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Abstract

We describe a system for automatically
scoring a vocabulary item type that asks
test-takers to use two specific words in
writing a sentence based on a picture. The
system consists of a rule-based component
and a machine learned statistical model
which uses a variety of construct-relevant
features. Specifically, in constructing the
statistical model, we investigate if gram-
mar, usage, and mechanics features devel-
oped for scoring essays can be applied to
short answers, as in our task. We also ex-
plore new features reflecting the quality of
the collocations in the response, as well as
features measuring the consistency of the
response to the picture. System accuracy
in scoring is 15 percentage points greater
than the majority class baseline and 10
percentage points less than human perfor-
mance.

1 Introduction

It is often said that the best way to see if a per-
son knows the meaning of a word is to have that
person use the word in a sentence. Despite this
widespread view, most vocabulary testing contin-
ues to rely on multiple choice items (e.g. (Law-
less et al., 2012; Lawrence et al., 2012)). In
fact, few assessments use constructed sentence re-
sponses to measure vocabulary knowledge, in part
because of the considerable time and cost required
to score such responses manually. While much
progress has been made in automatically scor-
ing writing quality in essays (Attali and Burstein,
2006; Leacock et al., 2014; Dale et al., 2012),
the essay scoring engines do not measure profi-
ciency in the use of specific words, except perhaps
for some frequently confused homophones (e.g.,
its/it’s, there/their/they’re, affect/effect).

In this paper we present a system for automated
scoring of targeted vocabulary knowledge based
on short constructed responses in a picture de-
scription task. Specifically, we develop a system
for scoring a vocabulary item type that is in op-
erational use in English proficiency tests for non-
native speakers. Each task prompt in this item type
consists of two target key words, for which the vo-
cabulary proficiency is tested, and a picture that
provides the context for the sentence construction.
The task is to generate a single sentence, incorpo-
rating both key words, consistent with the picture.
Presumably, a test-taker with competent knowl-
edge of the key words will be able to use them in a
well-formed grammatical sentence in the context
of the picture.

Picture description tasks have been employed in
a number of areas of study ranging from second
language acquisition to Alzheimer’s disease (El-
lis, 2000; Forbes-McKay and Venneri, 2005). Pic-
tures and picture-based story narration have also
been used to study referring expressions (Lee et
al., 2012) and to analyze child narratives in order
to predict language impairment (Hassanali et al.,
2013). Evanini et al. (2014) employ a series of
pictures and elicit (oral) story narration to test En-
glish language proficiency. In our task, the picture
is used as a constraining factor to limit the type
and content of sentences that can be generated us-
ing the given key words.

In the course of developing our system, we ex-
amined existing features that have been developed
for essay scoring, such as detectors of errors in
grammar, usage and mechanics, as well as col-
location features, to see if they can be re-used
for scoring short responses. We also developed
new features for assessing the quality of sentence
construction using Pointwise Mutual Information
(PMI). As our task requires responses to describe
the prompt pictures, we manually constructed de-
tailed textual descriptions of the pictures, and de-
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veloped features that measure the overlap between
the content of the responses and the textual de-
scription. Our automated scoring system is partly
based on deterministic scoring criteria and partly
statistical. Overall, it achieves an accuracy of
76%, which is a 15 percentage point improvement
over a simple majority class baseline.

The organization of this paper is as follows:
Section 2 describes the picture description task
and the scoring guide that is used to manually
score the picture description responses opera-
tionally. It also considers which aspects of scor-
ing may be handled best by deterministic proce-
dures and which are more amenable to statistical
modeling. Section 3 details the construction of a
reference corpus of text describing each picture,
and Section 4 presents the features used in scor-
ing. Section 5 describes our system architecture
and presents our experiments and results. Detailed
analysis is presented in Section 6, followed by re-
lated work in Section 7 and a summary with direc-
tions for future research in Section 8.

2 Task Description and Data

The picture description task is an item type that is
in actual operational use as part of a test of En-
glish. It consists of a picture, along with two key
words, one or both of which may be in an inflected
form. Test-takers are required to use the two words
in one sentence to describe the picture. They may
change the inflections of the words as appropriate
to the context of their sentence, but they must use
some form of both words in one sentence. Requir-
ing them to produce a response based on the pic-
ture constrains the variety of sentences and words
that they are likely to generate.

Trained human scorers evaluate the responses
based on appropriate use of grammar and the rel-
evance of the sentence to the picture. The opera-
tional scoring guide is as follows:

score = 3 The response consists of ONE sen-
tence that: (a) has no grammatical errors, (b)
contains forms of both key words used appro-
priately, AND (c) is consistent with the pic-
ture.
score = 2 The response consists of one or
more sentences that: (a) have one or more
grammatical errors that do not obscure the
meaning, (b) contain BOTH key words, (but
they may not be in the same sentence and

the form of the word(s) may not be accurate),
AND (c) are consistent with the picture.
score = 1 The response: (a) has errors that in-
terfere with meaning, (b) omits one or both
key words, OR (c) is not consistent with the
picture.
score = 0 The response is blank, written in
a foreign language, or consists of keystroke
characters.

Our decisions about scoring system design are
based on the scoring guide and its criteria. Some
aspects of the scoring can be handled by simple
pattern matching or lookup, while others require
machine learning. For example, score 0 is as-
signed to responses that are blank or are not in
English. This can be detected and scored in a
straightforward way. On the other hand, the de-
termination of grammaticality for the score points
3, 2 and 1 depends on the presence and severity
of grammatical errors. A wide variety of such er-
rors appear in responses, including errors of punc-
tuation, subject-verb agreement, preposition usage
and article usage. The severity of an error depends
on how problematic the error is, and the system
will have to learn this from the behavior of the
trained human scorer(s), making this aspect of the
scoring more amenable to statistical modeling.

Similarly, statistical modeling is more suitable
for determining the consistency of the response
with respect to the picture. According to the scor-
ing guide, a response gets a score of 0 or 1 if it is
not consistent with the picture, and gets a score of
2 or 3 if it is consistent. Thus, this aspect cannot
solely determine the score of a response – it influ-
ences the score in conjunction with other language
proficiency factors. Further, measures of how rel-
evant a response is to a picture are likely to fall on
a continuous scale, making a statistical modeling
approach appropriate.

Finally, although there are some aspects of the
scoring guide, such as the number of sentences
and the presence of the key words, that can be
measured trivially, they do not act as sole deter-
minants of the score. For example, having more
than one sentence can result in the response re-
ceiving a score of 2 or 1. The number of sentences
works in conjunction with other factors such as
severity of grammar errors and relevance to the
picture. Hence its contribution to the final score
is best modeled statistically.
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As a result of the heterogeneous nature of the
problem, our system is made up of a statistical
learning component as well as a non-statistical
component.

2.1 Data
The data set consists of about 58K responses to
434 picture prompts. The mean response length
was 11.26 words with a standard deviation of 5.10.
The data was split into 2 development sets (con-
sisting of a total of about 2K responses) and a fi-
nal train-test set (consisting of the remaining 56K
responses) used for evaluation. All 58K responses
were human scored using the scoring rubric dis-
cussed in Section 2. About 17K responses were
double annotated. The inter-annotator agreement,
using quadratic weighted kappa (QWK), was 0.83.
Score point 3, the most frequent class, was as-
signed to 61% of the responses, followed by score
point 2 (31%), score point 1 (7.6%) and score
point 0 (0.4%).

3 Reference Picture Descriptions

The pictures in our task vary in their complexity.
A typical prompt picture might be a photograph
of an outdoor marketplace, the inside of an airport
terminal, a grocery store, a restaurant or a store
room. Because consistency with respect to the pic-
ture is a crucial component in our task, we needed
a reliable and exhaustive textual representation of
each picture. Therefore, we manually constructed
a reference text corpus for each of our 434 pic-
ture prompts. We chose to use manual creation of
the reference corpus instead of trying automated
image recognition because automated methods of
image recognition are error prone and would result
in a noisy reference corpus. Additionally, auto-
mated approaches would, at best, give us a (noisy)
list of items that are present in the picture, but not
the overall scene or event depicted.

Two annotators employed by a company that
specializes in annotation created the reference cor-
pora of picture descriptions. The protocol used for
creating the reference corpus is shown below:

Part-1: List the items, setting, and events
in the picture.
List, one by one, all the items and events you
see in the picture. These may be animate ob-
jects (e.g. man), inanimate objects (e.g. table)
or events (e.g. dinner). Try to capture both the

overall setting (restaurant), as well as the ob-
jects that make up the picture (e.g. man, table,
food). These are generally (but not necessar-
ily) nouns and noun phrases. Some pictures
can have many items, while some have only a
few. The goal is to list 10-15 items and to cap-
ture as many items as possible, *starting with
the most obvious ones*.
If the picture is too sparse, and you are not
able to list at least 10 items, please indicate
this as a comment.

Part:2 Describe the picture
Describe the scene unfolding in the picture.
The scene in the picture may be greater than
the sum of its parts (many of which you will
list in part-1). For example, the objects in a
picture could be “shoe” “man” “chair”, but the
scene in the picture could be that of a shoe
purchase. The description tries to recreate the
scene (or parts of the scene) depicted in the
picture.
Generate a paragraph of 5-7 sentences de-
scribing the picture. Some of these sentences
will address what is going on, while some may
address relations between items. The propor-
tions of these will differ, based on the picture.
Make sure that you generate at least one sen-
tence containing the two key words.
If the picture is too simple, and you are not
able to generate at least 5 sentences, please
indicate this as a comment.

The human annotator was given the picture and
the two key words. The protocol for creating each
reference corpus asked the annotator to first ex-
haustively list all the items (animate and inani-
mate) in the picture. Then, the annotator was
asked to describe the scene in the picture. We used
this two step process in order to capture, as much
as possible, all objects, relationships between ob-
jects, settings and events depicted in the pictures.

The size of the reference corpus for each prompt
is much larger than the single sentence test-taker
response. This is intentional as the goal is to make
the reference corpus as exhaustive as possible. We
used a single annotator for each prompt. Double
annotation using a secondary annotator was done
in cases where we felt that the coverage of the cor-
pus created by the primary annotator was insuffi-
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cient1.
In order to test coverage, we used a small devel-

opment set of essays from each prompt and com-
pared the coverage of the generated reference cor-
pus over the development essays. If the cover-
age (proportion of content words in the responses
that were found in the reference corpus) was less
than 50% (this was the case for about 20% of
the prompts), we asked the secondary annotator to
create a new reference corpus for the prompt. The
two reference corpora for the prompt were then
simply combined to form a single reference cor-
pus.

4 Features for automated scoring

Because the score points in the scoring guide con-
flate, to some degree, syntactic, semantic, and
other weaknesses in the response, we carried out
a scoring study on a second small development
set (comprising of a total of 80 responses from 4
prompts, picked randomly) to gather insight into
the general problems in English language profi-
ciency exhibited in the responses. For the study,
it was necessary to have test-taker responses re-
scored by an annotator using an analytic scheme
which makes the types and locations of prob-
lems explicit. This exercise revealed that, in ad-
dition to the factors stated explicitly in the scor-
ing guide, there is another factor that results in
low comprehension (readability) of the sentence
and that reflects lower English proficiency. Specif-
ically, the annotator tagged many sentences as be-
ing “awkward”. This awkwardness was due to
poor choice of words or to poor construction of the
sentence. For example, in the sentence “The man
is putting some food in bags while he is record-
ing for the payment”, “recording for the payment”
was marked as an awkward phrase. Based on our
annotation of the scores and on the descriptions in
the scoring guide, we selected features designed to
capture grammar, picture relevance and awkward
usage. We discuss each of our feature sets in the
following subsections.

4.1 Features for Grammatical Error
Detection

Essay scoring engines such as e-rater R© (Attali
and Burstein, 2006) typically use a number of

1We do not conduct inter-annotator agreement studies as
the goal of the double annotation was to create a diverse de-
scription.

grammar, usage and mechanics features that de-
tect and quantify different types of English usage
errors in essays. Examples of some of these error
types are: Run-on Sentences, Subject Verb Agree-
ment Errors, Pronoun Errors, Missing Posses-
sive Errors, Wrong Article Errors, Missing Arti-
cle Errors, Preposition Errors, Non-standard Verb
or Word Form Errors, Double Negative Errors,
Fragment or Missing Comma Errors, Ill-formed
Verb Errors, Wrong Form of Word Errors, Spelling
Errors, Wrong Part of Speech Errors, and Missing
Punctuation Errors .

In addition to these, essay scoring engines of-
ten also use as features the Number of Sentences
that are Short, the Number of Sentences that are
Long, the Number of Passive Sentences, and other
features that are relevant only for longer texts such
as essays. Accordingly, we selected, from e-rater
113 grammar, word usage, mechanics and lexical
complexity features that could be applied to our
short response task. This forms our grammar fea-
ture set.

4.2 Features for Measuring Content
Relevance

We generated a set of features that measure the
content overlap between a given response and the
corresponding reference corpus for the prompt.
For this, first the keywords and the stop words
were removed from the response and the reference
corpus, and then the proportion of overlap was cal-
culated between the lemmatized content words of
the response and the lemmatized version of the
corresponding reference corpus, as follows:

|Response ∩ Corpus|
|Response|

It is not always necessary for the test-taker to
use exactly the same words found in the reference
corpus. For example, the annotator might have
referred to a person in the picture as a “lady”,
while a response may refer to the same person
as a “woman” or “girl” or even just “person”.
Thus, we needed to go beyond simple lexical
match. In order to account for synonyms, we ex-
panded the content words in the reference corpus
by adding their synonyms, as provided in Lin’s
thesaurus (Lin, 1998) and then compared the ex-
panded reference to each response. Along the
same lines, we also used expansions from Word-
Net synonyms, WordNet hypernyms and WordNet
hyponyms. The following is the list of our content
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relevance features. Each measures the proportion
of overlap as described by the equation above be-
tween the lemmatized response and

1. lemmas: the lemmatized reference corpus.

2. cov-lin: the reference corpus expanded using
Lin’s thesaurus.

3. cov-wn-syns: the reference corpus expanded
using WordNet Synonyms.

4. cov-wn-hyper: the reference corpus ex-
panded using WordNet Hypernyms.

5. cov-wn-hypo: the reference corpus ex-
panded using WordNet Hyponyms.

6. cov-all: the reference corpus expanded using
all of the above methods.

Mean proportions of overlap ranged from 0.65
for lemmas to 0.97 for cov-all.

The 6 features listed above, along with the
prompt id give a total of 7 features that form our
relevance feature set. We use prompt id as a fea-
ture because the extent of overlap can depend on
the prompt. Some pictures are very sparse, so,
the description of the picture in the response will
be short, and will not vary much from the refer-
ence corpus. For these, a good amount of overlap
between the response and reference corpus is ex-
pected. Other pictures are very dense with a large
number of objects and items shown. In this case,
any single response may describe just a small sub-
set of the items and satisfy the consistency criteria,
and consequently, even a small overlap between
the response and the reference corpus may be suf-
ficient.

4.3 Features for Awkward Word Usage
In order to measure awkward word usage, we ex-
plored PMI-based features, and also investigated
whether some features developed for essay scor-
ing can be used effectively for this purpose.

4.3.1 PMI-based ngram features
Non-native writing is often characterized by in-
appropriate combinations of words, indicating the
writer’s lack of knowledge of collocations. For ex-
ample, “recording for the payment” might be bet-
ter expressed as “entering the price in the cash reg-
ister”. As “recording for the payment” is an inap-
propriate construction, it is not likely to be com-
mon, for example, in a large web corpus. We use

this intuition in constructing our PMI-based fea-
tures.

We find the PMI of all adjacent word pairs
(bigrams), as well as all adjacent word triples
(trigrams) in the Google 1T web corpus (Brants
and Franz, 2006) using the TrendStream database
(Flor, 2013).

PMI between word pairs (bigram AB) is defined
as:

log2

p(AB)
p(A).p(B)

and between word triples (trigram ABC) as

log2

p(ABC)
p(A).p(B).p(C)

The higher the value of the PMI, the more com-
mon is the collocation for the word pair/triple in
well formed texts. On the other hand, negative
values of PMI indicate that the given word pair (or
triple) is less likely than chance to occur together.
We hypothesized that this would be a good indica-
tor of awkward usage, as suggested in (Chodorow
and Leacock, 2000).

The PMI values for adjacent words obtained
over the entire response are then assigned to bins,
with 8 bins for word pairs and another 8 for word
triples. Each bin represents a range for PMI p tak-
ing real values R as follows:

bin1 = {p ∈ R | p > 20}
bin2 = {p ∈ R | 10 < p ≤ 20}
bin3 = {p ∈ R | 1 < p ≤ 10}
bin4 = {p ∈ R | 0 < p ≤ 1}

bin5 = {p ∈ R | − 1 < p ≤ 0}
bin6 = {p ∈ R | − 10 < p ≤ −1}
bin7 = {p ∈ R | − 20 < p ≤ −10}

bin8 = {p ∈ R | p ≤ −20}
Once the PMI values for the adjacent word pairs

in the response are generated, we generate two sets
of features. The first set is based on the counts
of word pairs falling into each bin (for example,
Number of pairs falling into bin1, Number of pairs
falling into bin2 and so on). The second set of fea-
tures are based on percentages (for example Per-
centage of pairs falling into bin1, Percentage of
pairs falling into bin2 etc.). These two sets result
in a total of 16 features. We similarly generate
16 more features for adjacent word triples. We
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use percentages in addition to raw counts to ac-
count for the length of the response. For example,
it is possible for a long sentence to have phrases
that are awkward as well as well formed, giving
the same counts of phrases in the high-PMI value
bins as that of a short sentence that is entirely well
formed.

In addition to binning, we also encode as fea-
tures the maximum, minimum and median PMI
value obtained over all word pairs. The first two
features capture the best and the worst word col-
locations in a response. The median PMI value
captures the overall general quality of the response
in a single number. For example, if this is a low
number, then the response generally has many bad
phrasal collocations. Finally a null-PMI feature is
used to count the number of pairs that had zero
entries in the database. This feature is an indica-
tor that the given words or word collocations were
not found even once in the database. Given the
size of the underlying database, this usually hap-
pens in cases when words are misspelled, or when
the words never occur together.

All features created for bigrams are also created
for trigrams. We thus have a total of 40 features,
called the pmi feature set.

4.3.2 Features from essay scoring
A number of measures of collocation quality have
been proposed and implemented (e.g. (Futagi et
al., 2008; Dahlmeier and Ng, 2011)). We use e-
rater’s measure of the density of ‘good’ colloca-
tions found in the response. Another source of
difficulty for non-native writers is the selection of
appropriate prepositions. We use the mean proba-
bility assigned by e-rater to the prepositions in the
response. These two measures, one for the qual-
ity of collocations and the other for the quality of
prepositions, are combined in our colprep feature
set.

4.4 Scoring Rubric-based Features

As seen in Section 2, some of the criteria for scor-
ing are quite straightforward (e.g. “omits one or
both key words”). While these are not sole deter-
minants of a score, they are certainly strong influ-
ences. Thus, we encode four criteria from the scor-
ing guide. These form our final feature set, rubric,
and are binary values, answering the questions: Is
the first key word from the prompt present in the
response? Is the second key word from the prompt
present in the response? Are both key words from

the prompt present in the response? Is there more
than one sentence in the response?

Table 1 provides a list of feature types and the
corresponding number of features of each type.

Feature set type Number of Features
grammar 113
relevance 7

pmi 40
colprep 2
rubric 4

Table 1: Feature sets and the counts of features in
each set

5 System and Evaluation

Figure 1: System Architecture

As noted earlier, the system is partly rule-based
and partly statistical. Figure 1 illustrates the sys-
tem architecture. The rule-based part captures
the straightforward deterministic scoring criteria
while the machine learning component encodes
features described in Section 4 and learns how to
weight the features for scoring based on human-
scored responses.

As described in Section 2, detection of condi-
tions that result in a score of zero are straight-
forward. Our rule-based scorer (shown as “For-
eign Language Detector” in Figure 1) assigns a
zero score to a response if it is blank or non-
English. The system determines if the response is
non-English based on the average of PMI bigram
scores over the response. If the average score is
less than a threshold value, the system tags it as
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a non-English sentence. The threshold was deter-
mined by manually inspecting the PMI values ob-
tained for sentences belonging to English and non-
English news texts. Responses given zero scores
by this module are filtered out and do not go to the
next stage.

Responses that pass the rule-based scorer are
then sent to the statistical scorer. Here, we encode
the features discussed in Section 4. Spell checking
and correction are carried out before features for
content relevance and PMI-based awkward word
usage are computed. This is done in order to pre-
vent misspellings from affecting the reference cor-
pus match or database search. The original text
is sent to the Grammar feature generator as it cre-
ates features based on misspellings and other word
form errors. Finally, we use all the features to train
a Logistic Regression model using sklearn. Note
that the statistical system predicts all 4 scores (0
through 3). This is because the rule-based system
is not perfect; that is, it might miss some responses
that should receive zero scores, and pass them over
to the next stage.

5.1 Metrics
We report our results using overall accuracy,
quadratic weighted kappa (QWK) and score-level
precision, recall and f-measure. The precision P
of the system is calculated for each score point i
as

Pi =
|Si ∩Hi|
|Si|

where |Si| is the number of responses given a
score of i by the system, and |Si ∩Hi| is the num-
ber of responses given a score of i by the system
as well as the human rater.

Similarly, recall, R is calculated for each score
point i as

Ri =
|Si ∩Hi|
|Hi|

F-measure Fi is calculated as the harmonic
mean of the precision Pi and recall Ri at each
score point i. Accuracy is the ratio of the num-
ber of responses correctly classified over the total
number of responses.

5.2 Results
All of the responses in the train-test set were
passed through the rule-based zero-scorer. A total
of 210 responses had been scored as zero by the
human scorer. The rule-based system scored 222
responses as zeros, of which 184 were correct.

The precision P rule of the rule-based system is
calculated as

P rule
0 =

184
222

= 82.9%

Similarly, Recall is calculated as

Rrule
0 =

184
210

= 87.6%

The corresponding F-measure is 85.2%
The remaining responses pass to the next stage

where machine learning is employed. We per-
formed 10 fold cross-validation experiments us-
ing Logistic Regression as well as Random Forest
learners. As the results are comparable, we only
report those from logistic regression.

Accuracy in % Agreement (QWK)
Baseline 61.00 -
System 76.23 0.63
Human 86.00 0.83

Table 2: Overall system and human accuracy
(in percentage) and agreement (using Quadratic
Weighted Kappa)

Table 2 reports the results. The system achieves
an accuracy of 76.23%, which is more than a 15
percentage point improvement over the majority
class baseline of 61%. The majority class base-
line always predicts a score of 3. Compared to hu-
man performance, system performance is 10 per-
centage points lower (human-human agreement
is 86%). Quadratic weighted kappa for system-
human agreement is also lower (0.63) than for
human-human agreement (0.83).

Table 3 reports the precision, recall and F-
measure of the system for each of the score points.

Score point Precision Recall F-measure
0 84.2 68.3 72.9
1 78.4 67.5 72.6
2 70.6 50.4 58.8
3 77.8 90.5 83.6

Table 3: Overall system performance at each score
point using all features

6 Analysis

In order to understand the usefulness of each fea-
ture set in scoring the responses, we constructed
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systems using first the individual features alone,
and then using feature combinations. Table 4 re-
ports the accuracy of the learner using individual
features alone. We see that, individually, each fea-
ture set performs much below the performance of
the full system (that has an accuracy of 76.23%),
which is expected, as each feature set represents
a particular aspect of the construct. However, in
general, each of the feature-sets (except colprep)
shows improvement over baseline, indicating that
they contribute towards performance improvement
in the automated system.

Grammar features are the best of the individ-
ual feature sets at 70% accuracy, indicating that
grammatical error features developed for longer
texts can be applied to single sentences. The PMI-
based feature set is the second best performer, in-
dicating its effectiveness in capturing word usage
issues. While colprep and pmi both capture awk-
ward usage, pmi alone shows better performance
(67.44%) than colprep alone (61.26%). Also,
when rubric is used alone, the resulting system
produces a four percentage point improvement
over the baseline, with 65% accuracy, indicating
the presence of responses where the test-takers are
not able to incorporate one or both words in a sin-
gle sentence. The relevance feature set by itself
does not show substantial improvement over the
baseline. This is not surprising, as according to
the scoring guide, a response gets a score of 0 or 1
if it does not describe the picture, and gets a score
of 2 or 3 if it is relevant to the picture. Hence, this
feature cannot solely and accurately determine the
score.

Feature Set Accuracy in %
grammar 70.30

pmi 67.44
rubric 65.00

relevance 62.50
colprep 61.26

Table 4: System performance for individual fea-
tures

Table 5 reports accuracies of systems built us-
ing feature set combinations. The first feature set
combination, grammar + colprep, is a set of all
features obtained from essay scoring. Here we see
that addition of colprep does not improve the per-
formance over that obtained by grammar features
alone. Further, when colprep is combined with

pmi (colprep+pmi, row 2), there is a slight drop
in performance as compared to using pmi-based
features alone. These results indicate that colprep,
while being useful for larger texts, does not trans-
fer well to the simple single sentence responses in
our task.

Further, in Table 5 we see that the system using
a combination of the pmi feature set and the rele-
vance feature set (pmi+relevance) achieves an ac-
curacy of 69%. Thus, this feature combination is
able to improve performance over that using either
feature set alone, indicating that while content rel-
evance features by themselves do not create an im-
pact, they can improve performance when added
to other features. Finally, the feature combination
of all new features developed for this task (pmi +
relevance+ rubric) yields 73% accuracy, which is
again better than each individual feature set’s per-
formance, indicating that they can be synergisti-
cally combined to improve system performance.

Feature Set Accuracy in %
(i) grammar + colprep 70.31

(ii) colprep + pmi 67.42
(iii) pmi + relevance 69.05

(iv) pmi + relevance + rubric 73.21

Table 5: System performance for feature combi-
nations (i) typically used in essay scoring, (ii) that
measure awkwardness, (iii) newly proposed here,
(iv) newly proposed plus rubric-specific criteria

7 Related Work

Most work in automated scoring and learner lan-
guage analysis has focused on detecting grammar
and usage errors (Leacock et al., 2014; Dale et al.,
2012; Dale and Narroway, 2012; Gamon, 2010;
Chodorow et al., 2007; Lu, 2010). This is done
either by means of handcrafted rules or with sta-
tistical classifiers using a variety of information.
In the case of the latter, the emphasis has been on
representing the contexts of function words, such
as articles and prepositions. This work is rele-
vant inasmuch as errors in using content words,
such as nouns and verbs, are often reflected in the
functional elements which accompany them, for
example, articles that indicate the definiteness or
countability of nouns, and prepositions that mark
the cases of the arguments of verbs.

Previous work (Bergsma et al., 2009; Bergsma
et al., 2010; Xu et al., 2011) has shown that mod-
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els which rely on large web-scale n-gram counts
can be effective for the task of context-sensitive
spelling correction. Measures of ngram associa-
tion such as PMI, log likelihood, chi-square, and
t have a long history of use for detecting colloca-
tions and measuring their quality (see (Manning
and Schütze, 1999) and (Leacock et al., 2014)
for reviews). Our application of a large n-gram
database and PMI is to detect inappropriate word
usage.

Our task also differs from work focusing on
evaluating content (e.g. (Meurers et al., 2011;
Sukkarieh and Blackmore, 2009; Leacock and
Chodorow, 2003)) in that, although we are look-
ing for usage of certain content words, we focus
primarily on measuring knowledge of vocabulary.

Recent work on assessment measures of depth
of vocabulary knowledge (Lawless et al., 2012;
Lawrence et al., 2012), has argued that knowl-
edge of specific words can range from superficial
(idiomatic associations built up through word co-
occurrence) to topical (meaning-related associa-
tions between words) to deep (definitional knowl-
edge). Some of our features (e.g. awkward word
usage) capture some of this information (e.g., id-
iomatic associations between words), but assign-
ing the depth of knowledge of the key words is not
the focus of our task.

Work that is closely related to ours is that of
King and Dickinson (2013). They parse picture
descriptions from interactive learner sentences,
classify sentences into syntactic types and extract
the logical subject, verb and object in order to re-
cover simple semantic representations of the de-
scriptions. We do not explicitly model the seman-
tic representations of the pictures, but rather our
goal in this work is to ascertain if a response is
relevant to the picture and to measure other fac-
tors that reflect vocabulary proficiency.

We employ human annotators and use word
similarity measures to obtain alternative forms of
description because the proprietary nature of our
data prevents us from releasing our pictures to
the public. However, crowd sourcing has been
used by other researchers to collect human labels
for images and videos. For example, Rashtchian
et al. (2010) use Amazon Mechanical Turk and
Von Ahn and Dabbish (2004) create games to en-
tice players to correctly label images. Chen and
Dolan (2011) use crowd sourcing to collect multi-
ple paraphrased descriptions of videos to create a

paraphrasing corpus.
In a vast body of related work, automated

methods have been explored for the generation
of descriptions of images (Kulkarni et al., 2013;
Kuznetsova et al., 2012; Li et al., 2011; Yao et
al., 2010; Feng and Lapata, 2010a; Feng and La-
pata, 2010b; Leong et al., 2010; Mitchell et al.,
2012). There is also work in the opposite di-
rection, of finding or generating pictures for a
given narration. Joshi et al. (2006) found the
best set of images from an image database to
match the keywords in a story. Coyne and Sproat
(2001) developed a natural language understand-
ing system which converts English text into three-
dimensional scenes that represent the text. For a
high-stakes assessment, it would be highly unde-
sirable to have any noise in the gold-standard ref-
erence picture descriptions. Hence we chose to use
manual description for creating our reference cor-
pus.

8 Summary and Future Directions

We investigated different types of features for au-
tomatically scoring a vocabulary item type which
requires the test-taker to use two words in writ-
ing a sentence based on a picture. We generated a
corpus of picture descriptions for measuring the
relevance of responses, and as a foundation for
feature development, we performed preliminary
fine-grained annotations of responses. The fea-
tures used in the resulting automated scoring sys-
tem include newly developed statistical measures
of word usage and response relevance, as well as
features that are currently found in essay scoring
engines. System performance shows an overall
accuracy in scoring that is 15 percentage points
above the majority class baseline and 10 percent-
age points below human performance.

There are a number of avenues open for future
exploration. The automated scoring system might
be improved by extending the relevance feature
to include overlap with previously collected high-
scoring responses. The reference corpus could
also be expanded and diversified by using a large
number of annotators, at least some of whom are
speakers of the languages that are most promi-
nently represented in the population of test-takers.
Finally, one particular avenue we would like to ex-
plore is the use of our features to provide feedback
in low stakes practice environments.
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