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ABSTRACT 

In this paper we present our work in the MTPIL-2012 dependency parsing task on Hindi using 
MaltParser. Here we have experimented with MaltParser by selecting different parsing 
algorithms and different features selection. Finally, we have achieved unlabeled attachment score 
(UAS) of 91.80%, labeled attachment score (LAS) 86.51% and labeled accuracy (LA) 88.47% 
respectively.  
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1 Introduction 

Dependency parsing is one of the core applications of Natural Language Processing. Dependency 
parsing is useful in other NLP application like Question Answering, Machine Translation, word 
Sense Disambiguation etc. Dependency parsing can be divided into grammar-driven dependency 
parsing and data-driven dependency parsing. In the grammar-driven dependency parsing the 
grammars or set of rules are extracted from a corpus by linguist. Where as in the data-driven 
approach a large manually annotated training data is required. 

In recent past ICON has organized a shared task competition in dependency parsing in Indian 
languages, namely Hindi, Bengali and Telugu [ICON 2009, 2010]. The ICON task consisted in 
training and evaluating of dependency parsers. Each shared task 2009 and 2010 had much lesser 
data to work with (20,000 words). Similarly, the MTPIL-2012 dependency parsing task also 
consisted in training and evaluating dependency parsers for Hindi. We have participated in this 
task using the freely available MaltParser [Nivre et al., 2006a] which follows the data-driven 
approach. In this experiment we have trained and evaluate Maltparser with default properties. 
And then step-by-step we tried to optimize those features for which the parsing accuracy 
increases. 

2 MaltParser for Hindi  

In this experiment we have customized MaltParser [Nivre et al., 2006a]. During MaltParser 
optimization we follow same approach described by Nivre, (2009). MaltParser comes with 
several parsing algorithms. We experimented with different parsing algorithms. The result shows 
that arc-standard projective system gave the highest accuracy for Hindi. Moving further we try to 
optimize those features for which parser accuracy increases. For this we first added all possible 
features. Then we discarded those features for which the parsing accuracy increases. Finally, we 
end up with following features:  

• Features 2 and 9, the top and next for lemma. 

• Features 3 and 10, the coarse-grained part of speech of top and next. 

• Feature 5 and 12, the top and next of morphological features. 

• Features 21, 25, 28 and 31, the part of speech features are added. 

• Features 27 and 30, the form of leftmost dependencies of next and predecessor of top. 

• The conjoined features (1&4, 1&8, 4&11) i.e. part of speech and form of stack top, form 
of top and next, part of speech of top and next was also added. 

We used LIBSVM package [Chang and Lin, 2001] for classification task. 

3 Training Data 

A set of training data and development data has been provided to all the participants. The training 
set contains 12041 sentences (268,093 words) and the development set contains 1233 sentences 
(26416 words). We combined both data to one training set. 
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4 Evaluation  

There are two evaluation tracks (gold standard and automatic) in the shared task and all the 
participating systems must participate in both the tracks. In the gold standard track, the input to 
the system consists of sentence tokens with gold standard morphological analysis, part-of-speech 
tags, chunks and the additional features listed above. In the automatic track, the input to the 
system contains only the sentence token and the part-of-speech tags from an automatic tagger. In 
both the tracks, the parser must output the head and the corresponding dependency relation for 
each token in the input sentence. 

Table 1 Performance on MTPIL-2012 Data 

 Baseline Optimized(Final) 

 LAS UAS LA LAS UAS LA 

Hindi-Gold 80.84 89.32 83.17 86.51 91.80 88.47 
Hindi-Auto - - - 32.34 38.25 32.93 

 

Table 1 shows the results for the final optimized model and the baseline model using MTPIL test 
data. We have found the largest improvement in LAS, with 5.67 percent, while the improvement 
in UAS and LA is 2.48 percent and 5.3 percent respectively for the gold track. We want to see 
the parser performance with minimal numbers of features in the training data. So we left the 
auto-track training data as it was. As it was expected the parsers performs poorly with UAS of 
38.25 percentages. 

5 Error Analysis                                          

A primary goal of this experiment is to 
point out the errors made by MaltParser. 
We have performed a number of 
experiments to find out most possible 
errors with respect to sentence length 
factor. We have also shown dependency 
relation wise performance for the gold 
track. 

5.1 Length Factor 

In this experiment we have performed 
several experiments on the gold track 
data to find out the parser performance 
with different sentence length i.e., 
number of tokens. It is a well known fact 
that dependency parsers tends to perform 
well on shorter sentences than longer ones. Figure 1 shows the accuracy i.e. the labeled 
attachment score (LAS) for the parser with respect to different sentence length. From the figure it 
is clear Malt Parser tends to perform better on shorter sentences. 

Figure 1 Parser Accuracy (LAS) and Sentence Length 
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5.2 Dependency Relation Wise Evaluation 

Table 2 presents more detailed analysis of results by reporting lower recall and precision for 15 
dependencies in the gold track evaluation. The lowest accuracy is reported for the label “rs” with 

recall 13.97 percent. 

Table 2 Dependency Relation-wise Performance Evaluation 

Deprel Gold Correct System Recall (%) Precision (%) 

k1s 328 210 274 64.02 76.64 

k2 1957 1461 1947 74.66 75.04 

k3 56 21 41 37.5 51.22 

k4 283 192 269 67.84 71.38 

k4a 67 28 49 41.79 57.14 

k5 156 108 214 69.23 50.47 

k7a 84 67 87 79.76 77.01 

k7p 566 397 541 70.14 73.38 

nmod__k1inv 161 119 169 73.91 70.41 

r6-k1 68 19 42 27.94 45.24 

r6-k2 306 224 283 73.2 79.15 

ras-k1 74 36 61 48.65 59.02 

rh 152 107 141 70.39 75.89 

rs 179 25 41 13.97 60.98 

vmod 493 345 472 69.98 73.09 

6 Conclusions 

This paper presents optimization and evaluation of MaltParser for Hindi. Due to large amount of 
training data the parser was able to achieve such high accuracy with default properties. It is 
interesting to see using different feature selection how parser performance can be improved 
further. The evaluation results reported here will be useful for future research in this area.  
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