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Abstract

Distributional representations have recently been proposed as a general-purpose representation
of natural language meaning, to replace logical form. There is, however, one important difference
between logical and distributional representations: Logical languages have a clear semantics, while
distributional representations do not. In this paper, we propose a semantics for distributional repre-
sentations that links points in vector space to mental concepts. We extend this framework to a joint
semantics of logic and distributions by linking intensions of logical expressions to mental concepts.

1 Introduction

Distributional similarity can model a surprising range of phenomena (e.g., Lund et al. (1995); Landauer
and Dumais (1997)) and is useful in many NLP tasks (Turney and Pantel, 2010). Recently, it has been
suggested that a general-purpose framework for representing natural language semantics should be dis-
tributional, such that it could represent word similarity and phrase similarity (Coecke et al., 2010; Baroni
and Zamparelli, 2010; Grefenstette and Sadrzadeh, 2011; Clarke, 2012). Another suggestion has been to
combine distributional representations and logical form, with the argument that the strengths of the two
frameworks are in complementary areas (Garrette et al., 2011).

One important difference between logic and distributional representations is that logics have a seman-
tics. For example, a model1 in model-theoretic semantics provides a truth assignment to each sentence
of a logical language. More generally, it associates expressions of a logic with set-theoretic structures,
for example the constant cat′ could be interpreted as the set of all cats in a given world. But what is the
interpretation of a distributional representation? What does a point in vector space, where the dimensions
are typically uninterpretable symbols, stand for? 2 In this paper, we propose a semantics in which dis-
tributional representations stand for mental concepts, and are linked to intensions of logical expressions.
This gives us a joint semantics for distributional and logical representations.

Distributional representations stand for mental concepts. One central function of models is that they
evaluate sentences of a logic as being either true or false. Distributional representations have been eval-
uated on a variety of phenomena connected to human concept representation (e.g., Lund et al. (1995);
Landauer and Dumais (1997); Burgess and Lund (1997)). Here, evaluation means that predictions based
on distributional similarity are compared to experimental results from human subjects. So we will inter-
pret distributional representations over a conceptual structure.

Distributional representations stand for intensions. Gärdenfors (2004) suggests that the intensions
of logical expressions should be mental concepts. By adopting this view, we can link distributional
representations and logic through a common semantics: Both the intensions of logical expressions and
the interpretations of distributional representations are mental concepts. However, there is a technical

1In the context of logical languages, “models” are structures that provide interpretations. In the context of distributional
approaches, “distributional models” are particular choices of parameters. To avoid confusion, this paper will reserve the term
“model” for the model-of-a-logic sense.

2Clark et al. (2008) encode a model in a vector space in which natural language sentences are mapped to a single-dimensional
space that encodes truth and falsehood. This is a vector space representation, but it is not distributional as it is not derived from
observed contexts. In particular, it does not constitute a semantics for a distributional representation.
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∃x
(
woodchuck(x) ∧ see(John, x)

)
sim(woodchuck, groundhog) > θ

∃x
(
groundhog(x) ∧ see(John, x)

)

Figure 1: Sketch of an example interaction of distributional and logical representations

problem: If intensions are mental concepts, they cannot be mappings from possible worlds to extensions,
which is the prevalent way of defining intensions. We address this problem through hyper-intensional
semantics. Hyper-intensional approaches in formal semantics (Fox and Lappin, 2001, 2005; Muskens,
2007) were originally introduced to address problems in the granularity of intensions. Crucially, some
hyper-intensional approaches have intensions that are abstract objects, with minimal requirements on the
nature of these objects. So we can build on them to link some intensions to conceptual structure.

Why design a semantics for distributional representations? Our aim is not to explicitly construct
conceptual models; that would be at least as hard as constructing an ontology. Rather, our aim is to
support inferences. Distributional representations induce synonyms and paraphrases automatically based
on distributional similarity (Lin, 1998; Lin and Pantel, 2001). As Garrette et al. (2011) point out, and
as illustrated in Figure 1, these can be used as inference rules within logical form. But when is such
inference projection valid? Our main aim for constructing a joint semantics is to provide a principled
basis for answering this question.

In the current paper, we construct a first semantics along the lines sketched above. In order to be
able to take this first step, we simplify distributional predictions greatly by discretizing them. We want
to stress, however, that this is a temporary restriction; our eventual aim is to make use of the ability of
distributional models to handle graded and uncertain information as well as ambiguity.

2 Related work

Predicting sentence similarity with distributional representations. The distributional representation
for a word is typically based on the textual contexts in which it has been observed (Turney and Pantel,
2010). The distributional representation of a document is typically based on the words that it contains,
or on latent classes derived from co-occurrences of those words (Landauer and Dumais, 1997; Blei
et al., 2003). Phrases and sentences occupy an unhappy middle ground between words and documents.
They re-appear too rarely for a representation in terms of the textual contexts in which they have been
observed, and they are too short for a document-like representation. There are multiple approaches to
predicting similarity between sentences based on distributional information. The first computes a single
vector space representation for a phrase or sentence in a compositional manner from the representations
of the individual words (Coecke et al., 2010; Baroni and Zamparelli, 2010; Grefenstette and Sadrzadeh,
2011). This approach currently still faces big hurdles, including the problem of encoding the meaning
of function words and the problem of predicting similarity for sentences of different structure. The
second approach compares two phrases or sentences by computing multiple pairwise similarity values
between components (words or smaller phrases) of the two sentences and then combining those similarity
values (Socher et al., 2011; Turney, 2012). The third approach seeks to transform the representation of
one sentence into another through term rewriting, where the rewriting rules are based on distributional
similarity between words and smaller phrases (Bar-Haim et al., 2007). The approach of Garrette et al.
(2011) can be viewed as falling into the third group. It represents sentences not as syntactic graphs as
Bar-Haim et al. (2007) but through logic, and injects weighted inference rules derived from distributional
similarity. Our approach belongs into this third group. The aim of the semantics that we present in
Section 3 is to show that the use of distributional rewriting rules does not change the semantics of a logical
expression. A fourth approach is the taken by Clarke (2007, 2012), who formalizes the idea of “meaning
as context” in an algebraic framework that replaces concrete corpora with a generative corpus model that
can assign probabilities to arbitrary word sequences. This eliminates the sparseness problem of finite
corpora, such that both words and arbitrary phrases can be given distributional representations. Clarke
also combines vector spaces and logic-based semantics by proposing a space in which the dimensions
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(IHTT1) p ` >
(IHTT2) ⊥ ` p
(IHTT3) ` ¬p↔ p→ ⊥
(IHTT4) r ` p ∧ q iff r ` p and r ` q
(IHTT5) p ∨ q ` r iff p ` r or q ` r
(IHTT6) p ` q → r iff p ∧ q ` r
(IHTT7) p ` ∀xBφ〈B,Π〉 iff p ` φ
(IHTT8) φ(a) ` ∃xBφ(x) (where φ ∈ 〈B,Π〉, and a
is a constant in B)

(IHTT9) ` λuφ(v) ∼= φ[u/v] (where u is a variable
in A, v ∈ A, φ ∈ 〈A,B〉, and v is not bound when
substituted for u in φ)
(IHTT10) ` ∀s, tΠ

(
s ∼= t↔ (s↔ t)

)

(IHTT11) ` ∀φ, ψ〈A,B〉
(
∀uA(φ(u) ∼= ψ(u)) → φ ∼=

ψ
)

(IHTT12) ` ∀u, vA∀φ〈A,B〉
(
u = v → φ(u) ∼= φ(v)

)

(IHTT13) ` ∀tΠ
(
t ∨ ¬t)

Table 1: Axioms of the intensional higher-order type theory IHTT of Fox and Lappin (2001)

• If αA is a non-logical constant, then ||α||M,g =
F (I(α))
• If αA is a variable, then ||α||M,g = g(α)
• ||α〈A,B〉(βA)||M,g = ||α||M,g

(
||β||M,g

)

• If α is in A and u is a variable in B, then
||λuα||M,g is a function h : DA → DB such
that for any a ∈ DA, h(a) = ||α||M,g[u/a]

• ||¬φΠ||M,g = t iff ||φ||M,g = f
• ||φΠ ∧ ψΠ||M,g = t iff ||φ||M,g =
||ψ||M,g = t

• ||φΠ ∨ ψΠ||M,g = t iff ||φ||M,g = t or ||ψ||M,g = t
• ||φΠ → ψΠ||M,g = t iff ||φ||M,g = f or ||ψ||M,g = t
• ||φΠ ↔ ψΠ||M,g = t iff ||φ||M,g = ||ψ||M,g

• ||αA
∼= βA||M,g = t iff ||α||M,g = ||β||M,g

• ||αA = βA||M,g = t iff I(α) = I(β)
• ||∀uAφΠ||M,g = t iff for all a ∈ DA

(
||φ||M,g[u/a] = t

)

• ||∃uAφΠ||M,g = t iff for some a ∈ DA

(
||φ||M,g[u/a] = t

)

• φΠ is true in M (false in M ) iff ||φ||M,g = t (f ) for all g.
• φΠ is logically true (false) iff φ is true (false) in every M
• φΠ |= ψΠ iff for every M such that φ is true in M , ψ is
true in M

Table 2: Interpretation of IHTT expressions

correspond to logic formulas. A word or phrase x is linked to formulas for sequences uxv in which it
occurs, and each formula F is generalized to other formulas G that entail F . But it is not clear yet how
this representation could be used for inferences.

Distributions, extensions, and intensions Like the current paper, Copestake and Herbelot (2012) con-
sider the connection between distributional representations and the semantics of logical languages. How-
ever, they reach a very different conclusion. They propose using distributional representations as inten-
sions of logical expressions. In addition, they link distributions to extensions by noting that each sentence
that contributes to the distributional representation for the word “woodchuck” is about some member of
the extension ofwoodchuck. They define the ideal distribution for a concept, for example “woodchuck”,
as the collection of all true statements about all members of the category, in this case all woodchucks in
the world.

In our view, distributions describe general, intensional knowledge, and do not provide reference to
extensions, so we will link distributional representations to intensions and not extensions. Concerning
the Copestake and Herbelot proposal of distributions as intensions, we consider distributions as represen-
tations in need of an interpretation or intension, rather than representations that constitute the intension. 3

Also it is a somewhat unclear how the intension would be defined in practice in the Copestake and Her-
belot framework, as it is based on the hypothetical ideal distribution with its potentially infinite number
of sentences.

Hyper-intensional semantics The axiom of Extensionality states that if two expressions have the same
extension, then they share all their properties. Together with the standard formulation of intensions as
functions from possible worlds to extensions, this generates the problem that logically equivalent state-
ments like “John sleeps” and “John sleeps, and Mary runs or does not run” become intersubstitutable in

3Though it should be noted that there is a debate within psychology on whether mental conceptual knowledge is actually
distributional in nature (Landauer and Dumais, 1997; Barsalou, 2008; Andrews et al., 2009).
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all contexts, even in contexts like “Sue believes that. . . ” where they should not be exchangeable. Hyper-
intensional semantics addresses this problem. In particular, some approaches (Fox and Lappin, 2001,
2005; Muskens, 2007) address the problem by (1) dropping the axiom of Extensionality, (2) mapping ex-
pressions of the logic first to intensions and then mapping the intensions to extensions, and (3) adopting a
notion of intensions as abstract objects with minimal restrictions. This makes these approaches relevant
for our purposes, as we can add the axioms that we need for a joint semantics of logical and distributional
representations. Muskens (2007) has one constraint on intensions that makes the approach unusable for
our purposes in its current form: It has intensions and extensions be objects from the same collections of
domains – but we would not want to force extensions to be mental objects. Instead we build on the in-
tensional higher-order type theory IHTT from Fox and Lappin (2001). The set of types of IHTT contains
the basic types e (for entity) and Π (proposition), and if A, B are types, then so is 〈A,B〉. The logic
contains all the usual connectives, plus “∼=” for extensional equality and “=” for intensional equality. Fox
and Lappin adopt the axioms shown in Table 1, which do not include the axiom of Extensionality. 4 A
model for IHTT is a tuple M = 〈D,S,L, I, F 〉, where D is a family of non-empty sets such that DA is
the set of possible extensions for expressions of type A. S is the set of possible intensions, and L ⊆ S
is the set of possible intensions for non-logical constants of the logic. I is a function that maps arbitrary
expressions of IHTT to the set S of intensions. If α is a non-logical constant, then I(α) is in L, otherwise
I(α) is in S −L. The function F is a mapping from L (intensions of non-logical constants) to members
of D (extensions). A valuation g is a function from the variables of IHTT to members of D such that for
all vA it holds that g(v) ∈ DA. A model of IHTT has to satisfy the following constraints: 5

(M1) If v is a variable, then I(v) = v.

(M2) For a model M , if I(α) = I(β), then for all g, ||α||M,g = ||β||M,g.

Table 2 shows the definition of extensions ||.||M,g of expressions of IHTT.

3 A joint semantics for distributional and logical representations

In this section we construct a first implementation of the semantics for distributional representations
sketched in the introduction. In this semantics, distributional interpretations are interpreted over mental
concepts and are linked to the intensions of some logical expressions. We use as a basis the hyper-
intensional logic IHTT of Fox and Lappin (2001) (Section 2), which does not require intensions to be
mappings from possible worlds to extensions, such that we are free to link intensions to mental concepts.
The central result of this section will be that the interpretation of sentences of the logic is invariant to
rewriting steps such as the one in Figure 1, which replace a non-logical constant by another based on
distributional similarity. The semantics that we present in this paper constitutes a first step. It leaves some
important questions open, such as paraphrasing beyond the word level, or graded concept membership.

3.1 Distributional representations

Typically, the distributional representation for a target word t is computed from the occurrences, or
usages, of t in a given corpus. Minimally, a usage is a sequence of words in which the target appears at
least once. We will allow for two additional pieces of information in a usage, namely larger discourse
context, and non-linguistic context. (Recently, there have been distributional approaches that make use
of non-linguistic context, in particular image data (Feng and Lapata, 2010; Bruni et al., 2012).)

Let W be a set of words (the lexicon), and let Seq(W ) be the set of finite sequences over W . Then
a usage over W is a tuple 〈s, t, δ, ω〉, where s ∈ Seq(W ) is a sequence of words such that a word
form of t ∈ W occurs in s at least once, δ ∈ ∆ ∪ {NA} is a (possibly empty) discourse context, and

4We write αA to indicate that expression α is of type A.
5Fox and Lappin mention that one could add the constraint that if α, α′ differ only in the names of bound variables, then

I(α) = I(α′). We do not do that here, since we are only concerned with replacing non-logical constants in the current paper.
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ω ∈ Ω ∪ {NA} is a (possibly empty) non-linguistic context. We write U(W,∆,Ω) for the set of all
usages over W (and ∆ and Ω). For any usage u = 〈s, t, δ, ω〉, we write target(u) = t. Given a set
U ⊆ U(W,∆,Ω) of usages, we write Ut = {u ∈ U | target(u) = t} for the usages of a target word t.
Furthermore, we write WU = {t ∈W | Ut 6= ∅} for the set of words that have usages in U .

In distributional approaches, the vector space representation for a target word t is computed from
such a set U of usages, typically by mapping U to a single point in vector space (Lund et al., 1995;
Landauer and Dumais, 1997) or a set of points (Schütze, 1998; Reisinger and Mooney, 2010). This
makes it possible to use linear algebra in modeling semantics. However, for our current purposes, we do
not need to specify any particular mapping to a vector space, and can simply work with the underlying
set U of usages: A finite set U of usages over W constitutes a distributional representation for WU . The
distributional representation for a word t ∈W is Ut.

3.2 A semantics for distributional representations

We want to interpret distributional representations over conceptual structure. But what is conceptual
structure? We know that concepts are linked by different semantic relations, including is-a, and part-
of (Fellbaum, 1998), they can overlap, and they are associated with definitional features (Murphy, 2002).
Eventually, all of these properties may be useful to include in the semantics of distributional representa-
tions. But for this first step we work with a much simpler definition. We define a conceptual structure
simply as a set of (atomic, unconnected) concepts.

An individual usage of a word t can refer to a single mental concept. For example, the usage of
“bank” in (1) clearly refers to a “financial institution” concept, not the land at the side of a river. But an
individual usage can also refer to multiple mental concepts when there is ambiguity as in (2), or when
there is too little information to determine the intended meaning as in (3). 67

(1) 〈The bank engaged in risky stock trades, bank, δ, ω〉

(2) 〈Why fix dinner when it isn’t broken, fix, δ, ω〉8

(3) 〈bank, bank,NA,NA〉

From this link between individual usages and concepts, we can derive a link between distributional
representations and concepts: The representation Ut of a word t is connected to all concepts to which the
usages in Ut link. Formally, a conceptual model for U(W,∆,Ω) is a tuple C = 〈Iu, C〉, where C is a set
of concepts, and the function Iu : U(W,∆,Ω) → 2C is an interpretation function for usages that maps
each usage to a set of concepts. 9 A conceptual model C together with a finite set U ⊆ U(W,∆,Ω) of
usages define a conceptual mapping for words. We write IC,U (w) =

⋃
u∈Uw

Iu(u) for the set of concepts
associated with w.

Distributional approaches centrally use some similarity measure, for example cosine similarity, on
pairs of distributional representations, usually pairs of points in vector space. Since we represent a word
t directly by its set Ut of usages rather than a point in vector space derived from Ut, we instead have
a similarity measure sim(U1, U2) on sets of usages. We assume a range of [0, 1] for this similarity
measure. A conceptual model can be used to evaluate the appropriateness of similarity predictions: A
prediction is appropriate if it is high for two usage sets that refer to the same concepts, or low for two
usage sets that refer to different concepts. Formally, a similarity prediction sim(U1, U2) is appropriate
for a conceptual model C = 〈Iu, C〉 and threshold θ iff

• either sim(U1, U2) ≥ θ and
⋃

u∈U1
Iu(u) =

⋃
u∈U2

Iu(u),

6For the purpose of this paper we make the simplifying assumption that concepts have “strict boundaries”: A usage either
does or does not refer to a concept. We do not model cases where a usage is related to a concept, but is not a clear match.

7Another possible reason for one usage mapping to multiple mental concepts is concept overlap (Murphy, 2002).
8Advertisement for a supermarket in Austin, Texas..
9We write 2S for the power set of a set S.
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woodchuck(x) ^ see(John, x)

�

Figure 2: Enriching the information about non-logical constants: Constants are associated with sets of
concepts (circles) and, through them, with distributional representations

• or sim(U1, U2) < θ and
⋃

u∈U1
Iu(u) 6= ⋃u∈U2

Iu(u).

This formulation of appropriateness is simplistic in that it discretizes similarity predictions into two
classes: above or below threshold θ. This is due to our current impoverished view of concepts as dis-
joint atoms. When we introduce a conceptual similarity measure within conceptual models, a more
fine-grained evaluation of distributional similarity ratings becomes available. Such a conceptual sim-
ilarity measure would be justified, as humans can judge similarity between concepts (Rubenstein and
Goodenough, 1965), but we do not do it here in order to keep our models maximally simple.

3.3 A joint semantics for logical form and distributional representations

We now link the intensions of some logical expressions to mental concepts, using the logic IHTT as a
basis. We will need to constrain the behavior of intensions more than Fox and Lappin do. In particular,
we add the following two requirements to models M = 〈D,S,L, I, F 〉 of IHTT.

(M3) If the expression α ∈ A is the result of beta-reducing the expression β ∈ A, then I(α) = I(β).

(M4) If I(uA) = I(vA), then for all φ ∈ 〈A,B〉, I(φ(u)) = I(φ(v)).

(M4) allows for the exchange of an intensionally equal expression without changing the intension of the
overall expression.

We now define models that join an intensional model of IHTT with a conceptual model for a dis-
tributional representation. In particular, we link constants of the logic to sets of concepts, and through
them, to distributional representations, as sketched in Figure 2. If the word “woodchuck” is associated
with the concept set Cwoodchuck = IC,U (woodchuck), then the intension of the constant woodchuck will
also be Cwoodchuck. We proceed in two steps: In the definition of joint models, we require the existence
of a mapping from words to non-logical constants that share the same interpretation. In a second step,
we require semantic constructions to respect this mapping, such that the logical expression associated
with “woodchuck” will be λx

(
woodchuck(x)

)
rather than λx

(
guppy(x)

)
. Note that only words in WU

have distributional representations associated with them; for words in W −WU , neither their translation
to logical expressions nor the intensions of those expressions are constrained in any way.

LetM = 〈D,S,L, I, F 〉 be a model for IHTT, let C = 〈Iu, C〉 be a conceptual model for U(W,∆,Ω),
and let U be a finite subset of U(W,∆,Ω). Then MC = 〈D, S, L, I , F , Iu, C〉 is an intensional concep-
tual model for IHTT and U(W,∆,Ω) based on U if

(M5) There exists a function h fromWU to the non-logical constants of IHTT such that for all w ∈WU ,
IC,U (w) = I(h(w))

(M6) For all w1, w2 ∈WU , if IC,U (w1) = IC,U (w2) then h(w1) and h(w2) have the same type.

We say that the model MC contains M and C.
Constraint (M5) links each word to a non-logical constant such that the distributional interpretation

of the word and the intension of the constant are the same. (M6) states that if two words have the same
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distributional interpretation, their associated constants have the same type. We next define semantic
constructions sem in general, and semantic constructions that connect the translation sem(w) of a word
w to its associated constant h(w). A semantic construction function for a set W of words and a logical
language L is a partial function sem : Seq(W ) → L such that sem(w) is defined for all w ∈ W .
sem(.) maps sequences of words over W to expressions from L. A sequence s ∈ Seq(W ) is called
grammatical if sem(s) is defined. A semantic construction sem is an intended semantic construction
for an intensional conceptual model M = 〈D, S, L, I , F , Iu, C〉 based on U if the following constraint
holds for the function h from (M5):

(M7) For each type A there exists some expression φA such that for all w ∈WU , sem(w) is equivalent
(modulo beta-reduction) to φA(h(w)).

(M7) states that the construction of translations sem(w) from non-logical constants h(w) must be
uniform for all words of the same semantic type. For example, if for the word “woodchuck” we have
h(woodchuck) = woodchuck, an expression of type 〈e,Π〉, then the expression φ〈e,Π〉 = λPλx(P (x))
will map woodchuck to λx(woodchuck(x)) = sem(woodchuck).

3.4 Synonym replacement

In Section 2 we have sketched a framework for the interaction of logic and distributional representations
based on Bar-Haim et al. (2007). Distributional representations can be used to predict semantic similarity
between pairs of words and in particular to predict synonymy between words (Lin, 1998). Distribution-
ally induced synonym pairs can be used as rewriting rules that transform sentence representations. In
our case, the representations to be transformed are expressions of the logic. Two sentences count as
synonymous if it is possible to transform the representation of one sentence into the representation of the
other, using both distributional rewriting rules and the axioms of the logic.

We start out by showing that the application of a rewriting rule that exchanges one non-logical con-
stant of IHTT for another constant with the same intension leaves both the intension and the extension
of the overall logical expression unchanged. Given a logical expression φ, we write φ[some b/a] for the
set of expressions obtained from φ by replacing zero or more occurrences of a by b.

Proposition 1: Soundness of non-logical constant rewriting. Let M = 〈D,S,L, I, F 〉 be an inten-
sional model for IHTT, and let a, b be non-logical constants of IHTT of type A such that I(a) = I(b).
Then for any expression φ of IHTT and any φ′ ∈ φ[some b/a], I(φ) = I(φ′), and for any valuation g,
||φ||M,g = ||φ′||M,g.

Proof. Let xA be a variable that does not occur in φ. Then for each φ′ ∈ φ[some b/a] there exists an
expression ψ ∈ φ[some x/a] such that (λxψ)(a) beta-reduces to φ and (λxψ)(b) beta-reduces to φ′. As
I(a) = I(b), we have I((λxψ)(a)) = I((λxψ)(b)) by (M4). So by (M3), I(φ) = I(φ′). From this it
follows that for any valuation g, ||φ||M,g = ||φ′||M,g by (M2). �

We call two words synonyms if they refer to the same set of concepts. Formally, let U be a finite subset
of U(W,∆,Ω) that is a distributional representation for WU , and C = 〈Iu, C〉 a conceptual model for
U(W,∆,Ω). A word p ∈WU is a synonym for t ∈WU by C and U if IC,U (t) = IC,U (p).

We would like to show that if t and p are synonyms, then exchanging t for p changes neither the
intension nor the extension of the logical translation for the sentence. To do so, we first show that
exchanging t for p corresponds to applying constant rewriting on the sentence representation.

Note, however, that the logical translation of a sentence depends not only on the words, but also on the
syntactic structure of the sentence. If a given syntactic analysis framework only allows for the bracketing
“(small (tree house))” and at the same time only allows for the bracketing “((little tree) house)”, then
the two phrases will not receive the same semantics even if the model considers “small” and “little”
to be synonyms. So we will show that if replacement by a synonym within a given syntactic structure
again yields a valid syntactic structure, then the semantics of the sentence remains unchanged. For any
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sequence s ∈ Seq(W ) of words overW , we write T (s) for the set of constituent structure analyses for s.
For τ ∈ T (s), we write τ [p/t] for the syntactic graph that is exactly like τ except that all leaves labeled
t are replaced by leaves labeled p. We write sem(τ) for the logical translation of s that is based on the
syntactic structure of τ . We assume that there exists exactly one translation sem(τ) for each syntactic
structure τ .

Lemma 2. Let MC be be an intensional conceptual model for IHTT and U(W,∆,Ω) based on U ⊆
U(W,∆,Ω) that contains M = 〈D,S,L, I, F 〉 and C = 〈Iu, C〉. Let t, p ∈ WU be synonyms by C and
U , and let s ∈ Seq(W ) be a sequence with syntactic analysis τ ∈ T (s) such that τ [p/t] ∈ T (s[p/t]).
Then for any intended semantic construction sem for MC and U , sem(τ [p/t]) is equivalent modulo
beta-reduction to some member of sem(τ)[some h(p)/h(t)].

Proof. We proceed by induction over the structure of τ . If s consists of a single word, then τ = s, and
either s = t or s = w for a word w 6= t. If s = w for some w 6= t, then sem(τ [p/t]) = sem(τ) ∈
sem(τ)[some h(p)/h(t)].

If s = t, then sem(τ) = sem(t) and sem(τ [p/t]) = sem(p). By (M5) and because t and p are
synonyms, we have I(h(t)) = IC,U (t) = IC,U (p) = I(h(p)). From this it follows by (M6) that the
non-logical constants h(t) and h(p) have the same semantic type A. Then by (M7) there exists a logical
expression φA such that sem(τ) = sem(t) is equivalent modulo beta-reduction to φA(h(t)). At the
same time, sem(τ [p/t]) = sem(p) is equivalent modulo beta-reduction to φA(h(p)), which is equivalent
modulo beta-reduction to a member of

(
φA(h(t))

)
[some h(p)/h(t)], which in turn is equivalent modulo

beta-reduction so a member of sem(τ)[some h(p)/h(t)].
Now assume that s comprises more than one word. Let the root of τ have n children that are the

roots of subtrees τ1 . . . τn. There is some semantic construction rule associated with the root of τ
that can be written as an expression φ of IHTT such that φ(sem(τ1)) . . . (sem(τn)) beta-reduces to
sem(τ). By the inductive hypothesis, sem(τi[p/t]) is equivalent modulo beta-reduction to some ψi ∈
sem(τi)[some h(p)/h(t)] for 1 ≤ i ≤ n. The expression φ remains unchanged between sem(τ) and
sem(τ [p/t]) because only leaves of the tree were changed and the overall constituent structure remained
the same. So the expression sem(τ [p/t]) is equivalent modulo beta-reduction to φ(ψ1) . . . (ψn) ∈(
φ(sem(τ1)) . . . (sem(τn))

)
[some h(p)/h(t)], which in turn is equivalent modulo beta-reduction to

sem(τ)[some h(p)/h(t)]. �

The reason why we have used φ[some b/a] rather than replacement of all occurrences is that there is no
guarantee that the corresponding non-logical constant h(t) for a word t is used only in the lexical entry
of t. For example, the expression φ〈e,Π〉 of (M7) could be λPλx

(
woodchuck(x) ∧ P (x)

)
, making the

lexical entry for “guppy” λx
(
woodchuck(x) ∧ guppy(x)

)
. Or the semantic construction expression φ

for NPs could contain the constant woodchuck. However, now we are in a position to show that this
does not matter, and that a constant rewriting rule can be applied to all occurrences of h(t), whether in
the lexical entry for t or elsewhere. At the same time, we show that replacement of a word by a synonym
does not change the interpretation of the sentence.

Proposition 3: Synonym replacement as constant replacement. Let MC be be an intensional con-
ceptual model for IHTT and U(W,∆,Ω) based on U ⊆ U(W,∆,Ω) that contains M = 〈D,S,L, I, F 〉
and C = 〈Iu, C〉. Let t, p ∈ WU be synonyms by C and U , and let s ∈ Seq(W ) be a sequence with
syntactic analysis τ ∈ T (s) such that τ [p/t] ∈ T (s[p/t]). Then for any valuation g, and any intended
semantic construction sem for MC and U , I(sem(τ)) = I(sem(τ [p/t])) = I(sem(τ)[h(p)/h(t)]), and
||sem(τ)||M,g = ||sem(τ [p/t])||M,g = ||sem(τ)[h(p)/h(t)]||M,g.

Proof. By Lemma 2, the semantic representation of the changed syntactic tree, sem(τ [p/t]), is equiv-
alent modulo beta-reduction to some ψ ∈ sem(τ)[some h(p)/h(t)]. So by Proposition 1, I(ψ) =
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I(sem(τ)), and by (M3), I(sem(τ)[p/t]) = I(ψ). Thus, I(sem(τ)) = I(sem(τ [p/t])). By Proposi-
tion 1, the intension is the same for all members of sem(τ)[some h(p)/h(t)], so we have I(sem(τ)) =
I(sem(τ)[h(p)/h(t)]. And by (M2), if sem(τ), sem(τ [p/t]) and sem(τ)[h(p)/h(t)] have the same
intension, they also have the same extension. �

3.5 Inference

We extend the list of axioms for IHTT from Table 1 by two additional axioms that correspond to the
constraints (M3) and (M4).

(IHTT14) ` λuφ(v) = φ[u/v] (where u is a variable in A, v ∈ A, φ ∈ 〈A,B〉, and v is not bound
when substituted for u in φ)

(IHTT15) ` ∀u, vA∀φ〈A,B〉
(
u = v → φ(u) = φ(v)

)

These axioms parallel (IHTT9) and (IHTT12) but state intensional rather than extensional equality.
Synonymy predictions from the distributional representation can be transformed into rewriting rules:

If the words t and p are synonyms by the distributional representation U , then we generate the rewriting
rule h(t) 7→ h(p). As Proposition 3 shows, this rewriting rule can be applied indiscriminately to a logical
expression, and is not restricted to the lexical entry for t. But since the logic is equipped with inference
capability and is not a passive representation like the syntactic graphs that Bar-Haim et al. (2007) used,
we can alternatively just inject an expression h(t) = h(p), which states intensional equality, into the
logical representation for the parsed sentence τ . The logical representation for τ [p/t] can then be inferred
using (IHTT14) and (IHTT15).

4 Conclusion and outlook

In this paper we have proposed a semantics for distributional representations, namely that each point in
vector space stands for a set of mental concepts. We have provided a coarse-grained evaluation for dis-
tributional representations in which their similarity predictions are evaluated against conceptual equality
or inequality. We have extended this approach to a joint semantics of distributional and logical rep-
resentations by linking the intensions of some logical expressions to mental concepts as well: If the
distributional representation for a word w is interpreted as a set C of concepts, then the non-logical
constant linked to the lexical entry for w will have as its intension the same set C. We have used hyper-
intensional semantics as a basis for this joint semantics. We have been able to show that distributional
rewriting rules that exchange non-logical constants with the same intension do not change the intension
or extension of the overall logical expression. These rewriting rules can be used to compute the logical
representation of a sentence after exchanging a word for its synonym.

The current joint semantics is, however, only a first step, and leaves many important questions open.
We consider the following three to be especially important. (1) Polysemy. Many synonym pairs can only
be substituted for one another in particular sentence contexts. For example “correct” is a synonym for
“fix” that can be substituted in the context of “The programmer fixed the error”, but not in “The cook
fixed dinner.” This means that the words “fix” and “correct” do not map to the same set of concepts,
but they are exchangeable in particular contexts. So we would want to say that “fix” and “correct” are
synonyms with respect to a usage u = 〈s,fix, δ, ω〉 if Iu(u) = Iu(〈s[correct/fix], correct, δ, ω〉). The
main challenge for incorporating polysemy is to have intensions change based on the context of use.

(2) Distributional similarity of larger phrases. There is considerable work both on the distributional
similarity of phrases and sentences (Coecke et al., 2010; Baroni and Zamparelli, 2010; Grefenstette and
Sadrzadeh, 2011) and on the distributional similarity of phrases with open argument slots, such as “X
solves Y” and “X finds a solution to Y” (Lin and Pantel, 2001; Szpektor and Dagan, 2008; Berant et al.,
2011). We would like to use these results to do distributionally driven replacement of multi-word para-
phrases in a joint distributional and logical framework. But this requires a semantics for distributional
representations of larger phrases. If we assume some sort of conceptual structures as semantics, the next
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question is whether all logical expressions should be associated with conceptual structures: Should the
intension of a variable be something conceptual?

(3) Gradience. In this paper we have assumed that the link from usage to concept is binary – either
present or not –, and also that there are no relations between concepts. Both assumptions are simpli-
fications: Concepts have “fuzzy boundaries” (Hampton, 2007), and cognizers can distinguish degrees
of similarity between concepts (Rubenstein and Goodenough, 1965). By modeling this gradience, we
could then talk about degrees of similarity between words and phrases, not just a binary choice of either
synonymy or non-synonymy. But this will require dealing with probabilities or weights in the model and
also in the logic.
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