preted by an expert. In the absence of authoritative
annotated corpora for the recognition of signs and
symptoms, manual validation of the patterns step
is necessary, and often a large number of patterns
still remains. To overcome this difficulty, Béchet
et al. (2012) suggested adding constraints in or-
der to reduce the results. In continuation of this
work, we make use of the sequential patterns ex-
traction tool SDMC2, which makes it possible to

2https://sdmc.greyc.fr/
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apply various constraints and condensed represen-
tations extraction (patterns without redundancy).

We adapted pattern mining to our field of ap-
plication. Thus we first propose to use TreeTag-
ger (Schmidt, 1994) as a pretreatment, in order
to mark up different types of item (inflected form,
lemma, part of speech). To narrow down the num-
ber of patterns returned by the tool, we introduce
several constraints specific to our application: lin-
guistic membership constraints (for example, we
can choose to return only patterns containing at
least one sign or symptom name), or the “gap”
constraint (Dong and Pei, 2007), corresponding to
possible gaps between items in the pattern. Thus a
gap of maximal value n means that at most n items
(words) are between each item of the pattern in the
corresponding sequences (sentences).

5 First experiment

Annotating the first MEDLINE corpus of Ab-
stracts with HPO provided us with a corpus of
10,000 annotated sentences. The 13,477 annotated
units were replaced by a keyword –SYMPTOM–
in order to facilitate the discovery of patterns.
Then we used SDMC to mine the corpus for max-
imal patterns, with a minimal support of 10, a
length between 3 and 50 words and a gap con-
straint of g(0,0), i.e. the words are consecutive
(no gap allowed). We were mining for lemma se-
quences only.

Results produced 988 patterns, among which
326 contained the keyword symptom. Based on
these patterns, several remarks can already be
made:

• Several annotated signs or symptoms are
regularly associated with a third term,
which can be another sign or symptom:
{symptom}{symptom}{and}{stress};
• HPO annotation limitations (see sec-

tion 3) are made visible by some contexts:
{disease}{such}{as}{symptom};
• Some contexts are particularly recurrent,

such as {be}{associate}{with}{symptom}
or {characterize}{by}{symptom};
• Some temporal and chronologi-

cal ordering contexts are present:
{@card@}{%}{follow}{by}{symptom};
• The term “patient” is quite regular

({patient}{have}{severe}{symptom}),

but after the evaluation, these occurrences
turned out to be disease-related more than
sign or symptom-related;

• The body location proved to
be another regular context:
{frontotemporal}{symptom}{ftd}.

Firstly, a linguistics expert selected the pat-
terns that he considered the most relevant. These
patterns were then classified in three categories:
strong if they seem to strongly imply the pres-
ence of signs and symptoms (43 patterns), mod-
erate (309 patterns) and weak (45 patterns). Sec-
ondly, these patterns were applied on a new cor-
pus of MEDLINE abstracts in order to annotate
the sign and symptom contexts. For the moment,
only strong patterns have been applied.

25 abstracts were randomly selected among all
the scientific articles published within the last
month and dealing with Pompe disease. These
25 articles were manually annotated for signs and
symptoms by an expert and thus constituted a gold
standard. Then, we compared the manual annota-
tion to our automatically annotated contexts. If
the annotated sentence includes signs or symp-
toms, we consider that the annotation is relevant.
Among the 25 abstracts (225 sentences), 27 con-
texts were extracted with our method. 23 were
correct, 4 were irrelevant; 70 sentences were not
annotated by the system. Thus the results were
23.7 in recall, reaching 82.2 in precision (36.8 in
F-score).

6 Conclusions

Sign/disease ambiguity is the cause of 3 of the 4
irrelevant annotations, i.e. diseases were in the
same linguistic context than signs. Thus the sen-
tences were annotated but they contained diseases,
not signs. The forth irrelevant annotation indi-
cates a diagnosis test; it highlights that causes and
consequences of a disease can be easily confused
by non-specialists. Most of the left out sentences
contain signs or symptoms expressed by complex
units, such as Levels of creatinkinase in serum
were high. (36%). 27% of these sentences are
about gene mutations, which can be considered as
causes of diseases or as clinical signs. Others con-
tain patterns which have not been selected by the
expert but can be easily added to improve the re-
call.
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The context annotation is only a first step to-
wards sign and symptom extraction. So far, we
have not solved the problem of unit delimitation.
In order to achieve this, we have two working hy-
potheses. We intend to compare chunking and
syntactic analysis results in defining the scope of
sign and symptom lexical units. Chunking will
be conducted with an NLP tool such as TreeTag-
ger, and syntactic analysis will use a dependency
parser such as the Stanford Parser (ref.). The latter
should allow us to delimit some recurring syntac-
tic structures (e.g. agents, enumerations, etc.).

We also intend to compare our results with re-
sults provided by CRFs. First the features will be
classical (bag of words, among others), and sec-
ond, we will add the contexts obtained with the
text mining to the features. This should enable
us to compare our method to others. Finally, we
are going to develop an evaluation interface to fa-
cilitate the work of the expert. In the absence of
comparable corpora, the evaluation can only be
manual. Our current sample of 50 abstracts is
just a start, and needs to be expanded in order to
strengthen the evaluation.
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Abstract

The continuously increasing number of
publications within the biomedical domain
has fuelled the creation of literature based
discovery (LBD) systems which identify
unconnected pieces of knowledge appear-
ing in separate literatures which can be
combined to make new discoveries. With-
out filtering, the amount of hidden knowl-
edge found is vast due to noise, making it
impractical for a researcher to examine, or
clinically evaluate, the potential discover-
ies. We present a number of filtering tech-
niques, including two which exploit the
LBD system itself rather than being based
on a statistical or manual examination of
document collections, and we demonstrate
usefulness via replication of known dis-
coveries.

1 Introduction and background

The number of publications in the biomedical do-
main has been observed to increase at a great rate,
making it impossible for one person to read all,
and thus potentially leaving knowledge hidden:
for example, Swanson (1986) found one publica-
tion mentioning a connection between Raynaud’s
Disease and blood viscosity while another pointed
out the effect of fish oil on blood viscosity, but
there was no publication making the connection
between fish oil and Raynaud’s Disease. Auto-
mated approaches to knowledge discovery often
set up the problem as outlined by Swanson; A be-
ing the source term (in this case Raynaud’s Dis-
ease), with a possible target term, C, being speci-
fied (fish oil) and any connections between them
form the linking, B, terms. If C is not speci-
fied, all possible hidden links from A are explored
and discovery is classified as open. If both A and
C terms are supplied, the discovery is closed and
only any linking, B, terms are being sought.

Independent of how a connection between an A
term and aB is defined (whether this is based onA
and B co-occurring in the same title, in the same
sentence or the same document, or some other
relation), an obvious difficulty is the amount of
data generated by a technique along these lines:
with no filtering, a great number of connections
will be made through terms such as clinical study
or patient, and, if not also linked through other
terms, these should be discarded. A number of
approaches to term reduction have been explored.

Swanson and Smalheiser (1999)’s knowledge
discovery system, Arrowsmith,1 contains an in-
creasing, currently 9,500 term (Swanson et al.,
2006), stoplist, created semi-automatically.2 Such
a stoplist is unlikely to be complete – the list
has grown from 5,000 (Swanson and Smalheiser,
1997) to 9,500 words (Swanson et al., 2006) and
is likely to keep increasing. Over fitting is po-
tentially an issue, in this case the list generated
has been criticized for being tuned for the original
Raynaud–fish oil discovery (Weeber et al., 2001).
A word based stoplist also does not take into ac-
count the potential ambiguity of terms: one sense
may be highly frequent and uninformative, guar-
anteeing it an appearance in the stoplist, while an-
other sense may be rare but highly informative.

Instead of using words directly, it is possible to
employ a (much smaller) controlled vocabulary:
Medical Subject Headings (MeSH), consisting of
22,500 codes, are (mostly) manually assigned to
each document indexed in Medline – even though
multiple MeSH codes for a document are allowed,
restricting to this set greatly reduces dimensional-
ity. For example, Srinivasan (2004) uses MeSH
based topic profiles to connect A to topics C via
the most likely MeSH terms.

1Available at http://arrowsmith.psych.uic.
edu/arrowsmith_uic/index.html

2Note that only 365 words of this stoplist are publicly
available.
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Keeping entire vocabularies is possible if topics
are limited, for example, Fleuren et al (2011) ex-
tract statistics regarding gene co-occurrence, and
restricts their hidden knowledge generation to bi-
ological mechanisms related to them.

Another difficulty in using word vocabularies is
the necessary identification of multiwords, Wee-
ber at al. (2001) avoid previously tried n-gram
techniques (e.g. (Gordon and Lindsay, 1996)) by
switching knowledge discovery to UMLS Concept
Unique Identifiers (CUIs). Using MetaMap (Rind-
flesch and Aronson, 1994) to assign CUIs to texts
discards non content words (CUIs only exist for
concepts), resolves ambiguity and deals with mul-
tiwords in one, thus reducing the number of terms
considered in later stages. Weeber et al. also ex-
ploit the broad subject categories that UMLS as-
signs to each CUI, which allow the authors to per-
form domain specific filtering to reduce dimen-
sionality. This they do on a per search basis, tun-
ing the filtering to the replication experiments pre-
sented.

Dimensionality reduction can also be performed
at the relation level. Swanson’s (1997) original
work deemed two terms connected if they both
appeared in the title of an abstract – titles were
thought to be the most informative, and descrip-
tive, part of each article. As the number of ab-
stracts explored during the knowledge discovery
process increased, and connections were extended
to whole abstracts (rather than titles only), the
amount of hidden knowledge generated increased
dramatically and with it did the need for term and
connection filtering.

Hristovski et al (2006) argue for filtering within
the relation definition – co-occurrence does not
provide any basis for a relation between two
terms, no underlying semantic reason, and thus, as
well as leading to many spurious links, it yields
no justification for a hidden connection that is
found. They extract subject-relation-object triples,
with relations such as treats or affects forming
their UMLS concept relations, leading to a much
smaller number of (more accurate) relations to de-
rive hidden knowledge from.

While re-ranking (placing the most ‘useful’
links at the top of the list) the resulting hidden
knowledge is clearly valuable, removing terms
from consideration prior to identifying hidden
knowledge will reduce the computational load
as well as avoid noisy hidden knowledge being

produced and possibly accidentally being highly
ranked.

We explore a number of filtering approaches in-
cluding two novel techniques which can be inte-
grated into any method designed using the Swan-
son framework, and we compare these against
previously explored filtering methods. Section 2
outlines our knowledge discovery approach, Sec-
tion 3 presents a number of filtering approaches
with Section 4 discussing results based on repli-
cation of existing knowledge and Section 5 draws
our conclusions.

2 Knowledge discovery system

There are two main components which define
an LBD system created following the Swanson
framework: the terms and the relations. Based on
arguments presented in Section 1, our system em-
ploys UMLS CUIs as produced by SemRep (Rind-
flesch and Fiszman, 2003), a natural language pro-
cessing system which identifies semantic relations
in biomedical text.3

SemRep extracts relation triples from text by
running a set of rules over the output of an under-
specified parser. The rules, such as the mapping
of treatment to TREATS, map syntactic indicators
to predicates in the Semantic Network. Further re-
strictions are imposed regarding the permissibility
of arguments, the viability of the given proposi-
tions, and other syntactic constraints, resulting in
relations such as

• Epoprostenol TREATS Raynaud Phenomenon

• blood rheology DIAGNOSES Raynaud Disease

Each triple is also output with the corresponding
CUIs.

All 29 non negative relations were extracted
(such as AFFECTS, ASSOCIATED WITH, INTER-
ACTS WITH, . . . ), while negative relations (such
as NEG AFFECTS, NEG ASSOCIATED WITH,
NEG INTERACTS WITH, . . . ) were dropped. The
extracted relations form the connections between
CUIs: i.e., the set of linking CUIs B is created
by following all SemRep links from the CUI A,
which lead to C through another SemRep relation.

3In this work, the SemRep annotated Medline data,
database semmedVER24 (processed up to November 2013)
run over 23,319,737 citations to yield 68,000,470 predica-
tions, was downloaded from http://skr3.nlm.nih.
gov and used throughout.
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3 Filtering approaches

While employing CUIs (rather than words) elimi-
nates non content words (thus immediately reduc-
ing noise), it does not eliminate CUIs correspond-
ing to patient, week, statement . . . We present, and
in Section 4 evaluate (individually and in combi-
nation), four filtering approaches of which two are,
to our knowledge, completely novel.

3.1 Synonyms
While not a filtering method under the usual def-
inition, the identification of synonym CUIs and
collapsing thereof results in the reduction of the
number of CUIs being used (i.e. the technique fil-
ters out some CUIs).

A manual examination of the documents con-
taining CUI C0034734, Raynaud Disease, re-
vealed that some of the expected connections were
missing and were linked to CUI C0034735, Ray-
naud Phenomenon, instead. The resulting hid-
den knowledge is greatly affected by the particu-
lar CUI chosen as the source term A, yet in this
case, the two CUIs are synonymous. The MR-
REL related concepts file within UMLS contains
pairs of CUIs within related relationships, includ-
ing the SY (source asserted synonymy) relation-
ship4, and CUIs C0034734 and C0034735 appear
in the SY relationship in this list. Identifying con-
cepts within the SY relationship has the following
advantages:

• Merging such synonyms into classes will al-
low the retrieval of more hidden knowledge if
the multiple synonymous CUIs correspond to
the start point, A (as in the case of Raynaud
Disease).

• There will be potentially more hidden knowl-
edge created if a multiclass CUI is a linking
term (as A connected to C0034734 and C
connected to C0034735 would not have been
found to be connected if these were the only
potential overlap).

• Synonymous hidden knowledge (and linking
terms) will merge, reducing the amount of
knowledge (and terms) to manually explore.

Merging synonyms into single CUI classes re-
duces the 561,155 CUIs present in UMLS to
540,440 CUI classes.5

4Due to the version of SemRep files used, UMLS 2013AA
is employed throughout.

5Note that other MRREL related relationships were ex-

3.2 Semantic types
The UMLS Semantic Network consists of 133 se-
mantic types, a type of subject category, which is
assigned to each CUI. Many of these categories
are clearly unhelpful for knowledge discovery (for
example, geographic area or language), and 70
semantic types are manually selected for removal
(by examining the basic information about the re-
lation, as well as the structure of the network and
the CUIs assigned each semantic type). This re-
moves a further 121,284 CUIs.

3.3 Discarding common linking terms
In some cases, a given CUI is clearly too general
to be a useful linking term, but its semantic type
contains more specific CUIs which should not be
removed. Restricting semantic type filtering based
on the depth within the hierarchy is also not a vi-
able option, as UMLS is composed of different
hierarchies, each with a different level of granu-
larity and establishing an overall threshold would
likely include general terms for some while dis-
carding crucial terms for others. Therefore another
approach is needed for these CUIs.

Along the lines of Swanson et al (2006), a sto-
plist can be built to contain such terms, without
over-training for a particular discovery and with-
out the need for manual intervention: we hypoth-
esize that any CUIs which are linking terms more
often than others can effectively form a stoplist.

The creation of this stoplist can be performed
iteratively:

1. Start with an empty stoplist set S.

2. Create hidden knowledge based on SemRep
connections between CUIs, removing any
connections to CUIs in set S (the hidden
knowledge is acquired from Medline articles
published between 1865 and 2000).

3. Randomly select 10,000 hidden knowledge
pairs, identify their linking CUIs, and add
any linking CUIs appearing in more than
threshold of pairs to S (the value of thresh-
old needs to be empirically determined).

4. If Step 3 increased the size of S, return to
Step 2.

Note that since the training set is not designed for
any particular discovery, this should not result in
an over trained stoplist.

plored, but completing cycles lead to multiple extremely large
equivalence classes.

114



3.4 Breaking high frequency connections

The creation of a stoplist will always suffer from
omissions and inclusions of CUIs that should not
be filtered out in every instance. The last approach
is based on a slightly different underlying idea: in-
stead of finding frequently appearing terms, this
approach bases its decisions on the number of
terms a given term is connected to.

Two CUIs A and B are deemed connected if a
(non negative) SemRep relation exists which links
them. If A corresponds to a term such as study
or patient, it is expected to be connected to a large
number of CUIs. We hypothesize that terms which
are so highly connected are likely to be relatively
general terms, and so uninformative linking terms.

This gives rise to the following filtering options:

1. Break (discard) all connections to CUI A
when the C(A) > threshold.

2. Discard the connection between CUIs A and
B when min(C(A), C(B)) > threshold.

(Where C(A) represents the number of CUIs
linked to A, and the threshold needs to be empiri-
cally determined.)

Method 1 effectively forms a stoplist of highly
connected CUIs, but method 2 is different: only
connections satisfying the condition are broken
while A remains under consideration. This allows
filtering method 2 to leave a frequently connected
term to be a linking term for a rare term (unlike
method 1, which would discard such a term).

4 Results

Swanson’s original discoveries (Swanson, 1986;
Swanson, 1988) were verified through clinical tri-
als and evaluation of LBD systems often involves
replication of these discoveries (Gordon and Lind-
say, 1996; Weeber et al., 2001). From literature,
we identify seven separate discoveries to replicate
(presented with the labels used in Table 1):

RD: Raynaud disease and fish oil (Swanson,
1986).

Arg: Somatomedin C and arginine (Swanson,
1990).

Mg: Migraine disorders and magnesium (Hu et
al., 2006).

ND: Magnesium deficiency and neurologic dis-
ease (Smalheiser and Swanson, 1994).

INN: Alzheimer’s and indomethacin (Smalheiser
and Swanson, 1996a).

estrogen: Alzheimer’s disease and estrogen
(Smalheiser and Swanson, 1996b).

Ca2+iPLA2: Schizophrenia and Calcium-
Independent Phospholipase A2 (Smalheiser
and Swanson, 1997).

The same subset of Medline as in each origi-
nal discovery is employed for replication, and
any abstracts containing a direct link between the
two terms are removed (note that including these
would not have affected the original discoveries as
these only used titles) – thus any connections be-
tween A and C are necessarily hidden and require
at least one linking term.

The Raynaud-fish oil and migraine-magnesium
connections are the most commonly replicated
discoveries, while the remaining discoveries are
rarely explored. For CUI based investigations, this
is likely due to the difficulty of selecting a repre-
sentative CUI for the sought concepts. The sec-
ond concept in the Schizophrenia and Calcium-
Independent Phospholipase A2 connection is par-
ticularly tricky: UMLS suggests CUI C1418624
(PLA2G6 gene) as the most likely match, followed
by CUI C2830173 (Calcium-Independent Phos-
pholipase A2) as the second most likely. How-
ever, neither CUI is found in any relations in the
given date range by SemRep. Closer examina-
tion reveals that the Ca2+iPLA2 connections in
the 1960-1997 Medline range are between CUI
C0538273 (PLA2G6 protein, human). Not only
does this highlight the difficulty of the replication
task, it further motivates the need for a ‘synonym’
(or related concept) list.

The number of linking terms found between
each pair of sought terms is presented in Table 1
(zero linking terms means the connection was not
found) for a subset of the filtering results. ST rep-
resents semantic type filtering, HF the breaking of
high frequency connections (a min subscript de-
noting the version which takes into account con-
nectivity of both CUIs), together with the thresh-
old value, and LT elimination of common linking
terms, again with the relevant threshold value.

While the Raynaud-fish oil connection appears
to be consistently produced by the system, Table 2
reveals the value of filtering: with no filtering, the
two linking terms are pure noise and the connec-
tion should not be made. Employing UMLS syn-
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RD Arg Mg ND INN estrogen Ca2+iPLA2
No filtering 2 235 78 98 370 500 7
Synonyms (Sy) 6 173 58 65 296 415 16
Sy & LT-200 3 145 48 56 265 0 16
Sy & HF-2900 6 149 56 52 243 0 14
Sy & HFmin-900 6 73 22 27 82 164 9
Sy & HFmin-400 6 25 5 8 25 65 8
Sy & ST 4 130 47 43 234 331 13
Sy & ST & LT-200 3 108 41 38 207 0 13
Sy & ST & HF-2500 4 120 47 38 205 0 13
Sy & ST & HFmin-900 6 73 22 27 82 164 9
Sy & ST & HFmin-400 4 28 6 12 30 73 6

Table 1: Number of hidden links found during replication

onyms adds genuine linking terms,6 and restrict-
ing by semantic types drops the remaining general
terms. Discarding common linking terms finds an-
timicrobial susceptibility to be a frequently used
linking term, and it is also dropped. A great ad-
vantage of the technique can be seen when con-
nections are made through hundreds of terms –
in this case, higher thresholds (and thus more ag-
gressive filtering) can be employed to reduce the
number of linking terms to the most promising set.
Should these not be sufficient, the threshold can
be increased to produce more linking terms and as
such, the burden on the user in checking a large
number of linking terms when a hidden connec-
tion is suspected can be greatly reduced, without
sacrificing connections should more be needed.

Term NF Sy Sy ST LT-200
acetylsalicyclic acid × X X X
antimicrobial susceptibility × X X ×
blood viscosity × X X X
brain infarction × X X X
patient X X × ×
volunteer helper X X × ×

Table 2: Linking term analysis for RD

For example, common linking term filtering re-
moves the term estrogen from consideration as
therapeutic estrogen is a commonly used linking
term, making the estrogen-AD link impossible to
find. Linking term frequencies (on a 10,000 pair
sample) exceeding values from 50 to 200 (in incre-
ments of 50) were tested resulting in the removal

6Note that the merging of synonyms is achieved with-
out the need to back off to general classes (e.g. (Srinivasan,
2004)), which have been observed to lead to connections
based on “aboutness” rather than producing genuine hidden
knowledge (Beresi et al., 2008).

of between 1,902 and 227 CUIs. Therapeutic es-
trogen appears in all the lists. Similarly, the CUI
is dropped when high frequency connections are
broken using the first technique, which is based on
stoplists. This highlights the value of the second
high frequency connection technique, which only
discards particular connections (rather than CUIs)
and therapeutic estrogen CUI remains a search-
able CUI.

As shown, the system replicates most of the
previously published discoveries with its main as-
set being noise reduction: the number of linking
terms for a suspected connection (closed discov-
ery) can be greatly reduced to remove spurious
connections, with backoffs available to yield more
connections should more be required. For novel
applications (i.e. open discovery), the technique
greatly reduces the amount of hidden knowledge
generated from a source term A. For example, the
amount of hidden knowledge generated from so-
matomedin C drops from 82,601 CUIs when no
filtering is performed, to 3,005 CUIs with syn-
onym, semantic type and breaking connections
with frequency more than 200, which represents
a great reduction for a user who is likely looking
for a particular type of C term.

5 Conclusions and future work

We present and demonstrate the effectiveness of a
number of filtering methods, including two novel
techniques based on any LBD system built accord-
ing to the Swanson framework – one approach
based on stoplist methods, but requiring no man-
ual intervention except for a user’s selection of a
threshold, and the second based on removing con-
nections when these are deemed to be likely to
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contribute mainly noise. A great advantage of the
second approach is shown to be the fact that terms
are not directly discarded, as with a stoplist, and
thus a fairly common term can remain a source
term when required.

While the method is evaluated by replicating
known discoveries, we suggest that the noise re-
duction performed is ultimately leading to a much
more user friendly LBD system, and plan to inves-
tigate other evaluation approaches, such as times-
licing (Yetisgen-Yildiz and Pratt, 2009), as part of
future work.
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Abstract

Retrieving information about highly am-
biguous gene/protein homonyms is a chal-
lenge, in particular where their non-protein
meanings are more frequent than their pro-
tein meaning (e. g., SAH or HF). Due to
their limited coverage in common bench-
marking data sets, the performance of exist-
ing gene/protein recognition tools on these
problematic cases is hard to assess.

We uniformly sample a corpus of eight am-
biguous gene/protein abbreviations from
MEDLINEr and provide manual annota-
tions for each mention of these abbrevia-
tions.1 Based on this resource, we show
that available gene recognition tools such
as conditional random fields (CRF) trained
on BioCreative 2 NER data or GNAT tend
to underperform on this phenomenon.

We propose to extend existing gene recog-
nition approaches by combining a CRF
and a support vector machine. In a cross-
entity evaluation and without taking any
entity-specific information into account,
our model achieves a gain of 6 points
F1-Measure over our best baseline which
checks for the occurrence of a long form
of the abbreviation and more than 9 points
over all existing tools investigated.

1 Introduction

In pharmaceutical research, a common task is to
gather all relevant information about a gene, e. g.,
from published articles or abstracts. The task of rec-
ognizing the mentions of genes or proteins can be
understood as the classification problem to decide

1The annotated corpus is available for future research at
http://dx.doi.org/10.4119/unibi/2673424.

whether the entity of interest denotes a gene/protein
or something else. For highly ambiguous short
names, this task can be particularly challenging.
Consider, for instance, the gene acyl-CoA syn-
thetase medium-chain family member 3 which has
synonyms protein SA homolog or SA hypertension-
associated homolog, among others, with abbrevia-
tions ACSM3, and SAH.2 Standard thesaurus-based
search engines would retrieve results where SAH
denotes the gene/protein of interest, but also oc-
currences in which it denotes other proteins (e. g.,
ATX1 antioxidant protein 1 homolog3) or entities
from semantic classes other than genes/proteins
(e. g., the symptom sub-arachnoid hemorrhage).

For an abbreviation such as SAH, the use as de-
noting a symptom or another semantic class dif-
ferent from genes/proteins is more frequent by a
factor of 70 compared to protein-denoting men-
tions according to our corpus analysis, such that
the retrieval precision for acyl-CoA synthetase by
the occurrence of the synonym SAH is only about
0.01, which is totally unacceptable for practical
applications.

In this paper, we discuss the specific challenge
of recognizing such highly ambiguous abbrevia-
tions. We consider eight entities and show that
common corpora for gene/protein recognition are
of limited value for their investigation. The abbre-
viations we consider are SAH, MOX, PLS, CLU,
CLI, HF, AHR and COPD (cf. Table 1). Based
on a sample from MEDLINE4, we show that these
names do actually occur in biomedical text, but
are underrepresented in corpora typically used for
benchmarking and developing gene/protein recog-
nition approaches.

2http://www.ncbi.nlm.nih.gov/gene/6296
3http://www.ncbi.nlm.nih.gov/gene/

443451
4http://www.nlm.nih.gov/pubs/

factsheets/medline.html
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Synonym Other names Other meaning EntrezGene ID

SAH acyl-CoA synthetase medium-chain family
member 3; ACSM3

subarachnoid hemorrhage;
S-Adenosyl-L-homocysteine hydrolase

6296

MOX monooxygenase, DBH-like 1 moxifloxacin; methylparaoxon 26002
PLS POLARIS partial least squares; primary lateral sclerosis 3770598
CLU clusterin; CLI covalent linkage unit 1191
CLI clusterin; CLU clindamycin 1191
HF complement factor H; CFH high frequency; heart failure; Hartree-Fock 3075
AHR aryl hydrocarbon receptor; bHLHe76 airway hyperreactivity 196
COPD archain 1; ARCN1; coatomer protein

complex, subunit delta
Chronic Obstructive Pulmonary Disease 22819; 372

Table 1: The eight synonyms for genes/proteins which are subject of analysis in this paper and their long
names together with frequent other meanings.

We propose a machine learning-based filtering
approach to detect whether a mention in question
actually denotes a gene/protein or not and show
that for the eight highly ambiguous abbreviations
that we consider, the performance of our approach
in terms of F1 measure is higher than for a state-of-
the-art tagger based on conditional random fields
(CRF), a freely available dictionary-based approach
and an abbreviation resolver. We evaluate differ-
ent parameters and their impact in our filtering
approach and discuss the results. Note that this
approach does not take any information about the
specific abbreviation into account and can therefore
be expected to generalize to names not considered
in our corpus.

The main contributions of this paper are:
(i) We consider the problem of recognizing

highly ambiguous abbreviations that fre-
quently do not denote proteins as a task that
has so far attracted only limited attention.

(ii) We show that the recognition of such ambigu-
ous mentions is important as their string rep-
resentation is frequent in collections such as
MEDLINE.

(iii) We show, however, that this set of ambiguous
names is underrepresented in corpora com-
monly used for system design and develop-
ment. Such corpora do not provide a suffi-
cient data basis for studying the phenomenon
or for training systems that appropriately han-
dle such ambiguous abbreviation. We con-
tribute a manually annotated corpus of 2174
occurrences of ambiguous abbreviations.

(iv) We propose a filtering method for classifying
ambiguous abbreviations as denoting a pro-
tein or not. We show that this method has a
positive impact on the overall performance of
named entity recognition systems.

2 Related Work

The task of gene/protein recognition consists in
the classification of terms as actually denoting a
gene/protein or not. The task is typically either
tackled by using machine learning or dictionary-
based approaches. Machine learning approaches
rely on appropriate features describing the local
context of the term to be classified and induce a
model to perform the classification from training
data. Conditional random fields have shown to
yield very good results on the task (Klinger et al.,
2007; Leaman and Gonzalez, 2008; Kuo et al.,
2007; Settles, 2005).

Dictionary-based approaches rely on an explicit
dictionary of gene/protein names that are matched
in text. Such systems are common in practice due
to the low overhead required to adapt and maintain
the system, essentially only requiring to extend the
dictionary. Examples of commercial systems are
ProMiner (Fluck et al., 2007) or I2E (Bandy et al.,
2009); a popular free system is made available by
Hakenberg et al. (2011).

Such dictionary-based systems typically incorpo-
rate rules for filtering false positives. For instance,
in ProMiner (Hanisch et al., 2003), ambiguous syn-
onyms are only accepted based on external dictio-
naries and matches in the context. Abbreviations
are only accepted if a long form matches all parts of
the abbreviation in the context (following Schwartz
and Hearst (2003)). Similarly, Hakenberg et al.
(2008) discuss global disambiguation on the doc-
ument level, such that all mentions of a string in
one abstract are uniformly accepted as denoting an
entity or not.

A slightly different approach is taken by the web-
service GeneE5 (Schuemie et al., 2010): Entering a
query as a gene/protein in the search field generates

5http://biosemantics.org/geneE
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MEDLINE BioCreative2 GENIA
Protein # Tokens % tagged # Tokens % of genes # Tokens % of genes

SAH 30019 6.1 % 2 0 % 0
MOX 16007 13.1 % 0 0
PLS 11918 25.9 % 0 0
CLU 1077 29.1 % 0 0
CLI 1957 4.8 % 4 0 % 0
HF 42563 7.9 % 8 62.5 % 4 0 %
AHR 21525 75.7 % 12 91.7 % 0
COPD 44125 0.6 % 6 0 % 0

Table 2: Coverage of ambiguous abbreviations in MEDLINE, BioCreative2 and GENIA corpora. The
percentage of tokens tagged as a gene/protein in MEDLINE (% tagged) is determined with a conditional
random field in the configuration described by Klinger et al. (2007), but without dictionary-based features
to foster the usage of contextual features). The percentages of genes/proteins (% of genes) in BC2 and
GENIA are based on the annotations in these corpora.

a query to e. g. PubMedr6 with the goal to limit
the number of false positives.

Previous to the common application of CRFs,
other machine learning methods have been popu-
lar as well for the task of entity recognition. For
instance, Mitsumori et al. (2005) and Bickel et al.
(2004) use a support vector machine (SVM) with
part-of-speech information and dictionary-based
features, amongst others. Zhou et al. (2005) use an
ensemble of different classifiers for recognition.

In contrast to this application of a classifier
to solve the recognition task entirely, other ap-
proaches (including the one in this paper) aim at
filtering specifically ambiguous entities from a pre-
viously defined set of challenging terms. For in-
stance, Al-mubaid (2006) utilize a word-based clas-
sifier and a mutual information-based feature selec-
tion to achieve a highly discriminating list of terms
which is applied for filtering candidates.

Similarly to our approach, Tsuruoka and Tsujii
(2003) use a classifier, in their case a naı̈ve Bayes
approach, to learn which entities to filter from
the candidates generated by a dictionary-based ap-
proach. They use word based features in the con-
text including the candidate itself. Therefore, the
approach is focused on specific entities.

Gaudan et al. (2005) use an SVM and a dictio-
nary of long forms of abbreviations to assign them
a specific meaning, taking contextual information
into account. However, their machine learning ap-
proach is trained on each possible sense of an ab-
breviation. In contrast, our approach consists in
deciding if a term is used as a protein or not. Fur-
ther, we do not train to detect specific, previously
given senses.

6http://www.ncbi.nlm.nih.gov/pubmed/

Xu et al. (2007) apply text similarity measures to
decide about specific meanings of mentions. They
focus on the disambiguation between different en-
tities. A corpus for word sense disambiguation is
automatically built based on MeSH annotations by
Jimeno-Yepes et al. (2011). Okazaki et al. (2010)
build a sense inventory by automatically applying
patterns on MEDLINE and use this in a logistic
regression approach.

Approaches are typically evaluated on freely
available resources like the BioCreative Gene Men-
tion Task Corpus, to which we refer as BC2 (Smith
et al., 2008), or the GENIA Corpus (Kim et al.,
2003). When it comes to identifying particular pro-
teins by linking the protein in question to some
protein in an external database – a task we do
not address in this paper – the BioCreative Gene
Normalization Task Corpus is a common resource
(Morgan et al., 2008).

In contrast to these previous approaches, our
method is not tailored to a particular set of entities
or meanings, as the training methodology abstracts
from specific entities. The model, in fact, knows
nothing about the abbreviations to be classified and
does not use their surface form as a feature, such
that it can be applied to any unseen gene/protein
term. This leads to a simpler model that is applica-
ble to a wide range of gene/protein term candidates.
Our cross-entity evaluation regime clearly corrobo-
rates this.

3 Data

We focus on eight ambiguous abbreviations of
gene/protein names. As shown in Table 2, these
homonyms occur relatively frequently in MEDLINE

but are underrepresented in the BioCreative 2 entity
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Protein Pos. Inst. Neg. Inst. Total

SAH 5 349 354
MOX 62 221 283
PLS 1 206 207
CLU 235 30 265
CLI 11 211 222
HF 2 353 355
AHR 53 80 133
COPD 0 250 250

Table 3: Number of instances per protein in the
annotated data set and their positive/negative distri-
bution

recognition data set and the GENIA corpus which
are both commonly used for developing and evalu-
ating gene recognition approaches. We compiled
a corpus from MEDLINE by randomly sampling
100 abstracts for each of the eight abbreviations (81
for MOX) such that each abstract contains at least
one mention of the respective abbreviation. One
of the authors manually annotated the mentions
of the eight abbreviations under consideration to
be a gene/protein entity or not. These annotations
were validated by another author. Both annotators
disagreed in only 2% of the cases. The numbers
of annotations, including their distribution over
positive and negative instances, are summarized
in Table 3. The corpus is made publicly available
at http://dx.doi.org/10.4119/unibi/
2673424 (Hartung and Zwick, 2014).

In order to alleviate the imbalance of positive
and negative examples in the data, additional pos-
itive examples have been gathered by manually
searching PubMed7. At this point, special attention
has been paid to extract only instances denoting the
correct gene/protein corresponding to the full long
name, as we are interested in assessing the impact
of examples of a particularly high quality. This
process yields 69 additional instances for AHR
(distributed over 11 abstracts), 7 instances (3 ab-
stracts) for HF, 14 instances (2 abstracts) for PLS
and 15 instances (7 abstracts) for SAH. For the
other gene/proteins in our dataset, no additional
positive instances of this kind could be retrieved
using PubMed. In the following, this process will
be referred to as manual instance generation. This
additional data is used for training only.

7http://www.ncbi.nlm.nih.gov/pubmed

4 Gene Recognition by Filtering

We frame gene/protein recognition from ambigu-
ous abbreviations as a filtering task in which a set
of candidate tokens is classified into entities and
non-entities. In this paper, we assume the candi-
dates to be generated by a simple dictionary-based
approach taking into account all tokens that match
the abbreviation under consideration.

4.1 Filtering Strategies
We consider the following filtering approaches:
• SVM classifies the occurring terms based on a

binary support vector machine.
• CRF classifies the occurring terms based on

a conditional random field (configured as de-
scribed by Klinger et al. (2007)) trained on the
concatenation of BC2 data and our newly gen-
erated corpus. This setting thus corresponds
to state-of-the-art performance on the task.
• CRF∩SVM considers the candidate an entity

if both the standard CRF and the SVM from
the previous steps yield a positive prediction.
• HRCRF∩SVM is the same as the previous

step, but the output of the CRF is optimized
towards high recall by joining the recognition
of entities of the five most likely Viterbi paths.
• CRF→SVM is similar to the first setting, but

the output of the CRF is taken into account as
a feature in the SVM.

4.2 Features for Classification
Our classifier uses local contextual and global fea-
tures. Local features focus on the immediate con-
text of an instance, whereas global features encode
abstract-level information. Throughout the follow-
ing discussion, ti denotes a token at position i that
corresponds to a particular abbreviation to be classi-
fied in an abstract A. Note that we blind the actual
representation of the entity to be able to generalize
to all genes/proteins, not being limited to the ones
contained in our corpus.

4.2.1 Local Information
The feature templates context-left and context-right
collect the tokens immediately surrounding an ab-
breviation in a window of size 6 (left) and 4 (right)
in a bag-of-words-like feature generation. Addi-
tionally, the two tokens from the immediate context
on each side are combined into bigrams.

The template abbreviation generates features if
ti occurs in brackets. It takes into account the min-
imal Levenshtein distance (ld, Levenshtein (1966))
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between all long forms L of the abbreviation (as
retrieved from EntrezGene) in comparison to each
string on the left of ti (up to a length of seven,
denoted by tk:i as the concatenation of tokens
tk, . . . , ti). Therefore, the similarity value sim(ti)
taken into account is given by

sim(ti) = max
l∈L;k∈[1:7]

1− ld(tk:i−1, l)
max(|ti|, |l|) ,

where the denominator is a normalization term.
The features used are generated by cumulative bin-
ning of sim(ti).

The feature taggerlocal takes the prediction of the
CRF for ti into account. Note that this feature is
only used in the CRF→SVM setting.

4.2.2 Global Information
The feature template unigrams considers each word
in A as a feature. There is no normalization or
frequency weighting. Stopwords are ignored8. Oc-
currences of the same string as ti are blinded.

The feature taggerglobal collects all tokens in A
other than ti that are tagged as an entity by the CRF.
In addition, the cardinality of these entities in A is
taken into account by cumulative binning.

The feature long form holds if one of the long
forms previously defined to correspond with the ab-
breviation occurs in the text (in arbitrary position).

Besides using all features, we perform a greedy
search for the best feature set by wrapping the best
model configuration. A detailed discussion of the
feature selection process follows in Section 5.3.

4.2.3 Feature Propagation
Inspired by the “one sense per discourse” heuristic
commonly adopted in word sense disambiguation
(Gale et al., 1992), we apply two feature combi-
nation strategies. In the following, n denotes the
number of occurrences of the abbreviation in an
abstract.

In the setting propagationall, n − 1 identical
linked instances are added for each occurrence.
Each new instance consists of the disjunction of
the feature vectors of all occurrences. Based on
the intuition that the first mention of an abbrevia-
tion might carry particularly valuable information,
propagationfirst introduces one additional linked in-
stance for each occurrence, in which the feature
vector is joined with the first occurrence.

8Using the stopword list at http://www.ncbi.nlm.
nih.gov/books/NBK3827/table/pubmedhelp.
T43/, last accessed on March 25, 2014

Setting P R F1

SVM 0.81 0.45 0.58
CRF∩SVM 0.99 0.26 0.41
HRCRF∩SVM 0.95 0.27 0.42
CRF→SVM 0.83 0.49 0.62

CRF→SVM+FS 0.97 0.74 0.84

GNAT 0.73 0.45 0.56
CRF 0.55 0.43 0.48
AcroTagger 0.92 0.63 0.75
Long form 0.98 0.65 0.78
lex 0.18 1.00 0.32

Table 4: Overall micro-averaged results over eight
genes/proteins. For comparison, we show the re-
sults of a default run of GNAT (Hakenberg et al.,
2011), a CRF trained on BC2 data (Klinger et al.,
2007), AcroTagger (Gaudan et al., 2005), and a
simple approach of accepting every token of the
respective string as a gene/protein entity (lex). Fea-
ture selection is denoted with +FS.

In both settings, all original and linked instances
are used for training, while during testing, original
instances are classified by majority voting on their
linked instances. For propagationall, this results in
classifying each occurrence identically.

5 Experimental Evaluation

5.1 Experimental Setting
We perform a cross-entity evaluation, in which we
train the support vector machine (SVM) on the ab-
stracts of 7 genes/proteins from our corpus and test
on the abstracts for the remaining entities, i. e., the
model is evaluated only on tokens representing en-
tities which have never been seen labeled during
training. The CRFs are trained analogously with
the difference that the respective set used for train-
ing is augmented with the BioCreative 2 Training
data. The average numbers of precision, recall and
F1 measure are reported.

As a baseline, we report the results of a simple
lexicon-based approach assuming that all tokens
denote an entity in all their occurrences (lex). In ad-
dition, the baseline of accepting an abbreviation as
gene/protein if the long form occurs in the same ab-
stract is reported (Long form). Moreover, we com-
pare our results with the publicly available toolkit
GNAT (Hakenberg et al., 2011)9 and the CRF ap-

9The gene normalization functionality of GNAT is not
taken into account here. We acknowledge that this comparison
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proach as described in Section 4. In addition, we
take into account the AcroTagger10 that resolves
abbreviations to their most likely long form which
we manually map to denoting a gene/protein or not.

5.2 Results
5.2.1 Overall results
In Table 4, we summarize the results of the recogni-
tion strategies introduced in Section 4. The lexical
baseline clearly proves that a simple approach with-
out any filtering is not practical. GNAT adapts well
to ambiguous short names and turns out as a com-
petitive baseline, achieving an average precision of
0.73. In contrast, the filtering capacity of a stan-
dard CRF is, at best, mediocre. The long form
baseline is very competitive with an F1 measure of
0.78 and a close-to-perfect precision. The results of
AcroTagger are similar to this long form baseline.

We observe that the SVM outperforms the CRF
in terms of precision and recall (by 10 percentage
points in F1). Despite not being fully satisfactory
either, these results indicate that global features
which are not implemented in the CRF are of im-
portance. This is confirmed by the CRF∩SVM
setting, where CRF and SVM are stacked: This fil-
tering procedure achieves the best precision across
all models and baselines, whereas the recall is still
limited. Despite being designed for exactly this
purpose, the HRCRF∩SVM combination can only
marginally alleviate this problem, and only at the
expense of a drop in precision.

The best trade-off between precision and recall
is offered by the CRF→SVM combination. This
setting is not only superior to all other variants of
combining a CRF with an SVM, but outperforms
GNAT by 6 points in F1 score, while being inferior
to the long form baseline. However, performing
feature selection on this best model using a wrapper
approach (CRF→SVM+FS) leads to the overall
best result of F1 = 0.84, outperforming all other
approaches and all baselines.

5.2.2 Individual results
Table 5 summarizes the performance of all filter-
ing strategies broken down into individual entities.
Best results are achieved for AHR, MOX and CLU.
COPD forms a special case as no examples for the

might be seen as slightly inappropriate as the focus of GNAT
is different.

10ftp://ftp.ebi.ac.uk/pub/software/
textmining/abbreviation_resolution/, ac-
cessed April 23, 2014

occurrence as a gene/protein are in the data; how-
ever the results show that the system can handle
such a special distribution.

SVM and CRF are mostly outperformed by a
combination of both strategies (except for CLI and
HF), which shows that local and global features
are highly complementary in general. Complemen-
tary cases generally favor the CRF→SVM strategy,
except for PLS, where stacking is more effective.

In SAH, the pure CRF model is superior to all
combinations of CRF and SVM. Apparently, the
global information as contributed by the SVM is
less effective than local contextual features as avail-
able to the CRF in these cases. In SAH and CLI,
moreover, the best performance is obtained by the
AcroTagger.

5.2.3 Impact of instance generation
All results reported in Tables 4 and 5 refer to con-
figurations in which additional training instances
have been created by manual instance generation.
The impact of this method is analyzed in Table 6.
The first column reports the performance of our
models on the randomly sampled training data. In
order to obtain the results in the second column,
manual instance generation has been applied.

The results show that all our recognition mod-
els generally benefit from additional information
that helps to overcome the skewed class distribu-
tion of the training data. Despite their relatively
small quantity and uneven distribution across the
gene/protein classes, including additional exter-
nal instances yields a strong boost in all mod-
els. The largest difference is observed in SVM
(∆F1 = +0.2) and CRF→SVM (∆F1 = +0.16).
Importantly, these improvements include both pre-
cision and recall.

5.3 Feature Selection
The best feature set (cf. CRF→SVM+FS in Ta-
ble 4) is determined by a greedy search using a
wrapper approach on the best model configuration
CRF→SVM. The results are depicted in Table 7.
In each iteration, the table shows the best feature
set detected in the previous iteration and the results
for each individual feature when being added to
this set. In each step, the best individual feature
is kept for the next iteration. The feature analysis
starts from the long form feature as strong base-
line. The added features are, in that order, context,
taggerglobal, and propagationall.

Overall, feature selection yields a considerable
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AHR CLI CLU COPD

Setting P R F1 P R F1 P R F1 P R F1

SVM 1.00 0.72 0.84 0.30 0.27 0.29 1.00 0.41 0.58 0.00 1.00 0.00
CRF∩SVM 1.00 0.70 0.82 0.00 0.00 0.00 1.00 0.15 0.26 1.00 1.00 1.00
HRCRF∩SVM 1.00 0.70 0.82 1.00 0.00 0.00 1.00 0.16 0.28 1.00 1.00 1.00
CRF→SVM 0.96 0.83 0.89 0.30 0.27 0.29 1.00 0.40 0.57 0.00 1.00 0.00

CRF→SVM+FS 0.93 0.98 0.95 0.50 0.09 0.15 0.99 0.84 0.91 1.00 1.00 1.00

GNAT 0.74 0.66 0.70 1.00 0.18 0.31 0.97 0.52 0.68 1.00 1.00 1.00
CRF 0.52 0.98 0.68 0.00 0.00 0.00 1.00 0.20 0.33 0.00 1.00 0.00
AcroTagger 1.00 0.60 0.75 1.00 0.82 0.90 1.00 0.00 0.00 1.00 1.00 1.00
Long form 1.00 0.96 0.98 1.00 0.09 0.17 0.99 0.80 0.88 1.00 1.00 1.00
lex 0.40 1.00 0.57 0.05 1.00 0.09 0.89 1.00 0.94 0.00 1.00 0.00

HF MOX PLS SAH

Setting P R F1 P R F1 P R F1 P R F1

SVM 0.25 1.00 0.40 0.87 0.44 0.58 0.14 1.00 0.25 0.00 0.00 0.00
CRF∩SVM 1.00 0.00 0.00 1.00 0.39 0.56 1.00 1.00 1.00 1.00 0.00 0.00
HRCRF∩SVM 1.00 0.00 0.00 1.00 0.39 0.56 0.20 1.00 0.33 1.00 0.00 0.00
CRF→SVM 0.25 1.00 0.40 0.91 0.63 0.74 0.50 1.00 0.67 1.00 0.00 0.00

CRF→SVM+FS 1.00 0.00 0.00 1.00 0.37 0.54 0.00 0.00 0.00 1.00 0.00 0.00

GNAT 1.00 0.00 0.00 0.38 0.08 0.14 0.00 0.00 0.00 0.00 0.00 0.0
CRF 0.00 0.00 0.00 0.43 0.90 0.59 0.14 1.00 0.25 1.00 0.50 0.67
AcroTagger 0.33 1.00 0.50 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.60 0.75
Long form 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
lex 0.01 1.00 0.02 0.22 1.00 0.36 0.00 1.00 0.01 0.01 1.00 0.03

Table 5: Results for the eight genes/proteins and results for our different recognition schemes.

randomly sampled +instance generation
P R F1 ∆P ∆R ∆F1

SVM 0.73 0.25 0.38 +0.08 +0.20 +0.20
CRF∩SVM 1.00 0.17 0.29 -0.01 +0.09 +0.13
HRCRF∩SVM 0.97 0.18 0.30 -0.02 +0.09 +0.12
CRF→SVM 0.79 0.32 0.46 +0.05 +0.17 +0.16

CRF→SVM+FS 0.99 0.60 0.75 -0.02 +0.14 +0.09

Table 6: Impact of increasing the randomly sampled training set by adding manually curated additional
positive instances (+instance generation), measured in terms of the increase in precision, recall and F1

(∆P, ∆R, ∆F1).

boost in recall, while precision remains almost con-
stant. Surprisingly, the unigrams feature has a par-
ticularly strong negative impact on overall perfor-
mance.

While the global information contributed by the
CRF turns out very valuable, accounting for most
of the improvement in recall, local tagger informa-
tion is widely superseded by other features. Like-
wise, the abbreviation feature does not provide any
added value to the model beyond what is known
from the long form feature.

Comparing the different feature propagation
strategies, we observe that propagationall outper-
forms propagationfirst.

5.4 Discussion
Our experiments show that the phenomena inves-
tigated pose a challenge to all gene recognition
paradigms currently available in the literature, i. e.,
dictionary-based, machine-learning-based (e. g. us-
ing a CRF), and classification-based filtering.

Our results indicate that stacking different meth-
ods suffers from a low recall in early steps of the
workflow. Instead, a greedy approach that consid-
ers all occurrences of an abbreviation as input to
a filtering approach yields the best performance.
Incorporating information from a CRF as features
into a SVM outperforms all baselines at very high
levels of precision; however, the recall still leaves
room for improvement.
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Iter. Feature Set P R F1 ∆F1

1 long form 0.98 0.65 0.78

+propagation1st 0.98 0.65 0.78 +0.00
+propagationall 0.98 0.65 0.78 +0.00

+taggerlocal 0.72 0.81 0.76 -0.02
+taggerglobal 0.55 0.79 0.65 -0.13

+context 0.98 0.67 0.79 +0.01
+abbreviation 0.98 0.65 0.78 +0.00

+unigrams 0.71 0.43 0.53 -0.25

2 long form
+context 0.98 0.67 0.79

+propagation1st 0.98 0.67 0.79 +0.00
+propagationall 0.96 0.70 0.81 +0.02

+taggerlocal 0.98 0.70 0.82 +0.03
+taggerglobal 0.97 0.72 0.83 +0.04

+abbreviation 0.98 0.67 0.80 +0.01
+unigrams 0.77 0.39 0.52 -0.27

3 long form
+context

+taggerglobal 0.97 0.72 0.83

+propagation1st 0.97 0.71 0.82 -0.01
+propagationall 0.97 0.74 0.84 +0.01

+taggerlocal 0.97 0.72 0.82 -0.01
+abbreviation 0.97 0.72 0.82 -0.01

+unigrams 0.77 0.44 0.56 -0.27

4 long form
+context

+taggerglobal
+propagationall 0.97 0.74 0.84

+taggerlocal 0.90 0.66 0.76 -0.08
+abbreviation 0.97 0.74 0.84 -0.00

+unigrams 0.80 0.49 0.61 -0.23

Table 7: Greedy search for best feature combina-
tion in CRF→SVM (incl. additional positives).

In a feature selection study, we were able to show
a largely positive overall impact of features that
extend local contextual information as commonly
applied by state-of-the-art CRF approaches. This
ranges from larger context windows for collecting
contextual information over abstract-level features
to feature propagation strategies. However, feature
selection is not equally effective in all individual
classes (cf. Table 5).

The benefits due to feature propagation indi-
cate that several instances of the same abbreviation
in one abstract should not be considered indepen-
dently of one another, although we could not verify
the intuition that the first mention of an abbrevia-
tion introduces particularly valuable information
for classification.

Overall, our results seem encouraging as the ma-
chinery and the features used are in general suc-

cessful in determining whether an abbreviation ac-
tually denotes a gene/protein or not. The best pre-
cision/recall balance is obtained by adding CRF
information as features into the classifier.

As we have shown in the cross-entity experi-
ment setting, the system is capable of generalizing
to other unseen entities. For a productive system,
we assume our workflow to be applied to specific
abbreviations such that the performance on other
entities (and therefore on other corpora) is not sub-
stantially influenced.

6 Conclusions and Outlook

The work reported in this paper was motivated from
the practical need for an effective filtering method
for recognizing genes/proteins from highly ambigu-
ous abbreviations. To the best of our knowledge,
this is the first approach to tackle gene/protein
recognition from ambiguous abbreviations in a
systematic manner without being specific for the
particular instances of ambiguous gene/protein
homonyms considered.

The proposed method has been proven to allow
for an improvement in recognition performance
when added to an existing NER workflow. Despite
being restricted to eight entities so far, our approach
has been evaluated in a strict cross-entity manner,
which suggests sufficient generalization power to
be extended to other genes as well.

In future work, we plan to extend the data set
to prove the generalizability on a larger scale and
on an independent test set. Furthermore, an inclu-
sion of the features presented in this paper into the
CRF will be evaluated. Moreover, assessing the
impact of the global features that turned out benefi-
cial in this paper on other gene/protein inventories
seems an interesting path to explore. Finally, we
will investigate the prospects of our approach in an
actual black-box evaluation setting for information
retrieval.

Acknowledgements

Roman Klinger has been funded by the “It’s
OWL” project (“Intelligent Technical Systems
Ostwestfalen-Lippe”, http://www.its-owl.
de/), a leading-edge cluster of the German Min-
istry of Education and Research. We thank Jörg
Hakenberg and Philippe Thomas for their support
in performing the baseline results with GNAT. Ad-
ditionally, we thank the reviewers of this paper for
their very helpful comments.

125



References
Hisham Al-mubaid. 2006. Biomedical term disam-

biguation: An application to gene-protein name dis-
ambiguation. In In IEEE Proceedings of ITNG06.

Judith Bandy, David Milward, and Sarah McQuay.
2009. Mining protein-protein interactions from pub-
lished literature using linguamatics i2e. Methods
Mol Biol, 563:3–13.

Steffen Bickel, Ulf Brefeld, Lukas Faulstich, Jörg Hak-
enberg, Ulf Leser, Conrad Plake, and Tobias Schef-
fer. 2004. A support vector machine classifier for
gene name recognition. In In Proceedings of the
EMBO Workshop: A Critical Assessment of Text
Mining Methods in Molecular Biology.

Juliane Fluck, Heinz Theodor Mevissen, Marius Os-
ter, and Martin Hofmann-Apitius. 2007. ProMiner:
Recognition of Human Gene and Protein Names
using regularly updated Dictionaries. In Proceed-
ings of the Second BioCreative Challenge Evalua-
tion Workshop, pages 149–151, Madrid, Spain.

William A. Gale, Kenneth W. Church, and David
Yarowsky. 1992. One sense per discourse. In Pro-
ceedings of the Workshop on Speech and Natural
Language, pages 233–237, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Sylvain Gaudan, Harald Kirsch, and Dietrich Rebholz-
Schuhmann. 2005. Resolving abbreviations to their
senses in medline. Bioinformatics, 21(18):3658–
3664.

Jörg Hakenberg, Conrad Plake, Robert Leaman,
Michael Schroeder, and Graciela Gonzalez. 2008.
Inter-species normalization of gene mentions with
GNAT. Bioinformatics, 24(16):i126–i132, Aug.

Jörg Hakenberg, Martin Gerner, Maximilian Haeus-
sler, Ills Solt, Conrad Plake, Michael Schroeder,
Graciela Gonzalez, Goran Nenadic, and Casey M.
Bergman. 2011. The GNAT library for local and
remote gene mention normalization. Bioinformatics,
27(19):2769–2771, Oct.

Daniel Hanisch, Juliane Fluck, Heinz-Theodor Mevis-
sen, and Ralf Zimmer. 2003. Playing biology’s
name game: identifying protein names in scientific
text. Pac Symp Biocomput, pages 403–414.

Matthias Hartung and Matthias Zwick. 2014. A cor-
pus for the development of gene/protein recognition
from rare and ambiguous abbreviations. Bielefeld
University. doi:10.4119/unibi/2673424.

Antonio J Jimeno-Yepes, Bridget T McInnes, and
Alan R Aronson. 2011. Exploiting mesh indexing
in medline to generate a data set for word sense dis-
ambiguation. BMC bioinformatics, 12(1):223.

J-D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii. 2003. Ge-
nia corpus–semantically annotated corpus for bio-
textmining. Bioinformatics, 19 Suppl 1:i180–i182.

Roman Klinger, Christoph M. Friedrich, Juliane Fluck,
and Martin Hofmann-Apitius. 2007. Named
Entity Recognition with Combinations of Condi-
tional Random Fields. In Proceedings of the Sec-
ond BioCreative Challenge Evaluation Workshop,
Madrid, Spain, April.

Cheng-Ju Kuo, Yu-Ming Chang, Han-Shen Huang,
Kuan-Ting Lin, Bo-Hou Yang, Yu-Shi Lin, Chun-
Nan Hsu, and I-Fang Chung. 2007. Rich feature
set, unication of bidirectional parsing and dictionary
filtering for high f-score gene mention tagging. In
Proceedings of the Second BioCreative Challenge
Evaluation Workshop, Madrid, Spain, April.

Robert Leaman and Graciela Gonzalez. 2008. Ban-
ner: An executable survey of advances in biomed-
ical named entity recognition. In Russ B. Altman,
A. Keith Dunker, Lawrence Hunter, Tiffany Murray,
and Teri E. Klein, editors, Pacific Symposium on Bio-
computing, pages 652–663. World Scientific.

Vladimir I. Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. So-
viet Physics Doklady, 10:707–710.

Tomohiro Mitsumori, Sevrani Fation, Masaki Mu-
rata, Kouichi Doi, and Hirohumi Doi. 2005.
Gene/protein name recognition based on support
vector machine using dictionary as features. BMC
Bioinformatics, 6 Suppl 1:S8.

Alexander A. Morgan, Zhiyong Lu, Xinglong Wang,
Aaron M. Cohen, Juliane Fluck, Patrick Ruch, Anna
Divoli, Katrin Fundel, Robert Leaman, Jrg Haken-
berg, Chengjie Sun, Heng-hui Liu, Rafael Torres,
Michael Krauthammer, William W. Lau, Hongfang
Liu, Chun-Nan Hsu, Martijn Schuemie, K Bretonnel
Cohen, and Lynette Hirschman. 2008. Overview of
biocreative ii gene normalization. Genome Biol, 9
Suppl 2:S3.

Naoaki Okazaki, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2010. Building a high-quality sense inventory
for improved abbreviation disambiguation. Bioinfor-
matics, 26(9):1246–1253, May.

Martijn J. Schuemie, Ning Kang, Maarten L. Hekkel-
man, and Jan A. Kors. 2010. Genee: gene and pro-
tein query expansion with disambiguation. Bioinfor-
matics, 26(1):147–148, Jan.

Ariel S. Schwartz and Marti A. Hearst. 2003. A simple
algorithm for identifying abbreviation definitions in
biomedical text. Pac Symp Biocomput, pages 451–
462.

Burr Settles. 2005. Abner: an open source tool for au-
tomatically tagging genes, proteins and other entity
names in text. Bioinformatics, 21(14):3191–3192,
Jul.

Larry Smith, Lorraine K. Tanabe, Rie Johnson nee J.
Ando, Cheng-Ju J. Kuo, I-Fang F. Chung, Chun-
Nan N. Hsu, Yu-Shi S. Lin, Roman Klinger,

126



Christoph M. Friedrich, Kuzman Ganchev, Man-
abu Torii, Hongfang Liu, Barry Haddow, Craig A.
Struble, Richard J. Povinelli, Andreas Vlachos,
William A. Baumgartner, Lawrence Hunter, Bob
Carpenter, Richard Tzong-Han T. Tsai, Hong-Jie J.
Dai, Feng Liu, Yifei Chen, Chengjie Sun, Sophia Ka-
trenko, Pieter Adriaans, Christian Blaschke, Rafael
Torres, Mariana Neves, Preslav Nakov, Anna Divoli,
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Abstract

The vast array of medical text data repre-
sents a valuable resource that can be an-
alyzed to advance the state of the art in
medicine. Currently, text mining meth-
ods are being used to analyze medical re-
search and clinical text data. Some of the
main challenges in text analysis are high
dimensionality and noisy data. There is a
need to develop novel feature transforma-
tion methods that help reduce the dimen-
sionality of data and improve the perfor-
mance of machine learning algorithms. In
this paper we present a feature transfor-
mation method named FFTM. We illus-
trate the efficacy of our method using lo-
cal term weighting, global term weighting,
and Fuzzy clustering methods and show
that the quality of text analysis in medical
text documents can be improved. We com-
pare FFTM with Latent Dirichlet Alloca-
tion (LDA) by using two different datasets
and statistical tests show that FFTM out-
performs LDA.

1 Introduction

The exponential growth of medical text data
makes it difficult to extract useful information in a
structured format. Some important features of text
data are sparsity and high dimensionality. This
means that while there may be a large number
of terms in most of the documents in a corpus,
any one document may contain a small percentage
of those terms (Aggarwal and Zhai, 2012). This
characteristic of medical text data makes feature
transformation an important step in text analysis.
Feature transformation is a pre-processing step in
many machine-learning methods that is used to
characterize text data in terms of a different num-
ber of attributes in lower dimensions. This tech-
nique has a direct impact on the quality of text

mining methods. Topic models such as LDA has
been used as one of popular feature transforma-
tion techniques (Ramage et al., 2010). However,
fuzzy clustering methods, particularly in combina-
tion with term weighting methods, have not been
explored much in medical text mining.

In this research, we propose a new method
called FFTM to extract features from free-text
data. The rest of the paper is organized in the fol-
lowing sections. In the section 2, we review re-
lated work. Section 3 contains details about our
method. Section 4 describes our experiments, per-
formance evaluation, and discussions of our re-
sults. Finally we present a summary, limitations,
and future work in the last section.

2 Related Work

Text analysis is an important topic in medical in-
formatics that is challenging due to high sparse
dimensionality data. Big dimension and diver-
sity of text datasets have been motivated medi-
cal researchers to use more feature transforma-
tion methods. Feature transformation methods en-
capsulate a text corpus in smaller dimensions by
merging the initial features. Topic model is one of
popular feature transformation methods. Among
topic models, LDA (Blei et al., 2003) has been
considered more due to its better performance
(Ghassemi et al., 2012; Lee et al., 2010).

One of methods that has not been fully con-
sidered in medical text mining is Fuzzy cluster-
ing. Although most of Fuzzy Clusterings work
in medical literature is based on image analysis
(Saha and Maulik, 2014; Cui et al., 2013; Beevi
and Sathik, 2012), a few work have been done
in medical text mining (Ben-Arieh and Gullipalli,
2012; Fenza et al., 2012) by using fuzzy cluster-
ing. The main difference between our method and
other document fuzzy clustering such as (Singh et
al., 2011) is that our method use fuzzy clustering
and word weighting as a pre-processing step for
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feature transformation before implementing any
classification and clustering algorithms; however,
other methods use fuzzy clustering as a final step
to cluster the documents. Our main contribution
is to improve the quality of input data to improve
the output of fuzzy clustering. Among fuzzy clus-
tering methods, Fuzzy C-means (Bezdek, 1981)
is the most popular one (Bataineh et al., 2011).
In this research, we propose a novel method that
combines local term weighting and global term
weighting with fuzzy clustering.

3 Method

In this section, we detail our Fuzzy Feature Trans-
formation Method (FFTM) and describe the steps.
We begin with a brief review of LDA.

LDA is a topic model that can extract hidden
topics from a collection of documents. It assumes
that each document is a mixture of topics. The out-
put of LDA are the topic distributions over docu-
ments and the word distributions over topics. In
this research, we use the topics distributions over
documents. LDA uses term frequency for local
term weighting.

Now we introduce FFTM concepts and nota-
tions. This model has three main steps includ-
ing Local Term Weighting (LTW), Global Term
Weighting (GTM), and Fuzzy Clustering (Algo-
rithm 1). In this algorithm, each step is the out
put of each step will be the input of the next step.

Step 1: The first step is to calculate LTW.
Among different LTW methods we use term fre-
quency as a popular method. Symbol fij defines
the number of times term i happens in document
j.We have n documents and m words.Let

b(fij) =

{
1 fij > 0
0 fij = 0

(1)

pij =
fij∑
j fij

(2)

The outputs of this step are b(fij), fij , and pij .
We use them as inputs for the second step.

Step 2: The next step is to calculate GTW. We
explore four GTW methods in this paper includ-
ing Entropy, Inverse Document Frequency (IDF),
Probabilistic Inverse Document Frequency (Pro-
bIDF), and Normal(Table 1).

IDF assigns higher weights to rare terms and
lower weights to common terms (Papineni, 2001).
ProbIDF is similar to IDF and assigns very low

Algorithm 1 FFTM algorithm

Functions:E():Entropy;I():IDF;PI():ProbIDF;
NO():Normal; FC():Fuzzy Clustering.
Input: Document Term Matrix
Output: Clustering membership value (µij)
for all documents and clusters.

1: Remove stop words
Step 1: Calculate LTW

2: fori = 1 to ndo
3: forj = 1 to mdo
4: Calculate fij , b(fij), pij

5: endfor
6: endfor

Step 2: Calculate GTW
7: fori = 1 to ndo
8: forj = 1 to mdo
9: Execute E(pij ,n),I(fij ,n),PI(b(fij),n),

NO(fij ,n)
10: endfor
11: endfor

Step 3: Perform Fuzzy Clustering
12: Execute FC(E),FC(I),FC(PI),FC(NO)

Table1: GTW Methods

Name Formula

Entropy 1 +
∑

j
pij log2(pij)

log2 n

IDF log2
n∑
j

fij

ProbIDF log2

n−
∑

j
b(fij)∑

j
b(fij)

Normal 1√∑
j

f2
ij

negative weight for the terms happen in every doc-
ument (Kolda, 1998). In Entropy, it gives higher
weight for the terms happen less in few documents
(Dumais, 1992). Finally, Normal is used to correct
discrepancies in document lengths and also nor-
malize the document vectors. The outputs of this
step are the inputs of the last step.

Step 3: Fuzzy clustering is a soft clustering
technique that finds the degree of membership for
each data point in each cluster, as opposed to
assigning a data point only one cluster. Fuzzy
clustering is a synthesis between clustering and
fuzzy set theory. Among fuzzy clustering meth-
ods, Fuzzy C-means (FCM) is the most popular
one and its goal is to minimize an objective func-
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tion by considering constraints:

Min Jq(µ, V,X) =
c∑

i=1

n∑
j=1

(µij)qD2
ij (3)

subject to:
0 ≤ µij ≤ 1; (4)

i ∈ {1, .., c} and j ∈ {1, ..., n} (5)
c∑

i=1

µij = 1 (6)

0 <
n∑

j=1

µij < n; (7)

Where:

n= number of data
c= number of clusters
µij= membership value
q= fuzzifier, 1 < q ≤ ∞
V = cluster center vector

Dij = d(xj , vi)= distance between xj and vi

By optimizing eq.3:

µij =
1∑c

k=1(
Dij

Dkj
)

2
q−1

(8)

vi =
∑n

j=1(µij)qxj∑n
j=1(µij)q

(9)

The iterations in the clustering algorithms con-
tinue till the the maximum changes in µij becomes
less than or equal to a pre-specified threshold. The
computational time complexity is O(n). We use
µij as the degree of clusters’ membership for each
document.

4 Experimental Results

In this section, we evaluate FFTM against LDA
using two measures: document clustering inter-
nal metrics and document classification evalua-
tion metrics by using one available text datasets.
We use Weka1for classification evaluation, MAL-
LET2package with its default setting for imple-
menting LDA, Matlab fcm package3for imple-
menting FCM clustering, and CVAP Matlab pack-
age4for clustering validation.

1http://www.cs.waikato.ac.nz/ml/weka/
2http://mallet.cs.umass.edu/
3http://tinyurl.com/kl33w67
4http://tinyurl.com/kb5bwnm

4.1 Datasets
We leverage two available datasets in this re-
search. Our first test dataset called Deidentified
Medical Text5 is an unlabeled corpus of 2434
nursing notes with 12,877 terms after removing
stop words. The second dataset 6 is a labeled cor-
pus of English scientific medical abstracts from
Springer website. It is included 41 medical jour-
nals ranging from Neurology to Radiology. In this
research, we use the first 10 journals including:
Arthroscopy, Federal health standard sheet, The
anesthetist, The surgeon, The gynecologist, The
dermatologist, The internist, The neurologist, The
Ophthalmology, The orthopedist, and The pathol-
ogist. In our experiments we select three subsets
from the above journals, the first two with 4012
terms and 171 documents, first five with 14189
terms and 1527 documents, and then all ten re-
spectively with 23870 terms and 3764 documents
to track the performance of FFTM and LDA by
increasing the number of documents and labels.

4.2 Document Clustering
The first evaluation comparing FFTM with LDA is
document clustering by using the first dataset. In-
ternal and external validation are two major meth-
ods for clustering validation; however, compari-
son between these two major methods shows that
internal validation is more more precise (Rendón
et al., 2011). We evaluate different number of fea-
tures (topics) and clusters by using two internal
clustering validation methods including Silhouette
index and Calinski-Harabasz index using K-means
with 500 iterations. Silhouette index shows that
how closely related are objects in a cluster and
how distinct a cluster from other other clusters.
The higher value means the better result.The Sil-
houette index (S) is defined as:

S(i) =
(b(i)− a(i))

Max{a(i), b(i)} (10)

Where a(i) is the average dissimilarity of sam-
ple i with the same data in a cluster and b(i) is the
minimum average dissimilarity of sample i with
other data that are not in the same cluster.

Calinski-Harabasz index (CH) valuates the
cluster validity based on the average between- and
within-cluster sum of squares.It is defined as:

5http://tinyurl.com/kfz2hm4
6http://tinyurl.com/m2c8se6
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Figure1: Clustering Validation with Silhouette Index
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Figure2: Clustering Validation with Calinski-Harabasz Index

CH =
trace(SB)
trace(SW )

.
np − 1
np − k (11)

Where (SB) is the between-cluster scatter ma-
trix, (SW ) the internal scatter matrix, np is the
number of clustered samples, and k is the number
of clusters. Higher value indicates a better clus-
tering. We track the performance of both FFTM
and LDA using different number of clusters rang-
ing from 2 to 8 with different number of features
including 50, 100, and 150. Both Silhouette in-
dex and Calinski-Harabasz index show that FFTM
is the best method with all ranges of features and
clusters (Figures 1 and 2). The gap between FFTM
and LDA does not change a lot by using different
number of features and clusters. LDA has the low-
est performance and Normal has the best perfor-
mance among GTW methods in different ranges of
features and clusters. According to the paired dif-
ference test, the improvement of FFTM over LDA
is statistically significant with a p− value < 0.05
using the two internal clustering validation meth-
ods.

4.3 Document Classification

The second evaluation measure is document clas-
sification by using the second datasest. We evalu-
ate different number of classes and features (top-
ics) with accuracy, F-measure, and ROC using
Random Forest. Accuracy is the portion of true re-
sults in a dataset. F-measure is another measure of
classification evaluation that considers both preci-
sion and recall. ROC curves plot False Positive on
the X axis vs. True Positive on the Y axis to find
the trade off between them; therefore, the closer to
the upper left indicates better performance. We
assume more documents and classes have more
topics;therefore, we choose 100 features for two
classes, 150 features for five classes, and 200 fea-
tures for ten classes. In addition, we use 10 cross
validation as test option.

This experiment shows that FFTM has the best
performance in different number of features and
labels (Table 2). LDA has the lowest performance
and the average performance of ProbIDF has the
best among GTW methods in all ranges of features
and clusters. According to the paired difference
test, the improvement of FFTM over LDA is sta-
tistically significant with a p− value < 0.05.
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Table2: The Second Dataset Classification Performance

Method #Features # Labels Acc % F-Measure ROC
FFTM(Entropy) 100 2 96.49 0.959 0.982
FFTM(IDF) 100 2 98.24 0.982 0.996
FFTM(ProIDF) 100 2 97.66 0.977 0.987
FFTM(Normal) 100 2 92.39 0.912 0.971
LDA 100 2 90.06 0.9 0.969
FFTM(Entropy) 150 5 71.84 0.694 0.874
FFTM(IDF) 150 5 70.79 0.686 0.859
FFTM(ProIDF) 150 5 70.39 0.674 0.859
FFTM(Normal) 150 5 68.11 0.649 0.851
LDA 150 5 66.27 0.637 0.815
FFTM(Entropy) 200 10 51.06 0.501 0.828
FFTM(IDF) 200 10 51.73 0.506 0.826
FFTM(ProIDF) 200 10 53.72 0.525 0.836
FFTM(Normal) 200 10 50.05 0.485 0.815
LDA 200 10 47.68 0.459 0.792

5 Conclusion

The explosive growth of medical text data makes
text analysis as a key requirement to find patterns
in datasets;however, the typical high dimensional-
ity of such features motivates researchers to utilize
dimension reduction techniques such as LDA. Al-
though LDA has been considered more recently in
medical text analysis (Jimeno-Yepes et al., 2011),
fuzzy clustering methods such as FCM has not
been used in medical text clustering, but rather in
image processing. In the current study, we pro-
pose a method called FFTM to combine LTW and
GTM with Fuzzy clustering, and compare its per-
formance with that of LDA. We use different sets
of data including different number of features, dif-
ferent number of clusters, and different number of
classes.The findings of this study show that com-
bining FCM with LTW and GTW methods can
significantly improve medical documents analysis.
We conclude that different factors including num-
ber of features, number of clusters, and classes
can affect the outputs of machine learning algo-
rithms. In addition, the performance of FFTM is
improved by using GTW methods. This method
proposed in this paper may be applied to other
medical documents to improve text analysis out-
puts. One limitation of this paper is that we use
one clustering method, one classification method,
and two internal clustering validation methods for
evaluation. Our future direction is to explore more
machine learning algorithms and clustering vali-
dation methods for evaluation and also other fuzzy
clustering algorithms for feature transformation.
The main goal of future research is to present an
efficient and effective medical topic model using

fuzzy set theory.
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Abstract

Agrammatic aphasia is a serious language
impairment which can occur after a stroke
or traumatic brain injury. We present
an automatic method for analyzing apha-
sic speech using surface level parse fea-
tures and context-free grammar produc-
tion rules. Examining these features in-
dividually, we show that we can uncover
many of the same characteristics of agram-
matic language that have been reported
in studies using manual analysis. When
taken together, these parse features can
be used to train a classifier to accurately
predict whether or not an individual has
aphasia. Furthermore, we find that the
parse features can lead to higher classifica-
tion accuracies than traditional measures
of syntactic complexity. Finally, we find
that a minimal amount of pre-processing
can lead to better results than using either
the raw data or highly processed data.

1 Introduction

After a stroke or head injury, individuals may
experience aphasia, an impairment in the ability
to comprehend or produce language. The type
of aphasia depends on the location of the lesion.
However, even two patients with the same type
of aphasia may experience different symptoms. A
careful analysis of narrative speech can reveal spe-
cific patterns of impairment, and help a clinician
determine whether an individual has aphasia, what
type of aphasia it is, and how the symptoms are
changing over time.

In this paper, we present an automatic method
for the analysis of one type of aphasia, agram-
matic aphasia. characterized by the omission of
function words, the omission or substitution of
morphological markers for person and number, the

absence of verb inflection, and a relative increase
in the number of nouns and decrease in the number
of verbs (Bastiaanse and Thompson, 2012). There
is often a reduction in the variety of different syn-
tactic structures used, as well as a reduction in the
complexity of those structures (Progovac, 2006).
There may also be a strong tendency to use the
canonical word order of a language, for example
subject-verb-object in English (Progovac, 2006).

Most studies of narrative speech in agrammatic
aphasia are based on manually annotated speech
transcripts. This type of analysis can provide de-
tailed and accurate information about the speech
patterns that are observed. However, it is also very
time consuming and requires trained transcribers
and annotators. Studies are necessarily limited to
a manageable size, and the level of agreement be-
tween annotators can vary.

We propose an automatic approach that uses in-
formation from statistical parsers to examine prop-
erties of narrative speech. We extract context-
free grammar (CFG) production rules as well as
phrase-level features from syntactic parses of the
speech transcripts. We show that this approach can
detect many features which have been previously
reported in the aphasia literature, and that classifi-
cation of agrammatic patients and controls can be
achieved with high accuracy.

We also examine the effects of including speech
dysfluencies in the transcripts. Dysfluencies and
non-narrative words are usually removed from the
transcripts as a pre-processing step, but we show
that by retaining some of these items, we can ac-
tually achieve a higher classification accuracy than
by using the completely clean transcripts.

Finally, we investigate whether there is any ben-
efit to using the parse features instead of more tra-
ditional measures of syntactic complexity, such as
Yngve depth or mean sentence length. We find
that the parse features convey more information
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about the specific syntactic structures being pro-
duced (or avoided) by the agrammatic speakers,
and lead to better classification accuracies.

2 Related Work

2.1 Syntactic analysis of agrammatic
narrative speech

Much of the previous work analyzing narrative
speech in agrammatic aphasia has been performed
manually. One widely used protocol is called
Quantitative Production Analysis (QPA), devel-
oped by Saffran et al. (1989). QPA can be used to
measure morphological content, such as whether
determiners and verb inflections are produced in
obligatory contexts, as well as structural complex-
ity, such as the number of embedded clauses per
sentence. Subsequent studies have found a num-
ber of differences between normal and agrammatic
speech using QPA (Rochon et al., 2000). Another
popular protocol called the Northwestern Narra-
tive Language Analysis (NNLA) was introduced
by Thompson et al. (1995). This protocol analyzes
each utterance at five different levels, and focuses
in particular on the production of verbs and verb
argument structure.

Perhaps more analogous to our work here,
Goodglass et al. (1994) conducted a detailed ex-
amination of the syntactic constituents used by
aphasic patients and controls. In that study, utter-
ances were grouped according to how many syn-
tactic constituents they contained. They found
that agrammatic participants were more likely to
produce single-constituent utterances, especially
noun phrases, and less likely to produce subor-
dinate clauses. They also found that agrammatic
speakers sometimes produced two-constituent ut-
terances consisting of only a subject and object,
with no verb. This pattern was never observed in
control speech.

A much smaller body of work explores the use
of computational techniques to analyze agramma-
tism. Holmes and Singh (1996) analyzed conver-
sational speech from aphasic speakers and con-
trols. Their features mostly included measures
of vocabulary richness and frequency counts of
various parts-of-speech (e.g. nouns, verbs); how-
ever they also measured “clause-like semantic unit
rate”. This feature was intended to measure the
speaker’s ability to cluster words together, al-
though it is not clear what the criteria for segment-
ing clause-like units were or whether it was done

manually or automatically. Nonetheless, it was
found to be one of the most important variables
for distinguishing between patients and controls.

MacWhinney et al. (2011) presented several ex-
amples of how researchers can use the Aphasia-
Bank1 database and associated software tools to
conduct automatic analyses (although the tran-
scripts are first hand-coded for errors by experi-
enced speech-language pathologists). Specifically
with regards to syntax, they calculated several fre-
quency counts and ratios for different parts-of-
speech and bound morphemes. There was one
extension beyond treating each word individually:
this involved searching for pre-defined colloca-
tions such as once upon a time or happily ever af-
ter, which were found to occur more rarely in the
patient transcripts than in the control transcripts.

We present an alternative, automated method of
analysis. We do not attempt to fully replicate the
results of the manual studies, but rather provide
a complementary set of features which can indi-
cate grammatic abnormalities. Unlike previous
computational studies, we attempt to move beyond
single-word analysis and examine which patterns
of syntax might indicate agrammatism.

2.2 Using parse features to assess
grammaticality

Syntactic complexity metrics derived from parse
trees have been used by various researchers in
studies of mild cognitive impairment (Roark et al.,
2011), autism (Prud’hommeaux et al., 2011), and
child language development (Sagae et al., 2005;
Hassanali et al., 2013). Here we focus specifically
on the use of CFG production rules as features.

Using the CFG production rules from statistical
parsers as features was first proposed by Baayen
et al. (1996), who applied the features to an au-
thorship attribution task. More recently, similar
features have been widely used in native language
identification (Wong and Dras, 2011; Brooke and
Hirst, 2012; Swanson and Charniak, 2012). Per-
haps most relevant to the task at hand, CFG pro-
ductions as well as other parse outputs have proved
useful for judging the grammaticality and fluency
of sentences. For example, Wong and Dras (2010)
used CFG productions to classify sentences from
an artificial error corpus as being either grammat-
ical or ungrammatical.

Taking a different approach, Chae and Nenkova

1http://talkbank.org/AphasiaBank/
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Agrammatic
(N = 24)

Control
(N = 15)

Male/Female 15/9 8/7
Age (years) 58.1 (10.6) 63.3 (6.4)
Education (years) 16.3 (2.5) 16.4 (2.4)

Table 1: Demographic information. Numbers are
given in the form: mean (standard deviation).

(2009) calculated several surface features based on
the output of a parser, such as the length and rel-
ative proportion of different phrase types. They
used these features to distinguish between human
and machine translations, and to determine which
of a pair of translations was the more fluent. How-
ever, to our knowledge there has been no work us-
ing parser outputs to assess the grammaticality of
speech from individuals with post-stroke aphasia.

3 Data

3.1 Participants

This was a retrospective analysis of data col-
lected by the the Aphasia and Neurolinguistics Re-
search Laboratory at Northwestern University. All
agrammatic participants had experienced a stroke
at least 1 year prior to the narrative sample col-
lection. Demographic information for the partic-
ipants is given in Table 1. There is no significant
(p< 0.05) difference between the patient and con-
trol groups on age or level of education.

3.2 Narrative task

To obtain a narrative sample, the participants were
asked to relate the well-known fairy tale Cin-
derella. Each participant was first given a word-
less picture book of the story to look through. The
book was then removed, and the participant was
asked to tell the story in his or her own words. The
examiner did not interrupt or ask questions.

The narratives were recorded and later tran-
scribed following the NNLA protocol. The data
was segmented into utterances based on syntac-
tic and prosodic cues. Filled pauses, repetitions,
false starts, and revisional phrases (e.g. I mean)
were all placed inside parentheses. The average
length of the raw transcripts was 332 words for
agrammatic participants and 387 words for con-
trols; when the non-narrative words were excluded
the average length was 194 words for the agram-
matic group and 330 for controls.

4 Methods

4.1 Parser Features
We consider two types of features: CFG pro-
duction rules and phrase-level statistics. For the
CFG production rules, we use the Charniak parser
(Charniak, 2000) trained on Wall Street Journal
data to parse each utterance in the transcript and
then extract the set of non-lexical productions.
The total number of types of productions is large,
many of them occurring very infrequently, so we
compile a list of the 50 most frequently occurring
productions in each of the two groups (agrammatic
and controls) and use the combined set as the set
of features. The feature values can be binary (does
a particular production rule appear in the narrative
or not?) or integer (how many times does a rule oc-
cur?). The CFG non-terminal symbols follow the
Penn Treebank naming conventions.

For our phrase-level statistics, we use a subset
of the features described by Chae and Nenkova
(2009), which are related to the incidence of dif-
ferent phrase types. We consider three different
phrase types: noun phrases, verb phrases, and
prepositional phrases. These features are defined
as follows:

• Phrase type proportion: Length of each
phrase type (including embedded phrases),
divided by total narrative length.
• Average phrase length: Total number of

words in a phrase type, divided by number
of phrases of that type.
• Phrase type rate: Number of phrases of a

given type, divided by total narrative length.

Because we are judging the grammaticality of
the entire narrative, we normalize by narrative
length (rather than sentence length, as in Chae and
Nenkova’s study). These features are real-valued.

We first perform the analysis on the transcribed
data with the dysfluencies removed, labeled the
“clean” dataset. This is the version of the tran-
script that would be used in the manual NNLA
analysis. However, it is the result of human ef-
fort and expertise. To test the robustness of the
system on data that has not been annotated in this
way, we also use the “raw” dataset, with no dys-
fluencies removed (i.e. including everything inside
the parentheses), and an “auto-cleaned” dataset,
in which filled pauses are automatically removed
from the raw transcripts. We also use a simple al-
gorithm to remove “stutters” and false starts, by
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removing non-word tokens of length one or two
(e.g. C- C- Cinderella would become simply Cin-
derella). This provides a more realistic view of the
performance of our system on real data. We also
hypothesize that there may be important informa-
tion to be found in the dysfluent speech segments.

4.2 Feature weighting and selection

We assume that some production rules will be
more relevant to the classification than others,
and so we want to weight the features accord-
ingly. Using term frequency–inverse document
frequency (tf-idf) would be one possibility; how-
ever, the tf-idf weights do not take into account
any class information. Supervised term weight-
ing (STW), has been proposed by Debole and Se-
bastiani (2004) as an alternative to tf-idf for text
classification tasks. In this weighting scheme, fea-
ture weights are assigned using the same algo-
rithm that is used for feature selection. For ex-
ample, one way to select features is to rank them
by their information gain (InfoGain). In STW,
the InfoGain value for each feature is also used
to replace the idf term. This can be expressed as
W (i,d) = df(i,d)× InfoGain(i), where W (i,d) is
the weight assigned to feature i in document d,
df(i,d) is the frequency of occurrence of feature i
in document d, and InfoGain(i) is the information
gain of feature i across all the training documents.

We considered two different methods of STW:
weighting by InfoGain and weighting by gain ratio
(GainRatio). The methods were also used as fea-
ture selection, since any feature that was assigned
a weight of zero was removed from the classifi-
cation. We also consider tf-idf weights and un-
weighted features for comparison.

4.3 Syntactic complexity metrics

To compare the performance of the parse features
with more-traditional syntactic complexity met-
rics (SC metrics), we calculate the mean length of
utterance (MLU), mean length of T-unit2 (MLT),
mean length of clause (MLC), and parse tree
height. We also calculate the mean, maximum,
and total Yngve depth, which measures the pro-
portion of left-branching to right-branching in
each parse tree (Yngve, 1960). These measures
are commonly used in studies of impaired lan-
guage (e.g. Roark et al. (2011), Prud’hommeaux et

2A T-unit consists of a main clause and its attached de-
pendent clauses.

al. (2011), Fraser et al. (2013b)). We hypothesize
that the parse features will capture more informa-
tion about the specific impairments seen in agram-
matic aphasia; however, using the general mea-
sures of syntactic complexity may be sufficient for
the classifiers to distinguish between the groups.

4.4 Classification

To test whether the features can effectively distin-
guish between the agrammatic group and controls,
we use them to train and test a machine learn-
ing classifier. We test three different classifica-
tion algorithms: naive Bayes (NB), support vec-
tor machine (SVM), and random forests (RF). We
use a leave-one-out cross-validation framework, in
which one transcript is held out as a test set, and
the other transcripts form the training data. The
feature weights are calculated on the training set
and then applied to the test set (as a result, each
fold of training/testing may use different features
and feature weights). The SVM and RF algo-
rithms are tuned in a nested cross-validation loop.
The classifier is then tested on the held-out point.
This procedure is repeated across all data points,
and the average accuracy is reported.

A baseline classifier which assigns all data to
the largest class would achieve an accuracy of .62
on this classification task. For a more realistic
measure of performance, we also compare our re-
sults to the baseline accuracy that can be achieved
using only the length of the narrative as input.

5 Results

5.1 Features using clean transcripts

We first present the results for the clean tran-
scripts. Although different features may be se-
lected in each fold of the cross-validation, for sim-
plicity we show only the feature rankings on the
whole data set. Table 2 shows the top features as
ranked by GainRatio. The frequencies are given to
indicate the direction of the trend; they represent
the average frequency per narrative for each class
(agrammatic = AG and control = CT). Boldface
indicates the group with the higher frequency. As-
terisks are used to indicate the significance of the
difference between the groups.

When working with clinical data, careful exam-
ination of the features can be beneficial. By com-
paring features with previous findings in the liter-
ature on agrammatism, we can be confident that
we are measuring real effects and not just artifacts
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Rule AG
freq

CT
freq

p

1 PP→ IN NP 10.3 24.9 ∗∗∗

2 ROOT→ NP 2.9 0.2 ∗∗∗

3 NP→ DT NN POS 0.0 0.7 ∗

4 NP→ PRP$ JJ NN 0.5 0.7 ∗

5 VP→ TO VP 4.2 7.5 ∗

6 NP→ NNP 5.9 6.6
7 VP→ VB PP 1.1 2.9 ∗∗

8 VP→ VP CC VP 1.1 3.1 ∗∗

9 NP→ DT NN NN 1.0 2.7 ∗∗

10 VP→ VBD VP 0.1 0.5 ∗

11 WHADVP→WRB 0.5 1.4 ∗

12 FRAG→ NP . 0.7 0.0 ∗∗

13 NP→ JJ NN 0.7 0.0 ∗∗

14 SBAR→WHNP S 1.7 3.1 ∗

15 NP→ NP SBAR 1.6 2.5
16 S→ NP VP 7.8 16.1 ∗∗

17 NP→ PRP$ JJ NNS 0.0 0.5 ∗

18 NP→ PRP$ NN NNS 0.0 0.6 ∗

19 SBAR→WHADVP S 0.4 1.2 ∗

20 VP→ VBN PP 0.4 2.0 ∗

Table 2: Top 20 features ranked by GainRatio us-
ing the clean transcripts. (∗p< 0.05, ∗∗p< 0.005,
∗∗∗p< 0.0005).

of the parsing algorithm. This can also poten-
tially provide an opportunity to observe features of
agrammatic speech that have not been examined in
manual analyses. We examine the top-ranked fea-
tures in Table 2 in some detail, especially as they
relate to previous work on agrammatism. In par-
ticular, the top features suggest some of the fol-
lowing features of agrammatic speech:

• Reduced number of prepositional phrases.
This is suggested by feature 1, PP→ IN NP.
It is also reflected in features 7 and 20.
• Impairment in using verbs. We can see in fea-

ture 2 (ROOT → NP) that there is a greater
number of utterances consisting of only a
noun phrase. Feature 12 is also consistent
with this pattern (FRAG → NP .). We also
observe a reduced number of coordinated
verb phrases (VP→ VP CC VP).
• Omission of grammatical morphemes and

function words. The agrammatic speakers
use fewer possessives (NP→ DT NN POS).
Feature 9 indicates that the control partic-
ipants more frequently produce compound

NB SVM RF
Narrative length .62 .56 .64
Binary, no weights .87 .87 .77
Binary, tf-idf .87 .90 .85
Binary, InfoGain .82 .90 .74
Binary, GainRatio .90 .82 .79
Frequency, no weights .90 .85 .85
Frequency, tf-idf .85 .82 .77
Frequency, InfoGain .90 .90 .82
Frequncy, GainRatio .90 .92 .74
SC metrics, no weights .85 .77 .82
SC metrics, InfoGain .85 .77 .79
SC metrics, GainRatio .85 .77 .82

Table 3: Average classification accuracy using the
clean transcripts. The highest classification accu-
racy for each feature set is indicated with boldface.

nouns with a determiner (often the glass
slipper or the fairy godmother). Feature 4
also suggests some difficulty with determin-
ers, as the agrammatic participants produce
fewer nouns modified by a possessive pro-
noun and an adjective. Contrast this with fea-
ture 13, which shows agrammatic speech is
more likely to contain noun phrases contain-
ing just an adjective and a noun. For example,
in the control narratives we are more likely to
see phrases such as her godmother . . . waves
her magic wand, while in the agrammatic
narratives phrases like Cinderella had wicked
stepmother are more common.
• Reduced number of embedded clauses and

phrases. Evidence for this can be found in
the reduced number of wh-adverb phrases
(WHADVP→WRB), as well as features 14,
15, and 19.

The results of our classification experiment on
the clean data are shown in Table 3. The results
are similar for the binary and frequency features,
with the best result of .92 achieved using an SVM
classifier and frequency features, with GainRatio
weights. The best results using parse features
(.85–.92) are the same or slightly better than the
best results using SC features (.85), and both fea-
ture sets perform above baseline.

5.2 Effect of non-narrative speech

In this section we perform two additional experi-
ments, using the raw and auto-cleaned transcripts.
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Rule AG
freq.

CT
freq.

p

1 NP→ DT NN POS 0.0 0.5 ∗

2 PP→ IN NP 12.2 26.1 ∗∗∗

3 SBAR→WHADVP S 0.4 1.5 ∗

4 VP→ VBD 0.75 1.1
5 VP→ TO VP 4.3 7.3 ∗

6 S→ CC PP NP VP . 0.04 0.5 ∗

7 NP→ PRP$ JJ NNS 0.04 0.5 ∗

8 VP→ AUX VP 3.7 6.0
9 ROOT→ FRAG 4.5 0.7 ∗∗

10 ADVP→ RB 9.8 12.3
11 NP→ NNP 4.4 6.2 ∗

12 NP→ DT NN 15.0 24.1 ∗∗

13 VP→ VB PP 1.2 2.8 ∗

14 VP→ VP CC VP 1.0 2.9 ∗

15 WHADVP→WRB 0.6 1.5 ∗

16 VP→ VBN PP 0.4 2.0 ∗

17 INTJ→ UH UH 3.5 0.3 ∗

18 VP→ VBP NP 0.5 0.0 ∗

19 NP→ NNP NNP 1.5 0.5 ∗∗

20 S→ CC ADVP NP VP . 1.3 2.3

Table 4: Top 20 features ranked by GainRatio
using the raw transcripts. Bold feature numbers
indicate rules which did not appear in Table 2.
(∗p< 0.05, ∗∗p< 0.005, ∗∗∗p< 0.0005).

We discuss the differences between the selected
features in each case, and the resulting classifica-
tion accuracies.

Using the raw transcripts, we find that the rank-
ing of features is markedly different than with the
human-annotated transcripts (Table 4, bold feature
numbers). Examining these production rules more
closely, we observe some characteristics of agram-
matic speech which were not detectable in the an-
notated transcripts:

• Increased number of dysfluencies. We ob-
serve a higher number of consecutive fillers
(INTJ → UH UH) in the agrammatic data,
as well as a higher number of consecutive
proper nouns (NP → NNP NNP), usually
two attempts at Cinderella’s name. Feature
18 (VP→ VBP NP) also appears to support
this trend, although it is not immediately ob-
vious. Most of the control participants tell
the story in the past tense, and if they do
use the present tense then the verbs are of-
ten in the third-person singular (Cinderella

finds her fairy godmother). Looking at the
data, we found that feature 18 can indicate a
verb agreement error, as in he attend the ball.
However, in almost twice as many cases it in-
dicates use of the discourse markers I mean
and you know, followed by a repaired or tar-
get noun phrase.
• Decreased connection between sentences.

Feature 6 shows a canonical NP VP sentence,
preceded by a coordinate conjunction and a
prepositional phrase. Some examples of this
from the control transcripts include, And at
the stroke of midnight . . . and And in the pro-
cess . . . . The conjunction creates a connec-
tion from one utterance to the next, and the
prepositional phrase indicates the temporal
relationship between events in the story, cre-
ating a sense of cohesion. See also the similar
pattern in feature 20, representing sentence
beginnings such as And then . . . .

However, there are some features which were
highly ranked in the clean transcripts but do not
appear in Table 4. What information are we losing
by using the raw data? One issue with using the
raw transcripts is that the inclusion of filled pauses
“splits” the counts for some features. For example,
the feature FRAG→ NP . is ranked 12th using the
clean transcripts but does not appear in the top 20
when using the raw transcripts. When we examine
the transcripts, we find that the phrases that are
counted in this feature in the clean transcripts are
actually split into three features in the raw tran-
scripts: FRAG→ NP ., FRAG→ INTJ NP ., and
FRAG→ NP INTJ ..

The classification results for the raw transcripts
are given in Table 5. The results are similar to
those for the clean transcripts, although in this
case the best accuracy (.92) is achieved in three
different configurations (all using the SVM clas-
sifier). The phrase-level features out-perform the
traditional SC measures in only half the cases.

Using the auto-cleaned transcripts, we see some
similarities with the previous cases (Table 6).
However, some of the highly ranked features
which disappeared when using the raw transcripts
are now significant again (e.g. ROOT → NP,
FRAG → NP .). There are also three remain-
ing features which are significant and have not yet
been discussed. Feature 9 shows an increased use
of determiners with proper nouns (e.g. the Cin-
derella), a frank grammatical error. Feature 20
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NB SVM RF
Narrative length .51 .62 .69
Binary, no weights .87 .92 .82
Binary, tf-idf .87 .92 .72
Binary, InfoGain .85 .87 .82
Binary, GainRatio .82 .87 .85
Frequency, no weights .85 .90 .69
Frequency, tf-idf .82 .92 .90
Frequency, InfoGain .85 .74 .85
Frequncy, GainRatio .85 .74 .82
SC metrics, no weights .74 .79 .82
SC metrics, InfoGain .77 .85 .85
SC metrics, GainRatio .77 .85 .87

Table 5: Average classification accuracy using
raw transcripts. The highest classification accu-
racy for each feature set is indicated with boldface.

provides another example of a sentence fragment
with no verb. Finally, feature 19 represents an in-
creased number of sentences or clauses consist-
ing of a noun phrase followed by adjective phrase.
Looking at the transcripts, this is not generally in-
dicative of an error, but rather use of the word
okay, as in she dropped her shoe okay.

The classification results for the auto-cleaned
data, shown in Table 7, show a somewhat differ-
ent pattern from the previous experiments. The
accuracies using the parse features are generally
higher, and the best result of .97 is achieved using
the binary features and the naive Bayes classifier.
Interestingly, this data set also results in the lowest
accuracy for the syntactic complexity metrics.

5.3 Phrase-level parse features

The classifiers in Tables 3, 5, and 7 used the
phrase-level parse features as well as the CFG
productions. Although these features were cal-
culated for NPs, VPs, and PPs, the NP features
were never selected by the GainRatio ranking al-
gorithm, and did not differ significantly between
groups. The significance levels of the VP and PP
features are reported in Table 8. PP rate and pro-
portion are significantly different in all three sets
of transcripts, which is consistent with the high
ranking of PP → IN NP in each case. VP rate
and proportion are often significant, although less
so. Notably, PP and VP length are both significant
in the clean transcripts, but not significant in the
raw transcripts and only barely significant in the
auto-cleaned transcripts.

Rule AG
freq.

CT
freq.

p

1 PP→ IN NP 12.0 26.0 ∗∗∗

2 NP→ DT NN POS 0.0 0.7 ∗

3 VP→ VP CC VP 0.8 2.9 ∗∗

4 S→ CC SBAR NP VP . 0.0 0.5
5 SBAR→WHADVP S 0.4 1.5 ∗

6 NP→ NNP 5.6 6.7
7 VP→ VBD 0.8 1.1
8 S→ CC PP NP VP . 0.04 0.6 ∗

9 NP→ DT NNP 0.6 0.0 ∗∗

10 VP→ TO VP 4.6 7.5 ∗

11 ROOT→ FRAG 3.0 0.5 ∗∗∗

12 ROOT→ NP 2.1 0.1 ∗

13 VP→ VBP NP 1.7 3.6
14 NP→ PRP$ JJ NNS 0.04 0.5 ∗

15 VP→ VB PP 1.1 2.8 ∗∗

16 VP→ VBN PP 0.4 1.9 ∗

17 FRAG→ NP . 0.4 0.0 ∗

18 NP→ NNP . 2.1 0.1
19 S→ NP ADJP 0.4 0.0 ∗

20 FRAG→ CC NP . 0.7 0.07 ∗∗

Table 6: Top 10 features ranked by GainRatio
using the auto-cleaned transcripts. Bold feature
numbers indicate rules which did not appear in Ta-
ble 2. (∗p< 0.05, ∗∗p< 0.005, ∗∗∗p< 0.0005).

5.4 Analysis of variance

With a multi-way ANOVA we found significant
main effects of classifier (F(2,63) = 11.6, p <
0.001) and data set (F(2,63) = 11.2, p < 0.001)
on accuracy. A Tukey post-hoc test revealed sig-
nificant differences between SVM and RF (p <
0.001) and NB and RF (p < 0.001) but not be-
tween SVM and NB. As well, we see a sig-
nificant difference between the clean and auto-
cleaned data (p < 0.001) and the raw and auto-
cleaned data (p < 0.001) but not between the raw
and clean data. There was no significant main ef-
fect of weighting scheme or feature type (binary or
frequency) on accuracy. We did not examine any
possible interactions between these variables.

6 Discussion

6.1 Transcripts

We achieved the highest classification accuracies
using the auto-cleaned transcripts. The raw tran-
scripts, while containing more information about
dysfluent events, also seemed to cause more dif-
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NB SVM RF
Narrative length .51 .62 .64
Binary, no weights .92 .95 .90
Binary, tf-idf .92 .95 .87
Binary, InfoGain .97 .90 .85
Binary, GainRatio .97 .90 .95
Frequency, no weights .90 .95 .77
Frequency, tf-idf .87 .95 .79
Frequency, InfoGain .92 .85 .82
Frequncy, GainRatio .92 .87 .95
SC metrics, no weights .79 .77 .74
SC metrics, InfoGain .79 .74 .72
SC metrics, GainRatio .79 .74 .67

Table 7: Average classification accuracy using
auto-cleaned transcripts. The highest classifica-
tion accuracy for each feature set is indicated with
boldface.

Clean Raw Auto
PP rate ∗∗∗ ∗∗∗ ∗∗∗

PP proportion ∗∗∗ ∗∗∗ ∗∗

PP length ∗∗

VP rate ∗∗ ∗

VP proportion ∗∗∗ ∗ ∗

VP length ∗∗∗ ∗

Table 8: Significance of the phrase-level features
in each of the three data sets (∗p < 0.05, ∗∗p <
0.005, ∗∗∗p< 0.0005).

ficulty for the parser, which mis-labelled filled
pauses and false starts in some cases. We also
found that the insertion of filled pauses resulted
in the creation of multiple features for a single un-
derlying grammatical structure. The auto-cleaned
transcripts appeared to avoid some of those prob-
lems, while still retaining information about many
of the non-narrative speech productions that were
removed from the clean transcripts.

Some of the features from the auto-cleaned tran-
scripts appear to be associated with the discourse
level of language, such as connectives and dis-
course markers. A researcher solely interested in
studying the syntax of language might resist the
inclusion of such features, and prefer to use only
features from the human-annotated clean tran-
scripts. However, we feel that such productions
are part of the grammar of spoken language, and
merit inclusion. From a practical standpoint, our
findings are reassuring: data preparation that can

be done automatically is much more feasible in
many situations than human annotation.

6.2 Features

CFG production rules can offer a more detailed
look at specific language impairments. We were
able to observe a number of important characteris-
tics of agrammatic language as reported in previ-
ous studies: fragmented speech with a higher in-
cidence of solitary noun phrases, difficulty with
determiners and possessives, reduced number of
prepositional phrases and embedded clauses, and
(in the raw transcripts), increased use of filled
pauses and repair phrases. For this reason, we be-
lieve that they are more useful for the analysis of
disordered or otherwise atypical language than tra-
ditional measures of syntactic complexity.

In some cases an in-depth analysis may not be
required, and in such cases it may be tempting to
simply use one of the more-general syntactic com-
plexity measures. Nevertheless, even in our simple
binary classification task, we found that using the
more-specific features gave us a higher accuracy.

6.3 Future work

Because of the limited data, we consider these re-
sults to be preliminary. We hope to replicate this
study as more data become available in the fu-
ture. We also plan to examine the effect, if any,
of the specific narrative task. Furthermore, we
have shown that these methods are effective for
the analysis of agrammatic aphasia, but there are
other types of aphasia in which semantic, rather
than syntactic, processing is the primary impair-
ment. We would like to extend this work to find
features which distinguish between different types
of aphasia.

Although we included manually transcribed
data in this study, these methods will be most use-
ful if they are also effective on automatically rec-
ognized speech. Previous work on speech recog-
nition for aphasic speech reported high error rates
(Fraser et al., 2013a). Our finding that the auto-
cleaned transcripts led to the highest classification
accuracy is encouraging, but we will have to test
the robustness to recognition errors and the depen-
dence on sentence boundary annotations.
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