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Abstract

Phrase-based translation models usually
memorize local translation literally and
make independent assumption between
phrases which makes it neither generalize
well on unseen data nor model sentence-
level effects between phrases. In this pa-
per we present a new method to model
correlations between phrases as a Markov
model and meanwhile employ a robust
smoothing strategy to provide better gen-
eralization. This method defines a re-
cursive estimation process and backs off
in parallel paths to infer richer structures.
Our evaluation shows an 1.1–3.2% BLEU
improvement over competitive baselines
for Chinese-English and Arabic-English
translation.

1 Introduction

Phrase-based methods to machine translation
(Koehn et al., 2003; Koehn et al., 2007) have dras-
tically improved beyond word-based approaches,
primarily by using phrase-pairs as translation
units, which can memorize local lexical con-
text and reordering patterns. However, this lit-
eral memorization mechanism makes it general-
ize poorly to unseen data. Moreover, phrase-based
models make an independent assumption, stating
that the application of phrases in a derivation is in-
dependent to each other which conflicts with the
underlying truth that the translation decisions of
phrases should be dependent on context.

There are some work aiming to solve the two
problems. Feng and Cohn (2013) propose a
word-based Markov model to integrate translation
and reordering into one model and use the so-
phisticated hierarchical Pitman-Yor process which
backs off from larger to smaller context to pro-
vide dynamic adaptive smoothing. This model
shows good generalization to unseen data while

it uses words as the translation unit which can-
not handle multiple-to-multiple links in real word
alignments. Durrani et al. (2011) and Durrani et
al. (2013) propose an operation sequence model
(OSM) which models correlations between mini-
mal translation units (MTUs) and evaluates proba-
bilities with modified Kneser-Ney smoothing. On
one hand the use of MTUs can help retain the
multiple-to-multiple alignments, on the other hand
its definition of operations where source words
and target words are bundled into one operation
makes it subjected to sparsity. The common fea-
ture of the above two methods is they both back off
in one fixed path by dropping least recent events
first which precludes some useful structures. For
the segment pairs <bǎ tā kǎolv̀ jı̀nqù, take it into
account> in Figure 1, the more common structure
is <bǎ ... kǎolv̀ jı̀nqù, take ... into account>. If
we always drop the least recent events first, then
we can only learn the pattern <... tā kǎolv̀ jı̀nqù,
... it into account>.

On these grounds, we propose a method with
new definition of correlations and more robust
probability modeling. This method defines a
Markov model over correlations between minimal
phrases where each is decomposed into three fac-
tors (source, target and jump). In the meantime
it employs a fancier smoothing strategy for the
Markov model which backs off by dropping mul-
tiple conditioning factors in parallel in order to
learn richer structures. Both the uses of factors
and parallel backoff give rise to robust modeling
against sparsity. In addition, modeling bilingual
information and reorderings into one model in-
stead of adding them to the linear model as sep-
arate features allows for using more sophisticated
estimation methods rather than get a loose weight
for each feature from tuning algorithms.

We compare the performance of our model with
that of the phrase-based model and the hierarchi-
cal phrase-based model on the Chinese-English
and Arabic-English NIST test sets, and get an im-
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Figure 1: Example Chinese-English sentence pair
with word alignments shown as filled grid squares.

provement up to 3.2 BLEU points absolute.1

2 Modelling

Our model is phrase-based and works like a
phrase-based decoder by generating target trans-
lation left to right using phrase-pairs while jump-
ing around the source sentence. For each deriva-
tion, we can easily get its minimal phrase (MPs)
sequence where MPs are ordered according to the
order of their target side. Then this sequence of
events is modeled as a Markov model and the log
probability under this Markov model is included
as an additional feature into the linear SMT model
(Och, 2003).

A MP denotes a phrase which cannot contain
other phrases. For example, in the sentence pair
in Figure 1, <bǎ tā , take it> is a phrase but not
a minimal phrase, as it contains smaller phrases
of <bǎ , take> and <tā , it>. MPs are a com-
plex event representation for sequence modelling,
and using these naively would be a poor choice
because few bigrams and trigrams will be seen
often enough for reliable estimation. In order
to reason more effectively from sparse data, we
consider more generalized representations by de-
composing MPs into their component events: the
source phrase (source f̄ ), the target phrase (tar-
get ē) and the jump distance from the preceding
MP (jump j), where the jump distance is counted
in MPs, not in words. For sparsity reasons, we
do not use the jump distance directly but instead
group it into 12 buckets:

{insert,≤ −5,−4,−3,−2,−1, 0, 1, 2, 3, 4,≥ 5},
where the jump factor is denoted as insert when
the source side is NULL. For the sentence pair in

1We will contribute the code to Moses.

Figure 1, the MP sequence is shown in Figure 2.
To evaluate the Markov model, we condition

each MP on the previous k − 1 MPs and model
each of the three factors separately based on a
chain rule decomposition. Given a source sentence
f and a target translation e, the joint probability is
defined as

p(ēI1, j
I
1 , f̄

I
1 ) =

I∏
i=1

p(ēi|f̄ ii−k+1, j
i
i−k+1, ē

i−1
i−k+1)

×
I∏
i=1

p(f̄i|f̄ i−1
i−k+1, j

i
i−k+1, ē

i−1
i−k+1)

×
I∏
i=1

p(ji|f̄ i−1
i−k+1, j

i−1
i−k+1, ē

i−1
i−k+1)

(1)

where f̄i, ēi and ji are the factors of MPi, f̄ I1 =
(f̄1, f̄2, . . . , f̄I) is the sequence of source MPs,
ēI1 = (ē1, ē2, . . . , ēI) is the sequence of tar-
get MPs, and jI1 = (j1, j2, . . . , jI) is the vec-
tor of jump distance between MPi−1 and MPi, or
insert for MPs with null source sides.2 To eval-
uate each of the k-gram models, we use modified
Keneser-Ney smoothing to back off from larger
context to smaller context recursively.

In summary, adding the Markov model into the
decoder involves two passes: 1) training a model
over the MP sequences extracted from a word
aligned parallel corpus; and 2) calculating the
probability of the Markov model for each trans-
lation hypothesis during decoding. This Markov
model is combined with a standard phrase-based
model3 (Koehn et al., 2007) and used as an addi-
tional feature in the linear model.

In what follows, we will describe how to estati-
mate the k-gram Markov model, focusing on back-
off (§2.1) and smoothing (§2.2).

2.1 Parallel Backoff

Backoff is a technique used in language model —
when estimating a higher-order gram, instead of
using the raw occurrence count, only a portion is
used and the remainder is computed using a lower-
order model in which one of the context factors

2Note that factors at indices 0,−1, . . . ,−(k − 1) are set
to a sentinel value to denote the start of sentence.

3The phrase-based model considers larger phrase-pairs
than just MPs, while our Markov model consider only MPs.
As each phrase-pair is composed of a sequence of MPs un-
der fixed word alignment, by keeping the word alignment for
each phrase, a decoder derivation unambiguously specifies
the MP sequence for scoring under our Markov model.

152



index sentence pair minimal phrase sequence
wǒmén yīnggāi bǎ tā yě kǎolv̀ jı̀nqù jump source target

1 We T1 1 wǒmén We
2 should T2 1 yīnggāi should
3 also T3 3 yě also
4 take T4 -2 bǎ take
5 it T5 1 tā it
6 into account T6 2 kǎolv̀ jı̀nqù into account

Figure 2: The minimal phrase sequence T1, ..., T6 extracted from the sentence pair in Figure 1.

step 3-gram ē3|f̄3, j3, ē2, f̄2, j2, ē1, f̄1, j1

0 into account | kǎolv̀ jı̀nqù, 2, it, tā, 1, take, bǎ, -2

↓ 1

1 into account | kǎolv̀ jı̀nqù, 2, it, tā, –, take, bǎ, -2

↓ tā

2 into account | kǎolv̀ jı̀nqù, 2, it, –, –, take, bǎ, -2

↓ it

3 into account | kǎolv̀ jı̀nqù, 2, –, –, –, take, bǎ, -2

↓ -2

4 into account | kǎolv̀ jı̀nqù, 2, –, –, –, take, bǎ, –

↓ bǎ

5 into account | kǎolv̀ jı̀nqù, 2, –, –, –, take, –, –

↓ take

6 into account | kǎolv̀ jı̀nqù, 2, –, –, –, –, –, –

↓ 2

7 into account | kǎolv̀ jı̀nqù, –, –, –, –, –, –, –

↓ kǎolv̀ jı̀nqù

8 into account | –, –, –, –, –, –, –, –

Figure 3: One backoff path for the 3-gram in
Equation 2. The symbols besides each arrow mean
the current factor to drop; “–” is a placeholder for
factors which can take any value.

is dropped. Here the probabilities of the lower-
order which is used to construct the higher-order is
called the backoff probability of the higher-order
gram. Different from standard language models
which drop the least recent words first, we em-
ploy a different backoff strategy which considers
all possible backoff paths. Taking as an example
the 3-gram T4T5T6 in Figure 2, when estimating
the probability of the target factor

p(into account | kǎolv̀ jı̀nqù, 2, it, tā, 1, take, bǎ, -2 ) ,
(2)

Figure 4: The backoff graph for the 3-gram model
of the target factor. The symbol beside each arrow
is the factor to drop.

we consider two backoff paths: path1 drops the
factors in the order -2, bǎ, take, 1, tā, it, 2,
kǎolv̀ jı̀nqù; path2 uses order 1, tā, it, -2, bǎ,
take, 2, kǎolv̀ jı̀nqù. Figure 3 shows the backoff
process for path2. In this example with two back-
off paths, the backoff probability g is estimated as

g(into acc.|c) =
1
2
p(into acc.|c′)+1

2
p(into acc.|c′′) ,

where c =< kǎolv̀ jı̀nqù, 2, it, tā, 1, take, bǎ, -2 >,
c′ =< kǎolv̀ jı̀nqù, 2, it, tā, 1, take, bǎ, – > and
c′′ =< kǎolv̀ jı̀nqù, 2, it, tā, –, take, bǎ, -2 >.

Formally, we use the notion of backoff graph to
define the recursive backoff process of a k-gram
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and denote as nodes the k-gram and the lower-
order grams generated by the backoff. Once one
node occurs in the training data fewer than τ times,
then estimates are calculated by backing off to the
nodes in the next lower level where one factor is
dropped (denoted using the placeholder – in Fig-
ure 4). One node can have one or several candidate
backoff nodes. In the latter case, the backoff prob-
ability is defined as the average of the probabilities
of the backoff nodes in the next lower level.

We define the backoff process for the 3-gram
model predicting the target factor, ē3, as illustrated
in Figure 4. The top level is the full 3-gram, from
which we derive two backoff paths by dropping
factors from contextual events, one at a time. For-
mally, the backoff strategy is to drop the previ-
ous two MPs one by one while for each MP the
dropping routine is first the jump factor, then the
source factor and final the target factor. Each step
on the path corresponds to dropping an individ-
ual contextual factor from the context. The paths
converge when only the third MP left, then the
backoff proceeds by dropping the jump action, j3,
then finally the source phrase, f̄3. The paths B-
D-F-H-J and C-E-G-I-K show all the possible or-
derings (corresponding to c′′ and c′, respectively)
for dropping the two previous MPs. The exam-
ple backoff in Figure 3 corresponds the path A-
B-D-F-H-J-L-M-N in Figure 4, shown as heavier
lines. When generizing to the k-gram for target
p(ēk|f̄k1 , jk1 , ēk−1

1 ), the backoff strategy is to first
drop the previous k-1 MPs one by one (for each
MP, still drops in the order of jump, source and
target), then the kth jump factor and finally the kth
source factor. According to the strategy, the top
node has k-1 nodes to back off to and for the node
ēk|f̄k2 , jk2 , ēk−1

2 where only the factors of MP1 are
dropped, there are k-2 nodes to back off to.

2.2 Probability Estimation

We adopt the technique used in factor language
models (Bilmes and Kirchhoff, 2003; Kirchhoff et
al., 2007) to estimate the probability of a k-gram
p(ēi|c) where c = f̄ ii−k+1, j

i
i−k+1, ē

−1
i−k+1. Ac-

cording to the definition of backoff, only when the
count of the k-gram exceeds some given threshold,
its maximum-likelihood estimate, pML(ēk|c) =
N(ēk,c)
N(c) is used, where N(·) is the count of an

event and/or context. Otherwise, only a portion of
pML(ēk|c) is used and the remainder is constructed
from a lower-level (by dropping a factor). In or-
der to ensure valid probability estimates, i.e. sums

to unity, probability mass needs to be “stolen”
from the higher level and given to the lower level.
Hence, the whole definition is

p(ēi|c) =

{
dN(ēi,c)pml(ēi|c) if N(ēi, c) > τk

α(c)g(ēi, c) otherwise
(3)

where dN(ēi,c) is a discount parameter which re-
serves probability from the maximum-likelihood
estimate for backoff smoothing at the next lower-
level, and we estimate dN(ēi,c) using modified
Kneser-Ney smoothing (Kneser and Ney, 1995;
Chen and Goodman, 1996); τk is the threshold for
the count of the k-gram, α(c) is the backoff weight
used to make sure the entire distribution still sums
to unity,

α(c) =
1−∑

ē:N(ē,c)>τk
dN(ē,c)pML(ē|c)∑

ē:N(ē,c)≤τk g(ē, c)
,

and g(ēi, c) is the backoff probability which we
estimate by averaging over the nodes in the next
lower level,

g(ēi, c) =
1
φ

∑
c′
p(ēi|c′) ,

where φ is the number of nodes to back off, c′ is
the lower-level context after dropping one factor
from c.

The k-gram for the source and jump factors are
estimated in the same way, using the same backoff
semantics.4 Note (3) is applied independently to
each of the three models, so the use of backoff may
differ in each case.

3 Discussion

As a part of the backoff process our method
can introduce gaps in estimating rule probabili-
ties; these backoff patterns often bear close re-
semblance to SCFG productions in the hierarchi-
cal phrase-based model (Chiang, 2007). For ex-
ample, in step 0 in Figure 3, as all the jump factors
are present, this encodes the full ordering of the
MPs and gives rise to the aligned MP pairs shown
in Figure 5 (a). Note that an X 1 placeholder is
included to ensure the jump distance from the pre-
vious MP to the MP <bǎ, take> is -2. The ap-
proximate SCFG production for the MP pairs is

<bǎ tā X 1 kǎolv̀ jı̀nqù, X 1 take it into account>.

4Although there are fewer final steps, L-M-N in Fig. 4,
as we assume the MP is generated in the order jump, source
phrase then target phrase in a chain rule decomposition.
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Figure 5: Approximate SCFG patterns for step 0,
3 of Figure 3. X is a non-terminal which can only
be rewritten by one MP. · and · · · denote gaps
introduced by the left-to-right decoding algorithm
and · can only cover one MP while · · · can
cover zero or more MPs.

In step 1, as the jump factor 1 is dropped, we do
not know the orientation between bǎ and tā. How-
ever several jump distances are known: from X 1

to bǎ is distance -2 and tā to kǎolv̀ jı̀nqù is 2. In
this case, the source side can be

bǎ tā X 1 kǎolv̀ jı̀nqù,

bǎ · X 1 · · · tā · kǎolv̀ jı̀nqù,
tā bǎ kǎolv̀ jı̀nqù X 1 ,

tā · kǎolv̀ jı̀nqù · · · bǎ · X 1 ,
where X and · can only hold one MP while · · ·
can cover zero or more MPs. In step 3 after drop-
ping tā and it, we introduce a gap X 2 as shown in
Figure 5 (b).

From above, we can see that our model has two
kinds of gaps: 1) in the source due to the left-to-
right target ordering (such as the · in step 3); and
2) in the target, arising from backoff (such as the
X 2 in step 3). Accordingly our model supports
rules than cannot be represented by a 2-SCFG
(e.g., step 3 in Figure 5 requires a 4-SCFG). In
contrast, the hierarchical phrase-based model al-
lows only 2-SCFG as each production can rewrite
as a maximum of two nonterminals. On the other
hand, our approach does not enforce a valid hier-
archically nested derivation which is the case for
Chiang’s approach.

4 Related Work

The method introduced in this paper uses fac-
tors defined in the same manner as in Feng and
Cohn (2013), but the two methods are quite differ-
ent. That method (Feng and Cohn, 2013) is word-
based and under the frame of Bayesian model
while this method is MP-based and uses a sim-
pler Kneser-Ney smoothing method. Durrani et
al. (2013) also present a Markov model based on
MPs (they call minimal translation units) and fur-
ther define operation sequence over MPs which
are taken as the events in the Markov model. For
the probability estimation, they use Kneser-Ney
smoothing with a single backoff path. Different
from operation sequence, our method gives a neat
definition of factors which uses jump distance di-
rectly and avoids the bundle of source words and
target words like in their method, and hence miti-
gates sparsity. Moreover, the use of parallel back-
off infers richer structures and provides robust
modeling.

There are several other work focusing on mod-
eling bilingual information into a Markov model.
Crego et al. (2011) develop a bilingual language
model which incorporates words in the source and
target languages to predict the next unit, and use
it as a feature in a translation system. This line
of work was extended by Le et al. (2012) who de-
velop a novel estimation algorithm based around
discriminative projection into continuous spaces.
Neither work includes the jump distance, and nor
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do they consider dynamic strategies for estimating
k-gram probabilities.

Galley and Manning (2010) propose a method
to introduce discontinuous phrases into the phrase-
based model. It makes use of the decoding mecha-
nism of the phrase-based model which jumps over
the source words and hence can hold discontin-
uous phrases naturally. However, their method
doesn’t touch the correlations between phrases and
probability modeling which are the key points we
focus on.

5 Experiments

We design experiments to first compare our
method with the phrase-based model (PB), the op-
eration sequence model (OSM) and the hierarchi-
cal phrase-based model (HPB), then we present
several experiments to test:

1. how each of the factors in our model and par-
allel backoff affect overall performance;

2. how the language model order affects the rel-
ative gains, in order to test if we are just learn-
ing a high order LM, or something more use-
ful;

3. how the Markov model interplay with the
distortion and lexical reordering models of
Moses, and are they complemenatary;

4. whether using MPs as translation units is bet-
ter in our approach than the simpler tactic of
using only word pairs.

5.1 Data Setup

We consider two language pairs: Chinese-English
and Arabic-English. The Chinese-English paral-
lel training data is made up of the non-UN por-
tions and non-HK Hansards portions of the NIST
training corpora, distributed by the LDC, having
1,658k sentence pairs with 40m and 44m Chinese
and English words. We used the NIST 02 test set
as the development set and evaluated performance
on the test sets from NIST 03 and 05.

For the Arabic-English task, the training data
comprises several LDC corpora,5 including 276k
sentence pairs and 8.21m and 8.97m words in Ara-
bic and English, respectively. We evaluated on the
NIST test sets from 2003 and 2005, and the NIST
02 test set was used for parameter tuning.

On both cases, we used the factor language
model module (Kirchhoff et al., 2007) of the
SRILM toolkit (Stolcke, 2002) to train a Markov

5LDC2004E72, LDC2004T17, LDC2004T18,
LDC2006T02

model with the order = 3 over the MP sequences.6

The threshold count of backoff for all nodes was
τ = 2.

We aligned the training data sets by first using
GIZA++ toolkit (Och and Ney, 2003) to produce
word alignments on both directions and then com-
bining them with the diag-final-and heuristic. All
experiments used a 5-gram language model which
was trained on the Xinhua portion of the GIGA-
WORD corpus using the SRILM toolkit. Transla-
tion performance was evaluated using BLEU (Pa-
pineni et al., 2002) with case-insensitive n ≤ 4-
grams. We used minimum error rate training (Och,
2003) to tune the feature weights to maximize the
BLEU score on the development set.

We used Moses for PB and Moses-chart for
HPB with the configuration as follows. For both,
max-phrase-length=7, ttable-limit7=20, stack-
size=50 and max-pop-limit=500; For Moses,
search-algorithm=1 and distortion-limit=6; For
Moses-chart, search-algorithm=3 and max-char-
span8=20 for Moses-chart. We used both the dis-
tortion model and the lexical reordering model for
Moses (denoted as Moses-l) except in §5.5 we only
used the distortion model (denoted as Moses-d).
We implemented the OSM according to Durrani
et al. (2013) and used the same configuration with
Moses-l. For our method we used the same config-
uration as Moses-l but adding an additional feature
of the Markov model over MPs.

5.2 Performance Comparison
We first give the results of performance compar-
ison. Here we add another system (denoted as
Moses-l+trgLM): Moses-l together with the target
language model trained on the training data set,
using the same configuration with Moses-l. This
system is used to test whether our model gains im-
provement just for using additional information on
the training set. We use the open tool of Clark et
al. (2011) to control for optimizer stability and test
statistical significance.

The results are shown in Tables 1 and 2. The
two language pairs we used are quite different:
Chinese has a much bigger word order differ-
ence c.f. English than does Arabic. The results
show that our system can outperform the baseline

6We only employed MPs with the length≤ 3. If a MP had
more than 3 words on either side, we omitted the alignment
links to the first target word of this MP and extracted MPs
according to the new alignment.

7The maximum number of lexical rules for each source
span.

8The maximum span on the source a rule can cover.
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System NIST 02 (dev) NIST 03 NIST 05
Moses-l 36.0 32.8 32.0
Moses-chart 36.9 33.6 32.6
Moses-l+trgLM 36.4 33.9 32.9
OSM 36.6 34.0 33.1
our model 37.9 36.0 35.1

Table 1: BLEU % scores on the Chinese-English
data set.

System NIST 02 (dev) NIST 03 NIST 05
Moses-l 60.4 52.0 52.8
Moses-chart 60.7 51.8 52.4
Moses-l+trgLM 60.8 52.6 53.3
OSM 61.1 52.9 53.4
our model 62.2 53.6 53.9

Table 2: BLEU % scores on the Arabic-English
data set.

systems significantly (with p < 0.005) on both
language pairs, nevertheless, the improvement on
Chinese-English is bigger. The big improvement
over Moses-l+trgLM proves that the better perfor-
mance of our model does not solely comes from
the use of the training data. And the gain over
OSM means our definition of factors gives a better
handling to sparsity. We also notice that HPB does
not give a higher BLEU score on Arabic-English
than PB. The main difference between HPB and
PB is that HPB employs gapped rules, so this re-
sult suggests that gaps are detrimental for Arabic-
English translation. In §5.3, we experimentally
validate this claim with our Markov model.

5.3 Impact of Factors and Parallel Backoff

We now seek to test the contribution of target,
jump, source factors, as well as the parallel back-
off technique in terms of BLEU score. We
performed experiments on both Chinese-English
and Arabic-English to test whether the contri-
bution was related to language pairs. We de-
signed the experiments as follows. We first
trained a 3-gram Markov model only over tar-
get factors, p(ēI1|f̄ I1 ) =

∏I
i=1 p(ēi|ēi−1

i−2), de-
noted +t. Then we added the jump fac-
tor (+t+j), such that we now considering
both target and jump events, p(ēI1, j̄

I
1 |f̄ I1 ) =∏I

i=1 p(ēi|j̄ii−2, ē
i−1
i−2)p(j̄i|j̄i−1

i−2 , ē
i−1
i−2). Next we

added the source factor (+t+j+s) such that now all
three factors are included from Equation 1. For
the above three Markov models we used simple
least-recent backoff (akin to a standard language
model), and consequently these methods cannot
represent gaps in the target. Finally, we trained an-

System Chinese-English Arabic-English
NIST 02 NIST 03 NIST 02 NIST 03

Moses-l 36.0 32.8 60.4 52.0
+t 36.3 33.8 60.9 52.4
+t+j 37.1 34.7 62.1 53.4
+t+j+s 37.6 34.8 62.5 53.9
+t+j+s+p 37.9 36.0 62.2 53.6

Table 3: The impact of factors and parallel back-
off. Key: t–target, j–jump, s–source, p–parallel
backoff.

System 2gram 3gram 4gram 5gram 6gram
Moses-l 27.2 32.4 33.0 32.8 33.2
our method 31.6 34.0 35.8 36.0 36.2

Table 4: The impact of the order of the standard
language models.

other Markov model by introducing parallel back-
off to the third one as described in §2.1. Each
of the four Markov model approaches are imple-
mented as adding an additional feature, respec-
tively, into the Moses-l baseline.

The results are shown in Table 3. Observe that
adding each factor results in near uniform per-
formance improvements on both language pairs.
The jump factor gives big improvements of about
1% BLEU in both language pairs. However when
using parallel backoff, the performance improves
greatly for Chinese-English but degrades slightly
on Arabic-English. The reason may be parallel
backoff is used to encode common structures to
capture the different word ordering between Chi-
nese and English while for Arabic-English there
are fewer consistent reordering patterns. This is
also consistent with the results in Table 1 and 2
where HPB gets a little bit lower BLEU scores.

5.4 Impact of LM order

Our system resembles a language model in com-
mon use in SMT systems, in that it uses a Markov
model over target words, among other factors.
This raises the question of whether its improve-
ments are due to it functioning as a target language
model. Our experiments use order k = 3 over MP
sequences and each MP can have at most 3 words.
Therefore the model could in principle memorize
9-grams, although usually MPs are much smaller.
To test whether our improvements are from using
a higher-order language model or other reasons,
we evaluate our system and the baseline system
with a range of LMs of different order. If we can
get consistent improvements over the baseline for
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System NIST 02 (dev) NIST 03
Moses-d 35.1 31.3
Moses-l 36.0 32.8
Moses-d+M 36.4 34.8
Moses-l+M 37.9 36.0

Table 5: Comparison between our Markov model
(denoted as M) and the lexical reordering model
of Moses.

both small and large n, this suggests it’s not the
long context that plays the key role but is other
information we have learned (e.g., jumps or rich
structures).

Table 4 shows the results of using standard lan-
guage models with orders 2 − 6 in Moses-l and
our method. We can see that language model or-
der is very important. When we increase the order
from 2 to 4, the BLEU scores for both systems in-
creases drastically, but levels off for 4-gram and
larger. Note that our system outperforms Moses-l
by 4.4, 1.6, 2.8, 3.2 and 3.0 BLEU points, respec-
tively. The large gain for 2-grams is likely due to
the model behaving like a LM, however the fact
that consistent gains are still realized for higher
k suggests that the approach brings considerable
complementary information, i.e., it is doing much
more than simply language modelling.

5.5 Comparison with Lexical Reordering

Our Markov model learns a joint model of jump,
source and target factors and this is similar to the
lexical reordering model of Moses (Koehn et al.,
2007), which learns general orientations of pairs
of adjacent phrases (classed as monotone, swap or
other). Our method is more complex, by learning
explicit jump distances, while also using broader
context. Here we compare the two methods, and
test whether our approach is complementary by re-
alizing gains over the lexicalized reordering base-
line. We test this hypothesis by comparing the
results of Moses with its simple distortion model
(Moses-d), then with both simple distortion and
lexicalized reordering (Moses-l), and then with our
Markov model (denoted as Moses-d+M or Moses-
l+M, for both baselines respectively).

The results are shown in Table 5. Comparing
the results of Moses-l and Moses-d, we can see that
the lexical reordering model outperforms the dis-
tortion model by a margin of 1.5% BLEU. Com-
paring Moses-d+M with Moses-l, our Markov
model provides further improvements of 2.0%

System NIST 02 (dev) NIST 03
Moses-l 36.0 32.8
Moses-l+word 36.9 34.0
Moses-l+MP 37.6 34.8

Table 6: Comparison between the MP-based
Markov model and the word-based Markov model.

BLEU. Our approach does much more than model
reordering, so it is unlikely that this improvement
is solely due to being better a model of distor-
tion. This is underscored by the final result in
Table 5, for combining lexicalized distortion with
our model (Moses-l+M) which gives the highest
BLEU score, yielding another 1.2% increase.

5.6 Comparison with Word-based Markov

Our approach uses minimal phrases as its basic
unit of translation, in order to preserve the many-
to-many links found from the word alignments.
However we now seek to assess the impact of the
choice of these basic units, considering instead a
simpler word-based setting which retains only 1-
to-1 links in a Markov model. To do this, we
processed target words left-to-right and for tar-
get words with multiple links, we only retained
the link which had the highest lexical translation
probability. Then we trained a 3-gram word-based
Markov model which backs off by dropping the
factors of the least recent word pairs in the order of
first jump then source then target. This model was
included as a feature in the Moses-l baseline (de-
noted as Moses-l+word), which we compared to a
system using a MP-based Markov model backing
off in the same way (denoted as Moses-l+MP).

According to the results in Table 6, using MPs
leads to better performance. Surprisingly even
the word based method outperforms the baseline.
This points to inadequate phrase-pair features in
the baseline, which can be more robustly esti-
mated using a Markov decomposition. In addition
to allowing for advanced smoothing, the Markov
model can be considered to tile phrases over one
another (each k-gram overlaps k−1 others) rather
than enforcing a single segmentation as is done in
the PB and HPB approaches. Fox (2002) states
that phrases tend to move as a whole during re-
ordering, i.e., breaking MPs into words opens the
possibility of making more reordering errors. We
could easily use larger phrase pairs as the basic
unit, such as the phrases used during decoding.
However, doing this involves a hard segmentation
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and would exacerbate issues of data sparsity.

6 Conclusions

In this paper we try to give a solution to the prob-
lems in phrase-based models, including weak gen-
eralization to unseen data and negligence of cor-
relations between phrases. Our solution is to de-
fine a Markov model over minimal phrases so as
to model translation conditioned on context and
meanwhile use a fancy smoothing technique to
learn richer structures such that can be applied to
unseen data. Our method further decomposes each
minimal phrase into three factors and operates in
the unit of factors in the backoff process to provide
a more robust modeling.

In our experiments, we prove that our defini-
tion of factored Markov model provides comple-
mentary information to lexicalized reordering and
high order language models and the use of paral-
lel backoff infers richer structures even those out
of the reach of 2-SCFG and hence brings big per-
formance improvements. Overall our approach
gives significant improvements over strong base-
lines, giving consistent improvements of between
1.1 and 3.2 BLEU points on large scale Chinese-
English and Arabic-English evaluations.
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