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Abstract

Syntactic annotation is an indispensable input for many semantic NLP applications. For instance,
Semantic Role Labelling algorithms almost invariably apply some form of syntactic parsing as pre-
processing. The categories used for syntactic annotation in NLP generally reflect the formal patterns
used to form the text. This results in complex annotation schemes, often tuned to one language or
domain, and unintuitive to non-expert annotators. In this paper we propose a different approach and
advocate substituting existing syntax-based approaches with semantics-based grammatical annota-
tion. The rationale of this approach is to use manual labor where there is no substitute for it (i.e.,
annotating semantics), leaving the detection of formal regularities to automated statistical algorithms.
To this end, we propose a simple semantic annotation scheme,UCCA for Universal Conceptual Cog-
nitive Annotation. The scheme covers many of the most important elements and relations present in
linguistic utterances, including verb-argument structure, optional adjuncts such as adverbials, clause
embeddings, and the linkage between them. The scheme is supported by extensive typological cross-
linguistic evidence and accords with the leading CognitiveLinguistics theories.

1 Introduction

Syntactic annotation is used as scaffolding in a wide variety of NLP applications. Examples include
Machine Translation (Yamada and Knight, 2001), Semantic Role Labeling (SRL) (Punyakanok et al.,
2008) and Textual Entailment (Yuret et al., 2010). Syntactic structure is represented using a combinato-
rial apparatus and a set of categories assigned to the linguistic units it defines. The categories are often
based on distributional considerations and reflect the formal patterns in which that unit may occur.

The use of distributional categories leads to intricate annotation schemes. Aslanguages greatly differ
in their inventory of constructions, such schemes tend to be tuned to one language or domain. In addition,
the complexity of the schemes requires highly proficient workforce for its annotation. For example, the
Penn Treebank project (PTB) (Marcus et al., 1993) used linguistics graduates as annotators.

In this paper we propose a radically different approach to grammatical annotation. Under this ap-
proach, only semantic distinctions are manually annotated, while distributional regularities are induced
using statistical algorithms and without any direct supervision. This approach has four main advantages.
First, it facilitates manual annotation that would no longer require close acquaintance with syntactic the-
ory. Second, a data-driven approach for detecting distributional regularities is less prone to errors and to
the incorporation of implicit biases. Third, as distributional regularities neednot be manually annotated,
they can be arbitrarily intricate and fine-grained, beyond the capability of ahuman annotator to grasp and
apply. Fourth, it is likely that semantic tasks that rely on syntactic information would be better served by
using a semantics-based scheme.

We present UCCA (Universal Conceptual Cognitive Annotation), an annotation scheme for encoding
semantic information. The scheme is designed as a multi-layer structure that allows extending it open-
endedly. In this paper we describe the foundational layer of UCCA that focuses on grammatically-
relevant information. Already in this layer the scheme covers (in a coarse-grained level) major semantic
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Figure 1:Demonstrating the difference between distributional and semantic representations. The central example
is formally more similar to the example on the right, but semantically more similar to the example on the left.

phenomena including verbal and nominal predicates and their arguments, the distinction between core
arguments and adjuncts, adjectives, copula clauses, and relations between clauses.

This paper provides a detailed description of the foundational layer of UCCA. To demonstrate
UCCA’s value over existing approaches, we examine two major linguistic phenomena: relations be-
tween clauses (linkage) and the distinction between core arguments and adjuncts. We show that UCCA
provides an intuitive coarse-grained analysis in these cases.

UCCA’s category set is strongly influenced by “Basic Linguistic Theory”(BLT) (Dixon, 2005, 2010),
a theoretical framework used for the description of a great variety of languages. The semantic approach
of BLT allows it to draw similarities between constructions, both within and across languages, that share
a similar meaning. UCCA takes a similar approach.

The UCCA project includes the compilation of a large annotated corpus. Thefirst distribution of the
corpus, to be released in 2013, will consist of about 100K tokens, of which 10K tokens have already been
annotated. The annotation of the corpus is carried out mostly using annotators with little to no linguistic
background. Details about the corpus and its compilation are largely besides the scope of this paper.

The rest of the paper is constructed as follows. Section 2 explains the basic terms of the UCCA
framework. Section 3 presents UCCA’s foundational layer. Specifically, Section 3.1 describes the anno-
tation of simple argument structures, Section 3.2 delves into more complex cases, Section 3.3 discusses
the distinction between core arguments and adjuncts, Section 3.4 discusses linkages between different
structures and Section 3.5 presents a worked-out example. Section 4 describes relevant previous work.

2 UCCA: Basic Terms

Distributional Regularities and Semantic Distinctions. One of the defining characteristics of UCCA
is its emphasis on representing semantic distinctions rather than distributional regularities. In order to
exemplify the differences between the two types of representations, consider the phrases “dozens of par-
liaments”, “thirty parliaments” and “chairmen of parliaments”. Their PTB annotations are presented
in Figure 1. The annotation of “dozens of parliaments” closely resembles that of “chairmen of parlia-
ments”, and is considerably different from that of “thirty parliaments”. A more semantically-motivated
representation would have probably emphasized the similarity between “thirty”and “dozens of” and the
semantic dissimilarity between “dozens” and “chairmen”.

Formalism. UCCA’s semantic representation consists of an inventory of relations and their arguments.
We use the termterminals to refer to the atomic meaning-bearing units. UCCA’s foundational layer
treats words and fixed multi-word expressions as its terminals, but this definition can easily be extended
to include morphemes. The basic formal elements of UCCA are calledunits. A unit may be either (i) a
terminal or (ii) several elements that are jointly viewed as a single entity based on conceptual/cognitive
considerations. In most cases, a non-terminal unit will simply be comprised of a single relation and its
arguments, although in some cases it may contain secondary relations as well(see below). Units can be
used as arguments in other relations, giving rise to a hierarchical structure.

UCCA is a multi-layered formalism, where each layer specifies the relations it encodes. For example,
consider “big dogs love bones” and assume we wish to encode the relationsgiven by “big” and “love”.
“big” has a single argument (“dogs”), while “love” has two (“big dogs” and “bones”). Therefore, the
units of the sentence are the terminals (always units), “big dogs” and “big dogs love bones”. The latter
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Abb. Category Short Definition

Scene Elements
P Process The main relation of a Scene that evolves in time (usually, action or movement).
S State The main relation of a Scene that does not evolve in time.
A Participant A participant in a Scene in a broad sense (including locations, abstract entities and Scenes serving

as arguments).
D Adverbial A secondary relation in a Scene (including temporal relations).

Elements of Non-Scene Relations
E Elaborator A relation (which is not a State or a Process) which applies to a single argument.
N Connector A relation (which is not a State or a Process) which applies to two or more arguments.
R Relator A secondary relation that pertains to a specific entity and relates it to some super-ordinate relation.
C Center An argument of an Elaborator or a Connector.

Inter-Scene Relations
L Linker A relation between Scenes (e.g., temporal, logical, purposive).
H Parallel

Scene
A Scene linked to other Scenes by a Linker.

G Ground A relation between the speech event and the described Scene.

Other
F Function Does not introduce a relation or participant. Required by some structuralpattern.

Table 1:The complete set of categories in UCCA’s foundational layer.

two are units by virtue of corresponding to a relation along with its arguments.
We can compactly annotate the unit structure using a directed graph. Each unit is represented as a

node, and descendants of non-terminal units are the sub-units comprisingit. Non-terminal nodes in the
graph only represent the fact that their descendant units form a unit, and hence do not bear any features.
Edges bear labels (or more generally feature sets) that express the descendant unit’s role in the relation
represented by the parent unit. Therefore, the internal structure of the unit is represented by its outbound
edges and their features, while the roles a unit plays in relations it participates in are represented by
its inbound edges. Figure 2(a) presents the graph representation for the above example “big dogs love
bones”. The labels on the figure’s edges are explained in Section 3.

Extendability. Extendability is a necessary feature for an annotation scheme given the huge number of
features required to formally represent semantics, and the ever-expanding range of distinctions used by
the NLP community. UCCA’s formalism can be easily extended with new annotationlayers introducing
new types of semantic distinctions and refining existing types. For example, a layer that represents
semantic roles can refine a coarse-grained layer that only distinguishes between arguments and adjuncts.
A layer that represents coreference relations between textual entities can be built on top of a more basic
layer that simply delineates those entities.

3 The Foundational Layer of UCCA

This section presents an in-depth description of the foundational set of semantic distinctions encoded by
UCCA. The three desiderata for this layer are: (i) covering the entire text,so each terminal is a part of
at least one unit, (ii) representing argument structure phenomena of bothverbal and nominal predicates,
(iii) representing relations between argument structures (linkage). Selecting argument structures and their
inter-relations as the basic objects of annotation is justified both by their centrality in many approaches
for grammatical representation (see Section 4), and their high applicative value, demonstrated by the
extensive use of SRL in NLP applications.

Each unit in the foundational layer is annotated with a single feature, which will be simply referred
to as itscategory1. In the following description, the category names appearitalicizedand accompanied
by an abbreviation. The categories are described in detail below and arealso summarized in Table 1.

1Future extensions of UCCA will introduce more elaborate feature structures.
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3.1 Simple Scene Structure

The most basic notion in this layer is theScene. A Scene can either describe some movement or action, or
otherwise a temporally persistent state. A Scene usually has a temporal and aspatial dimension. It may
be specific to a particular time and place, but may also describe a schematized event which jointly refers
to many occurrences of that event in different times and locations. For example, the Scene “elephants
eat plants” is a schematized event, which presumably occurs each time an elephant eats a plant. This
definition is similar to the definition of a clause in BLT. We avoid the term “clause” due to its syntactic
connotation, and its association specifically with verbal rather than nominal predicates.

Every Scene contains one main relation, which is marked as aProcess (P)if the Scene evolves in
time, or otherwise as aState (S). The main relation in an utterance is its “anchor”, its most conceptually
important aspect of meaning. We choose to incorporate the Process-Statedistinction in the foundational
layer because of its centrality, but it is worth noting this distinction is not necessary for the completeness
of the scheme.

A Scene contains one or moreParticipants (A), which can be either concrete or abstract. Embedded
Scenes are also considered Participants (see Section 3.4). Scenes may also include secondary relations,
which are generally marked asAdverbials (D)using the standard linguistic term. Note that for brevity,
we do not designate Scene units as such, as this information can be derived from the categories of its
sub-units (i.e., a unit is a Scene if it has a P or an S as a sub-unit).

As an example, consider “Woody generally rides his bike home”. The sentence contains a single
Scene with three A’s: “Woody”, “his bike” and “home”. It also contains aD: “generally” (see Fig-
ure 2(b)).

Non-Scene Relations. Not all relation words evoke a Scene. We distinguish between several types of
non-Scene relations.Elaborators (E)apply to a single argument, whileConnectors (N)are relations that
apply to two or more entities in a way that highlights the fact that they have a similar feature or type. The
arguments of non-Scene relations are marked asCenters (C).

For example, in the expression “hairy dog”, “hairy” is an E, and “dog” isa C. In “John and Mary”,
“John” and “Mary” are C’s, while “and” is an N. Determiners are considered E’s in the foundational
layer, as they relate to a single argument.

Finally, any other type of relation between two or more units that does not evoke a Scene is aRelator
(R). R’s have two main varieties. In one, R’s relate a single entity to other relationsor entities in the same
context. For instance, in “I saw cookies in the jar”, “in” relates “the jar” to the rest of the Scene. In the
other, R’s relate two units pertaining to different aspects of the same entity. For instance, in “bottom of
the sea”, “of” relates “bottom” and “the sea”, two units that ultimately refer to the same entity.

As for notational conventions, in the first case we place the R inside the boundaries of the unit it
relates (so “in the jar” would be an A in “I saw cookies in the jar”). In the second case, we place the R as
a sibling of the related units (so “bottom”, “of” and ”sea” would all be siblingsin “bottom of the sea”).

Function Units. Some terminals do not refer to a participant or relation. They function only asa part
of the construction they are situated in. We mark such terminals asFunction (F). Function units usually
cannot be substituted by any other word. For example, in the sentence “it islikely that John will come
tomorrow”, the “it” does not refer to any specific entity or relation and is therefore an F.

Words whose meaning is not encoded in the foundational layer of annotation are also considered F’s.
For instance, auxilliary verbs in English (have, be and do) are marked asF’s in the foundational layer of
UCCA, as features such as voice or tense are not encoded in this layer.

Consider the sentence “John broke the jar lid”. It describes a single Scene, where “broke” is the main
(non-static) relation. The Participants are “John” and ”the jar lid”. “the jarlid” contains a part-whole
relation, where “jar” describes the whole, and “lid” specifies the part. Insuch cases, UCCA annotates
the “part” as an E and the “whole” as a C. The determiner “the” is also annotated as an E. In more
refined layers of annotation, special categories will be devoted to annotating part-whole relations and the
semantic relations described by determiners. Figure 2(c) presents the annotation of this example.
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3.2 Beyond Simple Scenes

Nominal Predicates. The foundational layer of UCCA annotates the argument structure of nominal
predicates much in the same fashion as that of verbal predicates. This accords with the standard practice
in several NLP resources, which tend to use the same formal devices forannotating nominal and verbal
argument structure (see, e.g., NomBank (Meyers et al., 2004) and FrameNet (Baker et al., 1998)). For
example, consider “his speech against the motion”. “speech” evokes a Scene that evolves in time and is
therefore a P. The Scene has two Participants, namely “his” and “againstthe motion”.

Multiple Parents. In general, a unit may participate in more than one relation. To this end, UCCA
allows a unit to have multiple parents. Recall that in UCCA, a non-terminal noderepresents a relation,
and its descendants are the sub-units comprising it. A unit’s category is a label over the edge connecting
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Figure 2:Examples of UCCA annotations.
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it to its parent, that reflects the unit’s role in the parent relation. A unit that participates in several relations
(i.e., has several parents) may thus receive different categories in each of these relations.

For example, consider the sentence “John convinced Mary to come”. Therelation “convinced” has
“John”, “Mary” and “Mary to come” as Participants (Scenes may also be Participants, see below). The
relation “come” has one Participant, namely “Mary”. The resulting graph is presented in Figure 2(d).

The use of multiple parents leads to overlaps between the terminals of different units. It is sometimes
convenient to define one of the terminal’s parents as its base parent and the others as remote parents. In
this paper we do not make this distinction.

Implicit Units. In some cases a relation or argument are clearly described in the text, but do not appear
in it overtly. Formally, this results in a unitX that lacks one or more of its descendants. We distinguish
between two cases. If that argument or relation corresponds to a unitY that is placed in some other point
in the text, we simply assign thatY as a descendant ofX (using UCCA’s capacity to represent multiple
parents). Otherwise, if this argument or relation never appears in the text,we add an empty leaf node and
assign it asX ’s descendant. We call such units“Implicit Units” . Other than not corresponding to any
stretch of text, an implicit unit is similar to any other unit.

As an example, consider the sentence “Writing essays is hard”. The participant who writes the
essays is clearly present in the interpretation of the sentence, but neverappears explicitly in the text. It is
therefore considered an implicit A in this Scene (see Figure 2(f)).

3.3 The Core-Adjunct Distinction

The distinction between core arguments and adjuncts is central in most formalisms of grammar. Despite
its centrality, the distinction lacks clear theoretical criteria for defining it, resulting in many borderline
cases. This has been a major source of difficulty for establishing clear annotation guidelines. Indeed, the
PTB describes the core-adjunct distinction as “very difficult” for the annotators, resulting in a significant
slowdown of the annotation Process (Marcus et al., 1993).

Dowty (2003) claims that the pre-theoretic notions underlying the core-adjunct distinction are a con-
junction of syntactic and semantic considerations. The syntactic distinction separates “optional ele-
ments” (adjuncts), and “obligatory elements” (cores). The semantic criterion distinguishes elements that
“modify” or restrict the meaning of the head (adjuncts) and elements that arerequired by the meaning
of the head, without which its meaning is incomplete (cores). A related semantic criterion distinguishes
elements that have a similar semantic content with different predicates (adjuncts), and elements whose
role is highly predicate-dependent (cores).

Consider the following opposing examples: (i) “Woody walkedquickly ” and (ii) “Woody cut the
cake”. “quickly” meets both the syntactic and the semantic criteria for an adjunct: it isoptional and it
serves to restrict the meaning of “walked”. It also has a similar semantic content when appearing with
different verbs (“walk quickly”, “eat quickly”, “talk quickly” etc.). “the cake” meets both the syntactic
and the semantic criteria for a core: it is obligatory, and completes the meaning of “cut”. However, many
other cases are not as obvious. For instance, in “he walkedinto his office”, the boldfaced argument is a
core according to Framenet, but an adjunct according to PropBank (Abend and Rappoport, 2010).

The core-adjunct distinction in UCCA is translated into the distinction between D’s (Adverbials) and
A’s (Participants). UCCA is a semantic scheme and therefore the syntactic criterion of “obligatoriness”
is not applicable, and is instead left to be detected by statistical means. Instead, UCCA defines A’s as
units that introduce a new participant to the Scene and D’s as units that add more information to the
Scene without introducing a participant.

Revisiting our earlier examples, in “Woody cut the cake”, “the cake” introduces a new participant
and is therefore an A, while in “Woody walked quickly”, “quickly” does not introduce a new participant
and is therefore a D. In the more borderline example “Woody walked into his office”, “into his office” is
clearly an A under UCCA’s criteria, as it introduces a new participant, namely “his office”.

Note that locations in UCCA are almost invariably A’s, as they introduce a newparticipant, namely
the location. Consider “Woody walked in the park”. “in the park” introduces the participant “the park”
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and is therefore an A. Unlike many existing approaches (including the PTB), UCCA does not distinguish
between obligatory locations (e.g., “based in Europe”) and optional locations (e.g., “walked in the park”),
as this distinction is mostly distributional in nature and can be detected by automatic means.

Two cases which do not easily fall into either side of this distinction are subordinated clauses and
temporal relations. Subordinated clauses are discussed as part of a general discussion of linkage in
Section 3.4. The treatment of temporal relations requires a more fine-grained layer of representation.
For the purposes of the foundational layer, we follow common practice andmark them as D’s.

3.4 Linkage

Linkage in UCCA refers to the relation between Scenes. Scenes are invariably units, as they include a
relation along with all its arguments. The category of the Scene units is determined by the relation they
are situated in, as is the case with any other unit. The foundational layer takes a coarse-grained approach
to inter-Scene relations and recognizes three types of linkage. This three-way distinction is adopted from
Basic Linguistic Theory and is valid cross-linguistically.

First, a Scene can be a Participant in another Scene, in which case the Scene is marked as an A. For
example, consider “writing essays is hard”. It contains a main temporally staticrelation (S) “is hard” and
an A “writing essays”. The sentence also contains another Scene “writingessays”, which has an implicit
A (the one writing) and an explicit A (“essays”). See Figure 2(f) for theannotation of this Scene (note
the empty node corresponding to the implicit unit).

Second, a Scene may serve as an Elaborator of some unit in another Scene, in which case the Scene
is marked as an E. For instance, “eagles that fly swim”. There are two Scenes in this sentence: (1) one
whose main relation is “swim” and its A is “eagles that fly”, (2) and another Scene whose main relation
is “fly”, and whose A is “eagles”. See Figure 2(g) for the annotation graph of this sentence.

The third type of linkage covers inter-Scene relations that are not covered above. In this case, we
mark the unit specifying the relation between the Scenes as aLinker (L) and its arguments asParallel
Scenes (H). The Linker and the Parallel Scenes are positioned in a flat structure, which represents the
linkage relation. For example, consider “When John saw Mary, he immediatelyknew” (Figure 2(e)). The
sentence is composed of two Scenes “John saw Mary” and ”he immediately knew” marked by H’s and
linked by the L “when”. More fine-grained layers of annotation can represent the coreference relation
between “John” and “he”, as well as a more refined typology of linkages, distinguishing, e.g., temporal,
logical and purposive linkage types.

UCCA does not allow annotating a Scene as an Adverbial within another Scene. Instead it represents
temporal, manner and other relations between Scenes often represented as Adverbials (or sub-ordinate
clauses), as linked Scenes. For instance, the sentence “I’m here because I wanted to visit you” is anno-
tated as two Parallel Scenes (“I’m here” and “I wanted to visit you”), linked by the Linker “because”.

Linkage is handled differently in other NLP resources. SRL formalisms, such as FrameNet and
PropBank, consider a predicate’s argument structure as the basic annotation unit and do not represent
linkage in any way. Syntactic annotation schemes (such as the PTB) consider the sentence to be the
basic unit for annotation and refrain from annotating inter-sentential relations, which are addressed only
as part of the discourse level. However, units may establish similar relations between sentences as those
expressed within a sentence. Another major difference between UCCA and other grammatical schemes is
that UCCA does not recognize any type of subordination between clauses except for the cases where one
clause serves as an Elaborator or as a Participant in another clause (see above discussion). In all other
cases, linkage is represented by the identity of the Linker and, in future layers, by more fine-grained
features assigned to the linkage structure.

Ground. Some units express the speaker’s opinion of a Scene, or otherwise relatethe Scene to the
speaker, the hearer or the speech event. Examples include “in my opinion”, “surprisingly” and “rumor
has it”. In principle, such units constitute a Scene in their own right, whose participants (minimally
including the speaker) are implicit. However, due to their special characteristics, we choose to designate
a special category for such cases, namelyGround (G). For example, “Surprisingly” in “Surprisingly,
Mary didn’t come to work today” is a G linked to the Scene “Mary didn’t come towork today”.
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Note that the distinction between G’s and fully-fledged Scenes is a gradientone. Consider the above
example and compare it to “I think Mary didn’t come today” and “John thinks Mary didn’t come today”.
While “John thinks” in the last example is clearly not a G, “I think” is a more borderline case. Gradience
is a central phenomenon in all forms of grammatical representation, includingUCCA. However, due to
space limitations, we defer the discussion of UCCA’s treatment of gradienceto future work.

3.5 Worked-out Example

Consider the following sentence2:

After her parents’ separation in 1976, Jolie and her brother lived with their mother,
who gave up acting to focus on raising her children.

There are four Scenes in this sentence, with main relations “separation”, “lived”, “gave up acting”
and “focus on raising”. Note that “gave up acting” and “focus on raising” are composed of two relations,
one central and the other dependent. UCCA annotates such cases as a single P. A deeper discussion of
these issues can be found in (Dixon, 2005; Van Valin, 2005).

The Linkers are “after” (linking “separation” and “lived”), and “to” (linking “gave up acting” and
“focus on raising”). The unit “who gave up acting to focus on raising her children” is an E, and therefore
“who” is an R. We start with the top-level structure and continue by analyzing each Scene separately
(non-Scene relations are not analyzed in this example):

• “AfterL [her parents’ separation in 1976]H , [Jolie and her brother lived with their mother, [whoR

[gave up acting]H toL [focus on raising her children]H ]E ]H ”

• “[her parents’]A separationP [in 1976]D”

• “[Jolie and her brother]A livedP [with their mother who abandoned ... children]A”

• “motherA ... [gave up acting]P ”

• “motherA ... [focus on raising]P [her children]A”

4 Previous Work

Many grammatical annotation schemes have been proposed over the yearsin an attempt to capture the
richness of grammatical phenomena. In this section, we focus on approaches that provide a sizable corpus
of annotated text. We put specific emphasis on English corpora, which is themost studied language and
the focus language of this paper.

Semantic Role Labeling Schemes.The most prominent schemes to SRL are FrameNet (Baker et al.,
1998), PropBank (Palmer et al., 2005) and VerbNet (Schuler, 2005)for verbal predicates and Nom-
Bank for nominal predicates (Meyers et al., 2004). They share with UCCA their focus on semantically-
motivated rather than distributionally-motivated distinctions. However, unlike UCCA, they annotate each
predicate separately, yielding shallow representations which are hard to learn directly without using syn-
tactic parsing as preprocessing (Punyakanok et al., 2008). In addition, UCCA has a wider coverage than
these projects, as it addresses both verbal, nominal and adjectival predicates.

Recently, theFramenet Constructiconproject (Fillmore et al., 2010) extended FrameNet to more
complex constructions, including a representation of relations between argument structures. However,
the project is admittedly devoted to constructing a lexical resource focusedon specific cases of interest,
and does not attempt to provide a fully annotated corpus of naturally occurring text. The foundational
layer of UCCA can be seen as being complementary to Framenet and Framenet Constructicon, as the
UCCA foundational layer focuses on a high coverage, coarse-grained annotation, while Framenet focuses
on more fine-grained distinctions at the expense of coverage. In addition, the projects differ in terms of
their approach to linkage.

2Taken from “Angelina Jolie” article in Wikipedia (http://http://en.wikipedia.org/wiki/Angelina Jolie).
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Penn Treebank. The most influential syntactic annotation in NLP is probably the PTB. The PTB has
spawned much subsequent research both in treebank compilation and in parsing technology. However,
despite its tremendous contribution to NLP, the corpus today does not meet thecommunity’s needs in
two major respects. First, it is hard to extend, both with new distinctions and with new sentences (due to
its complex annotation that requires expert annotators). Second, its interface with semantic applications
is far from trivial. Even in the syntactically-oriented semantic task of argument identification for SRL,
results are of about 85% F-score for the in-domain scenario (Màrquez et al., 2008; Abend et al., 2009).

Dependency Grammar. An alternative approach to syntactic representation is Dependency Grammar.
This approach is widely used in NLP today due to its formal and conceptual simplicity, and its ability
to effectively represent fundamental semantic relations, notably predicate-argument and head-modifier
relations. UCCA is similar to dependency grammar both in terms of their emphasis onrepresenting
predicate-argument relations and in terms of their formal definition3. The formal similarity is reflected
in that they both place features over the graph’s edges rather than overits nodes, and in that they both
form a directed graph. In addition, neither formalism imposes contiguity (or projectivity in dependency
terms) on its units, which facilitates their application to languages with relatively free word order.

However, despite their apparent similarity, the formalisms differ in several major respects. Depen-
dency grammar uses graphs where each node is a word. Despite the simplicityand elegance of this
approach, it leads to difficulties in the annotation of certain structures. We discuss three such cases:
structures containing multiple heads, units with multiple parents and empty units. Cases where there is
no clear dependency annotation are a major source of difficulty in standardizing, evaluating and creating
clear annotation guidelines for dependency annotation (Schwartz et al., 2011). UCCA provides a natural
solution in all of these cases, as is hereby detailed.

First, UCCA rejects the assumption that every structure has a unique head.Formally, instead of
selecting a single head whose descendants are (the heads of) the argument units, UCCA introduces a
new node for each relation, whose descendants are all the sub-units comprising that relation, including
the predicate and its arguments. The symmetry between the descendants is broken through the features
placed on the edges.

Consider coordination structures as an example. The difficulty of dependency grammar to capture
such structures is exemplified by the 8 possible annotations in current use inNLP (Ivanova et al., 2012).
In UCCA, all elements of the coordination (i.e., the conjunction along with its conjuncts) are descendants
of a mutual parent, where only their categories distinguish between their roles. For instance, in “John
and Mary”, “John”, “Mary” and “and” are all listed under a joint parent. Discontiguous conjunctions
(such as “either Johnor Mary”) are also handled straightforwardly by placing “either” and “or”under
a single parent, which in turn serves as a Connector (Figure 2(h)). Notethat the edges between “either”
and “or” and their mutual parent have no category labels, since the unit “either ... or” is considered
an unanalyzable terminal. A related example is inter-clause linkage, where it isnot clear which clause
should be considered the head of the other. See the discussion of UCCA’s approach with respect to clause
subordination in Section 3.4.

Second, a unit in UCCA can have multiple parents if it participates in multiple relations. Multiple
parents are already found in the foundational layer (see, e.g., Figure 2(d)), and will naturally multiply
with the introduction of new annotation layers introducing new relations. This isprohibited in standard
dependency structures.

Third, UCCA allows implicit units, i.e., units that do not have any correspondingstretch of text. The
importance of such “empty” nodes has been previously recognized in manyformalisms for grammatical
representation, including the PTB.

At a more fundamental level, the difference between UCCA and most dependency structures used
in NLP is the latter’s focus on distributional regularities. One example for this isthe fact the most
widely used scheme for English dependency grammar is automatically derivedfrom the PTB. Another

3Dependency structures appear in different contexts in various guises. Those used in NLP are generally trees in which each
word has at most one head and whose nodes are the words of the sentence along with a designated root node (Ivanova et al.,
2012). We therefore restrict our discussion to dependency structures that follow these restrictions.
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example is the treatment of fixed expressions, such as phrasal verbs and idioms. In these cases, several
words constitute one unanalyzable semantic unit, and are treated by UCCA assuch. However, they are
analyzed up to the word level by most dependency structures. Finally, a major divergence of UCCA from
standard dependency representation is UCCA’s multi-layer structure thatallows for the extension of the
scheme with new distinctions.

Linguistically Expressive Grammars. Numerous approaches to grammatical representation in NLP
have set to provide a richer grammatical representation than the one provided by the common phrase
structure and dependency structures. Examples include Combinatory Categorial Grammar (CCG) (Steed-
man, 2001), Tree Adjoining Grammar (TAG) (Joshi and Schabes, 1997), Lexical Functional Grammar
(LFG) (Kaplan and Bresnan, 1981) and Head-driven Phrase Structure Grammar (HPSG) (Pollard and
Sag, 1994). One of the major motivations for these approaches is to provide a formalism for encod-
ing both semantic and distributional distinctions and the interface between them. UCCA diverges from
these approaches in its focus on annotating semantic information, leaving distributional regularities to be
detected automatically.

A great body of work in formal semantics focuses on compositionality, i.e., how the meaning of a unit
is derived from its syntactic structure along with the meaning of its sub-parts.Compositionality forms a
part of the mapping between semantics and distribution, and is therefore modeled statistically by UCCA.
A more detailed comparison between the different approaches is not directly relevant to this paper.

5 Conclusion

In this paper we proposed a novel approach to grammatical representation. Under this approach, only
semantic distinctions are manually annotated, while distributional regularities aredetected by automatic
means. This approach greatly facilitates manual annotation of grammatical phenomena, by focusing the
manual labor on information that can only be annotated manually.

We presented UCCA, a multi-layered semantic annotation scheme for representing a wide variety of
semantic information in varying granularities. In its foundational layer, the scheme encodes verbal and
nominal argument structure, copula clauses, the distinction between core arguments and adjuncts, and the
relations between different predicate-argument structures. The scheme is based on basic, coarse-grained
semantic notions, supported by cross-linguistic evidence.

Preliminary results show that the scheme can be learned quickly by non-expert annotators. Con-
cretely, our annotators, including some with no linguistic background in linguistics, have reached a
reasonable level of proficiency after a training period of 30 to 40 hours. Following the training period,
our annotators have been found to make only occasional errors. These few errors are manually corrected
in a later review phase. Preliminary experiments also show that the scheme canbe applied to several
languages (English, French, German) using the same basic set of distinctions.

Two important theoretical issues were not covered this paper due to space considerations. One is
UCCA’s treatment of cases where there are several analyses that do not exclude each other, each high-
lighting a different aspect of meaning of the analyzed utterance (termedConforming Analyses). The
other is UCCAs treatment of cases where a unit of one type is used in a relation that normally receives
a sub-unit of a different type. For example, in “John’s kick saved the game”, “John’s kick” describes
an action but is used as a subject of “saved”, a slot usually reserved for animate entities. Both of these
issues will be discussed in future works.

Current efforts are devoted to creating a corpus of annotated text in English. The first distribution
of the corpus consisting of about 100K tokens, of which 10K tokens have already been annotated, will
be released during 2013. A parallel effort is devoted to constructing a statistical analyzer, trained on
the annotated corpus. Once available, the analyzer will be used to produce UCCA annotations that will
serve as input to NLP applications traditionally requiring syntactic preprocessing. The value of UCCA
for applications and the learning algorithms will be described in future papers.

10
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Abstract

This paper introduces distributional semantic similarity methods for automatically measuring the
coherence of a set of words generated by a topic model. We construct a semantic space to represent
each topic word by making use of Wikipedia as a reference corpus to identify context features and
collect frequencies. Relatedness between topic words and context features is measured using variants
of Pointwise Mutual Information (PMI). Topic coherence is determined by measuring the distance
between these vectors computed using a variety of metrics. Evaluation on three data sets shows that
the distributional-based measures outperform the state-of-the-art approach for this task.

1 Introduction

Topic modelling is a popular statistical method for (soft) clustering documents (Blei et al., 2003; Deer-
wester et al., 1990; Hofmann, 1999). Latent Dirichlet Allocation (LDA) (Blei et al., 2003), one type
of topic model, has been widely used in NLP and applied to a range of tasks including word sense dis-
ambiguation (Boyd-Graber et al., 2007), multi-document summarisation (Haghighi and Vanderwende,
2009) and generation of comparable corpora (Preiss, 2012).

A variety of approaches has been proposed to evaluate the topics generated by these models. The
first to be explored were extrinsic methods, measuring the performance achieved by a model in a specific
task or using statistical methods. For example, topic models have been evaluated by measuring their
accuracy for information retrieval (Wei and Croft, 2006). Statistical methods have also been applied to
measure the predictive likelihood of a topic model in held-out documents by computing their perplexity.
Wallach et al. (2009) gives a detailed description of such statistical metrics.

However, these approaches do not provide any information about how interpretable the topics are to
humans. Figure 1 shows some example topics generated by a topic model. The first three topics appear
quite coherent, all the terms in each topic are associated with a common theme. On the other hand,
it is difficult to identify a coherent theme connecting all of the words in topics 4 and 5. These topics
are difficult to interpret and could be considered as “junk” topics. Interpretable topics are important
in applications such as visualisation of document collections (Chaney and Blei, 2012; Newman et al.,
2010a), where automatically generated topics are used to provide an overview of the collection and the
top-n words in each topic used to represent it.

Chang et al. (2009) showed that humans find topics generated by models with high predictive likeli-
hood to be less coherent than topics generated from others with lower predictive likelihood. Following
Chang’s findings, recent work on evaluation of topic models has been focused on automatically mea-
suring the coherence of generated topics by comparing them against human judgements (Mimno et al.,
2011; Newman et al., 2010b). Newman et al. (2010b) define topic coherence as the average semantic
relatedness between topic words and report the best correlation with humans using the Pointwise Mutual
Information (PMI) between topic words in Wikipedia.



1: oil, louisiana, coast, gulf, orleans, spill, state, fisherman, fishing, seafood
2: north, kim, korea, korean, jong, south, il, official, party, son
3: model, wheel, engine, system, drive, front, vehicle, rear, speed, power
4: drink, alcohol, indonesia, drinking, indonesian, four, nokia, beverage, mc-
donald, caffeine
5: privacy, andrews, elli, alexander, burke, zoo, information, chung, user, regan

Figure 1: A sample of topics generated by a topic model over a corpus of news articles. Topics are
represented by top-n most probable words.

Following this direction, we explore methods for automatically determining the coherence of topics.
We propose a novel approach for measuring topic coherence based on the distributional hypothesis which
states that words with similar meanings tend to occur in similar context (Harris, 1954). Wikipedia is
used as a reference corpus to create a distributional semantic model (Padó and Lapata, 2003; Turney and
Pantel, 2010). Each topic word is represented as a bag of highly co-occurring context words that are
weighted using either PMI or a normalised version of PMI (NPMI). We also explore creating the vector
space using differing numbers of context terms. All methods are evaluated by measuring correlation with
humans on three different sets of topics. Results indicating that measures on the fuller vector space are
comparable to the state-of-the-art proposed by Newman et al. (2010b), while performance consistently
improves using a reduced vector space.

The remainder of this article is organised as follows. Section 2 presents background work related
to topic coherence evaluation. Section 3 describes the distributional methods for measuring topic co-
herence. Section 4 explains the experimental set-up used for evaluation. Our results are described in
Section 5 and the conclusions in Section 6.

2 Related work

Andrzejewski et al. (2009) proposed a method for generating coherent topics which used a mixture of
Dirichlet distributions to incorporate domain knowledge. Their approach prefers words that have similar
probability (high or low) within all topics and rejects words that have different probabilities across topics.

AlSumait et al. (2009) describe the first attempt to automatically evaluate topics inferred from topic
models. Three criteria are applied to identify junk or insignificant topics. Those criteria are in the
form of probability distributions over the highest probability words. For example, topics in which the
probability mass is distributed approximately equally across all words are considered likely to be difficult
to interpret.

Newman et al. (2010b) also focused on methods for measuring the semantic coherence of topics. The
main contribution of this work is to propose a measure for the automatic evaluation of topic semantic
coherence which has been shown to be highly correlated with human evaluation. It is assumed that a
topic is coherent if all or the most of its words are related. Results showed that word relatedness is
better predicted using the distribution-based Pointwise Mutual Information (PMI) of words rather than
knowledge-based measures.

The method using PMI proposed by Newman et al. (2010b) relies on co-occurrences of words in
an external reference source such as Wikipedia for automatic evaluation of topic quality. Mimno et al.
(2011) showed that available co-document frequency of words in the training corpus can be used to
measure semantic coherence. Topic coherence is defined as the sum of the log ratio between co-document
frequency and the document frequency for the N most probable words in a topic. The intuition behind
this metric is that the co-occurrence of words within documents in the corpus can indicate semantic
relatedness.

Musat et al. (2011) associated words in a topic with WordNet concepts thereby creating topical
subtrees. They rely on WordNet’s hierarchical structure to find a common concept that best describes as
many words as possible. It is assumed that the higher the coverage and specificity of a topical subtree,



the more semantically coherent the topic. Experimental results showed high agreement with humans in
the word intrusion task, in contrast to Newman et al. (2010b) who concluded that WordNet is not useful
for topic evaluation.

Recent work by Ramirez et al. (2012) analyses and evaluates the semantic coherence of the results
obtained by topic models rather than the semantic coherence of the inferred topics. Each topic model
is treated as a partition of document-topic associations. Results are evaluated using metrics for cluster
comparison.

3 Measuring Topic Coherence

Let T = {w1, w2, ..., wn} be a topic generated from a topic model which is represented by its top-nmost
probable words. Newman et al. (2010b) assume that the higher the average pairwise similarity between
words in T , the more coherent the topic. Given a symmetric word similarity measure, Sim(wi, wj), they
define coherence as follows:

CoherenceSim(T ) =

∑
1≤i≤n−1
i+1≤j≤n

Sim(wi, wj)(
n

2

) (1)

where wi, wj ∈ T .

3.1 Distributional Methods

We propose a novel method for determining topic coherence based on using distributional similarity
between the top-n words in the topic. Each topic word is represented as a vector in a semantic space. Let
~w1, ~w2, ..., ~wn be the vectors which represent the top n most probable words in the topic. Also, assume
that each vector consists of N elements and ~wij is the jth element of vector ~wi. Then the similarity
between the words, and therefore cohesion of the topic, can be computed using the following measures
(Curran, 2003; Grefenstette, 1994):

• The cosine of the angles between the vectors:

Simcos( ~wi, ~wj) =
~wi · ~wj
‖ ~wi‖‖ ~wj‖

(2)

• The Dice coefficient:

SimDice(wi, wj) =
2×

∑N
k=1min( ~wik, ~wjk)∑N
k=1( ~wik + ~wjk)

(3)

• The Jaccard coefficient:

SimJaccard(wi, wj) =

∑N
k=1min( ~wik, ~wjk)∑N
k=1max( ~wik, ~wjk)

(4)

Each of these measures estimates the distance between a pair of topic words and can be substituted into
equation 1 to produce a topic cohesion measure based on distributional semantics.

Alternatively, the cohesion of a set of topic words can be estimated with a single measure by com-
puting the average distance between each topic word and the centroid:

Simcentroid =

∑
t∈T simcos(Tc, t)

n
(5)

where Tc is the centroid of the vectors for topic T . For the experiments reported in this paper the distance
of each vector to the centroid is computed using the cosine measure.



3.2 Constructing the Semantic Space

Vectors representing the topic words are constructed from a semantic space consisting of information
about word co-occurrence. The semantic space was created using Wikipedia1 as a reference corpus and
a window of ± 5 words2.

3.2.1 Weighting Vectors

Using the co-occurrence information to generate vectors directly does not produce good results so the
vectors are weighted using two approaches.

For the first, PMI, the pointwise mutual information for each term in the context is used rather than
the raw co-occurrence count. PMI is computed as follows:

PMI(wi, wj) = log2
p(wi, wj)

p(wi)p(wj)
(6)

Note that this application of PMI for topic cohesion is different from one previously reported by Newman
et al. (2010b) since we use PMI to weight vectors rather than to compute a similarity score between pairs
of words.

In addition, vectors are also weighted using NPMI (Normalised PMI). This is an extension of PMI
that has been used for collocation extraction (Bouma, 2009) and is computed as follows:

NPMI(wi, wj) =
PMI(wi, wj)

−log(p(wi, wj))
(7)

Finally, we introduce γ which is a parameter to assign more emphasis on context features with high
PMI (or NPMI) values with a topic word. Vectors are weighted using PMI(wi, fj)

γ orNPMI(wi, fj)
γ

where wi is a topic word and fj is a context feature. For all of our experiments we set γ = 2 which was
found to produce the best results.

3.2.2 Reducing the Basis

Including all co-occurring terms in the vectors leads to a high dimensional space. We also experimented
with two approaches to reducing the number of terms to form a semantic space with smaller basis.
Firstly, following Islam and Inkpen (2006), a Reduced Semantic Space is created by choosing the βwi

most related context features for each topic word wi:

βwi =
(
log(c(wi))

)2 (log2(m))

δ
(8)

where δ is a parameter for adjusting the number of features for each word andm is the size of the corpus.
Varying the value of δ did not effect performance for values above 1. This parameter was set of 3 for
the results reported here. In addition a frequency cut-off of 20 was also applied. In addition, a smaller
semantic space was created by considering only topic words as context features, leading to n features for
each topic word. This is referred to as the Topic Word Space.

4 Experimental Set-up

4.1 Data

To the best of our knowledge, there are no standard data sets for evaluating topic coherence. Therefore
we have developed one for this study which we have made publicly available3. A total of 300 topics are

1http://dumps.wikimedia.org/enwiki/20120104/
2We also experimented with different lengths of context windows
3The data set can be downloaded from http://staffwww.dcs.shef.ac.uk/people/N.Aletras/

resources/TopicCoherence300.tar.gz



generated by running LDA over three different document collections:

• NYT: 47,229 New York Times news articles published between May and December 2010 from
the GigaWord corpus. We generated 200 topics and randomly selected 100.

• 20NG: The 20 News Group Data Collection4 (20NG), a set of 20,000 newsgroup emails organ-
ised into 20 different subjects (e.g. sports, computers, politics). Each topic has 1,000 documents
associated with it. 100 topics were generated for this data set.

• Genomics: 30,000 scientific articles published in 49 journals from MEDLINE, originally used in
the TREC-Genomics Track5. We generated 200 topics and randomly selected 100.

All document were pre-processed by removing stop words and lemmatising. Topics are generated
using gensim6 with hyperparameters (α, β) set to 1

num of topics . Each topic is represented by its 10 most
probable words.

4.2 Human Evaluation of Topic Coherence

Human judgements of topic coherence were collected through a crowdsourcing platform, CrowdFlower7.
Participants were presented with 10 word sets, each of which represents a topic. They asked to judge
topic coherence on a 3-point Likert scale from 1-3, where 1 denotes a “Useless” topic (i.e. words appear
random and unrelated to each other), 2 denotes “Average” quality (i.e. some of the topic words are
coherent and interpretable but others are not), and 3 denotes a “Useful” topic (i.e. one that is semantically
coherent, meaningful and interpretable). Each participant was asked to judge up to 100 topics from a
single collection. The average response for each topic was calculated as the coherency score for the
gold-standard.

To ensure reliability and avoid random answers in the survey, we used a number of questions with
predefined answer (either totally random words as topics or obvious topics such as week days). Annota-
tions from participants that failed to answer these questions correctly were removed.

We run three surveys, one for each topic collection of 100 topics. The total number of filtered
responses obtained for the NYT dataset was 1, 778 from 26 participants, while for the 20NG dataset
we collected 1, 707 answers from 24 participants. The participants were recruited by a broadcast email
sent to all academic staff and graduate students in our institution. For the Genomics dataset the emails
were sent only to members of the medical school and biomedical engineering departments. We collected
1, 050 judgements from 12 participants for this data set.

Inter-annotator agreement (IAA) is measured as the average of the Spearman correlation between the
set of scores of each survey respondent and the average of the other respondents’ scores. The IAA in the
three surveys is 0.70, 0.64 and 0.54 for NYT, 20NG and Genomics respectively.

5 Results

Table 1 shows the results obtained for all of the methods on the three datasets. Performance of each
method is measured as the average Spearman correlation with human judgements. The top row of each
table shows the result using the average PMI approach (Newman et al., 2010b) while the next two rows
show the results obtained by substituting PMI with NPMI and the method proposed by Mimno et al.
(2011). The main part of each table shows performance using the approaches described in Section 3 using
various combinations of methods for constructing the semantic space and determining the similarity
between vectors.

4http://people.csail.mit.edu/jrennie/20Newsgroups
5http://ir.ohsu.edu/genomics
6http://radimrehurek.com/gensim
7http://crowdflower.com



NYT
Newman et al. (2010b) 0.71

Average NPMI 0.74
Mimno et al. (2011) -0.39
Reduced Semantic Space

PMI NPMI
Cosine 0.69 0.68
Dice 0.63 0.62

Jaccard 0.63 0.61
Centroid 0.67 0.67

Topic Words Space
PMI NPMI

Cosine 0.76 0.75
Dice 0.68 0.71

Jaccard 0.69 0.72
Centroid 0.76 0.75

20NG
Newman et al. (2010b) 0.73

Average NPMI 0.76
Mimno et al. (2011) 0.34
Reduced Semantic Space

PMI NPMI
Cosine 0.78 0.79
Dice 0.77 0.78

Jaccard 0.77 0.78
Centroid 0.77 0.78

Topic Words Space
PMI NPMI

Cosine 0.79 0.8
Dice 0.79 0.8

Jaccard 0.8 0.8
Centroid 0.78 0.79

Genomics
Newman et al. (2010b) 0.73

Average NPMI 0.76
Mimno et al. (2011) -0.4
Reduced Semantic Space

PMI NPMI
Cosine 0.74 0.73
Dice 0.69 0.68

Jaccard 0.69 0.76
Centroid 0.73 0.71

Topic Words Space
PMI NPMI

Cosine 0.8 0.8
Dice 0.79 0.8

Jaccard 0.8 0.8
Centroid 0.8 0.8

Table 1: Performance of methods for measuring topic coherence (Spearman Rank correlation with human
judgements).

Using the average PMI between topic words correlates well with human judgements, 0.71 for NYT,
0.73 for 20NG and 0.75 for Genomics confirming results reported by Newman et al. (2010b). How-
ever, NPMI performs better than PMI, with an improvement in correlation of 0.03 for all datasets. The
improvement is down to the fact that NPMI reduces the impact of low frequency counts in word co-
occurrences and therefore uses more reliable estimates (Bouma, 2009).

On the other hand, the method proposed by Mimno et al. (2011) does not correlate well with human
judgements, (-0.39 for NYT, 0.34 for 20NG and -0.4 for Genomics) which is the lowest performance of
all of the methods tested. This demonstrates that while co-document frequency helps to generate more
coherent topics (Mimno et al., 2011), it is sensitive to the size of the collection.

Results obtained using the reduced semantic space and PMI are lower than the average PMI and
NPMI approaches for the NYT and Genomics data sets. For the 20NG dataset the results are higher
then the average PMI and NPMI using these approaches. The difference in relative performance is down
to the nature of these corpora. The words found in topics in the NYT and Genomics datasets are often



Topic Terms Human Rating
Top-3
family wife died son father daughter life became mother born 2.63
election vote voter ballot state candidate voting percent party result 3
show television tv news network medium fox cable channel series 2.82
Bottom-3
lennon circus rum whiskey lombardi spirits ranch idol make vineyard 1.93
privacy andrews elli alexander burke zoo information chung user regan 1.25
twitter board tweet followers conroy halloween kay hands emi post 1.53

Figure 2: Top-3 and bottom-3 ranked topics using Topic Word Space in NYT together with human
ratings.

polysemous or collocate with terms which become context features. For example, one of the top context
features of the word “coast” is “ivory” (from the country). However, that feature does not exist for terms
that are related to “coast”, such as “beach” or “sea”. The majority of topics generated from 20NG contain
meaningless terms due to the noisy nature of the dataset (emails) but these do not suffer from the same
problems with ambiguity and prove to be useful for comparing meaning when formed into the semantic
space.

Similar results are obtained for the reduced semantic space using NPMI as the association measure.
Results in NYT and Genomics are normally 0.01 lower while for 20NG are 0.01 higher for the majority
of the methods. This demonstrates that weighting co-occurrence vectors using NPMI produces little
improvement over using PMI, despite the fact NPMI has better performance when the average similarity
between each pair of topic terms is computed.

When the topic word space is used there is a consistent improvement in performance compared to
the average PMI (Newman et al., 2010b) and NPMI approaches. More specifically, cosine similarity
using PMI is consistently higher (0.05-0.06) than average PMI for all datasets and 0.02 to 0.04 higher
than average NPMI (0.76, 0.79, 0.8 for NYT, 20NG and Genomics respectively). One reason for this
improvement in performance is that the noise caused by polysemy and high dimensionality of the context
features of the topic words is reduced. Moreover, cosine similarity scores in the reduced semantic space
are higher than average PMI and NPMI in all of the datasets, demonstrating that vector-based represen-
tation of the topic words is better than computing their average relatedness. Table 2 shows the top-3 and
bottom-3 ranked topics in NYT together with human ratings.

Another interesting finding is that the cosine metric produces better estimates of topic coherency
compared to Dice and Jaccard in the majority of cases, with the exception of 20NG in reduced seman-
tic space using PMI. Furthermore, similarity to the topic centroid achieves performance comparable to
cosine.

6 Conclusions

This paper explored distributional semantic similarity methods for automatically measuring the coher-
ence of sets of words generated by topic models. Representing topic words as vectors of context features
and then applying similarity metrics on vectors was found to produce reliable estimates of topic coher-
ence. In particular, using a semantic space that consisted of only the topic words as context features
produced the best results and consistently outperforms previously proposed methods for the task.

Semantic space representations have appealing characteristics for future work on tasks related to
topic models. The vectors used to represent topic words contain co-occurring terms that could be used
for topic labelling (Lau et al., 2011). In addition, tasks such as determining topic similarity (e.g. to
identify similar topics) could naturally be explored using these representations for topics.
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Eduardo H. Ramirez, Ramon Brena, Davide Magatti, and Fabio Stella. Topic Model Validation. Neuro-
computing, 76(1):125–133, 2012.

Peter D. Turney and Patrick Pantel. From frequency to meaning: Vector space models of semantics.
Journal of Artificial Intelligence Research, 37:141–188, 2010.

Hanna M. Wallach, Iain Murray, Ruslan Salakhutdinov, and David Mimno. Evaluation Methods for
Topic Models. In Proceedings of the 26th Annual International Conference on Machine Learning
(ICML ’09), pages 1105–1112, Montreal, Quebec, Canada, 2009.

Xing Wei and W. Bruce Croft. LDA-based Document Models for Ad-hoc Retrieval. In Proceedings of
the 29th annual international ACM SIGIR conference on Research and Development in Information
Retrieval (SIGIR ’06), pages 178–185, 2006.



Automatically Deriving Event Ontologies for a CommonSense Knowledge Base

James Allen1,2,  Will de Beaumont1,  Lucian Galescu1,  Jansen Orfan2,  Mary Swift2  and    
Choh Man Teng1

1 Institute for Human and Machine Cognition, Pensacola, FL
2 Dept. Of Computer Science, University of Rochester

{jallen, wbeaumont, lgalescu, cmteng}@ihmc.us
{jorfan, swift}@cs.rochester.edu

Abstract
We describe work aimed at building commonsense knowledge by reading word definitions using deep 
understanding techniques. The end result is a knowledge base allowing complex concepts to be rea-
soned about using OWL-DL reasoners. We show that we can use this system to automatically create a 
mid-level ontology for WordNet verbs that has good agreement with human intuition with respect to 
both the hypernym and causality relations. We present a detailed error analysis that reveals areas of 
future work needed to enable high-performance learning of conceptual knowledge by reading.

1. Introduction

Most researchers agree that attaining deep language understanding will require systems that have 
large amounts of commonsense knowledge. Such knowledge will need to be expressed in terms that 
support semantic lexicons as used by parsing systems, with concept hierarchies and semantic roles, 
and provide knowledge required for disambiguation as well as deriving key entailments. While there 
have been many attempts to hand-build such knowledge, most notably within the Cyc project (Lenat, 
1995), as well as ontology-building efforts such as SUMO (Niles & Pease, 2001), GUM (Bateman et 
al., 1995), DOLCE (Gangemi et al., 2002) and EuroWordNet (Vossen, 1998), these fall short of en-
coding the range and depth of needed knowledge. This motivates work in building a commonsense 
knowledge base automatically from reading online sources. Learning by reading offers the opportu-
nity not only to amass a significant knowledge base for processing online sources, but also allows for 
learning on demand - i.e., looking up something in a dictionary or Wikipedia when needed.

Recently, there has been significant interest in acquiring knowledge using information extraction 
techniques (e.g., Etzioni et al, 2011; Carlson et al, 2010). Such work, however, remains close to the 
surface level of language - involving mostly uninterpreted words and phrases and surface relations 
between them (e.g., is-a-subject-of, is-an-object-of), or a limited  number of pre-specified relations. In 
addition, information extraction tends to focus more on learning facts (e.g., Rome is the capital of It-
aly) than conceptual knowledge (e.g., kill means cause to die). 

We have been exploring the feasibility of building extensive knowledge bases by reading definitional 
sources such as online dictionaries and encyclopedias such as Wikipedia. So far, we have focussed on 
what knowledge can be derived by reading the glosses in WordNet (Fellbaum, 1998). This is a good 
start for the project for several reasons. First, WordNet is the most used lexical resource in computa-
tional linguistics, and so a knowledge base indexed to WordNet would be most readily accessible for 
use in other projects. Second, a significant portion (i.e., about 50%) of the content words in WordNet 
glosses have been sense tagged by hand, thus giving us considerable help on tackling the word sense 
disambiguation problem. And third, WordNet has hand-built semantic structures, such as the hy-
pernym and troponym hierarchies, as well as tagged relations such as cause, and part-of, which give 
us a hand-coded standard to compare against. While most previous work on extracting knowledge 
from WordNet has focused on exploiting these hand-built relations, we focus solely on what can be 
extracted by understanding the glosses, which consist of short definitions (e.g., kill: cause to die) and 
a few examples (e.g., This man killed several people when he tried to rob a bank), and use the hand-
built relations for evaluation. The goal is a system that is not WordNet specific, but could be used on 
any source of definitional knowledge. This projects shares some of the same goals with the work of 
Nichols et al. (2005), who convert definitions from a machine readable dictionary of Japanese into 



underspecified semantic representations using Robust Minimal Recursion Semantics (Frank, 2004) 
and construct an ontology based on extracted hypernyms and synonyms.

While many complain about WordNet, it is an unparalleled lexical resource. Attempts to use WordNet 
as an ontology to support reasoning have mainly focussed on nouns, because the noun hypernym hier-
archy provides a relatively good subclass hierarchy (e.g., Gangemi et al. 2003). The situation is not 
the same for verbs however. Verbs in WordNet have no organization into an ontology of event types in 
terms of major conceptual categories such as states, processes, accomplishments and achievements 
(cf. Vendler 1957).  Instead, WordNet has a set of 15 semantic domains that serve as unique beginners 
for verbs, such as verbs of motion and verbs of communication. The verbs are then organized around 
a troponym hierarchy - capturing manner modifications (e.g., destroy is a killing done in a particular 
way).  Fellbaum (1998) argues against a top-level verb distinction between events and states, or be 
and do as suggested in Pulman (1983), for several reasons. A goal of WordNet was to reflect human 
lexical organization, and there is a lack of psycholinguistic evidence that humans have strong associa-
tions between abstract concepts such as do and more specific verbs. This lack of a hierarchical mid-
level1 ontology for events creates a significant obstacle to unifying WordNet with ontologies that are 
built to encode commonsense knowledge and support reasoning. 

In this paper, we report on work that attempts to address this problem and bring formal ontologies and 
lexical resources together in a way that captures the detailed knowledge implicit in the lexical re-
sources. Specifically, we focus on building an ontology by reading word definitions -- and use Word-
Net glosses as our test case for evaluating the feasibility of doing so. It is important to remember here 
that our goal is to develop new techniques for building knowledge bases by reading definitions in 
general, and our work is not specific to WordNet, though we use WordNet for evaluation.

It is always difficult to evaluate the usefulness and correctness of ontologies.  We resort to using sev-
eral focussed evaluations of particular types of knowledge using human judgement. In some of these 
cases, we find that WordNet itself provides some information related to these aspects, so we can com-
pare the coverage and accuracy of our automatically constructed ontology with the explicitly coded 
information in WordNet. For example, we can evaluate the coverage of our event hierarchy by com-
paring to the WordNet troponym hierachy, and we can compare the causal relationships we derive 
between events with the explicitly annotated cause relations in WordNet. 

2. Encoding Knowledge in WordNet Glosses

There have been several prior attempts to process glosses in WordNet to produce axioms that capture 
entailments. For the most part, these representations are fairly shallow, and look more like an encod-
ing of the syntactic information in a logical notation, with each word represented as a predicate. Fur-
thermore, some of the encodings resist a formal interpretation. For instance, the representations in 
eXtended WordNet (Harabagiu et al. 2003) contain variables that are free, predicates that have vari-
able arity, and lack a principled representation of logical operators, particularly disjunction. As such, it 
cannot support sound inference procedures. Furthermore the predicates are just words, not disambigu-
ated senses. Clark et al. (2008) produce a representation where the predicates are senses, but share 
many of the other weaknesses of eXtended WordNet. Agerri & Peñas (2010) resolve a number of 
these issues and generate intermediate logical forms that have no free variables nor unconnected 
predicates in the definitions, but the formalism still resembles an encoding of syntax as opposed to a 
semantic representation. As an example, Figure 1 shows the representation generated for the definition 
of the adjective bigheaded as overly conceited or arrogant.  It is not clear what the semantics of the 
encoding of disjunction (i.e., conj_or(x3,x5)) plays in the definition, as it appears that both modifiers 
conceited  and arrogant appear in parallel amod relations to the variable x1. It is hard to imagine an 
inference mechanism that would handle the disjunction correctly given this representation.

1 we distinguish between the upper ontology (identifying the fundamental conceptual distinctions underlying 
knowledge), the mid-level ontology (capturing general knowledge of events), and the domain ontology, captur-
ing specific knowledge about particular domains.



something(x1) ^ amod(x1,x3) ^ amod(x1,x5) ^ overly(x2) ^ conceited(x3)

^ advmod(x3,x2) ^ conj_or(x3,x5) ^ arrogant(x5)

Figure 1: Agerri & Peñas (2010) representation of the gloss “overly conceited or arrogant”

Building a good ontology requires more than natural language processing--it requires sophisticated 
reasoning to identify subsumption relations implicit in the definitions. We pick our target formalism 
for the ontology to be description logic, specifically OWL, and use its associated reasoners to com-
pute the subsumption relations. As an example, we encode the definition of bigheaded as

bigheaded ⊑ ∀_of.(person) ⊓ ((conceited ⊓ ∀_of -1.(degree-modifier and overly)) ⊔ arrogant)

i.e., bigheaded is a predicate that applies to people, and which is a subclass of the union of things that 
are conceited (with degree modifier overly) with things that are arrogant. Note that OWL allows types 
defined by relations and their inverses: ∀_of.(person) is the class of all objects that are in the domain of 
an of relation with only people (i.e., person) in the range, whereas ∀_of -1.(person) would be the class of 
all objects that are in the range of a relation with only person in the domain.  While description logic 
is less expressive than first order logic, our experience has shown that it provides a good formalism 
for capturing much of the content in definitions and produces a representation that supports provably 
tractable inference about hierarchical relationships over complex types, making it suitable for encod-
ing ontologies.

3. Parsing Glosses

We parse WordNet glosses with a slightly modified TRIPS parser (Allen et al., 2008). The TRIPS se-
mantic lexicon provides information on semantic roles and selectional restrictions for about 5000 
verbs, and the parser constructs a semantic representation of the language that is rich enough for rea-
soning. TRIPS has already shown promise in parsing WordNet glosses in order to build commonsense 
knowledge bases (Allen et al., 2011). The logical form is a graphical formalism that captures an 
unscoped modal logic (Manshadi et al. 2008).  Figure 2 shows the logical form graph for the defini-
tion of kill as to cause to die. The graph consists of nodes that specify the word senses for each word 
(both its sense in the TRIPS ontology and the WordNet Sense) and quantification information, and 
relations between the nodes are labelled with semantic roles. The IMPRO nodes are derived from the 
gaps in the definition and become the arguments for the new concept, namely kill%2:35:002.

WordFinder

To attain broad lexical coverage beyond its hand-defined lexicon, the TRIPS parser uses input from a 
variety of external resources. WordFinder is a subsystem that accesses WordNet when an unknown 
word is encountered. The WordNet senses have hand-built mappings to semantic types in the TRIPS 
ontology, although sometimes at a fairly abstract level. WordFinder uses the combined information 
from WordNet and the TRIPS lexicon and ontology to dynamically build lexical entries with ap-
proximate semantic and syntactic 
structures for words not in the core 
lexicon.

WordFinder offers a powerful tool for 
increased lexical coverage. However, 
the information in entries constructed 
by WordFinder is frequently under-
specified, so the parser must deal with 
significantly increased levels of ambi-
guity when dealing with dynamically 
constructed words. There are several 

2 We use the WordNet sense key notation throughout, which uses three values to identify a sense: kill%2:35:00 
is a verb (2),  is a verb of contact (35), and has a unique identifier (00) within this group.

(SPEECHACT DEFINITION)

(F (:* CAUSE-EFFECT cause%2:36:00))

(IMPRO (:* REFERENTIAL-SEM entity%1:03:00))

(IMPRO (:* REFERENTIAL-SEM entity%1:03:00))

cause
patient (F (:* DIE die%2:39:00))

effect

experiencer

Figure 2: TRIPS parser output for definition “to cause to die”



settings that can be used to control how WordFinder is used during parsing. First, users can specify 
the number of senses returned from WordNet. WordNet may have multiple fine-grained senses for a 
given word, but depending on the application, selecting the most frequent senses listed in WordNet 
will suffice (cf. McCarthy et al. 2004).

Word Sense Disambiguation

As we mentioned earlier, one thing that makes WordNet glosses a good experimental dataset for our 
initial experiments is that many of the words in the glosses have been hand-tagged with their word 
senses (though see section 6 for an analysis of errors in the tagging). The remainder of the words, 
however, need to be tagged. We use a set of heuristic strategies to identify the WordNet senses for 
these words. First, for words that appear in the hand-built TRIPS lexicon, we simply use these TRIPS-
WordNet mappings to identify the possible WordNet senses for each TRIPS sense, and then have the 
parser select the best interpretation in its usual manner, based on syntactic templates possible for each 
word, the selectional preferences, and finally frequency-based preferences among the senses. For 
words not in the TRIPS lexicon, we generate lexical entries for a small number of WordNet senses 
using WordFinder, drawing first from the Core WordNet senses (Boyd-Graber et al, 2006), and/or the 
most frequent senses (i.e., the first senses listed in WordNet). 

4. Building Event Classes from Definitions

Because many glosses are complex, often highly elliptical and hard to parse, we depend on the ability 
of the TRIPS parser to produce semantically meaningful fragments when a full spanning parse cannot 
be found. In addition, we apply several strategies to create simplified definitions that are used as 
backup in case the full definition doesn’t parse: These simplifications are

• if the definition starts with “verb or verb ....”, truncate the first two words
• If the definition contains “or”, “and”, or comma, truncate the definition starting at that token

We parse the full definition and any simplifications produced, and then find the fragment or full inter-
pretation that covers the greatest amount of the gloss while producing a definition that is semantically 
compatible with the target word (e.g., verbs must map to events, adjectives must map to predicates). 
Note that natural definitions, including those in WordNet, sometimes indicate necessary conditions 
while at other times indicate necessary and sufficient conditions, and do not reliably signal such cases. 
For the present, we treat all definitions as specifying only necessary conditions. Because of this, when 
we define a sense based on only part of its definition, it typically still produces useful knowledge.

We identify the likely arguments (i.e., semantic roles) of the concept using signals in the logical form 
such as the presence of gaps and the use of a few indefinite pro-forms such as someone, somewhere, 
etc.  Note that most roles are not explicit in the definition. For example, the definition of kill,  cause to 
die, does not explicitly express the subject or the object of the cause and the LF recovers this missing 
information, producing something like <something> causes <something> to die. We identify the se-
mantic roles for these arguments by checking the TRIPS lexicon for the roles involved in the verb 
cause, or if there is no explicit entry in the lexicon, we use WordFinder to derive the likely roles by 
employing the WordNet to TRIPS ontology mapping. In this case, the roles for kill%2:35:00 would be 
identified as AGENT  and PATIENT. 

To refine the roleset and compute selectional restrictions, we then try to parse the examples provided 
in WordNet, plus additional examples involving the current word sense being defined from the SEM-
COR corpus3. These examples provide some evidence as to the range of syntactic templates and se-
mantic roles that can occur with the verb, as well 
as providing examples of possible fillers. We 
compute a selectional preference for each role by 
attempting to find the most common subsumer of 
all the examples in either the WordNet hypernym 

3 http://www.cse.unt.edu/~rada/downloads.html#semcor

New Concept Name: kill%2:35:00
Roles:	

 AGENT  person%1:03:00
	

 PATIENT organism%1:03:00  
Definition: LF graph in Figure 2

Figure 3: The information derived for the concept 
corresponding to kill%2:35:00



hierarchy, or in the TRIPS ontology (and then mapping from this value back to the equivalent Word-
Net senses). At the end of this first phase of processing the definition, we have derived the information 
shown in Figure 3 for kill%2:35:00.

The next phase is to convert this information into OWL DL. In most cases we are performing a one-
to-one mapping from the LF to OWL where concepts in the LF become OWL classes and roles are 
mapped to corresponding OWL object role restrictions. For example, we begin converting 
kill%2:35:00 with the selectional preferences by asserting that it is a subclass of the expression: 
∀_agent.person%1:03:00 ⊓ ∀_patient.organism%1:03:00 (i.e., all things that have agents that are 
person%1:03:00 and have patients that are organism%1:03:00). Note that the we can use the more in-
formative universal restriction instead of an existential because we assume that verbs have at most 
one of each core role. 

Next, we handle the conversion of the LF graph of the gloss shown in Figure 2. We begin at the head 
of the definition, the CAUSE-EFFECT node, by creating a new OWL class that uniquely represents 
that node, we will call C1, and assert, kill%2:35:00 ⊑  C1. Next we define C1 simply as the subclass of 
the conjunction of its WordNet class, cause%2:36:00, and its semantic restrictions. To translate the 
:EFFECT role we first create a new class, D1, and then create the object role restriction ∀_effect.D1. 
Doing this for each of C1's roles produces the axiom 

	

 C1 ⊑ cause%2:36:00 ⊓ ∀_effect.D1 ⊓ ∀_patient.R1 ⊓ ∀_cause.R2. 

We then recursively define any new classes; in this example, D1 ⊑ die%2:39:00 ⊓ ∀_experiencer.R1 , R1 
⊑ entity%1:03:00, R2 ⊑ entity%1:03:00.

We next must handle the multiple references to R1. The LF treats each object as a unique instance so 
when it is referred to more than once in an LF we know that each reference indicates the same in-
stance. When we convert the LF to OWL the objects are no longer instances but are instead classes. In 
the above example, we no longer have the meaning that the patient and experiencer are the same indi-
vidual - only that they belong to the same class, R1. In order to capture the intended meaning we in-
troduce an OWL data property called varID which uniquely names the reference. varID acts as an in-
dicator that when the classes are grounded those with the same varID are the same OWL instance. 
Using this methodology, we have the final set of assertions for the definition:
! kill%2:35:00 ⊑ ∀_agent.person%1:03:00 ⊓ ∀_patient.organism%1:03:00 ⊓ C1
! C1 ⊑ cause%2:36:00 ⊓ ∀_effect.D1 ⊓ ∀patient.(R1 ⊓ varID=”r1”) ⊓ ∀_cause.R2 
! D1 ⊑ die% 2:39:00 ⊓ ∀_experiencer.(R1 ⊓ varID=”r1”)
! R1 ⊑ entity%1:03:00 
! R2 ⊑ entity%1:03:00
Note that we are using a hierarchical roleset similar to the combining of VerbNet and LIRICS roles as 
described in Bonial et al (2011), with slight variations in the role names. Specifically, the Agent role is 
a specialization of the Cause role (i.e., the axiom agent ⊑ cause is in the OWL KB), thus we know that 
the the agent of kill%2:35:00 is the same as the cause role in the definition of C1.

Modifiers are indicated with a relation :MOD (see  Figure 
4) that indicates the presence of a backlink with semantic 
meaning but do not add any semantics itself. We remove 
these cycles and replace them with inverse object roles 
meant to represent the backlink.  For the example, the 
concept defined in Figure 4 would be a subclass of 
die%2:39:00 ⊓ ∃_OF-1.quickly%4:02:00. Notice that modifi-
ers use the less restrictive existential rather than the uni-
versal since we do not restrict objects to have only one 
modifier. This is a very simple example. The same tech-
nique works for more complex cases like dealing with 
relative clauses.

(F (:* DIE die%2:39:00))

(F (:* SPEEDY quickly%4:02:00))

mod
of

(SPEECHACT DEFINITION)

Figure 4: An LF graph with a modifier



Logical operators such as conjunction, disjunction and negation are converted directly into the corre-
sponding OWL operators, allowing the conversion of arbitrarily complex logical forms.

The translation process described above captures enough of the meaning in the LF to support the sys-
tem described in the rest of the paper but it does not capture all the possible entailments one might be 
able to derive. In the future, we would like to encode core semantic roles in the gloss (not the ones 
found in selectional preferences) as the more appropriate exactly-one cardinality constraint coupled 
with an existential constraint. For instance, ∀_effect.D1 (if there is an effect then it is of type D1) be-
comes =1_effect.⊤  ⊓ ∃_effect.D1 (there is only one effect and it is of type D1). We are also exploring 
how to better handle negation in glosses. Consider the gloss for acquitted, “declared not guilty of a 
specific offense or crime; legally blameless”. What “not guilty”  actually indicates is the opposite of 
guilty, i.e., innocent. While it would be correct to say that the _effect of the declare action is of the 
class ¬guilty, it isn't very useful. A lot of unrelated things could be ¬guilty: dog, blue, running, etc.

5. Building a Mid-Level Ontology for WordNet Verbs

As mentioned earlier, defining a mid-level ontology was not one of the goals of the WordNet design-
ers. The hierarchical organization of verbs is the troponym hierarchy, which captures manner speciali-
zation (e.g., beating is a type of striking which is a type of touching). The sense touch%2:35:00 is a 
top-level sense and has no more abstract characterization. There are 559 such synsets in WordNet that 
have no hypernyms, and these concepts range from concepts that would serve as useful primitives 
(like touch, breathe) to more specific senses such as three senses of the verb keep up (prevent from 
going to bed, keep informed, and maintain a required pace or level). The sense of kill we have used as 
an example is also one of the top-level verbs. In addition, over 200 of these verbs have no troponyms 
either, leaving these sense essentially unrelated hierarchically to any other verbs in WordNet.

The idea underlying this experiment is that we can build a mid-level ontology by reading the glosses 
of these words. The consequence of this is that each of the previous top-level verb synsets will now 
have a superclass concept, e.g., kill%2:35:00 will now have a superclass of cause%2:36:00 ⊓ 
∃_effect.die%2:30:00  (i.e., “cause to die”) which of course is a specialization of the general class 
cause%2:36:00. Note that while many linguistic ontologies capture only subclass links between 
atomic types, we are generating much richer information that captures the definition in terms of a 
complex type. In this example, we not only have derived a hierarchical relation between kill%2:35:00 
and cause%2:36:00, but also the causal relationship between kill%2:35:00 and die%2:30:00. 

After this first iteration, we will have introduced a new set of word senses, both verbs and non verbs, 
that have not yet been defined. So we then iterate using the same procedure on this new set of words 
to define them. In principle, we continue this iteration as long as new undefined senses are introduced. 
In the evaluation described below, we stopped after twelve iterations and completed the remaining 
undefined terms by adding the hypernym chain for the concept.  Table 1 shows the number of new 
senses that were introduced with each iteration. It takes another dozen iterations, each one adding just 
a few verbs in order to exhaust the generation of new undefined senses.  One might think that this 
continual defining of verb senses would produce a full event hierarchy rooted at some “mother”  verb-
sense! This does not happen however, because of the presence of cycles in the definitions. Circular 
definitions “short-circuit”  the identification of more abstract classes and tend to collapse sets of syn-
sets together. We examined these circular classes by hand and found that most result from errors in the 
sense tagging provided in the Princeton WordNet Gloss Corpus. By correcting these tagging errors, 
we can avoid the unwanted circularities. Other cycles appear to cluster around core definitional primi-
tives that simply are hard to define in any formal decompositional way, and we leave them as they are. 

0 1 2 3 4 5 6 7 8 9 10 11 12
# new verb 

senses 559 255 169 150 99 75 66 41 34 29 15 15 10

# new senses 559 853 988 970 748 543 437 318 230 163 106 64 46

Table 1: The number of new senses introduced with each iteration



We discuss our analysis of the cycles generated from processing the top-level WordNet verb classes in 
a later section. The evaluation examines systems with and without these word sense corrections.

Empirical Evaluation
While we have built a knowledge base containing significant amounts of conceptual information by 
reading the glosses, here we focus on evaluating just two aspects of this knowledge base. First is the 
hierarchical relations between the bare WordNet classes, which is a mid-level ontology for WordNet 
verbs. The second involves causal relationships that can be derived from the knowledge. Some of 
these are trivial (e.g., kill%2:35:00 causes die%2:39:00), while others are revealed from inference. 
For instance, the subsumption algorithm will compute that the verb class air%2:32:03 causes the 
event of something becoming known%3:00:00. There is much more information in this knowledge 
base than we are going to evaluate here. For instance, it contains knowledge about the changes of 
state and transitions that serve to define many verbs, and in Allen et al (2011) we demonstrate an abil-
ity to perform temporal inference using the knowledge base. But in this paper we focus solely on 
evaluating just the hierarchical and causal relations between bare WordNet classes in order to enable a 
direct comparison with WordNet.

We randomly selected 6N (N=8) pairs of verb concepts (A, B) from those that our system successfully 
processed (columns 0-11 in Table 1), such that at least N of them fell into each of the four categories 
“{WordNet, our OWL-DL knowledge base} says that A {is a kind of, causes} B”, and such that 2N 
pairs were unrelated in either source. We then presented the pairs in different randomized orders to a 
set of human judges and asked them to identify whether there was a causal or hierarchical relation 
between the events, or whether they were unrelated. As judges, we used six researchers who had been 
involved with the project as well as five people who have no relation to the work. We computed the 
inter-rater agreement (IRA) using Cohen’s kappa score (Cohen, 1960). Kappa was computed for each 
pair of judges, then averaged to provide a single index of IRA (Light, 1971). The resulting kappa indi-
cated substantial agreement, κ = 0.63 (Landis & Koch, 1977). In order to eliminate the cases where 
their was no consensus among the judges, we only consider the cases in which eight or more judges 
agreed, which was 83% of the samples, and used the majority decision as the gold standard. We can 
then evaluate the accuracy of the hand-coded relations in WordNet against two versions of our sys-
tem: one processing the raw glosses in WordNet and the other with 79 corrected word sense tags out 
of over 5000 glosses processed. 

The precision and recall results are shown in Table 3. The most important property we desire is that 
the knowledge produced is accurate, i.e., the precision score. This reflects the ability of the systems to 
produce accurate knowledge from processing glosses. If precision is high, we could always improve 
recall by processing more definitional sources. We see that the precision scores for the system gener-
ated relations are quite good, over 80% for the hypernym relations and a perfect 100% for the causal 
relations.

Regarding WordNet, we see that the hand-coded relations had a 100% precision, indicating that the 
structural information in WordNet is highly accurate. The recall numbers, however, show that a sig-
nificant number of possible relations are missed, especially for causal relations. This suggests that it is 
worth exploring whether the information implicit in the glosses is redundant given the hand-coding, 
or whether they serve as an important additional source of knowledge. We can explore this by com-
paring the sets of relations produced by the system with the relations in WordNet. If they overlap sig-
nificantly, then the hand-built WordNet relations are fairly complete. If they are disjoint, then the 
glosses contain an important additional source of these structural relations. The analysis is summa-
rized in Table 4. We look at each relation proposed by WordNet or the system, and look at the overlap 

Class Definition
Air%2:32:03 be broadcast%2:32:01

broadcast%2:32:01 broadcast%2:32:00 over the airwave%1:10:00, as in radio or television%1:06:01
broadcast%2:32:00 cause to become widely known%3:00:00

Table 2: The definitions used to infer that ‘airing something’ causes it ‘to become known’



and disjoint cases. The data show a surprising disjointness between what is explicitly coded in Word-
Net and the information derived from the glosses.  Out of 11 cases of causal relations, there is only 
one overlap between WordNet and the system, and the remaining relations are equally divided, with 
five causal relations in WordNet that were not derivable by the system, and five causal relations the 
system derived that are not coded in WordNet. Thus there is significant causal knowledge derivable 
from the glosses that is not currently encoded in WordNet. With hypernyms, results are similarly dis-
joint, with only three out of thirteen cases both encoded in WordNet and derived by the system. 

6. Error Analysis

Consider the cases where a hand-coded hypernym relation was not derived from the definitions.  In 
general, the most common reasons for this include problems in parsing and an inability to reason from 
the provided definitions to the desired entailments.  Interestingly, virtually all the errors in the evalua-
tion set are problems the reasoning side. Some of these are because the definitions simply don’t pro-
vide enough information, and in other cases the system lacked of an ability to resolve vagueness in the 
definitions. For instance, by failing to make a connection between “deprive of life”  and “cause to die”,  
the system misses that annihilate%2:30:00 is a subclass of kill%2:35:00. In another case, it fails to 
note the relationship between compose and create due to the definition creating a disjunction that can-
not be reasoned through. Specifically,  compose%2:36:01 is found to be a subclass of the class (OR 
create%2:36:00 construct%2:36:01). In other cases, the conclusion is not found because of sense tagging 
errors. For instance, the system cannot conclude that corrupt%2:41:00  is a subclass of alter%2:30:01 
in either version of the system. The system running on uncorrected tags ended in a circular definition 
of corrupt%2:41:00. The system running with corrected tags infers that corrupting is making a mess 
of someone morally, and cannot relate this to causing a change in someone.  As a final example, defi-
nitions sometimes involve phrasal verbs that are not defined in WordNet. For instance, posit%2:32:02 
is defined as “put%2:35:00 before”  where the system knows nothing about a sense of put before as a 
verb of communication, and this phrasal verb is not defined in WordNet.

The one false positive in the evaluation was when the system derived that excogitate%2:36:00, de-
fined by “come up with (an idea, plan, explanation, theory, or principle) after a mental effort”, is a 
subclass of execute%2:36:00, defined as “put into effect”. This conclusion results from a long chain 
of reasoning through definitions of come up with, to bring forth, to bring, to take and finally to 
accomplish%2:36:00, which is in the same synset as execute%2:36:00. It is hard to identify a specific 
flaw in this chain, but the human judges resoundingly judged this pair as being unrelated.

In general, exploring the results beyond this specific evaluation, the most common problem found was 
word sense tagging errors, mostly by the system on words that were not tagged in the glosses (and one 

Relation WordNet System count
Human JudgementHuman Judgement

Relation WordNet System count
yes no

Causation

Yes Yes 1 1 0

Causation
Yes No 5 5 0

Causation No Yes 5 5 0Causation

No No 29 0 29

Hypernym

Yes Yes 3 3 0

Hypernym
Yes No 7 7 0

Hypernym No Yes 3 2 1Hypernym

No No 27 0 27

Table 4: Comparing the Redundancy between WordNet & System-generated relations

Source Hypernym        Hypernym        Hypernym        Causal               Causal               Causal               
P R F1 P R F1

Processing Raw Glosses 80% 33% 47% 100% 36% 53%
Processing Corrected Glosses 83% 42% 56% 100% 55% 71%
Explicit WordNet relations 100% 83% 91% 100% 55% 71%

Table 3: Precision and Recall Scores Against Human Judgement



hand-tagged in the WordNet files).  Most of these were light verbs, specifically have, give and put, and 
generally the system tagged a more common concrete sense (e.g., have as possession) rather than the 
abstract causal sense (e.g., have as causing something). We believe such errors can be reduced by spe-
cializing the WSD algorithm to more specifically bias the senses useful in definitions. Other cases 
arose because the system identified the incorrect semantic roles in the definition, thereby losing the 
required entailments, and the system has significant problems in getting the right scoping for defini-
tions containing disjunctions. We explore the sense tagging issues in more detail below.

Word Sense Corrections

As mentioned before, the initial, automatically generated ontology contained a number of senses with 
circular definitions that prevented deriving desired entailments.  For example, we have in WordNet 
the following definition (showing only the relevant sense keys) for the synset  stick%2:35:00: 
(stick%2:35:00 to firmly).

In general, cycles indicate equivalence of the senses involved and logically collapse the synsets into 
one single class. We manually examined these cycles and determined that many of their definitions 
had been mis-tagged, and used the follow strategies to break many of the cycles.  
• Selecting an Alternative Sense: We re-tagged the offending  lemma with a different sense of the 

lemma.  In the example of stick%2:35:00:: above,  its definition should refer to a more basic sense 
stick%2:35:01:: (come or be in close contact with; stick or hold together and resist separation) 

•  Replacing with a Hypernym: There may not always be an alternative sense that seems appropriate.  
We replaced some of these circular senses with their hypernyms.  For the circular definition 
cast_away%2:40:00: (throw_away%2:40:00 or cast_away%2:40:00), we replaced both words in 
the definition with their (common) hypernym: cast_away%2:40:00: (get_rid_of%2:40:01::)

• Unpacking Phrases: In WordNet phrasal verbs are often defined in entries separate from those of 
their head verbs.  For example, go_into%2:42:00 has its own definition (be used or required for). 
However, WordNet also includes an entry for the non-phrasal-verb sense of “go into” 
go_into%2:38:00:  (to come or go_into%2:38:00). In this second example, “go into” literally 
means “go” + “into”.  We broke the phrase into these two components in the definition: 
go_into%2:38:00: (to come or go%2:38:00 into)

• Simplifying Definitions: Some definitions contain elaborate, detailed and slightly redundant infor-
mation.  For example: pronounce%2:32:01: (speak, pronounce%2:32:01, or utter in a certain way)  
Logically, with one of the disjuncts being identical to the sense being defined, the definition is 
vacuous.  However, here “speak”, “pronounce” and “utter” are closely related.  We could break the 
cycle by deleting “pronounce” in the definition.  Arguably this strategy could lose some informa-
tion, but we only apply this simplification when the disjunct is nearly synonymous with some of the 
other elements in the definition.

There remain, however, some cycles that represent core concepts not easily reducible to other even 
more basic concepts.  For example, the four-synset cycle containing

	

 change%2:30:00 < undergo%2:39:04 < pass%2:38:00 < go%2:38:00 < change%2:30:00

are all related to the concept of change.  We elected not to contrive a re-definition but rather leave 
these cycles in place.  Such cycles are prime candidates for core concepts that would benefit from be-
ing hand axiomatized in an upper ontology.

7.  Discussion

We have described initial steps in constructing common-sense knowledge bases by reading word defi-
nitions. The focus of this work is to derive conceptual knowledge, i.e., definitions of concepts associ-
ated with word senses, to facilitate deeper language understanding. This stands in contrast to much 
current work on learning by reading, which is focused on building surface level word/phrase relation-
ships. For instance, Etzioni et al (2011) have an impressive system that scans the web and extracts 
surface patterns such as (Starbucks, has, a new logo). NELL (Carlson et al, 2010) derives similar 
knowledge by learning extraction patterns for a predefined set of relations. Neither of these systems 
attempt to disambiguate word senses or construct definitional knowledge. The evaluation is performed 



by human judges who, of course, used their ability to understand natural language in order to validate 
the data (e.g.., picking word senses that make sense).

As a demonstration of the promise of our techniques, we have shown that we can construct a mid-
level ontology for WordNet verbs from the WordNet glosses, starting from the 559 verb senses in 
WordNet that have no hypernym. We evaluate the results using human judges comparing relations 
between word senses in WordNet, where each sense is carefully defined in the evaluation. We have 
shown that the knowledge we derive is not only quite accurate, but is substantially different from the 
information already in the explicitly defined WordNet relations (e.g., hypernym and cause relations). 
As such, our techniques have the potential to produce an expanded set of WordNet style relations that 
could be very useful for improving current techniques that use WordNet as a source of entailments. 

Most prior work linking WordNet to ontologies has involved producing mappings from the synsets 
into an upper ontology, without developing the intermediate detail. For instance, SUMO has a com-
prehensive mapping from WordNet to its upper ontology, but 670 WordNet verb synsets are mapped 
to the single SUMO class IntentionalProcess (3 equivalences and 667 subsumptions), including 
senses as diverse as postdate (establish something as being later relative to something else), average 
(achieve or reach on average), plug (persist in working hard), diet (follow a regimen or a diet, as for 
health reasons), curtain off (separate by means of a curtain) and capture (succeed in representing or 
expressing something intangible). While these links connect WordNet into SUMO, they don’t provide 
significant extra knowledge to enable entailments. Our work can provide links to an upper ontology 
with significant additional structure providing an opportunity for entailment. As an example, Figure 5 
shows a small part of the derived ontology. This encodes such information like forbidding is a form of 
commanding, which involves making someone do something, which itself is a form of causation. With 
each of the concepts along this chain having a detailed definition in the style described in Section 4, 
we can use reasoning systems developed for OWL-DL to draw a rich set of entailments about the con-
sequences of performing a forbidding act.

Much remains to be done to realize our dream of building rich knowledge bases by reading. There are 
short term issues and longer term issues. On the short term, the biggest improvement would result 
from improving word sense disambiguation, especially for the light verbs such as have and go. It is 
not a coincidence that these verbs generally are not tagged in the Princeton Gloss corpus. They are 
difficult to tag, and it is not clear that the senses offered in WordNet always provide the right set of 
choices. We are considering special processing of these abstract senses, possibly encoding them di-
rectly in a hand-built upper ontology. In the longer term, we need to expand our evaluation methods to 
verify that the knowledge derived beyond hypernym and causal relations is accurate and useful. This 
will presumably involve more complex entailment tests. Finally, in the long run, we do not believe 
that effective knowledge bases can be derived entirely from processing individual definitions without 
some inferentially-based “knowledge cleaning”  where raw knowledge is combined from several 
sources, abstracted and revised in order to create more consistent and coherent knowledge.
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Figure 5: A fragment of the event hierarchy derived from the glosses
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Abstract

Distributional semantics has very successfully modeled semantic phenomena at the word level,
and recently interest has grown in extending it to capture the meaning of phrases via semantic compo-
sition. We present experiments in adjective-noun composition which (1) show that adjectival modifi-
cation can be successfully modeled with distributional semantics, (2) show that composition models
inspired by the semantics of higher-order predication fare better than those that perform simple fea-
ture union or intersection, (3) contrary to what the theoretical literature might lead one to expect,
do not yield a distinction between intensional and non-intensional modification, and (4) suggest that
head noun polysemy and whether the adjective corresponds to a typical attribute of the noun are
relevant factors in the distributional representation of adjective phrases.

1 Introduction

Distributional semantics (see Turney and Pantel, 2010, for an overview) has been very successful in
modeling lexical semantic phenomena, from psycholinguistic facts such as semantic priming (McDonald
and Brew, 2004) to tasks such as picking the right synonym on a TOEFL exercise (Landauer and Dumais,
1997). More recently, interest has increased in using distributional models to account not only for word
meaning but also for phrase meaning, i.e. semantic composition (Mitchell and Lapata, 2010; Baroni and
Zamparelli, 2010; Socher et al., 2012; Garrette et al., 2012).

Adjectival modification of nouns is a particularly useful and at the same time challenging testbed
for different distributional models of composition, because syntactically it is very simple, while the se-
mantic effect of the composition is very variable and potentially complex due to the frequent context
dependence of the relation between the adjective and the noun (Asher, 2011, provides recent discus-
sion). As a comparatively underexplored area of semantic theory, it is also an empirical domain where
distributional models can give feedback to theoreticians about how adjectival modification works. In the
formal semantic tradition, the analysis of adjectives has been largely motivated by the general entailment
patterns in which they participate (Parsons, 1970; Kamp, 1975, and subsequent work). For example, if
something is a white towel, then it is both white and a towel. This use of white is intersective: it yields
an adjective-noun phrase (hereafter, AN phrase) whose denotation is the intersection of the denotations
of the adjective and the noun. If someone is a skillful surgeon, then she is a surgeon but not necessarily
skillful in general. Such adjectives are subsective: The denotation of the phrase is a subset of that of
the noun. Finally, if someone is an alleged murderer, we cannot be sure that she is a murderer, and it is
not even grammatical to say that she is “alleged”. Intensional adjectives thus do not appear to describe
attributes or relations; rather, they are almost universally modeled as higher-order properties, whereas
intersective and subsective (hereafter, non-intensional) adjectives have been given both first-order and
higher-order analyses.



Given these facts, we can expect that intensional adjectives will be more difficult to model computa-
tionally than non-intensional adjectives. Moreover, they raise specific issues for the increasingly popular
distributional approaches to semantics. First, as intensional adjectives cannot be modeled as first-order
properties, it is hard to predict what their representations might look like or what their semantic effect
would be in standard distributional models of composition based on vector addition or multiplication.
This is so because addition and multiplication correspond to feature combination (see Section 2 for dis-
cussion), and it is not obvious what set of distinctive distributional features an intensional adjective would
contribute on a consistent basis.

In Boleda et al. (2012), we presented a first distributional semantic study of intensional adjectives.
However, our study was limited in two ways. First, it compared intensional adjectives with a very
narrow class of non-intensional adjectives, namely color terms; this raises doubts about the generality of
our results. Second, the study had methodological weaknesses, as we did not separate training and test
data, nor did we do any systematic parameter tuning prior to carrying out our experiments. This paper
adresses these limitations by covering a wider variety of adjectives and using a better implementation of
the composition functions, and performs several qualitative analyses on the results.

Our results confirm that high quality adjective composition is possible in distributional models:
Meaningful vectors can be composed, if we take phrase vectors directly extracted from the corpus as
a benchmark. In addition, we find (perhaps unsurprisingly) that models that replicate higher-order pred-
ication within a distributional approach, such as Baroni and Zamparelli (2010) and Guevara (2010), fare
better than models based on vector addition or multiplication (Mitchell and Lapata, 2010). However, un-
like our previous study, we find no difference in the relative success of the different composition models
on intensional vs. non-intensional modification, nor in relevant aspects of the distributional representa-
tions of corpus-harvested phrases. Rather, two relevant effects involve the polysemy of the noun and the
extent to which the adjective denotes a typical attribute of the entity described by the noun.

These results indicate that, in general, adjectival modification is more complex than simple feature
intersection, even for adjectives like white or ripe. We therefore find tentative support for modeling
adjectives as higher-order functors as a rule, despite the fact that entailment phenomena do not force such
a conclusion and certain facts have even been used to argue against it (Larson, 1998, and others). The
results also raise deeper and more general questions concerning the extent to which the entailment-based
classification is cognitively salient, and point to the need for clarifying how polysemy and typicality
intervene in the composition process and how they are to be reflected in semantic representations.

2 Composition functions in distributional semantics

Distributional semantic models represent words with vectors that record their patterns of co-occurrence
with other words (or other linguistic contexts) in corpora. The raw counts are then typically transformed
by reweighting and dimensionality selection or reduction operations (see Clark, 2012; Erk, 2012; Turney
and Pantel, 2010, for recent surveys). Although there has always been interest in how these models could
encode the meaning of phrases and larger constituents, the last few years have seen a huge increase in
the number of studies devoted to compositional distributional semantics. We will now briefly review
some of the composition methods that have been proposed and that we re-implemented here, focusing in
particular on how they model AN phrases.

Mitchell and Lapata, in a set of very influential recent studies summarized in Mitchell and Lapata
(2010), propose three simple and effective approaches to composition, showing that they outperform
more complex models from the earlier literature. Their weighted additive model derives a phrase vector
p by a weighted sum of its parts u and v (in our study, the u and v vectors to be composed will stand
for adjectives and nouns, respectively):

p = αu+ βv



The multiplicative model proceeds by component-wise multiplication:

pi = uivi

Assuming that one of the words in the phrase acts as its “head”, the dilation model performs com-
position by analyzing the head vector v in terms of components parallel and orthogonal to the modifier
vector u, and stretching only the parallel component by a factor λ:

p = (λ− 1)(u · v)u+ (u · u)v

The natural assumption, in our case, is that the noun acts as head (v) and the adjective as modifier (u).
We experimented with the other direction as well, obtaining, unsurprisingly, worse results than those we
report below for dilation with noun as head. Note that dilation can be seen as a special way to estimate
the parameters of weighted addition on a phrase-by-phrase basis (α = (λ− 1)(u · v); β = u · u).

If we interpret the components of distributional vectors as features characterizing the meaning of a
target word, the Mitchell and Lapata models amount to essentially feature union or intersection, where
the components of a phrase are those features that are active in either (union; additive model) or both
(intersection; multiplicative model) the noun and/or adjective vectors. Thus, the result is “adjective-
like” and/or “noun-like”. Indeed, in our experiments below the nearest neighbors of phrase vectors built
with these models are very often the adjective and noun components.1 This makes intuitive sense: for
example, as discussed in Boleda et al. (2012), for white dress feature combination makes the phrase
more similar to wedding than to funeral, through the association between white and wedding. However,
as formal semanticists have long observed, adjective-noun composition is often not a feature combination
operation. Most obviously in the case of intensional adjectives, it is not correct to think of an alleged
murderer as somebody who possesses an intersection (or union, for that matter) of features of murderers
and features of alleged things.

Guevara (2010) explores the full additive model, an extension of the additive model where, before
summing, the two n-dimensional input vectors are multiplied by two n× n weight matrices:

p = Au+Bv

Unlike weighted addition and dilation, the full additive method derives the value in each component of
the output vector by a weighted combination of all components of both input vectors, providing more
flexibility. Still, a single weight matrix is used for all adjectives, which fails to capture the intuition that
adjectives can modify nouns in very different ways (again, compare white to alleged).

Baroni and Zamparelli (2010) go one step further, taking the classic Fregean view of composition
as function application, where certain words act as functions that take other words as input to return the
semantic representation of the phrase they compose. Given that matrices encode linear functions, their
lexical function model treats composition as the product of a matrix U representing the word acting as
the functor and a vector v representing the argument word (essentially the same idea is put forth also by
Coecke et al., 2010):

p = Uv

In our case, adjectives are functors and nouns arguments. Each adjective is represented by a separate
matrix, thus allowing maximum flexibility in the way in which adjectives produce phrases, with the goal
of capturing relevant adjectival modification phenomena beyond union and intersection.

As mentioned in the Introduction, “matrix-based” models such as the full additive and lexical func-
tion models are more similar to higher-order modification in formal semantics than feature combination
models are. Thus, we expected them to perform better in modeling intensional modification, while it
could be the case that for non-intensional modification feature combination models work just as well. As
will be shown in Section 4, what we find is that the matrix-based model perform best across the board,
and that no model finds intensional modification more difficult.

1Nearest neighbors are the semantic space elements having the highest cosines with the phrase of interest. These can be any
of the 42K elements presented in Section 3.3: adjectives, nouns, or AN phrases.



3 Experimental setup

3.1 Semantic space

A distributional semantic space is a matrix whose rows represent target elements in terms of (functions
of) their patterns of co-occurrence with contexts (columns or dimensions). Several parameters must be
manually fixed or tuned to instantiate the space.

Our source corpus is given by the concatenation of the ukWaC corpus, a mid-2009 dump of the
English Wikipedia and the British National Corpus,2 for a total of about 2.8 billion tokens. The corpora
have been dependency-parsed with the MALT parser (Hall, 2006), so it is straightforward to extract all
cases of adjective-noun modification. We use part-of-speech-aware lemmas as our representations both
for target elements and dimensions. (e.g., we distinguish between noun and verb forms of can).

The target elements in our semantic space are the 4K most frequent adjectives, the 8K most frequent
nouns, and approximately 30K AN phrases. The phrases were composed only of adjectives and nouns in
the semantic space, and were chosen as follows: a) all the phrases for the dataset that we evaluate on (see
Section 3.3 below), and b) the top 10K most frequent phrases, excluding the 1,000 most frequent ones
to avoid highly collocational / non-compositional phrases. The phrases were used for training purposes,
and also entered in the computation of the nearest neighbors.

The dimensions of our semantic space are the top 10K most frequent content words in the corpus
(nouns, adjectives, verbs and adverbs). We use a bag-of-words representation: Each target word or
phrase is represented in terms of its co-occurrences with content words within the same sentence. Note
that this also applies to the AN phrases: We build vectors for phrases in the same way we do for adjectives
and nouns, by collecting co-occurrence counts with the dimensions of the space (Baroni and Zamparelli,
2010; Guevara, 2010). This way, we have the same type of representation for, say, hard, rock, and hard
rock. We will call the vectors directly extracted from the corpus (as opposed to derived compositionally)
observed vectors.

We optimized the remaining parameters of our semantic space construction on the independent task
of maximizing correlation with human semantic relatedness ratings on the MEN benchmark3 (see the
references on distributional semantics at the beginning of Section 2 above for an explanation of the pa-
rameters). We found that the best model on this task was one where all dimensions where used (as
opposed to removing the 50 or 300 most frequent dimensions), the co-occurrence matrix was weighted
by Pointwise Mutual Information (as opposed to: no weighting, logarithm transform, Local Mutual In-
formation), dimensionality reduction was performed by Nonnegative Matrix Factorization4 (as opposed
to: no reduction, Singular Value Decomposition), and the dimensionality of the reduced space was 350
(among values from 50 to 350 in steps of 50). The best performing model achieved very high 0.78
(Pearson) and 0.76 (Spearman) correlation scores with the MEN dataset, suggesting that we are using a
high-quality semantic space.

3.2 Parameters of composition models

Except for the multiplication method, all composition models have parameters to be tuned. Following
Guevara (2010) and Baroni and Zamparelli (2010), we optimize the parameters of the models by mini-
mizing (with standard least squares regression methods) the average distance of compositionally derived
vectors representing a phrase to the corresponding observed vectors extracted from the corpus (e.g., min-
imize the distance between the hard rock vector constructed by a model and the corresponding hard rock
vector directly extracted from the corpus). There is independent evidence that such observed phrase vec-
tors are semantically meaningful and provide a good optimization criterion. Baroni et al. (2013) report
an experiment in which subjects consistently prefer the nearest neighbors of observed phrase vectors

2http://wacky.sslmit.unibo.it/; http://en.wikipedia.org; http://www.natcorp.ox.ac.
uk/

3http://clic.cimec.unitn.it/˜elia.bruni/MEN
4Unlike the more commonly used Singular Value Decomposition method, Nonnegative Matrix Factorization produces re-

duced dimensions that have no negative values, and are not fully dense.



I alleged former future hypothetical impossible likely mere mock
N loose wide white naive severe hard intelligent ripe
I necessary past possible potential presumed probable putative theoretical
N modern black free safe vile nasty meagre stable

Table 1: Evaluated adjectives. Intensional (I) and non-intensional (N) adjectives are paired by frequency.

over challenging foils. Turney (2012) shows how the observed vectors outperform any compositionally-
derived model in a paraphrasing task. Grefenstette et al. (2013) reach state-of-the-art performance on
widely used sentence similarity test sets with composition functions optimized on the observed vectors
(see also Baroni et al., 2012; Baroni and Zamparelli, 2010; Boleda et al., 2012).

Since we use the same criterion to evaluate the quality of the models, we are careful to separate
training phrases from those used for evaluation (we introduce the test set in the next section). The
weighted additive, dilation and full-additive models require one single set of parameters for all adjectives,
and we thus use the top 10K most frequent phrases in our semantic space (excluding test items) for
training. For the lexical function model, we need to train a separate weight matrix for each adjective. We
do this by using as training data, for each adjective, all phrase vectors in our semantic space that contain
the adjective and are not in the test set. These range between 52 (ripe) and 1,789 (free). For weighted
additive, we find that the best weights are α = 0.48, β = 0.61, giving only marginally more weight to
the noun. For dilation, λ = 1.69.

3.3 Evaluation set

We evaluate the models on a set of 16 intensional adjectives and a set of 16 non-intensional adjectives,
paired according to frequency (see Table 1). The intensional adjectives were chosen starting from the
candidate list elaborated for Boleda et al. (2012), with two modifications. First, the frequency criteria
were altered, allowing the addition of seven more adjectives (e.g., alleged and putative). Second, we
removed adjectives that can be used predicatively with the same intensional interpretation despite having
been claimed to meet the entailment test for intensionality; this excludes, e.g., false (cp. This sentence
is false). Adjectives that have a non-intensional predicative use alongside a non-predicative intensional
one, e.g., possible (cp. The possible winner vs. ??The winner was possible, but Peace was possible) were
left in, despite the potential for introducing some noise. The non-intensional adjectives were chosen by
generating, for each intensional adjective, a list of the 20 adjectives closest in frequency and taking from
that list the closest match in frequency that was morphologically simple (excluding, e.g., unexpected or
photographic) and unambiguously an adjective (excluding, e.g., super and many).

We used all the AN phrases in the corpus with a frequency of at least 20 for all adjectives except the
underrepresented ones (nasty, mock, probable, hypothetical, impossible, naive, presumed, putative, vile,
meagre, ripe), for which we selected at most 200 phrases, taking phrases down to a frequency of 5 if
needed. For each adjective, we randomly sampled 50 phrases for testing (total: 1,600).5 The rest were
used for training, as described above. The results and analyses in sections 4 and 5 concern the test data
only.

4 Results

4.1 Overall results

Table 2 (first column) shows the results of the main evaluation: Average cosine of phrase vectors pro-
duced by composition models (henceforth, predicted vectors) with the corresponding observed vectors.
As a baseline (last row in the table), we take doing no composition at all, that is, taking as the predicted
vector simply the noun vector. This is a hard baseline: Since AN phrases in general denote a set closely
related to the noun, noun-phrase similarities are relatively high.

5The dataset is available from the first author’s webpage.



Model Global Intensional Non-intensional NN=A NN=N
observed - - - 8.2 3.3
lexical function 0.60±0.11 0.60±0.10 0.60±0.10 0.9 0.6
full additive 0.52±0.13 0.52±0.13 0.51±0.12 10.0 4.8
weighted additive 0.48±0.14 0.48±0.14 0.48±0.14 23.2 13.3
dilation 0.42±0.18 0.42±0.17 0.42±0.17 31.0 11.6
multiplicative 0.32±0.21 0.32±0.20 0.32±0.20 29.9 16.6
noun only 0.40±0.18 0.40±0.17 0.40±0.17 - -

Table 2: Predicted-to-observed vector cosines for each model (mean ± standard deviation), globally
and by adjective type. The last two columns show the average % of the 50 nearest neighbors that are
adjectives (NN=A) and nouns (NN=N), as opposed to AN phrases.

The global results show that the matrix-based models (lexical function and full additive) clearly
outperform the models based on a simple combination of the component vectors, and the lexical function
model ranks best, with a high cosine score of 0.6.6 It is also robust, as it exhibits the lowest standard
deviation (0.11). The models that are based on some form of weighted addition7 score in the middle,
above the baseline but clearly below matrix-based models. Contrary to Mitchell and Lapata’s results,
where often multiplicative is the best performing model, multiplication in our experiments performs
worst, and actually below the noun-only baseline. Moreover, the multiplicative model has the highest
standard deviation (0.21), so it is the least robust model. This matches informal qualitative analysis of
the nearest neighbors: The multiplicative model does very well on some phrases, and very poorly on
others. Given the aggressive feature intersection that multiplication performs (zeroing out dimensions
with no shared counts, inflating the values of shared dimensions), our results suggest that it is in general
better to perform a “smoothed” union as in weighted addition. We leave it to further work to compare
our results and task with Mitchell and Lapata’s.

The table (columns Intensional, Non-intensional) also shows that, contrary to expectation, no model
finds intensional modification more difficult, or indeed any difference between the two types of modifi-
cation: The mean predicted-to-observed cosines for the two types of phrases are the same. This holds
for both matrix-based and feature-combination-based models. For further discussion, see Section 5.

The last two columns of Table 2 show the average percentage of adjectives and nouns, respectively,
among the 50 nearest neighbors of the phrase vectors. Observed phrases have few such single word
neighbors (8.2% and 1.6% on average). We observe the same pattern as with the global evaluation:
Matrix-based models also have low proportions of single word neighbors, thus corresponding more
closely to the observed data,8 while the other models exhibit a relatively high proportion of such neigh-
bors. Single word neighbors are not always bad (e.g., the weighted additive model proposes dolphin for
white whale), but their high proportion suggests that feature combination models often produce more
general and therefore less related nearest neighbors. This was confirmed in a small qualitative analysis
of nearest neighbors for the weighted additive model.

To sum up, the superior results of matrix-based models across the board suggest that adjectival mod-
ification is not about switching features on and off, but rather about a more complex type of transforma-
tion. Indeed, our results suggest that this is so not only for intensional adjectives, which have traditionally
already been treated as higher-order predicates, but also for adjectives like white, hard, or ripe, whose
analysis has been more controversial. If this is so, then it is not so surprising that in general the models
do not find intensional adjectives any more difficult to model.

6Despite the large standard deviations, even the smallest difference between the models is highly significant, as is the
smallest difference in the table: dilation vs. baseline (noun only), paired t-test, t = 38.2, df = 1599, p < 2.2e-16, mean of
differences = 0.02.

7That dilation is essentially another way to estimate weighted addition, as discussed in section 2, is empirically confirmed
by the fact that the correlation between the predicted-to-observed cosines for weighted additive and dilation is 0.9.

8In fact, the lexical function model is a bit extreme, producing almost no adjective and noun nearest neighbors.



Indeed, once an adjective is composed with a noun, the result is something that is not merely the
sum of its parts. We associate with black voter something much more specific than merely a voter that
is black, for instance, in the US, strong connotations of likely political inclinations. In this respect, an
adjective does not just help to pick out a subset of the noun’s denotation; it enriches the description
contributed by the noun. This is in line with observations in the cognitive science literature on concept
combination, essentially a counterpart of semantic composition. Murphy (2002, 453-453) discusses the
case of dog magazine (with a noun modifier, but the same point holds for adjectives), arguing that its
meaning is not just magazine about dogs: People “can infer other properties of this concept. A dog mag-
azine probably is directed toward dog owners and breeders;. . . unlike many other magazines, it probably
does not contain holiday recipes, weight-loss plans. . . Importantly, these kinds of properties. . . are not
themselves properties of the concepts of dog or magazine but arise through the interaction of the two.”

4.2 Comparing the quality of predicted and observed vectors

We have used observed data for phrases both to train and tune our models and to evaluate the results. If
we can work with the observed data, what do we need composition for? Due to Zipf’s Law, there is only
a limited amount of phrases for which we can have enough data to build a meaningful representation.
Perfectly plausible modifiers of nouns may never be observed in actual corpora. Thus, we need a way to
combine semantic representations for words, and this is partly what drives the research on composition in
distributional semantics. It is natural to hypothesize that, for rare phrases, predicted vectors will actually
be more useful than observed vectors. We carried out a pilot study that supports this hypothesis.

A native speaker of English and linguist evaluated the quality of the nearest neighbors of frequent
versus (relatively) rare phrases, comparing the lexical function model and the observed data. As frequent
phrases, we took the top 100 most frequent phrases in the semantic space. As rare phrases, the 95 phrases
with corpus frequency 20-21. The task of the judge was to choose, for a given target phrase, which of two
randomly ordered nearest neighbors was more semantically related to it (we found, in earlier studies, that
this type of choice is easier than assigning absolute scores to separate items). For instance, the judge had
to choose whether modern study or general introduction was a semantically closer neighbor to modern
textbook. The items were two nearest neighbors with the same rank, where the rank was randomly
picked from 2-10 (the top nearest neighbor was excluded because it is trivially always the target phrase
for observed vectors). The judge obviously did not know which model generated which nearest neighbor.

The results indicate that observed vectors yield better nearest neighbors for frequent phrases, as
they were chosen 60% of the times (but note that the lexical function also fared well, since its nearest
neighbors were preferred in 40% of the cases). However, for rare phrases we find the inverse pattern: The
lexical function neighbor is preferred in 59% of the cases. For instance, the lexical function produces
nasty cold for nasty cough, which was preferred to the observed nearest neighbor medical attention. This
suggests that the composed vectors offer a better representation of rare phrases, and in tasks that depend
on such phrases, they should yield better results than the observed ones.

5 Analysis

As mentioned in the Introduction, in Boleda et al. (2012) we found differences between intensional
adjectives and color adjectives. We attributed these differences to the type of modification, intensional
or not. We failed to to replicate these results here, with a wider range of adjectives.

Figure 5 shows the cosine distribution of the measures used in our previous work (compare to Fig-
ure 1 in Boleda et al., 2012), namely the cosines between the observed vectors for adjectives, nouns, and
the corresponding phrase vectors for each AN phrase.9 The figure shows that, contrary to expectation

9Each boxplot represents the distribution of cosine values across the relevant vector pair comparisons. The horizontal
lines in the rectangles mark the first quartile, median, and third quartile, respectively. Larger rectangles correspond to a more
widely spread distribution, and their (a)symmetry mirrors the (a)symmetry of the distribution. The lines above and below each
rectangle stretch to the minimum and maximum values, at most 1.5 times the length of the rectangle. Values outside this range
(outliers) are represented as points.
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Figure 1: Distribution of cosines for observed vectors, by adjective type (intensional, I, or non-
intensional, N). From left to right, adjective vs. noun, adjective vs. phrase, and noun vs. phrase cosines.

Monosemous Polysemous
I alleged accomplice, former surname, mock charge, putative point, past range

necessary competence
N modern aircraft, severe hypertension, nasty review, ripe shock, meagre part

wide disparity
Typical Nontypical

I former mayor, likely threat, alleged killer former retreat, likely base, alleged fact
N severe pain, free download, wide perspective severe budget, free attention, wide detail

Table 3: Examples of adjective-noun phrases for the two factors analyzed (polysemy of the head noun,
typicality of the attribute) by adjective type: I(ntensional), N(on-intensional). See text for details.

and the previous results, in the observed data there is absolutely no difference in these measures between
intensional and non-intensional modification: The distributions overlap completely. In a preliminary
study, we paired phrases on the basis of the noun (e.g. former bassist-male bassist) instead of on the
basis of the adjective as in the present experiments. With that design, too, we obtained no difference
between the two types of phrases. We therefore take this to be a robust negative result, which suggests
that the differences observed in our previous work were due to our having chosen a very narrow set of
adjectives (color terms) for comparison to the intensional adjectives.

This result is surprising insofar as intensional and non-intensional adjectives have often been assumed
to denote very different types of properties. One possibility is that the tools we are using are not the
right ones: Perhaps using bags-of-words as the dimensions cannot capture the differences, or perhaps
these differences are not apparent in the cosines between phrase and adjective/noun vectors. However,
these results may also mean that all kinds of adjectival modification share properties that have gone
unappreciated.

If the type of modification does not explain the differences in the observed data, what does? An
analysis reveals two relevant factors. The first one is the polysemy of the head noun. We find that, the
more polysemous a noun is, the less similar its vector is to the corresponding phrase vector. It is plausible
that modifying a noun has a larger impact when the noun is polysemous, as the adjective narrows down
the meaning of the noun; indeed, adjectives have been independently shown to be powerful word sense
disambiguators of nouns (Justeson and Katz, 1995). In distributional terms, the adjective notably “shifts”
the vector of polysemous nouns, but for monosemous nouns there is just not much shifting room.

This is reasonable but unsurprising; what is more worthy of attention is that this effect is invariant
to adjective type. Both non-intensional and intensional adjectives have meaning modulating power, as



shown in Table 3. For example, ripe selects for the sense of shock that has to do with a pile of sheaves
of grain or corn. Similarly, past is incompatible with physical senses of range such as that referring to
mountains or a cooking appliance.

The second effect that we find is that, the more typical the attribute described by an adjective is for
the sort of thing the noun denotes, the closer the phrase vector is to both its adjective and its noun vector
components. This can be explained along similar lines as the first factor: A ripe raspberry is probably
more like other raspberries than, say, a humongous raspberry is. Similarly, a ripe raspberry is more like
most other ripe things than a ripe condition is. Therefore, the effect of the adjective on the noun is larger
if it does not describe a typical attribute of whatever the noun describes. The difference is mirrored in the
contexts in which the phrases appear, which leads to larger differences in their vector representations.10

Interestingly, we find that typicality is also invariant across adjective type, as the examples in Table 3
show. Intensional adjectives do seem to describe typical attributes of some nouns. For example, nouns
like mayor arguably have a temporal component to their semantics (see, e.g., Musan, 1995), the meaning
of threat involves future intention and it is thus inherently modal, and it is culturally highly relevant
whether a description like killer holds of a particular individual or not. Note also that typicality is not a
matter of the specific adjective, but of the combination of the adjective and the noun, as illustrated by the
fact that the same adjectives appear in both columns of the table: Wide arguably corresponds to a typical
attribute of perspectives, but not of details.

The interpretation just presented is supported by a statistical analysis of the data. We estimated
polysemy using the number of synsets in which a given noun appears in WordNet,11 and typicality using
an association measure, Local Mutual Information (Evert, 2005).12 When fitting a mixed-effects model
to the observed data with adjective as random effect, we find that intensionality plays no significant
role in predicting the cosines between observed vectors (neither adjective vs. phrase nor noun vs. phrase
cosines). Polysemy has a strong negative effect on noun vs. phrase cosines (and no effect on adjective vs.
phrase cosines). Typicality has a strong positive effect on both adjective-phrase and noun-phrase cosines.
We also find that these factors (but not intensionality) play a role in the difficulty of modeling a given AN
phrase, since they are also highly significant (in the same directions) in predicting observed-to-predicted
cosines for the lexical function model.

To sum up, in this section we have shown that there are semantic effects that are potentially relevant
to adjectival modification and cut across the intensionality range, and that distributional representations
of words and phrases capture such semantic effects. Thus, the analysis also provides support for the use
of distributional representations for phrases.

6 Conclusion

In this paper we have tackled the computational modeling of adjective-noun composition. We have
shown that adjective modification can be successfully modeled with distributional semantics, both in
terms of approximating the actual distribution of phrases in corpora and in terms of the quality of the
nearest neighbors they produce. We have also shown that composition models inspired in higher-order
predication fare better than those that essentially intersect or combine features. Finally, contrary to what
the theoretical linguistics literature might lead one to expect, we did not find a difference between inten-
sional and non-intensional modifers in the distributional representation of phrases, nor did we find that
composition functions have a harder time with intensional modification. Together, these results suggest
that adjective-noun composition rarely corresponds to a simple combination of attributes of the noun and

10A similar explanation is provided in Boleda et al. (2012) to explain the difference between intersective and subsective uses
of color terms. Here we generalize it.

11http://wordnet.princeton.edu/
12An association measure is not all there is to typicality; for instance, multi-word expressions like black hole will score

high on LMI despite black not describing a typical attribute of holes. However, we find it a reasonable approximation because
typical attributes can be expected to score higher than nontypical ones, an expectation that receives support from qualitative
exploration of the data. We leave it to future work to identify alternative sources of information about typicality, such as the
WordNet-based adjectival attributes in Hartung and Frank (2011).



the modifier (in line with research in cognitive science), but rather that adjectives denote functions that
operate on nouns to yield something that is more than the sum of its parts. Thus, at least when used as
modifiers, they denote properties of properties, rather than properties of entities.

The results of our study also indicate that intensional adjectives share a significant number of proper-
ties with non-intensional adjectives. We are of course not claiming that there are no differences between
the two: For instance, there are clearly relevant semantic differences that are mirrored in the syntax.
Rather, we claim that the almost exclusive focus on entailment relations in the formal semantic tradi-
tion has obscured factors that are potentially relevant, and that cut across the intensionality parameter.
These are related to graded phenomena such as the polysemy of the head noun or the typicality of the
attribute contributed by the adjective. We hope that our results promote closer scrutiny of these factors by
theoretical semanticists, and ultimately a more complete understanding of the semantics of modification.
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Abstract

In this paper, we propose a computational model that accounts for the effects of negation and
modality on opinion expressions. Based on linguistic experiments informed by native speakers, we
distil these effects according to the type of modality and negation. The model relies on a parabolic
representation where an opinion expression is represented as a point on a parabola. Negation is
modelled as functions over this parabola whereas modality through a family of parabolas of different
slopes; each slope corresponds to a different certainty degree. The model is evaluated using two
experiments, one involving direct strength judgements on a 7-point scale and the other relying on a
sentiment annotated corpus. The empirical evaluation of our model shows that it matches the way
humans handle negation and modality in opinionated sentences.

1 Introduction

Sentiment composition is the process of computing the sentiment orientation of an expression or a sen-
tence (in terms of polarity and / or strength) on the basis of the sentiment orientation of its constituents.
This process, similar to the principle of compositionality (Dowty et al., 1989), aims to capture how
opinion expressions interact with each other and with specific linguistic operators such as intensifiers,
negations or modalities. For instance, the sentiment expressed in the sentence This restaurant is good
but expensive is a combination of the prior sentiment orientation of the words restaurant, good, but and
expensive. Similarly, in My wife confirms that this restaurant is not good enough, sentiment composition
has to deal with the verb confirm, the adjective good and the adverbs not and enough.

Several computational models were proposed to account for sentiment composition. (Moilanen and
Pulman, 2007) use a syntactic tree representation where nodes are associated to a set of specific hand-
made composition rules that treat both negation and intensifier via three models: sentiment propagation,
polarity conflict resolution and polarity reversal. (Shaikh et al., 2007) use verb frames representation for
sentence-level classification and show that their compositional model outperfoms a non-compositional
rule-based system. (Yessenalina and Cardie, 2011) represent each word as a matrix and combine words
using iterated matrix multiplication, which allows for modelling both additive (for negations) and multi-
plicative (for intensifiers) semantic effects. This matrix-space model is learned in order to assign ordinal
sentiment scores to sentiment-bearing phrases. (Socher et al., 2011) model sentences in a vectorial rep-
resentation and propose an approach based on semi-supervised recursive autoencoders in order to predict
sentence-level sentiment distributions. (Wu et al., 2011) propose a graph-based method for computing
a sentence-level sentiment representation. The vertices of the graph are the opinion targets, opinion
expressions and modifiers of opinion and the edges represent relations among them (mainly, opinion
restriction and opinion expansion). Finally (Socher et al., 2012) propose a matrix-vector representations
with a recursive neural network. The model is build on a parse tree where the nodes are associated to



a vector. The matrix captures how each constituent modifies its neighbour. The model was applied to
predict fine-grained sentiment distributions of adverb-adjective pairs.

Based on linguistic experiments informed by native speakers (Benamara et al., 2012), we propose a
sentiment composition model based on a parabolic representation where an opinion expression is rep-
resented as a point on a parabola. Our model is designed to handle the interactions between opinion
expressions and specific linguistic operators at the sub-sentential level. This paper focus particularly on
modality and negation but our model can be used to treat intensifier as well. Within the model, negation
are modelled as functions over this parabola whereas modality through a family of parabolas of different
slopes; each slope corresponds to a different certainty degree. The model is applied for French but it can
be easily instantiated for other languages like English. Its empirical evaluation shows that it has good
agreement with the way humans handle negation and modality in opinionated sentences. Our approach
is novel:

• it takes into account both negation and modality in a uniform framework. In our knowledge, our
approach is the first study dealing with the semantic of modality for sentiment analysis,

• it distills the effect of these linguistic phenomena on opinion expressions depending on different
types of negation and modality. We distinguish between three types of negation (Godard, 2013):
negative operators, such as “not”, “without”, negative quantifiers, such as “ever”, “nobody” and
lexical negations, such as “absence” and between three types of modality (Larreya, 2004) (Portner,
2009): bouletic, such as “hope”, “wish”, epistemic such as “definitely”, “probably” and deontic,
such as “must”. (Benamara et al., 2012) empirically show that each type of negation and modality
has a specific effect on the opinion expression in its scope: both on the polarity and the strength
for negation and on the strength and/or the certainty degree for modality. These empirical results
provide a basis for our computational model.

• it provides a lexicon independent representation of extra-propositional aspects of meaning.

The paper is organized as follow. We first give an overview of how existing sentiment analysis
systems deal with negation and modality. We then give in section 3 the linguistic motivations behind our
approach. The parabolic model and its evaluation are respectively described in section 4 and section 5.

2 Related Works

The computational treatment of negation and modality has recently become an emerging research area.
These complex linguistic phenomena have been shown to be relevant in several NLP applications such
as sentiment analysis (Wiegand et al., 2010), information retrieval (Jia and Meng, 2009), recognizing
contrasts and contradictions (de Marneffe and Manning, 2008) and biomedical text processing (Szarvas,
2008). Due to the emergence of this field, several workshops and conferences have been organized
such as the Negation and Speculation in Natural Language Processing (NeSp-NLP 2010) workshop,
the Extra-Propositional Aspects of Meaning in Computational Linguistics (ExPRom 2012) workshop,
and the publication of a special issue of the journal Computational Linguistics. A number of resources
annotated with factuality information are also available. Among them, we can cite the BioScope corpus
(Vincze et al., 2008) and FactBank (Saurı́ and Pustejovsky, 2009).

In sentiment analysis, the presence of modalities is generally used as a feature in a supervised learning
setting for sentence-level opinion classification (Kobayakawa et al., 2009). However, to our knowledge,
no work has investigated how modality impacts on opinions. There are two ways of treating negation
when computing the contextual polarity an opinion expression at the sentense-level: (a) polarity reversal
(Polanyi and Zaenen, 2006; Moilanen and Pulman, 2007; Choi and Cardie, 2008) that flips the prior
polarity of the expression to its opposite value. For instance, if the score of the adjective “excellent” is
+3, then the opinion in “this student is not excellent” is -3 ; (b) polarity shift (Taboada et al., 2011) that
assumes that negation affects both the polarity and the strength. For instance, the opinion in “this student
is not excellent” cannot be -3 ; it rather means that the student is not good enough. Two main types of



negation were taken into account in these models: negators such as “not” and / or content word negators
(Choi and Cardie, 2008) that can be positive polarity shifters (like abate) or negative polarity shifters
(like lack). Few studies take into account other types of negation. (Taboada et al., 2011) treat negative
polarity items (NPIs) (as well as modalities) as “irrealis blockers” by ignoring the semantic orientation
of the word under their scope. For example, the opinion word “good” will just be ignored in “any good
movie in this theater”. We think that ignoring NPIs is not suitable and a more accurate analysis is needed.
In addition, no work has investigated the effect of multiple negatives on opinions.

All the previous studies have focused on English. In French, as far as we know, main existing research
in sentiment analysis treat negation as polarity reversal and do not take into account modality (Vernier
et al., 2007). Thus, there is little existing work for us to compare ourselves to.

3 Linguistic motivations

Our analysis of negation is based on the lexical-syntactic classification of (Godard, 2013) as part of the
“Grande Grammaire du Français” project (Abeillé and Godard, 2010). We distinguish between four
types of negation in French1.

• Negative operators, denoted by NEG: they are the adverbs “pas” (“not”), “plus” (“no more”),
“non” (“no one”), the preposition “sans” (“without”) and the conjunction “ni” (“neither”). These
operators always appear alone in the sentence and they cannot be combined with each other. The
semantic of negative operators are similar to the negation used in logic since they can be para-
phrased by ”it is not true”.

• Negative quantifiers, denoted by NEG quant, express both a negation and a quantification. They
are, for example, the nouns and pronouns “aucun” (“none”), “nul” (“no”), “personne” (“no-
body”), “rien” (“nothing”), or the adverbs “jamais” (“never”) and “aucunement”/“nullement” (“in
no way”)2. Neg quant have three main properties: (i) they can occur in positive sentences (that
is not negated), particularly in interrogatives, when they are employed as indefinite (as in Jean
travaille toute la semaine mais jamais le dimanche (Jean works all the week but never on Sun-
day) or when they appear after the relative pronoun “que” (“that”) (as in Il a réussi sans qu’il ait
jamais fait d’efforts (He was successful without doing any efforts), (ii) in negative contexts, they
are always associated to the adverb “ne” (“not”) and (iii) they can be combined with each other as
well as with negative operators. Here are some examples of this type of negation extracted form
our corpus of French movie reviews: “on ne s’ennuie jamais” (“you will never be bored”), “je ne
recommande cette série à personne” (“I do recommend this movie to nobody”)

• Lexical negations denoted by NEG lex which are implicit negative words, such as “manque de”
(“lack of”), “absence de”(“absence of”), “carence” (“deficiency”), “manquer de” (“to lack”), “
dénué de” (“deprived of”). NEG lex can be combined with each other as well as with the two
previous types of negation.

• Multiple negatives. In some languages, double negatives cancel the effect of negation, while in
negative-concord languages like French, double negations usually intensify the effect of nega-
tion3. In French, multiple negatives that preserve negation concern two cases: the combinations
composed of negative quantifiers and the combination of a negative quantifier and a negative oper-
ator. Note that the combination of a lexical negation with a lexical quantifier or a lexical negation
with a negative operator cancel the effect of NEG lex. Here is an example of a positive opinion

1This classification does not cover words such as few or only, since we consider them as weak intensifiers (strength dimin-
ishers) rather than negations.

2In this paper, all examples are in French along with their direct translation in English. Note however that there are substan-
tial semantic differences between the two languages.

3In French, there are at most three negative words in a multiple negative. However, this case is relatively rare in opinion text
and we only deal with two negatives



extracted from our corpus of French movie reviews: Cette série télé n’a jamais manqué de me
surprendre (This TV series never fails to amaze me) where we have two negatives: the negative
quantifier jamais (never) and the lexical negation manqué (fail).

Drawing partly on (Portner, 2009) and on (Larreya, 2004) for French, we have chosen to split modal-
ity in three categories:

• Bouletic, denoted by Mod B. It indicates the speaker’s desires/wishes. This type of modality is
expressed via a closed set of verbs denoting hope e.g. “I wish he were kind”.

• Epistemic, denoted by Mod E. It indicates the speaker’s belief in the propositional content he
asserts. They are expressed via adverbs expressing doubt, possibility or necessity such as “per-
haps”, “definitely”, “certainly”, etc., and via the French verbs “devoir” (“have to”), “falloir” (“need
to/must”) and “pouvoir” (“may/can”), e.g. “The movie might be good”,

• Deontic, denoted by Mod D. It indicates a possibility or an obligation (with their contrapositives,
impossibility and permission, respectively). They are only expressed via the same modal verbs as
for epistemic modality, but with a deontic reading, e.g., “You must go see the movie”.

(Benamara et al., 2012) consider that effect of each modal category on opinion expression is on their
strength – for instance, the strength of the recommendation “You must go see the movie, it’s a blast”
is greater than for “Go see the movie, it’s a blast”, and certainty degree – for instance, “This movie
is definitely good” has a greater certainty than “This movie is good”. The certainty degree has three
possible values, in line with standard literature (Saurı́ and Pustejovsky, 2009): possible, probable and
certain. However, as in (Benamara et al., 2012), we consider that, in an opinion analysis context, the
frontier between the first two values is rather vague, hence we conflate them into a value that we denote
by uncertain. We thus obtain two certainty degrees, from which we build a three-level scale, by inserting
between these values a “default” certainty degree for all expressions which are not modalities or in the
scope of a modality.

(Benamara et al., 2012) structure the effects of each negation type as a set of hypotheses PolNeg,
StrNeg, QuantNeg, LexNeg and MultiNeg that have been empirically validated by volunteer native French
speakers through two protocols: one for PolNeg and StrNeg, with 81 subjects and one for the three other
hypotheses with 96 subjects. Similarly, the effects of modality are structured as a set of six hypotheses
that have been empirically validated via a set of three evaluation protocols. Respectively 78, 111 and
78 subjects participated in these studies. The table 1 gives an overview of our set of hypotheses, as
well as the results (as the average agreement and disagreement between the subjects’ answers and the
hypotheses). Regarding these results, only valid hypotheses (i.e that obtain more that 50% agreement)
are plugged in our parabolic model. We leave lexical negations for future work since their effect is
closely related to the semantic of the word used to express negation.

4 Parabolic Model

Let T be an explicitly subjective phrase that contains one opinion expression exp about one topic. exp
can be an adjective, a noun or a verb, and can be modified by a set of linguistic operators (e.g., intensifier,
negation, modality) that we denote by OPi for i = 1 . . . n. Their cumulative effect on exp is represented
by the nesting OP1(OP2...(OPn((exp))), where the order of operators reflects their scope over exp.
Here are some examples of T , along with their corresponding semantic representations, operators are in
bold font:

(1) Cet étudiant est brillant (this student is brilliant), T = brilliant

(2) Cet étudiant n’est pas brillant (this student is not brilliant), T = NEG(brilliant)

(3) Personne n’est brillant (nobody is brilliant), T = NEG quant(brilliant)



Hypothesis Description Results
PolNeg The negation always reverses the polarity of an opinion expression. Exp. exceptionnel (exceptional) and

pas exceptionnel (not exceptional).
90.7 %

StrNeg The strength of an opinion expression in the scope of a negation is not stronger than of the opinion expres-
sion alone.

100 %

QuantNeg The strength of an expression when in the scope of a NEG quant is greater than when in the scope of a
NEG. Exp. jamais exceptionnel (never exceptional) is stronger than pas exceptionnel (not exceptional).

67 %

LexNeg NEG lex has the same effect as NEG. Exp. lack of taste and no taste 43 %
MultiNeg The strength of an expression when in the scope of multiple negatives is greater than when in the scope of

each negation alone. Exp. plus jamais bon (no longer ever good) is stronger than plus bon (no longer good)
64 %

BoulMod Mod B alters the certainty degree of opinion expressions in their scope and is weaker than the certainty
degree of the opinion expression itself. Exp. I hope this movie is funny there is less certainty than in This
movie is funny

86.5 %

EpisMod1 Mod E alters the certainty degree of opinion expressions in their scope. For adverbial Mod E, this degree is
altered according to the certainty of the respective adverb: if the latter is uncertain, then the certainty of the
opinion in the scope of the adverb is reduced; otherwise, the certainty is augmented

72 %

EpisMod2 The certainty of opinion expressions in the scope of a verbal Mod E is always lower than when not in the
scope of such a modality and varies according to the certainty of the respective verb, from pouvoir – lowest
certainty, as in “the film might be good”, to devoir and falloir – greater certainty, as in “the film must be
good”.

79 %

EpisMod3 The certainty degrees of opinion expressions in the scope of epistemic devoir and falloir are the same. 57 %
DeonMod1 Mod D alters the strength of opinion expressions in their scope. Hence, strength varies according to the

verb: pouvoir reduces the strength of the opinion, whereas devoir and falloir boost it.
54 %

DeonMod2 The strengths of opinion expressions in the scope of deontic devoir and falloir are the same. 60 %

Table 1: An overview of our set of hypotheses and their associated results

(4) Cet étudiant n’apportera jamais rien de bon (This student will never bring anything good), T =
NEG quant(NEG quant(bon))

(5) Cet étudiant n’est definitivement pas brillant (this student is definitely not brilliant), T =
Mod E(NEG(brilliant))

We assume that exp is characterized by a prior score s = pol · str encoded in a lexicon, where
pol ∈ {−1, + 1} is the polarity of exp and str ∈ (0, MAX] is its strength. For example, if we have a
three-value scale to encode opinion strength, we can put s(brilliant) = +3. The key question is: how
can we compute the contextual score of exp ? i.e what is the value of s(T ) ? Knowing contextual score
of opinion expressions at the sub-sentential level is a necessary step in a sentiment analysis system since
the s(T ) scores have to be aggregated in order to determine the overall polarity orientation and/or the
overall rating at the document level.

To compute the contextual polarity of exp, we propose a parabolic model where an opinion expres-
sion exp is represented by a point E of the parabola of focus F and summit O, such that E 6= O4. This
parabola belongs to a family of three parabolas of the same focus and different slopes. The slopes cor-
respond to certainty degrees. By convention, we set a reference value p0 for “default” certainty degrees,
p1 > p0 for “certain” and p2 < p0 for “uncertain”. The certainty degree of exp being “default”, we place
it on the parabola of slope p0. The polarity and strength of exp on this parabola are then characterized
by the angle θ between the lines EF and OF (see Figure 1).

Our model is parametrises by pol, str and MAX . Hence, θ is obtained as a mapping φ : {pol} ×
{str} → (0;π), such that: φ = ϕ2 ◦ ϕ1 where ϕ1 : {str} → (0; 1) and ϕ2 : {pol} × (0; 1) → (0;π).
To compute ϕ1, we rely on a “pivot” word exp0, such that when in the scope of a negative operator
(see Section 3), its polarity is reversed, while its strength, denoted by str0, is preserved. This generally
corresponds to words with relatively weak strengths like “good” or “bad” in English. We set ϕ1(str0) to
1
2 . This parameter is set to this value in order to be consistent with our elementary operation for negation
operators Σneg (cf. description below). Then, for any expression exp, its new strength is computed as
follows:

4E cannot be on the summit of the parabola, since this would correspond to a non-opinionated expression, and our model
does not apply to such expressions.



Figure 1: Parabolic model, with negation and modality.

ϕ1(str) =

{ str
str0
· 12 , if str ≤ str0

1
2 + ( str−str0

MAX+1−str0 ·
1
2 ) , else

Then, we determine the angle corresponding to exp from its polarity and new strength as follows:

θ ≡ ϕ2(pol;ϕ1(str)) = pol · ϕ1(str) · π

The table 2 below shows normalized values in case of a three-points discrete strength such that the “pivot”
word good is associated to the score +1:

Opinion score s Normalized angular score θ Example
+1 π/2 good
+2 2π/3 brilliant
+3 5π/6 excellent
−1 −π/2 bad
−2 −2π/3 disgusting
−3 −5π/6 outrageous

Table 2: Normalization on a 3-points scale

The next step is to compute the score of T , given that T contains one single phrase of the type
OP1(OP2...(OPn((exp))). Negations and modalities are modeled as functions Σ over the angle θ and
the slope p of the parabola where the expressions are placed: Σ : (θin; pin) 7→ (θout; pout). Σ is
customized with respect to the operator type: we have both “primitive” and “composition” functions.
We have four “primitive” functions:

• Σneg for negative operators NEG. It consists in adding/subtracting π to/from θ, which ensures that
negating of a high-strength opinion expression yields a low-strength one, which is in line with
observed behaviour in Hypotheses PolNeg and StrNeg (cf. table 1):

θout =

{
θout = θin + π , if θin < 0
θout = θin − π , if θin > 0

; pout = pin

Table 3 shows how this formula can be applied in case of a three-points strength scale for positive
values. As expected, “not good” has a stronger score than “not excellent”.

• Σint for intensity modifiers, i.e. deontic modalities (MOD D) or intensity adverbs. This operation
consists in an angle adjustment: it can either increase or decrease the value of θ. We denote these
effects by the two sub-functions Σint+ and Σint−, respectively:

Σint+(θ) =

{
2 · |θ|θ · |θ| , if |θ| ≤ π

3
|θ|
θ ·
(
π
2 + |θ|

2

)
, else;



θin Σneg(θin) Example
π/2 −π/2 good / not good
2π/3 −π/3 brilliant / not brilliant
5π/6 −π/6 excellent / not excellent

Table 3: Negation primitive function on a 3-points scale

Σint−(θ) = π − Σneg(π − θ)

Table 4 shows an example of these functions in case of a three-points strength scale for positive
values.

θin Σint+(θin) Example Σint−(θin) Example
π/2 3π/4 definitely good π/4 possibly good
2π/3 5π/6 definitely brilliant π/3 possibly brilliant

Table 4: Modality primitive functions on a 3-points scale

• Σcert for modalities that alter the certainty degree of the expressions in their scope (epistemic
MOD E), according to Hypotheses BoulMod, EpisMod1 to EpisMod3. It consists in altering the
slope of the parabola, according to the certainty degree c of the modality:

θout = θin; pout =

{
2 , if c = “certain”
0.5 , if c = “uncertain”,

• Σcert0 for buletic modalities. This operation consists in cancelling the opinion by setting the
parameter p to 0.

We have two “composition” functions, Σneg quant and Σneg m, that account for negative quantifiers
and multiple negations, respectively. These functions adjust the output angle yielded by Σneg and φ ac-
cording to Hypotheses QuantNeg, DeonMod1, DeonMod2 and MultiNeg. These “composition” functions
are defined as follows.

Σneg quant : θout = Σint+(Σneg(θin; pin)), pout = pin.

Σneg m : θout = Σint+(Σint+(Σneg(θin; pin))); pout = pin.

Table 5 illustrates these functions.

θin Σneg quant(θin) Example Σneg m(θin) Example
π/2 −3π/4 good / never good −7π/8 good / no longer ever good
2π/3 −2π/3 brilliant / never brilliant −5π/6 brilliant / no longer ever brilliant

Table 5: Composition functions on a 3-points scale

5 Empirical validation

In order to validate empirically our model, we conducted two complementary evaluations. The first one
relies on a set of linguistic protocols that aims at evaluating at what extent our model matches the way
humans handle negation and modality in opinionated sentences. The second one relies on manually
annotated review product corpus and aims at comparing the score that annotators give to elementary dis-
course segments to the score computed by our model. In both evaluation settings, we compare our model
with some baselines and with the (Taboada et al., 2011)’s system which is the state-of-the art model that
is the most closer to our. Indeed, (Taboada et al., 2011)’s model shifts the score of an expression to the



opposite polarity by a fixed amount. Thus a +2 adjective is negated to a −2, but the negation of a −3
adjective (for instance, sleazy) is only slightly positive.

5.1 Assessing the parabolic model via linguistic protocols

We designed three protocols: P NegOp1 and P NegOp2 to assess our model with respect to negative
operators and one protocol, namely P NegQuantMulti, to evaluate our model with respect to negative
quantifiers and to multiple negatives. Since the function Σcert simply alters the slop of the parabola
following the already validated hypothesis BoulMod and EpisMod1 to EpisMod3 (cf. Table 1), we do
not give its evaluation here (see (Benamara et al., 2012) for more details).

In our framework, the strength of the opinion is discretized on a three-level scale, going from 1
(minimal strength) to 3 (maximal strength). Several types of scales have been used in sentiment anal-
ysis research, going from continuous scales to discrete ones. Since our negation hypotheses have to be
evaluated against human subjects, the chosen length of the scale has to ensure a trade-off between a fine-
grained categorisation of subjective words and the reliability of this categorisation with respect to human
jugments. We thus use in our framework a discrete 7-point scale, going from −3 (which corresponds
to “extremely negative” opinions) to +3 (for “extremely positive” ones) to quantify the strenght of an
opinion expression. Note that 0 corresponds to cases where in the absence of any context, the opinion
expression can be neither positive nor negative.

5.1.1 The experimental setup

The first protocol P NegOp1 was already used for evaluating Hypothesis PolNeg. It is needed to check
whether the scores yielded by the parabolic model match those elicited from human subjects. A set of six
questions are shown to subjects. In each question, an opinionated sentence is presented, along with its
negation using negative operators, as in “This student is brilliant” and “This student is not brilliant”. The
strengths of the opinions vary from one question to another on a discrete scale. A set of 81 native French
speakers were asked to indicate the strength of each sentence in a question on the same 7-point scale.
In the second protocol P NegOp2, the same subjects are given 6 couples of sentences with negative
operators, where we vary the strength of the opinion expression in the scope of the negation, while
keeping their polarity, e.g. “This student is not brilliant” and “This student is not exceptional”. We ask
them to compare, within each couple, the strengths of its members. A set of 96 native French speakers
participated in this study. P NegOp2 is needed in order to discriminate between our model and different,
baseline or state-of-the-art ones (see below), in case of equal performance according to the first protocol.
In the third and last protocol, named P NegQuantMulti, we give subjects a set of sentences where each
contains an opinion expression of a distinct strength. Each sentence is presented with three forms: one
with a negative operator, one with a negative quantifier and one with multiple negation. We then ask
subjects to rank each sentence on our 7-point scale. 96 volunteers participate in this protocol.

Given that negation alters only the polarity and strength of an expression (and hence its angle in
the model), we first perform a mapping between the angle obtained by applying Σneg, Σneg quant and
Σneg m, and the 7-point scale, used by human subjects. This mapping is based on the fact that, ϕ1 and
ϕ2 being bijections, their composition φ = ϕ2 ◦ ϕ1 is a bijection as well. Hence, the inverse mapping
φ−1 = ϕ−1

1 ◦ ϕ
−1
2 is also a bijective function. Thus, for any angle θ, we get a real-numbered score σθ in

[−3, 3], which is further discretized via the nearest integer function, yielding the integer bσθe on the 7-
point scale. The evaluation is performed in two steps: (i) verifying, via P NegOp1, and P NegQuantMulti
that, for a given expression, its bσθe corresponds to the score given by the subjects; (ii) verifying, via
P NegOp2, that, for a set of expressions, the ordering of their bσθes is identical to the ordering of the
scores given by subjects. The assessments are quantified as subjects-model agreements.

P NegOp1 and P NegOp2 aim, in addition, to assess our model, along with three other negation
models: (i) a “switch” model, which only changes the polarity of the prior score of an expression, while
keeping the strength unchanged; (ii) a “flat” model, where the strengths of expressions in the scope
of negations are either +1 for negative expressions or −1 for positive ones; (iii) “Tab et al.” model,



standing for (Taboada et al., 2011)’s model. In this model negation boils down to a±4 shift of the scores
of the opinion expressions on a scale of {−5,−4, . . . , 4, 5}; hence, polarity is not preserved (Hypothesis
PolNeg not validated). The assessment according to P NegOp1 allows us to indirectly compare these
three models to our model. To this end, we first need to perform a scale adjustment for prior scores in
(Taboada et al., 2011)’s model: first, our prior scores are linearly mapped to Taboada et al.’s scale, then
their model is applied and finally the results are re-mapped to our scale.

5.1.2 Results

In Table 6 we evaluate the subjects-model agreement measure of the four models. We thus assess their
ability to provide scores that reflect subjects’ intuition (protocol P NegOp1). In case of equal perfor-
mance according to this measure, the models are further assessed with respect to their ability to provide
the same score orderings as the subjects (protocol P NegOp2). Concerning the correspondence between
subject and model scores (P NegOp1), we observe that the “flat” and parabolic models perform best. The
“switch” and “Tab et al.” models reflect to a lesser extent subjects’ assessments. The “Tab et al.” model
exhibits lower performance figures because, unlike the “flat” and parabolic models, it does not systemati-
cally reverse polarity, whereas subjects do so. The parabolic and flat models show the same performance
because in both models negation boils down to assigning±1 strengths to negated expressions and, in fact,
discretizing the output of the parabolic model on the {−3, . . . 3} scale boils down to applying the same
formula as for the “flat” model. Hence, in order to further distinguish between the “flat” and parabolic
models, we performed the second evaluation, with respect to score orderings (P NegOp2). In this set-
ting, we remark that (Taboada et al., 2011)’s and our parabolic model perform best, which shows that the
“switch” and “flat” models fail to provide a score ranking in agreement with subjects’ intuitions. Our
model has the same performance as (Taboada et al., 2011)’s model because both are order-preserving
shifting models and hence yield the same score ordering for the negated expressions, starting from the
same prior score ordering for the expressions.

Model P NegOp1 P NegOp2
Switch 27.03 % 5.80 %
Flat 61.43 % 21.16 %
Tab et al. 47.77 % 73.04 %
Parabolic 61.43 % 73.04 %

Table 6: Empirical validation of the parabolic model

Finally, using P NegQuantMulti, the agreement between the parabolic model and subjects that are in
concordance with Hypothesis PolNeg is 85.96% for negative quantifiers and 78 % for multiple negatives.
Our results show that the adjustment function Σint+ perfoms well.

5.2 Assessing the parabolic model on manually annoted data

In order to validate our model as a whole, we conducted an experiment on manually annotated data.
The data consists in a set of 133 reviews on various subjects: films, TV series, books, and video games.
The annotation includes opinion information both at the expression level, with polarity and strength on
a three-point scale for opinion words, and with the operators associated to them, and at the discourse
segment level, with polarity and strength after application of the operators. While annotating, annotators
are not asked to determine the semantic category of negation and modality. For our evaluation, we first
automatically determine the type of each operator (i.e negative operator, negative quantifier, multiple
negative, epistemic modality, boulic modality as well as intensifiers where we distinguish between ad-
verbs that increase (vs. decrease) the opinion strength) using a dedicated lexicon. Then, we compare the
score of discourse segments with those given by annotators. The corpus used for the evaluation contains
393 segments. Table 7 shows the results obtained in terms of accuracy.

We observe that the three models obtain good results, especially in case of intensifiers. Indeed, this
kind of operation is usually well supported by each model. Concerning negation, switch model loses an



Model Accuracy
Switch 59.5 %
Tab et al. 64.7 %
Parabolic 68.8 %

Table 7: Empirical validation of the parabolic model

important part of discourse segments when dealing with high strength opinions; Tab et al. model per-
forms better on most negation, but loses some segments especially when high intensity opinion expres-
sion are concerned: Tab et al model doesn’t forecast a polarity switch, and we showed with hypothesis
PolNeg that this is not the best behaviour for French. On the contrary our model deals correctly with in
these cases. In addition, our model performs well on multiple negative and negative quantifiers, which
are not taken into account neither in the switch nor in the Tab et al. model. Finally, we also observe
that our results for modality are very good, with a F-measure of 88%. However, these results need to be
assessed on a larger corpus (we had few instances of epistemic and deontic modalities in our corpus).

6 Conclusion

In this paper, we propose a way to compute the opinion orientation at the sub-sentencial level using a
parabolic model. Our approach takes into account both negation and modality in a uniform framework
and distils the effect of these linguistic phenomena on opinion expressions depending on different types
of negation and modality. The empirical evaluation of our model shows that it has good agreement with
the way humans handle negation and modality in opinionated sentences. In further work, we plan to
study the effect of cumulative modalities, as in “you definitely must see this movie” and of co-occurring
negation and modality, as in you should not go see this movie, on opinion expressions. At the moment,
our model is based on the assumption that a subjective text span contains a single opinion expression.
This assumption is far from being verified. Hence, we plan to extend our parabolic model so that it can
compute the overall opinion of a text containing several opinion expressions. The focus of the family of
three parabolas can correspond to a couple (topic, holder), hence we have as many families of parabolas
as opinions expressed towards different topics and/or by different holders. Sentiment composition can
then be parametrized by the topic or the holder of the opinion. Finally, we plan to instantiate our model
in other languages in order to compare its prediction on standard datasets available in the literature.
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Abstract

The area of temporal information extraction has recently focused on temporal relation classifica-
tion. This task is about classifying the temporal relation (precedence, overlap, etc.) holding between
two given entities (events, dates or times) mentioned in a text. This interest has largely been driven
by the two recent TempEval competitions.

Even though logical constraints on the structure of possible sets of temporal relations are obvious,
this sort of information deserves more exploration in the context of temporal relation classification.
In this paper, we show that logical inference can be used to improve—sometimes dramatically—
existing machine learned classifiers for the problem of temporal relation classification.

1 Introduction

Recent years have seen renewed interest in extracting temporal information from text. Evaluation cam-
paigns like the two TempEval challenges (Verhagen et al., 2010) have brought an increased interest to this
topic. The two TempEval challenges focused on ordering the events and the dates and times mentioned
in text. Since then, temporal processing has expanded beyond the problems presented in TempEval, like
for instance the work of Pan et al. (2011), which is about learning event durations.

Temporal information processing is important and related to a number of applications, including
event co-reference resolution (Bejan and Harabagiu, 2010), question answering (Ahn et al., 2006; Sa-
quete et al., 2004; Tao et al., 2010) and information extraction (Ling and Weld, 2010). Another ap-
plication is learning narrative event chains or scripts (Chambers and Jurafsky, 2008b; Regneri et al.,
2010), which are “sequences of events that describe some stereotypical human activity” (i.e. eating at a
restaurant involves looking at the menu, then ordering food, etc.).

This paper focuses on assessing the impact of temporal reasoning on the problem of temporal infor-
mation extraction. We will show that simple classifiers trained for the TempEval tasks can be improved
by extending their feature set with features that can be computed with automated reasoning.

2 Temporal Information Processing

The two TempEval challenges made available annotated data sets for the training and evaluation of
temporal information systems. Figure 1 shows a sample of these annotations, taken from the English
data used in the first TempEval. The annotation scheme is called TimeML (Pustejovsky et al., 2003).

Temporal expressions are enclosed inTIMEX3 tags. A normalized representation of the time point
or interval denoted by time expressions is encoded in thevalue attribute ofTIMEX3 elements.

Event terms are annotated withEVENT tags. The annotations in Figure 1 are simplified and do not
show all attributes of TimeML elements. For instance, the complete annotation for the termcreatedin
that figure is:<EVENT eid="e1" class="OCCURRENCE" stem="create" aspect=
"NONE" tense="PAST" polarity="POS" pos="VERB">created</EVENT>.

Several attributes describe lexical and morpho-syntacticfeatures of these terms, such asstem (its
dictionary form),pos (its part-of-speech),tense (its grammatical tense, if it is a verb),aspect (its
grammatical aspect),polarity (whether it occurs in a positive or negative context). Theclass
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<TIMEX3 tid="t190" type="TIME" value="1998-02-06T22:19:00"
functionInDocument="CREATION TIME">02/06/1998 22:19:00</TIMEX3>
<s>WASHINGTON The economy<EVENT eid="e1">created</EVENT> jobs at a surprisingly robust pace in
<TIMEX3 tid="t191" type="DATE" value="1998-01">January</TIMEX3>, the government<EVENT
eid="e4">reported</EVENT> on <TIMEX3 tid="t193" type="DATE"
value="1998-02-06">Friday</TIMEX3>, evidence that America’s economic stamina has<EVENT
eid="e6">withstood</EVENT> any <EVENT eid="e7">disruptions</EVENT> <EVENT
eid="e224">caused</EVENT> so far by the financial<EVENT eid="e228">tumult</EVENT> in Asia.</s>
<TLINK lid="l1" relType="OVERLAP" eventID="e4" relatedToTime="t193" task="A"/>
<TLINK lid="l2" relType="AFTER" eventID="e4" relatedToTime="t191" task="A"/>
<TLINK lid="l26" relType="BEFORE" eventID="e4" relatedToTime="t190" task="B"/>

Figure 1: Example of the TempEval annotations (simplified) for the fragment:WASHINGTON The
economy created jobs at a surprisingly robust pace in January, the government reported on Friday,
evidence that America’s economic stamina has withstood anydisruptions caused so far by the financial
tumult in Asia.

attribute includes some information about aspectual type,in the spirit of Vendler (1967)—it distin-
guishes states from non-stative situations—, and whether the term introduces an intensional context,
among other distinctions. One time expression is especially important. This is the one denoting the
document’s creation time (DCT) and it is annotated with the valueCREATION_TIME for the attribute
functionInDocument.

Temporal relations are represented withTLINK elements. In the TempEval data, the first argument
of the relation is always an event and is given by the attribute eventID. The second argument can be
another event or the denotation of a time expression, and it is annotated in arelatedToEvent or
relatedToTimeattribute inTLINK elements. The attributerelType describes the type of temporal
relation holding between these two ordered entities:BEFORE, AFTER or OVERLAP.1

The TempEval challenges consider three kinds of temporal relations.2 These correspond to the three
tasks of TempEval, whose goal was to correctly assign the relation type to already identified temporal
relations. Task A considers temporal relations holding between an event and a time mentioned in the
same sentence, regardless of whether they are syntactically related or not. Task B considers temporal
relations holding between the main event of sentences and the DCT. Finally, task C focuses on temporal
relations between the main events of two consecutive sentences.

The systems participating in TempEval had to guess the relation type of temporal relations (the value
of the featurerelType of TLINKs), but all other annotations were given and could be used as features
for classifiers. The second TempEval included additional tasks whose goal was to obtain also these
remaining annotations from raw text.

The best results for the two TempEval competitions are indicative of the state-of-the-art of temporal
information processing. For task A, the best participatingsystem correctly classified 62% of the held-out
test relations. For task B this was 80% and, for task C, 55%. The best results of the second TempEval
show some improvement (65%, 81% and 58% respectively), but the first task was slightly different and
arguably easier (only pairs of event terms of temporal expressions that are syntactically related were
considered).

In this paper, we will also be working with these three types of temporal relations and dealing with
similar data. Our purpose is to check whether existing solutions to the TempEval problems can be
improved with the help of a temporal reasoning component.

1There are also the disjunctive typesBEFORE-OR-OVERLAP, OVERLAP-OR-AFTER andVAGUE. Because they were
used only for those cases where the human annotators could not agree, they are quite rare, to the point where machine learned
classifiers are seldom or never able to learn to assign these values.

2The second TempEval considers a fourth type, which we ignorehere.
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2.1 Temporal Relation Classification and Reasoning

The problem of temporally ordering events and times is constrained by the logical properties of temporal
relations, e.g. temporal precedence is a strict partial order. Therefore, it is natural to incorporate logical
information in the solutions to the problem of ordering events and time intervals. Perhaps surprisingly,
little work has explored this idea.

Our working hypothesis is that classifier features that explore the logical properties of temporal
relations can be used effectively to improve machine learned classifiers for the temporal information
tasks of TempEval.

The motivation for using logical information as a means to help solving this problem can be illus-
trated with an example from Figure 1.

There, we can see that the date1998-02-06, denoted by the expressionFriday, includes the docu-
ment’s creation time, which is1998-02-06T22:19:00. We know this from comparing the normal-
ized value of these two expressions, annotated with thevalue attribute ofTIMEX3 elements. From
the annotated temporal relation with the idl26 (the last one in the figure) we also know that the event
identified withe4, denoted by the formreported, precedes the document’s creation time.

From these two facts one can conclude that this event either precedes the time denoted byFriday
or they overlap; this time cannot however precede this event. That is, the possible relation type for the
relation represented with theTLINK namedl1 is constrained—it cannot beAFTER.

What this means is that, in this example, solving task B can, at least partially, solve task A. The
information obtained by solving task B can be utilized in order to improve the solutions for task A.

3 Related Work

The literature on automated temporal reasoning includes important pieces of work such as Allen (1984);
Vilain et al. (1990); Freksa (1992). A lot of the work in this area has focused on finding efficient methods
to compute temporal inferences.

Katz and Arosio (2001) used a temporal reasoning system to compare the temporal annotations of
two annotators. In a similar spirit, Setzer and Gaizauskas (2001) first compute the deductive closure of
annotated temporal relations so that they can then assess annotator agreement with standard precision
and recall measures.

Verhagen (2005) uses temporal closure as a means to aid TimeML annotation, that is as part of a
mixed-initiativeapproach to annotation. He reports that closing a set of manually annotated temporal
relations more than quadruples the number of temporal relations in TimeBank (Pustejovsky et al., 2003),
a corpus that is the source of the data used for the TempEval challenges.

Mani et al. (2006) use temporal reasoning as an oversamplingmethod to increase the amount of
training data. Even though this is an interesting idea, the authors recognized in subsequent work that
there were methodological problems in this work which invalidate the results (Mani et al., 2007).

Since the advent of TimeBank and the TempEval challenges, machine learning methods have become
dominant to solve the problem of temporally ordering entities mentioned in text. One major limitation
of machine learning methods is that they are typically used to classify temporal relations in isolation,
and therefore it is not guaranteed that the resulting ordering is globally consistent. Yoshikawa et al.
(2009) and Ling and Weld (2010) overcome this limitation using Markov logic networks (Richardson and
Domingos, 2006), or MLNs, which learn probabilities attached to first-order formulas. One participant
of the second TempEval used a similar approach (Ha et al., 2010). Denis and Muller (2011) cast the
problem of learning temporal orderings from texts as a constraint optimization problem. They search for
a solution using Integer Linear Programming (ILP), similarly to Bramsen et al. (2006), and Chambers
and Jurafsky (2008a). Because ILP is costly (it is NP-hard),the latter two only considerbeforeandafter
relations.

Most of these approaches are similar to ours in that they can use knowledge about one TempEval
task to solve the other tasks. However, these studies do not report on the full set of logical constraints
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<TIMEX3 tid="t190" type="TIME" value="1998-02-06T22:19:00"
functionInDocument="CREATION TIME">06/02/1998 22:19:00</TIMEX3>
<s>WASHINGTON - A economia<EVENT eid="e1">criou</EVENT> empregos a um ritmo surpreendentemente
robusto em<TIMEX3 tid="t191" type="DATE" value="1998-01">janeiro</TIMEX3>, <EVENT
eid="e4">informou</EVENT> o governo na<TIMEX3 tid="t193" type="DATE"
value="1998-02-06">sexta-feira</TIMEX3>, provas de que o vigor económico da América<EVENT
eid="e6">resistiu</EVENT> a todas as<EVENT eid="e7">perturbações</EVENT> <EVENT
eid="e224">causadas</EVENT> até agora pelo<EVENT eid="e228">tumulto</EVENT> financeiro na
Ásia.</s>
<TLINK lid="l1" relType="OVERLAP" eventID="e4" relatedToTime="t193" task="A"/>
<TLINK lid="l2" relType="AFTER" eventID="e4" relatedToTime="t191" task="A"/>
<TLINK lid="l26" relType="BEFORE" eventID="e4" relatedToTime="t190" task="B"/>

Figure 2: Example of the Portuguese data used (simplified). The fragment is:WASHINGTON - A econo-
mia criou empregos a um ritmo surpreendentemente robusto emjaneiro, informou o governo na sexta-
-feira, provas de que o vigor económico da Aḿerica resistiu a todas as perturbações causadas até agora
pelo tumulto financeiro náAsia.

used or explore little information (e.g. the transitivity of temporal precedence only). Our work does not
have these shortcomings: we employ a comprehensive set of reasoning rules (see Section 5.1).

Our approach of encoding in features information that is obtained from automated reasoning does
not guarantee that, at the end, the automatically classifiedtemporal relations are consistent. This is
a limitation of our approach that is not present in some of theabove mentioned work. However, our
approach is not sensitive to the size of the training data, since the reasoning rules are hand-coded. With
MLNs, even though the rules are also designed by humans, the weight of each rule still has to be learned
in training.

One participant of the first TempEval used “world-knowledgeaxioms” as part of a symbolic solution
to this challenge (Puşcaşu, 2007). This world-knowledgecomponent includes rules for reasoning about
time. Closest to our work is that of Tatu and Srikanth (2008).The authors employ information about
task B and temporal reasoning as a source of classifier features for task C only. This is more limited
than our approach: we also explore the other tasks as sourcesof knowledge, besides task B, and we also
experiment with solutions for the other tasks, not just taskC.

4 Annotation Scheme and Data

For the experiments reported in this paper we used TimeBankPT (Costa and Branco, 2012), which is an
adaptation to Portuguese of the English data used in the firstTempEval. These data were produced by
translating the English data used in the first TempEval and then adapting the annotations so that they
conform to the new language.

Figure 2 shows a sample of that corpus. As before, that figure is simplified. For instance, the full
annotation for the first event event term in that example is:<EVENT eid="e1" class=
"OCCURRENCE" stem="criar" aspect="NONE" tense="PPI" polarity="POS"
pos="VERB">criou</EVENT>.

TimeBankPT is similar in size to the English TempEval data. It contains 60K word tokens for train-
ing and close to 9K words for evaluation (the word counts are somewhat higher than those for its English
counterpart because of language differences). Overall (i.e. for all tasks combined), the number of tem-
poral relations (i.e. instances for classification) is 5,781 for training and 758 for evaluation. The two
corpora are quite similar to each other, as one is the translation of the other.
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5 Feature Design

The main rationale behind our approach is that, when a systemannotates raw text, it may split the
annotation process in several steps, corresponding to the different TempEval tasks. In this scenario,
the information annotated in previous steps can be used. That is, e.g. if one has already classified the
temporal relations between the events in a text and its creation time (task B, which is also the easiest),
this information can then be used to help classify the remaining temporal relations.

Our goal is then to evaluate new features for machine learnedclassifiers for these three tasks. These
new features are meant to help predict the class feature by computing the temporal closure of a set of
initial temporal relations. This initial set of temporal relations is composed of relations coming from two
sources:

• Temporal relations between pairs of dates or times corresponding to annotated temporal expres-
sions. Because the annotations for time expressions contain a normalized representation of them, it
is possible to order them symbolically. That is, they are ordered according to thevalue attribute
of the correspondingTIMEX3 element.3

• The temporal relations annotated for the other tasks.

The values for these features reflect the possible values of the class feature (i.e. the temporal relation
being classified), after applying temporal reasoning to these two sets of relations.

The possible values for these classifier features are the sixclass values (BEFORE,AFTER,OVERLAP,
BEFORE-OR-OVERLAP,OVERLAP-OR-AFTER andVAGUE).4

For the sake of experimentation, we try all combinations of tasks:

• Predict task A after temporally closing the relations annotated for tasks B and C (and the temporal
relations between the times mentioned in the document). These are the featuresAb (based on the
temporal relations annotated for task B only),Ac (based on the relations for task C only) andAbc
(based on the relations for both tasks).

• Similarly, predict task B, based on tasks A and C: the features Ba (based on the relations for task
A only), Bc (based on the relations for task C only) andBac (based on the relations for both tasks).

• Predict task C after temporally closing the relations annotated for tasks A and B: the featuresCa
(based on the relations for task A only),Cb (based on the relations for task B only) andCab (based
on the relations for both of them).

The usefulness of these classifier features is limited in that they have very good precision but low re-
call, as temporal reasoning is unable to restrict the possible type of temporal relation for many instances.
In fact, we did not test some of these features, because they produced theVAGUE value for all training
instances. This was the case of the featuresAc and Bc (and alsoAvc and Bvc, which are presented
below).

For this reason, we additionally experimented with anotherset of features that, instead of trying to
predict the class value directly, may provide useful heuristics to the classifiers. These are:

• For task B, from all annotated temporal expressions in the same sentence as the event being related
to the DCT, the majority temporal relation between those temporal expressions and the DCT, based
on their annotatedvalue attributes. This is the featureBm.

3Chambers and Jurafsky (2008a) also perform this step, but they consider far fewer possible formats of dates and times than
we do. The full set of rules used to order times and dates can befound in Costa (2013).

4It must be noted that the valuesBEFORE-OR-OVERLAP or OVERLAP-OR-AFTER are output when none of the three
more specific values (BEFORE, OVERLAP andAFTER) can be identified by the temporal reasoner but one of them canbe
excluded (i.e.OVERLAP-OR-AFTER is used whenBEFORE can be excluded). Similarly,VAGUE is output when no constraint
can be identified from the initial set of temporal relations.These underspecified values do not necessarily correspond to the
cases when the annotated data contain these values (those are the cases when the human annotators could not agree on a more
specific value). It often is the case that the human annotation is more specific, as humans have access to further information.
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• For task B, the temporal relation between the time expression closest to the event being ordered
with the DCT and the DCT. This is the featureBt.

• A vague temporal relation for task A based on the relations annotated for tasks B and C. These are
the classifier featuresAvb, Avc andAvbc.

• A vague temporal relation for task B based on the relations annotated for tasks A and C: classifier
featuresBva, Bvc andBvac.

• A vague temporal relation for task C based on the relations annotated for tasks A and B: features
Cva, Cvb andCvab.

These temporal relations that we call vague are useful when the reasoning component does not iden-
tify a precise temporal relation between the two relevant entities in the temporal relation (due to insuffi-
cient information). In these cases, it may be useful to knownthat e.g. both of them temporally overlap
a third one, as this may provide some evidence to the classifiers that they are likely to overlap. This is
what these vague features encode. Their possible values are: (i) a third entity precedes the two entities,
(ii) a third entity overlaps both entities, (iii) a third entity follows the two entities (iv) any combination
of any of the above, (v) the first entity in the relation to be guessed overlaps a third entity that temporally
follows the second entity in the relation to be guessed, (vi)the first entity in the relation to be guessed
overlaps a third entity that temporally precedes the secondentity in the relation to be guessed, (vii) the
two entities are not even connected in the temporal graph forthe document, whose edges correspond to
overlap and precedence relations, (viii) none of the above.

5.1 Temporal Reasoning Rules

The rules implemented in our reasoning component are: (i) temporal precedence is transitive, irreflexive
and antisymmetric; (ii) temporal overlap is reflexive and symmetric; (iii) if A overlaps B and B precedes
C, then C does not precede A.

Because we also consider temporal relations between times and dates, we also deal with temporal
inclusion, a type of temporal relation that is not part of theannotations used in the TempEval data, but
that is still useful for reasoning. We make use of the following additional rules, dealing with temporal
inclusion: (i) temporal inclusion is transitive, reflexiveand antisymmetric; (ii) if A includes B, then A
and B overlap; (iii) if A includes B and C overlaps B, then C overlaps A; (iv) if A includes B and C
precedes A, then C precedes B; (v) if A includes B and A precedes C, then B precedes C; (vi) if A
includes B and C precedes B, then either C precedes A or A and C overlap (A cannot precede C); (vii) if
A includes B and B precedes C, then either A precedes C or A and Coverlap (C cannot precede A).

As mentioned, temporal expressions are ordered according to their normalized value. For instance,
the date2000-01-03 is ordered as preceding the date2010-03-04. Since all temporal expressions
are normalized in the annotated data, we order temporal expressions before applying any temporal rea-
soning. This increases the number of temporal relations we start with, and the potential number of
relations we end up with after applying temporal reasoning.

To this end, we used Joda-Time 2.0 (http://joda-time.sourceforge.net). Each normal-
ized date or time is converted to an interval.

In many cases it is possible to specify the start and end points of this interval, e.g. the date of January
3, 2000 is represented internally by an interval with its start point at2000-01-03T00:00:00.000
and ending at2000-01-03T23:59:59.999. Many different kinds of normalized expressions re-
quire many rules. For instance, an expression likelast Wintercould be annotated in the data as2010-WI,
and dedicated rules are used to get its start and end points.

Some time expressions are normalized asPRESENT REF (e.g. now), PAST REF (the past) or
FUTURE REF (the future). These cases are not represented by any Joda-Time object. Instead we
need to account for them in a special way. They can be temporally ordered among themselves (e.g.
PRESENT REF precedesFUTURE REF), but not with other temporal expressions. We further stipulate
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Feature Task A Task B Task C

event-aspect d--kn ----n d--kn
event-polarity d--kn --r-n ----n
event-POS --r-n ---k- ----n
event-stem -jrk- --r-n -----
event-string --r-n -j--- -----
event-class djr-n -jrk- djrkn
event-tense --r-- djrkn djrkn

Feature Task A Task B Task C

o-event-first djrkn N/A N /A
o-event-between djrkn N/A N /A
o-timex3-between-jrk- N/A N /A
o-adjacent -j--n N/A N /A
timex3-mod ----n ---k- N/A
timex3-type d-rk- --rk- N/A

Table 1: Features used in the baseline classifiers. Key:d means the feature is used with
DecisionTable; j, with J48; r, with JRip; k, with KStar; n, with NaiveBayes.

thatPRESENT REF includes each document’s creation time (which therefore precedesFUTURE REF,
etc.). So, in additional to the representation of times and dates as time intervals, we employ a layer of
ad-hocrules.

The variety of temporal expressions makes it impossible to provide a full account of the implemented
rules in this paper, but they are listed in full in Costa (2013).

6 Experiment and Results

Our goal is to test the features introduced in Section 5. Our methodology is to extend existing clas-
sifiers for the problem of temporal relation classification with these features, and check whether their
performance improves.

For the first TempEval, Hepple et al. (2007) used simple classifiers that use the annotations present
in the annotated data as features. They trained Weka (Wittenand Frank, 1999) classifiers with these
features and obtained competitive results. 10-fold cross-validation on the training data was employed to
evaluate different combinations of features.

For our baselines, we use the same approach as Hepple et al. (2007), with the Portuguese data men-
tioned above in Section 4.

6.1 Experimental Setup

The classifier features used in the baselines are also similar to the ones used by Hepple et al. (2007).
The eventfeatures correspond to attributes ofEVENT elements according to the data annotations,

with the exception of theevent-string feature, which takes as value the character data inside the
corresponding TimeMLEVENT element. In a similar fashion, thetimex3features are taken from the
attributes ofTIMEX3 elements with the same name.

The o(rder) features are the attributes computed from the document’s textual content. The feature
order-event-first encodes whether the event terms precedes in the text the timeexpression it
is related to by the temporal relation to classify. The classifier featureorder-event-between
describes whether any other event is mentioned in the text between the two expressions for the en-
tities that are in the temporal relation, and similarlyorder-timex3-between is about whether
there is an intervening temporal expression. Finally,order-adjacent is true if and only if both
order-timex3-between andorder-event-between are false (even if other linguistic mate-
rial occurs between the expressions denoting the two entities in the temporal relation).

Just like Hepple et al. (2007), we experimented with severalmachine learning algorithms. Table 1
shows the classifier features that we selected for each algorithm. For each algorithm and task, we tried
all possible combinations of features and selected the one that performed best, according to 10-fold
cross-validation on the training data.
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Task A Task B Task C

Classifier bl. best bl. best bl. best

DecTable 52.1 58.6(Ab,Abc) 77.0 77.0 49.6 49.6 (Cva)
J48 55.6 58.0(Ab,Avb) 77.3 77.9(Ba,Bva) 52.7 52.7
JRip 59.2 68.0(Ab,Avbc) 72.8 76.7(Bt,Ba,Bva) 54.3 54.3 (Ca,Cva,Cb,Cab)
KStar 54.4 59.8(Ab,Avb,Abc) 73.4 72.8 (Ba,Bva) 53.1 53.9(Cva,Cb)
NBayes 53.3 56.2(Ab,Avb) 75.2 75.3(Ba) 53.9 53.5 (Ca,Cva)

Average 54.9 60.1 75.1 75.9 52.7 52.8

Table 2: Classifier accuracy on test data (bl.: baseline; best: baseline extended with best combination
of the new features, shown in parentheses, determined with cross-validation on train data). Boldface
highlights improvements on test data.

We essentially used the same algorithms as Hepple et al. (2007).5 We also experimented withJ48
(Weka’s implementation of the C4.5 algorithm). The classifiers obtained this way are used as baselines.
To compare them with solutions incorporating temporal reasoning, we retrained them with the entire
training data and evaluated them on the held-out test data. The results are shown in the columns of
Table 2 labeled withbl. (baselines). We chose these baselines because they are veryeasy to repro-
duce: the algorithms are open-source and the classifier features are straightforwardly extractable from
the annotated data and only require simple string manipulation.

For each task (A, B and C) and algorithm, we extended the best classifier previously found with
the features that were presented above in Section 5. We kept the basic features, listed in Table 1 (i.e.
the ones selected in the manner just reported), constant andtried all combinations of the new features,
based on temporal reasoning. We then selected the feature combination that produced the best results for
each algorithm and task, using 10-fold cross-validation onthe train data, and, once again, evaluated the
combination thus chosen on the held-out test data.

6.2 Results and Discussion

The results can be seen in Table 2. They vary by task. The tested classifier features are quite effective
for task A. The new features are, however, much less effective for the other tasks. This is perhaps more
surprising in the case of task C. It is mostly a problem with recall (the new reasoning-based features
are able to restrict the possible type of temporal relation only for a few instances, because the data are
not very densely annotated for temporal relations). That is, reasoning is very precise but leaves many
instances unaccounted for. For instance, out of 1735 train instances for task C, 1589 have the value
VAGUE for the featureCb. In the test data, this is 241 instances out of 258.

For task A, we inspected the final decision tree (obtained withJ48), the decision table (Decision-
Table) and the rules (JRip) induced by the learning algorithms from the entire training set. The tree
for task A checks the featureAb and outputs the same type of temporal relation as the one encoded in that
feature. When the value of this feature is one of the disjunctive values (VAGUE,BEFORE-OR-OVERLAP
andOVERLAP-OR-AFTER), it consults the remaining features. Because of the way that trees are built
by this algorithm (J48, an implementation of the C4.5 algorithm), this means that the featureAb is
the classifier feature with the highest information gain, among those used by this classifier. The same
featureAb appears frequently in the antecedent of the rules induced byJRip for task A (it occurs in
the antecedent of 5 of the 8 induced rules), another indication that it is quite useful. When learning a
table that associates combinations of feature values with class values, theDecisionTable algorithm

5These are: Weka’s implementation of decision tables,Dec(ision)Table; the RIPPER algorithm,JRip;
N(aive)Bayes, a Bayesian classifier; andKStar, a k-NN algorithm with an entropy-based distance function.We left
out support vector machines, which are too slow for exhaustive search to be practical, even with this limited set of features.
Hepple et al. (2007) tried this algorithm, but selected classifier features using a greedy search method.
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Task A Task B Task C

Classifier bl. best bl. best bl. best

DecTable 52.1 54.4(Ab,Abc,Avbc) 77.0 77.0 49.6 49.6 (Cvb,Cvab)
J48 55.6 54.4 (Ab,Avb) 77.3 79.5(Ba) 52.7 51.9 (Cvb)
JRip 59.2 64.5(Avb,Abc) 72.8 74.0(Bt,Ba,Bac,Bvac) 54.3 54.3
KStar 54.4 58.6(Ab,Avb) 73.4 71.9 (Bva) 53.1 52.7 (Cva)
NBayes 53.3 55.6(Ab,Avbc) 75.2 75.5(Bm,Bac) 53.9 54.3(Cb)

Average 54.9 57.5 75.1 75.6 52.7 52.6

Table 3: Classifier accuracy on test data, with the reasoning-based features computed from the temporal
relations classified by the baseline classifiers.

prunes some of the classifier features: the featureAbc is pruned, but the featureAb is kept, another
indication that task B relations are useful when classifying task A relations.

Inspection of the learned models thus suggests that information about task C is not as useful to solve
task A as the information coming from task B. This is easy to understand: task A relates entities in the
same sentence, whereas task C relates entities in differentsentences; they also relate different kinds of
entities (task C temporal relations are between two events whereas task A relations are between an event
and a time). As such, temporal relations with arguments in common are not found between these two
tasks, and only long chains of relations can support inferences,6 but they are infrequent in the data.

The results in Table 2 are obtained with reasoning based on the gold standard annotations. That is, a
feature such asAb tries to predict the class of task A relations on the basis of task B temporal relations,
and these task B relations are taken from the gold standard. In a real system, we do not have access to this
information. Instead, we have temporal relations classified with some amount of error. We would have
to look at the output of a classifier for task B in order to compute this featureAb. An interesting question
is thus how our approach performs when the initial temporal relations given to the reasoning component
are automatically obtained. Table 3 presents these results. In this table, the reasoning component acts
on the output of the baseline classifiers. For instance, the featureAb tries to predict task A temporal
relations using the reasoning rules on the output of the corresponding baseline classifier for task B (i.e.
task B temporal relations that have been automatically classified by the baseline classifier employing the
same learning algorithm).7

As can be seen from Table 2, the results are slightly worse, but there is still a noticeable and sys-
tematic improvement in task A. Under both conditions (Table2 and Table 3), the differences between
the baseline classifiers and the classifiers with the new features are statistically significant for task A
(p < 0.05, according to Weka’sPairedCorrectedTTester), but not for the other tasks. For this
task at least, reasoning is a useful means to improve the temporal relation classification. Comparing the
two tables, we can conclude that as temporal relation classification improves (and the error present in
the initial temporal relations on which reasoning is based goes down), so does the positive impact of
reasoning increase: the results in Table 2 are better than the ones in Table 3 because the initial tem-
poral relations on which temporal reasoning is based are better quality. Therefore, as the performance
of existing temporal relation classification technology improves, so should the potential impact of these
features based on reasoning. Another conclusion is that, even with the current technology, these features
are already useful, as Table 3 presents statistically significant improvements on task A.

In a real system for temporal processing, these new featurescannot be used for all tasks. When
temporally annotating text automatically, assuming one classifier for each task, one must choose an order

6For instance, according to task C, an evente1 precedes another evente2, which precedes the document creation time
according to task B, which precedes a timet3 according to their annotatedvalue, therefore evente1 must precedet3.

7In this case, the input relations may be inconsistent. We candetect sets of inconsistent temporal relations, but we cannot
know which temporal relations in such a set are misclassified. For this reason, we simply add temporal relations to the reasoning
component according to textual order, and a relation is skipped if it is inconsistent with the previously added ones.
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of processing the three tasks, and this determines which features are available for each classifier. Since
task A benefits considerably from these features, a practical system incorporating our proposal would
classify the temporal relations for tasks B and C first (taking advantage of none of the new features, as
they do not improve these two tasks), and then a classifier fortask A, trained using these new features,
can be run, based on the output for the other tasks.

7 Concluding Remarks

In this paper we showed that features based on logical information improve existing classifiers for the
problem of temporal information processing in general and temporal relation classification in particular.
Even though temporal reasoning has been used in the context of temporal information processing to
oversample the data (Mani et al., 2006), to check inter-annotator agreement (Setzer and Gaizauskas,
2001), as part of an annotation platform (Verhagen, 2005), or as part of symbolic approaches to the
TempEval problems (Puşcaşu, 2007), to the best of our knowledge the present paper is the first to report
on the use temporal reasoning as a systematic source of features for machine learned classifiers.
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Abstract

There exist formal accounts of tense and aspect, such as that detailed by Reichenbach (1947).
Temporal semantics for corpus annotation are also available, such as TimeML. This paper describes
a technique for linking the two, in order to perform a corpus-based empirical validation of Reichen-
bach’s tense framework. It is found, via use of Freksa’s semi-interval temporal algebra, that tense ap-
propriately constrains the types of temporal relations that can hold between pairs of events described
by verbs. Further, Reichenbach’s framework of tense and aspect is supported by corpus evidence,
leading to the first validation of the framework. Results suggest that the linking technique proposed
here can be used to make advances in the difficult area of automatic temporal relation typing and
other current problems regarding reasoning about time in language.

1 Introduction
In his 1947 account, Reichenbach offers a three-point framework for describing the tenses of verbs. The
framework uses the concepts of speech, event and reference points and the relations between them in
order to give descriptions of tenses. This framework has since been widely adopted and scrutinised by
those working in the fields of linguistics and type-theoretic semantics.

Within computational linguistics, increased interest in temporal semantics, automatic annotation of
temporal information, and temporal information extraction has led to temporally annotated resources
being created and the discovery of many interesting problems. One of the most difficult problems in
temporal information extraction is that of automatically determining the nature of the temporal order of
times and events in a given discourse.

Temporal ordering is an important part of language – it allows us to describe history, to communicate
plans and to discuss change. When automatic temporal annotation is broken into a tripartite task of
detecting events, detecting times, and automatically determining the ordering of events and times, the
third part – determining temporal ordering – is the most difficult. This is illustrated by, for example, the
low performance scores at the most recent TempEval exercise (Verhagen et al., 2010), which focuses on
automatic annotation of temporal relations. Event-event ordering is the hardest temporal relation typing
task, and the focus of this paper.

Reichenbach’s framework not only offers a means of formally describing the tenses of verbs, but also
rules for temporally arranging the events related by these verbs, using the its three abstract points. This
can, for a subset of cases, form a basis for describing the temporal ordering of these events.

The framework is currently used in approaches to many computational linguistics problems. These
include language generation, summarisation, and the interpretation of temporal expressions. When au-
tomatically creating text, it is necessary to make decisions on when to shift tense to properly describe
events. Elson and McKeown (2010) relate events based on a “perspective” which is calculated from
the reference and event times of two verbs that each describe events. They construct a natural language
generation system that uses reference times in order to correctly write stories. Further, reference point
management is critical to medical summary generation. In order to helpfully unravel the meanings of
tense shifts in minute-by-minute patient reports, Portet et al. (2009) required understanding of the ref-
erence point. The framework also helps interpret linguistic expressions of time (timexes). Reference



time is required to interpret anaphoric expressions such as “last April”. Creation of recent timex corpora
prompted the comment that there is a “need to develop sophisticated methods for temporal focus tracking
if we are to extend current time-stamping technologies” (Mazur and Dale, 2010) – focus as a rôle filled
by Reichenbach’s reference point. In fact, demand for accurate reference time management is so persis-
tent that state of the art systems for converting times expressed in natural language to machine-readable
format now contain extra layers solely for handling reference time (Llorens et al., 2012).

Given the difficulty of automatically determining the orderings, or temporal relations, between events,
and the suggested ability of Reichenbach’s framework to provide information for this, it is natural to ap-
ply this framework to the temporal ordering task. Although tense has played a moderately useful part in
machine learning approaches to the task (Hepple et al., 2007), its exact role in automatic temporal an-
notation is not fully understood. Further, though it was not the case when the framework was originally
proposed, there now exist resources annotated with some temporal semantics, using TimeML (Puste-
jovsky et al., 2005). Comparing the explicit temporal annotations within these resources with the modes
of interaction proposed by Reichenbach’s framework permits an evaluation of the validity of this estab-
lished account of tense and aspect.

This paper addresses the following questions:

1. How can Reichenbach’s framework be related to a modern temporal annotation schema?
2. Between which event-relating verbs should the framework be applied?
3. Given Reichenbachian descriptions of pairs of verbs in English, how can one automatically deter-

mine the temporal relation between the events described by the verbs?
4. Do the behaviours that Reichenbach proposes agree with human-annotated, ground-truth data?

The main contributions made by this paper are twofold. Firstly, it provides an account of how tensed
verb events, described according to Reichenbach, can be linked with each other to extract information
about their temporal ordering. Secondly, it provides the first corpus-based validation of Reichenbach’s
framework against human-annotated ground truth data.

The rest of this paper is constructed as follows. Firstly Reichenbach’s framework is introduced with
accompanying examples (Section 2). Relevant parts of the TimeML annotation scheme are covered in
Section 4. Discussion of how event-signifying verbs may be associated and then ordered is in Section 3.
Section 5 introduces a way of connecting TimeML with Reichenbach’s three time points. A corpus-based
evaluation of Reichenbach’s framework is in Section 6, and conclusion in Section 7.

2 Reichenbach’s Framework
The core of the framework comprises three time points – speech time, event time and reference time.
These are ordered relative each other using equality (e.g. simultaneity), precedence or succession opera-
tors. The tense and aspect of each verb is described using these points and the relations between them.1

Interactions between verbs can be described in terms of relations between the time points of each verb.

2.1 Time Points

Reichenbach introduces three abstract time points to describe tenses. Firstly, there is speech time, S.2

This represents the point at which the tensed verb described is uttered or written. Secondly, event time E
is the time that the event introduced by the verb occurs. The position of this point relative to other verbs’
Es reveals the temporal order of events related by a discourse. Thirdly, there is reference time R; this is
an abstract point, from which events are viewed. Klein (1994) describes R as “the time to which a claim
is constrained.” In Example 1, speech time S is the point when the author created the discourse.

(1) By then, she had left the building.

1Although Reichenbach’s suggests the framework is for describing tense, it also provides an account of perfective aspect.
For example, Reichenbach’s anterior tenses correspond to perfective aspect in English.

2For this paper, it is assumed that speech time is equivalent to DCT, unless otherwise explicitly positioned by discourse.
Following the description of discourse deixis by Fillmore (1971), this is the same as always setting speech time S equal to his
encoding time ET and not decoding time DT.



Relation Reichenbach’s Tense Name English Tense Name Example
E<R<S Anterior past Past perfect I had slept
E=R<S Simple past Simple past I slept
R<E<S

}
R<S=E Posterior past I expected that I
R<S<E would sleep
E<S=R Anterior present Present perfect I have slept
S=R=E Simple present Simple present I sleep
S=R<E Posterior present Simple future I will sleep (Je vais dormir)
S<E<R

}
S=E<R Anterior future Future perfect I will have slept
E<S<R
S<R=E Simple future Simple future I will sleep (Je dormirai)
S<R<E Posterior future I shall be going to sleep

Table 1: Reichenbach’s tenses; from Mani et al. (2005)

In this sentence, one perceives the events from a point S after they occurred. Reference time R is
“then” – abstract, before speech time, and after event time E, the leaving of the building.

2.2 Tense Structure

Using these points, Reichenbach details the structure of nine tenses (see Table 1). The tenses detailed by
Reichenbach are past, present or future, and may take a simple, anterior or posterior form. In English, the
tenses apply to single non-infinitive verbs and to verbal groups consisting of a head verb and auxiliaries.
Reichenbach’s tense system describes the arrangement of the time points for each tensed verb.

In Reichenbach’s view, different tenses specify different relations between S, E and R. Table 1
shows the six tenses conventionally distinguished in English. As there are more than six possible or-
dering arrangements of S, E and R, some English tenses might suggest more than one arrangement.
Reichenbach’s named tenses names also suffer from this ambiguity when converted to S/E/R struc-
tures, albeit to a lesser degree. Past, present and future tenses imply R < S, R = S and S < R
respectively. Anterior, simple and posterior tenses imply E < R, E = R and R < E respectively.

3 Associating Event Verbs
This validation relies on assessing temporal orderings suggested by Reichenbach’s framework. These
temporal orderings are between event-describing verbs. Therefore, we must determine which verbs may
be directly temporally associated with one another. The simplest case is to examine relations between
the smallest set of events which contains at least one relation: an event pair. So, in order to proceed, the
following must be defined:

1. How does connecting a pair of verbs affect the relative positions of one verb’s S/E/R to anothers;
2. Which pairs of events can be linked;
3. How the results of linking events can be propagated from Reichenbach’s framework to TimeML.

3.1 Reichenbachian Event-Event Relations

When sentences are combined to form a compound sentence, verbs interact, and implicit grammatical
rules may require tenses be adjusted. These rules operate in such a way that the reference point is the
same in all cases in the sequence. Reichenbach names this principle permanence of the reference point:

We can interpret these rules as the principle that, although the events referred to in the clauses may
occupy different time points, the reference point should be the same for all clauses.

Example 2 show a sentence in which this principle applies.

(2) John told me the news, but I had already sent the letter.



Figure 1: An example of permanence of the reference point.

Example 2 shows a sentence with two verb events – told and had sent. Using Reichenbach’s frame-
work, these share their speech time S (the time of the sentence’s creation) and reference time R, but have
different event times (see Figure 1). In the first verb, reference and event time have the same position. In
the second, viewed from when John told the news, the letter sending had already happened – that is, event
time is before reference time. As reference time R is the same throughout the sentence, we know that the
letter was sent before John mentioned the news. Arranging S, E and R for each verb in a discourse and
linking these points with each other ensures correct temporal ordering of events that the verbs describe.

3.2 Temporal Context

In the linear order that events and times are introduced in discourse, speech and reference points persist
until changed by a new event or time. Observations during the course of this work suggest that the ref-
erence time from one sentence will roll over to the next sentence, until it is repositioned explicitly by
a tensed verb or time. To make discussion of sets of verbs with common reference times easy, follow-
ing Derczynski and Gaizauskas (2011a), we call each of these pragmatic groups a temporal context.

Temporal contexts may be observed frequently in natural language discourse. For example, the main
body of a typical news article shares the same reference point, reporting other events and speech as
excursions from this context. Each conditional world of events invoked by an “if” statement will share
the same context. Events or times linked with a temporal signal will share a reference point, and thus be
explicitly placed into the same temporal context. Reichenbach constrains the verbs which may be linked
under his framework by using a grammatical device – the sequence of tenses. This is the only description
in his paper of which in contexts the framework applies.

Several previous studies have indicated temporal context-like bounds in discourse. Dowty (1986)
describes something similar to temporal context with the idea of the temporal discourse interpretation
principle (TDIP). This states:

Given a sequence of sentences S1, S2, ..., Sn to be interpreted as a narrative discourse, the reference
time of each sentence Si (for i such that 1 < i− n) is interpreted to be:

(a) a time consistent with the definite time adverbials in Si, if there are any;

(b) otherwise, a time which immediately follows the reference time of the previous sentence Si−1.



The TDIP accounts for a set of sentences which share a reference and speech point. However, as with
other definitions of temporal context, this principle involves components that are difficult to automati-
cally determine (e.g. “consistent with definite time adverbials”). Webber (1987) introduces a listener
model, incorporating R as a means of determining temporal focus. Her focus resumption and embedded
discourse heuristics capture the nesting behaviour of temporal contexts. Further, Eijck and Kamp (2010)
describe context-bounding, tense-based rules for applicability of Reichenbach’s framework. These com-
prise a qualitative model of temporal context.

As described in Chapter 4 of Hornstein (1990), permanence of the reference point does not apply
between main verb events and those in embedded phrases, relative clauses or quoted speech. These latter
events occur within a separate temporal context, and it is likely that they will have their own reference
time (and possibly even speech time, for example, in the case of quoted speech).

To handle such subordinate clauses, one must add a caveat – S and R persist as a discourse is read
in textual order, for each temporal context. A context is an environment in which events occur, and
may be the main body of the document, a tract of reported speech, or the conditional world of an if
clause (Hornstein, 1990). For example:

(3) Emmanuel had said “This will explode!,” but changed his mind.

Here, said and changed share speech and reference points. Emmanuel’s statement occurs in a sepa-
rate context, which the opening quote instantiates and is ended by the closing quote, and begins with an
S that occurs at the same time as said – or, to be precise, said’s event time Esaid.

However, temporal context information is not overt in TimeML annotations (Section 4) and not
readily available from discourse. We therefore have the problem of needing to model temporal context,
in order to decide to which event verb-event verb pairs the framework should be applied.

In order to temporally relate verb events using Reichenbach’s framework, we must filter verb event
pairs so that only those in which both events are in the same temporal context are considered. This
requires a model of temporal context. If events in a pair are not both in the same context, Reichenbach’s
framework may not directly apply, and the pair should not be further analysed.

Simple techniques for achieving temporal context modelling could work based on sentence proxim-
ity. Proximity alone may not be sufficient, given this paper’s earlier observations about quoted speech,
re-positioning of the reference point and so on. Further techniques for temporal context modelling are
detailed in experiments below in Section 6.

3.3 Progressive Aspect

While Reichenbach’s basic framework provides an explicit, point-based account of the perfective, it does
not do the same for the progressive. This section proposes a point-based solution for the progressive,
within Reichenbach’s framework.

Consider that event time E is a temporal interval, and therefore may be split into start and finish
points Es and Ef between which the event obtains. Given this, it becomes possible to place reference or
speech time within the event interval – later than Es but before Ef . This enable construction of scenarios
where one is reporting on an ongoing process that starts before and ends after the reporting point – the
same concept related by use of progressive aspect – and corresponds to Reichenbach’s illustration of
“extended tenses.”

Examples of the Reichenbachian structure of progressive-aspect events are included in Table 3. For
the simple tenses (where R = E) which TimeML describes aspect of NONE, it is assumed not that the
event is a point, but that the event is an interval (just as in the progressive) and the reference time is also
an interval, starting and finishing at the same times as the event (e.g. Rs = Es and Rf = Ef ).

4 TimeML Schema and Dataset
TimeML (Pustejovsky et al., 2005)3 is an annotation markup language for temporal semantics. It defines
annotations for events and temporal expressions (both also called “intervals,” because they are modelled

3or, in its current incarnation, ISO-TimeML



Relation Explanation of A-relation-B
BEFORE A finishes before B starts
AFTER A starts after B ends

INCLUDES A start before and finishes after B
IS INCLUDED A happens between B’s start and finish

DURING A occurs within duration B
DURING INV A is a duration in which B occurs

SIMULTANEOUS A and B happen at the same time
IAFTER A happens immediately after B

IBEFORE A happens immediately before B
IDENTITY A and B are the same event/time

BEGINS A starts at the same time as B, but finishes first
ENDS A starts after B, but they finish at the same time

BEGUN BY A starts at the same time as B, but goes on for longer
ENDED BY A starts before B, but they finish at the same time

Table 2: TimeML temporal interval relations

as periods of time between a start and end point). TimeML also defines annotations for the temporal
relations that exist between intervals, in the form of binary interval relations.

4.1 Tense System

Under TimeML, event annotations have a part-of-speech feature. This permits easy identification of
verbs, which are the relevant events for this study. Each verb has both tense and aspect features, which
take values from three “tenses4” (PAST, PRESENT and FUTURE) and four “aspects” (NONE, PERFECTIVE,
PROGRESSIVE and PERFECTIVE PROGRESSIVE) respectively.

In many ways, TimeML’s tense system is less expressive than that of Reichenbach’s. It provides a
maximum of 12 tense/aspect combinations, whereas the framework provides 19. The TimeML system
cannot express anterior tenses according to Reichenbach’s scheme. Further, TimeML does not account
for the reference point, making shifts of reference time difficult to express other than by describing
their end results. In its favour, TimeML does explicitly cater for progressive aspect – something that
Reichenbach does not, a solution for which is proposed later in Section 3.3.

4.2 TimeML Temporal Relations

In TimeML, temporal relations may be annotated using one of thirteen interval relations. This set of
relations is based on Allen’s temporal interval algebra (Allen, 1983).

Temporal relations obtain between two intervals. They describe the natural of temporal ordering
between those intervals. Those intervals may be either times or events, and need not be of the same
type. Accordingly, a temporal relation annotation must specify two intervals and a relation that obtains
from the first to the second; see Example 4. Additional information may be included, such as references
to phrases that help characterise the relation (Derczynski and Gaizauskas, 2011b). Descriptions of the
TimeML interval relations, based on Allen (1983)’s interval relation set, are given in Table 2.

(4) John <EVENT eiid="e1" tense="PAST" aspect="NONE">told</EVENT>
me the news, but I had already
<EVENT eiid="e2" tense="PAST" aspect="PERFECTVE">told</EVENT>
the letter.
<TLINK eventInstanceID="e1" relType="BEFORE" relatedToInstance="e2" />

4.3 TimeBank

TimeBank v1.2 is a TimeML annotated corpus. It contains 6 418 temporal link annotations, 1 414 time
annotations and 7 935 event annotations. TimeBank’s creation involved a large human annotator effort
and multiple versions (Pustejovsky et al., 2003); it is currently the largest temporally-annotated corpus
containing explicit temporal relations.

4In TimeML v1.2, the tense attribute of events has values that are conflated with verb form. This conflation is deprecated in
the most versions of TimeML, though no significant volume of ground-truth data is annotated under these later schemas.



TimeML Tense TimeML Aspect Reichenbach structure
PAST NONE E = R < S
PAST PROGRESSIVE Es < R < S, R < Ef

PAST PERFECTIVE Ef < R < S
PRESENT NONE E = R = S
PRESENT PROGRESSIVE Es < R = S < Ef

PRESENT PERFECTIVE Ef < R = S
FUTURE NONE S < R = E
FUTURE PROGRESSIVE S < R < Ef , Es < R
FUTURE PERFECTIVE S < Es < Ef < R

Table 3: TimeML tense/aspect combinations, in terms of the Reichenbach framework.

Inter-annotator agreement (IAA) describes the quality of annotation in TimeBank. Events were anno-
tated with agreement 0.78; given events, their tenses were annotated with agreement 0.96 and aspect with
agreement of 1.00 (complete agreement). For temporal relations between intervals, the type of relation
reached agreement of 0.77. TimeBank is the ground truth used to validate Reichenbach’s framework.

5 Mapping from TimeML to Reichenbach
Given the above accounts of the two schemas for describing events, tense and aspect, we shall now
consider how they may be joined. TimeML and Reichenbach’s framework do not use the same temporal
semantics, so some work is required to map descriptions from one format to the other.

5.1 Interval Disjunctions

Based on our above accounts of Reichenbach’s framework, TimeML, progressive aspect, temporal con-
text, and temporal ordering, it is now possible to derive a mapping from TimeML to Reichenbach based
on three-point algebra. Accordingly, the TimeML tenses and aspects may be mapped to S/E/R struc-
tures using the translations shown in Table 3.

Working on the hypothesis that Reichenbach’s framework may constrain a TimeML relation type
to more than just four possible groupings, the table of tense-tense interactions is rebuilt, giving for
each event pair a disjunction of TimeML relations instead of one of four labels. In TimeML, aspect
values are composed of two “flags”, PERFECTIVE and PROGRESSIVE, which may both be independently
asserted on any verb event annotation. For simplicity, PERFECTIVE PROGRESSIVE aspect was converted
to PERFECTIVE; this feature value accounts for 20 of 5974 verb events, or 0.34% – a minority that
does not greatly impact overall results. Another simplification is that participle “tenses” in TimeML
(PASTPART and PRESPART) are interpreted the same way as their non-participle equivalents.

When determining corresponding TimeML TLINK relType values given two Reichenbachian
tense structures, there is often more than one possible relType. In fact, multiple potential TimeML
interval relation types apply in many cases. Given the events and tenses in Example 4, the relation could
be not only BEFORE but also IBEFORE. Instead of specifying the exact relation, this constrains the type
of temporal ordering.

The disjunctions of interval relations indicated by various tense/aspect pair combinations frequently
recur, and are not unique to each tense/aspect pair combination. In fact, this approach to event-event
ordering causes the framework to generate a limited set of such disjunctions, which matches the interval
relation disjunctions corresponding to semi-intervals.

5.2 Emergence of Semi-intervals

Where an interval is defined by its start and end bounds, and both of these are required in order to perform
interval reasoning, a semi-interval is defined using only one of its bounds. The sets of interval relation
disjunctions indicated by the above tense/aspect combinations overlaps with the relation types present in
a semi-interval temporal algebra. This algebra, identified by Freksa (1992), differs from the conventional
interval reasoning described above by only make one bound of each interval finite. A full list of Freksa’s
semi-interval relations is provided in Table 4.

Freksa semi-interval relations can be described in terms of groups of Allen relations. The disjunctions



Relation Illustration TimeML relType disjunction

X is older than Y
Y is younger than X

X [BEFORE, IBEFORE, ENDED BY, INCLUDES,
DURING] Y

X is head to head with Y X [BEGINS, SIMULTANEOUS, IDENTITY, BEGUN BY] Y

X survives Y
Y is survived by X X [INCLUDES, BEGUN BY, IAFTER, AFTER] Y

X is tail to tail with Y X [ENDED BY, SIMULTANEOUS, IDENTITY, ENDS] Y

X precedes Y
Y succeeds X

X [BEFORE, IBEFORE, ENDED BY, INCLUDES,
DURING INV] Y

X is a contemporary of Y
X [INCLUDES, IS INCLUDED, BEGUN BY, BE-
GINS, DURING, DURING INV, SIMULTANEOUS,
IDENTITY, ENDS, ENDED BY] Y

X is born before death of Y
Y dies after birth of X

X [IS INCLUDED, ENDS, DURING INV, BEFORE,
IBEFORE, INCLUDES, DURING, ENDED BY] Y

Table 4: Freksa semi-interval relations; adapted from Freksa (1992). The superset of relations is omitted here but related there.

of TimeML full-interval relations suggested by our interpretation of Reichenbach’s framework always
match one of the groups of Allen relations used to represent a Freksa semi-interval relation.

For example, for two events E1 and E2, if the tense arrangement suggests that E1 starts before
E2 (for example, E1 is simple past and E2 simple future), the available relation types for E1 / E2 are
BEFORE, IBEFORE, DURING, ENDED BY and INCLUDES.

The ambiguity of one interval bound in a semi-interval relation gives rise to a disjunction of possible
interval relation types. For example, given that E1s < E2s, and Es < Ef for any proper interval event
(e.g. its start is before its finish), the arrangement of E1 and E2’s finish points is left unspecified. The
disjunction of possible interval relation types is as follows:

• E1f < E2s: before;
• E1f = E2s: ibefore;
• E1f > E2s, E1f < E2f : during;
• E1f = E2f : ended by;
• E1f > E2f : includes.

In each case, these disjunctions correspond to the Freksa semi-interval relation E1 YOUNGER E2.

5.3 Linking TimeML Events Using Reichenbach’s Framework

Reichenbach’s framework suggests temporal relation constraints based on the tenses and aspects of a pair
of verbs. Given permanence of the reference point between the verbs, these constraints can be described
using semi-interval relations. Accordingly, the full TimeML tense/aspect event-event interaction matrix
according to this paper’s interpretation of the framework is given in Table 5.



e1 ↓ e2 → PAST-NONE PAST-PROG. PAST-PERF. PRESENT-NONE PRESENT-PROG.
PAST-NONE all contemporary succeeds survived by survived by

PAST-PROGRESSIVE contemporary contemporary survives older all
PAST-PERFECTIVE precedes survived by all precedes survived by

PRESENT-NONE survives younger succeeds contemporary contemporary
PRESENT-PROGRESSIVE survives all survives contemporary contemporary
PRESENT-PERFECTIVE all all succeeds survived by survived by

FUTURE-NONE succeeds younger after succeeds younger
FUTURE-PROGRESSIVE survives dies after birth survives younger dies after birth
FUTURE-PERFECTIVE after younger after younger younger

e1 ↓ e2 → PRESENT-PERF. FUTURE-NONE FUTURE-PROG. FUTURE-PERF.
PAST-NONE all precedes survived by before

PAST-PROGRESSIVE all older born before death older
PAST-PERFECTIVE precedes before survived by before

PRESENT-NONE survives precedes older older
PRESENT-PROGRESSIVE survives older born before death older
PRESENT-PERFECTIVE all before survived by before

FUTURE-NONE after all contemporary survived by
FUTURE-PROGRESSIVE survives contemporary contemporary survives
FUTURE-PERFECTIVE after survived by survived by all

Table 5: TimeML tense/aspect pairs with the Freksa semi-intervals relations they suggest, according to this paper’s
interpretation of Reichenbach’s framework. These semi-intervals correspond to disjunctions of TimeML interval relations.

6 Validating the Framework
So far, this paper has discussed the temporal relation typing problem, the differing tense representations
provided by Reichenbach and TimeML, and an interpretation of Reichenbach’s framework that permits
temporal relation type constraint in TimeML. This section details the method for and presents results of
validating Reichenbach’s framework.

6.1 Context Modelling

Temporal context (detailed in Section 3.2) is defined as a set of events that have a common reference time,
where the grammatical rule of sequence of tenses is followed. Lacking tools for annotating temporal
context, it may instead be modelled in a variety of ways, based on arrangements of speech time and
reference time, and the sentence-distance between a given pair of verb events.

Based on the hypothesis that events in a single temporal context will generally be distributed closely
to one another in a text, proximity-based modelling of temporal context is evaluated. This assumes that
all verbs within a certain proximity bound are considered to be in the same context. This is tested for
single-sentence (e.g. all verbs in the same sentence are in the same temporal context, and no others), and
for adjacent-sentence (verbs in adjacent sentences are in the same temporal context).

Because permanence of the reference point requires a shared reference time, for tenses to be mean-
ingful in their context, the speech time must remain static. The “same SR” context refers to modelling
of temporal context as a situation where the ordering of reference and speech times remains constant (in
terms of one preceding, occurring with or following the other). This simple same-ordering constraint on
S and R does not preclude situations where speech or reference time move, but still remain in roughly
the same order (e.g. if reference time moves from 9pm to 9.30pm when speech time is 3pm), which are
in fact changes of temporal context (either because R is no longer shared or because S has moved).

6.2 Results

Results are given in Table 6. In this table, a “consistent TLINK” is one where the relation type given in
the ground truth is a member of the disjunction of relation types suggested by Reichenbach’s framework.
Separate figures are provided for performance including and excluding cases where the disjunction of all
link types is given. This is because consistency given “no constraint” is not useful.



Context model TLINKs Consistent Non-“all” Non-“all” consistent
None (all pairs) 1 167 81.5% 481 55.1%
Same sentence, same SR 300 88.0% 95 62.1%
Same sentence 600 71.2% 346 50.0%
Same / adjacent sentence, same SR 566 91.9% 143 67.8%
Same / adjacent sentence 913 78.3% 422 53.1%

Table 6: Consistency of temporal orderings suggested by Reichenbach’s framework with ground-truth data. The non-all
columns refer to cases in which there was relation constraint, e.g., the framework did not suggest “all relation types possible”.

6.3 Analysis

Interpreted in this way, Reichenbach’s framework is generally consistent with TimeBank, supporting the
framework’s suggestions of event-event ordering among pairs of tensed verb events.

Although the proportion of inconsistent links (ignoring unconstrained cases) is noticeable – 32.2%
in the best scenario – it is sufficiently strong to support the framework. The magnitude of inconsistency
is comparable with inter-annotator disagreement on TimeBank’s temporal relation labels (0.23) when
the crudeness of the proposed temporal context models is taken into account. IAA for tense and aspect
labels in TimeBank – critical to correct application of Reichenbach’s framework – are much higher
(see Section 4.3). The fact that temporal context is derived from models and not explicit gold-standard
annotation is also likely a significant source of noise in agreement.

The “same SR” context yields good results, though has limited applicability (e.g., it halves the
set of considered same-sentence pairings). As both arguments having the same S and R occurs when
they have the same TimeML tense, the only effective variant in these cases – in terms of data that
contributes to Reichenbachian interpretation – is the TimeML aspect value. When given the constraint
that both arguments have the same TimeML tense, the measured consistency of the framework increases.
This hints that the ordering and positions of S and R are critical factors in relating tensed events, and
considering them may lead to improvements in temporal relation labelling techniques that rely on aspect,
such as that of Costa and Branco (2012).

Enlarging the context “window” to include adjacent sentences improves consistency. It may be that
linked events within sentences are often between main events and embedded clauses or reported speech.
It is also possible that single sentences may contain repositionings of the reference point that persist
in following sentences, so that a single sentence does not exhibit internal permanence but permanence
exists between it and following sentences. Close investigation into the typical scoping and switching of
temporal context could help explain this phenomenon and lead to better models of temporal context.

The results suggest Reichenbach’s framework is accurate and capable of temporally ordering events.

7 Conclusion
This paper set out to validate Reichenbach’s framework of tense and aspect in the context of event
ordering. The framework was found to be supported by human-annotated ground-truth data. This result
provides empirical support for this established account of tense and aspect. In its finding, this paper also
details a technique for reasoning about the temporal order of verb events in discourse.

Reichenbach’s framework is a powerful tool for ordering events (and times) within a given context. It
transparently informs approaches to many complex tasks, including automatic temporal ordering, timex
normalisation, machine translation, clinical summarisation, and natural language generation. The ap-
proach detailed here requires temporal context to exploit the framework. However, it is not yet clear how
to automatically determine the bounds of temporal contexts. To this end, future work can consider the
annotation of temporal context, in order to aid high-precision temporal information extraction from dis-
course. Further, the argument that semi-interval reasoning is suitable for temporal information from text
is supported by this empirical work, prompting more investigation into its use in the linguistic context.
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Abstract

We propose an architecture for generating natural language from Linked Data that automatically
learns sentence templates and statistical document planning from parallel RDF datasets and text.
We have built a proof-of-concept system (LOD-DEF) trained on un-annotated text from the Simple
English Wikipedia and RDF triples from DBpedia, focusing exclusively on factual, non-temporal
information. The goal of the system is to generate short descriptions, equivalent to Wikipedia stubs,
of entities found in Linked Datasets. We have evaluated the LOD-DEF system against a simple
generate-from-triples baseline and human-generated output. In evaluation by humans, LOD-DEF
significantly outperforms the baseline on two of three measures: non-redundancy and structure and
coherence.

1 Introduction
In recent years, work on the Semantic Web has undergone something of a split. At one end of the
continuum, considerable energy has been invested into the construction of detailed domain ontologies
expressed in some variant of OWL,1 with considerable attention paid to maintaining logical consis-
tency. At the other end, the so-called Linked Data framework has given rise to the publication of quite
large scale datasets, with relatively little concern for ensuring consistency. Although the language,
namely RDF,2 in which Linked Data is encoded can be regarded as a restricted form of first-order
predicate logic, existing Linked Datasets are closer in many ways to large, distributed databases than
the kind of carefully constructed knowledge base that is familiar from AI research. The work that we
report here takes as its starting point the following question: can Linked Data be used as the input to
a Natural Language Generation (NLG) system? There are at least a couple of reasons why a positive
answer would be interest. First, it is still relatively hard for non-experts to browse unfamiliar Linked
Data sets, and a natural language representation could potentially ameliorate this problem. Second,
cultural heritage institutions (e.g., museums, art galleries, and libraries) are increasingly interested
in publishing their data in the form of Linked Data.3 Such institutions are typically committed to
presenting information about their holdings in multiple forms, and consequently generation of natu-
ral language that utilises a single Linked Data source would be highly attractive. Moreover, the very
nature of Linked Data should make it easier for an NLG system to supplement institution-specific
data with encyclopaedic information drawn from sources such as DBpedia.4

In the light of these motivations, we propose an architecture for a trainable NLG system for Linked
Data that can automatically learn sentence templates and document planning from parallel RDF data
and text, with the communicative goal of describing Wikipedia-style factual descriptions of entities.

1http://www.w3.org/TR/owl2-overview/
2We describe RDF in more detail in the next section
3See http://museum-api.pbworks.com for many examples.
4http://dbpedia.org



2 Background

2.1 Natural Language Generation
Natural Language Generation is the task of producing natural language text from an input of domain-
dependent semantic information. Reiter and Dale (2000) describe a modular architecture for a deep
NLG system as a pipeline composed of three main modules: (1) document planning, where the infor-
mation to include in the final text is selected (content determination) and ordered (text structuring),
(2) microplanning, where lexicalisation, referring expression generation and aggregation (coordi-
nation and subordination of sentences) are performed, and (3) surface realisation, where possible
verbalisations are typically over-generated, ranked and selected. This has been called “deep” NLG,
in contrast to “shallow” methods based on templates.

We will adopt some of this terminology, but nevertheless propose a shallow approach, in which
text realisation uses RDF data to fill slots in sentence templates. Templates are learned on the basis of
parallel text-data — cf. the Text-Knowledge Resources (TKRs) proposed by Duboue and Mckeown
(2003). They describe these as “a set of human written text and knowledge base pairs”, where the
knowledge base includes data that a concept-to-text system could use to generate output achieving
the same communicative goals as the human-authored text. Wide-scale unsupervised learning of
templates and document plans opens the prospect of designing NLG systems that are inexpensive to
develop and deploy, easier to transfer to other domains, and potentially multilingual.

The system is trained from a TKR by performing four main actions. First it aligns the text and
the data by matching data values from RDF statements with strings in the text. Second, it extracts
and modifies sentences that express these values, so as to build a set of sentence templates. Third, it
collects statistics about how the matched values are ordered in text. Finally, it determines the class of
entity that a TKR pair describes and assembles a set of templates and associated information to form
a ‘model’ for that class.

We describe LOD-DEF, a proof-of-concept system trained on text from the Simple English
Wikipedia5 and data from DBpedia (Mendes et al., 2012). Our goal is to demonstrate that such an
architecture is feasible, and that a system trained in this way can generate texts which are perceived
as intelligible and informative by human judges.

2.2 Linked Data and RDF
The term Linked Data refers to a set of best practices for publishing and interlinking structured data
on the Web (Heath and Bizer, 2011). These so-called “Linked Data Principles” mandate the use of
a number of web-based open formats for publishing data, such as HTTP as a transport layer and the
Resource Description Framework (RDF)6 for representing and linking datasets. The central claim of
Linked Data is that the general architecture of the World Wide Web can be generalised to the task of
sharing structured data on global scale. The rate of publication of Linked Open Data (i.e., data freely
accessible without restrictions on use) has been steadily increasing over last years, forming a big data
cloud (Heath and Bizer, 2011) which includes information about an extensive variety of topics. DB-
pedia is the de facto central hub of this Web of Data. It is a broad-purpose knowledge base containing
over a billion RDF statements, which have been extracted by mining Wikipedia “infoboxes”, the ta-
bles of attribute-value pairs appearing alongside an article. These contain much factual information,
such as birth and death dates for people, names of capitals and political leaders for countries, and so
on.

RDF uses a graph-based data model for representing knowledge. Statements in RDF are expressed
as so-called triples of the form (subject predicate object), where predicate is a bi-
nary relation taking subject and object as arguments. RDF subjects and predicates are Uniform
Resource Identifiers (URIs) and objects are either URIs or literals. For example, the following (using
Turtle7 syntax for serialising triples) is intended to say that the J. S. Bach’s date of birth is 1685-03-21
and his place of birth is Eisenach:

(1) :Johann_Sebastian_Bach dbont:birthDate "1685-03-21" .
:Johann_Sebastian_Bach dbont:birthPlace :Eisenach .

5http://dumps.wikimedia.org/simplewiki/latest/simplewiki-latest-pages-articles.
xml.bz2

6http://www.w3.org/RDF/
7http://www.w3.org/TeamSubmission/turtle/



The notation dbont:birthDatemakes use of an abbreviatory syntax for URIs involving the prefix
dbont followed by a colon and a “local name”. A prefix can be thought of as determining a name-
space within which a given identifier, such as :Johann Sebastian Bach, is unique. To be
complete, we also need to declare what the prefix dbont stands for. If, say, it is defined to be
http://dbpedia.org/ontology/, then the unabbreviated version of dbont:birthDate
would be http://dbpedia.org/ontology/birthDate. In the remainder of the paper, we
use prefixed names and often use the empty prefix (e.g., as in :Eisenach) to stand for the default
namespace. Example (1) illustrates another important feature of RDF, namely that the objects of
predicates can be literals (like "1685-03-21") or URIs (like :Eisenach). Although literals are
often just strings, they can also be assigned to other XML Schema datatypes, such as xsd:float.

We will also adopt an abbreviatory convention from Turtle which allows a sequence of triples
that share the same subject to be condensed with a semi-colon, as shown in (2).

(2) :Johann_Sebastian_Bach dbont:birthDate "1685-03-21" ;
dbont:birthPlace :Eisenach .

This is equivalent to (1).
Sets of RDF triples can also be thought of as graphs, where the subject and object provide labels

for nodes in the graph, and the predicate labels the edge between the nodes. This is illustrated in
Fig. 1.

:Johann_Sebastian_Bach

:Eisenach
dbont:birthPlace

dbont:birthDate
1685-03-21

Figure 1: RDF Graph

RDF statements of the kind shown in (1) are equivalent to unquantified atomic sentences of first
order logic.8 For example, the graph in Fig. 1 translates to

(3) birthDate(Johann Sebastian Bach, 1685-03-21) ∧
birthPlace(Johann Sebastian Bach,Eisenach)

3 Related Work
NLG for the Semantic Web Most previous approaches to Natural Language Generation from
Semantic Web formalisms have been concerned with verbalising OWL ontologies (e.g. Stevens et al.,
2011; Hewlett et al., 2005; Liang et al., 2012)). By contrast, the textual realisation of factual
data in RDF has received relatively little attention. One interesting exception is Sun and Mellish
(2007), whose Triple-Text system generates strings directly from RDF with a minimum of hand-
coded rules. Sun and Mellish note that RDF predicates typically encode useful linguistic information.
That is, while URIs are officially expected to be semantically opaque, in practice they often pro-
vide good clues as to their intended interpretation; examples are the predicates ex:hasProperty
and ex:industryOfArea. Triple-Text exploits this information to lexicalise URIs and the triples
they occur in without using domain knowledge. That is, since “camel-case” is often used to indi-
cate implicit word boundaries in RDF predicates, it is straightforward to split up a predicate such as
hasProperty into a sequence of tokens [has, property], as a prelude to further processing.
In Triple-Text, the tokens are POS-tagged and classified into categories via pattern-matching, and the
categories then trigger the application of an appropriate realization rule to derive an output sentence.
For example, given the triple (4), the system generates the sentence (5).

(4) ex:North ex:industryOfArea ex:manufacturing sector.

(5) The industry of the North is manufacturing sector.

Although Triple-Text is fast and inexpensive to deploy, its expressiveness is limited by the fact that
triples are processed in isolation from each other. As a result, only binary relations can be +expressed
(since that is all that can be stated by a single RDF statement). A related consequence is that the

8Note that there is no way of expressing negation in RDF. Although existential quantification is allowed, we shall not have
need of it in this paper.



information contained in a set of RDF statements cannot be aggregated or placed within the context
of a larger discourse structure. Finally, the output is not always grammatically correct and cannot
easily be tailored to a specific domain, since lexical choice is determined by the form of URIs in the
triples.

Trainable NLG As mentioned above, we learn templates from parallel text-knowledge base pairs
(TKRs) as originally proposed by Duboue and Mckeown (2003). Data in a TKR is aligned with the
text (the “matching” stage) in a two-step process. First, the system identifies spans of text that are
string-identical to values in the data. Second, it builds a statistical language model and uses the
entropy of these to determine if other spans of text are indicative of similar values being expressed.
The output of Duboue and Mckeown’s system is dependent on hand-written rules and is specifically
targeted at content determination for the constrained domain of biography generation. The approach
we are adopting is less sophisticated, and is similar to the first matching step in their algorithm, where
values in the data are matched to identical or near-identical strings in the text.

Automatic summarisation Our approach is related to multi-document summarisation and text-
to-text generation insofar as they deal with the extraction and arrangement of sentences to create a
new document. Text-to-text NLG only deals with processing documents that are about the same entity
or topic and extracts the most relevant sentences from those documents to create a new document.
In contrast, we want to generate natural language describing an instance in an ontology for which
there may be no prior text available. To achieve this goal, we need to identify sentences about an
entity that will be “transferable”, that is, will be true of other entities of the same type (see § 4.2).
Where such sentences are not directly derivable from the text, we can try to modify them to make
them transferable. This is similar to the task of sentence compression in automatic summarisation
(e.g. Cohn and Lapata, 2009; Filippova and Strube, 2008). Compression is often effected by tree
operations over a parse tree, with the most frequent operation being the deletion of constituents. For
summarisation, constituents are removed because they are deemed of lesser importance, while in
our approach they are deleted when there is no evidence for them in the data. We adopt a syntactic
pruning approach inspired by Gagnon and Da Sylva (2006), where sentences are first parsed and then
the resulting structures are simplified by applying hand-built rules and filters.

4 The Task

4.1 Overview

:Johann_Sebastian_Bach

:Eisenach

dbont:birthPlace

foaf:name

Johan Sebastian Bach

:Carl_Maria_von_Weber

:Eutin

dbont:birthPlace

dbont:birthDate 1786-11-18

dbont:birthDate 1685-03-21

Carl Maria von Weber

foaf:name

yago:German_Composers

rdf:type

rdf:type

Figure 2: RDF Graph of Two Composers

We begin this section with a simplified example of how templates are extracted and then filled to
produce a new sentence. Let’s assume that our TKR is a pairing of the text

(6) Johan Sebastian Bach (b. Eisenach, 21 March 1685) was a German composer of the Baroque
period.



with the RDF graph in Fig. 2. Note that a triple using the predicate rdf:type is the standard way
of expressing class membership in RDF. By comparing the text with the part of the graph rooted in
the node :Johann Sebastian Bach, we can figure out that certain substrings of (6) correspond
to values of predicates in the RDF. For example, the string Johan Sebastian Bach matches the value
of the predicate foaf:name. If we delete any string in (6) that can be mapped to the value of an
RDF predicate in Fig. 2, then the result is a sentence template like that shown in (7), where we’ve use
an underscore ( ) to indicate ‘slots’ in the template.

(7) (b. , ) was a of the Baroque period.

Although (7) is a template, it is not MINIMAL, since it contains information (of the Baroque period)
that fails to correspond to any values in the graph. However, once we have pruned away non-minimal
text, we are left with a transferable template which can be used to generate new sentences. In partic-
ular, we can use the subgraph of Fig. 2 rooted in the node Carl Maria von Weber to fill the slots
in the template, giving us the result in (8).

(8) Carl Maria von Weber (b. Eutin, 18 November 1786) was a German composer.

4.2 Extracting Templates
Automatically aligning the RDF data with the text can be viewed a special case of Named Entity
Recognition (NER), or as a similar task to that of Wikification, which aims to annotate keywords in
the document with their most relevant Wikipedia page (Mihalcea and Csomai, 2007). In our more
restricted scenario, we only need to match spans of text with literal values that occur as objects of
triples in the RDF. For instance, we want to be able to match the text string Eisenach with the literal
that occurs as object of the predicate dbont:birthPlace. Rather than labelling named entity
mentions with classes, we label them with the predicate of the triple in which the corresponding data
value occurs. Let’s write α ∼ o to mean that a string α is matched to an RDF object o. Then we say
that α has object-type p if α ∼ o and for some subject s, a triple of the form (s p o) occurs in the
relevant RDF graph.

To illustrate, let’s consider the slightly more complex example in Fig. 3.

Figure 3: Aligning Data and Text

The template extracted from this alignment is represented as a text string with interpolated slots of
the form [p], where p is an RDF predicate. This is illustrated in (9).

(9) [foaf:name] (b. [dbont:birthPlace], [dbont:birthDate], d. [dbont:
deathPlace], [dbont:deathDate]) was a [dbprop:shortDescription].

Selecting the RDF predicates whose values are to be matched in the text is dependent on the
domain of the text and on the way data is encoded in RDF. We can think of the domain in terms of
a subgraph of a given depth within the overall RDF graph in our dataset. In the present approach,
we only retrieve the triples whose subject corresponds to the main topic of the Wikipedia article
being processed. This restriction to subgraphs of depth 1 turned out to be sufficient for our task, and
retrieving longer paths through the graph was found to significantly increase the complexity of the
extraction without corresponding benefit.



Following Grice’s Maxim of Quality, the output of the system should be constrained to be “truth-
ful”, in the sense that the textual output should be supported by evidence in the input data. As
mentioned earlier, the sentence templates extracted for a given subject s should be minimal with
respect to s, in that they do not contain substantive information unless it is licensed by a triple (s p
o). If a template T is minimal for s, and there is some s’ which has the same class and (at least) the
same attributes as s, then the result of filling T ’s slots with property values of s’ should be a true
sentence. As we pointed out earlier, we adopt a similar approach to (Gagnon and Da Sylva, 2006) by
first parsing9 the source sentences and then pruning away any constituents which fail to be licensed
by the RDF data.

We will call the following grammatical categories PRUNABLE: noun, adjective, adverb and nu-
meral. Pruning proceeds in three stages. First, if a word w belongs to a prunable category, then we
delete w if it fails to match a data value in the relevant graph. Second, we delete any subtree T whose
head has been deleted; for example, if w of category N has been deleted, then we also delete the NP
(and any remaining daughters) which w headed. Finally, templates are discarded unless they contain
slots corresponding to both the subject of the triple set and at least one property value, and remaining
templates undergo post-processing to ensure correct punctuation by deleting empty brackets, dupli-
cate commas, and so on.

The template extraction algorithm was informally evaluated by running it on 268 articles. 199
candidate templates were extracted, of which 124 were discarded after pruning and other filtering,
leading to 74 templates. We judged 60 of these to be minimal, and 43 (58%) to be grammatically
acceptable.

4.3 Document Planning
For content determination, we implement the baseline of (Duboue and Mckeown, 2003). We collect
unigrams of matched RDF predicates in the text, and if the frequency of a predicate is below a thresh-
old in the articles for a given class of entity, even if an instance of this class has this property in the
data, the system should not output it. According to Reiter and Dale (2000), document structuring
carries out more complex selection and ordering of information than just sequencing; it treats the
text as a tree structure and clusters related items of information. Given that the sentences templates
extracted from the text contain several properties expressed, we can think of them as partial trees,
part of the bigger tree required for document structuring, so we expect that extracting these templates
and ordering them in the right way will yield good results. We never attempt to assess the relative
importance of a sentence to a text; we aim to extract as many templates as possible and treat them as
equally important.

We need to deal with the fact that, for a given subject, an RDF predicate can have more than one
value and that more than one property can have the same value. Indeed this is often the case and LOD
tends to show very high redundancy. To deal with this, we cluster predicates into equivalence classes,
or PREDICATE POOLS, when they appear to take the same value for the subject with frequency over
a given threshold. For example, foaf:name, rdfs:label and dbprop:name are clustered
together in a single pool for all classes used in the experiments.

Sentence templates that have been selected for inclusion in the final text are ordered using tri-
gram probabilities of the predicate pools they verbalise. For each step, the probability score of each
template is computed using the trigram probability of the last two verbalised pools and the first one
in the template and the one with the highest probability is chosen.

4.4 Class Models
The NLG system has a single communicative goal: to describe an instance of a class (for example, J.
S. Bach as an instance of GermanComposer). However, attributes that are relevant to, say, a rock
band, are unlikely to be relevant to an antelope or other animal species. Similarly, given predicates
need not be expressed in the same order for all classes. Finally, sentence templates can also be
expected to depend on the class of the entity, because of the RDF predicates they realise and also
because of their lexical and syntactic composition. In order to capture this dependence, we associate
with classes a bundle of information including the relevant RDF predicate pools, a preferred ordering

9We used the Stanford Parser version 1.6.5, from 30/11/2010 with the pre-trained PCFG English model (Klein and Manning,
2003).



for realising the corresponding object-types, and the appropriate sentence templates. This bundle is
termed a CLASS MODEL.

This means that when we want to generate text about a given entity, we need to choose, from
those available, the class that it would be most prototypical of (cf. Rosch, 1973). This class must
have the right granularity and level of detail, both for training and generating. It must not be so
general that its attributes are too generic, or so specific that the extracted templates do not generalise
to other entities of the same class. This task is surprisingly nontrivial, since not only can instances
be members of multiple classes (via triples of the form s rdf:type C), but classes also allow
multiple inheritance (via triples of the form C rdfs:subClassOf SC). An initial exploratory
analysis of the Wikipedia data shows that a single entity typically belongs to a large number of
classes. This is illustrated by Figure 4, which shows the classes to which J. S. Bach belongs according
to DBPedia.10

AnglicanSaints ComposersForViolin
Person ComposersForCello
GermanComposers GermanClassicalOrganists
ComposersForPipeOrgan PeopleCelebratedInTheLutheranLiturgicalCalendar
ComposersForLute OrganistsAndComposersInTheNorthGermanTradition
18th-centuryGermanPeople PeopleFromSaxe-Eisenach
BaroquEComposers ClassicalComposersOfChurchMusic
PeopleFromEisenach

Figure 4: Class membership of Johann Sebastian Bach

Choosing the “right” class for an entity is a challenging problem. For the present approach we
have adopted baseline algorithm which rests on the heuristic that if a substring occurs frequently in
the terms used as class names for some entity, then it is likely to correspond to a core class for that
entity. For example, inspection of Figure 4 shows that Composers occurs as a substring in 8 of the 15
class names (and will also occur in the literal value of the rdfs:label predicate for those classes).
The algorithm has the following steps:

1. Collect the rdfs:label values for each of the classes as a bag-of-words, and combine this
with the words from the first sentence of the Wikipedia article. Create a word vector tf (term
frequency) whose values are each word’s raw frequency in the bag.

2. Compute a score for every class label, which is the normalized sum of tf scores of every work
in it, using the formula:

score(w) =
1

M

N∑
i=0

tf (wi)

where w is the list of tokens derived from the class label string (e.g. [”People”, ”from”,
”Eisenach”]), wi is the ith element in this list and N is the total number of elements in w. M
is set to be N if N > 1, otherwise it is set to an arbitrary higher value to reflect a dispreference
against one-word class names.

3. Select the classes with the n-highest scores. We train for several models at the same time, given
that we cannot be confident the class we chose is the only one that the entity is prototypical of.
During the experiments, we set the value of n to 5.

As an example, the 5-best class list (with their scores) for :Johann Sebastian Bach is shown
in (10). For each of these classes, a class model is created (or updated if already present).

(10) yago:GermanComposers (6.0), yago:BaroquEComposers (3.3)
yago:ComposersForViolin (3.0), yago:ComposersForCello (3.0),
yago:ComposersForLute (3.0)

4.5 Generation
The LOD-DEF generation algorithm takes as input a collection of class models, and the URI of
the entity to be described. The five best classes are chosen (using the approach described above,
but without the addition of article text to the bag of words) and the corresponding model classes are

10To ease presentation, we have omitted the namespace qualifiers of these classes.



scored according to the number of predicate pools that would be instantiated via the model’s sentence
templates.

In order to check instantiation, we need to access the RDF properties of the subject entity, and
this is carried out by running a sequence of SPARQL queries against the DBPedia endpoint. That is,
we execute a query for each predicate pool in the class model. As mentioned earlier, a predicate pool
may contain a number of different RDF predicates, but since these are considered to be semantically
equivalent, as soon as the value of one of them has been successfully returned by the query, this value
is taken as the representative for the whole pool and querying is terminated. Where a single pool has
multiple values, it is treated as a list for the purpose of aggregation, e.g. if ”:X dbont:birthPlace :A”
and ”:X dbont:birthPlace :B” then ”X was born in A and B”.

To illustrate the scoring procedure, let’s suppose that we have selected the classes shown in (10)
for the topic :Johann Sebastian Bach. The scores for two class models are shown in Table 1.

Models
GermanComposers ComposersForCello

Number of templates 2 3
Predicates with values in the data 7 6
Predicates instantiated in templates 5 6

Table 1: Scoring class models

The chosen model would be ComposersForCello, even though it received a lower score in
the first step, because a higher number of values would be (potentially) expressed through templates.
The motivation behind this choice is that an extracted sentence template is expected to generate
higher quality text, so a model instantiating more predicates through extracted templates is preferred.

We use chart generation: all sentence templates in the model for which there are enough triples in
the data are put on a chart and combinations of them are generated. The following steps are taken: (1)
We discard templates whose object-types involve predicate pools for which no data values have been
found and put the remaining ones on the chart. (2) For each pool in the model, a default sentence
template of the form [possessive] [property] is [value] is generated and added to
the chart. This deals with the situation where a retrieved data value would failed to be expressed for
a lack of an appropriate template.

We select and order sentence templates from the chart to produce a text. Ideally, we would want
to find the combination of sentences that expresses all the values of the predicate pools in the model,
while employing as many extracted templates and as few default templates as possible. We also want
to order the templates in the most plausible order according to the RDF predicate trigrams collected
during training. In order to deal with the combinatorial explosion we compute scores for all the
options at every step, select the combination with the highest score and discard all the others, thus
only ever keeping one possible combination. One important constraint is that a given predicate pool
should only be instantiated once per generated article. When a template is chosen that requires the
value of a predicate pool, any other template on the chart also requiring that information will not be
considered for the combination. This is not guaranteed to be the optimal solution to the requirements
outlined above, but it is a satisfactory trade-off between quality and speed and keeps the algorithm to
O(n2log(n)).

5 Evaluation

5.1 Method and Materials
Given the exploratory nature of this project, the evaluation relies on human evaluation of the system’s
output compared to output from two other systems: the baseline and expert human output. We adopt
a two-panel (i.e., two separate groups of subjects) approach to compare the three outputs, similarly
to Sun and Mellish (2007). Subjects in Panel I generate descriptions of the same 12 entities 11 while
subjects in Panel II rate the different outputs of System A (baseline), System B (LOD-DEF) and
System C (human generation) across a number of dimensions. The hypothesis is that subjects will
rate LOD-DEF higher on average than a baseline system generating exclusively from English words
in RDF predicate labels. The system is also ranked against human-generated text for the same data.

11For a full list of the entities used and more in-depth details of our implementation, see Duma (2012).



Human-generated text need not always be an upper bound in subjective evaluation, but given the
simplicity of the two NLG systems, this is a reasonable expectation.

Subjects were asked to complete an online survey. For this survey, the same 12 entities were
described by the three systems, which produced 36 short texts, rated by 25 subjects. The participants
were self-identified as having an upper-intermediate or above level of English. The texts were pre-
sented to the subjects in pseudo-random order, to avoid texts about the same entity occurring within
a page of each other (four texts were presented on every page). Subject were asked to rate each text
on a measure of 1 (lowest) to 5 (highest) on the following three criteria, adapted from the DUC 2007
criteria: grammaticality; non-redundancy; and structure and coherence.12 No direct evaluation of
content determination is carried out, but this is assumed to evaluated implicitly through the dimen-
sion of non-redundancy, given that its main effect in the implementation is filtering out redundant
and unnecessary information. LOD-DEF does not select more relevant triples, but it omits irrelevant
ones. It was not disclosed to the subjects that humans generated the texts of one of the systems being
tested.

Data One of the aims was to evaluate the effectiveness of extracted sentence templates used by
the LOD-DEF system. Consequently, classes for evaluation were not chosen at random, but were
selected with a bias towards maximising the number of RDF predicates matched in text and the
number of templates; this correlated with classes for which more factual information (strings and
quantities) was available on DBpedia. Subject to this constraint, an attempt was made to vary the
selected classes as much as possible.

Baseline Jennifer Saunders is an English television actor. Her birth date is 6 July 1958. Her descrip-
tion is British comedienne. Her place of birth is Sleaford, Lincolnshire, England.

Humans Jennifer Saunders (Born 06/07/1958) is an English comedienne, originally from Sleaford,
Lincolnshire.

LOD-DEF Jennifer Saunders (6 July 1958, Sleaford and Lincolnshire) is a British comedienne.
Figure 5: Sample outputs of baseline, human and LOD-DEF

Baseline Our baseline NLG system employs direct generation from RDF triples in the style of Sun
and Mellish (2007). Each triple is realised as a single sentences and a shallow linguistic analysis
of the words in the RDF predicate determines the structure of these sentences. The label values
(from rdfs:label) of predicates are used for this when available, otherwise a tokenisation of the
predicate URI was used. The initial sentence created by the baseline is realises the class of the entity,
formed by the name of the entity (its rdfs:label) followed by is a and the rdfs:label of the
class of the entity, e.g., Johann Sebastian Bach is a German composer. The relevant class is chosen
using the class selection algorithm detailed earlier.

The collection of triples we are dealing with encodes information about a single entity, and we
wish to present this information as a coherent text made up of several sentences. To aid coherence,
the baseline implements a very simple Referring Expression Generation algorithm, where subsequent
references to the topic entity use a personal pronouns rather than the full name. The system selects the
correct personal and possessive pronoun on the basis of the value of the foaf:gender predicate.
This baseline makes no attempt at document planning, but simple heuristics filter out properties with
inappropriate values (e.g., values containing more than ten words).

Human Upper Bound Panel I, formed by two native speakers of English (linguistics postgrad-
uate students), were given triples related to the chosen entities and instructions to write summary
descriptions of the entities the data is about, expressing in text as much of this data as possible. The
information was raw but presented in a human-friendly format as illustrated in (11).

(11) birth date = 1958-07-06
place of birth = Sleaford, Lincolnshire, England

The triples were based on the same data as that used by by the LOD-DEF system except that they
were manually filtered to remove redundancy and to randomize their order. We avoided giving the
subjects examples of what kind of output we expected, thus taking care not to prime them. Fig. 5
shows short examples of each kind of output.

12http://www-nlpir.nist.gov/projects/duc/duc2007/quality-questions.txt



5.2 Results
An exploratory analysis of the data collected showed clear differences in means between for the
rating of the three systems (Table 2). We ran a One-Way ANOVA for each of the three criteria the

texts were rated on. All three ANOVAs were statistically significant: for grammaticalityF (2, 72) =
119.001, p < 0.001, for non-redundancy F (2, 72) = 129.053, p < 0.001 and for structure and co-
herence F (2, 72) = 129.053, p < 0.001. Tukey’s Post-Hoc test established which comparisons were
significant for each; Tables 3 and 4 show the differences in mean and their significance.

As expected, human generation was judged to be consistently superior to the other two systems.
LOD-DEF does not improve on the perception of grammaticality of the baseline, but it does signifi-
cantly outperform the baseline on non-redundancy and structure and coherence. The most significant
improvement of LOD-DEF over the baseline is on the non-redundancy metric, with a difference of
1.14.

System Grammaticality Non-redundancy Structure & coherence

A (baseline) 2.29 1.89 1.95
B (LOD-DEF) 2.58 3.03 2.70
C (humans) 4.48 4.66 4.49

Table 2: Means

Baseline vs. LOD-DEF Grammaticality Non-redundancy Structure & coherence

Difference 0.29 1.14 0.75
Significance p = 0.151 p < 0.001 p < 0.001
Significant No Yes Yes

Table 3: Differences and significance

LOD-DEF vs. Humans Grammaticality Non-redundancy Structure & coherence

Difference 1.14 1.63 1.79
Significance p < 0.001 p < 0.001 p < 0.001
Significant Yes Yes Yes

Table 4: Differences and significance

6 Conclusion
We have implemented and tested a trainable shallow Natural Language Generation system for ver-
balising factual RDF data based on the extraction of sentence templates and document planning via
content n-grams. We trained this system on text from the Simple English Wikipedia and RDF triples
from DBpedia, and also implemented a baseline system, based on direct generation from triples.

We conducted human evaluation of the two systems, together with text generated by humans from
the same information, where LOD-DEF significantly outperformed the baseline on non-redundancy
and structure and coherence. These are encouraging results that suggest shallow systems like this one
can be easily built and trained from Text-Knowledge Resources. While any structured representation
of meaning could be used as the ”knowledge” resource, we have dealt specifically with Linked Open
Data, which required specific solutions to some of its inherent challenges.

It is conceivable that most, if not all, components of an NLG system could be trained from these
TKR. More sophisticated approaches applying a deeper understanding of natural language and deeper
NLG would be required for this, together with much reasoning and inference to connect the data and
text. Our results, preliminary as they are, suggest that this vision is worth pursuing.
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Abstract

Distributional representations have recently been proposed as a general-purpose representation
of natural language meaning, to replace logical form. There is, however, one important difference
between logical and distributional representations: Logical languages have a clear semantics, while
distributional representations do not. In this paper, we propose a semantics for distributional repre-
sentations that links points in vector space to mental concepts. We extend this framework to a joint
semantics of logic and distributions by linking intensions of logical expressions to mental concepts.

1 Introduction

Distributional similarity can model a surprising range of phenomena (e.g., Lund et al. (1995); Landauer
and Dumais (1997)) and is useful in many NLP tasks (Turney and Pantel, 2010). Recently, it has been
suggested that a general-purpose framework for representing natural language semantics should be dis-
tributional, such that it could represent word similarity and phrase similarity (Coecke et al., 2010; Baroni
and Zamparelli, 2010; Grefenstette and Sadrzadeh, 2011; Clarke, 2012). Another suggestion has been to
combine distributional representations and logical form, with the argument that the strengths of the two
frameworks are in complementary areas (Garrette et al., 2011).

One important difference between logic and distributional representations is that logics have a seman-
tics. For example, a model1 in model-theoretic semantics provides a truth assignment to each sentence
of a logical language. More generally, it associates expressions of a logic with set-theoretic structures,
for example the constant cat′ could be interpreted as the set of all cats in a given world. But what is the
interpretation of a distributional representation? What does a point in vector space, where the dimensions
are typically uninterpretable symbols, stand for? 2 In this paper, we propose a semantics in which dis-
tributional representations stand for mental concepts, and are linked to intensions of logical expressions.
This gives us a joint semantics for distributional and logical representations.

Distributional representations stand for mental concepts. One central function of models is that they
evaluate sentences of a logic as being either true or false. Distributional representations have been eval-
uated on a variety of phenomena connected to human concept representation (e.g., Lund et al. (1995);
Landauer and Dumais (1997); Burgess and Lund (1997)). Here, evaluation means that predictions based
on distributional similarity are compared to experimental results from human subjects. So we will inter-
pret distributional representations over a conceptual structure.

Distributional representations stand for intensions. Gärdenfors (2004) suggests that the intensions
of logical expressions should be mental concepts. By adopting this view, we can link distributional
representations and logic through a common semantics: Both the intensions of logical expressions and
the interpretations of distributional representations are mental concepts. However, there is a technical

1In the context of logical languages, “models” are structures that provide interpretations. In the context of distributional
approaches, “distributional models” are particular choices of parameters. To avoid confusion, this paper will reserve the term
“model” for the model-of-a-logic sense.

2Clark et al. (2008) encode a model in a vector space in which natural language sentences are mapped to a single-dimensional
space that encodes truth and falsehood. This is a vector space representation, but it is not distributional as it is not derived from
observed contexts. In particular, it does not constitute a semantics for a distributional representation.
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∃x
(
woodchuck(x) ∧ see(John, x)

)
sim(woodchuck, groundhog) > θ

∃x
(
groundhog(x) ∧ see(John, x)

)

Figure 1: Sketch of an example interaction of distributional and logical representations

problem: If intensions are mental concepts, they cannot be mappings from possible worlds to extensions,
which is the prevalent way of defining intensions. We address this problem through hyper-intensional
semantics. Hyper-intensional approaches in formal semantics (Fox and Lappin, 2001, 2005; Muskens,
2007) were originally introduced to address problems in the granularity of intensions. Crucially, some
hyper-intensional approaches have intensions that are abstract objects, with minimal requirements on the
nature of these objects. So we can build on them to link some intensions to conceptual structure.

Why design a semantics for distributional representations? Our aim is not to explicitly construct
conceptual models; that would be at least as hard as constructing an ontology. Rather, our aim is to
support inferences. Distributional representations induce synonyms and paraphrases automatically based
on distributional similarity (Lin, 1998; Lin and Pantel, 2001). As Garrette et al. (2011) point out, and
as illustrated in Figure 1, these can be used as inference rules within logical form. But when is such
inference projection valid? Our main aim for constructing a joint semantics is to provide a principled
basis for answering this question.

In the current paper, we construct a first semantics along the lines sketched above. In order to be
able to take this first step, we simplify distributional predictions greatly by discretizing them. We want
to stress, however, that this is a temporary restriction; our eventual aim is to make use of the ability of
distributional models to handle graded and uncertain information as well as ambiguity.

2 Related work

Predicting sentence similarity with distributional representations. The distributional representation
for a word is typically based on the textual contexts in which it has been observed (Turney and Pantel,
2010). The distributional representation of a document is typically based on the words that it contains,
or on latent classes derived from co-occurrences of those words (Landauer and Dumais, 1997; Blei
et al., 2003). Phrases and sentences occupy an unhappy middle ground between words and documents.
They re-appear too rarely for a representation in terms of the textual contexts in which they have been
observed, and they are too short for a document-like representation. There are multiple approaches to
predicting similarity between sentences based on distributional information. The first computes a single
vector space representation for a phrase or sentence in a compositional manner from the representations
of the individual words (Coecke et al., 2010; Baroni and Zamparelli, 2010; Grefenstette and Sadrzadeh,
2011). This approach currently still faces big hurdles, including the problem of encoding the meaning
of function words and the problem of predicting similarity for sentences of different structure. The
second approach compares two phrases or sentences by computing multiple pairwise similarity values
between components (words or smaller phrases) of the two sentences and then combining those similarity
values (Socher et al., 2011; Turney, 2012). The third approach seeks to transform the representation of
one sentence into another through term rewriting, where the rewriting rules are based on distributional
similarity between words and smaller phrases (Bar-Haim et al., 2007). The approach of Garrette et al.
(2011) can be viewed as falling into the third group. It represents sentences not as syntactic graphs as
Bar-Haim et al. (2007) but through logic, and injects weighted inference rules derived from distributional
similarity. Our approach belongs into this third group. The aim of the semantics that we present in
Section 3 is to show that the use of distributional rewriting rules does not change the semantics of a logical
expression. A fourth approach is the taken by Clarke (2007, 2012), who formalizes the idea of “meaning
as context” in an algebraic framework that replaces concrete corpora with a generative corpus model that
can assign probabilities to arbitrary word sequences. This eliminates the sparseness problem of finite
corpora, such that both words and arbitrary phrases can be given distributional representations. Clarke
also combines vector spaces and logic-based semantics by proposing a space in which the dimensions
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(IHTT1) p ` >
(IHTT2) ⊥ ` p
(IHTT3) ` ¬p↔ p→ ⊥
(IHTT4) r ` p ∧ q iff r ` p and r ` q
(IHTT5) p ∨ q ` r iff p ` r or q ` r
(IHTT6) p ` q → r iff p ∧ q ` r
(IHTT7) p ` ∀xBφ〈B,Π〉 iff p ` φ
(IHTT8) φ(a) ` ∃xBφ(x) (where φ ∈ 〈B,Π〉, and a
is a constant in B)

(IHTT9) ` λuφ(v) ∼= φ[u/v] (where u is a variable
in A, v ∈ A, φ ∈ 〈A,B〉, and v is not bound when
substituted for u in φ)
(IHTT10) ` ∀s, tΠ

(
s ∼= t↔ (s↔ t)

)

(IHTT11) ` ∀φ, ψ〈A,B〉
(
∀uA(φ(u) ∼= ψ(u)) → φ ∼=

ψ
)

(IHTT12) ` ∀u, vA∀φ〈A,B〉
(
u = v → φ(u) ∼= φ(v)

)

(IHTT13) ` ∀tΠ
(
t ∨ ¬t)

Table 1: Axioms of the intensional higher-order type theory IHTT of Fox and Lappin (2001)

• If αA is a non-logical constant, then ||α||M,g =
F (I(α))
• If αA is a variable, then ||α||M,g = g(α)
• ||α〈A,B〉(βA)||M,g = ||α||M,g

(
||β||M,g

)

• If α is in A and u is a variable in B, then
||λuα||M,g is a function h : DA → DB such
that for any a ∈ DA, h(a) = ||α||M,g[u/a]

• ||¬φΠ||M,g = t iff ||φ||M,g = f
• ||φΠ ∧ ψΠ||M,g = t iff ||φ||M,g =
||ψ||M,g = t

• ||φΠ ∨ ψΠ||M,g = t iff ||φ||M,g = t or ||ψ||M,g = t
• ||φΠ → ψΠ||M,g = t iff ||φ||M,g = f or ||ψ||M,g = t
• ||φΠ ↔ ψΠ||M,g = t iff ||φ||M,g = ||ψ||M,g

• ||αA
∼= βA||M,g = t iff ||α||M,g = ||β||M,g

• ||αA = βA||M,g = t iff I(α) = I(β)
• ||∀uAφΠ||M,g = t iff for all a ∈ DA

(
||φ||M,g[u/a] = t

)

• ||∃uAφΠ||M,g = t iff for some a ∈ DA

(
||φ||M,g[u/a] = t

)

• φΠ is true in M (false in M ) iff ||φ||M,g = t (f ) for all g.
• φΠ is logically true (false) iff φ is true (false) in every M
• φΠ |= ψΠ iff for every M such that φ is true in M , ψ is
true in M

Table 2: Interpretation of IHTT expressions

correspond to logic formulas. A word or phrase x is linked to formulas for sequences uxv in which it
occurs, and each formula F is generalized to other formulas G that entail F . But it is not clear yet how
this representation could be used for inferences.

Distributions, extensions, and intensions Like the current paper, Copestake and Herbelot (2012) con-
sider the connection between distributional representations and the semantics of logical languages. How-
ever, they reach a very different conclusion. They propose using distributional representations as inten-
sions of logical expressions. In addition, they link distributions to extensions by noting that each sentence
that contributes to the distributional representation for the word “woodchuck” is about some member of
the extension ofwoodchuck. They define the ideal distribution for a concept, for example “woodchuck”,
as the collection of all true statements about all members of the category, in this case all woodchucks in
the world.

In our view, distributions describe general, intensional knowledge, and do not provide reference to
extensions, so we will link distributional representations to intensions and not extensions. Concerning
the Copestake and Herbelot proposal of distributions as intensions, we consider distributions as represen-
tations in need of an interpretation or intension, rather than representations that constitute the intension. 3

Also it is a somewhat unclear how the intension would be defined in practice in the Copestake and Her-
belot framework, as it is based on the hypothetical ideal distribution with its potentially infinite number
of sentences.

Hyper-intensional semantics The axiom of Extensionality states that if two expressions have the same
extension, then they share all their properties. Together with the standard formulation of intensions as
functions from possible worlds to extensions, this generates the problem that logically equivalent state-
ments like “John sleeps” and “John sleeps, and Mary runs or does not run” become intersubstitutable in

3Though it should be noted that there is a debate within psychology on whether mental conceptual knowledge is actually
distributional in nature (Landauer and Dumais, 1997; Barsalou, 2008; Andrews et al., 2009).
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all contexts, even in contexts like “Sue believes that. . . ” where they should not be exchangeable. Hyper-
intensional semantics addresses this problem. In particular, some approaches (Fox and Lappin, 2001,
2005; Muskens, 2007) address the problem by (1) dropping the axiom of Extensionality, (2) mapping ex-
pressions of the logic first to intensions and then mapping the intensions to extensions, and (3) adopting a
notion of intensions as abstract objects with minimal restrictions. This makes these approaches relevant
for our purposes, as we can add the axioms that we need for a joint semantics of logical and distributional
representations. Muskens (2007) has one constraint on intensions that makes the approach unusable for
our purposes in its current form: It has intensions and extensions be objects from the same collections of
domains – but we would not want to force extensions to be mental objects. Instead we build on the in-
tensional higher-order type theory IHTT from Fox and Lappin (2001). The set of types of IHTT contains
the basic types e (for entity) and Π (proposition), and if A, B are types, then so is 〈A,B〉. The logic
contains all the usual connectives, plus “∼=” for extensional equality and “=” for intensional equality. Fox
and Lappin adopt the axioms shown in Table 1, which do not include the axiom of Extensionality. 4 A
model for IHTT is a tuple M = 〈D,S,L, I, F 〉, where D is a family of non-empty sets such that DA is
the set of possible extensions for expressions of type A. S is the set of possible intensions, and L ⊆ S
is the set of possible intensions for non-logical constants of the logic. I is a function that maps arbitrary
expressions of IHTT to the set S of intensions. If α is a non-logical constant, then I(α) is in L, otherwise
I(α) is in S −L. The function F is a mapping from L (intensions of non-logical constants) to members
of D (extensions). A valuation g is a function from the variables of IHTT to members of D such that for
all vA it holds that g(v) ∈ DA. A model of IHTT has to satisfy the following constraints: 5

(M1) If v is a variable, then I(v) = v.

(M2) For a model M , if I(α) = I(β), then for all g, ||α||M,g = ||β||M,g.

Table 2 shows the definition of extensions ||.||M,g of expressions of IHTT.

3 A joint semantics for distributional and logical representations

In this section we construct a first implementation of the semantics for distributional representations
sketched in the introduction. In this semantics, distributional interpretations are interpreted over mental
concepts and are linked to the intensions of some logical expressions. We use as a basis the hyper-
intensional logic IHTT of Fox and Lappin (2001) (Section 2), which does not require intensions to be
mappings from possible worlds to extensions, such that we are free to link intensions to mental concepts.
The central result of this section will be that the interpretation of sentences of the logic is invariant to
rewriting steps such as the one in Figure 1, which replace a non-logical constant by another based on
distributional similarity. The semantics that we present in this paper constitutes a first step. It leaves some
important questions open, such as paraphrasing beyond the word level, or graded concept membership.

3.1 Distributional representations

Typically, the distributional representation for a target word t is computed from the occurrences, or
usages, of t in a given corpus. Minimally, a usage is a sequence of words in which the target appears at
least once. We will allow for two additional pieces of information in a usage, namely larger discourse
context, and non-linguistic context. (Recently, there have been distributional approaches that make use
of non-linguistic context, in particular image data (Feng and Lapata, 2010; Bruni et al., 2012).)

Let W be a set of words (the lexicon), and let Seq(W ) be the set of finite sequences over W . Then
a usage over W is a tuple 〈s, t, δ, ω〉, where s ∈ Seq(W ) is a sequence of words such that a word
form of t ∈ W occurs in s at least once, δ ∈ ∆ ∪ {NA} is a (possibly empty) discourse context, and

4We write αA to indicate that expression α is of type A.
5Fox and Lappin mention that one could add the constraint that if α, α′ differ only in the names of bound variables, then

I(α) = I(α′). We do not do that here, since we are only concerned with replacing non-logical constants in the current paper.
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ω ∈ Ω ∪ {NA} is a (possibly empty) non-linguistic context. We write U(W,∆,Ω) for the set of all
usages over W (and ∆ and Ω). For any usage u = 〈s, t, δ, ω〉, we write target(u) = t. Given a set
U ⊆ U(W,∆,Ω) of usages, we write Ut = {u ∈ U | target(u) = t} for the usages of a target word t.
Furthermore, we write WU = {t ∈W | Ut 6= ∅} for the set of words that have usages in U .

In distributional approaches, the vector space representation for a target word t is computed from
such a set U of usages, typically by mapping U to a single point in vector space (Lund et al., 1995;
Landauer and Dumais, 1997) or a set of points (Schütze, 1998; Reisinger and Mooney, 2010). This
makes it possible to use linear algebra in modeling semantics. However, for our current purposes, we do
not need to specify any particular mapping to a vector space, and can simply work with the underlying
set U of usages: A finite set U of usages over W constitutes a distributional representation for WU . The
distributional representation for a word t ∈W is Ut.

3.2 A semantics for distributional representations

We want to interpret distributional representations over conceptual structure. But what is conceptual
structure? We know that concepts are linked by different semantic relations, including is-a, and part-
of (Fellbaum, 1998), they can overlap, and they are associated with definitional features (Murphy, 2002).
Eventually, all of these properties may be useful to include in the semantics of distributional representa-
tions. But for this first step we work with a much simpler definition. We define a conceptual structure
simply as a set of (atomic, unconnected) concepts.

An individual usage of a word t can refer to a single mental concept. For example, the usage of
“bank” in (1) clearly refers to a “financial institution” concept, not the land at the side of a river. But an
individual usage can also refer to multiple mental concepts when there is ambiguity as in (2), or when
there is too little information to determine the intended meaning as in (3). 67

(1) 〈The bank engaged in risky stock trades, bank, δ, ω〉

(2) 〈Why fix dinner when it isn’t broken, fix, δ, ω〉8

(3) 〈bank, bank,NA,NA〉

From this link between individual usages and concepts, we can derive a link between distributional
representations and concepts: The representation Ut of a word t is connected to all concepts to which the
usages in Ut link. Formally, a conceptual model for U(W,∆,Ω) is a tuple C = 〈Iu, C〉, where C is a set
of concepts, and the function Iu : U(W,∆,Ω) → 2C is an interpretation function for usages that maps
each usage to a set of concepts. 9 A conceptual model C together with a finite set U ⊆ U(W,∆,Ω) of
usages define a conceptual mapping for words. We write IC,U (w) =

⋃
u∈Uw

Iu(u) for the set of concepts
associated with w.

Distributional approaches centrally use some similarity measure, for example cosine similarity, on
pairs of distributional representations, usually pairs of points in vector space. Since we represent a word
t directly by its set Ut of usages rather than a point in vector space derived from Ut, we instead have
a similarity measure sim(U1, U2) on sets of usages. We assume a range of [0, 1] for this similarity
measure. A conceptual model can be used to evaluate the appropriateness of similarity predictions: A
prediction is appropriate if it is high for two usage sets that refer to the same concepts, or low for two
usage sets that refer to different concepts. Formally, a similarity prediction sim(U1, U2) is appropriate
for a conceptual model C = 〈Iu, C〉 and threshold θ iff

• either sim(U1, U2) ≥ θ and
⋃

u∈U1
Iu(u) =

⋃
u∈U2

Iu(u),

6For the purpose of this paper we make the simplifying assumption that concepts have “strict boundaries”: A usage either
does or does not refer to a concept. We do not model cases where a usage is related to a concept, but is not a clear match.

7Another possible reason for one usage mapping to multiple mental concepts is concept overlap (Murphy, 2002).
8Advertisement for a supermarket in Austin, Texas..
9We write 2S for the power set of a set S.
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woodchuck(x) ^ see(John, x)
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Figure 2: Enriching the information about non-logical constants: Constants are associated with sets of
concepts (circles) and, through them, with distributional representations

• or sim(U1, U2) < θ and
⋃

u∈U1
Iu(u) 6= ⋃u∈U2

Iu(u).

This formulation of appropriateness is simplistic in that it discretizes similarity predictions into two
classes: above or below threshold θ. This is due to our current impoverished view of concepts as dis-
joint atoms. When we introduce a conceptual similarity measure within conceptual models, a more
fine-grained evaluation of distributional similarity ratings becomes available. Such a conceptual sim-
ilarity measure would be justified, as humans can judge similarity between concepts (Rubenstein and
Goodenough, 1965), but we do not do it here in order to keep our models maximally simple.

3.3 A joint semantics for logical form and distributional representations

We now link the intensions of some logical expressions to mental concepts, using the logic IHTT as a
basis. We will need to constrain the behavior of intensions more than Fox and Lappin do. In particular,
we add the following two requirements to models M = 〈D,S,L, I, F 〉 of IHTT.

(M3) If the expression α ∈ A is the result of beta-reducing the expression β ∈ A, then I(α) = I(β).

(M4) If I(uA) = I(vA), then for all φ ∈ 〈A,B〉, I(φ(u)) = I(φ(v)).

(M4) allows for the exchange of an intensionally equal expression without changing the intension of the
overall expression.

We now define models that join an intensional model of IHTT with a conceptual model for a dis-
tributional representation. In particular, we link constants of the logic to sets of concepts, and through
them, to distributional representations, as sketched in Figure 2. If the word “woodchuck” is associated
with the concept set Cwoodchuck = IC,U (woodchuck), then the intension of the constant woodchuck will
also be Cwoodchuck. We proceed in two steps: In the definition of joint models, we require the existence
of a mapping from words to non-logical constants that share the same interpretation. In a second step,
we require semantic constructions to respect this mapping, such that the logical expression associated
with “woodchuck” will be λx

(
woodchuck(x)

)
rather than λx

(
guppy(x)

)
. Note that only words in WU

have distributional representations associated with them; for words in W −WU , neither their translation
to logical expressions nor the intensions of those expressions are constrained in any way.

LetM = 〈D,S,L, I, F 〉 be a model for IHTT, let C = 〈Iu, C〉 be a conceptual model for U(W,∆,Ω),
and let U be a finite subset of U(W,∆,Ω). Then MC = 〈D, S, L, I , F , Iu, C〉 is an intensional concep-
tual model for IHTT and U(W,∆,Ω) based on U if

(M5) There exists a function h fromWU to the non-logical constants of IHTT such that for all w ∈WU ,
IC,U (w) = I(h(w))

(M6) For all w1, w2 ∈WU , if IC,U (w1) = IC,U (w2) then h(w1) and h(w2) have the same type.

We say that the model MC contains M and C.
Constraint (M5) links each word to a non-logical constant such that the distributional interpretation

of the word and the intension of the constant are the same. (M6) states that if two words have the same
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distributional interpretation, their associated constants have the same type. We next define semantic
constructions sem in general, and semantic constructions that connect the translation sem(w) of a word
w to its associated constant h(w). A semantic construction function for a set W of words and a logical
language L is a partial function sem : Seq(W ) → L such that sem(w) is defined for all w ∈ W .
sem(.) maps sequences of words over W to expressions from L. A sequence s ∈ Seq(W ) is called
grammatical if sem(s) is defined. A semantic construction sem is an intended semantic construction
for an intensional conceptual model M = 〈D, S, L, I , F , Iu, C〉 based on U if the following constraint
holds for the function h from (M5):

(M7) For each type A there exists some expression φA such that for all w ∈WU , sem(w) is equivalent
(modulo beta-reduction) to φA(h(w)).

(M7) states that the construction of translations sem(w) from non-logical constants h(w) must be
uniform for all words of the same semantic type. For example, if for the word “woodchuck” we have
h(woodchuck) = woodchuck, an expression of type 〈e,Π〉, then the expression φ〈e,Π〉 = λPλx(P (x))
will map woodchuck to λx(woodchuck(x)) = sem(woodchuck).

3.4 Synonym replacement

In Section 2 we have sketched a framework for the interaction of logic and distributional representations
based on Bar-Haim et al. (2007). Distributional representations can be used to predict semantic similarity
between pairs of words and in particular to predict synonymy between words (Lin, 1998). Distribution-
ally induced synonym pairs can be used as rewriting rules that transform sentence representations. In
our case, the representations to be transformed are expressions of the logic. Two sentences count as
synonymous if it is possible to transform the representation of one sentence into the representation of the
other, using both distributional rewriting rules and the axioms of the logic.

We start out by showing that the application of a rewriting rule that exchanges one non-logical con-
stant of IHTT for another constant with the same intension leaves both the intension and the extension
of the overall logical expression unchanged. Given a logical expression φ, we write φ[some b/a] for the
set of expressions obtained from φ by replacing zero or more occurrences of a by b.

Proposition 1: Soundness of non-logical constant rewriting. Let M = 〈D,S,L, I, F 〉 be an inten-
sional model for IHTT, and let a, b be non-logical constants of IHTT of type A such that I(a) = I(b).
Then for any expression φ of IHTT and any φ′ ∈ φ[some b/a], I(φ) = I(φ′), and for any valuation g,
||φ||M,g = ||φ′||M,g.

Proof. Let xA be a variable that does not occur in φ. Then for each φ′ ∈ φ[some b/a] there exists an
expression ψ ∈ φ[some x/a] such that (λxψ)(a) beta-reduces to φ and (λxψ)(b) beta-reduces to φ′. As
I(a) = I(b), we have I((λxψ)(a)) = I((λxψ)(b)) by (M4). So by (M3), I(φ) = I(φ′). From this it
follows that for any valuation g, ||φ||M,g = ||φ′||M,g by (M2). �

We call two words synonyms if they refer to the same set of concepts. Formally, let U be a finite subset
of U(W,∆,Ω) that is a distributional representation for WU , and C = 〈Iu, C〉 a conceptual model for
U(W,∆,Ω). A word p ∈WU is a synonym for t ∈WU by C and U if IC,U (t) = IC,U (p).

We would like to show that if t and p are synonyms, then exchanging t for p changes neither the
intension nor the extension of the logical translation for the sentence. To do so, we first show that
exchanging t for p corresponds to applying constant rewriting on the sentence representation.

Note, however, that the logical translation of a sentence depends not only on the words, but also on the
syntactic structure of the sentence. If a given syntactic analysis framework only allows for the bracketing
“(small (tree house))” and at the same time only allows for the bracketing “((little tree) house)”, then
the two phrases will not receive the same semantics even if the model considers “small” and “little”
to be synonyms. So we will show that if replacement by a synonym within a given syntactic structure
again yields a valid syntactic structure, then the semantics of the sentence remains unchanged. For any
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sequence s ∈ Seq(W ) of words overW , we write T (s) for the set of constituent structure analyses for s.
For τ ∈ T (s), we write τ [p/t] for the syntactic graph that is exactly like τ except that all leaves labeled
t are replaced by leaves labeled p. We write sem(τ) for the logical translation of s that is based on the
syntactic structure of τ . We assume that there exists exactly one translation sem(τ) for each syntactic
structure τ .

Lemma 2. Let MC be be an intensional conceptual model for IHTT and U(W,∆,Ω) based on U ⊆
U(W,∆,Ω) that contains M = 〈D,S,L, I, F 〉 and C = 〈Iu, C〉. Let t, p ∈ WU be synonyms by C and
U , and let s ∈ Seq(W ) be a sequence with syntactic analysis τ ∈ T (s) such that τ [p/t] ∈ T (s[p/t]).
Then for any intended semantic construction sem for MC and U , sem(τ [p/t]) is equivalent modulo
beta-reduction to some member of sem(τ)[some h(p)/h(t)].

Proof. We proceed by induction over the structure of τ . If s consists of a single word, then τ = s, and
either s = t or s = w for a word w 6= t. If s = w for some w 6= t, then sem(τ [p/t]) = sem(τ) ∈
sem(τ)[some h(p)/h(t)].

If s = t, then sem(τ) = sem(t) and sem(τ [p/t]) = sem(p). By (M5) and because t and p are
synonyms, we have I(h(t)) = IC,U (t) = IC,U (p) = I(h(p)). From this it follows by (M6) that the
non-logical constants h(t) and h(p) have the same semantic type A. Then by (M7) there exists a logical
expression φA such that sem(τ) = sem(t) is equivalent modulo beta-reduction to φA(h(t)). At the
same time, sem(τ [p/t]) = sem(p) is equivalent modulo beta-reduction to φA(h(p)), which is equivalent
modulo beta-reduction to a member of

(
φA(h(t))

)
[some h(p)/h(t)], which in turn is equivalent modulo

beta-reduction so a member of sem(τ)[some h(p)/h(t)].
Now assume that s comprises more than one word. Let the root of τ have n children that are the

roots of subtrees τ1 . . . τn. There is some semantic construction rule associated with the root of τ
that can be written as an expression φ of IHTT such that φ(sem(τ1)) . . . (sem(τn)) beta-reduces to
sem(τ). By the inductive hypothesis, sem(τi[p/t]) is equivalent modulo beta-reduction to some ψi ∈
sem(τi)[some h(p)/h(t)] for 1 ≤ i ≤ n. The expression φ remains unchanged between sem(τ) and
sem(τ [p/t]) because only leaves of the tree were changed and the overall constituent structure remained
the same. So the expression sem(τ [p/t]) is equivalent modulo beta-reduction to φ(ψ1) . . . (ψn) ∈(
φ(sem(τ1)) . . . (sem(τn))

)
[some h(p)/h(t)], which in turn is equivalent modulo beta-reduction to

sem(τ)[some h(p)/h(t)]. �

The reason why we have used φ[some b/a] rather than replacement of all occurrences is that there is no
guarantee that the corresponding non-logical constant h(t) for a word t is used only in the lexical entry
of t. For example, the expression φ〈e,Π〉 of (M7) could be λPλx

(
woodchuck(x) ∧ P (x)

)
, making the

lexical entry for “guppy” λx
(
woodchuck(x) ∧ guppy(x)

)
. Or the semantic construction expression φ

for NPs could contain the constant woodchuck. However, now we are in a position to show that this
does not matter, and that a constant rewriting rule can be applied to all occurrences of h(t), whether in
the lexical entry for t or elsewhere. At the same time, we show that replacement of a word by a synonym
does not change the interpretation of the sentence.

Proposition 3: Synonym replacement as constant replacement. Let MC be be an intensional con-
ceptual model for IHTT and U(W,∆,Ω) based on U ⊆ U(W,∆,Ω) that contains M = 〈D,S,L, I, F 〉
and C = 〈Iu, C〉. Let t, p ∈ WU be synonyms by C and U , and let s ∈ Seq(W ) be a sequence with
syntactic analysis τ ∈ T (s) such that τ [p/t] ∈ T (s[p/t]). Then for any valuation g, and any intended
semantic construction sem for MC and U , I(sem(τ)) = I(sem(τ [p/t])) = I(sem(τ)[h(p)/h(t)]), and
||sem(τ)||M,g = ||sem(τ [p/t])||M,g = ||sem(τ)[h(p)/h(t)]||M,g.

Proof. By Lemma 2, the semantic representation of the changed syntactic tree, sem(τ [p/t]), is equiv-
alent modulo beta-reduction to some ψ ∈ sem(τ)[some h(p)/h(t)]. So by Proposition 1, I(ψ) =
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I(sem(τ)), and by (M3), I(sem(τ)[p/t]) = I(ψ). Thus, I(sem(τ)) = I(sem(τ [p/t])). By Proposi-
tion 1, the intension is the same for all members of sem(τ)[some h(p)/h(t)], so we have I(sem(τ)) =
I(sem(τ)[h(p)/h(t)]. And by (M2), if sem(τ), sem(τ [p/t]) and sem(τ)[h(p)/h(t)] have the same
intension, they also have the same extension. �

3.5 Inference

We extend the list of axioms for IHTT from Table 1 by two additional axioms that correspond to the
constraints (M3) and (M4).

(IHTT14) ` λuφ(v) = φ[u/v] (where u is a variable in A, v ∈ A, φ ∈ 〈A,B〉, and v is not bound
when substituted for u in φ)

(IHTT15) ` ∀u, vA∀φ〈A,B〉
(
u = v → φ(u) = φ(v)

)

These axioms parallel (IHTT9) and (IHTT12) but state intensional rather than extensional equality.
Synonymy predictions from the distributional representation can be transformed into rewriting rules:

If the words t and p are synonyms by the distributional representation U , then we generate the rewriting
rule h(t) 7→ h(p). As Proposition 3 shows, this rewriting rule can be applied indiscriminately to a logical
expression, and is not restricted to the lexical entry for t. But since the logic is equipped with inference
capability and is not a passive representation like the syntactic graphs that Bar-Haim et al. (2007) used,
we can alternatively just inject an expression h(t) = h(p), which states intensional equality, into the
logical representation for the parsed sentence τ . The logical representation for τ [p/t] can then be inferred
using (IHTT14) and (IHTT15).

4 Conclusion and outlook

In this paper we have proposed a semantics for distributional representations, namely that each point in
vector space stands for a set of mental concepts. We have provided a coarse-grained evaluation for dis-
tributional representations in which their similarity predictions are evaluated against conceptual equality
or inequality. We have extended this approach to a joint semantics of distributional and logical rep-
resentations by linking the intensions of some logical expressions to mental concepts as well: If the
distributional representation for a word w is interpreted as a set C of concepts, then the non-logical
constant linked to the lexical entry for w will have as its intension the same set C. We have used hyper-
intensional semantics as a basis for this joint semantics. We have been able to show that distributional
rewriting rules that exchange non-logical constants with the same intension do not change the intension
or extension of the overall logical expression. These rewriting rules can be used to compute the logical
representation of a sentence after exchanging a word for its synonym.

The current joint semantics is, however, only a first step, and leaves many important questions open.
We consider the following three to be especially important. (1) Polysemy. Many synonym pairs can only
be substituted for one another in particular sentence contexts. For example “correct” is a synonym for
“fix” that can be substituted in the context of “The programmer fixed the error”, but not in “The cook
fixed dinner.” This means that the words “fix” and “correct” do not map to the same set of concepts,
but they are exchangeable in particular contexts. So we would want to say that “fix” and “correct” are
synonyms with respect to a usage u = 〈s,fix, δ, ω〉 if Iu(u) = Iu(〈s[correct/fix], correct, δ, ω〉). The
main challenge for incorporating polysemy is to have intensions change based on the context of use.

(2) Distributional similarity of larger phrases. There is considerable work both on the distributional
similarity of phrases and sentences (Coecke et al., 2010; Baroni and Zamparelli, 2010; Grefenstette and
Sadrzadeh, 2011) and on the distributional similarity of phrases with open argument slots, such as “X
solves Y” and “X finds a solution to Y” (Lin and Pantel, 2001; Szpektor and Dagan, 2008; Berant et al.,
2011). We would like to use these results to do distributionally driven replacement of multi-word para-
phrases in a joint distributional and logical framework. But this requires a semantics for distributional
representations of larger phrases. If we assume some sort of conceptual structures as semantics, the next
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question is whether all logical expressions should be associated with conceptual structures: Should the
intension of a variable be something conceptual?

(3) Gradience. In this paper we have assumed that the link from usage to concept is binary – either
present or not –, and also that there are no relations between concepts. Both assumptions are simpli-
fications: Concepts have “fuzzy boundaries” (Hampton, 2007), and cognizers can distinguish degrees
of similarity between concepts (Rubenstein and Goodenough, 1965). By modeling this gradience, we
could then talk about degrees of similarity between words and phrases, not just a binary choice of either
synonymy or non-synonymy. But this will require dealing with probabilities or weights in the model and
also in the logic.
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Abstract

We describe a method for learning an incremental semantic grammar from a corpus in which

sentences are paired with logical forms as predicate-argument structure trees. Working in the frame-

work of Dynamic Syntax, and assuming a set of generally available compositional mechanisms, we

show how lexical entries can be learned as probabilistic procedures for the incremental projection of

semantic structure, providing a grammar suitable for use in an incremental probabilistic parser. By

inducing these from a corpus generated using an existing grammar, we demonstrate that this results

in both good coverage and compatibility with the original entries, without requiring annotation at the

word level. We show that this semantic approach to grammar induction has the novel ability to learn

the syntactic and semantic constraints on pronouns.

1 Introduction

Dynamic Syntax (DS) is an inherently incremental semantic grammar formalism (Kempson et al., 2001;

Cann et al., 2005) in which semantic representations are projected on a word-by-word basis. It recognises

no intermediate layer of syntax (see below), but instead reflects grammatical constraints via constraints

on the incremental construction of partial logical forms (LFs). Given this, and its definition of parsing

and generation in terms of the same incremental processes, it is in principle capable of modelling and

providing semantic interpretations for phenomena such as unfinished utterances, co-constructions and

interruptions, beyond the remit of standard grammar formalisms but important for dialogue systems.

However, its definition in terms of semantics (rather than the more familiar syntactic phrase struc-

ture) makes it hard to define or extend broad-coverage grammars: expert linguists are required. Here, we

present a method for automatically inducing DS grammars, by learning lexical entries from sentences

paired with complete, compositionally structured, propositional LFs. By assuming only the availabil-

ity of a small set of general compositional semantic operations, reflecting the properties of the lambda

calculus and semantic conjunction, we ensure that the lexical entries learnt include the grammatical con-

straints and corresponding compositional semantic structure of the language; by additionally assuming a

general semantic copying operation, we can also learn the syntactic and semantic properties of pronouns.

2 Previous work on grammar induction

Existing grammar induction methods can be divided into two major categories: supervised and unsuper-

vised. Fully supervised methods use a parsed corpus as the training data, pairing sentences with syntactic

trees and words with their syntactic categories, and generalise over the phrase structure rules to learn a

grammar which can be applied to a new set of data. By estimating probabilities for production rules that

∗We would like to thank Ruth Kempson and Yo Sato for helpful comments and discussion. This work was supported by the

EPSRC, RISER project (Ref: EP/J010383/1), and in part by the EU, FP7 project, SpaceBook (Grant agreement no: 270019).
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share the same LHS category, this produces a grammar suitable for probabilistic parsing and disambigua-

tion (e.g. PCFGs, Charniak, 1996). Such methods have shown great success, but presuppose detailed

prior linguistic information (and are thus not adequate as human grammar learning models). Unsuper-

vised methods, on the other hand, proceed from unannotated raw data; they are thus closer to the human

language acquisition setting, but have seen less success. In its pure form —positive data only, without

bias— unsupervised learning has been demonstrated to be computationally too complex (‘unlearnable’)

in the worst case (Gold, 1967). Successful approaches involve some prior learning or bias, e.g. a fixed

set of known lexical categories, a probability distribution bias (Klein and Manning, 2005) or a hybrid,

semi-supervised method with shallower (e.g. POS-tagging) annotation (Pereira and Schabes, 1992).

More recently, another interesting line of work has emerged: lightly supervised learning guided by

semantic rather than syntactic annotation, using sentence-level propositional logical form rather than

detailed word-level annotation (more justifiably arguable to be ‘available’ to a human learner in a real-

world situation, with some idea of what a string in an unknown language could mean). This has been

successfully applied in Combinatorial Categorial Grammar (Steedman, 2000), as it tightly couples com-

positional semantics with syntax (Zettlemoyer and Collins, 2007; Kwiatkowski et al., 2010, 2012); as

CCG is a lexicalist framework, grammar learning involves inducing a lexicon assigning to each word

its syntactic and semantic contribution. Moreover, the grammar is learnt ground-up in an ‘incremental’

fashion, in the sense that the learner collects data over time and does the learning sentence by sentence.

Here we follow this spirit, inducing grammar from a propositional meaning representation and build-

ing a lexicon which specifies what each word contributes to the target semantics. However, taking ad-

vantage of the DS formalism, we make two novel contributions: first, we bring an added dimension

of incrementality: not only is learning sentence-by-sentence incremental, but the grammar learned is

word-by-word incremental, commensurate with psycholinguistic results showing incrementality to be a

fundamental feature of human parsing and production Lombardo and Sturt (1997); Ferreira and Swets

(2002). While incremental parsing algorithms for standard grammar formalisms have seen much re-

search (Hale, 2001; Collins and Roark, 2004; Clark and Curran, 2007), to the best of our knowledge, a

learning system for an explicitly incremental grammar is yet to be presented. Second, by using a gram-

mar in which syntax and parsing context are defined in terms of the growth of semantic structures, we

can learn lexical entries for items such as pronouns the constraints on which depend on semantic context.

?Ty(t)

?Ty(e),
♦

?Ty(e → t)

−→
“john”

?Ty(t)

Ty(e),
john

?Ty(e → t),
♦

−→
“upset”

?Ty(t)

Ty(e),
john

?Ty(e → t)

?Ty(e),
♦

Ty(e → (e → t)),
λyλx.upset′(x)(y)

−→
“mary”

Ty(t),♦,

upset′(john′)(mary′)

Ty(e),
john

Ty(e → t),
λx.upset′(x)(mary′)

Ty(e),
mary′

Ty(e → (e → t)),
λyλx.upset′(x)(y)

Figure 1: Incremental parsing in DS producing semantic trees: “John upset Mary”

3 Dynamic Syntax

Dynamic Syntax is a parsing-directed grammar formalism, which models the word-by-word incremen-

tal processing of linguistic input. Unlike many other formalisms, DS models the incremental build-

ing up of interpretations without presupposing or indeed recognising an independent level of syntactic

processing. Thus, the output for any given string of words is a purely semantic tree representing its

predicate-argument structure; tree nodes correspond to terms in the lambda calculus, decorated with la-



bels expressing their semantic type (e.g. Ty(e)) and formula, with beta-reduction determining the type

and formula at a mother node from those at its daughters (Figure 1).

These trees can be partial, containing unsatisfied requirements for node labels (e.g. ?Ty(e) is a

requirement for future development to Ty(e)), and contain a pointer ♦ labelling the node currently

under development. Grammaticality is defined as parsability: the successful incremental construction

of a tree with no outstanding requirements (a complete tree) using all information given by the words

in a sentence. The input to our induction task here is therefore sentences paired with such complete,

semantic trees, and what we learn are constrained lexical procedures for the incremental construction

of such trees. Note that in these trees, leaf nodes do not necessarily correspond to words, and may not

be in linear sentence order (see Figure 1); and syntactic structure is not explicitly represented, only the

structure of semantic predicate-argument combination.

3.1 Actions in DS

The parsing process is defined in terms of conditional actions: procedural specifications for monotonic

tree growth. These take the form both of general structure-building principles (computational actions),

putatively independent of any particular natural language, and of language-specific actions induced by

parsing particular lexical items (lexical actions). The latter are what we here try to learn from data.

Computational actions These form a small, fixed set, and we assume them as given here. Some merely

encode the properties of the lambda calculus and the logical tree formalism itself (LoFT Blackburn and

Meyer-Viol, 1994) – these we term inferential actions. Examples include THINNING (removal of satisfied

requirements) and ELIMINATION (beta-reduction of daughter nodes at the mother). These actions are

entirely language-general, cause no ambiguity, and add no new information to the tree; as such, they

apply non-optionally whenever their preconditions are met.

Other computational actions reflect the fundamental predictivity and dynamics of the DS framework.

For example, *ADJUNCTION introduces a single unfixed node with underspecified tree position (re-

placing feature-passing concepts for e.g. long-distance dependency); and LINK-ADJUNCTION builds a

paired (“linked”) tree corresponding to semantic conjunction (licensing relative clauses, apposition and

more). These actions represent possible parsing strategies and can apply optionally at any stage of a

parse if their preconditions are met. While largely language-independent, some are specific to language

type (e.g. INTRODUCTION-PREDICTION in the form used here applies only to SVO languages).

Lexical actions The lexicon associates words with lexical actions; like computational actions, these are

sequences of tree-update actions in an IF..THEN..ELSE format, and composed of explicitly procedural

atomic tree-building actions such as make, go, put. make creates a new daughter node, go moves the

pointer, and put decorates the pointed node with a label. Figure 2 shows an example for a proper noun,

John. The action checks whether the pointed node (marked as ♦) has a requirement for type e; if so, it

decorates it with type e (thus satisfying the requirement), formula John′ and the bottom restriction 〈↓〉⊥
(meaning that the node cannot have any daughters). Otherwise (if no requirement ?Ty(e)), the action

aborts, meaning that the word ‘John’ cannot be parsed in the context of the current tree.

Action Input tree Output tree

John

IF ?Ty(e)
THEN put(Ty(e))

put(Fo(John′)
put(〈↓〉⊥)

ELSE ABORT

?Ty(t)

?Ty(e),
♦

?Ty(e → t)

John
−→ ?Ty(t)

Ty(e), ?Ty(e)
John′, 〈↓〉⊥,♦

?Ty(e → t)

Figure 2: Lexical action for the word ‘John’



3.2 Graph Representation of DS Parsing

These actions define the parsing process. Given a sequence of words (w1, w2, ..., wn), the parser starts

from the axiom tree T0 (a requirement ?Ty(t) to construct a complete tree of propositional type), and ap-

plies the corresponding lexical actions (a1, a2, . . . , an), optionally interspersing computational actions –

see Figure 1. Sato (2011) shows how this parsing process can be modelled on a Directed Acyclic Graph

(DAG), rooted at T0, with partial trees as nodes, and computational and lexical actions as edges (i.e.

transitions between trees):

T0

T1intro T2

pred

T3

‘john’

T1′*Adj T2′

‘john’
T3′

intro
T4′

pred
T5′

In this DAG, intro, pred and *Adj correspond to the computational actions INTRODUCTION, PRE-

DICTION and *-ADJUNCTION respectively; and ‘john’ is a lexical action. Different paths through the

DAG represent different parsing strategies, which may succeed or fail depending on how the utterance is

continued. Here, the path T0 − T3 will succeed if ‘John’ is the subject of an upcoming verb (“John upset

Mary”); T0 − T4 will succeed if ‘John’ turns out to be a left-dislocated object (“John, Mary upset”).

This DAG makes up the parse state at any point, and contains all information available to the parser.

This includes semantic tree and tree-transition information taken to make up the linguistic context for

ellipsis and pronominal construal (Purver et al., 2011). It also provides us with a basis for probabilistic

parsing (see Sato, 2011): given a conditional probability distribution P (a|w, T ) over possible actions a

given a word w and (some set of features of) the current partial tree T , the DAG can then be incrementally

constructed and traversed in a best-first, breadth-first or beam parsing manner.

4 Learning lexical actions

4.1 Problem Statement

Our task here is data-driven, probabilistic learning of lexical actions for all the words occurring in the

corpus. Throughout, we will assume that the (language-independent) computational actions are known.

We also assume that the supervision information is structured: i.e. our dataset pairs sentences with

complete DS trees encoding their predicate-argument structures, rather than just a flat logical form (LF)

as in e.g. Zettlemoyer and Collins (2007). DS trees provide more information than LFs in that they

disambiguate between different possible predicate-argument decompositions of the corresponding LF;

note however that this provides no extra information on the mapping from words to meaning. The input

to the induction procedure is now as follows:

• the set of computational actions in Dynamic Syntax, G.

• a set of training examples of the form 〈Si, Ti〉, where Si = 〈w1 . . . wn〉 is a sentence of the lan-

guage and Ti – henceforth referred to as the target tree – is the complete semantic tree representing

the compositional structure of the meaning of Si.

The output is a grammar specifying the possible lexical actions for each word in the corpus. Given

our data-driven approach, we take a probabilistic view: we take this grammar as associating each word

w with a probability distribution θw over lexical actions. In principle, for use in parsing, this distribution

should specify the posterior probability p(a|w, T ) of using a particular action a to parse a word w in the

context of a particular partial tree T . However, here we make the simplifying assumption that actions

are conditioned solely on one feature of a tree, the semantic type Ty of the currently pointed node; and

that actions apply exclusively to one such type (i.e. ambiguity of type leads to multiple actions). This

effectively simplifies our problem to specifying the probability p(a|w).



In traditional DS terms, this is equivalent to assuming that all lexical actions have a simple IF clause

of the form IF ?Ty(X); this is true of most lexical actions in existing DS grammars (see examples above),

but not all. This assumption will lead to some over-generation – inducing actions which can parse some

ungrammatical strings – we must rely on the probabilities learned to make such parses unlikely, and

evalute this in Section 5. Given this, the focus of what we learn here is effectively the THEN clause of

lexical actions: a sequence of DS atomic actions such as go, make, and put (see Fig. 2), but now with

an attendant posterior probability. We will henceforth refer to these sequences as lexical hypotheses. We

first describe our method for constructing lexical hypotheses with a single training example (a sentence-

tree pair). We then discuss how to generalise over these outputs, while updating the corresponding

probability distributions incrementally as we process more training examples.

4.2 Hypothesis Construction

DS is strictly monotonic: actions can only extend the tree under construction, deleting nothing except

satisfied requirements. Thus, hypothesising lexical actions consists in an incremental search through the

space of all monotonic, and well-formed extensions of the current tree, Tcur, that subsume (i.e. can be

extended to) the target tree Tt. This gives a bounded space which can be described by a DAG equivalent

to the parsing DAG of section 3.2: nodes are trees, starting with Tcur and ending with Tt, and edges are

possible extensions. These extensions may be either DS’s basic computational actions (already known)

or new lexical hypotheses.

This space is further constrained by the fact that not all possible trees and tree extensions are well-

formed (meaningful) in DS, due to the properties of the lambda-calculus and those of the modal tree logic

LoFT. Mother nodes must be compatible with the semantic type and formula of their daughters, as would

be derived by beta-reduction; formula decorations cannot apply without type decorations; and so on. We

also prevent arbitrary type-raising by restricting the types allowed, taking the standard DS assumption

that noun phrases have semantic type e (rather than a higher type as in Generalized Quantifier theory)

and common nouns their own type cn (see Cann et al., 2005, chapter 3 for details).

We implement these constraints by packaging together permitted sequences of tree updates as macros

(sequences of DS atomic actions such as make, go, and put), and hypothesising possible DAG paths

based on these macros. We can divide these into two classes of lexical hypothesis macros: (1) tree-

building hypotheses, independent of the target tree, and in charge of building appropriately typed daugh-

ters for the current node; and (2) content decoration hypotheses in charge of the semantic decoration of

the leaves of the current tree (Tcur), with formulae taken from the leaves of the target tree (Tt).

?Ty(X),♦

?Ty(e) ?Ty(e → X)

IF ?Ty(X)
X 6= e

THEN make(〈↓0〉); go(〈↓0〉)
put(?Ty(e));go(〈↑〉)
make(〈↓1〉); go(〈↓1〉)
put(?Ty(e → X)); go(↑)

ELSE ABORT

?Ty(e),♦

?Ty(cn) ?Ty(cn → e)

IF ?Ty(e)
THEN make(〈↓0〉); go(〈↓0〉)

put(?Ty(cn)); go(〈↑〉)
make(〈↓1〉); go(〈↓1〉)
put(?Ty(cn → e)); go(↑)

ELSE ABORT

Figure 3: Target-independent tree-building hypotheses

Figure 3 shows example tree-building hypotheses which extend a mother node with a type require-

ment to have two daughter nodes which would (once themselves developed) combine to satisfy that

requirement. On the left, an general rule in which a currently pointed node of some type X can be hy-

pothesised to be formed of types e and e → X (e.g. if X = e → t, the daughters will have types e and

e → (e → t)). This reflects only the fact that DS trees correspond to lambda calculus terms, with e being

a possible type. The other is more specific, suitable only for a type e node, allowing it to be composed of

nodes of type cn and cn → e (where cn → e turns out to be the type of determiners), but again reflects

only general semantic properties which would apply in any language.

Content decoration hypotheses on the other hand depend on the target tree: they posit possible ad-

dition of semantic content, via sequences of put operations (e.g. content-dec: put(Ty(e));

put(Fo(john))which develop the pointed node on Tcur towards the corresponding leaf node on Tt.



They are constrained to apply only to leaf nodes (i.e. nodes in Tcur whose counterparts on Tt are leaf

nodes), other nodes being assumed to receive their content via beta-reduction of their daughters.

4.3 Hypothesis Splitting

Hypothesis construction therefore produces, for each training sentence 〈w1 . . . wn〉, all possible se-

quences of actions that lead from the axiom tree T0 to the target tree Tt (henceforth, the complete se-

quences); where these sequences contain both lexical hypotheses and general computational actions. To

form discrete lexical entries, we must split each such sequence into n sub-sequences, 〈cs1 . . . csn〉, with

each candidate subsequence csi, corresponding to a word wi, by hypothesising a set of word boundaries.

This splitting process is subject to two constraints. Firstly, each candidate sequence csi must contain

exactly one content decoration lexical hypothesis (see above); this ensures both that every word has some

contribution to the sentence’s semantic content, and that no word decorates the leaves of the tree with

semantic content more than once. Secondly, candidate subsequences csi are computationally maximal

on the left: csi may begin with (possibly multiple) computational actions, but must end with a lexical

hypothesis. This reduces the splitting hypothesis space, and aids lexical generalisation (see below).

Each such possible set of boundaries corresponds to a candidate sequence tuple 〈cs1 . . . csn〉. Impor-

tantly, this means that these csi are not independent, e.g. when processing “John arrives”, a hypothesis

for ‘John’ is only compatible with certain hypotheses for ‘arrives’. This is reflected below in how prob-

abilities are assigned to the word hypotheses.

4.4 Hypothesis Generalisation

DS’s general computational actions can apply at any point before the application of a lexical action, thus

providing strategies for adjusting the syntactic context in which a word is parsed. Removing computa-

tional actions on the left of a candidate sequence will leave a more general albeit equivalent hypothesis:

one which will apply successfully in more syntactic contexts. However, if a computational subsequence

seems to occur whenever a word is observed, we would like to lexicalise it, including it within the lexical

entry for a more efficient and constrained grammar. We therefore want to generalise over our candidate

sequence tuples to partition them into portions which seem to be achieved lexically, and portions which

are better achieved by computational actions alone.

First Training Example: ‘john’ in fixed object position;

Sequence intersected: 〈LH : content-dec : put(Ty(e));put(Fo(John′))〉:

S F
LH:content-dec:put(Ty(e));put(Fo(John’))

Second Training Example: ‘john’ in subject position;

Sequence intersected: 〈CA : intro, CA : predict, LH : content-dec : put(Ty(e));put(Fo(John′))〉

S F
LH:content-dec:put(Ty(e));put(Fo(John’))

invisible invisible

CA:intro CA:predict

Third Training Example: ‘john’ on unfixed node, i.e. left-dislocated object;

Sequence intersected: 〈CA : star-adj, LH : content-dec : put(Ty(e));put(Fo(John′))〉

S F
LH:content-dec:put(Ty(e));put(Fo(John’))

invisible invisible

CA:intro CA:predict

invisible

CA:star-adj

Figure 4: Incremental intersection of candidate sequences; CA=Computational Action, LH=Lexical Hypothesis

We therefore group the candidate sequence tuples produced by splitting, storing them as members of

equivalence classes which form our final word hypotheses. Two tuples belong to the same equivalence

class if they can be made identical by removing only computational actions from the beginning of either

one. We implement this via a single packed data-structure which is again a DAG, as shown in Fig. 4;

this represents the full set of candidate sequences by their intersection (the solid central common path)



and differences (the dotted diverging paths at beginning). Nodes here therefore no longer represent

single trees, but sets of trees. Figure 4 shows this process over three training examples containing the

unknown word ‘John’ in different syntactic positions. The ‘S’ and ‘F’ nodes mark the start and finish of

the intersection – initially the entire sequence. As new candidate sequences arrive, the intersection – the

maximal common path – is reduced as appropriate. Word hypotheses thus remain as general as possible.

In our probabilistic framework, these DAGs themselves are our lexical entries, with associated prob-

abilities (see below). If desired, we can form traditional DS lexical actions: the DAG intersection corre-

sponds to the THEN clause, with the IF clauses being a type requirement obtained from the pointed node

on all partial trees in the initial ‘S’ node. As lexical hypotheses within the intersection are identical, and

were constrained when formed to add type information before formula information (see Section 4.2),

any type information must be common across these partial trees. In Figure 4 for ‘john’, this is ?Ty(e),
i.e. a requirement for type e, common to all three training examples.

4.5 Probability Estimation

The set of possible word hypotheses induced as above can of course span a very large space: we must

therefore infer a probability distribution over this space to produce a useful grammar. This can be esti-

mated from the observed distribution of hypotheses, as these are constrained to be compatible with the

target tree for each sentence; and the estimates can be incrementally updated as we process each training

example. For this process of probability estimation, the input is the output of the splitting and general-

isation procedure above, i.e. for the current training sentence S = 〈w1 . . . wn〉 a set HT of Hypothesis

Tuples (sequences of word hypotheses), each of the form HTj = 〈hj
1
. . . h

j
n〉, where h

j
i is the word hy-

pothesis for wi in HTj . The desired output is a probability distribution θw over hypotheses for each word

w, where θw(h) is the posterior probability p(h|w) of a given word hypothesis h being used to parse w.

Re-estimation Given some prior estimate of θ′w, we can use a new training example to produce an

updated estimate θ′′w directly. We assign each hypothesis tuple HTj a probability based on θ′w; the

probability of a sequence 〈hj
1
. . . h

j
n〉 is the product of the probabilities of the hi’s within it (by the Bayes

chain rule):

p(HTj|S) =

n
∏

i=1

p(hji |wi) =

n
∏

i=1

θ′wi
(hji ) (1)

Now, for any word w and possible hypothesis h, we can re-estimate the probability p(h|w) as the

normalised sum of the probabilities of all observed tuples HTj which contain h, that is the set of tuples,

HT h = {HTj |h ∈ HTj}:

θ′′w(h) = p(h|w) =
1

Z

∑

HTj∈HTh

p(HTj |S) =
1

Z

∑

HTj∈HTh

n
∏

i=1

θ′wi
(hji ) (2)

where Z , the normalising constant, is the sum of the probabilities of all the HTj’s:

Z =
∑

HTj∈HT

n
∏

i=1

θ′wi
(hji )

Incremental update Our procedure is now to update our overall esimate θw incrementally: after the

N th example, our new estimate θNw is a weighted average of the previous estimate θN−1
w and the new

value from the current example θ′′w from equation (2), with weights reflecting the amount of evidence on

which these estimates are based:

θNw (h) =
N − 1

N
θN−1

w (h) +
1

N
θ′′w(h) (3)

Note that for training example 1, the first term’s numerator is zero, so θN−1
w is not required and the

new estimates are equal to θ′′w. However, to produce θ′′w we need some prior estimate θ′w; in the absence of



any information, we simply assume uniform distributions θ′w = θ0w over the lexical hypotheses observed

in the first training example.

In subsequent training examples, there will arise new hypotheses h not seen in previous examples,

and for which the prior estimate θ′w gives no information. We incorporate these hypotheses into θ′w by

discounting the probabilities assigned to known hypotheses, reserving some probability mass which we

then assume to be evenly distributed over the new unseen hypotheses. For this we use the same weight

as in equation (3):

θ′w(h) =







N−1

N
θN−1
w (h) if h in θN−1

w

1

Nu

∑

h∈θN−1
w

1

N
θN−1
w (h) otherwise

(4)

where Nu here is number of new unseen hypotheses in example N . Given (4), we can now more

accurately specify the update procedure in (3) to be:

θNw (h) = θ′w(h) +
1

N
θ′′w(h) (5)

Non-incremental estimation Using this incremental procedure, we use the estimates from previous

sentences to assign prior probabilities to each hypothesis tuple (i.e. each possible path through the

hypothesised parse DAG), and then derive updated posterior estimates given the observed distribu-

tions. Such a procedure could similarly be applied non-incrementally at each point, by repeatedly re-

estimating and using the new estimates to re-calculate tuple probabilities in a version of the Expectation-

Maximisation algorithm (Dempster et al., 1977). However, this would require us to keep all HT sets

from every training example; this would be not only computationally demanding but seems psycholin-

guistically implausible (requiring memory for all lexical and syntactic dependencies for each sentence).

Instead, we restrict ourselves here to assuming that this detailed information is only kept in memory for

one sentence; intermediate versions would be possible.

4.6 Pronouns

Standard approaches to grammar induction treat pronouns simply as entries of a particular syntactic

category. Here, as we learn from semantic annotations, we can learn not only their anaphoric nature, but

syntactic and semantic constraints on their resolution. To achieve this, we assume one further general

strategy for lexical hypothesis formation: a copying operation from context whereby the semantic content

(formula and type decorations) can be copied from any existing type-compatible and complete node on

Tcur (possibly more than one) accessible from the current pointed node via some finite tree modality.

This assumption therefore provides the general concept of anaphoricity, but nothing more: it can be used

in hypothesis formation for any word, and we rely on observed probabilities of its providing a successful

parse to rule it out for words other than pronouns. By requiring access via some tree modality (↑0, ↓∗
etc), we restrict it to intrasentential anaphora here, but the method could be applied to intersentential

cases where suitable LFs are available.

This modal relation describes the relative position of the antecedent; by storing this as part of the

hypothesis DAG, and subjecting it to a generalisation procedure similar to that used for computational

actions in Section 4.4, the system learns constraints on these modal relations. The lexical entries result-

ing can therefore express constraints on the possible antecedents, and grammatical constraints on their

presence, akin to Principles A and B of Government and Binding theory (see Cann et al. (2005), chapter

2); in this paper, we evaluate the case of relative pronouns only (see below).

5 Evaluation

5.1 Parse coverage

This induction method has been implemented and tested over a 200-sentence artificial corpus. The

corpus was generated using a manually defined DS grammar, with words randomly chosen to follow the



Word class Type Token Type% Token%

noun 119 362 76.3% 48.7%

verb 29 263 18.6% 35.4%

determiner 3 56 1.9% 7.5%

pronoun 5 62 3.2% 8.4%

Total 156 743 100.00% 100.00%

Total of 200 sentences

Min, Max and Mean sentence lengths : 2, 6, 3.7 words

Mean tokens per word = 4.01

Table 1: Training and test corpus distributions and means

Parsing Coverage Same Formula

Top one 26% 77%

Top two 77% 79%

Top three 100% 80%

Table 2: Test parse results: showing percentage parsability, and percentage of parses deriving the correct

semantic content for the whole sentence

distributions of the relevant POS types and tokens in the CHILDES maternal speech data (MacWhinney,

2000) - see Table 1. 90% of the sentences were used as training data to induce a grammar, and the

remaining 10% used to test it. We evaluate the results in terms of both parse coverage and semantic

accuracy, via comparison with the logical forms derived using the original, hand-crafted grammar.

The induced hypotheses for each word were ranked according to their probability; three separate

grammars were formed using the top one, top two and top three hypotheses and were then used inde-

pendently to parse the test set. Table 2 shows the results, discounting sentences containing words not

encountered in training at all (for which no parse is possible). We give the percentage of test sentences

for which a complete parse was obtained; and the percentage of those for which one of the top 3 parses

resulted in a logical form identical to the correct one.

As Table 2 shows, when the top three hypotheses are retained for each word, we obtain 80% formula

derivation accuracy. Manual inspection of the individual actions learned revealed that the words which

have incorrect lexical entries at rank one were those which were sparse in the corpus - we did not control

for the exact frequency of occurrence of each word. The required frequency of occurrence varied across

different categories; while transitive verbs require about four occurrences, intransitive verbs require just

one. Count nouns were particularly sparse (see type/token ratios in Table 1).

As we have not yet evaluated our method on a real corpus, the results obtained are difficult to com-

pare directly with other baselines such as that of Kwiatkowski et al. (2012) who achieve state-of-the-art

results; cross-validation of this method on the CHILDES corpus is work in progress, which will allow

direct comparison with Kwiatkowski et al. (2012).

5.2 Lexical Ambiguity

We introduced lexically ambiguous words into the corpus to test the ability of the system to learn and

distinguish between their different senses; 10% of word types were ambiguous between 2 or 3 different

senses with different syntactic category. Inspection of the induced actions for these words shows that,

given appropriately balanced frequencies of occurrence of each separate word sense in the corpus, the

system is able to learn and distinguish between them. 57% of the ambiguous words had lexical en-

tries with both senses among the top three hypotheses, although in only one case were the two senses

ranked one and two. This was the verb ‘tramped’ with transitive and intransitive readings, with 4 and 21

occurrences in the corpus respectively.



5.3 Pronouns

For pronouns, we wish to learn both their anaphoric nature (resolution from context) and appropriate

syntactic constraints. Here, we tested on relative pronouns such as ‘who’ in “John likes Mary, who

runs”: the most general lexical action hypothesis learned for these is identical to hand-crafted versions

of the action (see Cann et al. (2005), chapter 3):

who

IF ?Ty(e)
〈↑∗↑L〉Fo(X)

THEN put(Ty(e))
put(Fo(X))
put(〈↓〉⊥)

ELSE ABORT

This action instructs the parser to copy a semantic type and formula from a type Ty(e) node at the

modality 〈↑∗↑L〉, relative to the pointed node. The system has therefore learnt that pronouns involve

resolution from context (note that many other hypotheses are possible, as pronouns are paired with

different LFs in different sentences). It also expresses a syntactic constraint on relative pronouns, that is,

the relative position of their antecedents 〈↑∗↑L〉 (the first node above a dominating LINK tree relation –

i.e. the head of the containing NP).

Of course, relative pronouns are a special case: the modality from which their antecedents are copied

is relatively fixed. Equivalent constraints could be learned for other pronouns, given generalisation over

several modal relations; e.g. locality of antecedents for reflexives is specified in DS via a constraint

〈↑0↑
∗

1
↓0〉 requiring the antecedent to be in some local argument position. In learning reflexives, this

modal relation can come from generalisation over several different modalities obtained from different

training examples; this will require larger corpora.

6 Conclusions and Future work

In this paper we have outlined a novel method for the probabilistic induction of new lexical entries in an

inherently incremental and semantic grammar formalism, Dynamic Syntax, with no independent level of

syntactic phrase structure. Our method learns from sentences paired with semantic trees representing the

sentences’ predicate-argument structures, assuming only very general compositional mechanisms. While

the method still requires evaluation on real data, evaluation on an artificial but statistically representative

corpus demonstrates that the method achieves good coverage. A further bonus of using a semantic

grammar is that it has the potential to learn both semantic and syntactic constraints on pronouns: our

evaluation demonstrates this for relative pronouns, but this can be extended to other pronoun types.

Our research now focusses on evaluating this method on real data (the CHILDES corpus), and on

reducing the level of supervision by adapting the method to learn from sentences paired not with trees

but with less structured LFs, using Type Theory with Records Cooper (2005) and/or the lambda calculus.

Other work planned includes the integration of the actions learned into a probabilistic parser.
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Abstract

This paper addresses the task of finding antecedents for locally uninstantiated arguments. To
resolve such null instantiations, we develop a weakly supervised approach that investigates and com-
bines a number of linguistically motivated strategies that are inspired by work on semantic role
labeling and corefence resolution. The performance of the system is competitive with the current
state-of-the-art supervised system.

1 Introduction

There is a growing interest in developing algorithms for resolving locally unrealized semantic arguments,
so-called null instantiations (NIs). Null instantiations are frequent in natural discourse; only a relatively
small proportion of the theoretically possible semantic arguments tend to be locally instantiated in the
same clause or sentence as the target predicate. This even applies to core arguments of a predicate i.e.,
those that express participants which are necessarily present in the situation which the predicate evokes.
However, null instantiated arguments can often be ‘recovered’ from the surrounding context.

Consider example (1) below (taken from Arthur Conan Doyle’s “The Adventure of Wisteria Lodge”).
In a frame-semantic analysis of (1), interesting evokes the Mental stimulus stimulus focus
(Mssf) frame. This frame has two core semantic arguments, EXPERIENCER and STIMULUS, as well
as eight peripheral arguments, such as TIME, MANNER, DEGREE. Of the two core arguments, nei-
ther is realized in the same sentence. Only the peripheral argument DEGREE (DEG) is instantiated and
realized by most. To fully comprehend the sentence, it is necessary to infer the fillers of the EXPERI-
ENCER and STIMULUS roles, i.e., the reader needs to make an assumption about what is interesting and
to whom. For humans this inference is easy to make since the EXPERIENCER (EXP) and STIMULUS

(STIM) roles are actually filled by he and a white cock in the previous sentence. Similarly, in (2) right
evokes the Correctness (Corr) frame, which has four core arguments, only one of which is filled
locally, namely SOURCE (SRC), which is realized by You (and co-referent with Mr. Holmes). How-
ever, another argument, INFORMATION (INF), is filled by the preceding sentence (spoken by a different
speaker, namely Holmes), which provides details of the fact about which Holmes was right.

(1) [“A white cock,”]Stim said [he]Exp. “[Most]Deg interestingMssf!”

(2) A. [“Your powers seem superior to your opportunities.”]Inf

B. “[You]Src’re rightCorr, Mr. Holmes.”

Semantic role labeling (SRL) systems typically only label arguments that are locally realised (e.g.,
within the maximal projection of the target predicate); they tacitly ignore all roles that are not instanti-
ated locally. Previous attempts to resolve null instantiated arguments have obtained mixed results. While
Gerber and Chai (2010, 2012) obtain reasonable results for NI resolution within a restricted PropBank-
based scenario, the accuracies obtained on the FrameNet-based data set provided for the SemEval 2010

1



Shared Task 10 (Ruppenhofer et al., 2010; Chen et al., 2010; Tonelli and Delmonte, 2010, 2011; Silberer
and Frank, 2012) are much lower. This has two reasons: Semantic role labelling in the FrameNet frame-
work is generally harder than in the PropBank framework, even for overt arguments, due to the fact that
FrameNet roles are much more grounded in semantics as opposed to the shallower, more syntactically-
driven PropBank roles. Second, the SemEval 2010 data set consists of running text in which null in-
stantiations are marked and resolved, while the data set used by Gerber and Chai (2010, 2012) consists
of annotated examples sentences for just a few predicates. This makes the latter data set easier as there
are fewer predicates to deal with and more examples per predicate to learn from. However, this set-up
is somewhat artificial and unrealistic (Ruppenhofer et al., to appear). Independently of whether the NI
annotation is done on individual predicates or running texts, it is unlikely that we will ever have sufficient
amounts of annotated data to address large-scale NI resolution in a purely supervised fashion.

In this paper, we present a system that uses only a minimal amount of supervision. It combines
various basic NI resolvers that exploit different types of linguistic knowledge. Most of the basic resolvers
employ heuristics; however, we make use of semantic representations of roles learnt from FrameNet.
Note that the system does not require data annotated with NI information, only data annotated with overt
semantic roles (i.e., FrameNet). Our paper is largely exploratory; we aim to shed light on what types
of information are useful for this task. Similarly to Silberer and Frank (2012) , we focus mainly on NI
resolution, i.e., we assume that it is known whether an argument is missing, which argument is missing,
and whether the missing argument has a definite or indefinite interpretation (DNI vs. INI, see Section 2
for details).1

2 Arguments and Null Instantiations in FrameNet

A predicate argument structure in FrameNet consists of a frame evoked by a target predicate. Each frame
defines a number of frame elements (FEs). For some FEs, FrameNet explicitly specifies a semantic
type. For instance, the EXPERIENCER of the Mental stimulus stimulus focus frame (see (1))
is defined to be of type ‘sentient’. We make use of this information in the experiments. The FEs are
categorized into core arguments, peripheral arguments, and extra-thematic arguments. Core arguments
are taken to be essential components of a frame; they distinguish it from other frames and represent par-
ticipants which are necessarily present in the situation evoked by the frame, though may not be overtly
realized every time the frame is evoked. Peripheral arguments are optional and generalize across frames,
in that they can be found in all semantically appropriate frames. Typical examples of peripheral argu-
ments are TIME or MANNER. Finally, extra-thematic arguments are those that situate the event described
by the target predicate against another state-of-affairs. For example, twice can express the extra-thematic
argument ITERATION. Since only core arguments are essential to a frame, only they are analyzed as null
instantiated if missing. Peripheral and extra-thematic arguments are optional by definition.

(3) [A drunk burglar]Sspct was arrestedArrest after accidentally handing his ID to his victim.

(4) [We]Thm arrivedArrive [at 8pm]Tm.

NIs can be classified into definite NIs (DNIs) or indefinite NIs (INI). The difference is illustrated by
examples (3) and (4). Whereas, in (3) the protagonist making the arrest is only existentially bound within
the discourse (an instance of indefinite null instantiation, INI), the GOAL location in (4) is an entity that
must be accessible to speaker and hearer from the discourse or its context (definite null instantiation,
DNI). As INIs do not need to be accessible within a context, the task of resolving NIs is restricted to
DNIs. The complete task can then be modeled as a pipeline consisting of three sub-tasks: (i) identifying
potential NIs by taking into account information about core arguments, (ii) automatically distinguishing
between DNIs and INIs, and (iii) resolving NIs classified as DNI to a suitable referent in the text. In this
paper, we focus largely on the last subtask.

1The first two questions are the focus of recent work on motion predicates by Feizabadi and Padó (2012).
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3 Related work

Null instantiations were the focus of the SemEval-10 Task-10 (Ruppenhofer et al., 2010). The two
participating systems which addressed the NI resolution task took very different approaches. Tonelli
and Delmonte (2010) developed a knowledge-based system called VENSES++ that builds on an existing
text understanding system (Delmonte, 2008). Different resolution strategies are employed for verbal and
nominal predicates. For the former, NIs are resolved by reasoning about the semantic similarity between
an NI and a potential filler using WordNet. For nominal predicates, the system makes use of a common
sense reasoning module that builds on ConceptNet (Liu and Singh, 2004). The system is conservative
and has a relatively high precision but a low recall, identifying less than 20% of the NIs correctly. To
address the low recall, Tonelli & Delmonte in later work (Tonelli and Delmonte, 2011) developed a
simpler role linking strategy that is based on computing a relevancy score for the nominal head of each
potential antecedent. The intuition is that heads which serve often as role fillers and occur close to the
target NI are more likely to function as antecedents for the NI. Compared to the earlier model, the new
method led to a noticeable increase in recall and f-score but a drop in precision.

The second SemEval system (Chen et al., 2010) is statistical and extends an existing semantic role
labeler (Das et al., 2011). Resolving DNIs is modeled in the same way as labeling overt arguments, with
the search space being extended to pronouns, NPs, and nouns outside the sentence.2 When evaluating a
potential filler, the syntactic features which are used in argument labeling of overt arguments are replaced
by two semantic features: The system checks first whether a potential filler in the context fills the null-
instantiated role overtly in one of the FrameNet sentences, i.e. whether there is a precedent for a given
filler-role combination among the overt arguments of the frame in FrameNet. If not, the system calculates
the distributional similarity between filler and role. The surface distance between a potential filler and
an NI is also taken into account. While Chen et al.’s system has a higher recall than VENSES++, its
performance is still relatively low. The authors argue that data sparseness is the biggest problem.

Silberer and Frank (2012) also used supervised machine learning to model NI resolution for the
SemEval data. However, while Tonelli & Delmonte and Chen et al. view NI resolution as an extension of
semantic role labelling, Silberer and Frank explicitly cast the problem as a coreference resolution (CR)
task, employing an entity-mention model, i.e. the potential fillers are taken to be entity chains rather than
individual mentions of discourse referents. They experiment with a variety of features, both from SRL
and CR and automatically expand the training set with examples generated from a coreference corpus.
They find that CR features, such as salience, perform somewhat better than SRL features.

Gerber and Chai (2010; 2012) present a study of implicit arguments for a group of frequent nominal
predicates. They also use an entity mention approach and model the problem as a classical supervised
task, implementing a number of syntactic, semantic, and discourse features such as the sentence distance
between an NI and its potential filler, their mutual information, and the discourse relation holding be-
tween the spans containing the target predicate and the potential filler. Gerber and Chai report results that
are noticeably higher than those obtained for the SemEval data. However, this is probably largely due
to the fact that the two data sets are very different. Gerber and Chai’s corpus consists of newswire texts
(Wall Street Journal), which are annotated with NomBank/PropBank roles. The data cover 10 nominal
predicates from the commerce domain, with—on average—120 annotated instances per predicate. The
Task-10 corpus consists of narrative texts annotated under the FrameNet paradigm. Crucially, this corpus
provides annotations for running texts not for individual occurrences of selected target predicates. It thus
treats many different general-language predicates of all parts of speech. While the overall size of the
corpus in terms of sentences is comparable to Gerber and Chai’s corpus, the SemEval corpus contains
many more target predicates and fewer instances for each.3 NI resolution results obtained by the Task-10
participants are significantly below those reported by Gerber and Chai (2010).

2This disregards other role fillers such as whole sentences as in example (2) above.
3E.g., Ruppenhofer et al. (2010) report that there are 1,703 frame instances covering 425 distinct frame types, which gives

an average of 3.8 instances per frame.
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data set sentences tokens frame frame overt frame DNIs INIs
instances types elements (resolved)

Wisteria 438 7,941 1,370 317 2,526 303 (245) 277
Hound 525 9,131 1,703 452 3,141 349 (259) 361

Table 1: Statistics for the SemEval-10 Task-10 corpus

4 Data

In our experiments we used the corpus distributed for SemEval-10’s Task-10 on “Linking Events and
Their Participants in Discourse” (Ruppenhofer et al., 2010). The data set consists of two texts by
Arthur Conan Doyle, “The Adventure of Wisteria Lodge”(1908) and “The Hound of the Baskervilles”
(1901/02). The annotation consists of frame-semantic argument structure, co-reference chains, and in-
formation about null instantiation, i.e., the NI type (DNI vs. INI) and the filler, if available in the text.
Table 1 provides basic statistics about this data set.

The Wisteria data were given out for training in the SemEval task. We use these data for parameter
tuning and error analysis. We also use the overt FE annotations in Wisteria to compute semantic vectors
of roles. For comparison with previous systems, the final results we report are for the unseen Hound data
(the test set in SemEval).

5 Modeling NI Resolution

While the complete NI resolution task consists of three steps, detecting NIs, classifying NIs as DNIs or
INIs, and resolving DNIs, in this paper, we focus exclusively on the third task as this is by far the most
difficult one. We model the problem as a weakly supervised task, where the only type of supervision
is the use of a corpus annotated with overtly realised semantic roles. We do not make use of the NI
annotations in the training set. This distinguishes our work from the approaches by Gerber and Chai
(2012; 2010) and Silberer and Frank (2012). However, like these two we employ an entity mention
model, that is, we take into account the whole coreference chain for a discourse entity when assessing
its likelihood of filling a null instantiated role. For this, we make use of the gold standard coreference
chains in the SemEval data. So as not to have an unfair advantage, we also create singleton chains for all
noun phrases without an overt co-referent, since such cases could, in theory, be antecedents for omitted
arguments. Finally, since NIs can also refer to complete sentences, we augment the entity set by all
sentences in the document.

We implemented four linguistically informed resolvers plus a baseline resolver. Each resolver returns
the best antecedent entity chain according to its heuristics or null, if none can be found. If two or more
chains score equally well for a given resolver, the one whose most recent mention is closest to the target
predicate is chosen, i.e., we employ recency/salience as a tie breaker. To arrive at the final decision over
the output of all (informed) resolvers, we experimented with various weighting schemes but found that
majority weighting works best.

5.1 Semantic Type Based Resolver (Stres)

One approach we pursue for identifying a suitable mention/chain relies on the semantic types that
FrameNet specifies for frame elements. Specifically, we look up in FrameNet the semantic type(s) of
the FE that is unexpressed. With that information in hand, we consider all the coreference chains that
are active in some window of context, where being active means that one of the member mentions of the
chain occurs in one of the context sentences. We try to find chains that share at least one semantic type
with the FE in question. This is possible because for each chain, we have percolated the semantic types
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associated with any of their member mentions to the chain.4 If we find no chain at all within the window
that has semantic types compatible with our FE, we guess that the FE has no antecedent.5 Note also that
in our current set-up we have defined the semantic type match to be a strict one. For instance, if our FE
has the semantic type Entity and an active chain is of the type Sentient, we will not get a match even
though the type Sentient is a descendant of Entity in the hierarchy in which semantic types are arranged.

5.2 String Based Resolver (String)

Another way of finding a correct filler is the frame-independent search for realizations of the null instan-
tiated frame element in a given context window. This is based on the assumption that a constituent which
has taken a given role before is likely to fill out that role again.

An example is (5), where house fills the role of GOAL in an instance of the Cotheme frame evoked
by led and is the correct antecedent for the omitted GOAL FE in a later instance of the Arriving frame.

(5) s2: The curved and shadowed drive ledCotheme us [to a low , dark house , pitchblack against a
slate-coloured sky]Goal. . . . s11: “I am glad you have comeArriving , sir . . . . ”

Investigating the active chains in the context, we try to find any chain containing a mention that is
annotated with a frame element of the same name as the null instantiated FE. We do so concentrating on
the FE name only and disregard the actual annotated frame, making use of the observation that FrameNet
tends to assign similar names to similar roles across frames. In our current set-up, the matching of FE
names is strict. Note that this constraint could be weakened by also considering frame elements that
have similar names to the FE under investigation. For example, many ‘numbered’ FE names such as
PROTAGONIST 1 could be treated as equivalent to simple unnumbered names such as PROTAGONIST.
Note that a similar feature is used by Chen et al. (2010). The difference is that they compute the feature
on the FrameNet data while we use the SemEval data.

5.3 Participant Based Resolver (Part)

Instead of concentrating on the null instantiated FE itself, another approach is to investigate the other
participants of the frame in question. Based on the assumption that roles occuring together with similar
other roles can be instantiated with the same filler, we search the coreference chains for mentions with
the highest overlap of roles with the frame under investigation. For this, the set of roles excluding the null
instantiated FE is checked against the role sets of frames in the context window. In case of an overlap
between those sets, we choose the mention as a possible filler that is annotated with an FE that is not in
the set. In case of there being multiple mentions fulfilling this criterion, the mention closest to the NI is
chosen. The mention that is finally chosen as the filler is that mention whose annotated frame shares the
most participants with the null instantiation’s frame.

5.4 Vector Based Resolver (Vec)

Another semantics-based approach next to the Semantic Type Based Resolver is to calculate the sim-
iliarity between the mentions in a coreference chain and the known fillers of a null instantiated frame
element. For each annotated (overt) FE in FrameNet and Wisteria, we calculate a context vector for the
filler’s head word, consisting of the 1000 most frequent words in the English Gigaword corpus. 6 The
vectors are calculated on the Gigaword corpus and the training data in addition, and the mean vector of
all vectors for a particular FE fillers’ head words is calculated as the target vector for said frame element.
In the actual process of resolving a given null instantiation, we investigate all coreference chains in the

4In the official FrameNet database, not every frame element is assigned a semantic type. We modified our copy of FrameNet
so that every FE does have a semantic type by simply looking up in WordNet the path from the name of a frame element to the
synsets that FrameNet uses to define semantic types.

5Alternatively, we could have widened the window of context in the hope of hitting upon a suitable chain.
6http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2003T05
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context window, and calculate the mean vectors of their mentions’ head words. We use the cosine for
measuring the similarity of each mean vector to the null instantiated frame element’s vector, and choose
as an antecedent the chain that bears the highest similarity. A similar feature is employed by Chen et al.
(2010) who also make use of distributional similarity.

5.4.1 Baseline Resolver (Base)

The baseline resolver is based on the intuition that the (entity chain of the) mention closest to the NI
might be a good filler in the absence of more sophisticated knowledge. There are essentially two filler
types: NPs and sentences. The FrameNet definition of the null instantiated FE is used to determine
whether its filler’s semantic type should be a living thing or another kind of general physical object, in
which case we link to the closest NP, or if the element is a Topic or Message FE, in which case we link
to the preceding sentence.

6 Experiments

We first applied all individual resolvers as well as the combination of the four informed resolvers (by
majority vote) to the Wisteria data set. As Table 2 shows, the string and the participant (part) resolvers
behave similarly as well as the semantic type (stres) and vector (vec) resolvers: the former two have
a relatively high precision but very low recall, while the latter two obtain a higher recall and f-score.
This is not surprising since string and part on the one hand and stres and vec on the other hand model
very similar types of information. Moreover, the string and part resolvers suffer more from sparse data
since they are based on information about argument structures seen before. The more strongly semantic
resolvers stres and vec are more robust.

The combination of all resolvers by majority voting outperforms each individual resolver. However,
the difference is not huge, which suggests that there is a certain amount of overlap between the resolvers,
i.e. they are not disjoint. We experimented with other voting schemes besides majority voting, however
none led to significant improvements. As expected, the baseline resolver performs fairly poorly.

Prec. Rec. F-Score TPs
stres 0.23 0.2 0.21 51
string 0.53 0.06 0.11 16
part 0.66 0.01 0.02 2
vec 0.21 0.18 0.19 46
all 0.26 0.24 0.25 62
base 0.07 0.02 0.03 4

Table 2: Results for the individual resolvers on Wisteria

6.1 Qualitative Analysis

To shed further light on the behaviour of the resolvers as well as on the challenges of the task we per-
formed a detailed qualitative analysis for a run on the training data in which we use a window of 3
sentences prior to the target sentence. (The results for slightly greater windows sizes up to 5 are essen-
tially the same.)

Performance by frame For the semantic type-based resolver and the vector resolver we looked in
detail at their performance on individual frames. We did not similarly look at the other two resolvers
as they only identified antecedents for relatively few DNIs, thus rendering the analysis a bit unreliable.
The vector and the semantic type-based resolvers behave similarly and, for reasons of space, we focus
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on the latter here. We traced the system’s handling of all frame instances with a DNI-FE from start to
finish, providing us with detailed information on why particular cases cannot be resolved. Table 3 shows
information for those FEs that are most often omitted as DNI. The resolver setting employed is one
where the resolver looks backward only for coreferent mentions of the missing referent. All mentions
in a window of three sentences before the DNI are considered. For instance, the first line in Table 3
shows that the FE GOAL in the Arriving frame occurs 14 times overall. In 12 cases, a resolution
within the text is possible. However, in only 4 cases is the correct coreference chain among the set
of active candidates that the resolver considers within the 3-sentence window. None of these 4 cases
were resolved successfully. By comparison, performance is much higher for the FE INITIAL SET of the
Increment frame, where 5 of 8 resolvable instances are correctly resolved. Note that for the same
frame, performance seems much lower for the FE CLASS, which, however, is also less often resolvable
than its sister FE INITIAL SET. Likewise, the numbers for WHOLE in Calendric unit suggest that
for some FEs in particular frames resolution to an explicit mention within the text is rarely possible
and typically results in false positives. Taken together, these facts suggest that ideally we would have
resolution strategies more specifically attuned to particular frame-FE combinations.

Framename FE Instances Resolvable Active Correct
Arriving Goal 14 12 4 0
Increment Initial set 9 8 5 1
Increment Class 6 2 0 0
Risky situation Asset 6 6 5 0
Attempt Goal 6 5 2 0
Time vector Landmark event 6 3 1 0
Observable bodyparts Possessor 6 6 6 2
Locative relation Ground 5 5 4 1
Social interaction evaluation Judge 5 4 2 1
Calendric unit Whole 5 0 0 0

...
Personal relationship Partner 2 3 3 3 0

Table 3: STRES performance on training data for frequent DNI-FEs (forward- and backward-looking)

Performance by search direction When resolving a DNI we considered all entity chains with men-
tions in a window of 3 sentences before the target predicate. We experimented with larger window sizes
but this did not lead to improved performance. We also experimented with looking at the following sen-
tences, too. In some cases, such as example (6), looking forward is the only way to get at an antecedent
within a given window size (he-his-the black-eyed , scowling , yellow devil).

(6) s292: They pushed her into the carriage s293: She fought her way out again . s294: I took
her part , got her into a cab , and here we are . s295: I shan ’t forget the faceObservable Bodypart at
the carriage window as I led her away . s296: I ’d have a short life if he had his way - the
black-eyed , scowling , yellow devil . &quot;

We may thus wonder what the effect of also looking forward might be. Table 4 shows the information
for the same set of frequent DNI-FEs as Table 3 but now for the resolver setting where the resolver looks
forward 3 sentences as well as backward.
Comparison of the tables suggests that looking forward does not usually give us access to chains that
we wouldn’t have available by only looking backward. We have only one such case–Social interaction
evaluation.Judge–in our tables. Overall, among the 303 DNI cases in the data, the gold chain is within
range in 143 cases when we only look back and in 156 cases when we look forward, too. (+9% ) Looking
forward more often results in the resolution of the right candidate (chain/mention) going wrong; e.g.
Increment.Initial set is a good example from the tables above. Overall, across all cases of DNI we have
a 41.9 % drop in correct resolutions.
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Framename FE Instances Resolvable Active Correct
Arriving Goal 14 12 4 0
Increment Initial set 9 8 5 5
Increment Class 6 2 0 0
Risky situation Asset 6 6 5 0
Attempt Goal 6 5 2 0
Time vector Landmark event 6 3 1 0
Observable bodyparts Possessor 6 6 6 2
Locative relation Ground 5 5 4 2
Social interaction evaluation Judge 5 4 1 1
Calendric unit Whole 5 0 0 0

...
Personal relationship Partner 2 3 3 3 2

Table 4: STRES performance on training data for frequent DNI-FEs (backward-looking only)

Number of candidate chains On average there are about 26.5 different candidate chains available for
a case of DNI if the system only looks back 3 sentences. Even with various constraints in place that filter
out chains, the number of viable chains is still high. Consider example 7, where an antecdent needs to
be found for the missing OFFENDER. That sentence alone, not including earlier ones, mentions multiple
distinct human individuals and groups. Given that the correct referent (he) is farthest away from the
frame’s target, it is not surprising that resolution did not succeed given that the system has no under-
standing that all other mentioned individuals and groups are among the revenge-seeking PROTAGONISTs
and thus highly unlikely to also fill the role of OFFENDER.

(7) s371: Knowing that he would return there , Garcia , who is the son of the former highest
dignitary in San Pedro , was waiting with two trusty companions of humble station , all three
fired with the same reasons for revengeRevenge .

Performance by target POS The distribution of DNI cases across targets of different parts of speech
is not even, as can be seen from Table 5. Neither is the performance of our systems equal for all POS, as
illustrated by Table 6. On the Wisteria data resolution performance is lowest for verbs. This is somewhat
surprising because traditional SRL tends to be easier for verbal predicates than for other parts-of-speech.
Similarly, in our experience, we have found performance on the two steps preceding antecedent resolu-
tion, that is, on NI detection and NI-type recognition, to usually be better on verbs (and adjectives) than
on nouns. However, the difference is small and may be accidental, especially since on the test data verbs,
along with adjectives, again perform better than nouns.

Adjective Noun Prep Adverb Verb Other
48 160 2 10 79 4

Table 5: Distribution of DNI instances across targets of different POS in the training data

POS Instances Resolvable Gold in CandidateSet Correct
Adj 48 38 25 8 (16.7%)
Noun 160 133 81 26 (16.25%)
Verb 79 65 33 7 (8.9%)

Table 6: Performance of the semantic type-based resolver for major POS types in the training data
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Performance on specific semantic domains While our training dataset is small, we also decided to
group related frames for three important semantic domains (Motion, Communication, Cognition & Per-
ception) that are relatively frequent in the training data. We compare the resolution performance for the
frame instances covered by the different groups in Table 7. Our intuition is that there may be differences
between the domains. For instance, as suggested by the example of the GOAL FE in the Arriving
frame (discussed in 6.1 above) Source and Goal FEs in motion-related frames may be relatively difficult
to resolve. However, the differences between the domains are not statistically significant on the amount
of data we have: the p-value of a Fisher’s exact test using the Freeman-Halton extension is 0.17537655.

Domain Instances Resolvable Gold in CandidateSet Correct
Motion 33 27 11 1 (3.0%)
Communication 19 19 13 3 (15.8%)
Cognition & Perception 15 15 10 1 (6.7%)

Table 7: Resolution performance of STRES for three well-represented domains

6.2 Quantitative Analysis

For comparison with previous work, we also report our results on the SemEval test set (Hound) for the
best parameter setting (majority vote, window of 5 sentences preceding the target sentence) as obtained
from the development set (Wisteria). Tables 8 and 9 give the results for the role linking task only, i.e.
assuming that NIs have been identified and correctly classified as DNI or INI. Tables 10 and 11 give the
results for the full NI resolution task. In the latter set-up we use heuristics to identify NIs and determine
DNIs. Our system is most comparable to the model by Silberer and Frank (2012), however, the latter
is supervised while our model only makes use of minimal supervision. Despite this, the best results by
Silberer and Frank for the role linking task are only slightly higher than ours (0.27 F1-Score). While
this is encouraging, the overall performance of all NI resolution systems proposed so far for FrameNet
argument structures is, of course, still relatively low. Comparing our results for the role linking (gold)
vs. the full NI resolution task (non gold) indicates that there is also still room for improvement regarding
NI identification and DNI vs. INI classification. The scores drop noticably for the non-gold setting. The
tables below also list the performance for different parts-of-speech of the FEE. Surprisingly adjective
FEEs seem to be easiest, while nouns seem more difficult than verbs. The low result for the category
‘Other’ can probably be explained by the fact that this category is very infrequent.

Verb Noun Adj Other All
Precision 0.27 0.23 0.33 0.0 0.25
Recall 0.26 0.22 0.33 0.0 0.23
F1-Score 0.27 0.22 0.33 0.0 0.24

Table 8: Results on Hound Chapter 13 (gold)

Verb Noun Adj Other All
Precision 0.32 0.22 0.38 0.0 0.27
Recall 0.29 0.21 0.33 0.0 0.24
F1-Score 0.31 0.22 0.35 0.0 0.25

Table 9: Results on Hound Chapter 14 (gold)
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Verb Noun Adj Other All
Precision 0.23 0.14 0.23 0.0 0.17
Recall 0.13 0.12 0.25 0.0 0.13
F1-Score 0.17 0.13 0.24 0.0 0.15

Table 10: Results on Hound Chapter 13 (non gold)

Verb Noun Adj Other All
Precision 0.18 0.08 0.1 0.0 0.12
Recall 0.16 0.08 0.22 0.0 0.12
F1-Score 0.17 0.08 0.13 0.0 0.12

Table 11: Results on Hound Chapter 14 (non gold)

7 Conclusion

In this paper, we presented a weakly supervised approach to finding the antecedents for definite null
instantiations. We built four different resolvers for the task, each drawing on slightly different aspects
of semantics. The semantic type-based and the vector resolver focused on the properties of potential
role fillers; the participant-based filler focused on the set of co-occurring roles; and the string-based
resolver represents a bet that a constituent which has filled a given role before is likely to fill the same
role again. While the semantic type-based and vector resolvers proved to be more robust than the others,
the best system consisted in a combination of all four resolvers. The combined system produced results
competitive with the current best supervised system, despite being largely unsupervised.

A detailed performance analysis for the semantic type-based resolver on the training data confirmed
some prior findings and yielded several new insights into the task. First, resolution attempts could benefit
from knowledge about the particulars of frames or of semantic domains. For instance, there seem to be
some omissible FEs such as WHOLE in the Calendric unit frame that are almost never resolvable
and which we therefore might best guess to have no antecedent. Similarly, while for some FEs in some
frames (e.g. INITIAL SET in Increment) a very narrow window of context is sufficient, for others such
as SOURCE, PATH or GOAL FEs in motion-related frames it might make sense to widen the window of
context that is searched for antecedents. Second, while it is clear that definite null instantiations normally
have to have prior mentions at the point when they occur, it was not obvious that also considering active
chains in a window following the occurrence of the FEE would in fact lower performance as it does
for STRES. Third, while verbs unexpectedly performed worse than nouns and adjectives on the training
data, the usual pattern was observed on the test data: role labeling and NI resolution perform better on
verbs than on nouns. Finally, the detailed analysis illustrates that the antecedent-finding step is indeed a
hard one given that on average the correct chain has to be found among more than 25 candidates.
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Abstract
We present a model for compositional distributional semantics related to the framework of Co-

ecke et al. (2010), and emulating formal semantics by representing functions as tensors and argu-
ments as vectors. We introduce a new learning method for tensors, generalising the approach of Ba-
roni and Zamparelli (2010). We evaluate it on two benchmark data sets, and find it to outperform
existing leading methods. We argue in our analysis that the nature of this learning method also
renders it suitable for solving more subtle problems compositional distributional models might face.

1 Introduction

The staggering amount of machine readable text available on today’s Internet calls for increasingly pow-
erful text and language processing methods. This need has fuelled the search for more subtle and sophisti-
cated representations of language meaning, and methods for learning such models. Two well-researched
but prima-facie orthogonal approaches to this problem are formal semantic models and distributional
semantic models, each complementary to the other in its strengths and weaknesses.

Formal semantic models generally implement the view of Frege (1892)—that the semantic content
of an expression is its logical form—by defining a systematic passage from syntactic rules to the com-
position of parts of logical expressions. This allows us to derive the logical form a of sentence from its
syntactic structure (Montague, 1970). These models are fully compositional, whereby the meaning of a
phrase is a function of the meaning of its parts; however, as they reduce meaning to logical form, they are
not necessarily adapted to all language processing applications such as paraphrase detection, classifica-
tion, or search, where topical and pragmatic relations may be more relevant to the task than equivalence
of logical form or truth value. Furthermore, reducing meaning to logical form presupposes the provision
of a logical model and domain in order for the semantic value of expressions to be determined, rendering
such models essentially a priori.

In contrast, distributional semantic models, suggested by Firth (1957), implement the linguistic phi-
losophy of Wittgenstein (1953) stating that meaning is associated with use, and therefore meaning can be
learned through the observation of linguistic practises. In practical terms, such models learn the meaning
of words by examining the contexts of their occurrences in a corpus, where ‘context’ is generally taken to
mean the tokens with which words co-occur within a sentence or frame of n tokens. Such models have
been successfully applied to various tasks such as thesaurus extraction (Grefenstette, 1994) and essay
grading (Landauer and Dumais, 1997; Dumais, 2003). However, unlike their formal semantics coun-
terparts, distributional models have no explicit canonical composition operation, and provide no way to
integrate syntactic information into word meaning combination to produce sentence meanings.

In this paper, we present a new approach to the development of compositional distributional semantic
models, based on earlier work by Baroni and Zamparelli (2010), Coecke et al. (2010) and Grefenstette
et al. (2011), combining features from the compositional distributional framework of the latter two with
the learning methods of the former. In Section 2 we outline a brief history of approaches to compo-
sitional distributional semantics. In Section 3 we overview a tensor-based compositional distributional
model resembling traditional formal semantic models. In Section 4 we present a new multi-step regres-



sion algorithm for learning the tensors in this model. Sections 5–7 present the experimental setup and
results of two experiments evaluating our model against other known approaches to compositionality in
distributional semantics, followed by an analysis of these results in Section 8. We conclude in Section 9
by suggesting future work building on the success of the model presented in this paper.

2 Related work

Although researchers tried to derive sentence meanings by composing vectors since the very inception
of distributional semantics, this challenge has attracted special attention in recent years. Mitchell and
Lapata (2008, 2010) proposed two broad classes of composition models (additive and multiplicative) that
encompass most earlier and related proposals as special cases. The simple additive method (summing
the vectors of the words in the sentence or phrase) and simple multiplicative method (component-wise
multiplication of the vectors) are straightforward and empirically effective instantiations of the general
models. We re-implemented them here as our Add and Multiply methods (see Section 5.2 below).

In formal semantics, composition has always been modeled in terms of function application, treating
certain words as functions that operate on other words to construct meaning incrementally according to a
calculus of composition that reflects the syntactic structure of sentences (Frege, 1892; Montague, 1970;
Partee, 2004). Coecke et al. (2010) have proposed a general formalism for composition in distributional
semantics that captures the same notion of function application. Empirical implementations of Coecke’s
et al.’s formalism have been developed by Grefenstette et al. (2011) and tested by Grefenstette and
Sadrzadeh (2011a,b). In the methods they derive, a verb with r arguments is a rank r tensor to be
combined via component-wise multiplication with the Kronecker product of the vectors representing its
arguments, to obtain another rank r tensor representing the sentence:

S = V � (a1 ⊗ a2 ⊗ ...⊗ ar)

Grefenstette and Sadrzadeh (2011b) propose various ways to estimate the components of verb tensors in
the two-argument (transitive) case, with the simple method of constructing the rank 2 tensor (matrix) by
the Kronecker product of a corpus-based verb vector with itself giving the best results. The Kronecker
method outperformed the best method of Grefenstette and Sadrzadeh (2011a), referred to as the Categor-
ical model. We re-implement the Kronecker method for our experiments below. It was not possible to
efficiently implement the Categorial method across our large corpus, but we still provide a meaningful
indirect comparison with this method.

Baroni and Zamparelli (2010) propose a different approach to function application in distributional
space, that they apply to adjective-noun composition (see also Guevara (2010) for similar ideas). Adjec-
tives are functions, encoded as linear maps, that take a noun vector as input and return another nominal
vector representing the composite meaning as output. In linear algebraic terms, adjectives are matrices,
and composition is matrix-by-vector multiplication:

c = A× n

Baroni and Zamparelli (2010) estimate the adjective matrices by linear regressions on corpus-extracted
examples of their input and output vectors. In this paper, we derive their approach as a special case of
a more general framework and extend it, both theoretically and empirically, to two-argument functions
(transitive verbs), as well as testing the original single argument variant in the verbal domain. Our
generalisation of their approach is called Regression in the experiments below.

In the MV-RNN model of Socher et al. (2012), all words and phrases are represented by both a
vector and a matrix, and composition also involves a non-linear transformation. When two expressions
are combined, the resulting composed vector is a non-linear function of the concatenation of two linear
transformations (multiplying the first element matrix by the second element vector, and vice versa). In
parallel, the components of the matrices associated with the resulting phrase are linear combinations of
the components of the input matrices. Socher and colleagues show that MV-RNN reaches state-of-the-art
performance on a variety of empirical tasks.

While the proposal of Socher et al. is similar to our approach in many respects, including syntax-
sensitivity and the use of matrices in the calculus of composition, there are three key differences. The



first is that MV-RNN requires task-specific labeled examples to be trained for each target semantic task,
which our framework does not, attempting to achieve greater generality while relying less on manual
annotation. The second difference, more theoretical in nature, is that all composition in MV-RNN is
pairwise, whereas we will present a model of composition permitting functions of larger arity, allowing
the semantic representation of functions that take two or more arguments simultaneously. Finally, we
follow formal semantics in treating certain words as functions and other as arguments (and can thus
directly import intuitions about the calculus of composition from formal semantics into our framework),
whereas Socher and colleagues treat each word equally (as both a vector and a matrix). However, we
make no claim at this stage as to whether or not these differences can lead to richer semantic models,
leaving a direct comparison to future work.

Several studies tackle word meaning in context, that is, how to adapt the distributional representation
of a word to the specific context in which it appears (e.g., Dinu and Lapata, 2010; Erk and Padó, 2008;
Thater et al., 2011). We see this as complementary rather than alternative to composition: Distributional
representations of single words should first be adapted to context with these methods, and then composed
to represent the meaning of phrases and sentences.

3 A general framework for distributional function application

A popular approach to compositionality in formal semantics is to derive a formal representation of a
phrase from its grammatical structure by representing the semantics of words as functions and arguments,
and using the grammatical structure to dictate the order and scope of function application. For example,
formal semantic models in the style of Montague (1970) will associate a semantic rule to each syntactic
rule in a context-free grammar. A sample formal semantic model is shown here:

Syntax Semantics
S ⇒ NP VP [[S]] ⇒ [[V P ]] ([[NP ]])
NP ⇒ N [[NP ]] ⇒ [[N ]]
N ⇒ ADJ N [[N ]] ⇒ [[ADJ ]] ([[N ]])
VP ⇒ Vt NP [[V P ]] ⇒ [[V t]] ([[NP ]])
VP ⇒ Vi [[V P ]] ⇒ [[V i]]

Syntax (cont’d) Semantics (cont’d)
Vt ⇒ {verbst} [[V t]] ⇒ [[verbt]]
Vi ⇒ {verbsi} [[V i]] ⇒ [[verbi]]
ADJ ⇒ {adjs} [[ADJ ]] ⇒ [[adj]]
N ⇒ {nouns} [[N ]] ⇒ [[noun]]

Following these rules, the parse of a simple sentence like ‘angry dogs chase furry cats’ yields the follow-
ing interpretation: [[chase]]([[furry]]([[cats]]))([[angry]]([[dogs]])). This is a simple model, where typically
lambda abstraction will be liberally used to support quantifiers and argument inversion, but the key point
remains that the grammar dictates the translation from natural language to the functional form, e.g. pred-
icates and logical relations. Whereas in formal semantics these functions have a set theoretic form, we
present here a way of defining them as multilinear maps over geometric objects. This geometric frame-
work is also applicable to other formal semantic models than that presented here. This is particularly
important, as the version of the model presented here is overly simple compared to modern work in for-
mal semantics (which, for example, apply NPs to VPs instead of VPs to NPs, to model quantification),
and only serves as a model frame within which we illustrate how our approach functions.

The bijective correspondence between linear maps and matrices is a well known property in linear
algebra: Every linear map f : A→ B can be encoded as a dim(B) by dim(A) matrixM , and conversely
every such matrix encodes a class of linear maps determined by the dimensionality of the domain and
co-domain. The application of a linear map f to a vector v ∈ A producing a vector w ∈ B is equivalent
to the matrix multiplication:

f(v) = M × v = w

In the case of multilinear maps, this correspondence generalises to a correlation between n-ary maps and
rank n + 1 tensors (Bourbaki, 1989; Lee, 1997). Tensors are generalisations of vectors and matrices;
they have larger degrees of freedom referred to as tensor ranks, which is one for vectors and two for
matrices. To illustrate this generalisation, consider how a row/column vector may be written as the
weighted superposition (summation) of its basis elements: any vector v in a vector space V with a fixed
basis {bi}i, can be written

v =
∑
i

cvi bi =
[
cv1 , . . . , c

v
i , . . . , c

v
dim(V )

]>



Here, the weights cvi are elements of the underlying field (e.g. R), and thus vectors can be fully described
by such a one-index summation. Likewise, matrices, which are rank 2 tensors, can be seen as a collection
of row vectors from some space Vr with basis {ai}i, or of column vectors from some space Vc with basis
{dj}j . Such a matrix M is an element of the space Vr ⊗ Vc, and can be fully described by the two index
summation:

M =
∑
ij

cMij ai ⊗ dj

where, once again, cMij is an element of the underlying field which in this case is simply the element from
the ith row and jth column of the matrix M , and the basis element ai⊗dj of Vr⊗Vc is formed by a pair
of basis elements from Vr and Vc. The number of indices (or degrees of freedom) used to fully describe a
tensor in this superposition notation is its rank, e.g., a rank 3 tensor T ∈ A⊗B ⊗C would be described
by the superposition of weights cTijk associated with basis elements ei ⊗ fj ⊗ gk.

The notion of matrix multiplication and inner product both generalise to tensors as the non-com-
mutative tensor contraction operation (×). For tensors T ∈ A⊗ . . .⊗B⊗C and U ∈ C⊗D⊗ . . .⊗E,
with bases {ai ⊗ . . .⊗ bj ⊗ ck}i...jk and {ck ⊗ dl ⊗ . . .⊗ em}kl...m, the tensor contraction of T ×U is
calculated: ∑

i...jkl...m

cTi...jkc
U
kl...mai ⊗ . . .⊗ bj ⊗ dl ⊗ . . .⊗ em

where the resulting tensor is of rank equal to two less than the sum of the ranks of the input tensors; the
subtraction reflects the elimination of matching basis elements through summation during contraction.

For every curried multilinear map g : A→ . . .→ Y → Z, there is a tensor T g ∈ Z ⊗ Y ⊗ . . .⊗ A
encoding it (Bourbaki, 1989; Lee, 1997). The application of a curried n-ary map h : V1 → . . .→ Vn →
W to input vectors v1 ∈ V1, . . . , vn ∈ Vn to produce output vector w ∈ W corresponds to the tensor
contraction of the tensor T h ∈W ⊗ Vn ⊗ . . .⊗ V1 with the argument vectors:

h(v1) . . . (vn) = T h × v1 × . . .× vn

Using this correspondence between n-ary maps and tensors of rank n+1 we can turn any formal semantic
model into a compositional distributional model. This is done by first running a type inference algorithm
on the generative rules and obtaining types, then assigning to each basic type a vector space and to each
function type a tensor space, and representing arguments by vectors and functions by tensors, finally,
model function application by tensor contraction.

To give an example, in the simple formal semantic model given above, a type inference algorithm
would provide us with basic types [[N ]] and [[S]]; we assign vector spaces N and S to these respec-
tively. Nouns and noun phrases are vectors in N , whereas sentences are vectors in S. Verb phrases map
noun phrase interpretations to sentence interpretations, hence they are of type [[V P ]] : type([[NP ]]) →
type([[S]]), in vector space terms we have [[V P ]] : N → S. Intransitive verbs map noun phrases to verb
phrases, therefore have the tensor form T vi ∈ S⊗N . Transitive verbs have type [[V t]] : [[NP ]]→ [[V P ]],
expanded to [[V t]] : N → N → S, giving us the tensor form T vt ∈ S ⊗N ⊗N . Finally, adjectives are
of type [[ADJ ]] : [[N ]] → [[N ]], and hence have the tensor form T adj ∈ N ⊗N . Putting all this together
with tensor contraction (×) as function application, the vector meaning of our sample sentence “angry
dogs chase furry cats” is obtained by calculating the following operations, for lexical semantic vectors
T cats and T dogs, square matrices T furry and T angry , and a rank 3 tensor T chase:(

T chase ×
(
T furry × T cats))× (T angry × T dogs)

An important feature of the proposed approach is that elements with the same syntactic category will
always be represented by tensors of the same rank and dimensionality. For examples, all phrases of type
S (namely sentences) will be represented by vectors with the same number of dimensions, making a
direct comparison of sentences with arbitrary syntactic structures possible.

4 Learning functions by multi-step regression

The framework described above grants us the ability to determine the rank of the tensors needed to
encode functions, as well as their dimensions relative to those of the vectors used to represent arguments.



It leaves open the question of how to learn tensors of specific ranks. This, very much like in the case
of the DisCoCat framework of Coecke et al. (2010) from which it originated, is intentional: There
may be more than one suitable semantic representation for arguments, functions, and sentences, and
it is a desirable feature that we may alternate between such representations or combine them while
leaving the mechanics of function composition intact. Furthermore, there may be more than one way of
learning the tensors and vectors of a particular representation. Previous work on learning tensors has been
described independently by Grefenstette and Sadrzadeh (2011a,b) for transitive verbs, and by Baroni and
Zamparelli (2010) for adjective-noun constructions. In this section, we describe a new way to learn such
tensors, based on ideas from both aforementioned approaches, namely that of multi-step regression.

Multi-step regression learning is a generalisation of linear regression learning for tensors of rank 3 or
higher, as procedures already exist for tensors of rank 1 (lexical semantic vectors) and rank 2 (Baroni and
Zamparelli, 2010). For rank 1 tensors, we suggest learning vectors using any standard lexical semantic
vector learning model, and present sample parameters in Section 5.1 below. Learning rank 2 tensors
(matrices) can be treated as a multivariate multiple regression problem, where the matrix components are
chosen to optimise (in a least square error sense) the mapping from training instances of input (argument)
to output (composed expression) vectors. Consider for example the task of estimating the components of
the matrix representing an intransitive verb, that maps subject vectors to (subject-verb) sentence vectors
(Baroni and Zamparelli discuss the analogous adjective-noun composition case):

s = V × subj

The weights of the matrix are estimated by least-squares regression from example pairs of input subject
and output sentence vectors directly extracted from the corpus. For example, the matrix for sing is
estimated from corpus-extracted vectors representing pairs such as <mom, mom sings>, <child, child
sings>, etc. Note that if the input and output vectors are n dimensional, we must estimate an n × n
matrix, each row corresponding to a separate regression problem (the i-th row vector of the estimated
matrix will provide the weights to linearly combine the input vector components to predict the i-th
output vector component). Regression is a supervised technique requiring training data. However, we
can extract the training data automatically from the corpus and so this approach does not incur an extra
knowledge cost with respect to unsupervised methods.

Learning tensors of higher rank by linear regression involves iterative application of the linear regres-
sion learning method described above. The idea is to progressively learn the functions of arity two or
higher encoded by such tensors by recursively learning the partial application of these functions, thereby
reducing the problem to the same matrix-learning problem as addressed by Baroni and Zamparelli. To
start with an example: the matrix-by-vector operation of Baroni and Zamparelli (2010) is a special case
of the general tensor-based function application model we are proposing, where a ‘mono-argumental’
function (intransitive verbs) corresponds to a rank 2 tensor (a matrix). The approach is naturally ex-
tended to bi-argumental functions, such as transitive verbs, where the verb will be a rank 3 tensor to be
multiplied first by the object vector and then by the subject, to return a sentence-representing vector:

s = V × obj× subj

The first multiplication of a n × n × n tensor by a n-dimensional vector will return a n-by-n matrix
(equivalent to an intransitive verb, as it should be: both sings and eats meat are VPs requiring a subject
to be saturated). Note that given n-dimensional input vectors, the ij-th n-dimensional vector in the
estimated tensor provides the weights to linearly combine the input object vector components to predict
the ij-th output component of the unsaturated verb-object matrix. The matrix is then multiplied by the
subject vector to obtain a n-dimensional vector representing the sentence. Again, we estimate the tensor
components by linear regression on input-output examples. In the first stage, we apply linear regression
to obtain examples of semi-saturated matrices representing verb-object constructions with a specific verb.
These matrices are estimated, like in the intransitive case, from corpus-extracted examples of <subject,
subject-verb-object> pairs. After estimating a suitable number of such matrices for a variety of objects of
the same verb, we use pairs of corpus-derived object vectors and the corresponding estimated verb-object
matrices as input-output pairs for another regression, where we estimate the verb tensor components. The
estimation procedure is schematically illustrated for eat in Fig. 1.
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Figure 1: Estimating a tensor for eat in two steps. We first estimate matrices for the VPs eat-meat, eat-pie
etc. by linear regression on input subject and output sentence vector pairs. We then estimate the tensor
for eat by linear regression with the matrices estimated in the previous step as output examples, and the
vectors for the corresponding objects as input examples.

We can generalise this learning procedure to functions of arbitrary arity. Consider an n-ary function
f : X1 → . . . → Xn → Y . Let Li be the set of i-tuples {wj

1, . . . , w
j
i }i∈[1,k], where k = |Li|,

corresponding to the words which saturate the first i arguments of f in a corpus. For each tuple in some
set Li, let f wj

1 . . . w
j
i = f ji : Xi+1 → . . . → Xn → Y . Trivially, there is only one such f j0—namely

f itself—since L0 = ∅ (as there are no arguments of f to saturate for i = 0). The idea behind multi-step
regression is to learn, at each step, the tensors for functions f ji by linear regression over the set of pairs
(wj′

i+1, f
j′

i+1), where the tensors f j
′

i+1 are the expected outcomes of applying f ji to wj′

i+1 and are learned
during the previous step. We bootstrap this algorithm by learning the vectors in Y of the set {f jn}j by
treating the word which each f jn models combined with the words of its associated tuple in Ln as a
single token. We then learn the vector for this token from the corpus using our preferred distributional
semantics method. By recursively learning the sets of functions from i = n down to 0, we obtain smaller
and smaller sets of increasingly de-saturated versions of f , which finally allow us to learn f0 = f .

To specify how the set of pairs used for recursion is determined, let there exist a function super
which takes the index of a tuple from Li and returns the set of indices from Li+1 which denote tuples
identical to the first tuple, excluding the last element:

super : N× N→ P(N) :: (i, j) 7→ {j′|∀j′ ∈ [1, k′].[wj
1 = wj′

1 ∧ . . . ∧ w
j
i = wj′

i ]} where k′ = |Li+1|
Using this function, the regression set for some f ji can be defined as {(wj′

i+1, f
j′

i+1)|j′ = super(i, j)}.
While we just demonstrated how our model generalises to functions of arbitrary arity, it remains to

be seen if in actual linguistic modeling there is an effective need for anything beyond tri-argumental
functions (ditransitive verbs).

5 Experimental procedure

5.1 Construction of distributional semantic vectors

We extract co-occurrence data from the concatenation of the Web-derived ukWaC corpus (http://
wacky.sslmit.unibo.it/), a mid-2009 dump of the English Wikipedia (http://en.wikipedia.
org) and the British National Corpus (http://www.natcorp.ox.ac.uk/). The corpus has been
tokenised, POS-tagged and lemmatised with TreeTagger (http://www.ims.uni-stuttgart.
de/projekte/corplex/TreeTagger/) and dependency-parsed with MaltParser (http://www.
maltparser.org/). It contains about 2.8 billion tokens.



We collect vector representations for the top 8K most frequent nouns and 4K verbs in the corpus,
as well as for the subject-verb (320K) and subject-verb-object (1.36M) phrases containing one of the
verbs to be used in one of the experiments below and subjects and objects from the list of top 8K nouns.
For all target items, we collect within-sentence co-occurrences with the top 10K most frequent content
words (nouns, verbs, adjectives and adverbs), save for a stop list of the 300 most frequent words. We
extract co-occurrence statistics at the lemma level, ignoring inflectional information. Following standard
practice, raw co-occurrence counts are transformed into statistically weighted scores. We tested various
weighting schemes of the semantic space on a word similarity task, observing that non-negative pointwise
mutual information (PMI) and local mutual information (raw frequency count multiplied by PMI score)
generally outperform other weighting schemes by a large margin, and that PMI in particular works best
when combined with dimensionality reduction by non-negative matrix factorization (described below).
Consequently, we pick PMI weighting for our experiments.

Reducing co-occurrence vectors to lower dimensionality is a common step in the construction of dis-
tributional semantic models. Extensive evidence suggests that dimensionality reduction does not affect,
and might even improve the quality of lexical semantic vectors (Bullinaria and Levy, 2012; Landauer
and Dumais, 1997; Sahlgren, 2006; Schütze, 1997). In our setting, dimensionality reduction is virtually
necessary, since working with 10K-dimensional vectors is problematic for the Regression approach (see
Section 5.2 below), that requires learning matrices and tensors with dimensionalities which are quadratic
and cubic in the dimensionality of the input vectors, respectively. We consider two dimensionality reduc-
tion methods, the Singular Value Decomposition (SVD) and Non-negative Matrix Factorization (NMF).
SVD is the most common technique in distributional semantics, and it was used by Baroni and Zam-
parelli (2010). NMF is a less commonly adopted method, but it has also been shown to be an effective
dimensionality reduction technique for distributional semantics (Dinu and Lapata, 2010). It has a fun-
damental advantage from our point of view: The Multiply and Kronecker composition approaches (see
Section 5.2 below), because of their multiplicative nature, cannot be meaningfully applied to vectors
containing negative values. NMF, unlike SVD, produces non-negative vectors, and thus allows a fair
comparison of all composition methods in the same reduced space.1

We perform the Singular Value Decomposition of the input matrix X: X = UΣV T and, like Baroni
and Zamparelli and many others, pick the first k = 300 columns ofUΣ to obtain reduced representations.
Non-negative Matrix Factorization factorizes a (m × n) non-negative matrix X into two (m × k) and
(k × n) non-negative matrices: X ≈ WH (we normalize the input matrix to

∑
i,j Xij = 1 before

applying NMF). We use the Matlab implementation2 of the projected gradient algorithm proposed in
Lin (2007), which minimizes the squared error of Frobenius norm F (W,H) = ‖X −WH‖2F . We set
k = 300 and we use W as reduced representation of input matrix X .3

5.2 Composition methods

Verb is a baseline measuring the cosine between the verbs in two sentences as a proxy for sentence
similarity (e.g., similarity of mom sings and boy dances is approximated by the cosine of sing and dance).

We adopt the widely used and generally successful multiplicative and additive models of Mitchell
and Lapata (2010) and others. Composition with the Multiply and Add methods is achieved by, re-
spectively, component-wise multiplying and adding the vectors of the constituents of the sentence we
want to represent. Vectors are normalised before addition, as this has consistently shown to improve Add
performance in our earlier experiments.

Grefenstette and Sadrzadeh (2011b) proposed a specific implementation of the general DisCoCat
approach to compositional distributional semantics (Coecke et al., 2010) that we call Kronecker here.

1We ran the experiments reported below in full space for those models for which it was possible, finding that Multiply
obtained better results there (approaching those of reduced-spaced Regression). This suggests that, although in our preliminary
word similarity tests the original 10K-dimensional space and the two reduced spaces produced very similar results, it is still
necessary to look for better low-dimensionality approximations of the full space.

2Available at http://www.csie.ntu.edu.tw/˜cjlin/nmf/.
3For both SVD and NMF, the latent dimensions are computed using a “core” matrix containing nouns and verbs only,

subsequently projecting phrase vectors onto the same space. In this way, the dimensions of the reduced space do not depend on
the ad-hoc choice of phrases required by our experiments.



Under this approach, a transitive sentence is a matrix S derived from:

S = (v ⊗ v)� (subj⊗ obj)

That is, if nouns and verbs live in a n-dimensional space, a transitive sentence is a n × n matrix given
by the component-wise multiplication of two Kronecker products: that of the verb vector with itself and
that of the subject and object vectors. Grefenstette and Sadrzadeh show that this method outperforms
other implementations of the same formalism and is the current state of the art on the transitive sentence
task of Grefenstette and Sadrzadeh (2011a) we also tackle below. For intransitive sentences, the same
approach reduces to component-wise multiplication of verb and subject vectors, that is, to the Multiply
method.

Composition of nouns and verbs under the proposed (multi-step) Regression model is implemented
using Ridge Regression (RR) (Hastie et al., 2009). RR, also known as L2 regularized regression, is a
different approach from the Partial Least Square Regression (PLSR) method that was used in previous
related work (Baroni and Zamparelli, 2010; Guevara, 2010) to deal with the multicollinearity problem.
When multicollinearity exists, the matrix XTX (X here is the input matrix after dimensionality reduc-
tion) becomes nearly singular and the diagonal elements of (XTX)−1 become quite large, which makes
the variance of weights too large. In RR, a positive constant λ is added to the diagonal elements ofXTX
to strengthen its non-singularity. Compared with PLSR, RR has a simpler solution for the learned weight
matrix B = (XTX + λI)−1XTY and produces competitive results at a faster speed. For each verb
matrix or tensor to be learned, we tuned the parameter λ by generalized cross-validation (Golub et al.,
1979). The objective function used for tuning minimizes least square error when predicting corpus-
observed sentence vectors or intermediate VP matrices (the data sets we evaluate the models on are not
touched during tuning!). Training examples are found by combining the 8K nouns we have vectors for
(see Section 5.1 above) with any verb in the evaluation sets (see Sections 6 and 7 below) into subject-
verb-(object) constructions, and extracting the corresponding vectors from the corpus, where attested
(vectors are normalised before feeding them to the regression routine). We use only example vectors
with at least 10 non-0 dimensions before dimensionality reduction, and we require at least 3 training
examples per regression. For the first experiment (intransitives), these (untuned) constraints result in
an average of 281 training examples per verb. In the second experiment, in the verb-object matrix es-
timation phase, we estimate on average 324 distinct matrices per verb, with an average of 15 training
examples per matrix. In the verb tensor estimation phase we use all relevant verb-object matrices as
training examples.4

6 Experiment 1: Predicting similarity judgments on intransitive sentences

We use the test set of Mitchell and Lapata (2008), consisting of 180 pairs of simple sentences made
of a subject and an intransitive verb. The stimuli were constructed so as to ensure that there would be
pairs where the sentences have high similarity (the fire glowed vs. the fire burned) and cases where the
sentences are dissimilar while having a comparable degree of lexical overlap (the face glowed vs. the
face burned). The sentence pairs were rated for similarity by 49 subjects on a 1-7 scale. Following
Mitchell and Lapata, we evaluate each composition method by the Spearman correlation of the cosines
of the sentence pair vectors, as predicted by the method, with the individual ratings produced by the
subjects for the corresponding sentence pairs.

The results in table 1(a) show that the Regression-based model achieves the best correlation when
applied to SVD space, confirming that the approach proposed by Baroni and Zamparelli for adjective-
noun constructions can be successfully extended to subject-verb composition. The Regression model
also achieves good performance in NMF space, where it is comparable to Multiply. Multiply was found
to be the best model by Mitchell and Lapata, and we confirm their results here (recall that Multiply can
also be seen as the natural extension of Kronecker to the intransitive setting). The correlations attained
by Add and Verb are considerably lower than those of the other methods.

4All materials and code used in these experiments that are not already publicly available can be requested to the first author.



(a) Intransitive Sentences

method ρ
Humans 0.40
Multiply.nmf 0.19
Regression.nmf 0.18
Add.nmf 0.13
Verb.nmf 0.08
Regression.svd 0.23
Add.svd 0.11
Verb.svd 0.06

(b) Transitive Sentences

method ρ
Humans 0.62
Regression.nmf 0.29
Kronecker.nmf 0.25
Multiply.nmf 0.23
Add.nmf 0.07
Verb.nmf 0.04
Regression.svd 0.32
Add.svd 0.12
Verb.svd 0.08

Table 1: Spearman correlation of composition methods with human similarity intuitions on two sentence
similarity data sets (all correlations significantly above chance). Humans is inter-annotator correlation.
The multiplication-based Multiply and Kronecker methods are not well-suited for the SVD space (see
Section 5.1) and their performance is reported in NMF space only. Kronecker is only defined for the
transitive case, Multiply functioning also as its intransitive-case equivalent (see Section 5.2).

7 Experiment 2: Predicting similarity judgments on transitive sentences

We use the test set of Grefenstette and Sadrzadeh (2011a), which was constructed with the same criteria
that Mitchell and Lapata applied, but here the sentences have a simple transitive structure. An example
of a high-similarity pair is table shows result vs. table expresses result; whereas map shows location
vs. map expresses location is a low-similarity pair. Grefenstette and Sadrzadeh had 25 subjects rating
each sentence. Model evaluation proceeds like in the intransitive case.5

As the results in table 1(b) show, the Regression model performs very well again, better than any other
methods in NMF space, and with a further improvement when SVD is used, similarly to the first experi-
ment. The Kronecker model is also competitive, confirming the results of Grefenstette and Sadrzadeh’s
experiments. Neither Add nor Verb achieve very good results, although even for them the correlation
with human ratings is significant.

8 General discussion of the results

The results presented here show that our iterative linear regression algorithm outperforms the leading
multiplicative method on intransitive sentence similarity when using SVD (and it is on par with it when
using NMF), and outperforms both the multiplicative method and the leading Kronecker model in pre-
dicting transitive sentence similarity. Additionally, the multiplicative model, while commendable for its
extreme simplicity, is of limited general interest, since it cannot take word order into account. We can
trivially make this model fail by testing it on transitive sentences with subject and object inverted: For
Multiply, pandas eat bamboo and bamboo eats pandas are identical statements, whereas for humans they
are obviously very different.

Confirming what Grefenstette and Sadrzadeh found, we saw that Kronecker performs very well also
in our experimental setup (although not as well as Regression). The main advantage of Kronecker over
Regression lies in its simplicity: there is no training involved, all it takes is two outer vector products and
a component-wise multiplication. However, as pointed out by Grefenstette and Sadrzadeh (2011b), this
method is ad hoc compared to the linguistically motivated Categorical method they initially presented
in Grefenstette and Sadrzadeh (2011a). It is conceivable that the Kronecker model’s good performance is
primarily tied to the nature of the evaluation data-set, where only verbs change while subject and object
stay the same in sentence pairs.

While our regression-based model’s estimation procedure is considerably more involved than for
Kronecker, the model has much to recommend it, both from a statistical and from a linguistic point of
view. On the statistical side, there are many aspects of the estimation routine that could be tuned on
automatically collected training data, thus bringing up the Regression model performance. We could for

5Kronecker produces matrix representations of transitive sentences, so technically the similarity measure used for this
method is the Frobenius inner product of the normalised matrices, equivalent to unfolding the matrices into vectors and com-
puting cosine similarity.



example harvest a larger number of training phrases (not limiting them to those that contain nouns from
the 8K most frequent in the corpus, as we did), or vice versa limit training to more frequent phrases,
whose vectors are presumably of better quality. Moreover, Ridge Regression is only one of of many
estimation techniques that could be tried to come up with better matrix and tensor weights. On the
linguistic side, the model is clearly motivated as an instantiation of the vector-space “dual” of classic
composition by function application via the tensor contraction operation, as discussed in Section 3 above.
Moreover, Regression produces vectors of the same dimensionality for sentences formed with intransitive
and transitive verbs, whereas for Kronecker, if the former are n-dimensional vectors, the second are n×n
matrices. Thus, under Kronecker composition, sentences with intransitive and transitive verbs are not
directly comparable, which is counter-intuitive (being able to measure the similarity of, say, kids sing
and kids sing songs is both natural and practically useful).

Finally, we remark that in both experiments SVD-reduced vectors lead to Regression models out-
performing their NMF counterparts. Regression, unlike the multiplication-based models, is not limited
to non-negative vectors, and it can thus harness the benefits of SVD reduction (although of course it is
precisely because of the large regression problems we must solve that we need to perform dimensionality
reduction at all!).

9 Conclusion

The main advances introduced in this paper are as follows. First, we discussed a tensor-based com-
positional distributional semantic framework in the vein of that of Coecke et al. (2010) which has the
compositional mechanism of Baroni and Zamparelli (2010) as a specific case, thereby uniting both lines
of research in a common framework. Second, we presented a generalisation of Baroni and Zamparelli’s
matrix learning method to higher rank tensors, allowing us to induce the semantic representation of func-
tions modelled in this framework. Finally, we evaluated this new semantic tensor learning model against
existing benchmark data-sets provided by Mitchell and Lapata (2008) and Grefenstette and Sadrzadeh
(2011a), and showed it to outperform other models. We furthermore claim that the generality of our
extended regression method allows it to capture more information than the multiplicative and Kronecker
models, and will allow us to canonically model more complex and subtle relations where argument order
and semantic roles matter more, such as quantification, logical operations, and ditransitive verbs.

Among the plans for future work, we intend to improve regression-based tensor estimation, focus-
ing in particular on automated ways to choose informative training examples. On the evaluation side, we
want to construct a larger test set to directly compare sentences with different argument counts (e.g., tran-
sitive vs. intransitive constructions) and word orders (e.g., sentences with subject and object inverted), as
well as extending modeling and evaluation to other syntactic structures and types of function application
(including the challenging cases we listed in the previous paragraph). We want moreover to test the
Regression model against the Categorical model of Grefenstette and Sadrzadeh (2011a) and to design
evaluation scenarios allowing a direct comparison with the MV-RNN model of Socher et al. (2012).

Acknowledgments

Edward Grefenstette is supported by EPSRC Project A Unified Model of Compositional and Distri-
butional Semantics: Theory and Applications (EP/I03808X/1). Georgiana Dinu and Marco Baroni
are partially supported by the ERC 2011 Starting Independent Research Grant to the COMPOSES
project (n. 283554). Mehrnoosh Sadrzadeh is supported by an EPSRC Career Acceleration Fellowship
(EP/J002607/1).



References
Baroni, M. and R. Zamparelli (2010). Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in

semantic space. In Proceedings of EMNLP, Boston, MA, pp. 1183–1193.

Bourbaki, N. (1989). Commutative Algebra: Chapters 1-7. Springer-Verlag (Berlin and New York).

Bullinaria, J. and J. Levy (2012). Extracting semantic representations from word co-occurrence statistics: Stop-lists, stemming
and SVD. Behavior Research Methods 44, 890–907.

Coecke, B., M. Sadrzadeh, and S. Clark (2010). Mathematical foundations for a compositional distributional model of meaning.
Linguistic Analysis 36, 345–384.

Dinu, G. and M. Lapata (2010). Measuring distributional similarity in context. In Proceedings of EMNLP, Cambridge, MA,
pp. 1162–1172.

Dumais, S. (2003). Data-driven approaches to information access. Cognitive Science 27, 491–524.
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Abstract

We present a hybrid natural language generation system that utilizes Discourse Representation
Structures (DRSs) for statistically learning syntactic templates from a given domain of discourse in
sentence “micro” planning. In particular, given a training corpus of target texts, we extract semantic
predicates and domain general tags from each sentence and then organize the sentences using super-
vised clustering to represent the “conceptual meaning” of the corpus. The sentences, additionally
tagged with domain specific information (determined separately), are reduced to templates. We use
a SVM ranking model trained on a subset of the corpus to determine the optimal template during
generation. The combination of the conceptual unit, a set of ranked syntactic templates, and a given
set of information, constrains output selection and yields acceptable texts. Our system is evaluated
with automatic, non–expert crowdsourced and expert evaluation metrics and, for generated weather,
financial and biography texts, falls within acceptable ranges. Consequently, we argue that our DRS
driven statistical and template–based method is robust and domain adaptable as, while content will
be dictated by a target domain of discourse, significant investments in sentence planning can be
minimized without sacrificing performance.

1 Introduction

In this paper, we propose a sentence (or “micro”) planning system that can quickly adapt to new domains
provided a corpus of sentences from the target domain is supplied. First, all sentences from the corpus
are parsed and a semantic representation is generated. We used predicate and domain general named
entities from Discourse Representation Structures (DRSs) derived by Boxer, a robust analysis tool that
creates DRSs from text (Bos (2008)). Second, the sentences are automatically clustered by their con-
ceptual meaning with a k-means clustering algorithm and then manually reviewed for consistency and
purity. Third, named entity and domain specific content tagging creates banks of templates (syntactic
representations) associated with the respective cluster (a “conceptual unit”). Finally, a ranking algorithm
is used to train a ranker that determines the optimal template at a given point in the generated discourse
given various features based on the conceptual units and the text derived so far.

Our system generates sentences from templates given a semantic representation as part of a larger
Natural Language Generation (“NLG”) system for three domains: financial, biography and weather
(from the SUMTIME-METEO corpus (Reiter et al. (2005))). NLG is traditionally seen as a multistage
process whereby decisions are made on the type of text to be generated (communicative goal); entities,
events and relationships that express the content of that text; and forging grammatical constructions with
the content into a “natural” sounding text. These stages are articulated in a variety of architectures - for
example, Bateman and Zock summarize NLG as follows: (1) Macro Planning creating a document plan;
(2) Micro Planning sentence planning; (3) Surface Realization concatenating the information from (1-
2) into coherent and grammatical text; and (4) Physical Presentation document layout considerations
(formatting, titles, etc.) (Bateman and Zock (2003)). Each one of these stages can have several subtasks
and vary considerably in terms of complexity (see generally, McKeown (1985); Hovy (1993); Reiter and
Dale (2000)). However, in general, some abstract representation is developed in (1-2) and (3-4) deal with
translating the abstraction to natural language largely through either rule–based or statistical approaches.



Significant human investments often need to be made to create systems from scratch. But while these
systems may perform very well for a specific domain, extending to alternative domains may require start-
ing over. Statistical approaches can streamline some human investment, but domain adaptability remains
a concern. Finding the appropriate balance between investing in input and achieving an appropriate level
of evaluated acceptance of the output, let alone whether or not the approach is adaptable, can be prob-
lematic. More abstracted representations may require more rules to process and generate acceptable texts
while less abstract representations may require less rules but more investment in human resources. When
evaluated, we find that our system produces texts that fall within acceptable ranges for automatic metrics
(BLEU and METEOR), non-expert crowdsourced evaluations via CrowdFlower and expert evaluations of
the biography domain (based on similar evaluation comparisons for other NLG systems).

Basile and Bos suggest that DRSs provide an appropriate form of abstraction for NLG tasks (Basile
and Bos (2011)). The reason being that DRSs provide deep semantic content in the form of named
entities, relationships between entities, identity relations and logical implications (e.g. negation, scope)
all of which have a straight forward mapping to syntactic parses (e.g., within Combinatorial Categorial
Grammar) and, in sum, provide a useable architecture to perform a myriad of NLG tasks. We adopt
Discourse Representation Theory (Kamp and Reyle (1993)) as a starting point for our experiments for
domain adaptable NLG. And while we only use a few features of the DRS in the current work, we
anticipate that the logical representations in DRT can be useful for future work, as in improving the
clustering of conceptual units in the training corpus, for example.

The main contributions of this paper are:

• A hybrid approach to sentence planning that combines a statistical system with a template-based
system where templates are generated semi-automatically with minimal human review

• Domain adaptability is shown in three different domains (financial, biography and weather).

• Non-expert human evaluation is carried out by means of crowdsourcing. The evaluation pro-
vides scores for overall fluency of the generated text as well as sentence-level preferences between
generated and original texts. These evaluations are supplemented by expert evaluations for the
biography domain.

This article is structured as follows. Section 2 describes existing rule-based and statistical NLG ap-
proaches and domain adaptability. Section 3 explains our methodology; including DRSs and their use
in clustering the three corpora and how the generated clusters are ranked and deployed in the genera-
tion of texts. Section 4 presents sample generated texts and the results of automatic and crowdsourced
evaluations. Section 5 concludes with limitations and avenues of future research.

2 NLG: Templates, Rules and Statistics

This section discusses current approaches to NLG. We argue that a combination of a statistical approach
and templates has an advantage over purely rule-based or statistical NLG systems.

Overall, NLG systems tend to be rule–based where some type of text is sought to be generated and
different stores of data are manipulated to generate texts. The rules exist at all levels of the system
from selecting content, to choosing a grammatical output to post-processing constraints (e.g. sentence
aggregation and pronoun generation). For example, the SUMTIME-METEO project (Reiter et al. (2005))
generates weather forecasts from numerical data. First, the numerical data is analyzed, then decisions
are made about what content to convey based on the analysis and how to grammatically represent the
content at the document and sentence level. These decisions are implemented by hand crafted rules with
input from multiple experts. Hence, rule–based systems come with a potentially high development cost
due to the necessity of domain experts and system developers creating the rules.1

1Anja Belz references a personal communication with Ehud Reiter and Somayajulu Sripada where 12 person months where
spent on the SUMTIME-METEO microplanner and realizer alone (Belz (2007)).



Statistical NLG systems, on the other hand, look to bypass or minimize extensive construction of
rules by using corpus data to “learn” rules for one or more components of an NLG system (Langkilde
and Knight (1998)). Alternative generations are then created from the rules and a decision model governs
which alternative to choose at a given point in a generated discourse. For example, the pCRU system,
which also generates weather texts from numerical data, starts with a small number of relations that are
trained on a corpus (Belz (2007)). Other statistical systems such as the SPaRKy (Stent et al. (2004)) for
generating restaurant recommendations uses a ranking algorithm for training rules for sentence gener-
ation. Statistical systems have less of a reliance on human input, but they require robust training data
and it is harder to control the output – often leading to texts that are shorter, less natural and possible
ungrammatical (but see e.g., van Deemter et al. (2005)).

Our system relys on both statistical and template–based approaches. We first statistically learn the
semantic structure of a given domain of discourse which is then used to produce templates for our system
(combining the Micro Planning and Surface Realization stages). Next, to pick the best template, we
train a ranker which ranks the different sentence templates (the SPaRKy system that also employs a
ranking algorithm, but it ranks different rules rather than the sentences). This combination avoids pitfalls
stemming from a statistical model generating the input for a realizer (also avoiding the need for an
extensive grammar) and, in contrast to some systems which rely only in part on statistical learning (e.g.,
for template selection but not for generating underlying semantic structures (Galley et al. (2001))), we
find that our approach is not only efficient in terms of processing and generating data, but also highly
adaptable to different domains with minimized human involvement.

3 Methodology

In order to generate the different templates, it is necessary to rely on some formalism to capture the
semantics of a given training corpus. Reducing the training corpus to semantic expressions works to
ensure that use of human experts would be minimized and flexibility in domain adaptability could be
preserved while not compromising the quality of the generated texts. To this end, we utilized Boxer
which relies on a combination of CCG parsing, part–of–speech tagging and a store of lexical semantic
representations from the CCGbank (Hockenmaier and Steedman (2005)) to create the structures. Each
DRS is a combination of domain general named entities (DATE, PERSON, etc.) and predicates (typically
content words, but also shallow semantic categories such as AGENT and EVENT) which are related by
different relational elements (typically function words) (in, by). For our system, we extract only those
words and categories marked as predicates and the domain general entity tags. To illustrate, consider (1):

(1) a. The consensus recommendation for the financial services peergroup is a buy.
b. T. Rowe Price led the group last quarter with a 3.6% average per share price increase.
c. The increase is projected to level off during the current quarter.

The predicate and domain general entity information created by Boxer for (1) is as follows:

(2) a. CONSENSUS | RECOMMENDATION | EVENT | SERVICE | PEERGROUP | BUY | ...
b. COMPANY | LEAD | DATE | SHARE | EVENT | AVERAGE | INCREASE | ...
c. INCREASE | EVENT | PROJECT | OFF | DATE | ...

The DRS-based predicates and domain general entities in (2) provide a lexical semantic represen-
tation of the sentence which captures the conceptual meaning of the sentence. Our assumption is that
each grouping of DRS-based predicates represents the semantic “concept” of the sentence. The highly
abstracted representation that does not utilize, for example, the relational information between the predi-
cates, is a good starting point for grouping sentences and creating clusters (via k-means, discussed below
in Section 3.1) by semantic concept. In viewing each sentence in a training corpus as such (indicated with
an identifier (“CuId”)), and a document as a sequence of “conceptual units” associated with templates
and a store of predetermined information (domain specific tagging), we can categorize sentences by con-
cept and create an organized bank of syntactic representations. For example, consider (3) (assuming, for



the sake of presentation, that each utterance in (1) conveys a separate conceptual units):

(3) a. {CuId : 001}
Information: industry: financial services peergroup; recommendation: buy

b. {CuId : 002}
Information: company: T.Rowe Price; time: last quarter; value: 3.6%;
industry: the group; financial: average per share price; movement: increase

c. {CuId : 003}
Information: movement: increase, level off; time: the current quarter

The associated template representation (assigned to sentence in (1)) would be as follows:

(4) a. {CuId : 001}: The consensus recommendation for the [industry] is a [recommendation].
b. {CuId : 002}: [company] led [industry] [time] with a [value] [financial] [movement].
c. {CuId : 003}: The [movement] is projected to [movement] during [time].

For domain adaptability in NLG, the key is to find a method that allows for the extraction of the ap-
propriate level of semantics to be useable for generation across different corpora. The level of semantics
can be relatively course or fine grained, weighed against a number of relevant factors (e.g., the commu-
nicative goal and the selection of content). The selection of content for our system is relatively fixed and
is based on domain specific (not discussed here) and general tagging (e.g., COMPANY, DATE, PERSON

from Boxer or other open source tools). Domain specific tags were not considered in the extraction of
predicates from our training corpora. The following example from the biography domain illustrates the
types of semantic content extracted for purposes of clustering the semantics of different training corpora.

(5) Training Sentence
a. Mr. Mitsutaka Kambe has been serving as Managing Director of the 77 Bank, Ltd.

since June 27, 2008.
b. Earlier in his career, he was Director of Market Sales, Director of Fund Securities and

Manager of Tokyo Branch in the Bank.
c. He holds a Bachelor’s in finance from USC and a MBA from UCLA.

Conceptual Meaning
d. SERVING | MANAGING | DIRECTOR | PERSON | COMPANY | DATE | ...
e. EARLY | CAREER | DIRECTOR | MARKET | SALES | MANAGER | ...
f. HOLDS | BACHELOR | FINANCE | MBA | HOLD | EVENT | ...

Content Mapping
g. {CuId : 004}

Information: person: Mr. Mitsutaka Kambe; title: Managing Director;
company: 77 Bank, Ltd.; date: June 27, 2008

h. {CuId : 005}
Information: person: he; title: Director of Market Sales, Director of Fund Securities,
Manager; organization: Tokyo Branch; company: the Bank

i. {CuId : 006}
Information: person: he; degree: Bachelor’s, MBA; subject: finance; institution: USC;
UCLA

Templates
j. {CuId : 004}: [person] has been serving as [title] of the [company] since [date].
k. {CuId : 005}: Earlier in his career, [person] was [title], [title] and [title] of [organization]

in [company].
l. {CuId : 006}: [person] holds a [degree] in [subject] from [institution] and a [degree] from

[institution].

As shown in (4-5), predicate and domain general information from Boxer captures significant vari-
ability in the different domains of discourse which becomes less problematic with our approach than



compared with, for example, rule–based sentence planning. This is with the proviso that a sufficiently
sized and variable training corpus is available. Example generations for each domain are included in (6).

(6) Financial
a. First quarter profit per share for Brown-Forman Corporation expected to be $0.91 per share

by analysts.
b. Brown-Forman Corporation July first quarter profits will be below that previously

estimated by Wall Street with a range between $0.89 and $0.93 per share
and a projected mean per share of $0.91 per share.

c. The consensus recommendation is Hold.
d. The recommendations made by ten analysts evaluating the company include

one Strong Buy, one Buy, six Hold and two Underperform.
e. The average consensus recommendation for the Distillers peer group is a Hold.

Biography
f. Mr. Satomi Mitsuzaki has been serving as Managing Director of Mizuho Bank since

June 27, 2008.
g. He was previously Director of Regional Compliance of Kyoto Branch.
h. He is a former Managing Executive Officer and Chief Executive Officer

of new Industrial Finance Business Group in Mitsubishi Corporation.

Weather
i. Complex low from southern Norway will drift slowly nne to the Lofoten Islands

by early tomorrow.
j. A ridge will persist to the west of British Isles for Saturday with a series of weak fronts

moving east across the North Sea.
k. A front will move ene across the northern North Sea Saturday.

Because of the nature of our statistical plus template–based approach, it was not necessary to utilize
all that Boxer has to offer. We only used predicates, which, for all intense and purposes, could be
captured with content words, and domain general entity tagging. However, there are several additional
aspects of Boxer which may prove useful such as exploiting the relation information, rhetorical relations
and drawing further inferences based on the logical structure of the DRS are left to future work.

In sum, for our system, given some training sentence clustered on relatively simple semantics, cou-
pled with domain specific tagging, templates can easily be generated and organized in a logical manner.
With a large enough training corpus, there would be multiple templates (cf. Table 1) within each CuId
and the one selected for generation would be statistically learned. The next section provides more detail
about the data and clustering of semantic information in the creation of conceptual units and template
banks from which the selection model generates text.

3.1 Data and Clustering

As indicated in Table 1, the financial domain includes 1067 machine generated texts from a commercially
available NLG system covering mutual fund performance reports (n=162) and broker recommendations
(n=905) from a commercially available NLG system, ranging from 1 to 21 segments (period ended
sentences). The biography domain includes 1150 human generated texts focused on corporate office
biographies, ranging from 3-17 segments. The weather domain includes 1045 human generated weather
reports for offshore oil rigs from the SUMTIME-METEO corpus (Reiter et al. (2005)).

For each domain, the corpus was processed with Boxer and those items identified as predicates and
named entity tags by the system were extracted. Each sentence then, represented as string of predi-
cates and domain general tags, was clustered using k–means (in the WEKA toolkit (Witten and Frank
(2005))) with k set to 50 for the financial domain and 100 for the biography and weather domains. The
resulting clusters were manually checked to determine consistency - i.e., that all strings of predicates and



Table 1: Data and Semantic Cluster Distribution.
Financial Biography Weather

Texts 1067 1150 1045
Conceptual Units 38 19 9

Templates 1379 2836 2749
Average Template/CU (Range) 36 (6–230) 236 (7–666) 305 (6–800)

tags assigned to a cluster conveyed the same or similar concept.2 Clusters can be thought of as groups
of most common words, for example the “recommend” cluster in the financial domain included REC-
OMMEND, CONSENSUS, COMPANY, the “current position” cluster in the biography domain included
PERSON, POSITION, COMPANY, JOIN, DATE, and the “ridge” cluster in the weather domain included
RIDGE, PRESSURE, DIRECTION.

The biography and weather domains, despite being human generated, are semantically less inter-
esting (19 and 9 conceptual units respectively) but exhibit significantly more variability – 236 and 305
average number of templates per conceptual unit as compared to 36 for the financial domain (which is
machine generated). The end result of the semantic preprocessing (along with domain specific entity
tagging) is a training corpus reduced to templates (cf. 4,5j-l) organized by semantic concept. We use a
ranking model to select a template corresponding to a semantic concept.

3.2 Ranking Model

For each conceptual unit, we rank all the matching templates and select the best ranked template. In
order to train a ranking model, we do a 70/30 split of the data for training and testing. We represent each
training document as a series of conceptual units along with the input information. For each conceptual
unit, we first filter out all the non-matching templates by entity type and number - selecting only those
templates that match the type of domain specific tagging present in the data and also have the same
number of entities for each entity type. We rank the remaining templates based on the Levenshtein
(Levenshtein (1966)) edit distance from the gold template (Template extracted from the original sentence
in the training document). Additionally, several features are extracted for the top 20 ranked templates (to
ease processing time) and are used in building the model: (1) N-grams: Word n-grams extracted from
the template. We used 1-3 grams; and (2) Length: Normalized length of the input template. We used a
ranking support vector machine (Joachims (2002)) with a linear kernel to train a model and each feature
in the model will have an associated weight.

During testing, the system is presented with a sequence of conceptual units and the input data associ-
ated with each conceptual unit. All the templates associated with the conceptual units are extracted from
the template bank and are filtered according to the filtering criteria used in the training phase. For each
of the remaining templates, the model weights are applied to compute a score and the highest scored
template is selected for generation. This embodiment constitutes the system generations. For the purpose
of evaluation, we compared the system generations against the original texts and texts created without the
ranking model - where any template associated with a conceptual unit is selected at random (rather than
based on score) after applying the filter (random generations). The next section discusses the generated
texts and a series of automatic and human (non-expert crowdsourced and expert) evaluations of the texts.

2To this end, we initialized k to an arbitraily large value to facilitate collapsing of similar clusters during manual verification.
We assume this to be an easier task than reassigning individual sentences from existing clusters. As indicated in Table 1, this
proved useful as the most semantically varied domain turned out to be the financial domain with 38 clusters (each cluster
corresponds to a different conceptual unit).



4 Experimental Results

Table 2 provides generation comparisons for the system ( Sys), random ( Rand) and the original ( Orig)
text from each domain. The variability of the generated texts ranges from a close similarity to the original
text to slightly shorter, which, as mentioned in Section 2, is not an uncommon (Belz and Reiter (2006)),
but not necessarily detrimental, observation for NLG systems (van Deemter et al. (2005)). The generated
sentences can be equally informative and semantically similar to the original texts (e.g., the financial
sentences in Table 2). The generated sentences can also be less informative, but semantically similar
to the original texts (e.g., leaving out “manager” in Bio Sys). However, there can be a fair amount of
gradient semantic variation (e.g., moving northeast to a location vs. moving northeast across a location
in Weather Sys and “Director of Sales Planning” vs. “Director of Sales” in Bio Rand).

Table 2: Example Texts.
System Text
Fin Orig Funds in Small-Cap Growth category increase for week.
Fin Sys Small-Cap Growth funds increase for week.
Fin Rand Small-Cap Growth category funds increase for week.
Weather Orig Another weak cold front will move ne to Cornwall by later Friday.
Weather Sys Another weak cold front will move ne to Cornwall during Friday.
Weather Rand Another weak cold front from ne through the Cornwall will remain slow moving.
Bio Orig He previously served as Director of Sales Planning and Manager of Loan Center.
Bio Sys He previously served as Director of Sales in Loan Center of the Company.
Bio Rand He previously served as Director of Sales of the Company.

Some semantic differences are introduced in our system despite generating grammatical sentences.
For example, “remain slow moving” (Weather Rand) is not indicated in the original text. These types
of differences are more common for random rather than system generations. However, the ultimate
impact of these and other changes is best understood through a comparative evaluation of the texts with
automatic and human evaluations.

4.1 Evaluations and Discussion

We evaluate our NLG system with automatic and human metrics and the correlations between them.
The human evaluations can (and, in some circumstances, must be) performed by both non-experts and
experts. We provide non-expert crowdsourced evaluations to determine grammatical, informative and
semantic appropriateness and the same evaluations by several experts in biography generation.

The automatic metrics used here are BLEU–4 (Papineni et al. (2002)) and METEOR (v.1.3) (Denkowski
and Lavie (2011)) and originate from machine translation research. BLEU–4 measures the degree of 4-
gram overlap between documents. METEOR uses a unigram weighted f–score less a penalty based on
chunking dissimilarity. We also calculated an error rate as an exact match between strings of a docu-
ment. Table 3 provides the automatic evaluations of financial, biography and weather domains for both
random and system for all of the testing documents in each domain (financial (367); weather (209);
biography (350)).3

For each domain, the general trend is that random exhibits a higher error rate and lower BLEU–4
and METEOR scores as compared to system. This suggests that the system is more informative than the
random text. However, scores for the financial domain exhibit a smaller difference compared to weather
and biography. Further, the BLEU–4 and METEOR scores are very similar. This is arguably related to
the fact that the average number of templates is significantly lower for the financial disourses than the
weather and biography domains. That is to say, there is a greater chance of the random system selecting

3If comparing originals, the Error Rate would equal 0 and BLEU–4 and METEOR would equal 1.



Table 3: Automatic Metric Evaluations of Biography, Financial and Weather Domains.
Metric Bio Rand Bio Sys Fin Rand Fin Sys Weather Rand Weather Sys

Error Rate 0.815 0.350 0.571 0.477 0.996 0.698
BLEU–4 0.174 0.750 0.524 0.577 0.057 0.469
METEOR 0.198 0.520 0.409 0.386 0.256 0.436

the same template as system. So, from an automatic metric standpoint, applying model weights increases
“performance” of the generation (based on coarse content overlap). However, human evaluations of the
texts are necessary to confirm and augment what the automatic metrics indicate.

Two sets of crowdsourced human evaluation tasks (run on CrowdFlower) were constructed to com-
pare against automatic metrics: (1) an understandability evaluation of the entire text on a three-point
scale: Fluent = no grammatical or informative barriers; Understandable = some grammatical or in-
formative barriers; Disfluent = significant grammatical or informative barriers; and (2) a sentence–level
preference between sentence pairs (e.g., “Do you prefer Sentence A (from original) or the corresponding
Sentence B (from random/system)”). 100 different texts and sentence pairs for system, random and the
original texts from each domain were selected at random. Figure 1 presents the text understanding task
and Figure 2 presents the sentence preference task (The aggregate percentage agreement for the text–
understandability is .682 and .841 for the sentence–preference tasks based on four judgments per text
and sentence pair).4

Figure 1: Human Text–Understandability Evaluations.

In all cases, the original texts in each domain demonstrate the highest comparative fluency and the
lowest comparative disfluency. Further, the system texts demonstrate the highest fluency and the lowest
disfluency compared to the random texts. However, the difference between the system and random for
the financial and weather domains are fairly close whereas the differences for the biography domain is
much greater. This makes sense as the biography domain is human generated and exhibits a high amount
of variability. Given that the weather domain is also human generated and exhibits more variability
compared to the financial domain, but they read more like the financial domain because of their narrow
geographic and subject matter vernacular.

4Over 100 native English speakers contributed, each one restricted to providing no more than 50 responses and only after
they sucessfully answered 4 “gold data” questions correctly. We also omitted those evaluators with a disproportionately high
response rate. No other data was collected on the contributors (although geographic data (country, region, city) and ip addresses
were available). Radio buttons were separated from the text to prevent click bias.



Figure 2: Human Sentence–Preference Evaluations.

Similar trends are demonstrated in the sentence preferences (Figure 2). In all cases, the original and
system sentences are preferred to random. The original sentences are also preferred to system sentences,
but the difference is very close for the financial and weather domains. This indicates that, at the sentence
level, our system is performing similar to the original texts.

As indicated in Table 4, Pearson Correlation, based on 300 documents (100 from each domain), be-
tween the automatic metrics are high with the appropriate direction (e.g., error rate correlates negatively
with BLEU–4 and METEOR scores, which correlate positively with each other). The human ratings - a
consolidated score (Fluent = 1, Understandable = .66, Disfluent = .33) averaged over four raters per
document - behave similar to the BLEU–4 and METEOR automatic metrics, but much less stong. There is
more variability captured in the human judgments as compared to the automatic metrics which are both
stricter and more consistent.

Table 4: Human–Automatic Pearson Correlation ( p≤.0001)).
Error Rate BLEU–4 METEOR Human

Error Rate 1 -.719 -.715 -.406
BLEU–4 1 .827 .520
METEOR 1 .490
Human 1

Extreme cases aside, there is no exact formula for translating automatic and human evaluations to a
true estimation for how the generated texts are performing. It is a relative determination at best and, in
all actuality, deference is paid to the human evaluations. Human understandability of the texts is key.

We were able to perform expert evaluation of the biography domain. Three experts journalists, who
write short biographies for news archives, performed the same two non–expert crowdsourced tasks. For
the text evaluation, the experts rated both the original and system texts to be 100% Fluent (with the
random texts following a similar distribution of non-expert ratings). For the sentence evaluations, the
experts still preferred the original to the system sentences, but with an increase in preference for the
system as compared to the non-experts - 27% preference by non-experts versus a 35% preference by
experts. This trend is a reverse of what is reported for weather texts. For example, Belz and Reiter
report a reduction in acceptability with experts as compared to non-experts (Belz and Reiter (2006)).
This makes sense as the expert should be more discriminant based on experience. For the present texts,
it could be the case that our system is capturing nuances of biography writing that experts are sensitive



to. However, more critical expert feedback is required before saying more.
The performances that we present here are comparable to other rule–based and statistical systems.

However, comparing systems can be problematic given the different goals and architectures. Nonethe-
less, the evaluations and generated texts indicate that we have been able to appropriately capture inter-
esting and varied semantic structures.

5 Conclusions and Limitations

We have presented a hybrid statistical and template–based NLG system that generates acceptable texts
for a number of different domains. Our experiments with both experts and non–experts indicate that the
generated text is as good as the original text. From a resource standpoint, it is an attractive proposition to
have a method to create NLG texts for a number of different subject matters with a minimal amount of
development. The initial generation of the conceptual units and templates for the financial domain took
two person weeks. This was reduced to two days for the weather and biography domains. Most of the
development time was spent on domain specific tagging and model creation.

As compared to other NLG systems, there are several limitations to what we have presented here.
First of all, our system assumes the document plan is given as an input; but this is not always necessarily
true. In addition to the document plan, we also use domain specific tags from the original text. For
example, we use phrases like last quarter as our input whereas a typical NLG system receives pure data
like an exact date indicating the end of the quarter. It is the NLG system’s responsibility to generate the
corresponding referring expression appropriate for the current context. We are currently working on an
extension of our framework that includes document planning and referring expression generation. This
will also enable us to compare our system with existing state-of-the-art statistical NLG systems such as
pCRU. We have not done expert evaluation for the financial and weather domains. While non-experts
can provide useable judgments on the well–formedness of generated texts, evaluating the finer grained
semantics of the text falls with the expert and will be included in future development. Finally, our system
will only work with domains that have significant historical data. If only limited data is available, our
system potentially cannot capture the variety of linguistic expressions used to express a semantic concept
and will thus fail to avoid redundancy across texts.

Future work will focus on additional domains, and the integration of more discourse–level features
into the model. Also, as we have only focused on a small part of what DRSs contain, deepening the
semantics with the inclusion of relational elements may improve generation as well. We are in particular
interested in utilizing the semantic representation for an improved clustering of conceptual units. As
indicated in this article, attention to semantic structures is central to NLG and captures a large portion of
the theoretical construction of such systems.
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Abstract

Traditionally, semantic role labelling systems have focused on searching the fillers of those ex-
plicit roles appearing within sentence boundaries. However, when the participants of a predicate are
implicit and can not be found inside sentence boundaries, this approach obtains incomplete predica-
tive structures with null arguments. Previous research facing this task have coincided in identifying
the implicit argument filling as a special case of anaphora or coreference resolution. In this work,
we review a number of theories that model the behaviour of discourse coreference and propose some
adaptations to capture evidence for the implicit argument resolution task. We empirically demon-
strate that exploiting such evidence our system outperforms previous approaches evaluated on the
SemEval-2010 task 10 dataset. We complete our study identifying those cases that traditional coref-
erence theories can not cover.

1 Introduction

One of the most relevant tasks in the semantic processing of texts is identifying the arguments of a pred-
icate. Several systems have been developed to perform this task, called Semantic Role Labelling (SRL)
(Gildea and Jurafsky, 2000). However they have traditionally focused on searching the fillers for the
overtly realized arguments in the local context of the predicate. In other words, only exploring those
participants that share a syntactical relation with the predicate. Since traditional SRL systems depend
strongly on these syntactic relations, they cannot perform predictions when the candidate instantiation
of the argument is not explicit. Nevertheless, some null instantiated arguments can be inferred from
the context. Using the nominal predicates of NomBank (Meyers et al., 2004), Gerber and Chai (Gerber
and Chai, 2010) pointed out that the implicit arguments can add up to 65% to the coverage of the in-
stantiations. As a consequence, increasing the number of connections between the predicates and their
participants could help dramatically text understanding.

In FrameNet (Baker et al., 1998), the predicates, called lexical-units (LU), evoke frames which
roughly correspond to different events or scenarios. For each frame, a set of possible arguments are
defined. These arguments are called Frame Elements (FE) and when they are not explicitly instantiated
they are called Null Instantiations (NI). When they can be inferred implicitly they are called Definite
Null Instantiations (DNI). In the next example, the LU tenantn evoking the frame Residence has an
instantiated FE, Resident, whose filler is [the tenants]. The correct filler for the DNI corresponding to FE
Location, [the house], appears two sentences before:

“Now, Mr. Holmes, with your permission, I will show you round the house.” The various bedrooms
and sitting-rooms had yielded nothing to a careful search. Apparently [the tenantsResidence]Resident had
brought little or nothing with them. DNILocation

Early studies on implicit arguments described this problem as a special case of anaphora or corefer-
ence resolution (Palmer et al., 1986; Whittemore et al., 1991; Tetreault, 2002). Also recent works cast
this problem as an anaphora resolution task (Silberer and Frank, 2012).
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In this work we present a detailed study of a set of features that have been traditionally used to model
anaphora and coreference resolution tasks. We describe how these features manifest in a FrameNet based
corpus for modeling implicit argument resolution, including an analysis of their benefits and drawbacks.

The paper is structured as follows: section 2 discusses the related work. Section 3 describes the
SemEval-2010 task 10 dataset. Section 4 reviews a number of sources of evidence applied to the anaphora
or coreference resolution tasks. We also propose how to adapt these features to select the appropriate
fillers for the implicit arguments. Section 5 presents some experiments we have carried out to test these
features. Section 6 discusses the initial results. Finally, section 7 offers some concluding remarks and
presents some future researching.

2 Related Work

Task 10 of SemEval-2010 focused on the evaluation of SRL systems based on the FrameNet paradigm1

(Ruppenhofer et al., 2009). This task was divided in two different sub-tasks:

(i) Argument annotation in a traditional SRL manner.
(ii) Filling null instantiatios over the document.

The systems participating in the second subtask identified those missing Frame Elements that were
really Null Instantiations, decided which of those NI were definite, and finally located the correct fillers
of the DNIs. Two systems participated in the second sub-task: VENSES++ and SEMAFOR.

VENSES++ (Tonelli and Delmonte, 2010) builds logical rules from syntactic parsing and uses hand-
crafted lexicons. They apply a rule based anaphora resolution procedure before employing semantic
similarity between a NI and a potential filler using WordNet (Fellbaum, 1998). More recently, the same
authors have tried to improve the performance of their system (Tonelli and Delmonte, 2011).

SEMAFOR (Chen et al., 2010) is a supervised system that extends an existing semantic role labeller
replacing the features defined for regular arguments with two new semantic features. First, their system
checks if a potential filler in the context fills the null-instantiated role in one of the FrameNet sentences,
and second, it calculates the distributional semantic similarity between the fillers and the roles. Although
this system obtained the best performance in the task, data sparseness strongly affected the results.

In a different approach, (Ruppenhofer et al., 2011) explore a number of linguistic strategies in order
to enhance the DNI identification. They conclude that a more sophisticated approach for DNI identifi-
cation can improve significantly the performance of the whole pipeline, even if the method for the DNI
filling is simple. For filling DNIs they propose to use the semantic types specified for FEs in FrameNet.
Following this line (Laparra and Rigau, 2012) presented a novel strategy for the DNI identification ex-
ploiting explicit Frame Elements annotations. Their approach gets the best results in the state of the art
for DNI identification and showed its relevance in the DNI filling process.

(Silberer and Frank, 2012) propose to solve the task adapting an entity-based coreference resolution
model. In this work, the authors also extend automatically the training corpus to avoid data sparseness.

Finally, (Gerber and Chai, 2010) define a closely related task characterizing the implicit arguments of
some predicates appearing in NomBank (Meyers et al., 2004). They use a set of syntactic and semantic
features to train a logistic regression classifier. The documents, obtained from the Wall Street Journal
corpus, were already annotated with explicit arguments. Unlike SemEval-2010 task, the resulting dataset
contains 1.253 predicate instances with an average of 1,8 roles annotated per instance. However just a
set of ten different predicates is taken into account.

3 SEMEVAL-2010 dataset

In the experiments reported in this paper, we have used the dataset distributed in SemEval-2010 for Task
10 “Linking Events and their Participants in Discourse”. The corpus contains some chapters extracted

1http://www.coli.uni-saarland.de/projects/semeval2010_FG/
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from two Arthur Conan Doyle’s stories. “The Tiger of San Pedro” chapter from “The Adventure of Wis-
teria Lodge” was selected for training, while chapters 13 and 14 from “The Hound of the Baskervilles”
were selected for testing. The texts are annotated using the frame-semantic structure of FrameNet 1.3
including null instantiations, the type of the NI and the corresponding fillers for each DNI. Table 1 shows
the number of DNI in the dataset.

data-set DNIs (solved) Explicit FE
train 303 (245) 2,726
test-13 158 (121) 1,545
test-14 191 (138) 1,688

Table 1: Number of DNI and Explicit FE annotations for the SemEval-10 Task-10 corpus.

The dataset also includes the annotation files for the lexical units and the full-text annotated corpus
from FrameNet. The annotations are enriched with a constituent-based parsing and for the training
document there are manual coreference annotations available.

4 Sources of evidence

Many sources of evidence have proved their utility in reference resolution (Burger and Connolly, 1992).
In this section, we adapt them to the specific characteristics of the DNI linking task. We also present
their behaviour over the training data. Two main differences must been taken into account with respect
to anaphora and coreference tasks. First, in anaphora and coreference tasks, mentions occur explicitly
and they can be exploited to check particular constrains. Without an explicit argument, in some cases, we
decided to obtain the evidences from the predicate (that is, the lexical-unit) of the target DNI. Second,
the referenced entities are not just nouns or pronouns but also verbs, adjectives, etc. Therefore, some
features must be generalized. We introduce the sources of evidence grouped in four different types.

4.1 Syntactic

Some of the earliest theories studying pronoun resolution focused on the syntactic relations between the
referenced entities. Here we present two syntactic features that also exploit this source of evidence. In
both cases, we also include an artificial node covering all document sentence trees in order to generalize
its behaviour beyond sentence boundaries.

Command: C-command (Reinhart, 1976) is a syntactic relationship between nodes in a constituency
tree. One node N1 is said c-commanded by another N2 if three requirements are satisfied:

• N1 does not dominate N2
• N2 does not dominate N1
• The first upper node that dominates N1, also dominates N2

This syntactic relation has proved to be useful to locate anaphoric references. Now, we study if this
relationship can also be of utility for DNI resolution. We implemented this relation as a distance measure
between the candidate filler node and the nearest common ancestor with respect the lexical-unit of the
target DNI (see a simple example in figure 1). Note that a value equal to zero means that either the filler
dominates the target or the target dominates the filler. Besides, those fillers having a command value
equal to one satisfy the c-command theory. Figure 2 presents the frequency distribution of our distance
measure on the training data. It seems that most fillers have a command value equal or close to one.

Nearness: The constituency tree can also be exploited for anaphora resolution using breadth-first
search techniques. A widely known algorithm based in this search is the Hobbs’ algorithm (Hobbs,
1977). This algorithm follows a traversal search of the tree looking for a node that satisfies some con-
straints. Because of the nature of these constraints this algorithm cannot be directly applied to the implicit
argument annotation task. Instead, we studied if the breadth distance can be an evidence through a mea-
sure we call nearness. We calculate nearness N as follows:
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Figure 1: Sample values of command for different
nodes in a constituency tree. T represents the lexical-
unit of the target DNI

Figure 2: Frequency distribution of the different val-
ues of command in the training data

• P is the first upper node that dominates the lexical-unit T and the filler F
• B is the tree branch containing F whose parent is P
• If F precedes T, N is the number of following siblings of F in B
• If F follows T, N is the number of preceding siblings of F in B
• If T dominates F or F dominates T, N is equal to 0

Figure 3 presents some examples of values obtained using this measure. Figure 4 shows the frequency
distribution of the different values of nearness in the training data. It also seems that most fillers prefer
small nearness values.

Figure 3: Sample values of nearness for different
nodes in a constituency tree. T represents the lexical-
unit of the target DNI

Figure 4: Frequency distribution of the different val-
ues of nearness in the training data

4.2 Morpho-syntactic and Semantic Agreement

Anaphora and coreference solvers usually apply morpho-syntactic and semantic agreement tests. These
constraints check for the consistency between the properties of the target entities and the referents. Sev-
eral agreement tests such as gender, number or semantic class can be applied. Since most of these tests
can not be applied to this task, in this work we have studied part of speech and semantic type agreement.

Semantic Type: To extract the semantic type of the filler of a frame element, we first perform a
very simple Word Sense Disambiguation (WSD) process assigning to each word, whenever possible,
the most frequent sense of WordNet (Fellbaum, 1998). This heuristic has been used frequently as a
baseline in the evaluation of WSD systems. As WordNet senses have been mapped to several ontologies,
this disambiguation method allows us to label the documents with ontological features that can work as
semantic types. In this work we have used the Top Ontology (TO) (Álvez et al., 2008). We assign to each
filler the ontological features of its syntactic head. In this way, we can learn from the training data and
for each frame element a probability distribution of its semantic types. Table 2 contains some examples.

Part of Speech: We also calculate the probability distribution of the part of speech (POS) of the head
of the fillers similarly as for the semantic types.
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Frame#FrameElement SemanticType Probability

Expectation#Cognizer Human 0.93
Group 0.07

Residence#Location Building 0.77
Place 0.33

Attempt#Goal Purpose 0.41
UnboundEvent 0.37
Object 0.13
Part 0.09

Table 2: Some examples of semantic types assigned to frame elements.

4.3 Discursive

Recency: Recent entities are more likely to be a coreferent than more distant ones. This fact can be
easily represented as the sentence distance between the lexical-unit of the target DNI and its referent.
This feature has been used frequently not only in coreference and anaphora resolution but also in implicit
argument resolution. (Gerber and Chai, 2010) noticed that the vast majority of the fillers of an implicit
argument can be found either in the same sentence of the predicate or in the two preceding sentences. In
our training data, this fact accounts for 70% of cases. Moreover, only around 2% of the fillers are located
in posterior sentences. Figure 5 presents a frequency distribution of the different recency values.

Figure 5: Frequency distribution of the different val-
ues of recency in the training data

filler LU dialogue monologue
dialogue 77.8% 5.4%
monologue 22.2% 94.6%

Table 3: Dialogue vs. monologue distributions

Dialogue: Since the corpus data consists of different chapters of a novel, it contains many dialogues
inserting a narrative monologue. The resolution of pronoun and coreference in dialogues dealing with a
multi-party discourse have been largely studied (e.g. (Byron and Stent, 1998; Poesio et al., 2006; Stent
and Bangalore, 2010)). In this work, we just studied how referents are maintained with respect the two
different levels of discourse. Table 3 shows that, in the vast majority of cases, both lexical-unit and filler
belong to the same level of discourse2. Consequently, this fact can be used to promote those candidates
that are at the same discourse level of the lexical-unit of the target DNI.

4.4 Coreference chains

An important source of evidence for anaphora resolution is the focus. The entity or topic which is salient
in a particular part of the discourse is the most likely to be coreferred in the same part of the discourse.
Thus, given a coreference annotation of a document it is possible to know how the focus varies along the
discourse. As we explained in Section 3, the training data contains a full coreference annotation that we
use to study three sources of evidence related to both focus and coreference chains.

Non singleton: Using the same training data, (Silberer and Frank, 2012) found that 72% of the DNIs
are linked to referents that belong to non-singleton coreference chains. This means that candidate entities
that are mentioned just once are less likely to be a referent filler of an implicit argument.

2Moreover, as expected, it is more frequent to refer from a monologue to a dialogue entity than the opposite.
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Focus: The focus refers to the entities that are most likely to be coreferred in a given point in the
discourse (Sidner, 1978; Grosz and Sidner, 1986). Now, we study if this is also satisfied for DNI referents
by checking if the filler of a DNI corresponds to the focus of a near context. We define the focus in a
near context as follows. Consider the following definitions:

• F is the mention of an entity that is annotated as a filler of a target DNI.
• T is the lexical-unit of the target DNI.
• E is any entity between F and T.
• F-1 is the previous mention of F in the coreference chain.
• Nf is the number of mentions of F from F-1 to T.
• Ne is the number of mentions of E from F-1 to T.

If F-1 is the previous mention of F in the coreference chain, then Nf is equal to two. If there are no
previous mentions of F, then F-1 is equal to F, and Nf is equal to one. F is the focus of the near context
of T if and only if there is no E complying with Ne>Nf.

From our training data, we also observe that the focus matches the filler of a DNI in 72% of the cases.
Centering: Centering (Grosz et al., 1995; Brennan et al., 1987) is a theory that tracks the continuity

of the focus to explain the coherence of the referential entities in a discourse. The theory establishes
three different types of focus transition depending on the relation within the previous focus, Cb(Un-1),
the actual focus, Cb(Un), and the element that is most likely to be the focus, Cp(Un), according to its
grammatical function. Figure 6 shows the three different kinds of centering transitions.

Figure 6: Types of centering transitions

The theory establishes that the most common transition is continuing. The second most common
transition is retaining and the least common transition is shifting. Applying this schema to the training
data, we found that the following probability distribution:

• Continuing: 41.0%
• Retaining: 25.2%
• Shifting: 18.8%
• Other: 15.0%

Since in the DNI filling task the referents can be of any kind of POS and the grammatical function
only takes into account nouns or pronouns, the centering theory is not always applicable. When the filler
is not a noun or a pronoun we have created a fake centering category called other. Thus, according to
the training data, it seems that the preference order of the transitions matches the original theory being
continuing the most common transition.

5 Experiments

In the previous section we have proposed an adaptation to the implicit argument filling task of some
theories traditionally applied to capture evidence for anaphora and coreference resolution. Since the
implicit role reference is a special case of coreference, we expect a similar behaviour also for this case.
In fact, our analysis using the training data of SemEval seems to confirm our initial hypothesis. In order
to evaluate the potential utility of these sources of evidence we have performed a set of experiments using
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the SemEval-2010 Task 10 testing-data. In this section, we describe our strategy for solving the implicit
arguments and the scorer system used in the evaluation.

Processing Steps: Any system presented to the implicit argument resolution subtask had to follow
the following three steps:

1. Select the frame elements that are Null Instantiations.
2. Decide if the null instantiations are Definite.
3. In case of definite null instantiation, locate the corresponding filler.

For the first two steps, we have followed the strategy proposed by (Laparra and Rigau, 2012). This
method learns patterns of concurrent Frame Elements from explicit annotations. The most common
patterns help to identify a missing FE when the rest of the FEs appears explicitly. Following this simple
approach, 66% of DNIs in the testing data can be recognized correctly.

For the last step of the subtask, we have modelled the sources of evidence presented in the previous
section as features to train a Naive-Bayes algorithm. We applied a maximum-likelihood method without
any smoothing function. Thus, having a set of features f, for each DNI we select as filler the candidate c
that satisfies:

argmaxP (c)
∏
i

P (fi|c)

Non-singleton, focus and centering features require a coreference annotation of the document to be
analysed. As we explain in Section 3, the training data of the SemEval task contains manually annotated
coreference chains that can be used to exploit these features. However, as the testing data does not
contain this type of annotations, we applied an automatic coreference resolution system. We used the
software provided by Stanford 3. In the following experiments, we present the results obtained using
manual and predicted coreference.

Score measures: The scorer provided for the NI SemEval subtask works slightly different than pre-
vious scorers for traditional SRL tasks. Since the participants can appear repeatedly along the document,
the scorer needs to take into account the coreference chains of the possible fillers. Thus, if a system
selects any of the mentions of the correct filler, the scorer will count it as correct. For this purpose, the
dataset provides a full manual coreference annotation. In this subtask, the NI linking precision is defined
as the number of all true positive links divided by the number of links made by a system. NI linking
recall is defined as the number of true positive links divided by the number of links between an NI and
its equivalence set in the gold standard. NI linking F-Score is then calculated as the harmonic mean of
precision and recall.

However, since any prediction including the head of the correct filler is scored positively, selecting
very large spans of text would obtain very good results4. For example, [madam] and [no good will,
madam] would be evaluated as positive results for a [madam] gold-standard annotation. Therefore, the
scorer also computes the overlap (Dice coefficient) between the words in the predicted filler (P) of an NI
and the words in the gold standard one (G):

NI linking overlap = 2|P ∩ G|
|P | + |G|

Results on the SemEval-2010 test: Table 4 shows available precision, recall, F-score and overlap-
ping figures of the different systems using predicted and gold-standard coreference chains5. Our simple
strategy clearly outperforms (Tonelli and Delmonte, 2010) in terms of both precision and recall. (Chen
et al., 2010) seems to solve more accurately but a more limited number of cases. We also include the
results from (Silberer and Frank, 2012) obtained when using for training a larger corpus extended heuris-
tically (best) and the results obtained with no additional training data (no extra train). Our approach

3http://nlp.stanford.edu/software/dcoref.shtml
4In particular, returning the whole document would obtain perfect precision and recall.
5Surprisingly, previous research do not report results of overlapping. The authors of (Laparra and Rigau, 2012) kindly

provided their overlapping results through personal communication.
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obtains better results in all the cases except when they use extended training data with the gold-standard
coreference chains. In this case, our approach seems to achieve a similar performance but without ex-
ploiting extra training data. Apparently, (Laparra and Rigau, 2012) presents better results but, as we
explained previously, a low overlapping score means vague answers. Although our approach outper-
forms previous approaches, such a low figures clearly reflect the inherent difficulty of the task.

Auto Coref GS Coref
System P R F1 Over. P R F1 Over.
(Tonelli and Delmonte, 2010) - - 0.01 -
(Chen et al., 2010) 0.25 0.01 0.02 -
(Tonelli and Delmonte, 2011) 0.13 0.06 0.08 -
(Silberer and Frank, 2012) no extra train 0.06 0.09 0.07 - - - 0.13 -
(Silberer and Frank, 2012) best 0.09 0.11 0.10 - - - 0.18 -
(Laparra and Rigau, 2012) 0.15 0.25 0.19 0.54
This work 0.14 0.18 0.16 0.89 0.16 0.20 0.18 0.90

Table 4: Results using SemEval-2010 dataset.

DNI linking experiment: In order to check the sources of evidence independently of the rest of
processes, we have performed a second experiment where we assume perfect results for the first two
steps. In other words, we apply our DNI filling strategy just to the correct DNIs in the document. Table
5 shows the relevance of a correct DNI identification (the first two steps of the process). Once again,
without extra training data our strategy outperforms the model of (Silberer and Frank, 2012)6. Again,
when using extended training data their model seems to perform similar to ours.

Auto Coref GS Coref
System P R F1 Over. P R F1 Over.
(Silberer and Frank, 2012) no extra train 0.26 0.25 0.25 -
(Silberer and Frank, 2012) best 0.31 0.25 0.28 -
This work 0.30 0.22 0.26 0.89 0.33 0.24 0.28 0.89

Table 5: Results using SemEval-2010 dataset on the correct DNIs.

Ablation tests: Table 6 presents the results using the gold-standard coreference, when leaving out
a type of feature one at a time. The table empirically demonstrates that all feature types contribute
positively to solve this task. The morpho-syntactic and semantic agreement seem to be the most relevant
evidence in terms of precision and recall. That is, identifying the head of the correct filler. On the other
hand, syntactic features are the most relevant to detect the correct span of the fillers.

Source Set P R F1 Over.
all 0.33 0.24 0.28 0.89
no-coref 0.30 0.22 0.25 0.86
no-semagree 0.22 0.22 0.22 0.90
no-discursive 0.29 0.22 0.25 0.82
no-syntactic 0.28 0.21 0.24 0.75

Table 6: Ablation tests using the gold-standard coreference.

6 Discussion

In order to analyse the limits of the different types of evidence, we used as reference the results obtained
using the gold-standard DNIs and coreference chains (see table 5). As an overall remark, all previous

6The rest of the systems do not perform any experiments with gold-standard DNI identification.
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works facing this task agree on the sparsity of the training data. We also observed that this problem
affects all sources of evidence we have studied. This can be seen clearly when studying the agreement
of semantic types.

Data sparsity for semantic types: The semantic types do not cover the full set of frame elements.
The testing data contains a total of 209 different Frame#FrameElements. 73 of them (out of 35%) do not
appear on the training data. Another problem appears when the FEs have too many different semantic
types with very similar probabilities. Without enough information to discriminate correctly the filler, this
source of evidence becomes damaging (see table 7).

Outside the same sentence: Recency strongly prioritises the window formed by the same sentence
of the lexical-unit of the target DNI and the two previous sentences. However, in 19% of the cases the
filler belongs to a sentence outside that window. Furthermore, syntactic based evidences rely on relations
between entities in the same sentence. Obviously, adding an artificial node covering the whole document
analysis is quite arbitrary. Table 8 shows how the performance of our approach decreases strongly when
the filler and the lexical-unit are in different sentences.

P R F1 Over.
0.21 0.09 0.13 0.61

Table 7: Performance of FE having more
than 5 semantic types

same sentence another sentence
P R F1 Over. P R F1 Over.

0.50 0.34 0.40 0.87 0.20 0.16 0.18 0.96

Table 8: Performance when the filler and the lexical-unit are in
the same sentence or in another one

Discursive structure: The particular structure of the documents can also affect seriously the perfor-
mance of the sources of evidence. Table 9 presents the results on contexts with at least 10% of entities on
monologue or dialogue. According to the recency feature, each context is formed by the sentence of the
lexical-unit of the target DNI and the two previous sentences. We can observe that the results on mixed
contexts are better than in general. Obviously, dialogue features are totally useless in contexts with only
monologues or only dialogues.

Singleton fillers: Most of the fillers are entities that belong to a coreference chain. Therefore,
these cases heavily depends on a correct coreference annotation. This is why worse results are obtained
when using predicted coreferent chains. Table 10 shows the results when the filler belongs or not to a
coreference chain. It is important to remind that in this work we have adapted a set of sources of evidence
and theories traditionally used is anaphora and coreference resolution. Originally these theories focused
just on noun and pronoun entities.

P R F1 Over.
0.38 0.29 0.33 0.93

Table 9: Performance in mixed contexts
with at least 10% of entities of each level

coref-chain no-coref-chain
P R F1 Over. P R F1 Over.

0.45 0.35 0.39 0.94 0.06 0.04 0.05 0.31

Table 10: Performance when the filler belongs to a coreference-
chain or not

7 Conclusions and Future Work

We have presented a first attempt to study the behaviour of traditional coreference and anaphora models
for the implicit argument resolution task, a special case of coreference. Our analysis shows that these
theories and models can be successfully applied as sources of evidence in an existing dataset. In fact,
their joint combination improves state of the art results.

However, the sources of evidence presented in this work are adaptations that focus on nominal entities
and pronouns, and on relations within entities and referents belonging to the same sentence. It seems that
for these cases it is possible to capture useful evidence. But for the rest (singletons, non nominal POS,
beyond sentence boundaries, etc.), further investigation is needed.
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We have also observed, that the training data of the SemEval-2010 task 10 is too small. Possibly, the
results could be improved using an extended training data (Silberer and Frank, 2012).

Following the line of research presented by Roth and Frank (Roth and Frank, 2012b,a) we will study
the influence between the implicit arguments resolution and the predicate alignment.

Finally, we plan to perform a similar study on the NomBank dataset (Gerber and Chai, 2010).
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Abstract

We apply tree kernels to entity instantiations. An entity instantiation is an entity relationship, in
which a set of entities is mentioned, and then a member or subset of this set is introduced. We
present the first reliably annotated intrasentential entity instantiation corpus, along with an extension
to the intersentential annotations in McKinlay and Markert (2011). We then apply tree kernels to
both inter- and intrasentential entity instantiations, showing comparable results to an extensive set of
unstructured features. The combination of tree kernels and unstructured features leads to significant
improvements over either method in isolation.

1 Introduction

In a previous paper, we define an entity instantiation as follows (McKinlay and Markert, 2011):

An Entity Instantiation is a non-coreferent entity relationship, where a set of entities is men-
tioned, and then a member or subset is introduced.

Examples 1 and 2 show a set membership instantiation and a subset instantiation, respectively1.

(1) a. The two lawmakers sparred in a highly personal fashion, violating usual Senate decorum.
b. Their tone was good-natured, with Mr. Packwood saying he intended to offer [. . . ]

(2) a. To the extent that the primary duty of personal staff involves local benefit-seeking, this in-
dicates that political philosophy leads congressional Republicans to pay less attention to
narrow constituent concerns.

b. First, economists James Bennett and Thomas DiLorenzo find that GOP senators turn back
roughly 10% more of their allocated personal staff budgets than Democrats do.

Entity Instantiations are highly context dependent and their interpretation requires careful consideration
of prior mentions of both set and member/subset. In Example 3, one must refer back 2 sentences to
establish that ‘they’ is coreferent with ‘the Montreal Protocol’s legions of supporters’, and the set from
which ‘Peter Teagan, a specialist in heat transfer’ is drawn. In Example 4, we need the knowledge that
Mr. Mason is Jewish from the first sentence to establish the instantiation in the final sentence.

(3) But even though by some estimates it might cost the world as much as $100 billion between
now and the year 2000 to convert to other coolants, foaming agents and solvents and to redesign
equipment for these less efficient substitutes, the Montreal Protocol’s legions of supporters say it is
worth it. They insist that CFCs are damaging the earth’s stratospheric ozone layer, which screens
out some of the sun’s ultraviolet rays. Hence, as they see it, if something isn’t done earthlings will
become ever more subject to sunburn and skin cancer.

1All examples in this paper are taken from the Penn Treebank Wall Street Journal corpus (Marcus et al., 1993) unless stated
otherwise, and are occasionally abbreviated. Sets are highlighted in bold and members or subsets are shown in italics.



Peter Teagan, a specialist in heat transfer, is running a project at Arthur D. Little Inc., of Cam-
bridge, Mass., to find alternative technologies that will allow industry to eliminate CFCs.

(4) [. . . ] Or so it must seem to Jackie Mason, the veteran Jewish comedian appearing in a new ABC
sitcom airing on Tuesday nights (9:30-10 p.m. EDT). Not only is Mr. Mason the star of ”Chicken
Soup,” he’s also the inheritor of a comedic tradition dating back to ”Duck Soup,” and he’s currently
a man in hot water. Here, in neutral language, is the gist of Mr. Mason’s remarks, quoted first in
the Village Voice while he was a paid spokesman for the Rudolph Giuliani mayoral campaign, and
then in Newsweek after he and the campaign parted company. [. . . ]

He said that Jews have contributed more to black causes over the years than vice versa.

Entity instantiations vary a great deal, in terms of internal structure, ordering and overlap with other
phenomena. Example 1 shows a set member entity instantiation between an NP headed by a plural noun,
and a named entity. In Example 5 the set member is coupled with an apposition — ‘an analyst with
Drexel Burnham Lambert’. In Example 6, neither set nor set member are named entities, and the set is a
complex plural noun phrase (NP) which is made up of several constituents. In Example 7, the member NP
precedes the set NP, and recognition needs the interpretation of ‘Capitol Hill’ as a metonymic reference
to the U.S. Congress.

(5) a. But other analysts said that having Mr. Phillips succeed Mr. Roman would make for a
smooth transition.

b. “Graham Phillips has been there a long time [. . . ]”, said Andrew Wallach, an analyst with
Drexel Burnham Lambert.

(6) a. And Democrats, who are under increasing pressure from their leaders to reject the gains-tax
cut, are finding reasons to say no, at least for now.

b. A major reason is that they believe the Packwood-Roth plan would lose buckets of revenue
over the long run.

(7) a. However, the disclosure of the guidelines, first reported last night by NBC News, is already
being interpreted on Capitol Hill as an unfair effort to pressure Congress.

b. It has reopened the bitter wrangling between the White House and Congress over who is
responsible for the failure to oust Mr. Noriega and, more broadly, for difficulties in carrying
out covert activities abroad.

In contrast to our previous work in McKinlay and Markert (2011), we also consider intrasentential entity
instantiations. This introduces further variety, and the possibility of nested instantiations. In Example 8,
the set member is nested within the conjunction that forms the set. In Example 9, the set member is
also nested in the set, but this time as a subtree of the prepositional phrase that complements the set NP.
Example 10 exhibits a different sort of nesting — the set is nested within the set member. There are also
many intrasentential instantiations where the participant NPs do not overlap, such as Example 11.

(8) So if anything happened to me, I’d want to leave behind enough so that my 33-year-old husband
would be able to pay off the mortgage and some other debts.

(9) [. . . ] several firms, including discount broker Charles Schwab & Co. and Sears, Roebuck &
Co. ’s Dean Witter Reynolds Inc. unit, have attacked program trading as a major market evil.

(10) When he is presented with a poster celebrating the organization’s 20th anniversary, he recognizes
a photograph of one of the founders and recalls time spent together in Camden.

(11) Banking stocks were the major gainers Monday amid hope that interest rates have peaked, as
Deutsche Bank and Dresdner Bank added 4 marks each to 664 marks and 326 marks, respectively.

These complexities make entity instantiations difficult to identify. We address this complexity by using
tree kernels, a method of learning from tree data.

In this paper we introduce the first corpus of intrasentential entity instantiations, and an expanded
corpus of intersentential entity instantiations. We present the first algorithm for the classification of
intrasentential instantiations, and the first application of tree kernels for both inter- and intrasentential
instantiations.



2 Related Work

The only prior research which has tackled the problem of entity instantiations is our own in McKinlay
and Markert (2011). We annotated a 25-text corpus of entity instantiations between adjacent sentences
but not within sentences, and experimented with unstructured features, including lexical, contextual and
world-knowledge features. We achieved good results on an artificially balanced set, but on the original,
highly skewed data reported a highest F-Score of only 0.19 for set members and 0.14 for subsets.

Entity instantiations are also closely related to at least two important natural language processing
problems: relation extraction and bridging anaphora.

Relation Extraction. Relation extraction (RE) is the detection and classification of binary semantic
relationships between entities, such as Part-Of, Employed-By or Located-In. A considerable amount of
research in this field is connected to the important MUC (MUC, 1998) and ACE programs (ACE, 2005),
both of which provided RE corpora and shared evaluation metrics.

RE and detecting entity instantiations are similar problems; they both involve the discovery of binary
semantic relations in context. There are two fundamental differences, however. Firstly the participants
of entity instantiations are not restricted to mentions of entities representing concrete, real-world objects,
but instead consider heterogeneous NPs. Secondly, whilst the evidence for an entity instantiation can be
drawn from anywhere in the document or from existing world knowledge, RE schemes restrict the scope
of their relations to within a sentence. Set membership and subset relations are not annotated as part of
the RE corpora which formed part of the MUC and ACE programs.

SemEval-2 had a shared task, Multi-Way Classification of Semantic Relations Between Pairs of Nom-
inals (Hendrickx et al., 2010), which does include a Member-Collection relation, and is somewhat differ-
ent to the ACE/MUC RE paradigm. However, their task differs from ours in several ways. Firstly, they
only consider relations which exist only between base NPs with common noun heads — named entities
and pronouns are excluded. Additionally, and similarly to ACE/MUC, they do not mark relations which
rely on discourse knowledge and restrict annotations to sentence internal relations. Also, rather than
annotating full texts they focus on single sentences extracted from web searches.

Despite these important distinctions, the similarities mean that many of the methods used are relevant
to entity instantiations, including the use of kernel methods. A range of work has applied tree kernels
to the RE problem, applying kernels to shallow parses (Zelenko et al., 2003), dependency trees (Culotta
and Sorensen, 2004; Bunescu and Mooney, 2005) and full constituency parses (Zhang et al., 2006; Zhou
et al., 2007; Swampillai and Stevenson, 2011). Refinements include automatically deciding the portion
of the tree required to learn the relation (Zhou et al., 2007) and combining unstructured features with tree
kernels (Zhou et al., 2007; Swampillai and Stevenson, 2011).

Almost all RE research considers solely intrasentential relations. Swampillai and Stevenson (2011),
however, apply tree kernels to the problem of intersentential RE. As a constituency parse tree pertains
only to a single sentence, they join the two sentences containing the entities under a new ROOT node.

Other work has focused on unstructured features. Approaches include Bayesian networks (Roth
and Yih, 2002), maximum entropy models (Kambhatla, 2004), Support Vector Machines (SVMs) (Zhou
et al., 2005) and the inclusion of background knowledge (Chan and Roth, 2010; Sun et al., 2011).

Bridging Anaphora. Bridging anaphora are those anaphora which require inference from the reader
to bridge the gap between anaphor and antecedent (Clark, 1975). The classical example is in the form
of meronymy, as in Example 122 but bridging anaphora can also be connected to their antecedent by set
membership, such as Example 13 (and Example 6). However, not all entity instantiations are bridged —
Examples 1, 2, 5, 7, 8, 9, and 11 are amongst those that have non-anaphoric set members and subsets.

(12) I looked into the room. The ceiling was very high.

(13) I met two people yesterday. The woman told me a story.
2Examples 12 and 13 are from Clark (1975). The anaphor is in bold, the antecedent is in italics.



Theoretical linguistic literature has discussed set membership and subset bridging (Clark, 1975; Prince,
1981), and the phenomenon has been annotated in at least three corpora (Poesio, 2003; Nissim et al.,
2004; Markert et al., 2012). Early computational approaches either used hand-crafted rules (Markert
et al., 1996; Poesio et al., 1997; Vieira and Poesio, 2000) or focused solely on meronymy-based bridging
(Markert et al., 2003; Poesio et al., 2004). More recent work has focused on learning the information
status (IS) of an entity, rather than identifying its antecedent. The IS of an entity represents whether
it is new to the reader, old because it is coreferent to a prior mention, or can be mediated from prior
text, often by bridging. Most relevant to our work is the learning of fine-grained IS, which involves
learning subtypes of the mediated category, including set membership. Rahman and Ng (2012) use
the Switchboard corpus (Nissim et al., 2004), which includes a restricted version of set membership,
and employ a feature set based on unigrams, markables and binary features based on hand-coded rules.
Markert et al. (2012) learn fine-grained IS on a portion of OntoNotes corpus. They couple local features
with a collective learning model, using links between instances based upon syntactic parent-child and
precedence relations.

3 Annotation, Agreement and Corpus Study

We created a substantial corpus annotated for both inter- and intrasentential entity instantiations. Our
initial corpus study in McKinlay and Markert (2011) covered 25 Penn Treebank (PTB) Wall Street Jour-
nal corpus (Marcus et al., 1993) texts, annotating solely between adjacent sentences. We first extended
our intersentential annotation to cover an additional 50 PTB texts, and then added a second layer of
intrasentential annotation to the same 75 texts.

3.1 Potential difficulties and Borderline Cases

We took inspiration from the Recognising Textual Entailment (RTE) task (Dagan et al., 2006). In RTE,
the challenge is to automatically ascertain whether a text (T ) entails a hypothesis (H). Rather than
framing the problem as an issue of logical implicature, they regard RTE as an applied, empirical task:

We say that T entails H if, typically, a human reading T would infer that H is most likely
true. (Dagan et al. (2006))

We, as well, were interested in the phenomena from the perspective of a human reading the text, and so
did not apply strict logical rules for identifying entity instantiation, and instead took an applied approach.
While successful, this approach is not without drawbacks, and leads to a number of borderline cases.

The plural NPs3 which act as sets in our corpus fall into 4 rough categories; extensionally defined,
clearly intensionally defined, vaguely intensionally defined and generic. For those NPs which are either
extensionally defined or are clearly intensional, set members are easy to identify. Examples 7 and 8 show
extensionally defined sets, and the sets in Examples 2, 4 and 11 are clearly defined intensional examples.

The other two categories cause more difficulties. Not knowing the members in a vaguely intension-
ally defined set makes it difficult judging whether the relationship between NPs is a subset, coreference
or set overlap. In Example 14, for instance, it is difficult to know for certain whether ‘175’ and ‘136’ are
subsets of ‘The 189 Democrats who supported the override yesterday’, though it may be assumed to be
the case.

(14) The 189 Democrats who supported the override yesterday compare with 175 who initially backed
the rape-and-incest exemption two weeks ago and 136 last year.

In our annotation scheme, we make no distinction between those plural NPs which represent sets and
those which represent generics, and allow instantiations to be drawn from both. This leads to annotation
that is more akin to hyponymy than set membership or subset relationships, such as in Example 15.

3We restrict our set NPs to plural NPs, in order to reduce annotation effort. This does lead to the exclusion of some singular
nouns which would be valid sets, such as family, set or group. In the future, we intend to include such nouns, either by means
of a manually constructed list or using lexicosyntactic patterns.



Entity Instantiation M&M (2011) corpus Full corpus
# NP Pairs % # NP Pairs %

Set Member 468 1.62 1477 1.89
Subset 180 0.62 641 0.82
No instantiation plural-singular NP pair 18 758 64.76 46 128 59.11
No instantiation plural-plural NP pair 9 560 33.00 29 793 38.18
Total 28 966 100.00 78 039 100.00

Table 1: Frequency of Intersentential Annotations, compared with 25 text corpus from McKinlay and
Markert (2011).

(15) a. A customs official said the arrests followed a “Snake Day” at Utrecht University in the
Netherlands, an event used by some collectors as an opportunity to obtain rare snakes.

b. British customs officers said they’d arrested eight men sneaking 111 rare snakes into Britain
[. . . ]

Despite these problems, we still achieved substantial agreement. This is likely due to the genre of the
texts involved; the financial-based newswire texts annotated tend to include many sets, subsets and mem-
bers which are concrete, such as companies, countries and people. Applying this scheme to a genre of
texts that contains more generics and less straightforwardly defined NPs, for example a philosophy text,
could lead to a more problematic annotation. One possible way to improve agreement would be to intro-
duce a layer of annotation that identified generic NPs, such as that employed by Reiter and Frank (2010),
and prevent these generic NPs from participating in instantiations.

3.2 Intersentential Annotation

We follow our previous annotation method (McKinlay and Markert, 2011), automatically identifying
plural and singular NPs, and separately displaying plural-plural NP pairs for subset annotation and plural-
singular NP pairs for set member annotation. We also remove NPs that are appositions or predicates,
and include the option to mark NPs as “Not a mention”, for excluding instances of non-referential it,
idiomatic NPs and generic pronouns. The task of the annotator is then to indicate whether each NP pair is
an instantiation. Each sentence pair is annotated both with sets in the first sentence and members/subsets
in the second sentence, and sets in the second sentence and members/subsets in the first.

We annotated 50 PTB texts following this scheme, which combined with our original 25 texts gave
us a corpus of 75 texts annotated for intersentential entity instantiations. Table 1 shows the frequency
distribution of set members and subsets in both our original 25 texts and the full 75 text corpus.

3.3 Intrasentential Annotation

We added a layer of intrasentential entity instantiation annotation to the same 75 texts. We followed
the same scheme of annotation as for the intersentential entity instantiations. However, we also included
nested instantiations, such as those in Examples 8, 9 and 10.

3.3.1 Agreement Study and Gold Standard Corpus

Despite the differences between inter- and intrasentential annotation being minor, and the intersentential
annotation scheme being previously shown to be reliable, we undertook a short agreement study. Five
randomly selected texts were annotated by the two authors of this paper independently, and agreement
was measured in the same three ways as in McKinlay and Markert (2011):

1. Does this pair of candidate NPs participate in a set membership/subset relationship or not?

2. Does this candidate set member/subset participate in a set membership/subset relationship with
any potential set or not?

3. Is there an Entity Instantiation in this sentence?



Method # Items Tested Kappa Agreement
1 3098 NP pairs 0.7493 97.81%
2 1414 NPs 0.7742 96.39%
3 237 sentences 0.7277 89.87%

Table 2: Intrasentential Agreement Statistics

Entity Instantiation # NP pairs %
Set Member 1 538 3.51
Subset 865 1.98
No instantiation plur-sing pair 24 363 55.63
No instantiation plur-plur pair 17 028 38.88
Total 43 794 100.00

Table 3: Frequency of Intrasentential Entity In-
stantiations in 75 texts

Relationship Set Member Other Sing-
Plur pair

Set NP Parent 1 065 (69.2%) 2 294 (9.4%)
Member NP Parent 55 (3.6%) 1 843 (7.6%)
Same Clause 84 (5.5%) 7 068 (29.0%)
Different Clause 334 (21.7%) 13 158 (54.0%)
Total 1 538 (100.0%) 24 363 (100.0%)

Table 4: Frequency of syntactic relationships
between NPs in set member instantiations.

Relationship Subset Other Sing-
Plur pair

Set NP Parent 615 71.1% 1 489 8.7%
Subset NP Parent 85 9.8% 1 991 11.7%
Same Clause 90 10.4% 4 945 29.0%
Different Clause 75 8.7% 8 603 50.5%
Total 865 100.0% 17 028 100.0%

Table 5: Frequency of syntactic relationships
between NPs in subset instantiations.

We achieve substantial agreement with all three metrics (see Table 2). Common disagreements consisted
of matters of interpretation rather than any systematic problem with the scheme. One common disagree-
ment, related to the issues mentioned in Section 3.1, was deciding whether two sets were in a subset
relationship or overlapping, such as ‘the key districts’ and ‘the state’s major cities’ in Example 16.

(16) With ballots from most of the state’s major cities in by yesterday morning, the Republicans came
away with 10% of the vote in several of the key districts.

The intrasentential annotation was then completed over the remaining 70 texts by the first author of
this paper. The frequency distribution of these annotations is shown in Table 3. The final corpus of
intersentential and intrasentential instantiations will be made publicly available, in a stand-off form, at
http://www.comp.leeds.ac.uk/markert/data.html.

3.3.2 Intrasentential Syntactic Relationships

To gain an insight into the patterns tree kernels might learn, we computed the syntactic relationship
between the two participant NPs in an entity instantiation, and compared this to the distribution of non-
instantiations. We organised the relationships into four classes: the set NP was a parent of the mem-
ber/subset NP (e.g Example 8), the member/subset NP was a parent of the set NP (e.g Example 10), the
two NPs were not in a parent/child relationship but were in the same clause, and the two NPs were in
different clauses (e.g. Example 11).

The results are shown in Tables 4 and 5. We found that in the majority of instantiations, the Set NP
was a parent of the Member or Subset NP, and that the distribution of instantiations was significantly
different from that of non-instantiations in both set members and subsets4.

4 Experiments

We used a supervised machine learning approach to identify entity instantiations, treating set membership
and subsets separately (see also McKinlay and Markert (2011)). We therefore divide our data set into
two; plural-singular NP pairs that are labelled either set member or no-instantiation and plural-plural NP
pairs that are labelled either subset or no-instantiation. We use the same feature set for both, employing
two types of features; traditional unstructured features, and tree kernels.

4We used a χ2 test for consistency in a 4 × 2 table with 3 degrees of freedom, giving χ2 = 4605 for set members and
χ2 = 3123 for subsets, both corresponding to p < 0.00000001.



4.1 Unstructured features

Our unstructured features are identical to those presented in McKinlay and Markert (2011). They com-
prise five categories; surface, salience, syntactic, contextual and knowledge, and contain features that
relate to a single NP, and those that represent cross-NP relationships. We list them briefly below, further
details of the features can be found in McKinlay and Markert (2011).

Surface features. The unigrams, part-of-speech tags, lemmas and head words of each NP. Also in-
cluded is Levenshtein’s distance between the corresponding strings, the distance in characters and words
between NP pairs, and a boolean feature which represents the order of the NPs.

Salience features. The grammatical role of each NP, whether it is the first mention of that entity in the
sentence or document, the number of prior mentions and the overall number of mentions of the entity in
the document.

Syntactic features. Syntactic parallelism and pre- and post-modification of each NP. The modification
type includes values that represent apposition, conjunction, pre modification and bare nouns.

Contextual features. The Levin class (Levin, 1993) of each NP’s head verb, as well as the verb itself,
whether each NP is in a quotation, and an approximation of the discourse relations present in the two
sentences by identifying likely discourse connectives and mapping them to their most frequent explicit
relation in the Penn Discourse Treebank (PDTB) (Prasad et al., 2008).

Knowledge-based features. WordNet-based features which express synonymy/hyponymy between
potentials members/subsets and sets. A feature which searches Freebase (Bollacker et al., 2008), for
potential set member/subset NPs and compares the topics (loosely hyponyms) of matching entries to the
potential set NP. A Point-wise Mutual Information feature derived from Google hit counts, based on the
notion that the pattern “X and other Y ”, whereX is a potential set member or subset and Y is a potential
set, indicates hyponymy (Hearst, 1992; Markert and Nissim, 2005). A feature which establishes whether
the animacy of the two NPs matches.

4.2 Tree Kernels

The unstructured features discussed in Section 4.1 are presented to the machine learner as a vector. Tree
features are instead presented as structured data, and the learner works directly with this structured form.

We used two trees — Shortest Path Enclosed Tree (SPET) and Shortest Path Tree (SPT), which have
been previously used for RE (Zhang et al., 2006; Swampillai and Stevenson, 2011). We also included
two variations in the lexicalisation of these trees; full delexicalisation, in which all terminal nodes are
removed, and partial delexicalisation, in which all terminals which represent nouns are removed.

The SPET is the shortest path between the two NPs, inclusive of all nodes in between. SPT is
identical, but exclusive of all nodes in between. Example 17 shows a sentence with two NPs underlined.
Figure 1(a) and 1(b) show the SPET and SPT that connects them, respectively. We replace the node label
of the subtree that represents the set member/subset NP with the node MEMBER, and node label of the
subtree that represents the set NP with SET.

(17) In a highly unusual meeting in Sen. DeConcini’s office in April 1987, the five senators asked
federal regulators to ease up on Lincoln.

For intersentential entity instantiations we followed Swampillai and Stevenson (2011), joining the trees
of the two sentences under a single node called ROOT and then extracting the trees as above.

4.3 Experimental Set Up

We considered the problems of intersentential and intrasentential instantiations separately, reasoning that
intrasentential instantiations are a sufficiently different phenomena, and occur in patterns not found in
intersentential instantiations. Our intuition was that syntax played a stronger role in identifying intrasen-
tential instantiations, and that the tree kernels would have a greater impact on the intrasentential data.
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Figure 1: Examples of trees used for tree kernel learning.

We applied 10-fold cross-validation for testing and training in all our experiments, keeping pairs of
NPs from the same text in the same fold to avoid over-training based on specific topical unigrams that
may occur in a single text. We used SVM-LIGHT-TK (Moschitti, 2006b), an extension to SVMlight

(Joachims, 1999) as our learner. We found that a linear kernel gave best results for flat features, and
so used it in all experiments. For all tree kernel experiments we used the Subset tree kernel. We used
addition, rather than multiplication, to combine tree and flat feature kernels.

The data contains many more negative examples than positive ones (only 3.7% of the 121,833 can-
didate pairs are positive). Previously we experimented with balanced data sets (McKinlay and Markert,
2011) — data sets in which the numbers of Entity Instantiations and non-Instantiations are equal — to
demonstrate the utility of their features. We, however, focus on the original skewed data sets.

For comparison we include two baselines: majority, which predicts the majority class in each fold,
and unigram which has two features, representing the unigrams of the two NPs.

4.4 Intrasentential Results and Discussion

The results of our intrasentential experiments are shown in Table 6. Precision, Recall and F-Score are
calculated for the positive instances and SPTP represents SPT, Partially Lexicalised where as SPETF
represents SPET, Fully Lexicalised and so on. We also include results of a feature ablation study, in
which we removed each group of features in turn. We performed a similar experiment with our tree
kernels, based on removing each of the 4 tree kernels in turn. We then combined the full set of tree
kernels with the full feature set, and the best performing feature set with the best performing tree kernel
combination according to the results of our ablation.

All our algorithms beat the baselines significantly5. In the unstructured feature ablation, the best
performing algorithm involves the omission of contextual features for both set members and subsets.

The tree kernels have a slightly worse accuracy than the unstructured features but provide a higher
precision. There are no significant differences between the performance of each tree kernel combination;
there seems to be no difference between partial and full lexicalisation or between including or omitting
intervening context in terms of accuracy. This suggests that a few structural features that all 4 represen-
tations have in common are important.

The combination of the best unstructured features and best tree kernels leads to significant improve-
ments over either method in isolation for both set members and subsets. Also, the combination of all
trees and all features is significantly better than the best unstructured and tree methods for subsets.

5McNemar’s χ2 test (1 d.f.) was used for all significance tests on results. Minimum χ2 values were 280 for set members
and 101 for subsets, both corresponding to p < 0.00000001.



Set Members Subsets
Feature set Accuracy P R F Accuracy P R F
Majority 94.1% — — — 95.2% — — —
Unigrams 94.1% — — — 95.2% — — —

Unstructured Features
All features 96.9% 0.847 0.578 0.687 96.8%η 0.842 0.425 0.565
All features - Surface 96.2%δ 0.805 0.475 0.597 96.1%γ 0.774 0.282 0.414
All features - Salience 95.7%γ 0.836 0.337 0.481 96.2%γ 0.867 0.265 0.406
All features - Syntax 96.6% 0.835 0.538 0.654 96.1%γ 0.791 0.271 0.404
All features - Contextual 97.0%α 0.849 0.597 0.701 97.0%α 0.834 0.471 0.602
All features - World Knowl-
edge

96.7%δ 0.834 0.552 0.665 96.6%γ 0.852 0.788 0.833

Tree kernels
SPTP+SPTF+SPETP+SPETF 96.7% 0.894 0.495 0.637 96.7% 0.937 0.342 0.501
SPTF+SPETP+SPETF 96.6% 0.897 0.486 0.630 96.7% 0.940 0.345 0.504
SPTP+SPETF+SPETP 96.7%β 0.914 0.491 0.638 96.7% 0.937 0.343 0.504
SPTP+SPTF+SPETF 96.6% 0.892 0.492 0.634 96.7%β 0.940 0.345 0.504
SPTP+SPTF+SPETP 96.7% 0.908 0.494 0.640 96.7% 0.934 0.343 0.502

Combination kernels
All Trees + All features 97.0% 0.884 0.579 0.699 97.2%ε 0.934 0.461 0.618
SPTF + SPTP + SPETF + All
- Contextual

97.1%ε 0.889 0.591 0.710 97.3%ε 0.936 0.476 0.631

SPTP + SPETF + SPETP + All
- Contextual

97.1% 0.886 0.586 0.705 97.3%ε 0.935 0.479 0.633

Table 6: Intrasentential results.

α SVM flat-feature algorithm with highest accuracy δ Significantly worse than α, p < 0.05.
β Tree Kernel Algorithm with highest accuracy ε Significantly better than α (p< 0.05) and β (p< 0.001)
γ Significantly worse than α, p < 0.001.

4.5 Intersentential Results and Discussion

Intersentential instantiation identification is a more difficult problem than its intrasentential counterpart.
The best F-scores achieved by us on the original data, rather than the artificially created balanced set,
were 0.1938 and 0.1414 for set members and subsets respectively, and involved oversampling the positive
instances (McKinlay and Markert, 2011). Our classifier had very poor recall without oversampling —
0.0289 for set members, 0.0266 for subsets — leading to F-Scores of 0.0527 and 0.0465.

In our experiments on the expanded corpus, we found that SVM-LIGHT-TK with the same options
as our intrasentential experiments led to a classifier which always predicted the majority class, giving us
a Precision, Recall and F-Score of 0. We had more success by using the cost-factor parameter to penalise
errors on positive examples more heavily in the training process6. The value of the cost-parameter was
set to f(Negative Examples)/f(Positive Examples).

The results of our intersentential experiments are shown in Table 7. We improve over our previ-
ous non-oversampled results for set members and subsets, and the oversampled results for set members.
However, as the corpus is triple the size, direct comparison is difficult. We find that whilst our tree
kernels are more accurate than their unstructured counterparts, recall is much poorer, meaning that the
unstructured features in isolation have the best F-Scores. The only algorithms that perform significantly
differently to the unigram baseline are the unstructured set member classifier, which has worse accu-
racy but an increased F-Score, and the two subset classifiers which use tree kernels, which have higher
accuracy but lower F-Scores. Our intuition that tree kernels would have less impact on intersentential
instantiations, as they are not as syntax-dependent, appears accurate.

6Applying this additional setting to our intrasentential data produced classifiers with similar accuracy as before, but with
reduced precision and increased recall. For example, on the All Trees + All Features combination, the classifier using the cost
factor parameter scored an Accuracy/P/R/F of 96.5/71.0/69.5/70.2 for set members and 97.1/78.8/54.1/64.2 for subsets.



Set Members Subsets
Feature set Accuracy P R F Accuracy P R F
Majority 96.9% — — — 97.9% — — —
Unigrams 95.1% 0.166 0.143 0.153 97.1% 0.058 0.023 0.033
All Unstructured 94.8%† 0.216 0.257 0.235 97.0% 0.146 0.086 0.108
All Trees 95.2% 0.217 0.214 0.215 97.8%† 0.042 0.002 0.003
All Trees + All Unstructured 95.2% 0.217 0.214 0.215 97.7%† 0.250 0.041 0.070

Table 7: Intersentential results.

† Significantly different from unigram baseline, p < 0.001.

5 Conclusion and Future Work

In this paper we make two novel contributions; the introduction of intrasentential entity instantiations,
and the application of tree kernels to the detection of both intra- and intersentential entity instantiations.
Our corpus of intrasentential entity instantiations is annotated with good agreement, and our statistics
show that the majority of intrasentential instantiations have strong syntactic links between participating
NPs. We then use tree kernels to learn directly from constituency parse tree data. Our tree kernels
perform comparably to much larger and more varied set of unstructured features, that needed access to
outside world knowledge sources. In addition, the combination of those unstructured features and tree
kernels leads to significant improvements over either method in isolation on intrasentential data. Our
best algorithms are highly precise.

In the future, we wish to explore the annotation of entity instantiations beyond adjacent sentences,
and apply our scheme to genres other than newswire. We wish to explore different tree representations,
such as those based on dependency structures, and different tree kernels, such as the more general Partial
Tree Kernel (Moschitti, 2006a). We intend to improve our classification results by employing a global
model for the joint learning of inter- and intrasentential entity instantiations.

Entity instantiations also have the potential to be useful for a number of applications, including dis-
course relation classification, sentiment analysis and summarisation. We wish to investigate the impact
of entity instantiations on these applications.
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Abstract

We present a corpus-based investigation of cases of clause combination that can be expressed both
through coordination or with subordination. We analyse the data with a two-step computational model
which first distinguishes subordination from coordination and then determines the direction for cases
of subordination. We find that a wide range of features help with the prediction, notably frequency of
predicate participants, presence of adjuncts and sharing of participants between the clause predicates.

1 Introduction

Subordination and coordination are the two primary ways to combine syntactic phrases into sentences.
Coordination is a paratactic way of combining constituents (typically) of the same category, where the
whole construction has the same type as its daughters. Coordination stands in opposition to subordination,
where one constituent is syntactically dependent on another, and where the whole construction has the
same type as only one of its daughters, the head daughter. Figure 1 shows examples of both constructions.

In subordinate structures, the dependent constituent can occupy the position of either argument or
adjunct. In this paper, we ignore cases of subordinated argument clauses, since their occurrence is
mandated mainly by the subcategorization properties of the main clause predicate. Instead, we focus
on subordinated clauses that are adjuncts of the main clauses, such as gerund constructions or clauses
introduced by subordinating conjunctions (when, because, . . . ). Such adjunctive clauses typically describe
independent events that stand in some relation to the main clause event.

For such cases, the question arises what determines the speaker’s choice between subordination
and coordination. It is discussed controversially in the literature. Matthiessen and Thompson (1988)
argue that subordination and coordination constructions are grammaticalized discourse relations, with
coordination representing the paratactic discourse relations such as Sequence and adjunctive subordination
constructions representing subjective hypotactic discourse relations such as Condition or Circumstance.
Goldsmith (1985) and Culicover and Jackendoff (1997) list instances of coordination constructions with
semantics that is different from that of a sequence, and demonstrate that coordination constructions can
express, for example, condition (cf. the example in Figure. 1, a simplified version of their original example
You drink one more can of beer and I’m leaving). Similarly, there are coordination constructions with
causal, concessive, and other meanings.

The goal of our study is to analyze a broader range of factors and their influence on the coordina-
tion/subordination choice. To this end, we perform a corpus-based analysis that investigates properties of
predicates (and the events which they express) that correlate with the choice between subordination and
coordination.

Our study considers three groups of features that are useful for the prediction of clause combination
type between two clauses: the frequency and recency of predicates’ participants, the presence of adjuncts
and the sharing of semantic arguments between predicates. We show that the subordination-coordination
choice is not based exclusively on discourse factors, but also correlates with the presence of common
participants of predicates as well as with the number and type of predicate modifiers.
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Figure 1: Examples of subordination (left) and coordination (right). The VP projections of the predicates
are marked in boldface.

Plan of the paper. In Section 2 we formulate the task and present our method of feature evaluation. In
Section 3, we present the features and analyze their usefulness for the prediction tasks. Section 4 contains
the evaluation of our model against a majority-case baseline and a model that relies on morphological
features. We relate our research to previous studies in Section 5 and summarize the results and give
conclusions in Section 6.

2 Method

We adopt a corpus-based method to study the coordination vs. subordination choice. We use the OntoNotes
corpus (Pradhan et al., 2007) to extract cases of coordination and subordination and analyze various
classes of features that can be suspected in correlating with the coordination/subordination distinction.
We evaluate the predictions of our classifiers against the relations between clauses in the original text,
which we treat as the gold standard.

This section formulates our task more precisely. We begin by describing our operationalization of the
terms “coordination” and “subordination”. Then we propose a way to estimate the correlations between
the type of clause combination and features of the clauses. Finally, we describe the corpus that we exploit
in our experiments.

2.1 Operationalizing Subordination and Coordination

For the analysis, we need to define subordination and coordination constructions in terms of Penn Treebank
parse trees and other layers of corpus annotation. For all predicates marked in the PropBank layer of
the corpus annotation we define their VP projections (see examples in Figure 1). If the VPs (or their
dominating S-nodes) are located at the same level in the tree and if their mother node is also a VP (or an
S, respectively), and if they are linked by a coordination conjunction (a word with the part-of-speech CC),
we consider these pairs of predicates as coordination constructions. Subordination constructions are pairs
of predicates where one VP is embedded in another VP. More specifically, we define X to be subordinate
to Y if there are exactly two VPs on the path between X and Y which correspond to the projections of
X and Y, respectively.1. Additionally, we restrict our attention to subordinate clauses that are adjucts as
motivated in Section 1. We use the PropBank annotation layer to filter out all pairs where one of the

1For a deeper analysis of syntactic and semantic differences between coordinate and subordinate structures see, for example,
Haspelmath (2004).
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predicates is marked as an argument of the second predicate, or where a predicate is the main verb of a
sentence that occupies a position of an argument. The semantic information from PropBank allows us to
distinguish between syntactically identical argument and adjunct clauses, e.g. “I liked singing” and “I
stood singing”. We also exclude all relative clauses and other clausal noun modifiers. For this, we make
sure that the path between predicate projections does not contain NPs.

2.2 Statistical Model and Evaluation

Given a pair of predicates (p1,p2), we are faced with two binary decision tasks: (a) p1 and p2 can be
coordinated or one of them can be subordinated to another, and (b) if the predicates form a subordination
construction, either of them can be the main predicate. The first task is the task of prediction the clause
combination type, the second is the task of predicting the direction of subodination.

For the purposes of computational modeling, we treat these two decisions as independent and
sequential. For each task, we train a binary classifier on sets of features that can influence the clause
combination type. More specifically, we make use of logistic regression models, a method that in the
past furnished estimates of the importance of different factors in explaining linguistic variation, see e.g.
Bresnan et al. (2007) or Hayes and Wilson (2008).

Formally, logistic regression models assume that datapoints consist of a set of predictors x and a
binary response variable y. They have the form

p(y = 1) =
1

1 + e−z
with z =

∑
i

βixi (1)

where p is the probability of a datapoint x, βi is the weight assigned to the predictor xi. Model estimation
sets the parameters β so that the likelihood of the observed (training) data is maximized.

We construct one classifier for each task and for each response variable: subord-type(p1, p2) com-
putes the probability for p1 and p2 being linked by a subordination relation, coord-type(p1, p2) computes
the probablity for the two predicates to be coordinated, subord-dir(p1, p2) calculates the probablity
the probability for p2 being subordinated to p1, and subord-type(p2, p1) computes the probability
that p2 dominates p1. For the first task, we compute the outcome as arg max{coord-type(p1, p2),
subord-type(p1, p2)}, and for the second task as arg max{subord-dir(p1, p2), subord-dir(p2, p1)}, re-
spectively. Note that we assume that coordination is a symmetrical relation and we do neither predict nor
utilize the linear order of predicates in the original sentence.

Within this scenario, we perform an analysis of individual features and feature groups according to
standard practice in the statistics community by considering the effect of features on the models’ residual
deviance. Residual deviance describes the ratio of the likelihood of the data under a “saturated” model to
the likelihood of the data under the actual model (Baayen, 2011). Large decreases in residual deviance
that result from the addition of a feature indicate that the feature has substantially increased the ability
of the model to explain the data. The statistical significance of the decrease can be determined with the
chi-square test.

Since this analysis considers only the training set, it is amenable to overfitting. We therefore add a
second kind of analysis that evaluates the model trained on an unseen test set. As the figure of merit, we
use simple accuracy (percentage of correctly predicted clause combination types) and compare it against
two different baselines (Section 4).

2.3 Corpus

We run our training and testing on the release 4.0 of the OntoNotes corpus (Pradhan et al. (2007)). It
contains several layers of annotation, including the PropBank annotation of predicate-argument structures
(Palmer et al., 2005), Penn Treebank-style parses (Marcus et al., 1993), and a coreference annotation layer
(BBN Technologies, 2007). The WSJ sections 00, 02-04, 09-12, 14, and 17 are used for training and
section 20 is used for testing. There are in total 732 documents in the training part of the corpus and 76 in
the testing subcorpus. Documents include an average of 46.4 sentences and 109.3 predicates, respectively.

3



Training corpus
Subordinate pairs 7691
Coordinate pairs 2187
Other pairs 625
Total number of pairs 10530

Testing corpus
Subordinate pairs 736
Coordinate pairs 182
Other pairs 61
Total number of pairs 979

Table 1: Training and testing corpora

Our training and testing corpora contain three types of predicate pairs. Pairs of the first type are those
that joined by the subordination relation, and pairs of the second type are coordination pairs. Third type
pairs are those that resemble coordination, but are not linked by any conjunction. We do not consider
these cases. Table 1 shows the most important statistics.

Note that while the labels for our first task (subordination vs. coordination, cf. Section 2.2) are “read
off” the corpus instances, the relation between the predicates in each subordination pair is not correlated
with the actual order of the predicates in the text. In our representation of the data, we broke down
all subordination pairs randomly in two classes of comparable size (3833 and 3858 pairs in each class,
respectively). In one case all features for p1 correspond to the features of the main verb, and in another
class all features of p1 describe the dependent verb.

3 Features and Feature Analysis

Table 2 lists the features that we consider in our study. Most features describe predicates p1 or p2,
i.e., the head verbs of adjacent clauses. Each predicate describes an event, typically with one or more
participants. Formally, we model participants as collections of coreferent NPs (as manually annotated on
the coreference level of the corpus). The relationship between participants and predicates is captured on
the level of semantic roles as annotated on the predicate-argument (PropBank) level of the corpus (e.g.,
ARG0 is the agent, ARG1 is the patient). Participants can fill more than one role for one predicate, or
roles of more than one predicate. In these cases, we talk about sharing of participants.

Our features fall into three groups:

Salience features exploit the idea that the discourse status of events is reflected in their syntactic position
in the sentence (Matthiessen and Thompson, 1988): key events that are necessary for the understanding of
the story cannot be expressed as subordinate clauses. If this holds, it could be expected that such events
have more salient participants of the discourse as arguments, and that their discourse status is at least
partially determined by the salience of their participants. We assess the salience of participants with a
total of 20 features, using some of the features used in anaphora resolution tasks: participant frequency
and distance to the previous mention (see Chiarcos (2011) and Mitkov (1998), among others). Participant
frequency should show how salient the participant is for the overall document. The distance to the previous
mention helps to trace down smaller topics and characterize the participant’s role in the local discourse.

Adjunct features cover the expression of adjuncts of the predicates. This group is designed to test
whether presence of non-clausal modifiers of predicates influence their syntactic combination. The idea
behind including these features is two-fold: on the one hand, they might account for the size of the clauses
that should be combined. On the other hand, they might give a clue to us, what properties of events are
referred to in the context of the two clause combinations.

Shared participant features test the hypothesis that clauses are syntactically connected because they
share content, namely they describe events with identical participants. It was shown before that mentions
of same entities may be employed to detect global discourse structure (see Section 5), therefore, it might
be possible that they also act on a more local level.
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Feat. id Feature description
Salience features

f1−2 Number of mentions of the most frequent participant of a predicate
f3−4 Average frequency of all participants of a predicate
f5−6 Average participant frequency, discounted by log of document length in clauses
f7−8 Number of mentions of the most frequent participant, discounted by log of document length in

clauses
f9−10 Average participant frequency, discounted by log of number of participants in the document

f11−12 Number of mentions of the most frequent participant, discounted by log of number of partici-
pants in the document

f13 Are the most frequent participants of the two predicates equally frequent?
f14 Is the most frequent participant of p1 mentioned more often than that of p2?

f15−16 Have any of the participants of a predicate been mentioned previously in text
f17−18 Distance to the previous mention of the participant, minimum over all participants

f19 Has the most recently mentioned participant of p2 appeared in the document is the same
sentence as the most recent participant of p1?

f20 Has the most recently mentioned participant of p2 appeared in the document in a sentence that
comes before the sentence, where the most recent participant of p1 was mentioned for the first
time?

Adjunct features
f21−22 Number of adjuncts (of any type)
f23−24 Number of temporal adjuncts
f25−26 Number of locative adjuncts
f27−28 Number of purpose adjuncts
f29−30 Number of causal adjuncts
f31−32 Number of manner adjuncts

Shared participant features
f33 Are there any shared participants between the predicates?
f34 Number of shared participants between the predicates

f35−36 Does the agent of a predicate coincide with other participants?
f37−38 Does the patient of a predicate coincide with other participants?

f39 Does the agent of p1 coincide with the patient of p2?
f40 Does the patient of p1 coincide with the agent of p2?
f41 Do the agents of predicates coincide?
f42 Do the patients of predicates coincide?

Table 2: Features for clause combination type prediction. Features with double feature id (e.g. f3−4) are
computed separately for each predicate (one for the predicate p1, one for the predicate p2)

In the rest of this section, we model the feature groups individually to assess their contribution overall
and in terms of single features (cf. Section 2.2).

3.1 Salience Features

The results for predicting subordination/coordination based on salience features are given in Table 3. We
find that of all salience features, only features that estimate participant frequency and novelty are useful
for the prediction of clause combination type. In fact, predicates with equally frequent participants are
more likely to be coordinated than form a subordination construction. This feature has a far greater impact
on the model performance than any other feature.

In subordination constructions, verbs with old participants are dispreferred in subordinated positions,
while simultaneously verbs with overall more frequent participants are more likely to be dependent on
other verbs. We interpret this result, surprising at first sight, to mean that “early” mentions of frequent
participants are often found in subordinate clauses. Indeed, this situation is common for news articles,
where main participants of the news story are introduced in the first sentence. In the following example,
the NP the American Bar Association that will be subsequently mentioned in the text several times is first
introduced in the subordinate clause: The Bush administration’s nomination of Clarence Thomas to a seat
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Feature id and description Response variable
Clause comb. type is subord. p2 subordinated to p1
Coefficient −∆ RD Sig. Coefficient −∆ RD Sig.

Intercept 1.58196 – – 0.214595 – –
f3: Average participant freq. of p1 -0.04649 35.288 *** 0.008190 0.977
f4: Average participant freq. of p2 -0.03265 6.259 * 0.004631 0.044
f15: A participant of p1 is not new 0.06243 20.348 *** 0.501011 4.978 *
f16: A participant of p2 is not new 0.03532 4.398 * -0.503871 16.493 ***
f13: Equally frequent participants -0.59391 180.477 *** 0.268878 0.002
f14: Participants of p1 are more frequent -0.02845 0.064 -0.547673 33.708 ***
f20: Participants of p1 are more recent 0.31972 9.994 ** 0.008335 0.028
f19: Equally recent participants -0.02007 0.031 0.034358 0.105 .

Table 3: Frequency-related features (−∆ RD: drop in residual deviance; Sig.: Statistical significance, .:
p<0.1; *: p<0.05; **: p<0.01; ***: p<0.001)

on the federal appeals court here received a blow this week when the American Bar Association gave Mr.
Thomas only a “qualified” rating, rather than “well qualified”.

In sum, the analysis of salience features shows that the discourse status of participants correlates with
the syntactic structure of the sentences only mildly. They may be relevant mostly for the prediction of
clause combination, but not for the prediction of direction of subordination.

3.2 Adjunct Features

The model that explores the influence of expressed adjuncts is given in Tables 4. The model includes
features that describe the number of expressed non-clausal adjuncts. Verbs with temporal and, in particular,
locative modifiers tend to be coordinated. Presence of causal adjuncts, on the other hand, increases the
probablity of a subordination relation.

A possible explanation is that texts that involve descriptions of locations of different objects and events
include more coordination constructions. When the text discusses cause and effects, it is more likely
to contain subordination constructions which allow a more precise expression of the semantic relation
through subordinating conjunctions. This idea extends the hypothesis that RST relations such as Cause
are grammaticalized as subordination relations by suggesting that subordination is also likely to be used
for other phrasal adjucts of clauses with causal adjuncts.

Within the category of subordination constructions, main clauses tend to contain less adjuncts than
subordinated clauses. Clauses that are “heavy” with adjuncts generally reside lower in the syntactic tree;
this may be due to considerations similar to those involved in the “heavy NP shift” within clauses (Ross,
1967). The presence of locative adjuncts is the only feature that has a significant effect on the prediction
and that runs counter to this pattern.

3.3 Shared Participant Features

Table 5 shows an analysis of the participant features. The features f39−40 are most useful for the prediction
of dependency direction in the subordination construction. Sharing of the patient of p1 with the agent of
p2 (f39) is a very strong indicator that p1 assumes the position of main verb. On the other hand, coinciding
agents (f41) and patients (f42) suggest that the verbs are most likely coordinated. The coefficient for the
feature f34 suggests that the more participants two predicates have in common, the more likely it is that
they form a subordination construction.

However, in our experiments we found out that the feature that indicates the presence of shared
participants (f33) has the opposite impact on the prediction of clause combination type. In fact, if we
treat the f34 as a discrete variable, we obtain clearer results. Exactly one common participant increases
the chances that the predicates are coordinated, but as the number of shared participants grows, the
subordination becomes a more probable alternative (see Table 6).
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Feature id and description Response variable
Subordinative combination p2 subordinated to p1
Coefficient −∆ RD Sig. Coefficient Drop −∆ RD Sig.

Intercept 1.06692 – – 0.007055 – –
f23: Number of temp. adjuncts of p1 -0.07231 3.5674 . -0.246345 20.2885 ***
f24: Number of temp. adjuncts of p2 -0.13936 8.3621 ** 0.230160 17.5562 ***
f25: Number of loc. adjuncts of p1 -0.36687 19.9467 *** 0.127297 1.5190
f26: Number of loc. adjuncts of p2 -0.25236 7.6491 ** -0.201170 3.9508 *
f27: Number of purp. adjuncts of p1 0.39889 0.9586 0.364775 0.9158
f28: Number of purp. adjuncts of p2 0.79290 2.0314 -0.437820 0.9268
f29: Number of cause adjuncts of p1 0.84954 11.4742 *** -0.028193 0.0160
f30: Number of cause adjuncts of p2 0.32878 2.8584 . 0.410857 5.2560 *
f21: Number of manner adjuncts of p1 0.03634 0.0960 -0.190564 5.8010 *
f32: Number of manner adjuncts of p2 -0.18875 5.8788 * 0.040456 0.2218

Table 4: Features characterizing non-clausal adjuncts of the predicates (−∆ RD: drop in residual deviance;
Sig.: Statistical significance, .: p<0.1; *: p<0.05; **: p<0.01; ***: p<0.001)

Feature id and description Response variable
Subordinative combination p2 subordinated to p1
Coefficient −∆ RD Sig. Coefficient −∆ RD Sig.

Intercept 1.31168 – – -0.0003424 – –
f34: Number of shared participants 0.18660 205.41 *** 0.0137141 0.326
f39: The agent of p1 is the patient of p2 -0.59652 8.02 ** -1.5567667 113.404 ***
f40: The agent of p2 is the patient of p1 -0.68431 2.23 1.6358964 100.761 ***
f41: The agents are the same entity -1.72330 391.99 *** -0.1119343 1.651
f42: The patients are the same entity -1.66920 153.62 *** 0.1537697 0.652

Table 5: Features describing the sharing of participants (−∆ RD: drop in residual deviance; Sig.: Statistical
significance, .: p<0.1; *: p<0.05; **: p<0.01; ***: p<0.001)

Thus, there is a non-linear dependency between participant sharing features and clause combination
type. Subordination and coordination constructions have distinct patterns of participant sharing. For
coordination, it is often exactly one participant that occupies the same semantic role in the frames of
both predicates. More shared participants mean that the verbs are more likely to be subordinated. These
constructions are distinguished by the tendency to share participants between the patient of the main verb
and the agent of the dependent verb.

We have also tested models with less specific features f35−38 and noticed that in subordination
constructions, the dependent verb is generally likely to share its agent with one of other participants of the
main predicate. In the task of the prediction of clause combination type, having shared participants in
almost any role is more likely for coordination constructions, with higher coefficients for agent sharing
(f35−36).

4 Prediction of Clause Combination Type

In this Section, we build a model that incorporates all the features that we have discussed in the previous
section and use it to predict the test portion of our dataset.

This model (the Semantic/Discourse Model), is created on the basis of the most successful features
according to our previous analyses. Specifically, it includes 14 features which (a) estimate and compare
the frequency of the participants of the verbs in the pair (f3,13,14), which (b) register whether any of the
participants were mentioned previously (f15,16,20), (c) the number of expressed temporal, locative and
causal adjuncts (f23−26,29), and (d) that report on whether participants are shared between agent and
patient roles of the two predicates (f34,39−42). We build one classifier for each class and combine them as
described in Section 2.2.
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Feature id and description Response variable
Subordinative combination p2 subordinated to p1
Coefficient −∆ RD Sig. Coefficient −∆ RD Sig.

Intercept 1.45711 – – 0.004735 – –
f34=1: One shared participants -0.99505

766.36 ***

-0.013430

9.938 .
f34=2: Two shared participants 0.05641 -0.261963
f34=3: Three shared participants 0.92524 0.090377
f34=4: Four shared participants 0.72261 0.004918
f34=5: Five shared participants -0.50095 0.682436
f39: The agent of p1 is the patient of p2 -0.50048 4.90 * -1.493254 112.868 ***
f40: The agent of p2 is the patient of p1 -0.61984 0.37 1.710374 101.606 ***
f41: The agents are the same entity -1.50994 265.26 *** 0.006720 0.100
f42: The patients are the same entity -1.34141 94.45 *** 0.233702 1.455

Table 6: Features describing the sharing of participants (−∆ RD: drop in residual deviance; Sig.: Statistical
significance, .: p<0.1; *: p<0.05; **: p<0.01; ***: p<0.001)

Feature id and description Response variable
Subordinative combination p2 subordinated to p1
Coefficient −∆ RD Sig. Coefficient −∆ RD Sig.

Intercept 0.94877 – – 0.002226 – –
p1 is a gerund 0.36027

51.514 ***
-1.702426

514.90 ***p1 is an infinitive 0.11551 -1.187537
p1 is a participle -0.53580 -0.979405
p2 is a gerund 0.26939

24.017 ***
1.835103

530.34 ***p2 is an infinitive 0.11392 1.014216
p2 is a participle -0.45433 1.154144

Table 7: Features for the Morphological Model: verb form of p1 and verb form of p2. Each value is
assigned a coefficient, but the drop in residual deviance is computed at the feature level. (−∆ RD: drop in
residual deviance; Sig.: Statistical significance, .: p<0.1; *: p<0.05; **: p<0.01; ***: p<0.001)

We compare our Semantic/Discourse model to two other models. The first one, Majority Baseline,
assigns every pair to the most frequent class. For the first task (subordination vs. coordination), this is
subordination (75% of instances); for the second, this is subordination of p1 under p2 (52% of instances).

Our second point of comparison is the Morphological Model. This model is based on just two features,
namely the morphological forms of the two verbs. These features allow the model to solve the second
task in cases when subordinated predicate has a non-finite form. However, from our point of view, this
model is not fit for our purposes since it uses information which from a generation perspective is not yet
available at the point in time when syntactic decisions have to be made.

Table 7 lists these features in a similar manner to the semantic and discourse features used in Section 3.
Both features are modelled as factors with four levels each (the three listed ones plus the base level of
finite verb).2

The results of applying these models to our OntoNotes test set are shown in Table 8. For the first task,
the accuracy of the Majority Baseline classifier corresponds to the proportion of the majority classes in the
dataset (0.75). The Morphological Model follows the Baseline in assigning all cases to the subordination
case and thus achieves the same overall accuracy. On the second task, it improves substantially over the
baseline (accuracy 0.606) due to correct predictions in cases where subordinated clauses have non-finite
predicates. At the same time, when both predicates have finite form (which is the majority of our data)
the classifier cannot make any informed decision. However, although its intercept feature is very close to
zero, it still has a little bias towards one of the classes, which is mirrored in the accuracy of prediction on
different subsets of the data (0.921 vs. 0.316).

Our Semantics/Discourse Model is able to improve over the two other models for the subordination
2Consequently, there are three coefficients but just one drop in residual deviance resulting from the addition of the feature.
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Model Subordination vs. coordination Direction of subordination
Overall Subord. Coord. Overall p2 subord. to p1 p1 subord. to p2

Majority Baseline 0.752 1.000 0.000 0.520 0.000 1.000
Morphological Model 0.752 1.000 0.000 0.606 0.921 0.316

Semantics/Discourse Model 0.779 0.946 0.368 0.576 0.668 0.420

Table 8: Prediction accuracy for the two tasks (Task 1: subordination vs. coordination; Task 2: direction
of subordination) in terms of overall accuracy and class-specific accuracy.

vs. coordination task by learning how to recognize at least some cases of coordination. Concerning the
direction of subordination, it improves over the baseline (0.576). While it does not achieve the overall
accuracy of the Morphological Model, it is more balanced over the two classes. Also, recall that the good
performance of the Morphological Model is due to its use of verb form information which is arguably
unavailable at the decision time.

5 Related Work

The choice between subordination and coordination is related to work on various aspects of discourse and
beyond in computational linguistics.

Rhetorical Relations. The closest area to our work consists of investigations of discourse relations in
the context of Rhetorical Structure Theory (Mann and Thompson, 1988). Most studies in this area are
primarily concerned with appropriate choice and positioning of the discourse cue, barely considering
the differences between syntactic status of clauses to be combined. However, (Taboada, 2006) shows
that some rhetorical relations are often expressed without any discourse cue, and such parameters of
sentence structure as the order of phrases and their syntactic mode of combination become significant for
the expression of rhetoric relation. There are several studies that consider syntactic means of expression
of particular rhetorical relations. In particular, Grote et al. (1997) describe how syntactic structure and
ordering of clauses correspond to the pragmatic subtypes of the Concession relation. Pitler et al. (2009)
show that pairs of words taken from sentences linked by discourse relations, as well as Levin classes of
verbs of the sentences and sentiment polarity information is useful for the prediction of implicit relations.
The same authors also look into various entity-based features and show that again lexical information
about mentioned entities correlates with the choice of discourse relation. In contrast, we focus on the
correlation between the syntactic structure and the properties of events directly, since both types of clause
combination may be used to encode the same rhetoric relation. We think that while the influence of
pragmatic factors investigated by Grote et al. (1997) may be significant, we chose to explore other types
of features in this study.

Lexical Models of Coherence Another direction of research of coherence relations within discourse is
represented by Barzilay and Lapata (2008). They show that coherent discourse is characterized by chains
of mentions of same entities. Hearst (1997) show that event chains that are formed only by the mentions
of the same lexical item mirror the global structure of texts and can be used for discourse segmentation.
The “shared participant” features that we use are similar to the approach of these studies. However, our
work shows that coordination and subordination form distinct patterns of entity mentions which can be
used to predict local text structure.

Generation and Summarization. We believe that our results may be useful to the natural language
generation and summarization communities. In generation, many systems assume overgenerate-and-rank
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approach to sentence planning (for example, see Stent et al. (2004)). The description of features given
in our work may help to create better ranking systems or even direct the generation of complex and
compound sentences, in the spirit of Stent and Molina (2009). In summarization, Barzilay and McKeown
(2005) present a sentence fusion technique for multidocument summarization which needs to restructure
sentences to improve text coherence. Restructuring is currently done without regard to the underlying
discourse structure. We believe that the features that we have identified can introduce a bias towards more
appropriate structures during sentence fusion.

6 Conclusions

In this paper, we have reported on an examination of various semantic and discourse structure-based
factors and their effect on the choice of clause combination (subordination vs. coordination) and the
direction of relation within subordination pairs. On a dataset of clause pairs extracted from the OntoNotes
corpus, our analysis led to the following results:

• The salience of events and their participants is connected with the syntactic position of corresponding
clauses in the tree. However, in order to occupy the dominating position in the syntactic structure,
the event only has to be more prominent than another event with which it forms a pair. It does not
need to be the key, mainline event of the story.

• The presence of adjuncts of different types has an effect on the clause combination preferences.
Locative adjuncts are different from other types of adjuncts and clauses in that they seem to support
coordination more than subordination. On the other hand, the presence of causal adjuncts increases
the likelihood of subordination constructions.

• Participant sharing between different argument positions of predicate is one of the decisive factors
in the prediction of clause combination type. Coordination constructions are more likely to share
one participant between same semantic roles of the predicates, whereas the in case of subordination
participants are shared between patient and agent positions.

In sum, we find that the choice between subordination and coordination is not determined by “global”
discourse factors alone, but also by the lexical and structural properties of the participating predicates
and their immediate context. Moreover, the two prediction tasks involve different, often complimentary
features. We interpret this as evidence for a richer, more interactive account of clause structuring in
discourse context than previous work has suggested.
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1 Introduction

Words get their meaning in context and Harris’s Distributional Hypothesis has been used in computa-
tional linguistics in order to identify the relationship between co-occurring words and their senses. In
general, the local context contains the necessary information for word sense disambiguation (Steven-
son&Wilks 2001). However, the exact extent of the local context varies significantly. To cope with
this problem, previous research has shown that the regularity of word usage in natural language can be
exploited (Pustejovsky&Hanks 2001). Many times, words are used in phrases with a patternable struc-
ture. On the basis of corpus evidence (Popescu&Magnini 2007), or on the basis of the lexicographer’s
intuition on the normal usage (Hanks 2005) a set of patterns can be built which makes the link between
context and word senses.

In this paper 1 we focus on patterns centered on verbs. We show that their structure is learnable and
by employing a learning algorithm we are able to build a recognizer able to match such patterns against
previously unseen text. The CPA resource (Hanks & Pustejovsky 2005, Pustejovsky & Jezek 2008)
contains a set of patterns for a part of the English verbs and is built through a systematic analysis of the
patterns of meaning and use for each verb. Meaning is associated with prototypical sentences which are
extracted from the BNC. The slots of the patterns are specified with semantic types. For example, the
sentences:

(ACP) ... least that intense moment before the body abandons itself to passion.
(CCN) They danced wildly down the street, abandoning themselves to the night and the moon.

are instances of the pattern:

HUMAN abandon SELF {to ACTIVITY | to ATTITUDE}

HUMAN, SELF etc. are semantic types. The use of {} signals an optional slot of the pattern and |
signals a choice. A semantic type characterizes a whole class of nouns, and as such, the semantic types
are organized in a shallow ontology. The structure of these patterns is regular and we show that we can
use the Angluin Algorithm to build a finite state automaton (FSA) which can recognize the patterns.

Going from the set of sentences associated to each pattern to the FSA recognizer is not trivial. The
CPA does not contain information regarding the syntax of the patterns, or the senses of the words inside
a pattern and it does not provide a resource which assigns a list of possible semantic types to the nouns
of the English language. In order to obtain this information, we must rely on parsing and on other two
resources, WordNet(Miller) and SUMO(Niles&Pease 2001). WordNet is a sense repository and SUMO
is an ontology aligned to WordNet senses. We use SUMO to associate semantic types to the nouns. In the
training phase, which results in the construction of the FSA recognizer, the system learns how to identify
a certain pattern in a text where the words are replaced with SUMO semantic types. By matching a
pattern, we obtain the syntactic structure of the context and the senses of the words in the context due to
the SUMO alignment to WordNet. In the experiments we ran, we tested both the accuracy in finding the

1This research is supported by the BCROCE project. The author also thanks Nam Khanh Tran for helping implementing
the Angluin Algorithm



correct syntactic structure and the accuracy in predicting the correct sense of the words of the matched
context.

We introduce the task of pattern matching. Given an arbitrary sentence for which we know there is a
unique pattern that matches it, the task consists in finding the appropriate pattern which matches the right
words in the sentence. We analyzed the performances obtained by a baseline against a SVM approach
and against the FSA recognizer. The results show that both the SVM and the FSA recognizer are over
the baseline by several tens of percentages. The FSA recognizer reaches a significantly better accuracy
than the SVM approach. We test the approaches both by a cross validation technique and by analyzing
individually the performances on a list of verbs.

This paper is organized as follow: in the next Section we review the relevant literature on the in-
teraction between meaning, syntax, ontology and patterns. In Section 3 we describe the form of corpus
patterns and the CPA resource. in Section 4 we present the way in which the Angluin Algorithm for
learning regular grammars from examples can be modified to learn to recognize the corpus patterns. In
Section 5 the results of the experiments we carried out are presented and discussed. In the last section
we present the conclusion and further research.

2 Related Work

Based on Harris Distributional Hypothesis, many approaches to WSD have focused on the contexts
formed by the words surrounding the target word. With respect to verb behaviour, selectional restrictions
have been used in WSD ( see among others Resnik 1997, McCarthy, Caroll, Preis 2001, Briscoe et al.
2006). Also, (Hindle 1990) has tried to classify English nouns in similarity classes by using a mutual
information measure with respect to the subject and object roles. Such information is very useful only in
certain cases and, as such, it is difficult to use it directly in doing WSD.

Lin and Pantel (Lin, Pantel 2001) transpose the HDH from words to dependency trees. However,
their measure of similarity is based on a frequency measure. They maintain that a (slotX, he) is less
indicative than a (slotX, sheriff). While this might be true in some cases, the measure of similarity is
given by the behaviour of the other components of the contexts: both he and sheriff act either exactly
the same with respect to certain verb meanings, or totally differently with respect to others. However,
their method cannot be extended to take into account such differences. A classification of these cases is
instrumental for WSD. Equally important is overcoming the limitation of considering only the subject
and object. It has been shown that closed class categories, especially prepositions and particles, play
an important role in disambiguation and wrong predictions are made if they are not taken into account
(see, among others, Collins and Brooks 1995, Stetina&Nagao 1997). Our approach addresses both these
issues.

Zhao, Meyers and Grishman (Zhao, Meyers and Grishman 2004) proposed a SVM application to
slot detection, which combines two different kernels, one of them being defined on dependency trees.
Their method tries to identify the possible fillers for an event, but it does not attempt to treat ambiguous
cases; also, the matching score algorithm makes no distinction between the importance of the words,
considering equal matching score for any word within two levels of the dependency tree.

(Pederson et al. 1997-2005) have clustered together the examples that represent similar contexts for
WSD. However, given that they adopt mainly the methodology of ordered pairs of bigrams of substantive
words, their technique works only at the word level, which may lead to a data sparseness problem.
Ignoring syntactic clues may increase the level of noise, as there is no control over the relevance of a
bigram. Many of the purely syntactic methods have considered the properties of the subcategorization
frame of verbs. Verbs have been partitioned in semantic classes mainly on the basis of Levins classes of
alternation. (Dorr&Jones 1996, Dang et al. 1998, Collins 1989, McCarthy 2001, Korhonen 2002, Lapata
Brew 2004). These semantic classes can be used in WSD via a process of alignment with hierarchies
of concepts as defined in sense repository resources (Shin&Mihalcea 2005). However the problem of
the consistency of alignment is still an open issue and further research must be pursued before applying
these methods to WSD.



The relationship between events and dependency parsing is analyzed in (McClosky et al. 2011).
They extract events at the sentence granularity. However, the fact that the senses of the words are related
in describing an event is not discussed. A semi-supervised technique for the discovery of semantic
pattern is presented in (Sun&Grishman 2011). Their paper takes into account only the ACE named
entities - PERSON, GPE, LOCATION etc. While the authors tried to catch meaning relations between
their patterns, there is no clear meaning associated with each pattern. In fact, many times different
senses are found in identically syntactic contexts. To capture the differences, the semantic types must be
taken into account as well. The semantic binary relations discoverable in text are the focus of the paper
(Chan&Roth 2011). They individuate syntactico-semantic structures which could be encoded as patterns
but they do not discuss the complexity of learning them. The paper does not discuss possible extensions
of the presented method to patterns matching a whole sentence.

3 Corpus Pattern Analysis

In CPA a pattern is understood as a corpus-derived predicate-argument structure with specification of
the expected semantic type and subcategorization properties for the arguments (HanksPustejovski 2005).
A pattern may not include, and usually it does not, all the phrases presented into the subcategorization
frame. A pattern corresponds to a subgraph of the dependency graph of a set of sentences. In Table 1,
in the first column, we present three patterns of the verb abandon, and in the second column we show
prototypical examples.

Patterns Protypical examples
HUMAN | INSTITUTION he abandoned plans of working
abandon are incapacitated or have abandoned their practices
ACTIVITY | PLAN We should not abandon the search

HUMAN | INSTITUTION he had abandoned immediate hopes
abandon abandoned their principles
ATTITUDE he had abandoned his commitment to persuasion

HUMAN | GROUP citizens of Phocaea abandoned their town
abandon The lands that they abandoned
LOCATION before abandoning the site

Table 1: Patterns and Prototypical Examples

A semantic type outside a pattern is not functional. A word may be characterized by many semantic
types, but only one of them is actuated in a pattern. The lexicologists task in CPA is to find the appropriate
level of generalization of the semantic types on the basis of which senses are distinguished. The words
collocating on the same syntactic position are grouped together according to their influence on the verb.
Different patterns are often meaning contrastive. However, this is not always the case. Consider, for
example, the three sentences below:

ex1 I drove him to the house.
ex2 I drove him to his father.
ex3 I drove him to despair.

which have the following corresponding patterns:

ex1pattern HUMAN drive 3 HUMAN to BUILDING
ex2pattern HUMAN drive 3 HUMAN to HUMAN
ex3pattern HUMAN drive 5 HUMAN to PSYCHOLOGICAL STATE



Figure 1: Distribution of number of patterns

The patterns ex1pattern and ex2pattern, as opposed to ex3pattern, are not meaning contrastive. It would
be hard to imagine that the same semantic type could cover both house and father. Rather, these remain
separate patterns. However, the intuition is that in ex1 and in ex2, house and father are both understood
as PLACE. The CPA treats such cases as ”exploitation of the norm” (Hanks 2008). The CPA provides a
different set of sentence contexts from BNC for exploitation cases. The CPA resource is freely available
from http://deb.fi.muni.cz/pdev/. Table 2 summarizes the figures related to the actual coverage of the
corpus. The number of patterns varies from 1 to 56.

Characteristics Dimension
Number of Verbs 721
Number of Patterns 2745
Number of files with Examples 5447

Table 2: CPA corpus in Figures

Figure 1 shows the distributions of the number of patterns in CPA. There are roughly a couple of
semantic types currently used in CPA. Two of them, namely ”Human” and ”Institution” are significantly
more frequent than others; they are used 1,849 and 365 times, respectively. The CPA also provides the
likelihood of a pattern in BNC. The distribution of the patterns in corpus is not uniform, the mode being
that a dominant pattern is likely to have a few times more occurrences than the next most frequent pattern.

We computed how many times the dominant pattern for a verb has more than 40%, 60% or 80%
of occurrences, by also considering the total number of patterns for the respective verbs grouped in
intervals: verbs which have between 3 and 5 patterns, verbs which have between 5 and 20 patterns, verbs
having between 20 and 40 patterns, and verbs having between 40 and 60 patterns. For example, 65.25%
of the verbs with patterns between 5 and 20 have a dominant pattern that occurs more than 40% in the
corpus, but only 23.72% of the verbs with the same number of patterns have a dominant pattern that
occurs more than 60% of the time in the corpus. See Table 3.

coverage/patterns 2-5 6-20 21-40
40% 94.35% 65.25% 25%
60% 60.45% 23.72% 12.5%
80% 27.1% 14.23% 0%

Table 3: Dominant Pattern Frequency in Corpus

The SUMO ontology is aligned to the senses present in Wordnet1.6. In Table 4 we list the SUMO
attributes for the direct object position for the examples listed in Table 2.

Considering all SUMO attributes of a word is likely to lead to confusion, for example in Table 4 the
”NormativeAttribute” belongs both to practice and principle, which are the direct objects in different pat-



direct object SUMO attributes
plan Plan, Abstract, icon
practice normativeAttribute, EducationalProcess
search Pursuing, Investigating, ContentDevelopment

hope EmotionalState, Reasoning
principle NormativeAttribute, Proposition
commitment TraitAttribute, Declaring

town City, Geopolitical
land LandArea, Geopolitical, Nation
site LandArea, Located

Table 4: Patterns and Prototypical Examples

terns. However, the sense determination relationship characterizing the CPA patterns (explained below) ,
allows only a certain combination of senses, to which only certain SUMO attributes correspond, because
SUMO is aligned to the sense repository. The pattern learning and recognizing algorithm must be able
to retain for a word only the SUMO features which are instantiated in a particular corpus sentence. The
algorithm presented in the next section learns the patterns, as well as which SUMO attributes are legible
in a CPA pattern for each word.

Before concluding this section we discuss a relationship between the components of the corpus pat-
terns which will be proven to be important for the construction of more accurate FSA. The relationships
between the semantic types and the senses of the verbs are such that only certain combinations are valid.
We are interested in corpus patterns for which a determination relationship holds: given either the sense
of the verb or the semantic types of one of the components then all the other can be inferred. For example
knowing that the direct object has the semantic type LAND then the verb abandon must have the sense 3.
The disambiguation of the senses of the words matched by a pattern follow a chain like relationship - it
is enough to disambiguate one component, and all the words get disambiguated. We call this relationship
Chain Clarifying Relationship (CCR) (Popescu,Magnini 2007, Popescu 2012). CCR is instrumental in
constructing accurate FSAs. By considering the difference between two CCRs we do not need to match
the whole pattern, but to identify only the distinctive semantic types in the CCRs. In Section Experiments
we analyze the influence of this relationship on the overall accuracy of the recognizer.

4 Angluin Algorithm

The Angluin’s algorithm (AA) is proved to be able to learn the minimal regular grammar that produces
or rejects a set of examples provided as input. In general, the problem of learning a regular grammar only
from positive examples is an NP-hard problem. Angluin’s algorithm is guided in learning by an oracle,
which can answer yes/no questions or give a counter example, and it runs in linear time by considering
the length of the input examples.

The AA exploits the fact that a language is regular if and only if it is prefix closed, which means that
a language is regular if and only if there is a finite number of equivalence classes of the strings, prefixes,
which affect the acceptability of the bigger strings that they initiate in the same way. As it learns new
examples, the AA builds a table of observation of all possible prefixes and suffixes. When the acceptance
of each of the strings formed by joining prefixes with suffixes is known, the table is considered closed. If
a closed table also obeys the prefix closeness condition, then it is also considered consistent. The entries
in a closed and consistent table describe a Finite State Automaton (FSA), which correctly accepts or
rejects the examples given. However, there is more that one possible regular language that describes a
set of finite examples. Therefore, when the table is closed and consistent the algorithm asks for a counter



Figure 2: System Flow

example - which is a string that is accepted or rejected by the language to be learned, and is rejected or
accepted, respectively, by the language described in the actual table. If such a counter example is given,
the operation of closing the table is carried out again; otherwise, the algorithm stops and the desired FSA
is the one described in the table. (Angluin 1987).

The oracles questions about the acceptance of a new string formed by prefixing and suffixing parts
of the previously seen strings are called the membership queries. The oracles questions regarding the
equivalence between the FSA found by consistently closing the table and the FSA parsing the real gram-
mar are called equivalence queries. A counter example to the equivalence query shows that the actual
FSA is too general and new states must be found.

The AA receives as input all the strings created by considering all the SUMO attributes for the
words in training and learns the correct prefixes and suffixes for the patterns. The membership queries
are carried out in order to determine what SUMO attributes form valid strings in which slot. The
equivalent queries are carried out to determine that no relevant SUMO attribute is left unanalyzed.
If a word has many SUMO features, it generates more symbols: practice, for example, generates
EDUCATIONAL PROCESS, and NORMATIV E ATTRIBUTE. The same string may be
generated by two sentences with different patterns, for example abandon practice and abandon prin-
ciple, which generates HUMAN abandon NORMATIVE ATTRIBUTE (see Table 1 and Table 4). This
is incorrect, because if the FSA accepts HUMAN abandon NORMATIVE ATTRIBUTE then the FSA is
unable to assign a unique pattern to the text. Such strings are considered counter examples for the AA
algorithm and the system learns that they are not part of the language to be learned. Consequently, the
respective SUMO feature for that particular slot will not be considered by the final FSA. Whether a
SUMO attribute is considered or not depends entirely on the structure of the patterns for that verb. The
flow is plotted in Figure 2.

The grammars we are interested in are finite. The role of the oracle can be skipped in this case.
In an input file we provide the set of strings with the specification of their acceptances. The AA reads
the examples from the input file and builds the table. The answer to both membership queries and
equivalence queries is carried out automatically by assuming that if a string is not in the input file, then it
is not accepted, and by assuming that if there are strings in the input file which are not generated by the



Figure 3: the FSA recognizer for a subset of examples for move

current FSA, then any of them can serve as a counter-example and the search for a new FSA resumes.
The input to the AA algorithm is a set of examples of patterns and the output is a FSA able to

recognize only the strings that corresponds to the contexts which are matched by only one pattern. In
Figure 3 we present the FSA generated by a subset of examples for move.

5 Experiments

We ran several experiments in order to evaluate the performances of pattern recognition via regular gram-
mars. We started by running a 4 fold cross validation experiment. Because we wanted to analyze the
results in more detail, we look for a set of verbs having a representative number of patterns and of exam-
ples for the whole set of verbs and we analyzed specifically the accuracy of various methods individually.
The recognizing process using FSA can be made in two scenarios: using a parser or not. The second
scenario, no parsing for the input text, is challenging, because the recognizer acts as syntactico-semantic
parser which outputs a dependency path corresponding to the context matched and it also outputs the
senses of the words . While the accuracy of pattern recognition is lower in this case, the results are
promising.

The SUMO features are obtained for the noun phrases heads via a public available API (Pianta et al.
2002). At the test phase all the possible SUMO combinations inside the syntactic slots of a pattern are
given to FSA. If the FSA is unable to find a derivation, or if it finds more than one, it means that we are
unable to match a single pattern against the given sentence and these cases are considered errors.

The results for the 4 fold cross validation experiment are presented in Table 8. Both the SVM and
the FSA reaches a good accuracy. However, the results may be biased by the existence of verbs having
just one pattern or of verbs having a dominant pattern. In such cases, which represents more or less a
quart of the total number, there is no ambiguity so we can hardly talk about a recognition process. For
a clearer understanding of the behavior of the systems we chose a set of 12 verbs having a number of
patterns between 3 and 9, half of them having exactly 5 patterns (see Table 5). The maximal and the
minimal frequencies of a pattern are listed in the third and forth column, respectively.

We are interested in the maximal and minimal frequencies of the pattern, because, usually, there is
little training available for those patterns with low frequency. The risk of not recognizing the minimal
frequency is high. The approach presented here depends to a little extent on the dimension of the training
corpus and to a large extent on its quality. That is why we wanted to analyze the performances for



verb pattern max Freq min Freq # train 10%
abandon 8 48% 1% 41
accompany 5 31% 1% 23
acknowledge 5 54% 1% 56
acquire 5 51% 2% 46
arrive 5 69% 1% 41
execute 5 36% 8% 60
fence 3 64% 2% 5
furnish 4 31% 14% 21
launch 6 60% 3% 41
maintain 5 67% 2% 9
saddle 4 71% 2% 9
yield 9 24% 4% 55

Table 5: Test Verbs

different types of patterns. The available sentences were divided randomly into training and test sets. We
considered approximately two training sets containing approximately 10% and 30% of all the available
sentences, respectively. With a training ratio of 10%, 8 verbs had between 40 and 50 sentences. Two
verbs, accompany and furnish, have around 20 examples each, and two other verbs have only 5 and,
respectively, 9 examples each (see column 5 Table 6). The 30% training sets had three times more
examples. The very first run we tried was to use all SUMO features, which led to the acceptance of
all the possible combinations. The result was very low; in more than 90 percent of the cases when the
recognition set was not empty, it contained more than a pattern. This experiment showed the necessity
of observing the CCR condition for the CPA patterns. If the CCR condition is observed, then not all the
SUMO attribute combinations are accepted. All the following experiments are conducted by observing
the CCR condition (see section 4). Using a 10% ratio for training was enough to obtain a very good
precision, on average between 80% and 90%. However, fence expectedly performed poorer than the
rest, with a precision of 45%, as it contained only 5 training examples. Considering the precision for two
other verbs with a relatively low number of training examples, namely accompany and furnish, we
can see that 20 examples seem to be enough for a precision around 96% (Table 7).

The low figure for recall has three main different causes: (1) the errors along the pipe generated at
parsing time and at dependency extraction (2) the lack of SUMO features for pronouns and proper names
and (3) the rigid condition of recognizing all the elements of a pattern, as requested by the FSA.

verb BasicFSA 10% train RECALL ExtendedFSA 10% train RECALL
abandon .26 .36
accompany .22 .49
acknowledge .10 .12
acquire .25 .48
arrive .25 .37
execute .10 .22
fence .23 .23
furnish .10 .32
launch .2 .45
maintain .1 .36
saddle .22 .34
yield .14 .4

Table 6: Recall for BasicFSA vs. ExtendedFSA with 10%

The first two causes are not directly linked to the methodology described here. These causes could
be addressed in an independent manner. However, the third cause is directly linked to the way the



FSA works and we wanted to focus on it. When the string corresponding to a test sentence is not
complete, the FSA rejects it. As many of the patterns may differ due to the direct object or due to the
prepositional complement, it suffices to correctly recognize that part of the string in order to correctly
categorize the test sentence as belonging to one group or another. These subparts of the patterns can
be automatically generated by comparing the patterns against each other. We can include them in the
training set as well. In a second experiment we provided to the AA the automatically generated subparts
of the patterns. We refer to the new automaton as extended FSA in order to distinguish it from the
initial FSA trained on complete patterns, which we called BasicFSA. The recall increased significantly
by using the extendedFSA. For certain verbs the recall was doubled or nearly doubled. In Table 6 the
results obtained are listed. We also ran the Extended FSA with a 30% training corpus. The results are
listed in Table 7.

Basic+10% Extended+30%
verb precision recall F1 precision recall F1
abandon .95 .26 .41 .97 .6 .74
accompany .96 .22 .35 .87 .71 .78
acknowledge .88 .10 .18 .9 .25 .39
acquire .98 .25 .39 .97 .6 .74
arrive .60 .25 .35 1 .41 .58
execute .78 .10 .15 .85 .46 .59
fence .45 .23 .30 .57 .36 .44
furnish 1 .1 .16 .84 .42 .56
launch .99 .20 .33 .95 .79 .87
maintain .93 .10 .17 .9 .48 .63
saddle 1 .22 .36 1 .36 .68
yield .96 .14 .24 .96 .51 .62

Table 7: BasicFSA + 10% vs. ExtendedFSA + 30% training set

Considering a training corpus which represents 30% of the total number of corpus sentences does
not mean that the training was three times more informative than a 10% training corpus. This happens
because it is not unusual for otherwise different sentences to have the same word on the same spot in the
argument structure. If two such sentences were in the training set, there was nothing new to learn. It
seemed that the precision is not affected by the dimension of the training set. We noticed that even the
low frequency patterns were correctly identified. However, the increase in recall is significant. Both the
increasing of the training set and the improvement brought by the ExtendedFSA are equally contributors
to this.

A baseline of the most frequent pattern scores low. The precision never exceeds 40% and the recall
is 18.65%. It is most likely that these low figures are due to the fact that the CPA corpus is not a random
part of BNC; on a totally random corpus, the baseline is expected to perform better. A SVM approach
which considers the right and the left context relatively to the target verb (Giuliano et all. 2009) did not

[cross validation]

method F1
BasicFSA 53.61
ExtendedFSA 71.93
SVM 68.58
MostFrequent 48.12

[12 verbs]

method F1
BasicFSA+10% 26.58
BasicFSA+30% 37.45
ExtendedFSA+10% 45.08
ExtendedFSA+30% 60.52
SVM+30% 55.71
MostFrequent 21.85

Table 8: Cross Validation and 12 Verb F1 results



perform better either. It reached an average precision of 65%, and a recall a little lower than 48%. The
SVM approach works best with contexts that are bigger than the sentence, which were not available in
this experiment. However the SVM figures reported above refer only to verb sense and not to pattern
recognition. In Table 8 the F1 formula averaged for all verbs is presented for the 4-fold cross validation
and for the set of the chosen 12 verbs respectively. A last experiment we conducted was to see how
much the learned FSA matches against the raw text. The test sentences werent parsed anymore but
all the nouns were considered together with their SUMO features and were sent into input to the FSA.
For the 12 chosen verbs we obtained the results reported in Table 9. Using the FSA recognizer in this
way means to have a deep semantic parser which provides in the same time the syntax, the dependency
relationships, the senses of the words and ontological links. These are not separate operations carried in
cascade, but the results of ”understanding” a verbal phrase according to the grammar associated with the
respective verb. The experiments on raw text show that it is possible to develop a technique which does
not necessarily make use of a parser. However, the interaction between two CCRs which are recognized
in the same sentence must be first resolved in order to adopt such technique.

verb subject F1 object F1 verb subject F1 object F1
abandon .55 .59 fence .22 .31
accompany .42 .34 furnish .44 .59
acknowledge .39 .22 launch .58 .48
acquire .51 .58 maintain .39 .37
arrive .6 .54 saddle .34 .41
execute .46 .61 yield .52 .49

Table 9: Applying FSA to raw text

6 Conclusion and Further Research

The CPA is a resource that creates links between word senses and word usage. A mutual sense depen-
dency relationship acts between the slots of a pattern. We presented a methodology for pattern learning
and recognition using finite state automata. A FSA is built for each verb by using dependency chains
with SUMO attribute features. In the process of learning only the relevant SUMO features are retained.
The results suggest that the methodology is stable and works properly when the slots of the patterns
are filled. The method is very precise for frequent senses as well as for less frequent senses. However,
in order to improve the coverage, a module which handles the pronouns and proper names should be
implemented. This represents the next goal for us.

The experiments we carried out suggest that the quantity of data required for training is small. We
start experimenting with a training set which is built iteratively by letting the algorithm decide what is the
next training example expected to help in learning the patterns. In the same vein as the original Angluins
Algorithm, the learning of patterns can be carried completely automatically. The states of the obtained
FSAs, although nameless, may correspond to a set of semantic types.

An important direction of work is to improve the technique of using the FSA with raw text, and
shortcut the role of the parser in the architecture pipe. Our initial experiments suggest that this could be
done by bootstrapping. The results obtained so far are very good and they compare positively with the
ones obtained by the state of the art approaches.
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Abstract

Relational similarity is essential to analogical reasoning. Automatically determining the degree
to which a pair of words belongs to a semantic relation (relational similarity) is greatly improved
by considering the selectional preferences of the relation. To determine selectional preferences,
we induced semantic classes through a Latent Dirichlet Allocation (LDA) method that operates on
dependency parse contexts of single words. When assigning relational similarities to pairs of words, if
the agreement of selectional preferences is considered alone, a correlation of 0.334 is obtained against
the manual ranking outperforming the previously best reported score of 0.229.

1 Introduction

In natural language, words participate often in a variety of semantic relations. Both linguists and
psychology researchers have been interested in categorizing semantic relations and to understand their
usage in language and cognition. One particular interesting usage of semantic relations is provided by
analogical reasoning. As reported by Gentner (1983) and Holyoak and Thagard (1996), whenever a new
situation arises, humans tend to search for an analogous situation from their past experience. Analogical
reasoning relies on relational similarity, as reported by Turney (2006) and Turney (2008). In analogical
reasoning, the degree of relational similarity is an estimation of the likelihood of applicability of the
knowledge transfer (from past to present). Thus, as postulated in the recent SemEval 2012 Task 2 (Jurgens
et al., 2012), the automatic analysis of relational similarity may have practical benefits of indicating the
appropriateness of an analogy.

Relational similarity, as reported in Turney (2006), is one of the forms of similarity, the other one being
provided by attributional similarity. Relational similarity evaluates the correspondence between relations
(Medin et al., 1990), while attributional similarity evaluates the correspondence between attributes. As
stated by Turney: “When two words have a high degree of attributional similarity, we call them synonyms.
When two word pairs have a high degree of relational similarity, we say they are analogous.”

We claim that there is a special property that arguments of relations need to share. The arguments
of relations are words which are predications of binary facts, properties, actions, etc. As such, we are
aware from the work of Resnik (1996) that words which appear as arguments of a predicate define the
selectional preferences of the predicate. Moreover, Pantel et al. (2007) have extended the notion of
predicate selectional preferences to “relational selectional preferences” of binary relations. For a binary
relation r(x, y), the semantic classes C(x) which can be instantiated for the argument x as well as C(y),
the semantic classes which can be instantiated for the argument y constitute the relational selectional
preferences of the binary relation. Thus we believe and show in this paper that semantic relations have
selectional preferences and that word pairs x:y are more similar to a relation when those words are more
admissible under the relational selectional preferences.

Consider the semantic relation REFERENCE-Expression, with prototypical word pairs smile:friendliness,
lamentation:grief, and hug:affection. In these pairs, the first word can be seen as a physical expression of
the emotional state represented by the second word. Word pairs which are prototypical of the relation
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Category Example word pairs Relations
CLASS-INCLUSION flower:tulip, weapon:knife, clothing:shirt, queen:Elizabeth 5
PART-WHOLE car:engine, fleet:ship, mile:yard, kickoff:football 10
SIMILAR car:auto, stream:river, eating:gluttony, colt:horse 8
CONTRAST alive:dead, old:young, east:west, happy:morbid 8
ATTRIBUTE beggar:poor, malleable:molded, soldier:fight, exercise:vigorous 8
NON-ATTRIBUTE sound:inaudible, exemplary:criticized, war:tranquility, dull:cunning 8
CASE RELATIONS tailor:suit, farmer:tractor, teach:student, king:crown 8
CAUSE-PURPOSE joke:laughter, fatigue:sleep, gasoline:car, assassin:death 8
SPACE-TIME bookshelf:books, coast:ocean, infancy:cradle, rivet:girder 9
REFERENCE smile:friendliness, person:portrait, recipe:cake, astronomy:stars 6

Table 1: The ten categories of semantic relations. Each word pair has been taken from a different
subcategory of each major category.

should be assigned a high degree of membership for the REFERENCE-Expression relation, while word
pairs such as discourse:relationship and anger:slap should not, either because the word pair expresses a
different relation, or because the pair is in the wrong order (slap is an expression of anger, not the other
way around). Table 1 shows the ten top-level categories of relations we consider, which is further divided
into 79 relations covering multiple parts of speech (adjective, noun, adverb, and verb).

We show that a model which independently considers the semantic classes of each word in a word
pair is effective at assigning degrees of membership (relational similarity). For instance, knowing that the
relation REFERENCE-Expression selects for emotional states in the first argument (e.g., grief, friendliness,
affection) and expressions of emotion in the second argument (e.g., smile, hug, lamentation) helps in
determining word pair candidates which don’t adhere to those classes. Clearly word pairs whose arguments
do not fit these preferences should be given a lower degree of relatedness to the relation. We describe a
method for inducing semantic classes for use as selectional preferences and a method for determining
the distributions over argument classes for a relation. While selectional preferences are not the only
phenomena responsible for assigning degrees of membership for word pairs to semantic relations, we
choose to model it alone in this paper to examine its importance. We show that modeling selectional
preference alone produces results which are better than the previously reported results for measuring
relational similarity.

The rest of this paper is structured as follows: Section 2 gives some perspective on previous work,
Section 3 describes how we used an LDA model to induce semantic classes. Section 4 describes the dataset
we use for measuring relational similarity. Section 5 describes how the induced semantic classes are used
to model the selectional preferences of semantic relations. Section 5 describes how we determine the
extent to which a word pair matches a relation’s selectional preferences. Section 6 gives our experimental
setup and the results of our evaluation. Section 7 analyzes the types of semantic classes that were
automatically induced and Section 8 concludes the paper.

2 Previous work

Prior work on relational similarity (Jurgens et al., 2012; Rink and Harabagiu, 2012; Turney, 2005, 2006)
has understandably focused the actual relation between a pair of words under consideration. These
approaches have all considered how the two words co-occur in a large corpus and what contexts can
be found near the words when they co-occur. Contextual information is useful for determining the
relationship between two words. Therefore we believe the selectional preference agreement method can
complement these approaches. The best-performing relational similarity approach at the SemEval 2012
Task 2 utilized a graphical model to determine patterns likely to be found between the two words of a word
pair within a large corpus (Rink and Harabagiu, 2012). Word pairs were then ranked by their likelihood
of occurring with those patterns. Constraints on the arguments were not directly addressed. One of the
limitations of the approach is that word pairs which never occurred near each other in the corpus could
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not be ranked, which occurred regularly for some relations. The approach we present does not have this
sparsity issue because we treat the relation arguments independently.

The literature on selectional preferences has focused largely on well-known relations such as syntactic
relations (Mechura, 2008; Resnik, 1996; Ó Séaghdha, 2010), considering typical subjects and direct
objects of verbs, or typical nouns modified by specific adjectives. These approaches usually focus on
semantic classes of nouns at the exclusion of other parts of speech. One recent example relevant to
our work is a set of LDA-inspired models proposed by Ó Séaghdha (2010). His models directly induce
semantic classes for each predicate (verb or adjective). One consequence of such approaches is that
the semantic classes differ based on the type of relationship being modeled: verb-object, noun-noun, or
adjective-noun. The set of classes derived for nouns which are objects of verbs will be different than
the classes derived for nouns which are modified by adjectives for instance. In our approach we induce
semantic classes independently of the relations whose selectional preferences we are modeling. We take
this approach because our relational data consists only of word pairs with no context. Further, some of the
word pairs may never occur in the same sentence even in a large corpus (e.g., signature:acknowledgment)
yet we can still check the admissibility of the words as arguments to the desired relation (e.g, X represents
Y).

An extension to Latent Dirichlet Allocation model has been used before by Ritter and Etzioni (2010)
to model semantic relations and their selectional preferences. There are two distinct reasons their approach
is not well-suited to the relational similarity task. First, they were additionally inducing the set of relations
present in their data, while in the relational similarity task we aim to determine membership to an existing
set of relations. The second difference in their approach is the large size of their dataset. While we were
able to train our models using on average around 40 word pairs per relation, their data contained all tuples
matching a relation over a large corpus.

There has been much previous research effort on inducing semantic classes as well. Most approaches
use some form of context around words to induce the classes. Older approaches simply used a bag of words
context (Roark and Charniak, 1998), but this leads to induced classes containing more paradigmatically
similar words rather than syntagmatically similar words (Widdows and Dorow, 2002). More recent
approaches have utilized a subset of semantically-rich syntactic relations such as verb-object, noun
modifier, coordination, and preposition (Baroni and Lenci, 2010; Widdows and Dorow, 2002). Lin and
Pantel (2001) induce semantic classes using dependency parse contexts. Their approach is based on a
vector space rather than the probabilistic setting of an LDA. Rahman and Ng (2010) use a factor graph
with various semantic, morphological, and grammatical features to induce a set of semantic classes with
the goal of performing better named entity recognition. Pantel (2003) uses short contextual patterns to
inform a clustering approach to category induction.

3 Inducing semantic word classes

We consider a semantic class to be a set of words which share a semantic property. For example, the
semantic property “male” forms a semantic class which includes the words “man, bull, boy, boyfriend,
groom”. Under this definition, words can belong to many semantic classes. For example “man” could
belong to semantic classes for “man”, “adult”, and “human”. We adopt the “distributional hypothesis”
that the meaning of words can be inferred from their context. We follow existing approaches which use
syntactic dependency context (Lin and Pantel, 2001) for inducing semantic classes. n The basis of our
model for selectional preference agreement uses a set of semantic word classes induced using a Latent
Dirichlet Allocation model (Blei et al., 2003). The data for this model is structured differently than a
standard LDA, so that rather than inducing topic distributions for documents, we induce semantic class
distributions for words. We begin with a large corpus of documents and dependency parses (De Marneffe
and Manning, 2008) for all the documents. Every time a word occurs in the corpus we collect all of
the dependency edges which include the word. We then concatenate the label on the dependency edge
and the other word to form what we call a dependency context. For instance, the syntactic dependency

sadness
dobj←−− expressed would generate one dependency context for sadness: “←dobj expressed” and
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one dependency context for expressed: “→dobj sadness”. Figure 1 shows the most frequent dependency
contexts for the word sadness.

Freq. Context
1485 →det the
1233 ←dobj expressed
978 →amod great
857 →det a
757 →punct ”
601 →amod deep
532 →poss his
388 ←prep of sense
386 ←prep with is
342 →amod profound
318 ←conj and shock
300 ←dobj express
297 ←nsubj is
279 →poss their
259 →det the
248 ←dobj feel
212 ←dobj expressing
193 ←dobj felt
189 ←prep with tinged
184 →conj and anger
184 ←conj and anger
180 →det The
176 →det some
170 ←nsubj ’s
163 ←prep of lot

Figure 1: A compact representa-
tion of the pseudo-document as-
sociated with the word sadness.
The most frequent contexts are
shown.

We train our LDA model by forming a pseudo-document for each
unique word in the corpus consisting of all of the dependency contexts
for that word, with repetitions. Figure 1 shows a small part of the
pseudo-document formed for the word sadness. After forming such
pseudo-documents, the LDA can be trained in the usual way to infer the
parameters of the model.

More formally, the generative story for this LDA can be written as:

1. For each semantic class k, draw a distribution over dependency
contexts φk ∼ Dirichlet(β)

2. For each unique word in the corpus w, draw a distribution over
semantic classes θw ∼ Dirichlet(α)

3. For each dependency context k of word w in the corpus, draw a
semantic class zw,k ∼Multinomial(θw)

4. Draw a dependency context dw,k ∼Multinomial(zw,k)

The LDA model trained on the pseudo-documents formed from de-
pendency contexts will form two clusterings, a clustering of dependency
contexts and a clustering of words. We argue that the clustering of
words represent semantic classes. We evaluate this claim in Section 7.
As an example of dependency context clustering, a person semantic
class could be induced which would often be assigned to dependency
contexts such as “←nsubj said”, “→amod young”, “→amod famous”,
or “→amod teenage”.

The trained LDA model also assigns each pseudo-document a dis-
tribution over semantic classes (θw). Because the pseudo-documents
correspond to unique words from the corpus, we can assess the affinity
of each word to each semantic class and, in turn, compare two words
to each other. For example, the most frequent dependency contexts
for sadness include←DOBJ expressed,→AMOD great, and→AMOD

deep. Some other words sharing these contexts include hope, sorrow,
regret, and satisfaction. We would therefore expect them to be clustered
together by the LDA model. This allows us to compare two words based
on the similarity of their semantic class distributions (θw).

4 SemEval-2012 Relational Similarity Task

The dataset we use for evaluating the degrees of relational similarity was
developed as part of SemEval 2012 Task 2 - Measuring Degrees of Relational Similarity (Jurgens et al.,
2012). In the task, organizers focused on 79 categories of relations taken from Bejar et al. (1991), which
can be partitioned into the ten broader categories listed in Table 1. The task of obtaining word pairs that
match closely with each type of relation was crowd-sourced to Amazon Mechanical Turk in two phases.
In the first phase, participants were shown a description of the relation along with several prototypical
word pairs. Then, they were asked to provide additional word pairs belonging to the same relation. The
second phase focused on determining the similarity of each word pair to the relation. Participants were
shown a description of the relation, several prototypical word pairs, and a set of four word pairs collected
in Phase 1. They were then asked to choose both the word pair among those four which best represented
the relation, and the word pair which least represented the relation. Each word pair appeared in multiple
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Semantic class distribution
Word 44 17 13 47 24 32 36 41 3 45
sadness .71 .07 .04 .04 .02 0 0 0 0 0
happiness .73 .02 .01 0 0 0 0 0 0 0
sorrow .75 .02 .01 .06 0 0 0 0 0 0
terror .06 0 0 .26 0 0 0 0 0 .47
amusement .19 0 0 0 0 .54 0 0 0 0
agreement .01 .08 0 0 0 0 .03 0 .82 0
smile .04 .40 .09 0 .33 0 0 0 0 0
nod 0 .42 .03 0 .02 0 .11 0 0 0
laugh .01 .23 .31 0 .15 0 0 0 0 0
kiss .04 .22 .19 0 .09 0 .03 .12 0 0
intoxicate 0 0 .2 0 0 0 0 .55 0 0

Table 2: A portion of the semantic class distribution vectors for several words participating in word pairs
belonging to the REFERENCE:Expression relation.

Phase 2 questions, sometimes being chosen as the most representative, and other times being chosen as
the least representative. This setup is known as a MaxDiff (Louviere and Woodworth, 1991) problem and
is effective at deciding an absolute ranking among items without requiring participants to order all items.

Word Pair Similarity
laugh:happiness 50
nod:agreement 46
laugh:amusement 44
tears:sadness 44
crying:sadness 40
tears:sorrow 36
laughter:amusement 34
scream:terror 26
lie:dishonesty 16
laugh:hilarity 14
yawn:boredom 8
frown:discontent 6
frown:sadness -2
sigh:exhaustion -8
frown:anger -28
wink:friendliness -48
exhaustion:sigh -50
anger:slap -56
hilarity:laugh -58
discourse:relationship -60
friendliness:wink -68

Figure 2: Ranking of a sub-
set of the word pairs for the re-
lation REFERENCE:Expression
chosen by participants

Using the data collected from Amazon Mechanical Turk, the orga-
nizers were able to create a ranked list of word pairs for each relation
in the following manner. Each word pair was assigned a score equal to
the percentage of times it was chosen as the most representative minus
the percentage of times it was chosen as the least representative. The
word pairs were then ranked based on this score. An example ranking is
shown in Figure 2. The goal of the SemEval task was to most accurately
reproduce this ranking using automatic methods.

5 Measuring selectional preference agreement

In order to measure how well a word pair matches the selectional pref-
erences of a relation we must first model the selectional preferences for
each argument of each relation. This is done using the induced semantic
word classes described earlier.

We model the selectional preferences for an argument position of
a relation using a distribution over semantic classes. These distributions
are determined by first gathering all of the word pairs belonging to a
relation (as collected in Phase 1). For each word pairw1:w2, we retrieve
the semantic class distribution associated with each word (θw1 and θw2).
The distributions for all of the words appearing as a first argument are
then averaged to obtain a class distribution for the first argument, which
we call σ1. This is repeated to obtain a distribution for the second
argument as well to obtain σ2. We then repeat this procedure for all
relations to obtain selectional preferences for them. The assumption
we make about our dataset is that the average word pair which needs
to be ranked is representative of the arguments for that relation, or at
least, that the contributions of non-representative word pairs will not
overwhelm the contributions of those which are representative.

Measuring the agreement of a single word to the selectional preferences of a relation is then done
by comparing the semantic class distribution associated with the word (θw) to the average distribution
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computed for that argument position (σ1 or σ2) of the relation. We consider several possible vector
similarity metrics such as cosine similarity. Table 2 shows the most significant elements of the semantic
class distributions (θw) for several words participating in the REFERENCE:Expression relation. The top
half of Table 2 shows distributions for words participating in the second argument of a word pair, and the
bottom half shows words participating in the first argument of a word pair (except intoxicate). Table 2
illustrates that similar words have similar vectors in the induced semantic class space. The words sadness,
happiness, and sorrow are semantically similar. We have also included an outlier word intoxicate to
show that the words in the bottom of the figure were not similar simply because they were all verbs. The
distribution for intoxicate is zero for many of the classes that are significant for the other words confirming
that we are capturing semantics beyond just part of speech.

We model relational similarity (how closely a word pair belongs to a relation) using only the selectional
preferences of the relation. For a word pair w1:w2 we measure its relational similarity to relation r as:

sim(r, w1 : w2) =
s(θw1 , σr,1) + s(θw2 , σr,2)

2
(1)

where θw is the LDA-induced semantic class distribution for word w, σr,n is the selectional preference
distribution for the nth argument of relation r, and s is a similarity measure between vectors.

The measure in (1) compares each word pair’s semantic class distributions against the average for
all word pairs assigned to a relation. The similarities for all word pairs belonging to a relation are
computed and the pairs are then ranked. Next, this ranking is compared against the ranking produced
by annotators such as the ranking in Figure 2. Note that only the order in the ranking is considered, the
particular similarity values are not. We chose to average over all class distributions for an argument
position to capture a soft membership of each class to the selectional preferences. We evaluate several
vector similarity measures in the next section.

6 Evaluation of the relational similarity method

For training our LDA model we used a corpus consisting of the 8 million documents from English
Gigaword (LDC2009T13) (Parker and Consortium, 2009) and the 4 million documents from the 2011-
12-01 dump of Wikipedia1. The dependency parses were obtained by using the Stanford dependency
parser2 (De Marneffe and Manning, 2008). The textual content from the Wikipedia XML files was
extracted using WP2TXT (http://wp2txt.rubyforge.org/). Due to the large size of this corpus we used a
parallel implementation of LDA known as PLDA (Liu et al., 2011) across eight quad-core machines. The
parameters for the LDA were the suggested defaults of α = 0.1 and β = 0.01. We arbitrarily chose 50
topics, but this is clearly a parameter that requires further investigation. Additionally, our input to the
LDA only consisted of 3,357 pseudo-documents, corresponding to all of the unique words in all of the
word pairs that we were interested in ranking. While this contains many commonly used words in English,
many other words are not covered and the data would have to be expanded for use in other tasks.

We used the official testing set from the SemEval 2012 Task 2 (Jurgens et al., 2012), which consisted of
69 relations (another ten were released for training but we do not make use of them). The relations had an
average of 40 word pairs, ranging from 25 to 45. We evaluate the performance of the relational similarity
model using a Spearman correlation score between the model’s word pair ranking and the ranking produced
by the annotation effort. This is the same evaluation metric used during the official SemEval 2012 Task
2 (Jurgens et al., 2012). Table 3 shows the results of our approach under several common similarity
measures. We expected the measures designed for probability distributions (Jensen Shannon/Hellinger)
to perform best, however our evaluation showed that vector space metrics (cosine/Tanimoto) performed
slightly better. During the official evaluation, the best performing system achieved a correlation of 0.229.
The model presented in this paper achieved a significantly higher correlation of 0.334 using the Tanimoto

1http://dumps.wikimedia.org/
2http://nlp.stanford.edu/software/lex-parser.shtml
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Model Correlation

Best SemEval 2012 system 0.229
Jensen Shannon divergence 0.324
Hellinger distance 0.326
Cosine similarity 0.332
Tanimoto coefficient 0.334
Generalized Dice coefficient 0.307

Table 3: Spearman’s correlation scores between rankings produced by our approach over different
similarity metrics and the gold rankings made available for SemEval 2012 Task 2

metric, which is similar to cosine similarity defined as:

Tanimoto(a, b) =
a · b

||a||2 + ||b||2 − a · b
(2)

The effectiveness of the simple model presented in this paper shows two things: (1) an LDA model
can be used effectively to induce semantic classes from English text using dependency parse contexts, and
(2) that those semantic classes can be used to model selectional preferences in semantic relations. These
results also show the high importance of selectional preference agreement when measuring the degree to
which a pair of words belongs to a semantic relation. This model outperforms reported results, without
taking into consideration the actual relation between the two arguments of a word pair. Future work will
involve combining the selectional preferences approach with a approach that also models the dependence
between the two arguments.

7 Analysis of the induced semantic classes

Class 44 Class 17 Class 13 Class 24
access day take white
progress time come red
confidence man mean black
independence game done light
ability victory look blue
freedom question understand green
relationship number love hair
responsibility deal call suit
experience member give rain
growth team ask color
future case live yellow
strength state agree breeze
authority sign concerned dress
love person remember flag
security record read shirt
life attack hear smoke

Table 5: The top words (descending) occurring with
with semantic classes 44, 17, 13, and 24.

We first present a manual inspection of the seman-
tic class space that was induced by the LDA, fol-
lowed by a more analytical evaluation. Table 4
illustrates the top dependency contexts associated
with four semantic classes that were prominent
for relation REFERENCE:Expression in Table 2. Ta-
ble 5 shows the top words associated with the same
four semantic classes. All of the top 16 words
for class 44 are categorized as abstract entities in
WordNet. Many of them can be further categorized
as states (independence, love, freedom, confidence,
security). We can see from the top dependency
contexts of class 44 listed in Table 4 the types of
contexts which indicate a state: ←prep of lack,
←prep of level,←prep of sense. From Table 2 we
can see that class 44 is the predominant class for
several emotional states participating in the first ar-
gument of a REFERENCE:Expression relation, so it
is reassuring to see that this class consists of states.

The words in class 17 seem less related, but
have some broad similarities. For instance, they
appear to be countable nouns expressed in the singular form. When we examine the dependency contexts
for class 17 we can understand why this is. The contexts include→det another,→amod first,→det every,
→amod only, etc. These determiners and adjectives cannot modify mass nouns and the set of top words
for the class do appear to fall in the category of countable nouns.
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Class 44 Class 17 Class 13 Class 24
←prep of lack →det another →nsubj I →amod white
←nn process →amod first ←ccomp said →dobj wearing
→amod economic →amod big →neg n’t →amod black
←nn talks ←prep of kind →punct ” ←prep of pair
→amod political ←prep of part →neg not →amod red
←prep of kind ←dobj made →nsubj they →conj and white
←prep of level →det every →nsubj we →amod green
→amod national →amod only →nsubj you →amod blue
→amod great →det any →nsubj We ←conj and red
←dobj expressed →amod single →aux do →amod calm
←prep of sense →amod second →nsubj he ←amod light
→amod public →amod major →aux to ←dobj wear
←dobj claimed →det each →complm that ←conj and black
←nn plan ←nsubj came →aux did →amod dark
←nn agreement →amod biggest →aux does →amod heavy
←dobj made →amod great →aux would ←dobj wore
←prep of loss →predet such →nsubj They ←appos C.
→amod social ←dobj make →nsubj who ←amod chips
←dobj give ←nsubj ’s →nsubj people ←prep in dressed
→amod full →advmod just →nsubj You →punct
←prep of moment ←dobj has →dobj it ←amod card

Table 4: The top dependency contexts for semantic classes 44, 17, 13, and 24. Some contexts which are
common across many semantic classes were omitted.

Semantic class 13 consists largely of actions taken by humans. The dependency contexts reveal how
this cluster came about: →nsubj I,→neg n’t,→nsubj they,→aux would, etc. These dependencies apply
to verbs, and many of them specifically contain pronouns (you, I) reserved primarily for humans. From
Table 2 class 13 was largest for the “expression” words smile, nod, laugh, kiss which obviously are actions
usually preformed by humans.

Semantic class 24 appears to contain words which are often described using colors or shades (e.g.,
dark, light). Examples for colors would include white flag, white suit, black smoke, while examples for
shades would include dark hair and dark shirt, but also colors themselves as in dark green and light blue.

Overall, it appears that using the LDA model on dependency contexts performed well at clustering
words into semantic classes, picking up on common-place but subtle linguistic phenomena such as
countable nouns, and whether a verb tends to have a person as a subject.

We now present a more quantitative assessment of the induced semantic class space. We follow the
evaluation proposed by Widdows and Dorow (2002). They selected the ten categories of objects shown in
the first column of Table 6, along with a prototypical member word for each category. Using the prototype
word as a seed, its twenty nearest neighbors are determined. The most appropriate distance metric for
our approach is to use the Tanimoto coefficient between the semantic classes distributions of two words.
The lists of nearest neighbors produced using our induced class distributions are illustrated in Table 6.
Neighbors which are not subsumed by the WordNet synset represented in the first column have been
italicized. Our method achieves a precision of only 59.4% on this evaluation. The results are considerably
below previous approaches which have achieved 82% (Widdows and Dorow, 2002) and 90.5% (Davidov
and Rappoport, 2006), however our method has several disadvantages in this comparison. Firstly, we have
only generated semantic class vectors for the 3,357 words which occurred in the word pairs in the relation
dataset which limits our recall. This particularly affects the retrieval of “easy” but rare neighbors of a
word such as fortepiano from the seed piano. This also caused us to choose different seed words for the
categories crimes, body parts, and academic subjects because the seeds used in prior literature did not
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Class Seed Word Neighbors

crimes theft abuse destruction rape infringement crimes violence crime
explosion famine eruption scandal discrimination accident
assault crash damage punishment controversy snowstorms
slavery

places park mall zoo hall marina stadium castle mill airport aquarium
cafeteria hotel factory warehouse gym firehouse restroom
shrine house casino garage

tools screwdriver knife trowel mattress spatula broom stool scalpel flashlight
stethoscope pillow microphone leash pouch beaker lid faucet
pane fingertip glove scepter

vehicle
conveyance

train ship link craft bus truck boat van airplane route highway
wagon mountain vessel vehicle car engine kayak sedan rocket

musical
instruments

piano violin clarinet cello guitar flute rock bass fairy jazz blues
television art computer music keyboard dance soap opera
cinema Throughout

clothes shirt hat sweater frock blouse earring wig yarmulke tiara coat
scarf necklace bracelet skirt breeze eyeshadow burka pants
sandal ballpoint

body parts neck wrist ear finger nose waist mouth spine toe glove coffin foot
eye couch hands fingers door During penis legs lawn

academic
subjects

philosophy geography logic chemistry religion composition psychology
anatomy algebra architecture voice vision geometry geneal-
ogy image discourse art memory signature history conception

foodstuffs cake egg salad apple cane pie soup blender carrot leaf omelette
cigarette pizza pot polymer dish beer oven glass dessert

Table 6: The nearest neighbors for nine seed words. Italics mark words which do not match the class of
the seed word.
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appear in the word pair corpus. Secondly, the previous approaches utilizing this evaluation metric have
limited their class induction space to only nouns. Therefore, the candidate neighbors under the previous
approaches are restricted to nouns, whereas our approach conflated words with the same surface form,
but different parts of speech. The effects of this are quite clear for the tools category. Certain tool words
which are also used as verbs are absent from our top neighbors such as rake, plow, and shovel, however
they are top neighbors of each other. Both of these limitations can be alleviated, but are not addressed in
this paper. We believe the results from Table 6 show that our semantic space based on an LDA model and
Tanimoto coefficient do correspond to a semantic class space. While alternative semantic class induction
techniques may improve our relational similarity results, this approach does show the merit in modeling
the relational selectional preferences by semantic class membership of the relation arguments.

8 Conclusion

We showed that a simple model based on LDA using dependency parse contexts can be used effectively to
model selectional preferences of semantic relations. Further, we can achieve state of the art results for
measuring relational similarity by using only the agreement between a word pair and the expected semantic
classes for the relation’s arguments. While there remains more work to be done towards incorporating
additional types of information beyond just argument semantic classes, our current results are promising.
Future improvements to the method would include the use of word senses (or simply part of speech)
information to form more semantically coherent classes, and incorporating information about relations
into the semantic class induction process.
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Abstract

In this paper, we present an approach for recognizing spatial containment relations that hold
between event mentions. Event mentions refer to real-world events that have spatio-temporal prop-
erties. While the temporal aspect of event relations has been well-studied, the spatial aspect has
received relatively little attention. The difficulty in this task is the highly implicit nature of event
locations in discourse. We present a supervised method that is designed to capture both explicit and
implicit spatial relation information. Our approach outperforms the only known previous method by
a 14 point increase in F1-measure.

1 Introduction
Understanding the interaction of events expressed in natural language requires the ability to recog-
nize spatio-temporal relations between event mentions. While the automatic recognition of temporal
relations has received significant attention in the literature (Pustejovsky et al. 2003, Verhagen et al.
2009, UzZaman et al. 2012), the automatic recognition of spatial relations has received comparatively
little attention. We believe this is partly due to the difficulty of the task as compared to temporal event
relations. The difficulty stems from the fact that (i) spatial relations are multi-dimensional and there-
fore have a more complex representation, (ii) narrative structure is largely chronological in nature,
and the events are often presented by their relative temporal order instead of their relative spatial
arrangement, and (iii) by extension, spatial event relations are typically implicit in nature, relying on
an intuitive understanding of the semantic properties of events.

Spatial relations between events that are explicitly expressed are typically indicated through syn-
tactic relationships, such as “The [presentation] at the [conference] was excellent”. Here, the prepo-
sition at indicates the presentation event is spatially contained within the conference event.

Far more common, however, are implicitly expressed spatial event relations. For example, in the
sentence “The [bombing] victim [died] immediately”, it is clear that the died event is spatially related
to the bombing event. Specifically, we would say that the bombing event spatially contains the died
event since the assumed bounds of the bombing is larger.

An automatic method for recognizing spatial relations between events would be useful for many
extraction and reasoning tasks. For instance, mapping the location of entities mentioned in discourse
has generally been accomplished through semantic role labeling, which links a predicate with its
local semantic arguments. However, locations are relatively rare in discourse as compared to verbal
and nominal predicates. Usually the location of an entity is not directly stated in the entity’s local
argument structure. Instead, this information is implicit as the relevant information is located outside
a limited syntactic/semantic scope. Tying an entity to a location mentioned elsewhere in the discourse
requires either co-reference (either entity or event co-reference), or an understanding of the spatial
interactions present within the discourse structure so that relevant spatial inferences may be made.



The goal of this paper is to enable this type of spatial reasoning by connecting events through spatial
containment relations.

These spatial relations allow for complex reasoning beyond simply placing an entity on a map.
Consider the following sentence taken from a surgeon’s operative note:

A longitudinal [incision] through the umbilicus was [carried] down through to the fascia.

Here the nominalized incision event is spatially tied to the carried event. Understanding the spatial
relation between these events allows us to recognize that a three-dimensional path exists from the
point of the incision down to the fascia, a layer of tissue between the skin and muscles. This deep
spatial understanding of text motivates new forms of information extraction, machine reading, and
question answering.

In this paper, we present a mostly supervised approach to the detection of spatial event relations.
Due to the presense of both explicitly and implicitly expressed relations, we rely on two different
classes of features. The first class, which targets explicitly expressed relations, utilizes typical in-
formation extraction features, such as lexical and syntactic context. The second class, which targets
implicitly expressed relations, focuses on identifying semantically related events that are more likely
to be spatially related (such as presentation and conference, or bombing and die). This allows us to
leverage unlabeled data to derive semantic similarity measures.

The remainder of this paper is organized as follows. Section 2 outlines related work in generalized
event relations, generalized spatial relations, as well as current work in spatial event relations. Section
3 describes the data we use to train and evaluate our models. Section 4 details our supervised method,
including our classifier, features, and feature selection technique. Section 5 contains the results of our
experiments. Section 6 discusses the limitations of our approach and proposes future work. Finally,
Section 7 concludes by summarizing our work.

2 Related Work
Event relations in general have received significant attention in the literature, but largely in the form
of temporal event relations. The TimeML annotation standard (Pustejovsky et al., 2003) for temporal
relations as well as the TimeBank corpus (Pustejovsky et al., 2003) have inspired a significant number
of automatic systems for this task (Verhagen et al. 2009, Verhagen et al. 2010, UzZaman et al. 2012,
Sun et al. 2013). Beyond temporal relations, work in other types of event relations has received less
attention. Prominent among the other event relation types is causation (Bethard and Martin 2008,
Beamer and Girju 2009, Rink et al. 2010, Do et al. 2011) and co-reference (Chen et al. 2009, Bejan
and Harabagiu 2010). Beyond event relations, Chambers and Jurafsky (2008, 2009) and Bejan (2008)
both create narrative schemas based on commonly co-occurring event structures, which is a useful
tool for determining a prior likelihood of two or more events being related.

Spatial relations between non-events has likewise received much attention. Several such works
are spatial annotation schemas. SpatialML (Mani et al., 2008) focuses on recognizing geographic
regions and expressions. For example, the following text:

a town some 50 miles south of Salzburg in the central Austrian Alps

SpatialML would recognize town, Salzburg, Austrian, and Alps as geographic locations, normalize
Salzburg and Austrian to their respective geo-political entities, recognize the direction and distance
relation between town and Salzburg, and the containment relations between Salzburg and Austrian
and Alps and Austrian. SpatialML has no handling, however, for spatial event relations. Likewise,
SpRL (Kordjamshidi et al., 2010) represents spatial relations beyond geographic relations, but would
have difficulty representing event relations because SpRL requires an indicator (trigger, e.g., in, on,
at, to the left of) that is rarely present in spatial event mentions. SpRL does, however, have an
annotated corpus (Kordjamshidi et al., 2012) and several automatic approaches have been proposed
(Kordjamshidi et al. 2011, Roberts and Harabagiu 2012). STML (Pustejovsky and Moszkowicz,
2008) focuses on the annotation of spatial relations for events, specifically motion events. But their
scheme connects a motion event with its motion-specific arguments, and does not include event-event
spatial relations.

Despite significant work in both event relations and spatial relations, work specific to spatial
relations between events has been quite sparse. ISO-Space (Pustejovsky et al. 2011a, Pustejovsky
et al. 2011b, Lee et al. 2011) is an on-going effort to develop a detailed annotation system for spatial



information (beyond just spatial language). However, no publicly available corpus is known to exist.1

Prior to this work, we have developed a corpus (Roberts et al., 2012) of spatial event relations, which
is discussed in detail in the next section. While its spatial representation is not as rich as ISO-Space,
it contains similar relation types and is designed to represent the highly implicit nature of spatial
event relations.

3 Data
In order to conceptualize spatial relations between event mentions, the event itself must be spatially
conceptualized. In Roberts et al. (2012), we suggest this can be done by approximating the spatial
bounds of an event. For instance, an election event might assume the spatial bounds of the geo-
political entity conducting the election; a sporting event may be bounded by the field or stadium in
which it is played; and a battle event may be bounded by the immediate vicinity of the various battle
participants. A spatial relation between events, then, can be determined by comparing the spatial
bounds of two events, such as whether they are equal, overlap, or one event subsumes the other.

This corpus consists of 162 newswire documents, a subset of the SpatialML corpus (Mani et al.,
2008). The corpus contains 5,029 events and 1,695 spatial relations. Annotators marked each event
as “spatial” or not based on whether they had intuitive spatial bounds (e.g., “the gas [attack]” would
be spatial while “the stock price [increase]” would not be spatial as it is not clear what the spatial
bounds of increase might be). In order for a spatial relation to hold between two events, both events
must be marked as spatial. For the purposes of this paper, we only evaluate on event pairs in which
both events are manually marked as spatial. The data contains six different spatial relation types:

1. SAME: Two events E1 and E2 have indistinguishable spatial bounds.

2. CONTAINS: E1’s spatial bounds contain E2’s spatial bounds.

3. R CONTAINS: E2’s spatial bounds contain E1’s spatial bounds.

4. OVERLAPS: E1 and E2 share partial spatial bounds but neither is a sub-set of the other.

5. NEAR: E1 and E2 do not share spatial bounds but they are within close proximity of each other.

6. DIFFERENT: E1 and E2 have distinguishably different spatial bounds.

These relation types are based on RCC-8 (Randell et al., 1992). Four of the part-of relations are
collapsed into CONTAINS and R CONTAINS. Also, NEAR and DIFFERENT replace the disconnected
and externally connected relations, a design decision similar to SpatialML. An example sentence
from this corpus exemplifies the CONTAINS relation:

In October of 1985, four hijackers under his command [took] over the Italian cruise ship
Achille Lauro and [killed] a wheelchair-bound American tourist, Leo Klinghoffer.

Here, the took event is determined to exhibit a CONTAINS relation with the killed event, as took’s
spatial bounds are determined to be the entire cruise ship, while the spatial bounds of killed are the
immediate vicinity of the victim.

In addition to annotating spatial events and spatial relations between events, the corpus contains
annotated participants and locations of the events. In this way we can graphically represent the spatial
relationships between various entities in the text, such as in Figure 1. This graph allows us to make
the inference that Leo Klinghoffer was located on the Achille Lauro when he was killed. Without
such a relation, we would have to make the (un-principled) assumption that the closest location (in
this case a vehicle) is the location of the killed event.

4 Method
We utilize a mostly supervised, two-stage machine learning approach for detecting spatial event
relations. A binary support vector machine (SVM) classifier is used for recognizing spatial relations
and a multi-class SVM is used for determining the relation type. Previous SVM-based approaches to
relation extraction have utilized advanced kernels (e.g., Nguyen et al. (2009)). In this work, however,

1Gaizauskas et al. (2012) have annotated a small corpus of facility design reports with a version of ISO-Space, but it is
neither publicly available nor large enough to utilize as training data in a machine learning approach. Furthermore, the majority
of its spatial relations (perhaps all) are not between events.
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In October of 1985, four hijackers under his command took over the Italian cruise ship 
Achille Lauro and killed a wheelchair-bound American tourist, Leo Klinghoffer.

Figure 1: Example spatial event relation from our corpus.

we focus on the utility of different feature types and perform our experiments with a linear kernel
using LibLinear (Fan et al., 2008). We evaluate on 3-sentence and 1-sentence windows for potentially
related events (annotators were limited to relations in a 3-sentence window). Since the vast majority
of event mentions are not spatially related, we adjust the negative weight to 0.05 (leaving the positive
weight at 1.0). For the multi-class relation type classifier, SAME and CONTAINS make up the vast
majority of relations and therefore get a weight of 0.1. These weights were tuned using a different
cross-validation split than that used on our experiments below. Below we detail the features used
by the two classifiers. For both classifiers, a large number of partially overlapping features were
developed, most of which are described below. We utilize a greedy forward/backward technique
known as floating forward feature selection (Pudil et al., 1994) to optimize the best sub-set of features.

4.1 Explicit Relation Features
These features are designed to recognize explicit statements of spatial relatedness based on the con-
text of the relation. Sometimes explicit relations are expressed with spatial prepositions such as in,
on, or at. In general, however, we consider explicit relations to be those in which the local context
indicates a spatial relation is highly likely. For instance:

After today’s air [strikes], 13 Iraqi soldiers [abandoned] their posts and [surrendered] to
Kurdish fighters.

Here, abandoned and surrendered share the same subject and are syntactically connected through
the conjunction and. When an actor performs two actions at connected or overlapping time intervals,
the actions are necessarily spatially related. While an and dependency doesn’t necessarily guarantee
temporal connectivity, it is highly suggestive and therefore acts as a good indicator.

We utilize the following classes of features:

• Words between arguments, which includes features that are ignored entirely when the argu-
ments are separated by a certain number of tokens or sentences. These bag-of-word features
provide useful lexical context that is not always available from a dependency parse (such as
modifiers).

• Token-level and sentence-level distance. Event mentions that are lexically closer are more
likely to be spatially related, and mentions in different sentences are much less likely to be
spatially related.

• Dependency paths. We use the Stanford Dependency Parser (de Marneffe et al., 2006) with the
collapsed representation so that preposition nodes (prep) become edges (e.g., prep at). This
also results in more semantic conjunction edges (conj and instead of simply conj).

• TimeML relations from TARSQI (Verhagen et al., 2005), including TLinks, SLinks, and ALinks.
TLinks are typical temporal links, such as one event occurring before or after another event.
SLinks are a subordinate links, such as in “John [promised] to [buy] wine for Mary”. ALinks
are aspectual links, such as “John [stopped] [talking]”.

• Event participants/locations from the manually annotated data. If necessary these could be
automatically annotated by a semantic role labeler.



Top 5 Events via TLink PMI
bomb PMI pass PMI drive PMI

strafe 0.298 touchdown 0.288 intoxicate 0.276
nuke 0.281 defense 0.277 floorboarding 0.271
landmark 0.273 exam 0.268 park 0.239
shell 0.242 interception 0.249 impair 0.231
machine-gun 0.242 amendment 0.233 bike 0.208

Top 5 Events via Gigaword Sentence PMI
bomb PMI pass PMI drive PMI

strafe 0.295 touchdown 0.354 homer 0.289
plot 0.292 veto 0.237 intoxicate 0.260
nuke 0.291 vote 0.230 floorboarding 0.257
landmark 0.255 squash 0.212 reformat 0.256
scan 0.249 test 0.209 touchdown 0.234

Table 1: Highly associated events for bomb, pass, and drive, as acquired from unlabeled data.

4.2 Implicit Relation Features
These features are designed to recognize spatial relatedness between events based entirely on their
semantic properties (i.e., without regard to context). Many times our intuitive understanding of event
structures enables the omission of linguistic context clues of spatial relations. For instance:

During a live broadcast, Geraldo [drew] a map in the sand [showing] the location of the
unit in relation to Baghdad.

Here, we understand the purpose of drew is manifested in showing, and further that in such a rela-
tionship the two events are connected by a common object (in general a drawing, but specifically
a map in this example) that forms an integral part of their spatial bounds. This kind of information
requires a source of external knowledge, potentially from (i) a manually constructed knowledge base,
(ii) knowledge built from training data, or (iii) knowledge built from unlabeled data. While manual
knowledge sources such as ConceptNet (Liu and Singh, 2004) or FreeBase (Bollacker et al., 2008)
could be utilized, they are quite sparse on event information (rather focusing on entity information).
Instead, we focus on learning which individual events are likely to participate in a spatial relation
(using the training data), which pairs of events are likely to participate in a spatial relation (also from
the training data), and which pairs of events are likely to be related (from unlabeled data).

We utilize the following classes of features:

• Individual arguments (separate features for first and second arguments). Includes features
based on event mention’s surface form, caseless form, lemmatized form, part-of-speech from
the Stanford Parser (Klein and Manning, 2003), General Inquirer categories (Stone et al.,
1966), TimeML event classes from TARSQI (Verhagen et al., 2005), WordNet (Fellbaum,
1998) synsets and hypernyms, and VerbNet (Kipper et al., 1998) classes.

• Concatenation of the above individual argument features for both arguments (e.g., “draw::show”
for lemmatized form, “25.2::29.5-2” for VerbNet classes).

• Intersection of feature values for individual argument features.

• Statistical association of events based on various resources:

– Gigaword (Parker et al., 2009) sentence co-occurrence
– TimeML relations on Gigaword
– Wikipedia co-occurrence

The statistical association features discussed above are designed to elicit spatial information from
data without spatial labels. To accomplish this, we start by extending the chronological narrative
assumption to space. That is, the narrative not only expresses a directional path through time, but a
path through space as well. Thus, events that are closer to each other in the narrative are more likely
to be spatially related. The resources mentioned above are thus drawn from different representations
of potential narratives. First, sentence co-occurrence in Gigaword is a means of discretizing the
narrative into small, tightly related sets of events. Second, TimeML relations are designed to extract



the narrative in a temporal structure. These relations have the advantage of including related cross-
sentence events while excluding un-related within-sentence events. While this is more principled,
TimeML is a difficult task, and any automatic technique would contain both noise and bias. Third,
Wikipedia’s article structure is more inclined to articles whose events take place in a single location.
Thus, we can relax our local constraint to allow for document-wide context. This not only reduces
sparsity, but is more likely to capture transitive spatial relations.

While all of these resources should be capable of providing related events, we require a method to
increase the likelihood of the event associations being spatial. For this purpose, we use the statistical
association metric known as pointwise mutual information (PMI):

PMI(x, y) = log
p(x|y)
p(y)

Where co-occurrences with less than 10 instances are discarded. PMI is a simple technique that has
been shown to be effective at natural language tasks, most appropriately narrative chain construction
(Chambers and Jurafsky, 2008). Due to the large amount of data, we require a highly efficient
technique, such as PMI, that only requires a limited view of the data.2

The result of these PMI calculations for three events (bomb, pass, and drive) are shown in Table 1.
As can be seen, PMI across this data is able to capture spatially related events: bomb is spatially
related to sub-types of bombing events such nuke and shell and other war activities such as strafe
and machine-gun. PMI captures spatially related events for multiple senses of pass and drive. For
instance, touchdown, defense, and interception are spatially related events to the sporting sense of
pass, while vote, veto and amendment are spatially related events to the political sense of pass (as
in, “pass a bill into law”). Further, as can be seen in Table 1, while the different data sources assign
different weights, there is some degree of overlap between them.

Given the different data sources, and the myriad of potential features that could be written to rep-
resent this data (in addition to all the other feature types), we utilize the automated feature selection
technique discussed above. This enables us to optimize how we present these partially overlapping
features to the classifier, ultimately resulting in increased performance. We next discuss the actual
features chosen by this technique.

4.3 Selected Features
The features chosen by the feature selector for relation detection are shown in Table 2. The feature
selector chose four explicit relation features and eight implicit relation features. The chosen implicit
relation features include the first feature chosen and five of the first six features. The features chosen
by the feature selector for relation type classification are shown in Table 3. Here, the feature selec-
tor chose only two features, both of which are implicit features, suggesting the context is of little
significance for determining specifically how two event mentions may be related. The next section
evaluates these two classifiers on held-out data.

5 Experiments
We experiment under two different settings: (1) intra-sentence relations only, and (2) intra-sentence
relations up to a 3-sentence window, the maximum relation length for the data. We evaluate both
relation recognition (whether two event mentions have a spatial relation between them) and relation
type classification (given a related pair of mentions, which is the proper relation type). These are
both evaluated on the data described in Section 3. In Roberts et al. (2012), we present a baseline
method for both spatial relation recognition and spatial relation type classification based on the event
mention words, the words between the mentions, and the mention hypernyms. We consider this our
baseline for the task. The results for spatial relation recognition are shown in Table 4, and the results
for spatial relation classification are shown in Table 5.

Our method easily outperforms the baseline for spatial relation recognition with a 30% increase
in F1-measure. The overall score is still quite low, however, owing to the difficulty of the task. This
is discussed more in the next section. Spatial relation type classification outperforms the baseline,

2For instance, our same sentence data has 837 million event pairs (14 million unique), while our TLink data has 360 million
event pairs (12 million unique).



# Type Feature Description

1
a

I
Concatenated event mention lemmas. Argument order is ignored by
representing lemmas in orthographic order. E.g., kill::take

2 E Dependency path between the event mentions. E.g., ↓conj and

3 I

TLink co-occurrence from Gigaword, adjusted by point-wise mutual
information (PMI). Specifically, we use a symmetric PMI so the feature is
mention-order independent. This is done by taking the minimum of
PMI(E1, E2) and PMI(E2, E1). (real-valued)

4 I
Concatenated event mentions in their caseless form. Argument order is
preserved. E.g., took::killed

5 I Co-occurrence from Wikipedia, adjusted using PMI. (real-valued)

6 I
Concatenated event mention lemmas. Argument order is preserved unlike
Feature 1. E.g., take::kill

7 E

Whether the two event mentions have the same location. This feature uses
the Stanford co-reference resolution system (Raghunathan et al., 2010) to
expand locations so that two events have the same location if their respective
locations belong to the same co-reference chain. (boolean-valued)

8 E Whether the two event mentions have the same participant. (boolean-valued)

9 E
Token distance between the event mentions. Reduced to scalar between
0 and 1 by computing 1− (|t1 − t2|+ 1)−1. (real-valued)

10 I

Intersection of event mention categories from the General Inquirer. E.g.,
kill’s categories are: ACTIVE, DAV, H4LVD, HOSTILE, NEGATIV, NGTV,
NOUN, PFREQ, SOCREL, STRONG, SUPV, and TRNLOSS. take’s
categories are: ACTIVE, AFFIL, BEGIN, DAV, FETCH, H4, HANDELS,
IAV, MODIF, NEED, POWER, SOCREL, STRONG, SUPV, TRY, VARY, and
VIRTUE. The intersection is thus ACTIVE (i.e., active orientation), DAV
(descriptive action verb), SOCREL (socially defined inter-personal process),
STRONG (strength), and SUPV (support verb).

11 I Intersection of event mention VerbNet classes. E.g., ∅

12 I
Concatenated event mention surface form. Argument order is ignored.
E.g., killed::took

Table 2: Spatial event relation recognition features, shown in the order chosen by the feature
selector. Type ‘E’ refers to the explicit features (Section 4.1), Type ‘I’ refers to the implicit
features (Section 4.2). Feature values taken from example in Figure 1.

# Type Feature Description

1 I Whether the ALink co-occurrence PMI (from Gigaword) is greater than 0
(i.e., is the aspectual link positively correlated?). This does not use a
symmetric PMI because the relation type order matters. (boolean-valued)

2 I Co-occurrence from Gigaword sentences, adjusted using PMI. (real-valued)

Table 3: Spatial event relation type features.
aThis was not technically the first feature chosen. Instead, the length of the dependency path was the first

feature, but this was pruned after Feature 8 was added to the feature set.



1-sentence 3-sentence
Method P R F1 P R F1

Baseline 35.1 41.3 37.9 29.1 35.5 32.0
Our Method 44.7 69.2 54.3 37.2 60.4 46.0

Table 4: Spatial event relation recognition experiments on our corpus.

1-sentence 3-sentence
Method % %

Baseline 59.3 58.3
Our Method 60.1 59.3

Table 5: Spatial event relation type classification experiments on our corpus.

but only slightly. Here, the issue is largely a matter of data imbalance: the SAME relation is favored
by the classifier in almost all cases.

Reducing the context to a single-sentence window improves the relation recognition score by
a further 8.3 points. While this would limit the reasoning power of any downstream system, it is
useful to know that performance gains are possible by focusing on an easier sub-set of the data. This
improvement in relation recognition does not apply to relation type classification, however. In the
next section we place our results in greater context and analyze some typical errors.

6 Discussion
The performance gains seen in the previous section are encouraging: they validate our assumption
that spatial information can be obtained from large amounts of unlabeled data in an efficient manner.
The overall F1-measure, though, still seems quite low compared to other natural language tasks such
as named entity recognition (NER) and semantic role labeling (SRL). However, those tasks are lim-
ited to explicit context, such as contiguous tokens for NER and parse nodes within the syntactic scope
for SRL. These tasks also utilize more predictable features, such as surface-level casing features for
NER and predictable argument structures for SRL (e.g., the syntactic subject for an active verb is
usually the ARG0). Proper comparison requires evaluating our results alongside other implicit tasks.
One such work involves implicit SRL. Gerber and Chai (2010) perform nominal SRL and achieve an
overall F1-measure of 42.3. While the tasks are not directly comparable in terms of difficulty, this
does suggest that implicit tasks require far more advanced methods to achieve superior performance
and that downstream systems will likely need to be highly tolerant to noise. To address this, we dis-
cuss future work below, analyzing the types of errors that our system makes to give context to these
ideas.

As might be guessed, rare event mentions with long dependency paths are highly likely to result
in false negatives, such as the relation between elected and disillusionment here:

Tehran had been governed by reformists since 1989, but a conservative city council was
[elected] in the February 28 municipal polls in a result attributed to a meager turnout amid
growing public [disillusionment] with electoral politics.

Here the elected and disillusionment events are judged to cover all of Tehran. The dependency
path for this relation has five edges, including the rare dependency relation prep amid. Further, the
disillusionment event is fairly rare. Such long dependency relations with rare arguments is unlikely
to be recognized by a simple machine learning classifier. Instead, this suggests an approach where
either intermediate events are able to transitively suggest spatial relations, or the dependency parse is
relaxed in certain cases to allow for longer-range relations.

As is common in semantic tasks, word sense presents an issue, resulting in a false negative:

It was believed Naotia was a [practicing] sorcerer and through his black magic he had [cast]
evil spells on villagers, prompting a group within the village to eliminate them.

Since our corpus-based method uses a lemmatized form only, when related but rare senses are used,
such as the witchcraft sense of cast, PMI is unable to attribute the proper association between the
two events.



In terms of false positives, our implicit features can result in errors when very similar events are
clearly different based on their context:

The British leader [travelled] to the United States before also [visiting] Japan, South Korea,
China on a whistle-stop tour.

Here, the spatial bounds of travelled is interpreted as being the United States and the flight from
Britain, while the visiting event is interpreted as being several Asian countries. While one might
argue these two trips are spatially related since one is a continuation of the other, the annotator in this
case chose to use neither the NEAR or OVERLAPS relations. This highlights another issue with such
implicit tasks: the annotations rely heavily on the annotator’s intuition. Not unexpectedly, the corpus
has fairly low inter-annotator agreement (Roberts et al., 2012).

One final error highlights the difference between events that are related by a narrative, and events
that are spatially related:

Police have [arrested] four people in connection with the [killings].

This false positive resulted from the high degree of association between arrested and killings, but
arrests are rarely made at the scene of the crime. One potential solution to this is to automatically ex-
tract event narrative structures, then check the locations of the events on that structure for unexpected
location changes. This would be quite challenging: automatic narrative structures proposed thus far
are quite simplistic, and most events within a narrative structure will not have an explicit location, so
a very robust model of structure would be required.

Finally, despite the accuracy score being higher than the F1-measure for relation recognition,
spatial relation type classification may be the more difficult task. Almost all errors were the result
of misclassifying a relation as SAME due to the class imbalance. While the classifier weights may
be tuned to improve F1-measure for recognition, this rarely improves a multi-class task significantly.
Our main direction for future work is to actually classify the size of events. For example, we would
like to recognize that an election has larger bounds than a protest. This would allow our classifier to
recognize when two events are very different in size, and if so which is larger. Ideally, by constricting
the set of classes for a containment relation using the sizes of the arguments, this would allow other
semantic features to contribute to relation type classification.

7 Conclusion
We have presented an approach for recognizing spatial containment relations between event men-
tions. Using a corpus of event mentions from newswire texts, we have developed a supervised clas-
sifiers for (1) recognizing the presense of a spatial relation between two event mentions, and (2)
classifying spatially related event pairs into one of five spatial containment relations. Our method
combines features that are designed to extract explicit information from the relation context, as well
as implicit information about the likelihood of two events being spatially related. We have evaluated
our method and shown substantial improvements over the pre-existing baseline, achieving an F1 of
46.0 on relation recognition and an accuracy of 59.3% on relation type classification. These gains,
though, are largely limited to the task of recognizing whether a spatial relation exists. Finally, we
have performed an error analysis to determine paths of future work on this challenging task.
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Abstract

This paper provides a corpus-based study on German particle verbs. We hypothesize that there
are regular mechanisms in meaning shifts of a base verb in combination with a particle that do not
only apply to the individual verb, but across a semantically coherent set of verbs. For example, the
syntactically similar base verbs brummen ‘hum’ and donnern ‘rumble’ both describe an irritating,
displeasing loud sound. Combined with the particle auf, they result in near-synonyms roughly mean-
ing ‘forcefully assigning a task’ (in one of their senses). Covering 6 base verb groups and 3 particles
with 4 particle meanings, we demonstrate that corpus-based information on the verbs’ subcategoriza-
tion frames plus conceptual properties of the nominal complements is a sufficient basis for defining
such meaning shifts. While the paper is considerably more extensive than earlier related work, we
view it as a case study toward a more automatic approach to identify and formalize meaning shifts in
German particle verbs.

1 Introduction
Our focus of interest is on German particle verbs. We hypothesize that there are regular mechanisms
that trigger a meaning shift of a base verb (such as brummen ‘hum’) in combination with a particle
(such as auf, in this case referring to a contact relation) that do not only apply to the individual verb,
but across a semantically coherent set of verbs. For example, donnern ‘rumble’ agrees with brummen
in properties at the syntax-semantic interface in that both verbs are intransitive, and both describe
an irritating, displeasing loud sound that the typically non-agentive, non-living subject produces.
In addition, the resulting particle verbs aufbrummen and aufdonnern are near-synonyms, roughly
meaning ‘forcefully assigning a task’ (in one of their senses). Furthermore, they agree in properties
at the syntax-semantic interface in that both verbs (again, in one of their senses) are ditransitive, with
an agentive subject imposing something on another person.

The example demonstrates that a coherent set of base verbs in combination with a particle mean-
ing1 may result in a coherent set of particle verbs. Equation (1) illustrates this pattern: a base verb
BV with properties pBVi in combination with a particle with meaning PM results in a particle verb
PV with properties pPVj .

(1) BV {pBV1, pBV2, ..., pBVn} + PM → PV {pPV1, pPV2, ..., pPVm}

The goal of this paper is to demonstrate that we can find such regular meaning shifts across seman-
tically coherent verb groups and across particle meanings by using a property selection process. Our
work is corpus-based, i.e., we identify coherent verb groups and particle meanings on the basis of
large-scale corpus data. The empirical data is used to describe the base verbs as well as the parti-
cle verbs with regard to common properties at the syntax-semantic interface. Covering 6 base verb
groups with 3 particles and 4 particle meanings, we consider this paper as considerably more exten-
sive than earlier related work, but at the same time we view it as a case study toward an even more
extensive, and also more automatically driven identification of meaning shifts in particle verbs. We
therefore combine the corpus-based analyses with advice on future elaborations, mainly with regard
to applying approaches of regular polysemy.

1Note that particles in German particle verbs are in general highly ambiguous.



The paper is organized as follows. Section 2 presents related work. Section 3 represents the
core of the paper: We describe our corpus-based acquisition method, the empirical behavior for
each of our BV–PV groups, and regularities in the meaning shift. In Section 4, we generalize over
the concrete patterns in meaning shift, discuss elaborations of the existing method, and hypothesize
about a more automatic approach to identifying and formalizing meaning shifts in German particle
verbs.

2 Related Work
Previous work on meaning shifts of semantically coherent groups of verbs has shown that there are
regularities at the syntax-semantic interface with regard to the literal vs. transferred meanings of
the verbs. For example, Morgan (1997) uses schematic diagrams to illustrate the meaning shifts of
particle verb constructions with English out. She claims that the source domain in a shift is system-
atically determined by the base verb, and the particle meanings are instantiated by cognitive image
schemas. Ibarretxe-Antuñano (1999) describes systematic non-prototypical meanings of perception
verbs cross-linguistically for English, Spanish, and Basque. She investigates the meaning shifts on
the basis of corpus examples and introspection.

Given that there is substantial theoretical evidence for regular patterns in verb meaning shifts, it is
surprising that—to our knowledge—no empirical, corpus-based work so far has applied approaches
of regular polysemy to a large, coherent group of verbs. On the one hand, there has been an impres-
sive increase in empirical work on modeling meaning shifts in recent years (mostly with regard to
metonymy and metaphor). For example, Stefanowitsch and Gries (2006) edited a volume on corpus-
based approaches and Markert and Nissim (2007) provided a shared task for metonymy resolution
at SemEval 2007. On the other hand, the research has, in general, been restricted to small groups of
target items. For example, the shared task by Markert and Nissim (2007) comprised only locations
and organizations; Lönneker-Rodman (2008) describes the working environment and result of devel-
oping the Hamburg Metaphor Database, comprising a respectable framework that, up to now, covers
few targets and less than 2,000 annotated sentences. Work by Birke (2005) provided an extensive
automatic detection of non-literal use of English verbs in context, but did not specifically look at
regular shifts in meanings across multiple verbs.

3 Corpus-based Acquisition of Base and Particle Verb Groups
with a Meaning Shift
Our strategy to identify meaning shifts in BV–PV transfer is as follows. We searched our corpus for
examples of base verbs and particle verbs, concentrating on one specific particle at a time. As corpus
data, we rely on the SDEWAC corpus (Faaß et al., 2010), a cleaned version of the German web corpus
DEWAC created by the WACKY group (Baroni et al., 2009). The SDEWAC contains approximately
880 million tokens and has been parsed by Bohnet’s MATE dependency parser (Bohnet, 2010). The
information we used for our search was effectively verb subcategorization information that had been
extracted and quantified automatically from the corpus parses. That is, for each verb (including BVs
as well as PVs), we have quantitative information about how often the verb appeared with a specific
subcategorization frame, and how often and which nominal complements appeared within the frames.

In a first step, we searched the subcategorization database for all occurrences of particle verbs
with a specific particle (such as auf ), the particle verbs’ subcategorization frames, and the nominal
fillers of the various verb complements in the frames. In parallel, we searched for the same infor-
mation with regard to all base verbs that combine with that particle. We focused on the empirically
strongest subcategorization frames, and on the most dominant nominal complements, where empiri-
cal strength was determined by Local Mutual Information (LMI), cf. Evert (2005).

On the basis of the parallel data on subcategorization frames and nominal complements for base
verbs and for particle verbs, we then manually identified semantically coherent groups of base verbs
and the respective particle verbs which showed regularities with regard to a meaning shift. For each
of the regular meaning shifts that we identified, the following subsections present the corpus data
on the base verbs and the particle verbs, and a description of the meaning shift. The corpus data is
provided in tables capturing the following information:



• the base/particle verbs in the respective verb group, identified via a particular particle meaning;

• the predominant subcategorization frame that is relevant for the meaning shift;

• one illustrative example complement per literal and shifted sense, within a relevant slot for the
meaning shift;

• the strongest connotations, and

• the concepts that play a role in the meaning shift.

Concerning base verb and particle verb senses, note that many of the verbs are ambiguous. Our
analyses focus on those senses that are relevant for the meaning shift, i.e., we only refer to the
subcategorization and conceptual information with regard to (a) the base verb sense that undergoes
the meaning shift, (b) the literal meaning of the particle verb in relation to the base verb, if there is
any, and (c) the particle verb sense that represents the respective meaning shift. For example, we
find (a) Die Sonne strahlt ‘The sun is shining’ as a base verb example, with (b) a literal particle
verb extension Die Sonne strahlt das Gebirge an ‘The sun shines on the mountains’ and with (c) a
meaning shift in Die Frau strahlt den Mann an ‘The woman smiles at the man’.

3.1 an: Emotional Communication
The German verb particle an has one very prominent meaning (among others), where it ascribes a
direction to the verb complement realized as its direct object. All PVs with this meaning of an are
transitive, and combining this an with communication verbs such as sprechen ‘talk’ or schreiben
‘write’ is productive.

However, there are PVs such as anstrahlen in Example (3) that can also be characterized as
directed communication verbs, but the BVs do not themselves carry a communication meaning,
cf. Example (1). The sun (as well as other intransitive subjects of the base verb strahlen which
occurred in the data) does not communicate through shining. So there must be an additional extended
particle reading which includes communication semantics to get a shift from a literal PV meaning,
as exemplified in Example (2), which describes a directed shining event of the uplighter toward the
ceiling, to a metaphorical PV meaning with a directed communication action between two persons,
cf. Example (3). In this example, the girl has an intention to smile in the direction of the grumpy
person and therefore she must also expect him to be a potential experiencer. Compare *‘He smiled
at the chair’, which is odd. While there are many other verbs that describe the manner in which an
object may shine, it is necessary for the verb to allow for a directed communication reading: One
could assume that verbs such as glitzern ‘glitter’ and glänzen ‘gleam’ which are similar to funkeln
‘twinkle’ also allow such a reading, however, these verbs denote the reflection of light instead of
emission, i.e. the object itself is the light source. The verb scheinen ‘shine’ is a near-synonym
of strahlen ‘beam’/‘shine’, while the latter suggests directed communication, the former does not
necessarily.

(1) Die Sonne strahlt. ‘The sun is shining.’

(2) Der Deckenfluter strahlt den Deckenbereich an. ‘The uplighter shines at the ceiling area.’

(3) Das Mädchen strahlt den Obermuffel an. ‘ The girl smiles at the grumpy person.’

There are four different categories of non-communication BVs with such a shift to communica-
tion PVs. They can be sub-divided into two groups, one with a positive connotation as in Tables 1 & 2,
and one with a negative connotation as in Tables 3 & 4.

verbs frames complements connotations properties

strahlen ‘beam’ intrans Sonne ‘sun’ / Auge ‘eye’ bright, warm light
emissionfunkeln ‘twinkle’ intrans Sternlein ‘little star’ / Auge ‘eye’ pleasing, valuable

lächeln ‘smile’ intrans Mädchen ‘girl’ happy, friendly positive
emotiongrinsen ‘grin’ intrans Freund ‘friend’ expression

Table 1: Base verbs that combine with an to mean positive directed communication.



It is striking that positively connoted BVs are all perceivable by vision, either because of the
brightness (‘beam’, ‘twinkle’) or because of a facial expression (‘smile’, ‘grin’), and lead to a pos-
itive communication reading in Table 2. The negatively connoted BVs are either sound-related or
refer to animal sounds (‘bark’, ‘growl’) that are frightening or bear an acoustic intensity, cf. Table 3.
In contrast, the PV anzwitschern, derived from the rather quiet and non-threatening BV zwitschern
(‘tweet’) does not exist in this communication reading, because it is missing the negative connota-
tion.2 These observations are in line with Ibarretxe-Antuñano (1999), who claims that auditory as
well as olfactory perception often comes with a negative connotation, since these senses can be over-
loaded. This is not the case for the visual sense, which can easily be regulated and effectively ‘shut
off’.

verbs frames complements connotations properties

anstrahlen ‘beam at’ trans Deckenbereich ‘ceiling area’
Obermuffel ‘grumpy person’ pleasing, pos. directed

communicationanfunkeln ‘beam at’ trans Großmaul ‘loudmouth’ positive
anlächeln ‘smile at’ trans Mädchen ‘girl’ communication
angrinsen ‘grin at’ trans Mädchen ‘girl’

Table 2: Positive directed communication particle verbs with an.

Furthermore, there are negative communication PVs which are not derived by sounds, but by
vulgar expressions like ‘shit’ or ‘piss’, with an inherent negative polarity, cf. Table 3. Taking the
non-vulgar synonym pinkeln ‘tinkle’ for pissen results in the odd PV anpinkeln, which cannot be
readily interpreted except literal. So again, the missing negative connotation excludes the PV from
the meaning shift. The BV subjects in the negative cases are mostly animals, whereas the subjects
and also the objects in the corresponding PVs are persons (e.g., Gegner ‘opponent’, Fan ‘fan’) if the
reading is metaphorical, cf. Table 4. In the literal meaning of, for example, anbellen ‘bark at’, the
subject is a dog and we can find also inanimate objects such as Mond ‘moon’ as objects.

verbs frames complements connotations properties

bellen ‘bark’ intrans Schäferhund ‘German shepherd’ loud sound, uncivilized
communicationkläffen ‘yap’ intrans Köter ‘mutt’ displeasing

pissen ‘piss’ intrans Hund ‘dog’ feces, vulgar, uncivilized
excretionscheißen ‘shit’ intrans Taube ‘pigeon’ unpleasant

Table 3: Base verbs that combine with an to mean negative directed communication.

verb frame complements connotations properties

anbellen ‘bark at’ trans Mond ‘moon’ negative,
Gutachter ‘surveyor’ intense, neg. directed

communicationankläffen ‘yap at’ trans Gegner ‘opponent’ aggressive,
anpissen ‘irritate’ trans Fan ‘fan’ vulgar
anscheißen ‘pester’ trans Bulle ‘cop’

Table 4: Negative directed communication particle verbs with an.

3.2 auf : Social Pressure
We now investigate a meaning shift in PVs with the particle auf that have a social pressure reading.
The BVs which belong to this group (cf. Table 5) are on the one hand force verbs which bring about a
state that would not come about on its own, e.g., zwängen ‘pressure/wedge’ or lasten ‘charge/weight’.
On the other hand, there are the verbs brummen ‘hum’ and donnern ‘rumble’ which describe a heavy

2Nowadays, it can have a special communication reading because of the social web service Twitter.



and intense sound. Their complements are affected with a heavy sound in the literal meaning (‘skull’,
‘cannon’) and with heavy activity in a metaphorical meaning (‘business’). The complements of
zwängen all indicate a literal meaning (cf. Example 5), whereas lasten has direct objects that indicate
a literal (Gewicht ‘weight’) and a less literal (Verantwortung ‘responsibility’) meaning.

verbs frames complements connotations properties

zwängen ‘pressure/wedge’ trans (in-comp) Bus ‘bus’ pressure, negative
bürden ‘burden’ trans (auf-comp) Mitschuld ‘complicity’ assignment, strain pressure,

burdenlasten ‘charge/weigh’ intrans (auf-comp) Gewicht ‘weight’
Verantwortung ‘responsibility’ pressure, negative

brummen ‘hum’ intrans Schädel ‘skull’ loud, heavy activity
Geschäft ‘business’ sound

donnern ‘rumble’ intrans Kanone ‘cannon’ loud, menacing force

Table 5: Base verbs that combine with auf to mean transfer of negative social pressure.

Combining these verbs with the social pressure triggered by auf, we only find abstract objects
such as Risiko ‘risk’, Strafe ‘penalty’, etc. (cf. Table 6). Thus we have a meaning shift from an
interpretation mostly ascribed to the physical domain to an interpretation within an abstract social
domain.

The fact that the verbs *aufquetschen and aufschieben do not have this reading shows that there
must be another constraint. In comparison to the previous BVs, quetschen ‘squeeze’ suggests equally
opposed forces and schieben ‘push’ one single moving force. The verbs zwängen, bürden and lasten
all imply power inequality with some kind of resistance (e.g. non-compliance if it is a person or iner-
tial/spatial opposition otherwise). In light of this, we can compare the social pressure meaning with
the support meaning of auf. In both cases we have the concept that something is above something
else. In Example (6), with its abstract social pressure reading, Maria bears a more powerful social
position and thus is, metaphorically speaking, above her friends. Here, the equivalent of contact is
expressed in her friends being the supporter because they have to carry the abstract pressure of the
will of somebody else. However, the sound verbs are not restricted to the power inequality constraint;
instead, only the semantics of something heavy being involved plays a role. The non-existence of auf
together with summen ‘sum’, which sounds similar to brummen (but with higher sound frequencies
and therefore not as heavy) is evidence for this assumption. Similarly, such loud sounds as those
denoted by krachen (‘crash’) and knallen (‘bang’) lack a clear presence of a long, low-frequency
sound. By contrast, while not present in the standard German dictionary Duden3, the heavy sound of
dröhnen (‘drone’), gives rise to aufdröhnen, which is attested on the web:

(4) Gehen wir einmal davon aus, Ihnen wird kein Fahrtenbuch aufgedröhnt, um den privaten
Nutzungsanteil nachzuweisen. ‘Let’s assume you are not forced to keep a driver’s logbook in
order to account for private use.’

The social pressure meaning as in Example (7) can only come from auf. The shift occurs here
from being a sound verb to a verb describing somebody exerting negative social force upon somebody
else.

(5) Der Fahrer zwängt den Bus in eine kleine Parklücke. ‘The driver wedges the bus in a small
parking space.’

(6) Maria zwängt ihren Freunden ihren Willen auf. ‘Maria imposes her will on her friends.’

(7) Der Richter hat dem Einbrecher eine gerechte Strafe aufgebrummt. ‘The judge inflicted a
justified punishment on the burglar.’

3.3 auf : Initialization/Intensification of Visual Perceivables
The second reading of PVs with auf we take into account describes a transient change in which
something suddenly appears and usually shortly after disappears. In Example (8), it is Micha’s cry
which abruptly appears and shortly afterwards becomes silent.

3http://www.duden.de



verbs frames complements connotations properties

aufzwängen ‘impose on’ ditrans Wille ‘will’ negative
aufbürden ‘impose on’ ditrans Schuld ‘blame/debt’ pressure, negative

social
pressure

auflasten ‘impose on’ ditrans Verantwortung ‘responsibility’ burden,
aufbrummen ‘force s.o. to do s.th.’ ditrans Strafe ‘penalty’ strenuous
aufdonnern ‘force s.o. to do s.th.’ ditrans —

Table 6: Transfer of negative social pressure particle verbs with auf.

(8) Als Micha das Buch auf den Fuß fiel, schrie er auf. ‘Micha let out a cry when the book fell on
his foot.’

Table 7 groups BVs that are intransitive and visually perceivable.The subjects can thereby be seen
as the source of the perceivable impulse, e.g. a lamp or a star. In some cases this visually perceivable
source optionally produces heat like in Example (9). Other subjects we found in this context are
blaze, spark, flame, light, etc. Such stimuli can grow in intensity very quickly. Therefore we can
already find some non-literal usages in the BVs describing an intense emotion like hate, however
only with flammen and lodern (the heat-related verbs).

verbs frames complements connotations properties

glimmen ‘glimmer’ intrans Funke ‘spark’ bright, warm, visual
perceptionglühen ‘glow’ intrans Licht ‘light’ / Auge ‘eye’ pleasant

lodern ‘blaze’ intrans Flamme ‘flame’ / Hass ‘hate’ hot, (emotionally) visual, thermal
perceptionflammen ‘flame’ intrans Feuer ‘fire’ intense, bright

Table 7: Base verbs that combine with auf to mean initialization/intensification of visual perceivable.

Combining these BVs with the particle auf, the metaphorical meaning turns out to be prominent.
This is consistent with the characteristics of emotions which can appear and disappear very quickly.
Comparing something like anger with a heat source is very common and captured in Lakoff et al.’s
(2005) INTENSE EMOTIONS ARE HEAT conceptual metaphor. Therefore the parallel usage sharing
one PV is not surprising. The only difference between the literal Example (10) and the non-literal
Example (11) is that the perceived heat belongs to another domain. Other examples of emotion
subjects are Hoffnungsschimmer, ’glimpse of hope’, Mitleid ‘pity’ and Debatte ‘debate’, which is not
an emotion, but in context of the auf -verb it refers to an intense discussion which involves emotions.

(9) Das Feuer flammt. ‘The fire flames.’

(10) Das Feuer flammt auf. ‘The fire flared up.’

(11) Die Debatte flammt auf. ‘The debate flared up.’

In summary, we can say that both light and heat in these verbs seems to be central. While
there is a wide class of BVs that allow for such a meaning shift (including most verbs applicable to
light coming from a fire, e.g., flackern ‘glint’), we find counterexamples where such an emotional
metaphorical meaning is not present: aufleuchten ‘light up’, aufblinken ‘flash’, auffunkeln ‘twinkle’,
aufglitzern ‘(suddenly) glitter’—all of which do not necessitate a notion of heat. It seems the ‘light’
property, as opposed to ‘heat’, is more involved in the perception and cognition domain (cf. the
conceptual metaphors IDEAS ARE LIGHT SOURCES, UNDERSTANDING IS SEEING). The mental
enlightenment is more a process than a sudden appearance which explains the incompatibility with
this particle meaning.

3.4 auf : Intensification/Initialization of Emotion
A completely different class of base verbs leads to the same reading of a quick increase in intensity
as the ‘flare up’ verbs. These are verbs which describe internally caused processes, such as brausen



verbs frames complements connotations properties

aufglimmen ‘light up/flicker’ intrans Glimmlampe ‘glow lamp’ (more) visible
Hoffnungsschimmer ‘glimmer of hope’ (and vanish), initialization

(intensification)aufglühen ‘light up’ intrans Rücklichter ‘tail lights’ / Auge ‘eye’ quickly become
auflodern ‘become intense’ intrans Feuer ‘fire’ / Wut ‘anger’ perceivable
aufflammen ‘flare up’ intrans Kampf ‘fight’ / Debate ‘debate’

Table 8: Initialization/intensification of perceivable particle verbs with auf.

‘roar’, kochen ‘boil’ which denote a forceful movement, cf. Examples (12,13). The force involved
can be physical (e.g., schaukeln ‘swing’) but can also be conceptualized as emotional, as in the
metaphorical meaning in Example (14):

(12) Der Sturm braust. ‘The storm is roaring.’

(13) Der Sturm braust auf. ‘The storm is roaring up.’

(14) Der Jubel braust auf. ‘The cheering is roaring up.’

All such ‘forceful movement’ BVs have an intransitive frame that has as subject in the literal sense
(a) the entity being moved (e.g., Schiff ‘ship’), or (b) a mass which is in motion (e.g., Wasser ‘wa-
ter’). The metaphorical reading can involve strong emotions (Blut ‘blood’), intense activity (Verkehr
‘traffic’), or both (Gerüchteküche ‘rumor mill’); the activity in the latter is also showing up in the
term for those involved in spreading rumors, namely ‘busybodies’.

verbs frames complements connotations properties

schaukeln ‘swing’ intrans Schiff ‘ship’ intense, internally caused
motionbrausen ‘roar/crash’ intrans Sturm ‘storm’ / Verkehr ‘traffic’ sweeping motion,

wallen ‘undulate/surge’ intrans Nebel ‘fog’ / Blut ‘blood’ emotions

brodeln ‘seethe’ intrans Wasser ‘water’ heat, internally caused
motion (with heat),
emotion

Gerüchteküche ‘rumor mill’ bubbling,
kochen ‘boil’ intrans Wasser ‘water’ motion

Table 9: Base verbs that combine with auf to mean initialization/intensification of emotions.

verbs frames complements connotations properties

aufschaukeln ‘build up’ intrans Papierboot ‘paper boat’ to and fro,
Konflikt ‘conflict’ intense

aufwallen ‘surge up’ intrans Staub ‘dust’ / Zorn ‘fury’ motion,
intensificationaufbrausen ‘flare up’ intrans Sturm ‘storm’ / Jubel ‘cheering’ strong

aufbrodeln ‘bubble up’ intrans Milch ‘milk’ / Hass ‘hate’ negative
aufkochen ‘(bring to a) boil’ intrans Wasser ‘water’ / Wut ‘anger’ emotion

Table 10: Initialization/intensification of emotions particle verbs with auf.

The shared property between the visual BV group and these motion verbs is that heat is under-
stood to be conceptually linked to emotions (Lakoff and Johnson, 1980). The contribution of auf
in this context is a notion of surging up, i.e., things are coming from below (hidden) to the surface
(perceivable). These are terms that are commonly used to describe emotions, when they cannot be
perceived (i.e., when they are not intense enough), they are ‘hidden’. If they grow in intensity, they
are said to ‘surface’ (Gefühle aufwühlen ‘churn up feelings’). It is worth noting that aufschaukeln
gives rise to a ‘discussion’ image, as it describes a constant to and fro between two opposing sides.



The compositional reading is dispreferred, since it is not typical to have both a back and forth and
an upwards motion combined. As expected, base verbs that describe a subsiding of motion (e.g.,
flachen ‘flatten’, ebben ‘ebb’, sinken ‘sink’) combined with the particle expressing the opposite of
this auf reading (i.e., ab), give exactly the opposite meaning, namely to lessen, abate, diminish; both
in a physical as well as emotional sense.

Although it is not attested in the corpus, there exists the same metaphor in German and En-
glish Das bringt mich zum Kochen ‘It makes my blood boil’, of an intense emotion—in this case,
fury—being conceptualized as something seething within the experiencer.

3.5 ab: Successive Tasks
One of the multiple meanings of the particle ab involves the concept of a sequence of similar actions
leading to the completion of a complex task. Kliche (2011) terms this the ‘mereological reduction’
sense of ab. On the one hand, this meaning can come from verbs that generally entail some form of
work (e.g., arbeiten ‘work’, leisten ‘perform’). On the other hand, there are verbs that suggest the
actual event structure of the chain of sub-tasks being completed.

verbs frames complements connotations properties

klappern ‘clatter’ intrans Storch ‘stork’ sharp, short, rapid
successionrattern ‘clatter’ intrans Nähmaschine ‘sewing machine’ repetitive,

stottern ‘stutter’ intrans Motor ‘motor’ sound/action

Table 11: Base verbs that combine with ab to mean successive task completion.

This can arise when (a) the actions are performed on an area that is successively covered along
the event chain (e.g., grasen ‘graze’, kämmen ‘comb’, suchen ‘search’); or (b) when the verb that
is combined with ab suggests a mass that diminishes progressively due to the performed action
until it is completely gone (e.g., abbezahlen, abstottern ‘pay off’). The successive character of the
mereological reduction sense is thus already inherently present in these verbs.

verbs frames complements connotations properties

abklappern ‘check all’ trans Sehenswürdigkeit ‘tourist sight’ successive successive
reductionabrattern ‘pay off (a debt)’ trans — accomplishing,

abstottern ‘pay off (a debt)’ trans Schuldenberg ‘mountain of debt’ stepwise reduction

Table 12: Successive task completion particle verbs with ab.

Interestingly enough, it is sufficient for the mereological reduction ab to be available that only the
event structure itself to be conveyed, even without the concept of work being present in the base verb.
In our everyday experience, the rapid succession of similar short events can give rise to a particular
repetitive acoustic pattern, which is captured in the onomatopoetic verbs: klappern/rattern ‘clatter’
and stottern ‘stutter’. These verbs combined with ab then give the expected reading, namely a chain
of similar actions being performed. However, this does not work with semelfactive sound verbs like
klicken ‘klick’ or ticken, even if they can provide a repetitive reading by multiplying the single verb
events. The verbs in this class are iterative and cannot be interpreted as semelfactive.

It is clear that the acoustic signal lends itself to a mapping to the event structure, since both
are organized linearly in time. This also explains the inaccessibility of the same meaning for a
visual signal, since there is no straightforward mapping of the visual field to the time axis. The only
counterexample of a visual mereological reduction verb that we are aware of is absuchen ‘scan’;
which suggests a linear process of visual perception; e.g., along a linear path through a room, or via
the linear searching through a telescope or magnifying glass.

4 Discussion
The previous section provided an extensive analysis of 6 different cases of BV–PV meaning shifts,
with regard to 3 different particles. We briefly summarize these meaning shifts, concentrating on the



main conceptual properties only. The presentation is done according to the pattern in Equation (1) as
introduced in Section 1.

(1) BV {pBV1, pBV2, ..., pBVn} + PM → PV {pPV1, pPV2, ..., pPVm}

Meaning shift classes:

1. an: “positive emotional communication”
BV {pleasing, emission} + PM {dir+com} → PV {positive directed communication}

with BVs funkeln, grinsen, lächeln, strahlen

2. an: “negative emotional communication”
BV {displeasing, uncivilized} + PM {dir+com} → PV {negative directed communication}

with BVs bellen, kläffen, pissen, scheißen

3. auf: “negative social pressure”
BV {loud/heavy pressure} + PM {vert. contact} → PV {negative social pressure}

with BVs brummen, bürden, donnern, lasten, zwängen

4. auf: “initialization of perceivables (vision & emotion)”
BV {bright, vision} + PM {sudden, initial}→ PV {initialization of visual perceivable}

with BVs flammen, glimmen, glühen, lodern

5. auf: “intensification of perceivables (emotion)”
BV {int. caused motion} + PM {sudden, initial} → PV {intensification of emotions}

with BVs brausen, brodeln, kochen, schaukeln, wallen

6. ab: “successive task completion”
BV {repetitive, sound} + PM {mereol. reduction}→ PV {successive task completion}

with BVs klappern, rattern, stottern

The analyses were performed across several semantically coherent groups of verbs. We demon-
strated that corpus-based information on the verbs’ subcategorization frames and nominal comple-
ments (combined with intuitions about generalizations of the noun complements) is a sufficient basis
for defining BV–PV meaning shifts. We thus confirmed our initial hypothesis that there are regular
mechanisms with regard to the syntax-semantic interface that trigger a meaning shift of a base verb
in combination with a particle meaning and that do not only apply to the individual verb but across
a semantically coherent set of verbs. The identified meaning shift classes are effectively larger than
those presented in the tables in Section 3 because the classes are productive. Relying on the produc-
tivity, we could easily enlarge our meaning shift classes with new members (which will be discussed
below).

We briefly summarize the main findings from our analyses, with regard to the BV, PV and particle
properties: (i) There is a very strong agreement across verbs (both BVs and PVs) within a meaning
shift class with regard to the subcategorization frame types. This is a very impressive indicator
for semantically coherent groups, where we had expected more diversity. (ii) Even restricting the
nominal complements to only the 10-20 most strongly LMI-based associated types is a sufficient basis
for investigating the conceptual properties that determine the respective slot. (iii) To our knowledge, a
new aspect to meaning shifts in (German) particle verbs has been discovered: We found that particles
actually adopt meaning aspects from the base verbs they combine with. For example, the particle
an in meaning shift classes 1 and 2 a priori refers to a direction meaning. However, it obviously
incorporates meaning aspects from communication base verbs that it typically combines with (when
no meaning shift is involved), such as ansprechen ‘speak to’ and anreden ‘address someone’. As a
result, the particle meaning within the particle verbs in classes 1 and 2 contributes meaning aspects
of direction as well as communication. To go deeper into this issue, future work will investigate the
diachronic development of particle roots with regard to the particle meanings.

Our strategy can easily be replicated for another BV–PV data set in German or other languages,
given that parsed corpus data is available. In addition, there are easy extensions to the strategy that
however make the identification and factors of meaning shifts more objective: (i) co-occurrence of the
BVs and PVs with particular adverbs should be useful as indicators of meaning shifts, as they are ex-
pected to agree across the respective base and particle verbs but might be different between the literal
and shifted meanings of the particle verbs. (ii) Similarly, we expect 2nd-order co-occurrence ad-
jectives, i.e., those adjectives that modify the nominal complements of the verbs (Schulte im Walde,



2010), to be useful indicators of the kinds of connotations we so far collected manually. For example,
concerning meaning shift class 4 above, strong adjectival modifiers of both Feuer ‘fire’ and Flamme
‘flame’ are ewig ‘eternal’ lodernd ‘blazing’, and offen ‘open’, while strong adjectival modifiers of
both Konflikt ‘conflict’ and Diskussion ‘discussion’ are aktuell ‘current’, politisch ‘political’, and
weit ‘wide’. (iii) Instead of subjective definitions of conceptual generalizations over nominal comple-
ments, one could apply GermaNet (Kunze, 2000), the German pendant to WordNet (Fellbaum, 1998).
For example, both Feuer ‘fire’ and Flamme ‘flame’ are generalized to Ereignis ‘event’ by GermaNet
on level 3 (starting from the top node level) and to Phänomen ‘phenomenon’ on level 4, while both
Konflikt ‘conflict’ and Diskussion ‘discussion’ are generalized to Kommunikation ‘communication’
and Gespräch ‘conversation’ on levels 3 and 4, respectively. (iv) A simple way to enlarge meaning
shift classes is by looking up synonyms of the base and/or particle verbs in dictionaries. For example,
Bulitta and Bulitta (2003) defines aufdrängen, aufnötigen, and aufoktroyieren as near-synonyms to
aufzwängen, so we could check whether these three particle verbs fall into meaning shift class 3.

A long-term goal of our work is to extend it toward a more automatically driven identification of
meaning shifts in particle verbs. Three examples of approaches that are potentially useful to com-
plement our corpus-based search are the following: Reisinger and Mooney (2010) presented a multi-
prototype vector-space model that discriminates multiple senses of a word by clustering contexts, an
idea adopted from Schütze (1998). We could reduce their “contexts” to the crucial information about
the BV and PV properties we identified, i.e., subcategorization frame types and concept properties,
possibly refined by further meaning aspects as suggested above. The framework would then allow
us to determine the similarity between the “contexts” of base verbs and particle verbs, and thus to
identify the semantically coherent groups of base verbs as well as literal meanings of particle verbs
with regard to their base verbs. To do this we could use a clustering approach similar to Reisinger
and Mooney (2010). Birke (2005) also relied on clustering to discover literal and non-literal uses of
English verbs in context. However, while her approach required a manually labeled set, we could
envision an automatic detection of literality as done by Turney et al. (2011). Boleda et al. (2012)
presented an approach to regular polysemy where meta-alternations capture regularities in meaning
shifts. In a first step, the meta-alternations are instantiated by monosemous words exhibiting the re-
spective meaning shift. In a second step, the meta-alternations are used to predict a meaning shift for
a new item. With regard to our research, a meta-alternation should capture the BV and PV properties
of a certain meaning shift. As in Boleda et al. (2012), we would instantiate the meta-alternations
through monosemous base and particle verbs. For a new BV–PV pair, we could then predict the
(non-)existence of the meaning shift by comparing the pair’s conceptual properties to the properties
of the meta-alternation. Note that this approach requires prior knowledge about some seed BV–PV
pairs and their meaning shifts.

Last but not least, a major challenge in the automation of our work is in distinguishing between
BV and PV verb polysemy vs. meaning shift. That is, most computational approaches such as
Reisinger and Mooney (2010) will provide us with knowledge about the various meanings of the
base and/or particle verbs. However, we not only want to detect different senses (e.g., the particle
verb abnehmen has several senses with overlapping subcategorization properties that all but one differ
from the literal meaning), but in addition which of the senses is a meaning shift, and why. Our goals
are more addressed by the Boleda et al. (2012) approach, which however requires manual work in
the outset.
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1 Abstract

We introduce a new formal semantic model for annotating textual entailments, that describes restric-
tive, intersective and appositive modification. The model contains a formally defined interpreted lexicon,
which specifies the inventory of symbols and the supported semantic operators, and an informally defined
annotation scheme that instructs annotators in which way to bind words and constructions from a given
pair of premise and hypothesis to the interpreted lexicon. We explore the applicability of the proposed
model to the Recognizing Textual Entailment (RTE) 1-4 corpora and describe a first-stage annotation
scheme based on which manual annotation work was carried out. The constructions we annotated were
found to occur in 80.65% of the entailments in RTE 1-4 and were annotated with cross-annotator agree-
ment of 68% on average. The annotated RTE corpora are publicly available for the research community.

2 Introduction

The RTE challenges (Dagan et al., 2006) aim to automatically determine whether an entailment relation
obtains between a naturally occurring text sentence (T) and a hypothesis sentence (H). The RTE corpus
(Bar Haim et al., 2006; Giampiccolo et al., 2007, 2008; Bentivogli et al., 2009), which is currently the
only available resource of textual entailments, marks entailment candidates as valid/invalid.1

Example 1
• T: The head of the Italian opposition, Romano Prodi, was the last president of the EC.

• H: Romano Prodi is a former president of the EC.2

• Entailment: Valid
This categorization contains no indication of the linguistic processes that underlie entailment. In the
lack of a gold standard of inferential phenomena, entailment systems can be compared based on their
performance, but their inferential processes are not directly accessible for analysis.

The goal of this work is to elucidate some central inferential processes underlying entailments in the
RTE corpus. By doing that, we aim to advance the possibility of creating a benchmark for modeling
entailment recognition. We presume that this goal is to be achieved incrementally by modeling increas-
ingly complex semantic phenomena. To this end, we employ a standard model-theoretic approach to
entailment in order to combine gold standard annotations with a computational framework. The model

1Pairs of sentences in RTE 1-3 are categorized in two classes: yes- or no-entailment; pairs in RTE 4-5 are categorized in
three classes: entailment, contradiction and unknown. We label the judgments yes-entailment from RTE 1-3 and entailment
from RTE 4-5 as valid, and the other judgments as invalid.

2Pair 410 from the test set of RTE 2. EC stands for European Commission



contains a formally defined interpreted lexicon, which specifies the inventory of symbols and semantic
operators that are supported, and an informally defined annotation scheme that instructs annotators how
to bind words and constructions from a given T-H pair to entries in the interpreted lexicon. Our choice to
focus on the semantic phenomena of restrictive, intersective and appositive modification is driven by their
predominance in the RTE datasets, the ability to annotate them with high consistency and the possibility
to capture their various syntactic expressions by a limited set of concepts.

However, currently we are only at the first stages of implementing the theoretical semantic model
using an annotation platform combined with a theorem prover. In the course of the development of this
model we adopted a narrower annotation scheme by which modification phenomena were annotated in all
valid entailment pairs from RTE 1-4 without accounting for the way in which the annotated phenomena
contribute to the inference being made. This work allowed us to perform data analysis and to further
learn about the phenomena of interest as part of the development of the semantic model.

The structure of this paper is as follows. Section 3 reviews some related methods used in Bos et al.
(2004) and MacCartney and Manning (2007). In Section 4 we introduce the formal semantic model
on which we rely and use it for analyzing some illustrative textual entailments. Section 5 points out a
challenge in applying this model to parts of the RTE data and describes our first-stage annotation scheme.
We elaborate on the methods employed in applying this scheme to the datasets of RTE 1-4, and present
some quantitative data on the targeted phenomena and inter-annotator agreement. Section 6 concludes.

3 Related Work

Bos and Markert (2005) utilizes a CCG parser (Bos et al., 2004) to represent the text and hypothesis
in discourse representation structures (DRSs, Kamp and Reyle 1993) that encapsulate information on
argument structure, polarity, etc. The DRSs of the text and hypothesis are then translated into formulae
in first order logic, and a theorem prover is used in order to search whether there is a logical proof from
the text formula to the hypothesis formula. The system reached a relatively high precision score of 76%
in recognizing the positive cases in RTE 2 but suffered from a very low recall of 5.8%.

MacCartney and Manning (2007)’s system recognizes monotonic relations (or lack thereof) between
aligned lexical items in the text and hypothesis and employs a model of compositional semantics to
calculate a sentence-level entailment prediction. The recognition of monotonic relations is done using
an adapted version of Sanchez Valencia’s Natural Logic (Valencia, 1991), the alignment between the
text and hypothesis is based on a cost function that extends Levenshtein string-edit algorithm, and the
entailment is classified by a decision tree classifier, trained on a small data set of 69 handmade problems.
The system was tested on RTE 3 and achieved relatively high precision scores of 76.39% and 68.06% on
the positive cases in the development and test sets respectively. This system also suffers from low recall
scores of 26.70% and 31.71% respectively.

The model we propose in this work diverges from these systems in two respects: (a) its first goal is to
develop gold standard semantic annotations based on a general formal semantic model; (b) it does not aim
to represent phenomena that are not accounted for in this model. For example, consider the following
inference, which is based on causal reasoning: Khan sold nuclear plans ⇒ Khan possessed nuclear
plans.3 Causal reasoning and lexical relations are not part of the semantic phenomena addressed in this
paper, and a pattern in the form of X sold Y⇒ X possessed Y should be defined ad-hoc by annotators to
align the instances of the verbs sell and possess. This approach allows us to concentrate on the logical
aspects of textual entailment, while phenomena involving lexical semantics and world knowledge are
handled by a shallow analysis.4

3This example of causal reasoning is taken from MacCartney and Manning (2007).
4Another related work, which approaches inference in natural language as part of a semantic paradigm, is the FraCaS test

suite (Cooper et al., 1996). This suit concerns examples that mainly rely on generalized quantification, argument monotonicity,
plurality, anaphora resolution, ellipsis, etc. Entailments based on these phenomena are not very common in the RTE data that
are analyzed here. Further research is needed in order to integrate data like those in FraCaS into a formal annotation scheme
like the one suggested in this paper.



4 Theoretical background and RTE examples

To model entailment in natural language, we assume that entailment describes a preorder on natural
language sentences. Thus, we assume that any sentence trivially entails itself (reflexivity); and given two
entailments T1 ⇒ H1 and T2 ⇒ H2 where H1 and T2 are identical sentences, we assume T1 ⇒ H2

(transitivity). A computational theory of entailment should describe an approximation of this preorder
on natural language sentences. We use a standard model-theoretical extensional semantics, based on the
simple partial order on the domain of truth-values. Each model M assigns sentences a truth-value in
the set {0, 1}. Such a Tarskian theory of entailment is considered adequate if the intuitive entailment
preorder on sentences can be described as the pairs of sentences T and H whose truth-values [[T]]M and
[[H]]M satisfy [[T]]M ≤ [[H]]M for all models M . In this section we give the essentials of this model-
theoretic approach to entailment that are relevant to the annotated phenomena and illustrate it using a
small interpreted lexicon, simplifying the analysis of some representative examples from the RTE.

4.1 An interpreted lexicon

The interpreted lexicon presented in Table 1 illustrates our treatment of major lexical categories over
types e, t and their functional compounds. Our aim is to allow binding of words and expressions in
entailment data to the lexicon. Each word is stated in its literal form, the type assigned to it, and its
denotation in intended models. Denotations that are assumed to be arbitrary in intended models are given
in boldface. For example, the intransitive use of the verb sit is assigned the type et and its denotation sit
is an arbitrary function of this type. By contrast, other lexical items have their denotations restricted by
the intended models. For example, the definite article the is assigned the type (et)e and its denotation
is fixed as the iota operator. The functions that we use for defining denotations are specified in Figure
1. Several items in the lexicon are assigned more than one type and/or more than one denotation due to
ambiguity in natural language. The following list explains some of the main items in the lexicon:
• The coordinator and, when appearing as predicate conjunction, is analyzed as a function - AND,

mapping any two et predicates A and B to a predicate that sends every entity e to the truth-value
of the conjunction A(x) ∧B(x).
• The copular is and the article a in copular sentences (e.g. Dan is a man / Dan is short) are analyzed

as identity functions IS and A of type (et)(et) respectively. In copula sentences that express an
equality relation (e.g. Dan is Jan), is is analyzed by the equality function ISeq of type e(et).
• The word some denotes the existential quantifier SOME, as it is used in intransitive sentences such

as some man sat (transitive sentences like Jan saw some man are not treated here).
• The relative pronoun who allows noun modification either by a restrictive relative clause denoted

by WHOR or by an appositive clause denoted by WHOA. WHOR is expressed in sentences such as
the alien who is a nun sat, in which the pronoun creates a complex predicate, alien who is a nun.
WHOA appears in sentences such as the alien, who is a nun, sat where the pronoun adds information
on a given entity x. The resulting entity is x if A holds of x, and undefined otherwise.
• The adjectives short and Dutch, when appearing as modifiers, restrict the denotation of the noun

they attach to: a short/Dutch man is a man. Dutch is furthermore intersective: a Dutch man is
invariably Dutch. The predicate Dutch is defined as an arbitrary constant dutch of type et. The
modifier is derived by a function Im identical to AND. The restrictive modifier short is defined
by the function Rm and a constant short of type (et)(et). The predicative denotation of short is
defined using the function Pr as the set of “short things” - by applying the constant to all entities.

See Pratt-Hartmann and Moss (2009) for a wider coverage of some of the same semantic ground that
goes further in dealing with comparative constructions and transitive verbs.

4.2 Analyzing entailments using the interpreted lexicon

Some central logical semantic aspects of entailments from the RTE can be formally analyzed using
the lexicon in Table 1. We analyze entailments by binding expressions in the RTE data to structurally
equivalent expressions containing items in the interpreted lexicon. This analysis is three-fold:



Word Type Denotation Remarks

Dan, Jan, Vim e dan, jan, vim proper name
man, nun, alien et man, nun, alien intrans. noun
sat et sit intrans. verb
saw e(et) see trans. verb
and (et)((et)(et)) AND pred. conj. (coordinator)
is (et)(et) IS copula (modifier)
is e(et) ISeq copula (equality)
a (et)(et) A indef. article (modifier)
the (et)e THE def. article (iota)
some (et)((et)t) SOME indef. determiner
who (et)((et)(et)) WHOR res. rel. pronoun (coordinator)
who (et)(ee) WHOA app. rel. pronoun
Dutch, black et dutchet, blacket int. adjective (predicate)
Dutch, black (et)(et) Im(dutchet), Im(blacket) int. adjective (modifier)
short et Pr(short(et)(et)) res. adjective (predicate)
short (et)(et) Rm(short(et)(et)) res. adjective (modifier)
slowly (et)(et) Rm(slowly(et)(et)) res. adverb (modifier)

Table 1: An Interpreted Lexicon

AND = λAet.λBet.λxe.B(x) ∧A(x)
IS = λAet.A

ISeq = λxe.λye.x = y

A = IS = λAet.A

THE = ι(et)e = λAet.

{
a if A = (λxe.x = a)

undefined otherwise
(iota operator)

SOME = λAet.λBet.∃xe.A(x) ∧B(x)

WHOR = AND = λAet.λBet.λxe.B(x) ∧A(x)
WHOA = λAet.λxe.ι(λy.y = x ∧A(x))
Pr = λM(et)(et).λxe.M(λye.1)(x) deriving a predicate from a general modifier

Im = AND = λAet.λBet.λxe.B(x) ∧A(x) deriving an intersective modifier

Rm = λM(et)(et).λAet.λxe.M(A)(x) ∧A(x) deriving a restrictive modifier

Figure 1: Functions used in the interpreted lexicon

1. Phenomena Simplification: we simplify the text and hypothesis to exclude inferential phenomena
that we do not handle in the scope of this work. For instance, in Example 2, the inference Google
operates on the web ⇒ Google is on the web is based on lexical knowledge, which we do not
address here, and therefore it is handled as part of the simplification step.

2. Binding to Lexicon: we bind the constructions in the data to parallel constructions in the inter-
preted lexicon that share the same structure and semantic properties. This step produces a text
TLexicon and a hypothesis HLexicon as new structurally equivalent versions of the simplified text
and hypothesis. The parse trees are assumed in a way that allows to apply the interpreted lexicon.

3. Proof of Entailment: using predicate calculus and lambda calculus reductions, we establish a
logical proof between TLexicon and HLexicon.5

Example 2
• Data:

– T: The largest search engine on the web, Google receives over 200 million queries each day
through its various services.

5The only higher-order constants in the above lexicon are the (et)(et) constants attributed to non-intersective restrictive
modifiers. Treating them in predicate calculus theorem provers may require some ad hoc assumptions.



– H: Google operates on the web.6
1. Phenomena Simplification:

In the text: adding an overt appositive WH pronoun to match the interpreted lexicon:
• TOriginal: The largest search engine on the web, Google receives...
• TSimple: The largest search engine on the web, which is Google, receives...

In the hypothesis: reducing the meaning of ‘X operates on Y’ to ‘X is on Y’:
• HOriginal: Google operates on the web
• HSimple: Google is on the web

2. Binding to Lexicon:
Text7,8:
• TSimple: [The largest search engine on the web, which is Google,] receives...
• TLexicon: [The short Dutch man, who is Jan,] saw Dan

Hypothesis:
• HSimple: Google [is [on the web]]
• HLexicon: Jan [is Dutch]

3. Proof of entailment TLexicon⇒ HLexicon: Let M be an intended model,
[[ [[The [short Dutch man]], [who [is Jan]],] saw Dan ]]M

= (see(dan))((WHOA(ISeq(jan)))(ι((Rm(short))
((Im(dutch))(man)))))

analysis

= (see(dan))(ι(λy.y = (ι((Rm(short))((Im(dutch))(man))))
∧jan = (ι((Rm(short))((Im(dutch))(man))))))

def. of WHOA + ISeq,
func application

By definition of ι: jan = ι((Rm(short))((Im(dutch))(man)))
⇒ jan = ι(λye.(short(λxe.man(x) ∧ dutch(x)))(y)∧man(y) ∧

dutch(y))
def. of Rm, Im, ∧ +
func. application

By definition of ι: (short(λxe.man(x) ∧ dutch(x)))(jan) ∧man(jan) ∧ dutch(jan)
≤ dutch(jan) = (IS(dutch))(jan) = [[Jan [is Dutch] ]]M def. of ∧, IS + analysis

A crucial step in this analysis is our assumption that on the web is an intersective modifier of search
engine. This allows the subsumption of search engine on the web by on the web. In the interpreted lexi-
con we describe this behavior using the intersective denotation of the modifier Dutch. Let us investigate
further the implications of this annotation in the following hypothetical example.
Example 3

1. Pair 1: T1: Jan is a short Dutch man 6⇒ H1: Jan is a short man no entailment
2. Pair 2: T2: Jan is a black Dutch man⇒ H2: Jan is a black man entailment

From a purely textual/syntactic point of view, these two T-H pairs are indistinguishable. The lexical
overlap between the text and hypothesis in both pairs is 100%. This does not allow entailment systems
to rely on textual measurements to identify that the pairs need to be classified differently. Such a perfect
score of overlap may lead to a false positive classification in Pair 1 or conversely, to a false negative in
Pair 2. Also syntactically, both short and black serve as adjectives attached to a noun phrase - Dutch
man. There is nothing in this syntactic configuration to suggest that omitting Dutch in Pair 1 might result
in a different entailment classification than omitting it in Pair 2. However, from a semantic point of
view, based on annotations of abstract relations between predicates and their modifiers, we can correctly
analyze both the non-validity of the entailment in Pair 1 and the validity of the entailment in Pair 2.
• Analysis of Pair 1

To validate that there is no entailment between a text and a hypothesis means to show that there is
an intended model M = 〈E, I〉 in which there is no ≤ relation between their denotations.

6Pair 955 from the test set of RTE 4 (Giampiccolo et al., 2008).
7Note that the post-nominal intersective modifier on the web is bound to a pre-nominal modifier Dutch. This is done in order

to match the vocabulary of the interpreted lexicon, in which the only intersective modifier is Dutch.
8In this example, TSimple (consequently from TOriginal) is structurally ambiguous between The [largest [search engine on

the web]], which is Google, receives... and The [[largest search engine] on the web], which is Google, receives.... We illustrate
the former analysis here. The latter analysis can be handled in a similar vein.



Let M be an intended model that satisfies the following:
– manet characterizes {dan, jan, vim}
– dutchet characterizes {jan, vim}
– short(man)et characterizes {dan}
– short(λye.man(y) ∧ dutch(y))et characterizes {jan}

Let us assume parse trees as follows:
– Text: Jan [is [a [short [Dutch man]]]]

– Hypothesis: Jan [is [a [short man]]]
Consider the denotations of the text and hypothesis in the model M:

– Text:

[[ Jan [is [a [short [Dutch man]]]] ]]M

= (IS(A((Rm(short))((Im(dutch))(man)))))(jan) analysis
= ((Rm(short))((Im(dutch))(man)))(jan) def. of A, IS

= (((λM(et)(et).λAet.λye.M(A)(y) ∧ A(y))(short))
(((λAet.λBet.λxe.B(x) ∧A(x)) (dutch))(man)))(jan)

def. of Im, Rm

= 1 ∧ 1 ∧ 1 = 1 func. application +
denotations in M

– Hypothesis:

[[ Jan [is [a [short man]]] ]]M

= (IS(A((Rm(short))(man))))(jan) analysis
= ((Rm(short))(man))(jan) def. of A, IS

= (((λM(et)(et).λAet.λye.M(A)(y) ∧A(y))(short))(man))(jan) def. of Rm

= 0 ∧ 1 = 0 func. application +
denotations in M

Intuitively, Jan can be a man who is considered to be short in the population of Dutch men, hence
(short(λxe.man(x)∧dutch(x))) (jan) = 1, but not in the population of all men, hence (short
(man))(jan) = 0. This is a consequence of having short denoting a non-intersective modifier: the
set denoted by short(λxe.man(x) ∧ dutch(x)) is not necessarily a subset of short(man).
• Analysis of Pair 2

Let us assume parse trees as follows:
– Text: Jan [is [a [black [Dutch man]]]]
– Hypothesis: Jan [is [a [black man]]]

In analyzing this pair we can show a proof of entailment. Let M be an intended model,

[[ Jan [is [a [black [Dutch man]]]] ]]M

= (IS(A((Im(black))((Im(dutch))(man)))))(jan) analysis
= (((λAet.λBet.λye.B(y) ∧ A(y))(black))(((λAet.λBet.λxe.B(x) ∧
A(x)) (dutch))(man)))(jan)

def. of A, IS, Im

= dutch(jan) ∧ (man(jan) ∧ black(jan)) func. application
≤ man(jan) ∧ black(jan) def. of ∧
= (IS(A((Im(black))(man))))(jan) = [[ Jan [is [a [black man]]] ]]M beta reduction + def.

of Im, A, IS + analysis

In this case we rely on the intersectivity of black, which in conjunction with the intersectivity of
Dutch licenses the inference that the set characterized by the et function [[ black [Dutch man] ]]M

equals to the set characterized by [[Dutch [black man] ]]M , which is a subset of the set characterized
by [[ black man ]]M .



5 Current Annotation Scheme

In the first stages of our attempt to implement the theoretical model described above, we faced a practical
problem concerning the binding of expressions in the RTE data to structurally equivalent expressions in
the interpreted lexicon: we currently lack an annotation scheme and a user interface that allows anno-
tators to consistently and effectively annotate RTE data. The root of this problem lies in the intricate
ways in which the semantic phenomena that we are concerned with are combined with other phenomena
or with each other. Simplifying RTE material to an extent that allows binding it to the lexicon as in the
above example is often not straightforward. Consider the following example:
Example 4
• T: Comdex – once among the world’s largest trade shows, the launching pad for new computer

and software products, and a Las Vegas fixture for 20 years - has been canceled for this year.

• H: Las Vegas hosted the Comdex trade show for 20 years.9

Validating the entailment in this pair requires a lexical alignment between an expression in the text and the
word hosted in the hypothesis. However, there is no expression in the text to establish this alignment. In
the text, the noun Comdex is in an appositive relation with three conjoined propositions: (i) once among
the world’s largest trade shows; (ii) the launching pad for new computer and software products; and (iii)
a Las Vegas fixture for 20 years. The third element contains a locative restrictive modification in which
Las Vegas modifies fixture. The apposition licenses the inference that Comdex IS a Las Vegas fixture and
serves as a prerequisite for the alignment: Comdex is a Las Vegas fixture⇒ Las Vegas hosted Comdex
that simplifies the lexical inference. This alignment is also required for validating the modification by
the temporal prepositional phrase for 20 years which in the text modifies a noun, fixture, and in the
hypothesis modifies a verb, host - apparently two unrelated lexical items. This example illustrates the
difficulty in separating lexical inferences from the semantic relations that underlie the constructions they
appear in. In this sense, the manual annotation process that we exemplified in Section 4, in which the
stage of Phenomena Simplification takes place before the semantic machinery applies, is challenging and
requires further investigation with RTE data in order to see what part of the RTE can be annotated using
this paradigm, and what elements are needed in order to extend its coverage.

Due to this challenge, and in order to enhance our understanding of the phenomena in the RTE cor-
pora, we adopted a narrower annotation scheme that was carried out on RTE 1-4, named SemAnTE 1.0
- Semantic Annotation of Textual Entailment.10 In this annotation work we focused on valid entailments
involving restrictive, intersective and appositive modification that contribute to the recognition of the
entailment.11 In this approach, a construction is annotated if its semantics are required for validating
the entailment, but no account is made of the compositional method in which the meaning of the full
sentence is obtained. Annotations were marked in 80.65% of the entailments in the RTE 1-4 corpora and
reached cross-annotator agreement of 68% on average in four consistency checks. The internal structure
of the annotated XML files and a use-case of the annotations for evaluating an entailment component
in the BIUTEE recognizer (Stern and Dagan, 2011) are presented in Toledo et al. (2012). See Garoufi
(2007) for other relevant work on semantic analysis and annotation of textual entailment done on RTE 2.

5.1 Phenomena Annotated

Our annotations mark inferences by aligning strings in the text and the hypothesis. This is done by
pairing each annotation in the text with a corresponding annotation in the hypothesis that marks the
output of the inferential process of the phenomenon in question. In the rest of this section we illustrate
the phenomena and underline the annotated part in the text with its correspondence in the hypothesis.

9Pair 214 from the development set of RTE 1.(Dagan et al., 2006)
10The annotated files of SemAnTE are publicly available for download at http://sophia.katrenko.com/CorpusDownload/
11Annotators were instructed to construct a full inferential process informally and then to recognize the contribution of the

phenomena we aimed to annotate. This method could be applied efficiently only to valid entailments. Invalid entailments
marked as unknown exhibit an unidentified relation between the text and hypothesis, and pairs marked as contradictory rarely
center upon the phenomena in question.



5.2 Restrictive modification (RMOD)
• T: A CubanModifier AmericanModifiee who is accused of espionage pleads innocent.
• H: American accused of espionage.

In this case, Cuban modifies American and restricts the set of Americans to Cuban Americans. This
instance of RMOD validates the inference from Cuban American to American which is required for
establishing the entailment. The intersective nature of the process is not exploited in the actual inference,
since the hypothesis does not report that the accused person is Cuban. Thus, only the restrictive property
of the modifier Cuban is here relevant for the validity of the entailment. More syntactic configurations:
• A verb phrase restricted by a prepositional phrase:

– T: The watchdog International Atomic Energy Agency meets in
ViennaModifiee on September 19Modifier.

– H: The International Atomic Energy Agency holds a meeting in Vienna.

• A noun phrase restricted by a prepositional phrase:
– T: U.S. officials have been warning for weeks of possible terror

attacksModifiee against U.S. interestsModifier.
– H: The United States has warned a number of times of possible terrorist attacks.

5.3 Intersective Modification (CONJ)
• T: Nixon was impeached and became the first president ever to resign on August 9th 1974.
• H: Nixon was the first president ever to resign.

This conjunction intersects the two verb phrases was impeached and became the first president ever to
resign. The entailment relies on a subsumption of the full construction to the second conjunct. In addition
to canonical conjunctive constructions, CONJ appears also in Restrictive Relative Clauses whereby the
relative clause is interpreted intersectively with the noun being modified:
• T: Iran will soon release eight British servicemen detained along with three vessels.
• H: British servicemen detained.

5.4 Appositive modification (APP)
• Appositive subsumption (left part):

– T: Mr. Conway, Iamgold’s chief executive officer, said the vote would be close.
– H: Mr. Conway said the vote would be close.

• Identification of the two parts of the apposition as referring to one another:
– T: The incident in Mogadishu, the Somali capital, came as U.S. forces began the final phase

of their promised March 31 pullout.
– H: The capital of Somalia is Mogadishu.

In addition to appositions, APP is annotated in several more syntactic constructions:
• Non-Restrictive Relative Clauses:

– T: A senior coalition official in Iraq said the body, which was found by U.S. military police
west of Baghdad, appeared to have been thrown from a vehicle.

– H: A body has been found by U. S. military police.

• Title Constructions:
– T: Prime Minister Silvio Berlusconi was elected March 28 with a mandate to reform Italy’s

business regulations and pull the economy out of recession.
– H: The Prime Minister is Silvio Berlusconi.

5.5 Marking Annotations

Given a pair from the RTE in which the entailment relation obtains between the text and hypothesis, the
task for the annotators is defined as follows:



Table 2: Counters of annotations in RTE 1-4 separated into development and test sets. A# indicates the
number of annotations, P# indicates the number of entailment pairs containing an annotation and P%

indicates the portion of annotated pairs relative to the total amount of entailment pairs.

(a) RTE 1

Dev set Test set
Ann. A# P# P% A# P# P%

APP 97 87 31 161 134 34
CONJ 90 79 28 126 112 28
RMOD 180 124 44 243 167 42

Any 367 210 74 530 297 74

(b) RTE 2

Dev set Test set
Ann. A# P# P% A# P# P%

APP 179 149 37 155 135 34
CONJ 141 119 30 161 144 36

RMOD 314 205 51 394 236 59
Any 634 318 80 710 350 88

(c) RTE 3

Dev set Test set
Ann. A# P# P% A# P# P%

APP 188 150 38 166 136 34
CONJ 176 138 35 162 134 34
RMOD 300 201 50 307 193 48

Any 664 329 82 635 328 82

(d) RTE 4

Test set
Ann. A# P# P%

APP 259 200 40
CONJ 192 164 33
RMOD 429 271 54

Any 880 413 83

1. Read the data, verify the entailment and describe informally why the entailment holds.
2. Annotate all instances of RMOD, APP and CONJ that play a role in the inferential process.

5.6 Annotation Statistics and Consistency

The annotated corpus is based on the scheme described above, applied to the datasets of RTE 1-4 (Dagan
et al., 2006; Bar Haim et al., 2006; Giampiccolo et al., 2007, 2008). We report annotation statistics in
Table 2 and consistency measurements in Table 3. In each consistency check we picked 50-70 entailment
pairs that both annotators worked on independently, and compared the phenomena that were annotated.

5.7 Annotation Platform

We used GATE Developer (Cunningham et al., 2011) to annotate the original RTE XML files. The
work was performed in two steps using GATE annotation schemes that correspond to RMOD, APP
and CONJ: (1) marking the relevant string in the text using one of GATE’s schemes (e.g. a scheme of
appositive modification), and (2) - marking a string in the hypothesis that corresponds to the output of the
inferential process. The annotation in the hypothesis was done using a dedicated reference to scheme.

5.8 Connection to the interpreted lexicon approach

Consider the following pair from RTE 2:
Example 5
• T: The anti-terrorist court found two men guilty of murdering Shapour Bakhtiar and his secretary

Sorush Katibeh, who were found with their throats cut in August 1991.

• H: Shapour Bakhtiar died in 1991.
Several entailment patterns in this example can be explained by appealing to the semantics of APP, CONJ
and RMOD, as follows:
• APP: The appositive modification in Shapour Bakhtiar and his secretary Sorush Katibeh, who

were found with their throats cut in August 1991 licenses the inference that Shapour Bakhtiar and
his secretary Sorush Katibeh were found with their throats cut in August 1991.

• RMOD: The restrictive modification in August 1991 licenses a subsumption to 1991.



Table 3: Results of Four Consistency Checks. Each check examined 50-70 annotated pairs from RTE
1-4. In these four checks 66%, 74.11%, 66.67% and 64.66% of the annotations were identical, respec-
tively. On average, 68.03% of the annotations we checked were identical. The rubric Incorrect Ann.
presents cases of annotations done with an incorrect scheme or with an incorrect scope. Ambig.-Struct.
are cases of structural or modifier-attachment ambiguity in the text that led to divergent annotations.
Ambig.-Infer. are cases of divergent annotations stemming from several possible analyses of the infer-
ence. Ambig.-Scheme refers to instances of divergent annotations due to unclarity or limited specification
in the annotation scheme. The last two measures are reported only for the second, third and forth checks.

Measure RTE 1 RTE 1+2 RTE 3 RTE 4
Data Source(s) Dev set Test sets Dev+Test sets Test set

Entailment Pairs 50 70 70 70
Total Ann. 93 112 99 133

Identical Ann. 62 83 66 86
Missing Ann. 2 7 7 10
Incorrect Ann. 10 1 2 2
Ambig.-Struct. 9 16 20 15
Ambig.-Infer. N/A 8 13 12

Ambig.-Scheme N/A 0 9 7
Consistency (%) 66.67 74.11 66.67 64.66

• CONJ: The conjunction in Shapour Bakhtiar and his secretary Sorush Katibeh licenses a sub-
sumption of this expression to Shapour Bakhtiar.

By combining these three patterns, we can infer that Shapour Bakhtiar was found with his throat cut in
1991. However, additional world knowledge is required to infer that found with his throat cut entails died.
In our current annotation scheme this inference cannot be handled since lexical alignment of unmodeled
phenomena is not supported . This motivates a more robust approach as proposed in Section 4.

6 Conclusions

The goal of this research is to establish a model-theoretic benchmark explaining entailment data. We
have presented a model that utilizes standard semantic principles and illustrated the way it accounts for
textual entailment from the RTE corpora. The model centers upon an interpreted lexicon that comprises
words and operators. These elements are used to represent a fragment of English to which premises and
hypotheses may be bound.

We focus on the annotation of semantic phenomena which are predominant in the RTE corpora and
can be annotated with high consistency, but which may have several syntactic expressions and therefore
allow us to generalize regarding abstract entailment patterns. Non-modeled phenomena that exist in the
data are simplified in a preparatory step but cases in which such phenomena are deeply intertwined with
the semantic phenomena that we model pose a challenge for the formalization of an annotation scheme.

At a first stage, we carried out a restricted annotation scheme by which instances of restrictive,
intersective, and appositive modification are marked in entailment pairs with no account for the full
inferential process between the premise and the hypothesis. These phenomena were found in 80.65% of
the entailments in RTE 1-4 and were marked with cross-annotator agreement of 68% on average.

We are currently investigating different directions in the formulation of an extensive annotation
scheme coincident with the model we described and are aiming to develop a corresponding annotation
platform. This platform would allow annotators to bind constructions manifesting supported semantic
phenomena to representations in the interpreted lexicon as well as to simplify lexical/syntactic phenom-
ena of the kind illustrated in Examples 2 and 4 by textual alignment. In the next stages of this project, we
plan to use an external theorem prover to automatically validate the entailment relation (or lack thereof).
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Abstract

The influential idea by van der Sandt (1992) to treat presuppositions as anaphora in the framework of
Discourse Representation Theory (DRT, Kamp and Reyle, 1993) has inspired a lot of debate as well
as elaborations of his account. In this paper, we propose an extension of DRT, called Projective DRT,
which adds pointers to all DRT referents and conditions, indicating their projection site. This means
that projected content need not be moved from the context in which it is introduced, while it re-
mains clearly discernible from asserted content. This approach inherits the attractive properties from
van der Sandt’s approach to presupposition, but precludes a two-step resolution algorithm by treating
projection as variable binding, which increases compositionality and computational efficiency. The
result is a flexible representational framework for a descriptive theory of projection phenomena.

1 Introduction

When it comes to presupposition projection, or more general ‘projection phenomena’, there seems to
be some unpleasant friction between neat compositional approaches to discourse representation, and
empirically driven theories. A case in point is Discourse Representation Theory (DRT), in which proper
names are treated with a special procedure in order to account for their availability as antecedent for
subsequent anaphora (Kamp and Reyle, 1993). This behaviour is due to the projective nature of proper
names, that is, their existential indifference to logical operators such as negation and conditionals. In
van der Sandt’s (1992) empirically-driven theory of presupposition projection, formalized in the DRT
framework, this discrepancy between compositionality and empirical soundness becomes very clear:
presuppositions are only resolved in a second stage of processing by moving them from an embedded
context to their context of interpretation. In purely compositional accounts of DRT, on the other hand,
treatment of projection phenomena is usually simply left out (Muskens, 1996).

The goal of this paper is to investigate whether van der Sandt’s idea to treat presuppositions in the
same way as anaphora can be generalized to account for other projection phenomena, such as Potts’s
(2005) conventional implicatures, in a more compositional manner. To this purpose, we propose a repre-
sentational extension of DRT, called Projective DRT (PDRT), that deals with presuppositions and other
projection phenomena without moving semantic material within the representation. The approach is a
simplification of Layered DRT, as proposed by Geurts and Maier (2003), since presuppositions and as-
serted content are treated on the same level. In PDRT, projection is represented by assigning variables
ranging over DRSs, just as anaphora in dynamic frameworks are dealt with by assigning variables rang-
ing over entities. This results in semantic representations that are close to the linguistic surface structure,
while clearly distinguishing between asserted and projected content.

This paper is organized as follows. First, a theoretical background on projection phenomena in DRT
is provided, focusing on van der Sandt’s (1992) approach to presuppositions. In Section 3 we introduce
Projective DRT, describing its preliminaries and how it deals with different types of (projective) content.
The interpretation of PDRT is given via a translation to standard DRT, described in Section 4. Finally,
Section 5 presents the conclusion and indicates directions for future work, describing an ongoing effort
to implement PDRT into a large corpus of semantically annotated texts: the Groningen Meaning Bank
(Basile et al., 2012).



2 Background

Presuppositions have a long history in the formal semantics and pragmatics literature (see, e.g., Beaver
and Geurts, 2011, for an overview). In this paper, we focus on a specific representational theory of
presuppositions based on Discourse Representation Theory (DRT; Kamp and Reyle, 1993).

2.1 Presuppositions as anaphora

In the theory of van der Sandt (1992), presupposition projection is treated on a par with anaphora reso-
lution. This approach is motivated by the observation that presuppositions and anaphora display similar
behaviour, since they both project their content from the scope of entailment-cancelling operators and
show a preference for binding to an accessible antecedent. Unlike anaphora, however, presuppositions
can occur felicitously in contexts where no suitable antecedent can be found. In these cases a new an-
tecedent is created at an accessible discourse level, a process that has been called ‘accommodation’. The
framework used by van der Sandt to implement his theory is DRT. In this account, each DRS is associated
with a so-called A-structure, in which all presuppositions of that DRS are collected. In a second stage
of processing, these presuppositions are resolved by either binding them to earlier introduced discourse
referents or accommodating them at a suitable level of discourse. Presupposition resolution is secured
by applying several constraints that determine relative preferences between alternative interpretations.
These constraints include, for example, that binding is preferred over accommodation, and that global
accommodation is preferred over local accommodation (see also Geurts, 1999).

An example of the working of van der Sandt’s algorithm is shown in (1) (the A-structure introduced
by the presuppositional content is indicated by a dashed box). In the unresolved representation in (1a)
the presupposition triggered by the definite description “the cyclist” occurs in the A-structure at the
introduction site. In the second stage of processing, this A-structure is resolved by accommodating the
presupposition in the global DRS, resulting in the representation shown in (1b).

(1) Someone did not see the cyclist.
a. Unresolved DRS:

x
person(x)

¬
see(x,y)

y
cyclist(y)

b. Resolved DRS:

x y
person(x)
cyclist(y)

¬ see(x,y)

One of the main issues with van der Sandt’s analysis of presuppositions in DRT is that, after pre-
supposition projection, accommodated presuppositions and asserted content are indistinguishable. For
example, in (1b) the accommodated presupposition “the cyclist” is added to the global context and there-
fore obtains the same status as the asserted content introduced by “someone”. Krahmer (1998) argues,
following Kracht (1994), that accommodated presuppositions should maintain their presupposition-hood
because they are interpreted different from asserted content. For example, falsehood of a presupposition,
also called presupposition failure, makes the sentence in which it occurs undefined (as in “The king of
France is bald”, where the existence of a king of France is presupposed), while in the case of falsely
asserted content, the sentence is simply false (as in “France is a monarchy”). Moreover, given a com-
positional approach to semantics, we have to take into account that accommodated presuppositions may
become bound later on, when more information of the surrounding context becomes available. This is
not the case for asserted content, which implies that at each stage of processing these types of content
should be distinguishable.

In order to resolve this issue, Krahmer (1998) introduces a marker for presuppositional content, such
that presuppositions are accommodated at a higher discourse level as presuppositions, allowing for an



interpretation distinct from asserted content. While this increases compositionality, the presupposition
is still moved away from its introduction site in case of accommodation, which makes it difficult to
retrieve the linguistic surface structure. This is problematic for applications such as surface realisation
– text generation from semantic representations – and for the treatment of phenomena that depend on
this surface structure, such as factive constructions and VP-ellipsis. Introducing yet another marker to
identify the introduction site of a presupposition would clutter the representation and severely reduce
readability and computational efficiency. Another issue with this approach is that recently the property
of projection has been associated with a wider range of linguistic expressions outside of presuppositions
(see Simons et al., 2010, for an overview). An important example are conventional implicatures (CIs),
as described by Potts (2005). An example of a CI is shown in (2) (adapted from Potts, 2005).

(2) It is not true that Lance Armstrong, an Arkansan, won the 2002 Tour de France.

The conventional implicature triggered in the appositive (that Lance Armstrong is an Arkansan), is pro-
jected from out of the scope of the negation, just like the presupposition triggered by the proper name.
However, CIs show a different projective behaviour than presuppositions, since they have a strong resis-
tance against binding to an antecedent. This is explained by the observation that they intuitively convey
‘new’ information, like asserted content. This preference for accommodation contrasts with the theo-
retical assumptions of van der Sandt (1992) and Krahmer (1998), who implement accommodation as a
repair strategy.

In sum, we need a single representational framework that allows for a separate treatment of asserted
and projected content. An important step in this direction is Layered DRT (Geurts and Maier, 2003)
where different types of information are treated on different layers. We will show that although this
representation accounts for the differences between asserted, presupposed and conventionally implied
content, it fails to capture their similarities and interactions.

2.2 Layered DRT

In Layered DRT (LDRT), the distinction between different types of information is implemented by in-
troducing different layers (Geurts and Maier, 2003). Each discourse referent and condition is associated
with a set of labels that indicate the layers on which the information is interpreted. These layers allow for
a distinction between asserted and presupposed content, but also for a separate interpretation of impli-
cated, indexical and formal content. An example is shown in (3), where the label p indicates presupposed
content, the label a implicates asserted content and ci indicates a conventional implicature.

(3) Bill, a linguist, does not like Mary.

xp
Billp(x)
linguistci(x)

¬a
yp
Maryp(y)
likea(x,y)

This example shows that the different types of content are represented within a single framework, while
being clearly distinguishable through the labels. The different layers are connected by sharing discourse
referents, indicating the interaction between different types of content. Since all conditions are indexed
with a label, projected material can remain at its introduction site, because it is interpreted at a separate
layer and therefore it is not targeted by logical operators. The interpretation of LDRT is defined on the
basis of the truth-conditional content of sets of layers. For example, the presupposed meaning of (3) is
true in the set of worlds in which the individuals called Bill and Mary exist. The asserted content can
only be defined in combination with the presupposed content, representing the set of worlds in which
Bill does not like Mary.



Although LDRT nicely captures the differences and dependencies between the various types of infor-
mation, the separation into different layers comes at a cost. Firstly, it is unclear under which conditions
a new layer is created. According to Geurts and Maier (2003, pp.15–16), all information that has a
“special status” may be put on a separate layer. However, this may result in abundance of layers that all
have their specific interpretation, which would fail to account for any similarities between phenomena
interpreted on different layers. In particular, the similar felicity conditions for anaphora and presup-
positions described by van der Sandt (1992) and the strong correspondence between asserted content
and conventional implicatures (see, e.g., Amaral et al., 2007) cannot be captured in a multi-dimensional
(multi-layered) framework.

Secondly, not all material seems to strictly belong to a specific layer. For example, Maier (2009)
adapts Layered DRT to account for the special behaviour of proper names and indexicals, which are
taken to constitute a special layer for ‘reference-fixing’ content (Maier calls this the ‘kripke-kaplan’
or kk-layer, separating its content from the ‘fregian’ fr-layer). However, some expressions, such as
proper names and third person pronouns must be allowed to ‘hop’ between layers in order to account
for their different usages (e.g., third person pronouns are regularly used in both deictic and anaphoric
constructions). This solution is criticized by Hunter (2012), who argues that a relaxation of the separation
between layers seems to defeat their purpose, since apparently they do not represent strictly distinct parts
of meaning. Hunter provides an alternative analysis in which she shows that no extra layer is needed
for indexical content; the behaviour of reference-fixing expressions can be accounted for by adding an
extra-linguistic context level to standard DRT, the content of which is determined by the actual state of
the world. This context allows indexicals to pick out a unique object in the actual world, without the
need for a separate layer of meaning.

The goal of the current paper is to apply a similar kind of dimension reduction for projection phe-
nomena, and to show that their behaviour can be accounted for within a unidimensional framework. To
this purpose, we develop Projective DRT, which extends standard DRT with a set of pointers to indicate
the accommodation site of linguistic material. The framework can be seen as a refinement of Layered
DRT, which integrates a subset of its layers into one and thereby accounts for the distinction, as well as
the similarities between the different phenomena.

3 Projective Discourse Representation Theory

Projective DRT (PDRT) is an extension of standard DRT in which each referent and condition is associ-
ated with a pointer to indicate projection behaviour. The basic idea of PDRT is that all projected content
is represented locally, i.e., at the introduction site, and that projection is signalled by means of pointers
that indicate where the content is to be interpreted. This means that projection is not realised by physi-
cally moving semantic material in the resolution stage, but by setting a variable equation on pointers and
PDRS labels. This representation stays closer to the linguistic surface structure, and reduces computa-
tional complexity born out of a two-stage resolution mechanism. Moreover, presupposed and asserted
(i.e. non-projected) content are clearly discernible in the representation at each step of composition,
while remaining subject to the same interpretation mechanism.

3.1 Projection as variable binding

In PDRT, asserted and projected material is treated in the same way, by associating the content with
a pointer to its context of interpretation. The differences between asserted and projected material arise
from the different contexts they point to. Asserted material gets as pointer the label of the PDRS in which
it is introduced, and is thus interpreted locally. In the case of projected material, the pointer may refer
to the label of an accessible PDRS (in van der Sandt’s terminology: a PDRS on the projection path), or
it may be a free variable. As a result, projected content is interpreted in the appointed PDRS or in the
global PDRS in case the pointer is a free variable. An example is shown in (4), where we use integers to
denote labels and bound pointers, and f for free pointers.



(4) a. A man smiles.

1
1←x
1←man(x)
1←smile(x)

b. The man smiles.

1
f ←x
f ←man(x)
1←smile(x)

c. It is not the case
that the man smiles.

1

1← ¬

2
f ←x
f ←man(x)
2←smile(x)

Each PDRS introduces a label, represented on top of the PDRS, and all referents and conditions associate
with a label via a pointer, represented with an inverted arrow. If no material is projected, as in (4a), all
material points to the PDRS in which it is introduced (the PDRS labeled ‘1’). In (4b) and (4c), on the
other hand, the definite description ‘the man’ triggers a presupposition about the existence of its referent.
In PDRT this is indicated by using a free variable as pointer for the presupposed material (here, ‘f ’).
Free pointers are interpreted as pointing to the outermost PDRS (representing the discourse context),
which both in (4b) and (4c) is the PDRS labeled ‘1’. As a result, the interpretations of (4a) and (4b)
are equivalent, as desired, but on the representational level they are clearly distinguishable in order to
account for their different compositional properties.

3.2 Preliminaries

The vocabulary of PDRT extends the standard DRT language with labels for DRSs and pointers for
referents and conditions. A structure in PDRT (a PDRS) consists of a label φ, a set of projected referents
D and a set of projected conditions C, resulting in a triple: 〈φ,D,C〉. The projected referents and
conditions are defined as follows:

Definition 1 (Projected referents).
If p is a pointer and d is a discourse referent, then 〈p, d〉 is a projected discourse referent.

Definition 2 (Projected conditions).

• If p is a pointer and P is an n-place predicate and u1, ..., un are discourse referents, then
〈p, P (u1, ..., un)〉 is a projected condition.

• If p is a pointer and φ and ψ are PDRSs, then 〈p,¬φ〉, 〈p, φ ∨ ψ〉, 〈p, φ→ ψ〉 are
projected conditions.

Furthermore, accessibility between PDRSs and free variables are defined just as in standard DRT (Kamp
and Reyle, 1993). Below, when possible, we will simply refer to the referents and conditions of PDRSs,
instead of projected referents and projected conditions.

In the current implementation, the semantics of a PDRS is provided via a translation to standard
DRT (see Section 4). This is computationally advantageous because of the model-theoretic properties of
standard DRT, which are interpretable via first order logic (Muskens, 1996). This means that although in
PDRT the movement of projected material is precluded at the representational level, in the interpretation
it will be moved in order to obtain equivalence to DRT. This way, the theory inherits some attractive
properties from the DRT account to presupposition, such as its inference mechanisms and predictions
with respect to, for example, the proviso problem (cf. Geurts, 1999). However, the approach can easily
be adapted to incorporate other interpretative models, for example a three-valued logic to account for
presupposition failure in terms of undefinedness (see, e.g., Krahmer, 1998).

3.3 PDRS composition

Most presuppositional theories are lexically driven, i.e., based on the assumption that specific lexical
items give rise to presuppositions (so-called ‘presupposition triggers’). Therefore, projected material



will be manifested in the lexical semantics of projection triggers. Various authors have proposed a com-
positional treatment of DRT using basic tools from Montague Grammar and lambda calculus (Muskens,
1996; Bos, 2003; de Groote, 2006). Compositionality in PDRT is realised by providing every lexical
item with an (unresolved) semantics in the form of a typed lambda term. In order to combine these
unresolved semantics, a merge operation can be applied that combines two PDRSs into one by means
of merge-reduction (see, e.g., Bos, 2003). In the current framework, we use different types of merge for
asserted, presupposed and conventionally implied material in order to account for their different compo-
sitional properties.

In PDRT, projected material is not interpreted on a different level than asserted material, it only
contributes to the context in a different way. This is realised by implementing distinct types of merge
for asserted and presupposed material: assertive merge (+) and projective merge (∗). Assertive merge
between two (unresolved) PDRSs can be defined in the usual way by the union of the referents and
conditions. Additionally, however, the pointers that refer to the merged PDRSs (i.e., the bound pointers)
must be unified with the label of the resulting PDRS, in order to secure that asserted material is interpreted
locally. The definition of assertive merge operations is shown below. For the renaming of pointers we
use the notation ‘A[x/y]’, which is taken to represent the set resulting from replacing every instance of
y in the set A by x.

Definition 3 (Assertive merge).
i
Di

Ci

+

j
Dj

Cj

:=
j

Di[j/i] ∪Dj

Ci[j/i] ∪ Cj

In words, the definition for assertive merge defines the merge of two asserted PDRSs as the union of the
domains and conditions of the PDRSs, with the local pointers of the PDRS in the first argument of the
merge (labeled i) replaced by the label of the second argument of the merge (labeled j).

Projected material, on the other hand, is not affected by the local context, but keeps its own pointer,
which either refers to its accommodation site or is a free variable. Therefore, projective merge only
involves adding the projected referents and conditions to the resulting DRS, without affecting their inter-
pretation. This results in the following definition:

Definition 4 (Projective merge).
i
Di

Ci

∗
j
Dj

Cj

:=
j

Di ∪Dj

Ci ∪ Cj

Conventional implicatures, in turn, exhibit yet a different type of compositional behaviour (Potts,
2005). Like presuppositions, CIs project out of their local context. Unlike presuppositions, however,
they cannot bind to an antecedent, nor accommodate locally (i.e., non-globally). In PDRT, this is realised
by always projecting conventionally implied content to the outermost context (the “global” PDRS). This
way, conventional implicatures receive an interpretation that is in some way between that of presuppo-
sitions and assertions: CIs accommodate at the highest possible context, while assertions accommodate
locally and presuppositions remain free to indicate binding possibilities. In the definition for implica-
tive merge, this means that all (bound) pointers of the conventionally implied content are replaced by a
constant, say ’0’, which always refers to the outermost discourse context. This results in the following
definition:

Definition 5 (Implicative merge).
i
Di

Ci

•
j
Dj

Cj

:=
j

Di[0/i] ∪Dj

Ci[0/i] ∪ Cj

3.4 Projection in PDRT

Next we will show how the different merge definitions are implemented in the lexical semantics of the
linguistic material, resulting in a unified compositional framework for the representation of asserted
content, presuppositions and conventional implicatures.



3.4.1 Asserted versus projected content

The distinction between asserted content and projected content is achieved by making use of different
merge operations, reflecting the different ways in how the content is added to the discourse context. As
an example, we look at the lexical semantics of definite descriptions and indefinites. In order to obtain
the representations shown in (4), the indefinite should be added to the local context and the definite
description should project using a free variable as pointer. This can be achieved by using different
types of merge in the lexical semantics of “a” and “the”. An indefinite description combines with the
local context using an assertive merge, which means that the referent inherits the label from the merged
PDRS and thus becomes asserted content. Definite descriptions, on the other hand, project out of their
local context, which can be achieved using projective merge. The resulting lexical semantics for the
determiners “a” and “the” are shown in (5).

(5) a. “a”: λp.λq.((

i
i← x + p(x)) + q(x))

b. “the”: λp.λq.((

i
i← x + p(x)) ∗ q(x))

The lexical semantics of the indefinite article “a” introduces a discourse referent in a local PDRS. This
PDRS is first combined with a predicate (e.g. a noun like “man”) using assertive merge. The result of
this merge operation is then combined with another predicate (e.g. a verb like “smiles”), again using
assertive merge. This results in a representation where the indefinite description (“a man”) is interpreted
locally in the PDRS introduced by the rest of the context (“smiles”). For the definite article “the”, on the
other hand, the projective merge is used to combine the result of the first, assertive merge with the rest
of the context. This means that the definite description keeps its own pointer, which will either be bound
by an accessible PDRS, or become a free variable in the final representation, indicating accommodation.

Other presupposition triggers, such as pronouns and proper names, receive a lexical semantics similar
to definite descriptions, using projective merge. In case a presupposition gets bound, the standard DRT
analysis can be used, introducing an equality relation between the referent and the antecedent (Kamp and
Reyle, 1993). Alternatively, we can unify the referent with the antecedent, as in van der Sandt (1992).

3.4.2 Conventional Implicatures

Potts (2005) defined the class of conventional implicatures on the basis of a set of specific criteria, includ-
ing non- cancellability, not at-issueness, scopelessness and speaker orientation. He roughly categorizes
CIs into two groups: supplemental expressions (including appositives, non-restrictive relative clauses –
NRRCs– and parenthetical adverbs) and expressives (including expressive attributive adjectives, epithets
and honorifics). Potts (2005) presents a multi-dimensional framework in order capture the distinction
between CIs and asserted content. However, there is strong evidence against such a multi-dimensional
approach, as Amaral et al. (2007) argue that there is a strong interaction between CIs and asserted con-
tent and Simons et al. (2010) unify presuppositions and CIs as projection phenomena. Therefore, in
Projective DRT conventional implicatures are treated in the same way as presuppositions and asserted
content, with the peculiarity that CIs always accommodate to the global discourse level. This is realised
by projecting CIs using the implicative merge defined in Section 3.3.

Conventional implicatures are often triggered by constructions rather than lexical items, for example
the subordinating constructions of appositives and NRRCs. In PDRT this is reflected by creating a
special semantics for the subordinating comma, which projects its second argument. Because of the
directionality of the merge operator, this means that the subordinating comma must reorder its arguments,
such that the subordinated content is projected. The resulting semantics is shown in (6).

(6) subordinating comma “,”: λp.λq.(q • p)



An example of the PDRT representation of an appositive is shown in (7). Note that the pointer of
the appositive is ‘0’, which is a constant referring to the label of the current global context, here ‘1’.
Thus, both the presupposition introduced by the proper name and the CI introduced by the appositive
accommodate to the global discourse context. The difference is that the pointer of the presupposition
(indicated with ‘f ’) remains available for binding, while the pointer of the appositive will always refer
to the most global context.

(7) It is not true that Lance Armstrong, a former cyclist, is a Tour-winner.
1

1← ¬

2
f ←x
f ←Lance Armstrong(x)
0←former cyclist(x)
2←Tour-winner(x)

3.5 Comparison with related approaches

As described above, Layered DRT, as proposed in Geurts and Maier (2003), is a multi-dimensional
framework that can account for different linguistic phenomena within a single representation. Projective
DRT provides a unidimensional treatment for a subset of the phenomena covered in LDRT, including as-
serted content, presuppositions and conventional implicatures. The advantage of treating these different
phenomena on a single ‘layer’ is that they are not treated as different kinds of meaning; they merely con-
tribute their content to the context in a different way. A similar endeavour was taken by Hunter (2012),
who argues for a unidimensional account of indexicals and asserted content. She proposes a DRT-style
analysis in which an extra context is created for reference-fixing content, which is interpreted relative
to the actual state of the world. This fits neatly within the idea of Projective DRT, where linguistic
expressions are differentiated on the basis of the context the project (‘point’) to, and thus allows for a
straightforward extension along these lines. We will leave an implementation of this and other extensions
of PDRT for future work.

The account presented here is also related to the work of Schlenker (2011), who proposes a DRT
account in the spirit of Heim (1983). In his representation, presupposed propositions are indexed with
context variables that explicitly represent local contexts in the logical form. In this sense, his analysis
is in line with approaches that use update semantics (e.g., Zeevat, 1992), because the context variable
defines the context in which the presupposition is interpreted. The anaphoric aspect is therefore not in the
presupposition itself, but in the context variables, which can anaphorically refer to accessible contexts.
The consequence of this analysis is that accommodation does not imply adding the presuppositional
content to a higher context, but rather interpreting it within this higher context. So, the interpretation
of the presupposition itself, rather than that of the context in which it is accommodated is affected. In
this respect Schlenker’s approach crucially differs from Projective DRT, since in PDRT the traditional
DRT strategy of adding presuppositions to their context of interpretation is applied. This allows for
a straightforward analysis of cases of intermediate accommodation, which are difficult to capture in
Schlenker’s account. Moreover, PDRT allows for a more fine-grained analysis, since each referent and
condition is associated with an interpretation site, while Schlenker only projects complete propositions.

4 Translation PDRT to DRT

The semantics of PDRSs can be described via a translation to standard DRT (Kamp and Reyle, 1993). As
described above, PDRT is not strictly limited to this interpretation and may be extended to incorporate
other interpretation models. We implemented PDRT as part of the wide-coverage semantic parser Boxer
(Bos, 2008), including an automatic translation to standard DRT. Below we only provide a sketch of the
algorithmic translation to DRT, as space limitations do not permit a description of the full translation.



4.1 Translation procedure

For the translation to DRT we make use of PDRT’s separation of logical structure and linguistic content.
Since each referent and condition is associated with a pointer to its accommodation site, it is possible to
first separate this content from the embedded PDRS structure and accordingly project each condition to
its appointed site. We assume that α-conversion is applied to the PDRS in order to make sure that all
labels, pointers and referents use unique variables.

For convenience, we here describe the algorithm for translating PDRSs to DRSs in three steps. In the
first step, all accommodation sites referents and conditions are gathered in separate sets. In the second
step, the referents and conditions are added to their appointed accommodation site. In the third and final
step, the PDRSs in the set of accommodation sites are combined to form a DRS.

Step 1. We start by creating three empty sets: one for accommodation sites (Π), one for discourse
referents (∆) and one for conditions (Γ). Starting from a PDRS Φ = 〈ϕ,D,C〉, we define the pointer
of Φ to be a constant: p(Φ) = g, and we add this pointer, together with an empty PDRS with the label
of Φ to Π: Π ∪ 〈p(Φ), 〈ϕ, {}, {}〉〉. All referents d ∈ D are added to ∆. For the conditions c ∈ C, the
base case is that c contains no embedded PDRSs, i.e., c = 〈p,R(x1, ..., xn)〉. In this case c is added to
Γ. If c does contain an embedded PDRS, e.g., c = 〈p,¬〈l,Dl, Cl〉〉, then a fresh label is created, say l0.
This label is used as a sort of ‘trace’ to indicate where the embedded PDRS was introduced. We add
〈l0, 〈l, {}, {}〉〉 to Π and 〈p,¬〈l0, {}, {}〉〉 to Γ. This way, the context introduced by the embedded PDRS
becomes available as an accommodation site, and the condition containing the embedded PDRS is added
to the list of conditions. Accordingly, the referents (Dl) and conditions (Cl) of the embedded PDRS
are recursively resolved in the same manner as described above, with respect to the current ∆, Γ and
Π. This procedure can also be applied for other complex conditions, such as disjuctions, implications,
modal expressions or propositional PDRSs (e.g., c = 〈p, v : 〈l,Dl, Cl〉〉).

Step 2. In this step, all referents in ∆ and all conditions in Γ are projected to an appropriate PDRS in
the list of accommodation sites, Π. For each referent 〈l, u〉 ∈ ∆, this means that if 〈p, 〈l,Dl, Cl〉〉 ∈ Γ,
then u is added to the domain: Dl ∪ u (so without the pointer). Otherwise, the label occurs free, so u is
added to the domain of the outermost PDRS, which has g as pointer: 〈g, 〈m,Dm ∪ u,Cm〉〉. The same
strategy can be applied for conditions and the process continues until ∆ and Γ are empty.

Step 3. The last step is to put the accommodation sites in Π (which now contain all the accommodated
material) back together in order to form a translated DRS. We start with the DRS Φ = 〈D1, C1〉, such
that: 〈g, 〈l1, D1, C1〉〉 ∈ Π. This accommodation site is accordingly removed from Π. Then we check the
conditions of Φ for embedded PDRSs. If such a complex condition is found, e.g. c = ¬〈lc, Dc, Cc〉, then
the embedded PDRS is replaced by the DRS Ψ = 〈Dm, Cm〉, such that: 〈lc, 〈lm, Dm, Cm〉〉 ∈ Π, which
is accordingly removed from Π. Then, the set of conditions Cm of Ψ is again checked for embedded
PDRSs. Once no embedded PDRSs remain, the remainder of the conditions of the dominating DRS (in
this case, Φ) are checked. This recursive process goes on until Π is empty. At that point we will have a
DRS with all the projected (and asserted) material at its accommodation site.

4.2 Example translation

We now provide an example of the translation procedure explained in the last subsection. The PDRS is
shown in (8a), the desired DRS translation is shown in (8b) and its first-order logic equivalent in (8c).

(8) a.

1
1←x
f ←P(x)

1← ¬
2

1←y
2←Q(y)

b.

x y
P(x)

¬ Q(y)
c. ∃x∃y(P (x)∧¬Q(y))



Step 1. We start with three empty sets: ∆, Γ and Π. First, we add an empty PDRS with the label of the
outermost PDRS Φ and a fixed pointer, say 0, to the set of accommodation sites: Π = {〈0, 〈1, ∅, ∅〉〉}.
We add the referents and simple conditions of Φ to the correct sets: ∆ = {〈1,x〉}; Γ = {〈f,P(x)〉}.
Then, we create a fresh label, say 3, and add an empty PDRS with the label of the embedded PDRS
and the fresh label as pointer to Π: Π = {〈0, 〈1, ∅, ∅〉〉, 〈3, 〈2, ∅, ∅〉〉}. The condition with the op-
erator and an empty PDRS with the fresh label is then added to Γ: Γ = {〈f,P(x)〉, 〈1,¬〈3, ∅, ∅〉〉}.
Finally, we add the content of the embedded PDRS to the corresponding sets: ∆ = {〈1,x〉, 〈1,y〉};
Γ = {〈f,P(x)〉, 〈1,¬〈3, ∅, ∅〉〉, 〈2,Q(y)〉}.

Step 2. Now, we simply project each of the elements of ∆ and Γ to the correctly labeled PDRS in Π,
i.e., to the PDRS that has the pointer of the referent/condition as label, or to the PDRS with the pointer 0
in case of a free variable: Π = {〈0, 〈1, {x, y}, {P(x),¬〈3, ∅, ∅〉}〉〉, 〈3, 〈2, ∅, {Q(y)}〉〉}.

Step 3. Finally, we create a DRS Ψ from the accommodation site in Π that has 0 as pointer: Ψ =
〈{x, y}, {P(x),¬〈3, ∅, ∅〉}〉. We check for embedded PDRSs in the conditions of Ψ and replace them
with the DRS from the corresponding element in Π (matching the pointer to the label). The result is the
following DRS: 〈{x, y}, {P(x),¬〈∅, {Q(y)}〉}〉, which is exactly the desired DRS shown in (8b).

5 Conclusions and future work

In this paper we presented Projective DRT, and extension of DRT in which all linguistic material is asso-
ciated with a pointer to indicate its accommodation site. This way, semantic material does not need to be
moved or copied at the representational level, as projection is secured by using free variables as point-
ers, or by binding the pointers of projected material to labels introduced by higher level PDRSs. This
is in line with van der Sandt’s (1992) idea to treat presuppositions as anaphora, since in DRT anaphora
resolution is also based on variable binding. The theory results in a simple and parsimonious representa-
tion of different linguistic phenomena, with a unified treatment of asserted content, presuppositions and
conventional implicatures. Moreover, it allows for compositional construction of discourse structures
with projected content while precluding a two-step resolution algorithm. The resulting representation
structures have a straightforward interpretation via translation to standard DRT.

Projective DRT can be extended to account for other phenomena, as well as other interpretation
models. For example, we above mentioned a possible extension with a special context for indexical
content, as described by Hunter (2012). Other directions for future work include the incorporation of
phenomena such as factive constructions and VP-ellipsis with presupposed content in PDRT. A proper
treatment of such phenomena may ask for an extension of the PDRT syntax (for example, allowing
multiple pointers for one condition) or a more elaborate semantics that is not necessarily interpretable
via a translation to standard DRT.

All in all, PDRT provides a transparent and flexible compositional framework for investigating pro-
jection phenomena. The robustness of the framework has already been put to test through an imple-
mentation into Bos’s (2008) wide-coverage semantic parser: Boxer. Future work will aim at evaluating
and refining the PDRSs produced by Boxer via an integration into the Groningen Meaning Bank, a
large-scale corpus of semantically annotated texts (Basile et al., 2012). PDRT allows for a coherent and
easy-to-read representation of projection phenomena, since all content appears locally and the represen-
tation is therefore closer to the linguistic surface structure. This is important for a proper evaluation of
semantic representations, as well as for studying the behaviour of linguistic phenomena. Implementation
of PDRT into a large resource of semantically annotated texts will make an important contribution to
corpus-based investigations into the behaviour of projection phenomena in discourse.
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Abstract

Current approaches to recognizing discourse relations rely on a combination of shallow, surface-
based features (e.g., bigrams, word pairs), and rather specialized hand-crafted features. As a way
to avoid both the shallowness of word-based representations and the lack of coverage of specialized
linguistic features, we use a graph-based representation of discourse segments, which allows for
a more abstract (and hence generalizable) notion of syntactic (and partially of semantic) structure.
Empirical evaluation on a hand-annotated corpus of German discourse relations shows that our graph-
based approach not only provides a suitable representation for the linguistic factors that are needed in
disambiguating discourse relations, but also improves results over a strong state-of-the-art baseline
by more accurately identifying Temporal, Comparison and Reporting discourse relations.

1 Introduction

Discourse relations between textual spans capture essential structural and semantic/pragmatic aspects
of text structure. Besides anaphora and referential structure, discourse relations are a key ingredient
in understanding a text beyond single clauses or sentences. The automatic recognition of discourse
relations is therefore an important task; approaches to the solution of this problem range from heuristic
approaches that use reliable indicators (Marcu, 2000) to modern machine learning approaches such as
Lin et al. (2009) that apply broad shallow features in cases without such indicators.

Especially on implicit discourse relations, where no discourse connective could provide a reliable
indication, broad, shallow features such as bigrams or word pairs conceivably lack the precision that
would be needed to improve disambiguation results beyond a certain level. Conversely, hand-crafted
linguistic features allow one to encode certain relevant aspects, but they have often limited coverage.
Encoding detailed linguistic information in a structured representation, as in the work presented here,
allows us to bridge this divide and potentially find a golden middle between linguistic precision and
broad applicability.

We propose a graph-based representation of discourse segments as a way to overcome both the shal-
lowness of a word-based representation and the non-specificity or lack of coverage of specialized linguis-
tic features. In the rest of the paper, section 2 discusses the current state of the art in discourse relation
classification. Section 3 introduces feature graphs as a general representation and learning mechanism,
and section 4 provides an overview of the used corpus, as well as feature-based and graph-based repre-
sentations for discourse relations. Section 5 presents empirical evaluation results.

2 Classification of Discourse Relations

Most early work on recognizing discourse relations was tailored towards unambiguously marked, explicit
discourse relations, such as those introduced by because (e.g. in “[Peter despises Mary] because [she
stole his yoghurt]”) since connectives unambiguously signal one particular relation.



In other cases, a connective can be ambiguous, as in the case of German ‘nachdem’ (as/after/since).
Nachdem can signal multiple types of discourse relations (e.g. purely temporal or temporal and causal),
as in (1):1

(1) [arg1 Nachdem sowohl das Verwaltungsgericht als auch das Oberverwaltungsgericht das Verbot
bestätigt hatten,]
[arg2 rief die NPD am Freitag nachmittag das Bundesverwaltungsgericht an].
[arg1 After both the Administrative Court and the Higher Administrative Court had confirmed the
interdiction,]
[arg2 the NPD appealed to the Federal Administrative Court.] (Temporal+cause)

Another type of discourse relations are implicit discourse relations, which can occur between neighbour-
ing spans of text without any discourse connective signaling them:2

(2) [arg1 Mittlerweile ist das jedoch selbstverständlich]
[arg2 Die gemeinsame Arbeit hilft, den anderen zu verstehen.]
[arg1 In the meantime, this has become a matter of course] (implied:since) (Explanation)
[arg2 The common work helps to appreciate the other.]

Researchers concerned with classifying the explicit discourse relations signalled by ambiguous dis-
course connectives, such as Miltsakaki et al. (2005) or Pitler and Nenkova (2009), claim that a small num-
ber of linguistic indicators (e.g., tense or syntactic context) can be used for successful disambiguation of
discourse connectives, while Versley (2011) claims that additional semantic and structural information
can help improving the classification accuracy in such cases.

In the case of implicit discourse relations, the absence of overt clues suggests that a combination
of weak linguistic indicators and world knowledge is needed for successful disambiguation. Sporleder
and Lascarides (2008) use positional and morphological features, as well as subsequences of words,
lemmas or POS tags to disambiguate implicit relations in a reannotated subset of the RST discourse
treebank (Carlson et al., 2003). Sporleder and Lascarides also show that (despite the corpus size of
about 1000 examples) actual annotated relations are more useful than artificial examples derived from
non-ambiguous explicit discourse relations.

Research using the implicit discourse relations annotated in the second release of the Penn Discourse
Treebank (Prasad et al., 2008) shows a focus on shallow features: Pitler et al. (2009) find that the most
important feature in their work on implicit discourse relations are word pairs. Lin et al. (2009) identify
production rules from the constituent parse, as well as word pairs, to be the most important features in
the system, with dependency triples not being useful as a features, and information from surrounding
(gold-standard) discourse relations having only a minimal impact.

Most recent research, such as Feng and Hirst (2012), who classify a mixture of explicit and implicit
discourse relations in the RST Discourse Treebank (Carlson et al., 2003), or Park and Cardie (2012),
use these shallow features as their mainstay, adding surrounding relations and either semantic similarity
(Feng and Hirst) or verb classes (Park and Cardie), leaving open the question how to incorporate more
general linguistic information.

3 Feature-Node Graphs

Different information sources extract features that are relevant to subparts of an argument clause (e.g.,
information status and semantic class of a noun phrase), extracting features locally loses the information
on each part. In contrast, we hope to maintain the information contained in these local features by
representing them in feature-node graphs. This formalism also allows us to take into account more

1TüBa-D/Z corpus, sentence 7462
2TüBa-D/Z corpus, sentence 448
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Figure 1: Example Feature-Node Graph (i), its backbone (ii), and its expansion (iii)

structure than n-grams (which are limited to relatively shallow information) or dependency triples (which
would be too sparse in the case of typical discourse corpora). 3

Formally, a feature-node graph consists of a set V of vertices with labels LV : V → L, a set of edges
E ⊆ V × V with labels LE : E → L, with the addition of a set F : V → P(L) that assigns to each
vertex a set of feature labels.

The backbone of a feature-node graph is simply the labeled directed graph (V,LV , E, LE), without
any features.

The expansion of a feature-node graph is the labeled directed graph (V ′, L′
V , E

′, L′
E) built by ex-

panding the set of nodes to V ′ = V ] {(v, l) ∈ V × L|l ∈ F (v)} with labels L′
V (v) = LV (v) for all

v ∈ V and L′
V ((v, l)) = l for all v ∈ V, l ∈ F (v) and correspondingly adding edges to get the complete

set E′ = E ] {(v, (v, l))|l ∈ F (v)}, with a special symbol z for the labels of newly introduced edges,
i.e. LE(v, (v, l)) = z.

Figure 1 gives an example of a feature-node graph with the vertices X , Y and Z with F (X) = {u},
F (Y ) = {r, s}, and F (Z) = ∅, edges E = {(X,Y ), (X,Z)} and edge labels LE((X,Y )) = ε,
LE((X,Z)) = a.

Representing desired information as features (instead of, e.g., using words, or POS tags, as the node
labels in a dependency graph) is advantageous because that two feature-node graphs of similar structures
will have a common substructure as long as the backbone of that structure is identical. In the case of
words as node labels, any non-identical word would prevent the detection of the common substructure.

Machine Learning on Feature-Node Graphs Using an attributed graph representation, we can apply
general substructure mining and structured learning approaches to extract good candidates for informa-
tive substructures. In contrast to other fields where these approaches have been used (computational
chemistry, computer vision), computational linguistics problems tend to have both larger data sets as
well as larger structures. As a consequent, the naı̈ve application of these structure mining algorithms
would suffer from combinatorial explosion. In particular, a star-shaped graph (i.e., the typical case of a
node with a large number of features) has exponentially many substructures, which would lead to both
efficiency and performance problems, while an explicit distinction between features and backbone nodes
can help by explicitly or implicitly limiting the number of features that a substructure can have in order
to be considered.

In general, all approaches to learn from structure fall into one of three groups: linearization ap-
proaches, which decompose a structure into parts that can be presented to a linear classifier as a binary
feature, structure boosting approaches, which determine the set of included substructures as an integral
part of the learning task, and kernel-based methods which use dynamic programming for computing the
dot product in an implied vector space of substructures. Kernel-based methods on trees have been used
in the re-ranking of answers in a question answering system (Moschitti and Quarteroni, 2011), whereas
Kudo et al. (2004) use boosting of graphs for a sentiment task (classifying reviews into positive/negative
instances). Arora et al. (2010) use subgraph features in a linearization-based approach to sentiment
classification.

For simplicity reasons, we use a linearization-based approach based on subgraph mining. Generating
candidate subgraphs is done using a version of gSpan (Yan and Han, 2002) that we modified to distin-

3For reasons of efficiency as well as learnability, the structures we use to represent each discourse unit are simpler and more
compact than the annotated corpus data from which they are derived.



Relation # total # implicit % implicit % relation
Contingency

Causal
Result 133 88 66.2% 11.0%
Explanation 122 81 66.4% 10.1%

Conditional
Consequence 26 5 19.2% 0.6%
Alternation 7 2 28.6% 0.2%
Condition 13 — 0.0% —

Denial
ConcessionC 60 9 15.0% 1.1%
Concession 34 5 14.7% 0.6%
Anti-Explanation 3 3 100.0% 0.4%

Expansion
Elaboration

Restatement 149 140 94.0% 17.4%
Instance 63 39 61.9% 4.9%
Background 119 109 91.6% 13.6%

Interpretation
Summary 2 1 50.0% 0.1%
Commentary 36 28 77.8% 3.5%

Continuative
Continuation 89 71 79.8% 8.8%
Conjunction 45 1 2.2% 0.1%

Temporal
Narration 127 70 55.1% 8.7%
Precondition 34 23 67.6% 2.9%

Comparison
Parallel 55 23 41.8% 2.9%
Contrast 66 26 39.4% 3.2%

Reporting
Attribution 67 67 100.0% 8.3%
Source 65 65 100.0% 8.1%

%implicit: proportion of relation instances that are implicit, rather than explicit. % rel: percentage of given relation
among all implicit. About 10% of the implicit instances have multiple labels (e.g. Result+Narration).

Table 1: Frequencies of discourse relations in the corpus of Gastel et al. (2011)

guish between ‘backbone’ nodes and features, and restrict the search space to subgraphs with at most
three feature nodes by stopping the expansion of a subgraph pattern whenever it exceeds this limit.

4 Disambiguating Discourse Relations

In order to test our approach to discourse relation classification, we rely on two German data sets an-
notated with discourse relations: The first contains explicit discourse relations signalled by ambiguous
temporal connectives (in particular nachdem – corresponding to English ‘after/as/since’ as the most am-
biguous connective in that dataset), with an annotation scheme that has been described by Simon et al.
(2011). The corpus contains 294 instances of nachdem, along with other, less ambiguous connectives.
The second data set stems from a subcorpus that has received full annotation for all discourse relations,
according to an annotation scheme described by Gastel et al. (2011). This corpus contains 803 implicit
discourse relations that are not marked by a connective (using the criteria set forth by Pasch et al., 2003).

As can be seen from tables 1 and 2, the two annotation schemes include overlapping groups of
relations (Causal, Temporal and Comparison relations), but the implicit relations cover a broader set of
relations, whereas the temporal connectives are annotated with a finer granularity.



Relation # total % relation
Temporal 276 93.9%
Result

situational
enable 94 31.6%
cause 65 21.7%

rhetorical
evidence 12 4.1%
speech-act 6 2.4%

Comparison
parallel 14 4.8%
contrast 16 5.8%

About 65% of nachdem instances have multiple labels.

Table 2: Frequencies of discourse relations in the nachdem data from Simon et al. (2011)

Among the most frequent unmarked relations are Restatement and Background from the Expan-
sion/Elaboration group, which predominantly occur as implicit discourse relations, as well as Result and
Explanation, which occur unmarked in about two thirds of the cases. In other cases, such as Conse-
quence, Concession (is limited to cases of contraexpectation) and ConcessionC (which also includes
more pragmatic concession relations), only a minority of relation instances is implicit whereas the ma-
jority is marked by an explicit connective.

Relations that are typically marked, such as Contrast – see example (3) – or Concession/ConcessionC
– see example (4) – often contain weak indicators for the occurring discourse relation, such as the oppo-
sition policemen-demonstrators in the first case, or the negation of a reference to Arg1 (“this wish will
not be fullfilled soon”).

(3) [arg1 159 Polizisten wurden verletzt.]
[arg2 Zahlen über verletzte DemonstrantInnen liegen nicht vor.] (Contrast)
[arg1 159 policemen were injured.][arg2 No data is available regarding injured demonstrators.]

(4) [arg1 “Nun will ich endlich in Frieden leben.”]
[arg2 Dieser Wunsch Ahmet Zeki Okcuoglus wird so bald nicht in Erfüllung gehen.]
[arg1 “Now I finally want to live in peace.”] (implied: However,)

[arg2 This wish of Ahmet Zeki Okcuoglu will not be fulfilled any time soon.] (ConcessionC)

Improving the performance on explicit discourse relations beyond the easiest cases, especially in the case
of the notoriously ambiguous temporal connectives, is only possible by exploiting weak indicators for a
relation. Features exploiting these weak indicators are a key ingredient to successfully predicting both
implicit discourse relations and the non-majority readings of explicit discourse relations with ambiguous
temporal connectives.

4.1 Linguistic Features

We implemented a group of specialized linguistic features, which are inspired by those that were suc-
cessfully used in related literature (Sporleder and Lascarides, 2008; Pitler et al., 2009; Versley, 2011).

As implicit discourse relations can occur intra- as well as intersententially, the topological relation
between the arguments is classified by syntactic embedding (if one argument is in the pre- or post-field
of the other), or as one preceding, succeeding or embedding the other.

Several features reproduce simple morphosyntactic properties: One feature signals the presence or
of negation in either argument, either as a negating adverb (English not), determiners (no), or pronouns
(none). A negated Arg1 would be tagged 1N+, a non-negated one as 1N-. Tense and mood of clauses
in either argument are also incorporated as features (e.g. 1tense=t for an Arg1 in pas(t) tense). The



head lemma(s) of each argument, which is normally the main verb, is also included as a feature (e.g.
1Lverletzen for the Arg1 of example 3).

We also mark the semantic type of adjuncts present in either relation argument, with categories for
temporal, causal, or concessive adverbials, conjunctive focus adverbs (also, as well), and commentary
adverbs (doubtlessly, actually, probably . . . ). As an example, an Arg1 containing “despite the cold”
would receive a feature 1adj concessive.

The detection of cotaxonomic relations between words in both arguments using the German word-
net GermaNet (Henrich and Hinrichs, 2010). Such pairs of contrasting lemmas, such as hot-cold or
policeman-demonstrator commonly indicate a parallel or contrast relation. If two words share a com-
mon hyperonym (excluding the uppermost three levels of the noun hierarchy, which are not informative
enough), feature values indicating the least-common-subsumer synset (such as temperature adjective)
and up to two hyperonyms are added.

A sentiment feature uses the lists of emotional words and of ‘shifting’ words (which invert the
emotional value of the phrase) by Klenner et al. (2009) as well as the most reliable emotional words
from Remus et al. (2010). The combination of emotional words and shifting words into a feature is
similar to Pitler et al. (2009): according to the presence of positive- or negative-emotion words, each
relation argument is tagged as POS, NEG or AMB. When a negator or shifting expression is present, a
“-NEG” is added to the tag, yielding, e.g. “1polNEG-NEG” for an Arg1 phrase containing the words
‘not bad’.

4.2 Shallow Features

As mentioned in section 2, shallow lexical features empirically constitute a very important ingredient in
the automatic classification of implicit (and ambiguous explicit) discourse relations, despite the fact that
they lack most – semantic or structural – generalization capabilities. We implemented three groups of
features that have been identified as important in the prior work of Sporleder and Lascarides (2008), Lin
et al. (2009) and Pitler et al. (2009).

A first group of features captures (unigrams and) bigrams of words, lemmas, and part-of-speech
tags. In this fashion, the bigram “Zahlen über” from Arg2 of (3) would be represented by word forms
2w Zahlen über, lemmas 2l Zahl über and POS tags 2p NN APPR.4

Word pairs, i.e., pairs consisting of one word from each of the discourse relation arguments, have
been identified as a very useful feature for the classification of implicit discourse relations in the Penn
Discourse Treebank (Lin et al., 2009; Pitler et al., 2009), and, quite surprisingly, also for smaller datasets
such as the discourse relations in the RST Discourse Treebank targeted by Feng and Hirst (2012) or
the ambiguous connective dataset used by Versley (2011).5 Because of the morphological richness
of German, we use lemma pairs across sentences; for example (3), the lemma Polizist from Arg1
and the lemma DemonstrantIn from Arg1, among others, would be combined into a feature value
wp Polizist DemonstrantIn.

Finally, CFG productions were used by Lin et al. (2009) to capture structural information, including
parallelism. Context-free grammar expansions are extracted from the subtrees of the relation arguments
and used as features by marking whether the corresponding rule type occurs only in one, or in both,
arguments. In example (3), the CFG rule ‘PX → APPR NX’ for prepositional phrases occurs in both
arguments, yielding a feature “prBPX=APPR-NX”, whereas the preterminal rule “APPR→ über” only
occurs in Arg2 (yielding “pr2APPR=über”).

4Sporleder and Lascarides (2008) use a Boosting classifier (BoosTexter) that can extract and use arbitrary-length subse-
quences from its training data. As our dataset is small enough that we do not expect a significant contribution from longer
sequences, we approximate the sequence boosting by extracting unigrams and bigrams. As with the other shallow features,
unigrams and bigrams are subject to the same supervised feature selection that is also applied to subgraph features.

5For an illustration of the differences in size, consider that the Penn Discourse Treebank contains about 20 000 implicit
discourse relations in 2159 articles, and the RST Discourse Treebank contains a lower number of 385 documents; Sporleder
and Lascarides used a sample of 1 051 annotated implicit relations which were derived from the RST Discourse Treebank but
manually relabeled according to an SDRT-like annotation scheme.
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Figure 2: The complete graphs built from the implicit relation arguments “Nun will ich endlich in Frieden
leben.” and “Dieser Wunsch Ahmet Zeki Okcuoglus wird so bald nicht in Erfüllung gehen.” – cf. ex. (4).

4.3 Graph construction

The backbone of the graph is built using nodes for a clause (S), and including children nodes for any
clause adjuncts (MOD), verb arguments (ARG). In the case of relation arguments being in a (syntactic)
matrix clause - subclause relationship (e.g. [arg1 Peter wears his blue pullover,] [arg2 which he bought
last year]), the graph corresponding to the matrix clause receives a special node (SUB-CL, or REL-CL
for relative clauses). This is universally the case for the explicit relations in the case of nachdem, but may
also occur in the case of unmarked relations. For example, Background relations are frequently realized
by relative clauses. Non-referring noun phrases (which are tagged as ‘expletive’ or ‘inherent reflexive’
in the referential layer of TüBa-D/Z), receive a node label expletive instead of ARG.

In each of the adjunct/argument nodes, we include syntactic information such as the category of
the node (nominal/prepositional/adverbial phrase, e.g. cat:NX for a noun phrase), the topological field
(cf. Höhle, 1986, e.g. fd:MF for a constituent occurring in the middle field) and, for clause arguments,
the grammatical function (subject, accusative or dative object or predicative complement – e.g., gf:OA
for the accusative object). Clauses nodes contain features for tense and mood based on the main and
auxiliary/modal verb(s) of that clause (e.g., mood=i, tense=s for an indicative/past clause).

In the realm of semantic information, we use the heuristics of Versley (2011) to identify semantic
classes of adverbials, in particular temporal, causal or concessive adverbials, conjunctive focus adverbs,
and commentary adverbs. As the backbone of our graph structure abstracts from syntactic categories and
only distinguishes adjuncts and arguments, it is possible to learn generalizations over different realiza-
tions of the same type of adjunct: for example, temporal adjuncts may be realized as a noun phrase (next
Monday), a prepositional phrase (in the last week), an adverb (later), or a clause (when Peter was ill).

Noun phrase arguments are annotated with information pertaining to their information status, mark-
ing them either as old (if their referent has already been introduced), mediated (if a modifier – e.g. the
genitive John’s in John’s hat – has been previously introduced), or new (if neither the phrase nor any
of its modifiers has a previous mention). Additionally, we use a semantic categorization into persons
(PER), organizations (ORG), locations (LOC), events (EVT) and other entities. In the case of named
entities, this information is derived from the existing named entity annotation in the TüBa-D/Z treebank
(by simply mapping the GPE label to LOC); for phrases with a nominal head, this information is de-
rived using the heuristics of Versley (2006), which use information from GermaNet, semantic lexicons,
and heuristics based on surface morphology. Clauses as well as arguments and adjuncts are annotated
with their semantic head; prepositional phrases are, in addition, annotated with the semantic head of the
preposition’s argument (in the next year).



From the graph representations of relation arguments that are created in this step, frequent subgraphs
are extracted. The subgraphs must occur at least five times in either the Arg1 or Arg2 graph, have at most
seven nodes, of which at least two must be backbone nodes, and at most three can be feature nodes.

For the learning task, features are created by concatenating an identifier for the subgraph (e.g.
graph1234) with a suffix specifying whether it occurs only in the main clause ( 1), only in the sub-
clause ( 2), or in both clauses ( 12). Detecting subgraphs that occur in both clauses allows the system to
take into account parallelism in terms of syntactic and/or semantic properties of parts of each clause.

Both the shallow features and the subgraph features are subject to supervised feature selection: In
each fold of the 10-fold crossvalidation, the training portion is used to score each feature and only include
the most informatives one in each fold. For this, an association measure between the examples from that
training portion and, for each relation label, the examples in the training portion that the label occurs in,
is determined. The best score over all the labels is kept, and is used to filter out features that score less
than the top-N features of that group. Supervised feature selection has been used by Lin et al. (2009),
using pointwise mutual information (PMI) on candidate productions and word pairs, and in the work of
Arora et al. (2010) using Pearson’s χ2 statistic on candidate subgraphs. We tried PMI, χ2 and the Dice
coefficient 2|A∩B|

|A||B| as association measures, and empirically found that the Dice coefficient worked best
in the case of implicit discourse relations.

5 Evaluation Results

For both the 294 explicit nachdem relations and the 803 implicit discourse relations, we use a 10-fold
cross-validation scheme where, successively, one tenth of the data is automatically labeled by a model
from the remaining nine tenth of the data. Multiple relation labels are predicted by using binary clas-
sifiers (one-vs-all reduction) and using confidence values to choose one or several labels among those
that have the most confident positive classification. In the case of multiple positive classifications (e.g.,
if Reporting, Temporal and Expansion all receive a positive classification), relations are only considered
for the ‘second’ label if the most-confident label and the potential second label have been seen together in
the training data (e.g. Contingency and Temporal can occur together, but Reporting will not be extended
by a second relation labels). In a second step, the coarse grained relation label (or labels) is extended
up to the finest taxonomy level (e.g., an initial coarse-grained Contingency label is extended to Contin-
gency.Causal.Explanation). In our experiments, we use SVMperf, an SVM implementation that is able
to train classifiers optimized for performance on positive instances (Joachims, 2005).

Tables 3 and 4 provide evaluation figures for different subsets of the presented features, using ag-
gregate measures over relations both at the coarsest level (for implicit discourse relations, the five cate-
gories Contingency, Expansion, Temporal, Comparison, Reporting), and the finest level (which contains
twenty-one relations in the case of implicit relations).

For each level of granularity, we can measure the quality of the classifier’s predictions in terms of
an average over relation tokens, giving partial credit for partially matching labelings (e.g., a system
prediction of Narration or Narration+Comparison, instead of gold-standard Narration+Result). This
measure, the dice score, assigns partial credit for a relation token when system and/or gold standard
contain multiple labels and both label sets overlap, calculated as 2|G∩S|

|G|+|S| – an exact match would be
scored as 1.0, whereas guessing a sub- or superset (e.g. only Result instead of Result+Narration) would
give a contribution of 0.66 for that example, and overlapping predictions (Result+Comparison instead
of Result+Narration) would get a partial credit of 0.5. As an average over relation types, we can also
calculate an average of the F-score over all relations, yielding the macro-averaged F-score (MAFS).

Because the label distribution is heavily skewed – some relations, such as Restatement, are relatively
frequent with 140 occurrences, while, e.g., Contrast with 26 occurrences, is much less frequent – a
classification that is biased towards the more frequent relations will receive higher token-weighted (dice)
scores and lower type-weighted (MAFS) scores, whereas an unbiased system would receive lower dice
and higher macro-averaged F scores.



3 relations 7 relations Temp Result Comp contr cause evid
Dice MAFS Dice MAFS F1 F1 F1 F1 F1 F1

Temp+enable 0.829 0.573 0.680 0.208 0.97 0.75 0.00 0.00 0.00 0.00
random 0.751 0.562 0.626 0.211 0.94 0.62 0.13 0.06 0.23 0.00
ling 0.830 0.666 0.698 0.358 0.97 0.75 0.28 0.00 0.35 0.37
Ver11 0.846 0.751 0.717 0.361 0.97 0.76 0.52 0.40 0.38 0.26
gr(2000,χ2) 0.839 0.727 0.688 0.381 0.97 0.77 0.45 0.31 0.13 0.23
Ver11+gr(5k,χ2) 0.859 0.774 0.734 0.472 0.97 0.78 0.57 0.51 0.36 0.47

Table 3: Results for disambiguation of nachdem. Rows include the specialized linguistic features of
Versley (2011), as ling, a system additionally using word pairs and CFG (with unsupervised feature
selection), as Ver11, and finally versions including the graph representation (gr and Ver11+gr). Shaded
rows indicate variants using the graph representation.

Disambiguating nachdem For the disambiguation of the ambiguous temporal connective nachdem,
we use a set of linguistic and shallow features to reproduce the results of Versley (2011), similar to that
described in section 3, but with very few exceptions.6 Looking at the aggregate measures, we see that the
graph-based features in isolation already perform quite well, surpassing a version with linguistic features,
but no word pairs or CFG productions. Adding subgraph features with appropriate feature selection to
the complete system (including linguistic and shallow features) yields a further improvement over a
relatively strong baseline.

Implicit relations Table 4 presents both aggregate measures (Dice, macro-averaged F-measure) as well
as scores for the most important coarse-grained relations. We provide results for the full graph (grA), a
version with all features except information status (grB), and finally a minimal version that excludes all
semantic features and lemmas (grC).

In general, both the linguistic features and the graph features perform much better than the shallow
features (with the best single source of information being the complete graph), and also that a combina-
tion of linguistic and all shallow features (all–gr) suffers from

In the second section of the table, the influence of different information sources is detailed. We see
that, despite the skewed distribution of relations, all information sources outperform the most-frequent-
sense baseline by themselves. By providing a higher precision on Expansion relations, and generally
better performance on Reporting relations, the graph-based representation performs better than any of
the other information sources, and is the only information source to provide enough information for the
identification of Comparison relations. The third group of rows, showing combinations of the linguistic
features with the shallow information sources and with the graph representation, shows that, while the
addition of specialized features to the shallow ones yields a general improvement, the graph-based repre-
sentation still works best; for Temporal relations, we see that the noise brought in by the shallow features
hinders their identification more than in the case of the graph-based representation.

The last part of table 4 provides evaluation results for a system using the complete set of information
sources (all), for systems leaving out one of the shallow information sources (all–bi, all–wp, all–pr), and
a system using only linguistic and shallow features but no graph information (all–gr). We see that, in
general, the identification of rare relations such as Temporal, Comparison, and Reporting is helped by the
graph representation (the full system obtains the best MAFS scores of 0.438 and 0.208, for coarse- and
fine-grained relations, respectively, against 0.388 and 0.145 for the system without graph information).
System variants with graph information also obtain higher coarse-grained dice scores (0.564–0.571) than
the version without graph information (0.551 for all–gr). In the same vein, we see that the parsimonious
grC graph gives the best combination result (allC–pr, including linguistic, word pair, unigram/bigram,
and graph features) despite the more informative grA giving the best results in isolation.

6The nachdem relations are predicted without sentiment feature, but with the earlier system’s punctuation and compatible
pronouns features. The shallow features of Versley (2011) include word pairs and context-free rules, with unsupervised feature
selection.



5 relations 21 relations Cont Expn Temp Comp Rept
Dice MAFS Dice MAFS F1 F1 F1 F1 F1

Restatement 0.474 0.129 0.161 0.014 0.00 0.00 0.65 0.00 0.00
random 0.338 0.233 0.096 0.056 0.06 0.27 0.50 0.21 0.14
ling only 0.540 0.396 0.274 0.127 0.40 0.68 0.32 0.00 0.58
bi(5k) 0.516 0.301 0.260 0.098 0.40 0.65 0.00 0.00 0.45
wp(2k) 0.494 0.307 0.198 0.084 0.42 0.65 0.02 0.05 0.40
pr(5k) 0.478 0.154 0.192 0.034 0.12 0.65 0.00 0.00 0.00
grA(20k) 0.559 0.381 0.269 0.163 0.39 0.69 0.24 0.00 0.59
grB(20k) 0.549 0.387 0.274 0.187 0.36 0.69 0.22 0.09 0.57
grC(20k) 0.544 0.382 0.268 0.164 0.36 0.68 0.23 0.09 0.55
ling+bi(5k) 0.545 0.399 0.300 0.141 0.39 0.69 0.33 0.00 0.59
ling+wp(2k) 0.552 0.408 0.277 0.144 0.42 0.68 0.33 0.00 0.61
ling+pr(5k) 0.546 0.399 0.297 0.142 0.40 0.68 0.33 0.00 0.58
ling+grA(20k) 0.574 0.389 0.285 0.161 0.37 0.70 0.28 0.00 0.59
ling+grB(20k) 0.579 0.394 0.294 0.173 0.36 0.71 0.30 0.00 0.60
ling+grC(20k) 0.580 0.411 0.307 0.179 0.37 0.70 0.35 0.03 0.60
all-gr 0.538 0.343 0.273 0.116 0.42 0.68 0.10 0.00 0.52
allA 0.572 0.408 0.306 0.178 0.43 0.70 0.29 0.00 0.62
allB 0.573 0.411 0.301 0.171 0.40 0.70 0.32 0.00 0.63
allC 0.579 0.422 0.309 0.177 0.38 0.70 0.35 0.04 0.65
allA-pr 0.576 0.407 0.300 0.174 0.41 0.70 0.32 0.00 0.61
allB-pr 0.581 0.410 0.298 0.171 0.40 0.70 0.32 0.00 0.62
allC-pr 0.581 0.425 0.310 0.185 0.36 0.70 0.36 0.07 0.64

Table 4: Implicit discourse relations: specialized linguistic features (ling), word/lemma/pos bigrams
(bi), word pairs (wp), CFG productions (pr), and different methods for constructing graphs (grA, grB
and grC). Shaded rows indicate variants using the graph representation.

6 Conclusion

In this article, we presented a novel way to identify discourse relations using feature-node graphs to
represent rich linguistic information. We evaluated our approach on two datasets: one dataset containing
implicit discourse relations and one containing explicit discourse relations with the ambiguous temporal
connective nachdem. We showed in both cases that using the graph-based representation, with appropri-
ate heuristics for supervised feature selection, yields an improvement even over a strong state-of-the-art
system using linguistic and shallow features.

Besides applying the techniques on other corpora, issues for future work would include the use of
unlabeled data to improve the generalization capability of the classifier, or the use of reranking techniques
to combine local decisions into a global labeling.
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Abstract

This paper identifies features that occur frequently in coherence relations labelled CHOSEN AL-
TERNATIVE. This achieves two goals: (1) to identify evidence for an argument being considered
an alternative excluded from further consideration, and (2) to contribute to the automatic identifi-
cation of coherence relations and their arguments. It is shown that the simplest of these features
occur significantly more often in implicit CHOSEN ALTERNATIVE relations than in explicit CHOSEN
ALTERNATIVE relations, where a connective helps signal this sense.

1 Introduction

There have been two main approaches to identifying what coherence relations can hold between the
segments in a discourse. Knott (1996) calls one theoretical, grounded in a philosophical view of lan-
guage, and the other empirical, grounded in the discourse connectives that can be taken as explicit ex-
pressions of coherence relations. Knott’s own approach starts with the first, characterizing patterns of
meaning-preserving substitutability between connectives — whether two connectives are freely substi-
tutable wherever they occur as connectives (hence synonyms), contingently substitutable (one a hyponym
of the other), or non-substitutable (hence exclusive). He then explains these patterns in terms of connec-
tives being more or less specific with respect to one or more theoretically-motivated features and their
(exclusive) values. In later work, Knott and Sanders (1998) show how the approach works for subsets of
connectives in both English and Dutch. It does not, however, explain how the same coherence relations
may be seen to hold when connectives are absent.

Automated approaches to recognizing coherence relations do not assume that their sense arises solely
from connectives. Rather, these approaches take as evidence, lexical and syntactic features of the argu-
ments of the coherence relation, nearby coherence relations, high-level text structure, etc. (Feng and
Hirst, 2012; Ghosh et al., 2011; Hernault et al., 2010; Lin et al., 2010; Lin, 2012; Marcu, 2000; Marcu
and Echihabi, 2002; Sagae, 2009; Sporleder and Lascarides, 2008; Subba et al., 2006). As one might
expect, automated approaches use simple features that can be computed reliably. However, performance
in recognizing coherence relations in the absense of connectives is still low, and significant improvement
is unlikely to come from simply trying new Machine Learning methods over the same set of simple fea-
tures. A bigger pay-off might come from identifying more predictive features. That is the goal of the
current work.

The particular coherence relation of interest here is one that holds when the discourse connective
instead is present, but can also hold when it isn’t. In the Penn Discourse TreeBank 2.0 (Prasad et al.,
2008), the sense is called CHOSEN ALTERNATIVE. It is defined as holding when “two alternatives are
evoked in the discourse but only one is taken” — meaning still being considered while the other isn’t
(The PDTB Research Group, 2008).

Such a definition leads to two questions: What, if any, features suggest that the two arguments of
a coherence relation denote alternatives, and what, if any, features indicate that one of them has been
excluded from further consideration? As Sporleder and Lascarides (2008) argue, one should not assume
a priori that the same features will be at work when a connective is present and when it isn’t. However,



one satisfying outcome of the current effort is that when the most common features are present, an
explicit connective is often absent. When the evidence is more subtle, explicit connectives are more
often present.

The PDTB 2.0 provides a good basis for starting to address these questions because it contains over
40K manual annotations of coherence relations that are either signalled by explicit discourse connectives
or that hold between adjacent sentences that lack such an explicit signal (Prasad et al., 2008). Additional
evidence is taken from a corpus of >300 singly-annotated tokens of the discourse connective instead and
its arguments gathered over several years (the Instead Corpus).

The paper is structured as follows: Section 2 presents the connective instead and its place in earlier
approaches to coherence relations. It then presents the annotation of coherence relations in the PDTB 2.0.
Within this framework, instead is taken to be an unambiguous signal of the coherence relation CHOSEN

ALTERNATIVE, one of three types of ALTERNATIVE relations annotated in the PDTB 2.0. The section
concludes by laying out the scope of the current study with respect to CHOSEN ALTERNATIVE, which is
to argue for what characterizes the argument that serves as its excluded alternative. Section 3 describes
several constructions that commonly appear there in explicit CHOSEN ALTERNATIVE. Section 4 then
shows that three of them (negation markers, downward-entailing constructions, and event modals) are
even more frequent in the even larger percentage of implicit CHOSEN ALTERNATIVE. Finally, Section 5
lays out some open issues and some thoughts on further work that should be done.

2 Instead and CHOSEN ALTERNATIVE

2.1 Background

As noted in the Introduction, approaches to coherence relations differ in whether they start from an
abstract theory of what relations can hold between units of text, or from empirical data on the discourse
connectives that serve as explicit ways of expressing those relations.

Rhetorical Structure Theory (Mann and Thompson, 1988) belongs to the first sort. In the first large
corpus annotated in the framework of RST — the RST Corpus (Carlson et al., 2003) — coherence
relations are annotated on the basis of definitions that do not link them with any particular discourse
connectives (Carlson and Marcu, 2001). Still, examining the corpus for those elementary discourse units
(EDUs) that begin “Instead, . . . ”, one finds eleven such EDUs: three in CONTRAST relations, four in
PREFERENCE and two in ANTITHESIS relations (both being types of COMPARISON relations), one in a
REASON relation and one in an ELABORATION relation. Given this, one can not associate the connective
instead with any particular coherence relation (or relations, if it is ambiguous) because there is no record
for why any of these relations has been taken to hold between EDUs other than their definitions.

Instead is one of the discourse connectives that Knott (1996) has analysed. He places it at a very
high level of his substitutability structure, taking it to be specified only for the feature polarity with value
negative. Polarity is defined in terms of a defeasible rule P→Q. Given two segments A and C connected
by a connective whose polarity is positive, A=P , C=Q and the defeasible rule is specified to succeed. If
the polarity of the connective is negative, A=P , C is inconsistent with Q, and the rule is specified to fail.
If a connective is unspecified for polarity, then neither case holds. But instead having negative polarity
does not provide any information about its arguments beyond the fact that the speaker must believe in
the existence of such a rule and that it fails for the given arguments.

While Martin (1992) also approaches coherence relations from theory (here, systemic-functional
grammar (Halliday and Hasan, 1976)), he illustrates each relation with one or more English connectives.
One can see from this that he takes instead to convey the COMPARATIVE relation he calls REPLACE-
MENT. In later work on families of coherence relations and connectives in English and German, Stede
(2012) similarly mentions both English instead and German anstatt, as both expressing the SUBSTITU-
TION relation, a sub-type of CONTRASTIVE RELATION. Both REPLACEMENT and SUBSTITUTION seem
intuitively to represent the same notion as CHOSEN ALTERNATIVE in the Penn Discourse TreeBank.



2.2 The Penn Discourse TreeBank 2.0

As noted in the Introduction, the Penn Discourse TreeBank 2.0 (or PDTB 2.0) contains over 40K manual
annotations of coherence relations over the Penn Wall Street Journal Corpus, over 18K signalled by
explicit discourse connectives and over 16K holding between adjacent sentences that lack this explicit
signal (Prasad et al., 2008). In the latter case, readers are taken to infer an implicit discourse connective
relating the adjacent units, and their annotation includes an indication of the connective that best conveys
the inferred relation. The remaining annotation includes around 5K tokens of entity relations, where the
second sentence only serves to provide some further description of an entity in the first, akin to entity-
based coherence (Knott et al., 2001), plus another 624 tokens in which the coherence relation is signalled
by some alternative lexicalization (such as “that means”) other than a conjunction or discourse adverbial
and another 254 in which no relation is inferred as holding between the adjacent sentences.

Annotated for each coherence relation are its arguments, the one or more sense relations taken to hold
between them, and any attribution relations taken to hold over either the relation as a whole or either of
its arguments.

All coherence relations have two and only two arguments. When a relation is realised with an explicit
connective or alternative lexicalization (ALTLEX), one of those arguments derives from the clause that is
syntactically bound to the connective. In the PDTB 2.0, this is called Arg2. The other argument, called
Arg1, may be linked syntactically to Arg2 if the connective is a subordinating conjunction or coordinating
conjunction (Ex. 1). Or it may be elsewhere in the sentence or previous discourse, if the connective is
a discourse adverbial (Ex. 2). If the coherence relation is realized through sentence adjacency and an
implicit connective, the second sentence is taken to provide Arg2 and the first sentence, Arg1.

(1) Several years ago he gave up trying to persuade Miami to improve its city-owned Orange Bowl,
and instead built his own $100 million coliseum with private funds. [wsj 0126]

(2) The tension was evident on Wednesday evening during Mr. Nixon’s final banquet toast, normally
an opportunity for reciting platitudes about eternal friendship. Instead, Mr. Nixon reminded his
host, . . . , that Americans haven’t forgiven China’s leaders for the military assault of June 3-4
that killed hundreds, and perhaps thousands, of demonstrators. [wsj 0093]

The senses used in annotation are drawn from a hierarchy of semantic classes whose top level consists
of four abstract classes: TEMPORAL, CONTINGENCY, COMPARISON and EXPANSION. Each of these is
further divided into several types, which may themselves be further divided into sub-types (The PDTB
Research Group, 2008). Annotators could associate one or more senses with each explicit or implicit
connective or ALTLEX, with each sense at the level of sub-type or type, if the annotator couldn’t decide
among its sub-types.

In the PDTB 2.0, 108 of the 112 tokens of instead are annotated EXPANSION.ALTERNATIVE.CHOSEN

ALTERNATIVE (here, simply CHOSEN ALTERNATIVE). Its higher sense type ALTERNATIVE is taken to
hold “when the two arguments denote alternative situations” (The PDTB Research Group, 2008) and its
sister sub-types are CONJUNCTIVE (taken to hold when both alternatives are possible) and DISJUNCTIVE

(taken to hold when only one alternative needs to be possible). CHOSEN ALTERNATIVE itself is taken to
hold when “two alternatives are evoked in the discourse but only one is taken”.

Of the four tokens not annotated as CHOSEN ALTERNATIVE, Ex. 3 is annotated ALTERNATIVE

rather than the more specific ALTERNATIVE.CHOSEN ALTERNATIVE, though it is hard to imagine the
annotators being uncertain about which sub-type holds, Examples 4–5 have been annotated COMPARI-
SON.CONTRAST and Ex. 6, COMPARISON.CONTRAST.JUXTAPOSITION. The latter is defined in terms
of a comparison between a shared property having values taken to be alternatives. While there will be
more to say about CONTRAST versus CHOSEN ALTERNATIVE in Section 5, there is no reason not to
consider all four as instances of CHOSEN ALTERNATIVE, if only for considering the set of features its
first argument dispays, which are no different than other instances of instead.

(3) The group didn’t make a formal offer, but instead [EXPANSION.ALTERNATIVE] told UAL’s ad-
visers before the most-recent board meeting that it was working on a bid valued at between
$225 and $240 a share. [wsj 1010]



(4) At the 50%-leveraged Zenith Income Fund, portfolio manager John Bianchi recently dumped Mesa
Petroleum, Wickes and Horsehead Industries, among others, . . . Because of the recent junk-
market turmoil, the fund is considering investing in other issues instead [COMPARISON.CONTRAST],
including mortgage-backed bonds. [wsj 0983]

(5) This ministry has done nothing to correct the misunderstandings and misperceptions that are at
the root of Japan’s deteriorating image. Instead, it seems to be using foreign pressure and even
the trade conflict to expand its sphere of influence vis a vis other ministries.

(6) It presents no great issue of legal principle, no overriding question of family law or the law of
contempt. Instead [COMPARISON.CONTRAST.JUXTAPOSITION], it turns on the disputed and
elusive facts of “who did what to whom”. [wsj 0946]

2.3 The Scope of the Current Study

The current study addresses the second question raised in Section 1: What, if any, features indicate that
one of the alternatives of a CHOSEN ALTERNATIVE relation has been excluded from further considera-
tion? This is of practical, as well as of theoretical interest because in English, the excluded alternative
derives from Arg1 of the relation.1 Because this argument is not syntactically linked to the connective, its
location and identity is more difficult for automated methods to determine (Webber et al., 2012). Also,
for implicit coherence relations, the same features that can be used to identify Arg1 of an explicit CHO-
SEN ALTERNATIVE may also be used to suggest that CHOSEN ALTERNATIVE holds in the absense of an
explicit connective.

3 Features manifest in CHOSEN ALTERNATIVE

For brevity, instances of CHOSEN ALTERNATIVE that have an explicit connective will simply be called
explicit CHOSEN ALTERNATIVE, while those that lack an explicit connective associated with this sense
will be called implicit CHOSEN ALTERNATIVE.

This analysis of features characteristic of the arguments of explicit and implicit CHOSEN ALTER-
NATIVE is based on 289 multiply-annotated tokens in the PDTB 2.0 (118 explicit and 171 implicit),
and seven multiply-annotated tokens in the BioDRB corpus (Prasad et al., 2011). The Instead Corpus
mentioned in Section 1 is used as a source of shorter, simpler examples.

Approximately 70% of the cases of explicit CHOSEN ALTERNATIVE in the PDTB and BioDRB man-
ifest features discussed in Sections 3.1–3.3 below. And ∼87% of the even larger number of implicit
CHOSEN ALTERNATIVE do the same (Section 4).

3.1 Negation markers

Of the 118 tokens of explicit CHOSEN ALTERNATIVE, the largest subset have an explicit negation marker
associated with Arg1. Such a marker is sufficient to allow the sense that Arg1 is an alternative that is no
longer in consideration. Negation markers here include not (Ex. 8), no (Ex. 9), never (Ex. 10), and no
one.

(8) If the flex is worn, do not use insulating tape to repair it. Instead, you should replace it . . . .
1Paola Merlo has suggested [personal communication] that this doesn’t hold in all languages. She identifies the connective

invece as expressing CHOSEN ALTERNATIVE in Italian and the closest in meaning to English instead. While Invece allows
either alternative in Arg1 (Ex. 7), cases like (7b) do not occur in English.

(7) a. John non ha mangiato gli spinaci. Invece Maria si‘.
(John didn’t eat spinach. Instead Mary did.)

b. John ha mangiato gli spinaci. Invece Maria no.
(John ate spinach. *Instead Mary didn’t.)



(9) There are no separate rafters in a flat roof ; instead, the ceiling joists of the top story support
the roofing.

(10) Sue Grafton has never bowed to fad or fashion. Instead, she’s kept her whip-smart private
investigator, Kinsey Millhone, focused on modestly scaled domestic crimes . . . .

That the negation marker is critical to interpreting Arg1 as excluded from consideration, can be seen by
the infelicity of similar examples without the negation marker.
(11) If the flex is worn, use insulating tape to repair it. *Instead, you should replace it . . . .

(12) There are separate rafters in a flat roof ; *instead, the ceiling joists of the top story support the
roofing.

(13) Sue Grafton has bowed to fad or fashion. *Instead, she’s kept her whip-smart private investi-
gator, Kinsey Millhone, . . . .

3.2 Downward Entailment

Since negation markers are downward entailing (DE), one might check whether all DE constructions can
exclude Arg1 of explicit CHOSEN ALTERNATIVE from consideration, or if not all, whether a larger set of
DE constructions than just negation markers can do so.

Constructions that are downward entailing (⇓) support valid reasoning from a set to a member. Ones
that are upward entailing (⇑) support valid reasoning in the opposite direction, from a member to a set.
Upward entailment means that one can reason from John owns a beagle to John owns a dog. Negation
markers, being downward entailing, support valid reasoning from John doesn’t own a dog to John doesn’t
own a beagle.

In the corpora analyzed in this study, the second largest set of explicit CHOSEN ALTERNATIVE re-
lations have a DE predicate associated with Arg1 that is other than a negation marker. Examples 14–15
below show two of them: reject (from John rejected dogs, conclude John rejected beagles) and too
<modifier> (from John was too ill to own a dog, conclude John was too ill to own a beagle).

(14) In India, he rejects the identification of Indianness with Hinduism, . . . . Instead he champions Mr
Tagore’s view . . . . [The Economist, 18 June 2005]

(15) The current system is too bureaucratic . . . . Instead, research councils should “pay the full costs
of the projects they fund . . . ”. [Research Fortnight, 28 April 2004]

Other DE predicates that appear in Arg1 of explicit CHOSEN ALTERNATIVE in the PDTB or BioDRB are
shown in Figure 1: This list, although long, is only a subset of DE constructions. What about other ones?
Since neither dictionaries nor other lexical resources record direction of entailing as a property, Danescu-
Niculescu-Mizil et al. (2009) attempted to extract DE constructions from the large BLLIP corpus (LDC
catalogue LDC2000T43), using cooccurence with Negative Polarity Items (NPI) like “any” as a cue.

Figure 2 shows the 55 most frequent DE lemmas that Danescu-Niculescu-Mizil et al. (2009) extracted
from the corpus: Four are negation markers or contain them (cannot, never, nobody, nothing), twelve
have attested occurences in Arg1 of instead in the PDTB or BioDRB (as indicated in Figure 1), and all
but two of the others (compensate for and essential for) can be found on the web in similar Arg1 position
as the attested forms. Why does neither compensate for nor essential for seem to license an alternative
being excluded from consideration, as in
(16) Olivia compensates for eating by exercising. *Instead she ??

(17) Talent is essential for singing. *Instead ???

First, observe that all the DE constructions in Figure 1 and all the lemmas in Figure 2 except for
compensate for and essential for are negative assertions: e.g., bar, block, prevent, and prohibit assert
that something does not occur. In contrast, what is negative in compensate for and essential for is what
they presuppose: Compensate for presupposes that one has done something that one should not have;
essential for presupposes that something cannot occur without it. While a negative presupposition is
sufficient to allow cooccurence with NPIs, as in



abandon
absence
avoid
banish
be/remain disdainful
be futile
be/remain oblivious
be/remain unconvinced
call off
cease
cut X off
dare not
decline

deny
disagree
discourage from
dispense with
dismiss
do away
drop plans
eliminate
eschew
fail
give up
hurt
ignore

leave
less
little
lose
miss the chance
miss the opportunity
omit
pass up
prevent X from
put off
rebuff
refuse

renounce
resist
scoff at
shy away
stop
suspend
swear off
tone down
vault over
veto
waste
withdraw

Figure 1: DE constructions found in Arg1 of explicit CHOSEN ALTERNATIVE

absense of ** defer hardly premature to rule out veto **
absent from deny ** lack prevent skeptical wary of
anxious about deter innocent of prohibit suspend ** warn about
avoid ** discourage ** minimize rarely thwart whenever
bar dismiss ** never * refrain from unable to withstand
barely doubt nobody * refuse ** unaware of
block eliminate ** nothing * regardless unclear on
cannot * essential for oppose reject unlike
compensate for exclude postpone reluctant to unlikely
decline ** fail ** preclude resist ** unwilling to

Figure 2: The 55 most common downward entailing lemmas that Danescu-Niculescu-Mizil et al. (2009)
found in the BLLIP corpus. * marks negative constructions (Section 3.1), and ** marks lemmas also
identified as DE constructions in Arg1 of instead in Figure 1.



(18) An online presence is essential for any business today.
[www.alpha360.net/online-presence-essential-business-today]

(19) The car’s on-board diagnostic systems compensate for any of these blends to keep it running
according to manufacturer’s specifications. [http://auto.howstuffworks.com]

it is insufficient to license the exclusion of an alternative from further consideration: That requires a
negative assertion. Of course, compensate for and essential for are not alone in this: The same holds for
repent, atone, repair, make amends for, etc. All have negative presuppositions and so can cooccur with
NPIs, but do not make a negative assertion, so do not license an excluded alternative.

While I will continue to refer to DE predicates as evidence for alternatives being excluded from
consideration, I only mean those DE predicates that make a negative assertion and not those that only
have a negative presupposition.

3.3 Modals

The third largest set of explicit CHOSEN ALTERNATIVE have a modal associated with Arg1. However,
because there are so many different modals, it makes sense to examine whether all of them license the
excluded alternative of this relation, and for those which do, it makes sense to examine why they can do
so.

Palmer (2001) divides modality into two types:

• propositional modality, involving the speaker’s attitude towards the factual status of a proposition,
as in Ex. 20;

• event modality, involving events that are not actualized, but are merely potential, as in Ex. 21.

(20) Kate must be eating dinner at home tonight. (Otherwise, you would see her at that table.)

(21) Kate must eat dinner at home tonight. (She hasn’t spent any time with her children yet this week.)

Palmer further divides event modality into:

• deontic modality, involving obligation or permission, and conditional factors “that are external to
the individual”

• dynamic modality, involving factors “internal to the individual” (including purpose, wishes, effort,
fears, etc.)

Both types of event modality are found associated with Arg1 of CHOSEN ALTERNATIVE relations.
Ex. 22–23 illustrate deontic modals (obligation and permission), while Ex. 24–25 illustrate dynamic
modals (want/wish/desire/hope and effort).

(22) Charles Kennedy’s advisors should have told him the truth. Instead, they covered up for him to
an unacceptable extent and for far too long. [The Economist, 14 January 2006]

(23) Lynn Sherr could have availed herself of one of the 10.4m private pools in the United States.
Instead, she became determined to swim the Hellespont in western Turkey. [The Economist, 2
June 2012]

(24) Anne Compoccia wanted to be a nun. Instead, she found herself in prison for embezzling city
funds. [http://www.nytimes.com/2002/12/22/nyregion/22DECA.html?todaysheadlines]

(25) Lyndon B Johnson was trying to have the parallel presidency that Dick Cheney secured for himself
under a compliant George Bush. Instead, he was consigned to an office in the Executive Office
Building. [NYRB, 2012]

On the other hand, while Palmer (2001) further divides propositional modality into:



• epistemic modality, involving the speaker’s judgment about the factual status of a proposition;

• evidential modality, involving the speaker’s evidence for the factual status of a proposition.

neither seems appropriate in the argument conveying the alternative that is excluded from consideration,
and there are no such tokens in the PDTB 2.0, the BioDRB, or the Instead Corpus. The examples
in (26) illustrate the inappropriateness of instead with epistemic modals, while those in (27) show the
same is true of evidential modals (where they in Example 27b should be taken as generic, for this to be
evidential).

(26) a. John always arrives promptly, so he must/may have been delayed. *Instead, he decided not to
come.

b. John has a senior pass, so he must/may be over 60. *Instead, he’s not.

(27) a. John seems to have left the house. *Instead, he has locked himself in the lavatory.

b. They say John drinks. *Instead, he smokes weed.

This pattern suggests that modals associated with the excluded alternative of a CHOSEN ALTERNATIVE

relation are ones that mark their associated state-of-affairs as not holding. In her study of alternatives in
disjunction, Mauri (2008) uses the term irrealis to describe an alternative that doesn’t hold. If we follow
Mauri, then we can say that Event modals mark their associated SoA as irrealis because neither factors
external to the individual (obligations, permissions, etc.) nor factors internal to the individual (purposes,
wishes, effort, fear, etc.) can guarantee that the SoA will come to pass.

3.4 Other features

In addition to these three constructions that appear frequently with excluded alternatives are some other
sets that can be characterized by lexico-syntactic features. One is a set of predicates that specify an
actual state-of-affairs (SoA) that lead one to expect some particular next SoA. While expected, this
next SoA does not hold, and so is irrealis. Thus, while not modals, these predicates can be associated
with alternatives that are excluded from consideration for the same reason as modals can. Among such
predicates are expect (Ex. 28), encourage (Ex. 29), and prepare to (Ex. 30).

(28) They expected a new barrage of demands that Japan do something quickly to reduce its trade
surplus with the U.S. Instead, they got a discussion of the need for the U.S. and Japan to work
together . . . .[wsj 2321]

(29) Their broker encouraged them to take a month in Europe; instead they moved to South Carolina,
where they began building a dream house on the beach. [NYTimes, 14 July 2002]

(30) A gynecologist is slain at home by his wife, who was preparing to serve him coq au vin that
evening. Instead, she thrusts a kitchen knife through his heart. [NYTBR, 4 May 2003]

Other state-expecting predicates found in Arg1 of explicit CHOSEN ALTERNATIVE include: anticipate, be
about to, plan, promise, propose, raise expectations, suggest and wait for. As with downward entailing,
state-expecting is not a feature marked in dictionaries, and one may simply have to search for examples
in a large corpus based on what it cooccurs with.

A second set comprises Arg2 of non-factual if clauses and constructions indicating hypotheticals
such as sentence-initial Had. Although downward entailing, they seem sufficiently different from the DE
predicates to warrant separate mention. The three examples of this in the PDTB 2.0 include:

(31) If government or private watchdogs insist, however, on introducing greater friction between the
markets (. . . ), the end loser will be the markets themselves. Instead, we ought to be inviting more
liquidity with cheaper ways to trade and transfer capital among all participants. [wsj 0118]



Feature Implicit tokens Explicit tokens
Negation marker 116 (67.8%) 47 (39.8%)
Downward-entailment 24 (14.0%) 18 (15.3%)
Event Modal 9 (5.3%) 13 (11.0%)
Other 22 (12.9%) 40 (33.9%)
Total 171 118

Table 1: Absolute and relative frequency of features found in the excluded alternative of CHOSEN AL-
TERNATIVE relations in the PDTB 2.0. Other includes state-expecting predicates and if clauses. Bold
indicates the largest differences.

4 Implicit Chosen Alternatives

Having described features commonly found on Arg1 of explicit CHOSEN ALTERNATIVE that are usu-
ally, but not always, signalled by instead, I now turn to the even larger number of implicit CHOSEN

ALTERNATIVE relations in the PDTB 2.0 and BioDRB. Here, the three features that are most common
with explicit CHOSEN ALTERNATIVE are even more common with implicit CHOSEN ALTERNATIVE —
negation markers (Ex 32), DE predicates (Ex 33), and event modals (Ex 34):

(32) It isn’t just exercise gear that isn’t getting a good workout. The fitness craze itself has gone soft,
the survey found. [wsj 0409]

(33) Copper futures prices failed to extend Friday’s rally. Declines came because of concern that
demand for copper may slow down. [wsj 0437]

(34) . . . Ortega indicated that renewed U.S. military aid to the Contras could thwart the balloting. He
said U.S. assistance should be used to demobilize the rebels. [wsj 0174]

Table 1 shows just how much more common they are, both with respect to absolute and relative fre-
quency. In fact, with an implicit CHOSEN ALTERNATIVE, either a negation marker, DE predicate or
event modal is present ∼87% of the time.

5 Conclusion

I have left three questions unresolved:

1. What is behind the view that instead is evidence for a type of COMPARISON relation (Martin, 1992)
or a type of CONTRASTIVE relation (Stede, 2012) and behind the decision of PDTB 2.0 annotators
to label three of the 112 tokens of instead as conveying a COMPARISON.CONTRAST relation?

2. Are the features that allow Arg1 to be interpreted as an excluded alternative, sufficient to label an
implicit discourse relation as having the sense CHOSEN ALTERNATIVE, or do negation markers,
DE constructions, event modals and other less frequent licensers of excluded alternatives occur in
Arg1 of other constructions?

3. What features suggest that the two arguments of a coherence relations denote alternatives?

With respect to the first question, researchers since Mann and Thompson (1988) have drawn a distinction
between SEMANTIC and PRAGMATIC relations, which Moore and Pollack (1992) call INFORMATIONAL

and INTENTIONAL, respectively. Moore and Pollack (1992) make a convincing arguement that relations
of both types can hold simultaneously. With respect to instead, I think it can be argued that it conveys
a purely informational relation. That is, instead (when it is not in construction with of, followed by the
alternative being excluded) is anaphoric: Its excluded alternative must be derived from the (previous)
discourse context. The most common thing that a speaker does with this excluded alternative may be to



compare or contrast it with the alternative still in consideration, so that COMPARISON or CONTRAST be-
come the most common intentional relation to hold when instead is used. But other intentional relations
are possible, as evidenced by the many instances of explicit and instead, because instead, and so instead,
etc. (again, not in construction with of ). This will be discussed in a companion paper.

As for the second question, negation markers, DE constructions, event modals and state-expecting
predicates are indeed found in the first (and second) arguments of relations other than CHOSEN ALTER-
NATIVE, including purely temporal relations (Example 35) and causal relations (Example 36):

(35) they may not buy new episodes, when [TEMPORAL.SYNCHRONY] their current contracts expire
[wsj 0060]

(36) The president could probably not avoid this restriction by choosing people willing to serve without
pay because [CONTINGENCY.CAUSE.REASON] the Anti-Deficiency Act prohibits voluntary
service to the government [wsj 0112]

So a procedure for recognizing Arg1 of a CHOSEN ALTERNATIVE relation would use the absense of all
these features as evidence against a possible candidate.

As for the third question – deciding whether two arguments can and should be interpreted as al-
ternatives – it may be that this does not have to be addressed independently, but rather falls out as a
consequence of strong lexico-syntactic cues. This too will be discussed in a companion paper.
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Abstract

We present the first freely available large German dataset for Textual Entailment (TE). Our dataset
builds on posts from German online forums concerned with computer problems and models the
task of identifying relevant posts for user queries (i.e., descriptions of their computer problems)
through TE. We use a sequence of crowdsourcing tasks to create realistic problem descriptions through
summarisation and paraphrasing of forum posts. The dataset is represented in RTE-5 Search task style
and consists of 172 positive and over 2800 negative pairs. We analyse the properties of the created
dataset and evaluate its difficulty by applying two TE algorithms and comparing the results with
results on the English RTE-5 Search task. The results show that our dataset is roughly comparable to
the RTE-5 data in terms of both difficulty and balancing of positive and negative entailment pairs. Our
approach to create task-specific TE datasets can be transferred to other domains and languages.

1 Introduction

Textual Entailment (TE) is a binary relation between two utterances, a Text T and a Hypothesis H, which
holds if “a human reading T would infer that H is most likely true” (Dagan et al., 2005). Example 1 shows
a positive entailment (T entails H1) and a negative entailment (T does not entail H2).

(1) T: Yoko Ono unveiled a bronze statue of her late husband, John Lennon, to complete the official
renaming of England’s Liverpool Airport as Liverpool John Lennon Airport.

H1: Yoko Ono is John Lennon’s widow.

H2: John Lennon renamed Liverpool Airport.

The appeal of Textual Entailment is that it can arguably meet a substantial part of the semantic processing
requirements of a range of language processing tasks such as Question Answering (Harabagiu and
Hickl, 2006), Information Extraction (Romano et al., 2006), or Summarisation (Harabagiu et al., 2007).
Consequently, there is now a research community that works on and improves Textual Entailment
technology. In this spirit, the main TE forum, the yearly Recognising Textual Entailment (RTE) Challenge,
has created a number of datasets that incorporate the properties of particular tasks, such as Semantic
Search in RTE-5 (Bentivogli et al., 2009) or Novelty Detection in RTE-7 (Bentivogli et al., 2011).

At the same time, work on RTE on has focused almost exclusively on English. There is at most a
handful of studies on Textual Entailment in other languages, notably German and Italian (Wang and
Neumann, 2008; Negri et al., 2009; Bos et al., 2009) as well as a study on cross-lingual entailment
(Mehdad et al., 2010).1 Consequently, virtually no TE technology is available for non-English languages.
What is more, it is not clear how well existing algorithms for English RTE carry over to other languages,
which might show very different types of surface variation from English. The same limitation exists
in terms of genre/register. Virtually all existing datasets have been created from “clean” corpora – that
is, properly tokenised, grammatical text, notably Wikipedia. Again, the question arises how well TE

1There is also a translation of the RTE-3 dataset into German, but it is so far unpublished, although available from
http://www.dfki.de/˜neumann/resources.html



algorithms would do on noisier genres like transcribed speech or user-generated content. Arguably, it
would benefit the community to have a larger variety of datasets at hand for such investigations.

This paper reports our creation and analysis of a German dataset for TE that is derived from social
media data, as is produced every day on a large scale by of non-professional web users. This type
of data respects linguistic norms such as spelling and grammar less than traditional textual entailment
datasets (Agichtein et al., 2008), which present challenges to semantic processing.

We concentrate on a search task on a computer user forum that deals with computer problems: given a
problem statement formulated by a user, identify all relevant forum threads that describe this problem. We
created queries for a sample of forum threads by crowdsourcing. We asked annotators to summarise the
threads and to paraphrase the summaries to achieve high syntactic and lexical variability. The resulting
summaries can be understood as queries (problem statements) corresponding to the original posts. The
search for relevant posts given a query can be phrased as a TE problem as follows: queries are hypotheses
that are entailed by forum posts (texts) T iff the forum post is relevant for the query (Peñas et al., 2008).

Plan of the paper. Section 2 defines the task in more detail and describes the rationale behind our
definition of the crowdsourcing tasks. Section 3 provides a detailed analysis of the queries that were
produced by crowdsourcing. Section 4 assesses the difficulty of the dataset by modelling it with the RTE
system EDITS (Kouylekov and Negri, 2010). Finally we relate our study to prior work and sum up.

2 Creating a German Social Media TE Dataset with Crowdsourcing

2.1 Rationale

As mentioned above, the promise of TE lies in its ability to model NLP tasks. One of the best-established
of these tasks is search, which has been a part of the RTE challenges since RTE-5 (Bentivogli et al., 2009).
In this setup, given a query statement and a set of documents, a document is relevant if it entails the query.
That is, the documents serve as candidate texts T for a hypothesis H given by the query. We apply this
setup to social media texts that discuss computer problems. Our use case is that a user has a particular
problem with their machine and wants to retrieve the set of relevant documents from computer problem
forums. In terms of the entailment-based search task, the Ts are given by a corpus of German computer
forum threads. More specifically, we use the first post of each thread, since an analysis showed that
the first post usually contains the problem description. What is missing, however, are plausible queries
(i.e., Hs). We create these queries by asking laypersons to summarise posts through Amazon Mechanical
Turk (AMT) (Snow et al., 2008). This involves three steps:

Summarisation. Given the first post of a forum thread (T), summarise the content in one sentence (H*).

Paraphrasing. Paraphrase H* into another sentence (H) by changing both syntax and lexical choice.

Validation. Given original post (T) and paraphrased summary (H), assess if H correctly summarises T.

Step 1 maps documents onto potential queries; these queries might however be still very close to the
original verbalisation in the document. On the semantic level, we assume that summarisation can lose
information, but not create new information; thus, summaries should be entailed by the original texts
(Harabagiu et al., 2007). Step 2 allows that there is an amount of syntactic and lexical variance between T
and H that is realistic for a search task. On the semantic level, we assume that paraphrasing preserves
information; that is, input and output of this step should generally exhibit a high degree of semantic
equivalence. Finally, Step 3 allows us to detect and remove bad queries produced by unmotivated or
sloppy turkers. Thus, queries validated by Step 3 will be entailed by the original documents.

2.2 Crowdsourcing Details

We sampled 25 first posts of threads from a corpus of German computer self-help forums as Ts, each for
which we generate several Hs. The posts were selected so that their length matches the distribution over
lengths for all first posts in the corpus. All 25 posts have a length between 50 and 120 words.



ps is ns
ps 168 211 47
is 0 132 87
ns 0 0 36

Table 1: Confusion matrix for pairs of AMT validation annotations

Task 1: Summarisation. In the first step, we asked AMT workers to write a concise summary of a
forum post, summarising the central points of the original text in a declarative sentence. We also provide
an example text with summary. Turkers could mark a text as unsummarisable, but had to indicate a reason.

The task was conducted by five turkers for each forum post, leading to 25 ∗ 5 = 125 potential
summaries. Two posts were discarded as unsummarisable since they referred heavily to another forum
post, which left us with 115 summaries. We paid 0.20 USD for each summary. (Total: 23 USD)

Task 2: Paraphrasing. In this task, workers had to reformulate the summaries produced in the first
task. They were asked to replace words by appropriate synonyms and to change the sentence structure,
while still maintain the meaning of the original sentence. The workers of Task 2 were not shown the
original forum posts, only the summaries. Again, there was the possibility to leave the text unparaphrased,
indicating a reason. Each sentence was paraphrased by two turkers, resulting in 115∗2 = 230 paraphrases.

We decided to discard four of the 230 paraphrases, including their two input sentences (summaries
from Task 1). We found that these input sentences provide overly generic summaries of their posts to be
usable. For example, a post which dealt with various strategies to solve pop-up problems in Firefox was
summarised as “Mein Rechner öffnet selbstständig Webseiten [...].” (“My computer opens web pages on
its own [...].”). We paid 0.10 USD for each of the 230 paraphrases. (Total: 23 USD)

Task 3: Validation. This task asked workers to judge whether the paraphrased summaries resulting
from Task 3 are correct summaries of the problem described in T.2 Possible answers were (a) perfect
summary (“ps”); (b) incomplete summary that is missing central concept (“is”); (c) no (“ns”). We also
asked turkers to verify that the paraphrased summaries were complete, grammatical, declarative sentences.
Each T/H pair was assessed by 3 turkers who were paid 0.05 USD for each assessment. (Total: 35 USD)

Surprisingly, the most frequently chosen category was not “is” (41% of all assessments), but “ps”
(43%). About 16% of the paraphrases summaries are judged as “ns”. To assess reliability, we computed a
confusion matrix. In our three-annotation AMT setup where annotators are not necessarily constant across
sentences, we decided to count the three pairwise annotations (a1-a2, a2-a3, a1-a3) for each sentence.
Since the order of the annotators is random, we normalised to the order “ps” < “is” < “ns”. Table 1
shows the results. Satisfactorily, the diagonal, corresponding to matching judgements, shows the highest
numbers. In total, 49% of the judgement pairs agree. The largest group of disagreements is “ps”/“is”;
the number of “is”/“ns” cases is lower by a factor of two, and the number of “ns”/”ps” cases smaller by
another factor of 2. We interpret these number as indication that the annotation task is fairly difficult, but
that there is in particular a large number of clear correct cases. We build on this observation below.

2.3 Compilation of the Dataset

For each T/H pair, Task 3 provides us with three judgements on an ordinal scale with three categories:
perfect summary (“ps”), incomplete summary (“is”), no summary (“ns”). The next question is how to
select cases of true entailment and true non-entailment from this dataset.

Positive entailment pairs. As for entailment, we start by discarding all pairs that were tagged as “ns” by
at least one rater. The situation is less clear for “is” cases: on one hand, hypotheses can drop information

2We used the term “summary” to describe the concept to our lay taggers which are unfamiliar with the term “entailment”.



Assessments ps-ps-ps ps-ps-is ps-is-is is-is-is ns-ns-ns ns-ns-is ns-is-is
Entailment Y Y Y Y N N N
Occurrence 38 45 50 20 7 11 21
Selected as (Non-)Entailment 37 41 42 7 7 2 1

Table 2: Association between AMT assessments and final entailment relations

present in the text while preserving entailment; on the other hand, the absence of important information in
the summary can indicate difficulties with the original text or the summary. Thus, to keep precision high,
we decided to manually check all “is”/”ps” T/H pairs. The left-hand part of Table 2 shows that in fact, the
ratio of proper entailments trails off from almost 100% for “ps-ps-ps” to about one third for “is-is-is”. In
total, we obtained 127 positive entailment pairs in this manner.

During the extraction, we noted that one of the 23 forum posts did not yield reliable assessments for
any of its generated hypotheses and discarded it.

Negative entailment pairs. Negative entailment pairs come from two sources. First, “ns” T/H pairs
are cases where turkers missed the semantic core of the original text. These cases might be particularly
informative non-entailment pairs because they are near the decision boundary. For example, one author
asks whether a virus can settle down on the motherboard. The corresponding generated hypothesis
turned the question into a fact, stating that “My BIOS has been infected by a virus.”. Again, we checked
all pairs with at least one “ns” judgement by hand. As the right-hand side of Table 2 shows, we find
the same pattern as for positive pairs: perfect non-entailment for instances with perfect agreement on
“ns”, and lower non-entailment ratio for increasing “is” ratio. Rejected pairs are e.g. very generic and
fuzzy summaries or refer only to a minor aspect of the problem described in the forum. Unfortunately,
this strategy only results in 10 negative entailment T/H pairs. The second source of negative pairs are
combinations of verified Hs with “other” Ts, that is, Ts from which they were not created. In fact, we
can pair each of the 137 validated distinct Hs with all other Ts, resulting in 21 ∗ 137 = 2877 additional
non-entailment T/H pairs.

However, since the domain of computer problems is relatively narrow, a few post topics are so close
to each other that generated hypotheses are entailed by multiple texts. While this effect is usually ignored
in machine learning (Bergsma et al., 2008), our goal is a clean dataset. Therefore, we manually checked
all cross-pairs with similar topics (e.g. virus attacks) for positive entailment relations. Indeed, we found
hypotheses which were general enough to match other texts. We removed 45 such pairs from the negative
entailment pairs and added them to the set of positive pairs.

In total, we obtained 172 positive and 2842 negative entailment T/H pairs for 22 Ts and 137 distinct
Hs. At a cost of 82 USD, this corresponds to an average of 50 cents for each explicitly generated positive
pair, but just 3 cents for each T/H pair in the complete dataset. From the 226 AMT-generated pairs, we use
56% as positive pairs and 4% as negative pairs. We discard the remaining, inconsistently judged, 40%.

2.4 Discussion

The three tasks vary in their nature and difficulty. As mentioned above, we paid more for Task 1 than
for Task 2, since it involved authoring a text. The amount of time needed for the tasks confirms this
assumption: Task 1 took about 80 seconds per annotation, Task 2 only about 60 seconds. In terms of
difficulty, Task 1 seems to be the easier one, though: We removed only a small number of post summaries
from Task 1, but had to disregard a number of paraphrases from Task 2 (cf. Section 2.3). We believe that
two factors contribute to this observation: (a), it is easier to summarise a complete text than to paraphrase
a sentence out of context; (b), we deliberately asked workers in Task 2 to introduce as much variance as
possible, which can lead to somewhat unnatural statements. Finally, the assessment Task 3 is the fastest
one, requiring only about 30 seconds per annotation.



Post/Summary ID Example (German/English) Phenomenon

1/1 Rechner mit Virus infiziert. – Computer infected with virus. Incomplete sentence

1/2 Mein Rechner ist von einem Virus befallen. – My computer is
infected by a virus.

Personal point of view,
short summary

1/3 Der Virtumonde-Virus lässt sich nicht entfernen. – The Virtumonde
virus cannot be removed.

Pseudo-passive

25/1 Ich möchte, dass mein Board dauerhaft auf GB LAN schalten. – I
want that my board permanently to switch to GB LAN.

Ungrammatical sen-
tence

25/3 Wie lässt sich bei einer GB-Netzwerkkarte ein Fallback auf
100mbit verhindern? – How can a fallback to 100mbit in a GB
network adapter be prevented?

Question

20/2 Heute ist schon 4 mal beim aufrufen des p5q deluxe-sammelthreads
mein trendmicro virenscanner angeschlagen er meldet den Virus:
TSPY ONLINEG.FXG was kann ich dagegen machen? – Today
while calling the p5q deluxe collective threads my trendmicro
virus scanner has given mouth already 4 times it reports the virus:
TSPY ONLINEG.FXG what can i do against this?

Long summary,
writing errors

Table 3: Linguistic phenomena in summarisation task

Our results show that both with regard to positive and negative entailment, three consistent judge-
ments are sufficient for an almost perfect guarantee of the respective relation (cf. Table 2), but only a
comparatively small sample of our data fall into these categories (around 15% for positive and 3% for
negative entailment, respectively). Creators of a dataset therefore have the option of either making up for
this loss by starting with more initial data, which leads to a higher overall cost, or to perform a subsequent
expert-driven manual pass over the inconsistent candidates, as we did.

3 Analysis of Created Data

This Section illustrates the properties and problems of each step.

3.1 Task 1: Summarisation

Linguistic properties. Table 3 illustrates some of the phenomena appearing in the summarisation task,
which seem to be largely specific to the particular genre (web forum texts) that we consider, while
appearing less frequent in standard trainig data like newswire. Example 1/1 shows a typical “telegram
style” summary which omits determiners and copula; Example 25/1 shows that not all summaries are
even grammatical (underlined word). A comparison of examples 1/2 and 1/3 shows that the summaries
either retain the personal point of view typically used by the original posts (using first-personal personal
or possessive pronouns) or employ generic, impersonal formulations such as (pseudo-)passives. In one
example, the AMT worker even cited the author of the original post using the introduction “Micha fragt,
ob [. . . ]” (“Micha asks whether [. . . ]”). Similarly, 12 summaries use interrogative form (Example 25/3)
like the original posts even though we explicitly asked the turkers to generate declarative sentences.
Finally, example 20/2 illustrates typical writing errors, including the omission of punctuation and the
defiance of German capitalisation rules. It is notable that turkers used this style, which is typically used
for writing forum posts, even in the rather more formal AMT task environment. It occurs more frequently
for original posts with the same style. Arguably, the turkers perceived this as the “correct” manner to
summarise such posts, as our guidelines did not address this question.



Post/Summary/
Paraphrase ID

Example (German/English) Phenomenon

2/1/1, 2/1/2 PC⇒ Computer/Rechner (computer) Abbreviation, loanword

10/2/1 CPU⇒ Prozessor (processor) Abbreviation

3/3/1 AntiVir (specific anti-virus program)⇒
Anti-Viren-Programm – anti-virus program

Hypernym

9/5/2 starten – to start⇒ booten – to boot Synonym

5/4/2 wird Hilfe benötigt – help is needed⇒
bedarf es Unterstützung – support is required

Support verb construction
changes

8/3/2 Ich habe XP neu installiert – I reinstalled XP⇒
Neuinstallation von XP – Reinstallation of XP

Nominalisation

13/5/2 starten – to start⇒ gestartet werden – to be started Active/passive switch

4/4/2 ich möchte [. . . ] löschen – I want to delete [. . . ]
⇒ [. . . ] lässt sich nicht entfernen – [. . . ] cannot be removed
(literally: does not let itself be removed)

Change of perspective
(pseudo-passive)

17/3/2 User frägt ob eine Schadsoftware sich auch in der Hardware
einnisten kann. – User asks if malware can also infect hardware.
⇒ Kann die Hardware ebenfalls von Maleware befallen sein? –
Can hardware be affected by malware, too?

Declarative/interrogative
switch

Table 4: Linguistic phenomena in paraphrasing task

Content properties. Most summaries reproduced the original content correctly. The turkers apparently
concentrated more on the content, i.e. writing a good summary, than formal task details, resulting, e.g. in
interrogative formulations. This is not untypical for crowdsourcing tasks (Chen and Dolan, 2010).

Nonetheless, reproducing the context correctly was not trivial: some forum posts are rambling or
vague and difficult to summarise. Summaries of such posts often either (a) do not cover the whole content
or (b) are incorrect. Cases (a) lead to assessments of medium reliability in Task 3 (“H is an incomplete,
but valid summary of T”). Cases (b) lead to negative entailment cases.

As intended, the results of Task 1 are significantly shorter than the original texts, with an average
length of 11 words (min 3, max 39 words). Often, they use more general wording, e.g. “Der Prozessor
läuft schnell heiß.” (“The processor runs hot quickly”) for a description containing a concrete temperature.

3.2 Task 2: Paraphrasing

Linguistic properties. In the paraphrasing task, workers were asked to change both syntax and word
choice whenever possible. Although texts can contain many content words that are hard to paraphrase
(e.g. basic level terms such as table), the problem is alleviated in the software domain where abbreviations
and English loanwords that can be substituted easily are frequent (examples 2/1/1, 2/1/2, 10/2/1 in
Table 4). The most frequent change was the replacement of verbs by synonyms and nouns by synonyms
or hypernyms, as in examples 3/3/1 and 9/5/2. Some turkers modified both syntax and lexemes to vary
support verb constructions (5/4/2).

While these phenomena are all “generic” paraphrasing devices that have been observed in previous
studies on English and newswire text (Lin and Pantel, 2002; Bannard and Callison-Burch, 2005), we
find two more classes of paraphrasing patterns that are specific to German and the social media domain,
respectively. Prominent among German-specific changes are the large number of nominalisations (8/3/2)
as well as active/passive switches (13/5/2). Next to the regular passive construction with the auxiliary
werden, we often see “pseudo-passives” which use lassen combined with the reflexivised verb (4/4/2).



As for domain-specific patterns, we frequently observe the alternation of interrogative and declarative
sentences (17/3/2) noted before which is caused by the tendency of the original posts to formulate problems
as questions. Again, personalised and generic expressions alternate (4/4/2), which typically involves
rephrasing first-person statements as third-person or impersonal ones – often though (pseudo-)passives.

The quality is generally higher in Task 2 than it is in Task 1. Although we asked the turkers to generate
paraphrases by changing both syntax and lexis, they frequently modified just the syntax. However, this
is not critical, since the summaries already exhibit varied word choice, so that there is enough variance
between T and the corresponding true entailment Hs to avoid oversimplifying the TE task.

Content properties. Recall that no context was given in the paraphrasing task to avoid influencing the
turkers with regard to vocabulary and syntax. In most cases, context was also not necessary. However,
this also meant that some semantic errors occurred as a result of ambiguous formulations in summaries
that were propagated into the paraphrase. For example, the author of one forum post explains that a
BIOS update has failed and that he is afraid of restarting the computer. The corresponding summary
“Fehlermeldung nach Bios-Update, Rechner trotzdem neustarten?” (“Error message after Bios update,
restart computer anyway?”) is paraphrased with “Ich erhalte nach dem Update meines BIOS eine
Fehlermeldung, soll ich den PC neu starten?” (“I get an error message after the BIOS update, should I
restart the PC?”), which has rather the meaning of restarting the PC in order to overcome the problem.
Consequently, the assessment in Task 3 was controversial (ps-is-ns, see Section 2.3) and lead to a rejection
of the T/H pair. In the best case, such errors can also lead to clear rejections (ns-ns-ns).

A specific problem that we observed was the lack of domain knowledge by turkers. For example,
the summary “Anschluss von einem zusätzlichem SATA-Gerät . . . ” (“Connection of an additional SATA
device . . . ”) becomes “ich möchte Hardware von SATA . . . anschließen” (“I want to connect hardware
(made) by SATA . . . ”). This is an incorrect paraphrase: SATA is not a hardware manufacturer, but a type
of interface. This problem extended to Task 3, where assessments were controversial (ps-is-ns).

Finally, some turkers, contrary to instructions, produced summaries of the summaries. These texts
became very short and were often marked as “is” (valid but incomplete) in Task 3. We observed that it was
mostly turkers who already participated in Task 1 who acted in this manner. We feel that there is a tension
regarding re-employing workers who participated in previous tasks: quality may profit from their previous
training, but suffer from their bias to approach the second task with the same mindset as the first one.

3.3 Task 3: Validation

The output of the validation task allows us to correlate the quality ratings of T/H pairs to their linguistic
properties. We observe a broad overlap between assessments of the type “is” and hypotheses which are
very short or whose content is very general, e.g. due to the usage of hypernyms. Accordingly, T/H pairs
which are marked consistently as “ps” concern either hypotheses which are relatively comprehensive, or
texts which describe rather simple situations. At the opposite end of the scale, T/H pairs with three “ns”
assessments arise from to propagated errors. T/H pairs marked with all three categories, ps-is-ns, make
up only about 3%. These cases frequently refer to posts with complex queries such as users describing
a sequence of problems. Such posts are hard to summarise and to evaluate, but are also unlikely search
queries. The average length of the Hs selected through Task 3 is 11.4 words (min 5, max 22).

In sum, we interpret the three-stage crowdsourcing task as a success: The first two tasks generate
a broad variation of potentially true T/H pairs, while the third task enables a filtering of dubious pairs.
Although the linguistic quality of the obtained hypotheses shows clear imperfections, the quality of the
original texts is equally low: the resulting T/H pairs reflect particularities of the social media domain.
Example 2 shows (part of) a T/H pair; note the ungrammaticality in both T and H.

(2) T: [...] Ich habe heute alles zusammengebaut, aber aheb folgende probleme... 1.Der PC brauch ca
5-10min zum booten. 2.Nach dem Starten hängt der pc sich ständig auf. [...] 4.beim booten
wird ”Pri Master Hard Disk : S.M.A.R.T. Status BAD, Backup and Replace Press F1 to
Resume.” wenn ich denn F1 drücke fährt der pc weiter hoch. MFG



Accuracy P R F1

for positive entailment

Word overlap .93 .38 .38 .38

EDITS (edit distance) .95 .63 .34 .44

Table 5: Test set results on social media dataset for two simple Textual Entailment algorithms

[...] I have assembled everything today, but haev the following problems: 1.The PC take ca
5-10min to boot. 2.After starting the pc locks up constantly. [...] 4. while booting is ”Pri
Master Hard Disk : S.M.A.R.T. Status BAD, Backup and Replace Press F1 to Resume.” than
when I press F1 the pc continues booting. RSVP

H: Meinen Computer benötig für das Hochfahren sehr lange und zeigt mir dann eine Meldung für
einen Fehler an.
Mine computer need a long time for booting and then shows me a message for an error.

4 Modelling the Dataset with Textual Entailment Systems

In order to evaluate the difficulty of the dataset that we have created, we performed experiments with two
different TE engines. We split our dataset into a development and a test set. Both sets are identical in
terms of size (1507 T/H pairs) and amount of positive and negative pairs (86 and 1421 pairs, respectively).

The first system is EDITS (Negri et al., 2009), version 3.0.3 EDITS uses string edit distance as a
proxy of semantic similarity between T and H and classifies pairs as entailing if their normalised edit
distance is below a threshold θ which can be optimised on a development set. While additional entailment
knowledge can be included, no such knowledge is currently available for German and we use the default
weights. The second system is a simple word overlap strategy which approximates semantic similarity
through the fraction of H words that also occur in T (Monz and de Rijke, 2001). Again, pairs are classified
as entailing if this fraction is larger than a threshold θ.

We preprocessed the data by lemmatising it with TreeTagger (Schmid, 1994) and removing stop
words, employing a German stop word list which includes keywords from the social media domain.4 The
thresholds θ for both systems were set by optimising the F1 score for positive entailment on the train set.

Table 5 shows the results for the word overlap model and EDITS. The very high accuracy values
merely reflect the predominance of the negative entailment class; we therefore concentrate on the F-score
statistics for positive entailment. We find that edit distance outperforms word overlap with F1 scores
of .44 and .38, respectively. Since the main difference between the two approaches is that edit distance
is sensitive to word order, order information appears to be indeed informative: reordering between T
and H do not incur costs in the word overlap model, but they do in the edit distance model. Example 3
shows a T/H pair with high word overlap, but negative entailment. It is correctly classified by EDITS, but
misclassified by the word overlap model.

(3) T: Hallo PC-Freunde, ich habe letzte Woche XP neu installiert. Heute ist mir aufgefallen das die
CPU-Auslastung immer zwischen 60% und 80% liegt obwohl im Taskmanager der Lerlauf-
prozess mit 90-99% angezeigt wird. Kann es vieleicht sein das im Taskmanager nicht alle
Programme erfasst werden(währe mir neu) oder könnte vieleicht ein Virus, Trojaner sein der
diese ununterbrochen hohe Auslastung bewirkt? Vobei mein Antivirusprogramm (Awast)
keinen Virus oder ähnliches erkennt. [. . . ]
[. . . ] Today I realised that the CPU load is always between 60% and 80% although the idle
task is always displayed with 90-99% in the task manager. Is it mabe possible thet not all

3Downloadable from http://sourceforge.net/projects/edits/files/
4http://solariz.de/649/deutsche-stopwords.htm



programs are captured in the task manager(whould be new to me) or could mabe be a virus,
trojan horse which causes this steadily high load? Hovever my anti virus program (Awast)
does not recognise a virus or the like. [. . . ]

H: Die Prozessorauslastung ist bei 100% und Antivirenprogramme funktionieren nicht.
The processor load is at 100% and anti virus programs do not work.

Example 4 shows the opposite case, namely a positive T/H entailment pair that hardly shares any
vocabulary since many T details are omitted in H. Both systems are unable to correctly label this instance.

(4) T: Es gibt bei m ir zwei Probleme bei der Ausführung des Tools unter Vista. 1) Vista blockiert die
Ausführung mit dem Kommentar ” ...Sie verfügen eventuell nicht über ausreichende
Berechtigungen... ” und 2) F-Secure gibt eine Malware-Warnung aus ” W32/
Suspicious U.gen ” Virus. Ist die Viruswarnung nur ein Fehlalarm?
I h ave two problems with the execution of the tool under Vista. 1) Vista blocks the execution
with the comment ” ...You might not have sufficient authorisation... ” and 2) F-Secure gives a
malware warning ” W32/ Suspicious U.gen ” Virus. Is the virus warning just a false alarm?

H: Wegen fehlenden Systemrechten des Anwenders in Windows kann die Datei nicht gestartet
werden. – The file cannot be started due to missing system rights by the user in Windows.

The most direct point of comparison for our dataset is the RTE-5 search pilot (Bentivogli et al., 2009).
The two main differences are language (English vs. German) and genre (newswire vs. social media).
We found our dataset to be slightly easier to model. Part of the reason is the somewhat more balanced
positive/negative distribution in our dataset: a random baseline achieves an F-Score of 8.4% on RTE-5
and 10.4% on our data. However, the improvement of informed models is also somewhat higher: EDITS
without additional knowledge resources achieves 32.6% F-Score on RTE-5 (+24% over the baseline)
(Bentivogli et al., 2009) and 44% F-Score on our dataset (+34% over the baseline). We believe that this is
due to the greater coherence of our dataset: it deals with just one topic, while the RTE-5 dataset covers ten
topics. We also observe that the Hs in RTE-5 are shorter than ours (avg. length 8.75 words vs. 11.4) which
presumably leads to worse sparsity problems. Nevertheless, the results on the two datasets for baselines
and simple methods are still remarkably similar.

5 Related work

In the Textual Entailment community, particularly in the studies who create datasets and resources, there
is a strong focus on the English language (Androutsopoulos and Malakasiotis, 2010). All RTE datasets,
the most widely used experimental materials, are in English. A few datasets have been created for other
languages. To our knowledge, only an Italian one (Bos et al., 2009) and a Spanish one are freely available
(Peñas et al., 2006). Datasets for other languages have been created in the context of the CLEF QA Answer
Validation and Machine Reading tasks, but do not appear to be available to the general community.

We have employed crowdsourcing, a technique whose practice has expanded greatly over the last
years (Snow et al., 2008). It has rarely been used for Textual Entailment, though, since high-quality
crowdsourcing relies on the ability to formulate the task in layman’s terms, which is challenging for
entailment. We avoided this problem by asking turkers to provide summaries and paraphrases in two
separate steps. Wang and Callison-Burch (2010) also use crowdsourcing to collect hypotheses for TE. In
contrast to us, they do not ask turkers for full summaries and paraphrases, but have them extract facts from
texts and create counter-facts from facts by inserting negations, using antonyms, or changing adverbs.

Finally, Bernhard and Gurevych (2008) present a study on data that is similar to ours. Their goal is
the automatic collection of paraphrases for English questions on social Q&A sites. Employing similar
methods to us (e.g., word overlap and edit distance), they achieve very good results. Their task is simpler
in that in concentrates on paraphrase relations among statements rather than summarisation relations
between texts and statements.



6 Conclusions

This paper makes two contributions. The first one is a freely available dataset5 for Textual Entailment
tasks which covers (a) a new language, namely German; and (b), a new genre, namely web forum text.
The dataset models a search task on web forums, with short queries as hypotheses and forum posts as
text candidates. Being constructed from real social media data, our data is more noisy than existing RTE
datasets and shows novels linguistic paraphrasing phenomena such as switches between interrogative and
declarative sentences. We consider our dataset to be a test bed for TE algorithms that have to deal with
spontaneous and sloppy language, e.g. for other social media areas or on transcribed spoken language.

Our second contribution is a crowdsourcing-based procedure to create the dataset which can be
applied to other languages and data sources in order to create comparable datasets quickly and at modest
expense. The three-step setup that we introduce consists of a summarisation step, a paraphrasing step, and
a validation step. This setup guarantees syntactic and lexical variation and makes it possible to detect and
remove the sizable portion of the data that consists of queries that are either invalid or hard to judge. The
number of summaries and paraphrases can be chosen according to the requirements of the dataset; as for
validation, we found that three judgments were sufficient for a final categorisation. An alternative to our
rather artificial way to collect data is presented in (Baldwin et al., 2010), employing web forum structure.

We have presented an experiment with two basic TE algorithms which establishes that the difficulty
of the dataset is roughly comparable with the RTE-5 Search task testset. However, both algorithms were
essentially knowledge-free, and we will conduct experiments with more informed algorithms. We expect
the inclusion of lexical entailment knowledge (such as hyponymy relations) to provide a clear benefit.
However, the top systems on the RTE-5 Search-Task, where the best result was 46% F-Score (+13%
F-Score over edit distance) crucially employed lexico-syntactic paraphrase knowledge à la DIRT (Lin and
Pantel, 2002). It remains to be seen how such syntax-based TE algorithms do on our dataset, where we
expect parsing results to be substantially more noisy than for traditional RTE datasets.
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