
Proceedings of the Workshop on Machine Translation and Parsing in Indian Languages (MTPIL-2012), pages 185–190,
COLING 2012, Mumbai, December 2012.

ISI-Kolkata at MTPIL-2012

Arjun Das, Arabinda Shee and Utpal Garain
 INDIAN STATISTICAL INSTITUTE, 203, B. T. Road, Kolkata 700108, India.

{arjundas|arabinda|utpal}@isical.ac.in

ABSTRACT

In this paper we present our work in the MTPIL-2012 dependency parsing task on Hindi using
MaltParser. Here we have experimented with MaltParser by selecting different parsing
algorithms and different features selection. Finally, we have achieved unlabeled attachment score
(UAS) of 91.80%, labeled attachment score (LAS) 86.51% and labeled accuracy (LA) 88.47%
respectively.

KEYWORDS: Dependency parser, MaltParser, Hindi.

185

1 Introduction

Dependency parsing is one of the core applications of Natural Language Processing. Dependency
parsing is useful in other NLP application like Question Answering, Machine Translation, word
Sense Disambiguation etc. Dependency parsing can be divided into grammar-driven dependency
parsing and data-driven dependency parsing. In the grammar-driven dependency parsing the
grammars or set of rules are extracted from a corpus by linguist. Where as in the data-driven
approach a large manually annotated training data is required.

In recent past ICON has organized a shared task competition in dependency parsing in Indian
languages, namely Hindi, Bengali and Telugu [ICON 2009, 2010]. The ICON task consisted in
training and evaluating of dependency parsers. Each shared task 2009 and 2010 had much lesser
data to work with (20,000 words). Similarly, the MTPIL-2012 dependency parsing task also
consisted in training and evaluating dependency parsers for Hindi. We have participated in this
task using the freely available MaltParser [Nivre et al., 2006a] which follows the data-driven
approach. In this experiment we have trained and evaluate Maltparser with default properties.
And then step-by-step we tried to optimize those features for which the parsing accuracy
increases.

2 MaltParser for Hindi

In this experiment we have customized MaltParser [Nivre et al., 2006a]. During MaltParser
optimization we follow same approach described by Nivre, (2009). MaltParser comes with
several parsing algorithms. We experimented with different parsing algorithms. The result shows
that arc-standard projective system gave the highest accuracy for Hindi. Moving further we try to
optimize those features for which parser accuracy increases. For this we first added all possible
features. Then we discarded those features for which the parsing accuracy increases. Finally, we
end up with following features:

• Features 2 and 9, the top and next for lemma.

• Features 3 and 10, the coarse-grained part of speech of top and next.

• Feature 5 and 12, the top and next of morphological features.

• Features 21, 25, 28 and 31, the part of speech features are added.

• Features 27 and 30, the form of leftmost dependencies of next and predecessor of top.

• The conjoined features (1&4, 1&8, 4&11) i.e. part of speech and form of stack top, form
of top and next, part of speech of top and next was also added.

We used LIBSVM package [Chang and Lin, 2001] for classification task.

3 Training Data

A set of training data and development data has been provided to all the participants. The training
set contains 12041 sentences (268,093 words) and the development set contains 1233 sentences
(26416 words). We combined both data to one training set.

186

4 Evaluation

There are two evaluation tracks (gold standard and automatic) in the shared task and all the
participating systems must participate in both the tracks. In the gold standard track, the input to
the system consists of sentence tokens with gold standard morphological analysis, part-of-speech
tags, chunks and the additional features listed above. In the automatic track, the input to the
system contains only the sentence token and the part-of-speech tags from an automatic tagger. In
both the tracks, the parser must output the head and the corresponding dependency relation for
each token in the input sentence.

Table 1 Performance on MTPIL-2012 Data

 Baseline Optimized(Final)

 LAS UAS LA LAS UAS LA

Hindi-Gold 80.84 89.32 83.17 86.51 91.80 88.47
Hindi-Auto - - - 32.34 38.25 32.93

Table 1 shows the results for the final optimized model and the baseline model using MTPIL test
data. We have found the largest improvement in LAS, with 5.67 percent, while the improvement
in UAS and LA is 2.48 percent and 5.3 percent respectively for the gold track. We want to see
the parser performance with minimal numbers of features in the training data. So we left the
auto-track training data as it was. As it was expected the parsers performs poorly with UAS of
38.25 percentages.

5 Error Analysis

A primary goal of this experiment is to
point out the errors made by MaltParser.
We have performed a number of
experiments to find out most possible
errors with respect to sentence length
factor. We have also shown dependency
relation wise performance for the gold
track.

5.1 Length Factor

In this experiment we have performed
several experiments on the gold track
data to find out the parser performance
with different sentence length i.e.,
number of tokens. It is a well known fact
that dependency parsers tends to perform
well on shorter sentences than longer ones. Figure 1 shows the accuracy i.e. the labeled
attachment score (LAS) for the parser with respect to different sentence length. From the figure it
is clear Malt Parser tends to perform better on shorter sentences.

Figure 1 Parser Accuracy (LAS) and Sentence Length

187

5.2 Dependency Relation Wise Evaluation

Table 2 presents more detailed analysis of results by reporting lower recall and precision for 15
dependencies in the gold track evaluation. The lowest accuracy is reported for the label “rs” with

recall 13.97 percent.

Table 2 Dependency Relation-wise Performance Evaluation

Deprel Gold Correct System Recall (%) Precision (%)

k1s 328 210 274 64.02 76.64

k2 1957 1461 1947 74.66 75.04

k3 56 21 41 37.5 51.22

k4 283 192 269 67.84 71.38

k4a 67 28 49 41.79 57.14

k5 156 108 214 69.23 50.47

k7a 84 67 87 79.76 77.01

k7p 566 397 541 70.14 73.38

nmod__k1inv 161 119 169 73.91 70.41

r6-k1 68 19 42 27.94 45.24

r6-k2 306 224 283 73.2 79.15

ras-k1 74 36 61 48.65 59.02

rh 152 107 141 70.39 75.89

rs 179 25 41 13.97 60.98

vmod 493 345 472 69.98 73.09

6 Conclusions

This paper presents optimization and evaluation of MaltParser for Hindi. Due to large amount of
training data the parser was able to achieve such high accuracy with default properties. It is
interesting to see using different feature selection how parser performance can be improved
further. The evaluation results reported here will be useful for future research in this area.

Acknowledgments

We would like to thank the organizers of MTPIL for their effort from starting to the end.

188

References

Chih-Chung Chang and Chih-Jen Lin, (2001). LIBSVM: A Library for Support Vector
Machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

ICON (2009). NLP Tool Contest: Parsing, In 7th International Conference on Natural
Language Processing, Hyderabad, India.

ICON (2010). NLP Tool Contest: Parsing, In 8th International Conference on Natural
Language Processing, Khragpur, India

Nivre, J., J. Hall, and J. Nilssion. (2006a). MaltParser: A data-driven parser-generator for
dependency parsing. In Proceedings of LREC, 2216-2219.

Nivre, J. (2009). Parsing Indian Languages with MaltParser. In Proceedings of the ICON09
NLP Tools Contest: Indian Language Dependency Parsing, 12-18.

189

