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ABSTRACT
There have been many studies on finding what people are interested in at any time through
analysing trends in language use in documents as they are published on the web. Few, however
have sought to consider material containing subject matter that originates in social media. The
work reported here attempts to distinguish such material by filtering out features that trend
primarily in news media. Trends in daily occurrences of nouns and named entities are examined
using the ICWSM 2009 corpus of blogs and news articles. A significant number of trends are
found to originate in social media and that named entities are more prevalent in them than
nouns. Taking features that trend in later news stories as a indication of a topic of wider interest,
named entities are shown to be more likely indicators although the strongest trends are seen in
nouns.
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1 Introduction

The detecting and tracking of popular topics of discussion through trend analysis has become a
keenly studied an developed area with the rise in use of social media. Various algorithms have
been proposed for finding the ”hot topics” of current interest in user communities with various
social media providers, such as Twitter.com, providing a trending topics service. Typical topics
that are keenly discussed are often around breaking and current news stories. Occasionally
the social media may be the first to break the news, as famously with the Haitian earthquake
of 2008, or even be at the centre of news stories such as with the events of the ”Arab Spring”.
However, sometimes stories and information may originate from social media, rapidly spreading
and rising in popularity. Such instances of the spread of information have been described as
”going viral”. The question arises, then, as to what information may lie in social media that
might have sufficient potential to be interesting to many others, but is largely lost due to the
dominance of current affairs. Are social media topics of interest, other than what is in the news,
general in nature or are they about specific things?

Although much of the news available online is sourced from and published by professional
media organisations, there are an increasing number of people using web logs, or “blogs” where
authors provide original material and opinions on topics of interest to them [18]. Micro-blogs,
as popularised by Twitter, provide a more immediate shorter form, but being shorter are less
likely to be a rich source of information at the individual message level. Alvanaki et al. [2] have
likened tweets (twitter postings) to chat, the longer blogs form being more akin to publication
of articles. The study here, therefore, will focus on personal blogs.

Many trending topics have been found to related to current news stories, however Lloyd et al.
have found that a small percentage of these originate from personal blogs [21]. In such cases
it may be that the popularity of the topic itself becomes the story, as an example of interest
“going viral”. A news story of this type, it could be argued, would be a report of the kind of
phenomenon of interest here, i.e. a trend originating in social media.

Rising popular activity in social media may not be isolated to national and international
situations involving a large population. Speculation around and interest in imminent or recent
product releases for example is one area where information may be more readily found in social
media than in the main stream. Such information is of interest to marketing companies; social
media is an important source for product feedback and marketing strategy monitoring.

A recent example is that of interest surrounding an upcoming release of a computer game called
"Black Mesa", a fan remake of "Half Life", a popular commercial PC game from the previous
decade. The game has been the subject of much discussion amongst enthusiasts which increased
following the announcement of a release date. Discussion even got as far as a news report on
the BBC news website on the 3rd September 2012. The Graph in Figure 1 shows the number
of blog posts published each day during a three week period up to the BBC news story, as
measured with Google’s blog search engine.

A natural question to ask, then, is what is the nature of trending topics that originate in social
media, i.e. those not sparked by topics already in the news? Are there characteristics in trending
features that show social media originated trends to be significantly different from news stories,
or do we see the citizen journalist [6] in action? The work described here begins to investigate
these questions.

As topics that originate in social media are of particular interest here, it will be necessary to
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Figure 1: Blog post results for daily search for "Black Mesa game" using Google’s blog search
engine

identify those that originate in reports made by the mainstream media so that they may be
distinguished from those originating in social media. Some of these topics may go on to be of
interest in mainstream news, while we would expect many to remain within the ”blogosphere”.
As an initial step towards characterising trending topics with social media origins, we examine
the nature of the trending features: Are specific entities or generic nouns more prevalent, and
what are the relative strengths of their trends?

This paper reports on an analysis of trending common nouns and named entities originating
in social media, i.e. after having filtered mainstream news stories out, using the ICWSM 2009
Spinn3r dataset [7]. The rest of the paper is organised as follows: section 2 summarises
recent relevant and related work; section 3 provides a description of the data and the method
of analysis employed; section 4 describes the analysis of the results; finally section 5 gives
conclusions and outlines future work.

2 Related work

Trend analysis has been a popular area of study in recent years with the rise in popularity of
social media as a means to disseminate information, provide opinion and facilitate discussion.
Discovering what the popular topics within populations are at any particular time is of potential
interest to many, including politicians, journalists, and marketing departments. Numerous
approaches have been suggested and implemented. Detection of changes in language use as
new documents are published is often at the heart of these methods, as new topics emerge and
are written about.
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A burst in activity may be expected with sudden popular interest in a topic, and reflected in
document features. Various different models have been proposed for modelling streams of text
to account for bursts. Church found that words that show a high likelihood of re-occurring in
a document under a Poisson model, one would often consider to be a “content” word [10].
Sarkar et al. used a double Poisson Bayesian mixture model for term “burstiness”, to determine
such “content” words [26]. Baroni and Evert have taken a different approach for document
term burst modelling [5], proposing the use of document frequency rather than term frequency.

Many approaches to detecting new emerging topics have been based on detecting bursts in
term use. For example, Kleinberg examined time gaps between term occurrences in email
data and found bursts in email topics seemed to coincide with interest to the author [17], and
Kumar et al. observed bursts in links being established in the evolution of the “Blogosphere”
[18]; Franco and Kawai have investigated two approaches to detecting emerging news in blogs
[13], through blogosphere topic propagation measured by evolution of link numbers, and by
blog post clustering; Viet-Ha-Thuc et al. used a log-likelihood estimate of an event within a
topic model [16]; and Glance et al. have examined bursts in phrases, mentions of people, and
hyperlinks in blogs given a background of blogs published in the preceding two weeks [15].

Other approaches to topic detection and tracking have sought to include structure, see [23],
[11] for examples; and topic classification as in [30], or [14], where Gabrilovich et al. used
bursts of articles with high divergence from established topic clusters to detect new stories.
However new topic detection is difficult though as noted by Allan et al. [1], who comparing the
task to that of information filtering, show new story detection in tracking is poor.

Micro-blogs, such as that facilitated by Twitter, have provided a rich source of data for those
studying trends and their evolution. Micro-blogs, or “Tweets”, are restricted to 140 characters,
and has been likened to chat rather than publication by Alvanaki et al. [2]. In their “En Blogue”
system, they detect emerging topics by considering frequent tags and co-incident tags (these
are augmented by extracted named entities). Twitter provides its own proprietary trending
topics service, but others have sought to provide similar functionality. Petrović et al. have
investigated first story detection in Twitter micro-blog feeds [24]; Mathioudakis and Koudas
describe a system that detects and groups bursting keywords [22]; Cataldi et al. consider a
term to be emerging if it frequently occurs in the interval being considered whilst relatively
infrequently in a defined prior period, generating emerging topics from co-occurrence vectors
for the considered interval [8].

Research has also looked at how trends evolve through social media and how content spreads:
Cha et al. have studied how media content is propagates through connected blogs [9]; Simmons
et al. have examined how quoted text changes as it is communicated through social media
networks [27]; and Lerman and Ghosh have studied the spread of news through the Digg
and Twitter social networks [19]. Asur et al. have examined how trends persist and decay
through social media [3] finding that the majority of trends follow news stories in Twitter, with
re-tweeted items linked to news media providers such as CNN and Reuters.

Trending topics not linked to stories reported in the mainstream media have been found. Lloyd
et al. found a small percentage of blog topics trended before the news-stories were published
[21]. They compared the most popular named entities in news and blogs on a mentions-per-day
basis finding that maximal spikes could be present in one medium before the other. Leskovec et
al. in investigating concept of “memes”, short phrases, and how they evolved in news websites
and blog publication, found a small percentage of quotations to originate in personal blogs

4



rather than news reports [20]. This small percentage of material indicated by these two studies
is makes up the source of interest here.

3 Data and analytic approach

Blog data for this study comes from the ICWSM 2009 corpus, made available to researchers by
the organisers of the 3rd International AAAI Conference on Weblogs and Social Media (2009)
[7]. The dataset, provided by Spinn3r.com, comprises some 44 million blog posts and news
stories made between August 1st and October 1st, 2008. For the experiments reported here the
data is pre-processed. Blog posts that have been classified either as “MAINSTREAM NEWS” or
“WEBLOG” are extracted, while “CLASSIFIED” postings and empty postings (here less than 3
characters long) are discarded. Applying trend analysis to each class will allow the likely trend
source to be identified.

Many trend analysis approaches analyse simple lexical features, before using other techniques,
such as clustering and feature co-occurrence analysis, to improve the semantic richness. (See
[22], [8], [2] for examples.) Trending topics involve tangible (named) entities; Azzam et al.
suggested that a document be about something – its topic – and that something would revolve
about a central entity [4]. There is also evidence that names can be effective in information
retrieval tasks [28], and searching for names has been shown to be useful concept in news
archive search [25].

Rather than relying solely on lexical statistics to determine both content bearing features and
trends, the approach taken applies part-of-speech tagging and named entity recognition prior to
statistical analysis. The Stanford CoreNLP toolset, using the supplied 4-class model for English
text without any modification [29][12] is used here. The training data used for the model was
that supplied for CoNLL 2003 and is made up of Reuters Newswire. Although the training data
does not perfectly match blog data, articles of interest may be expected to have some similarity
in style, i.e. "reporting". It is assumed that the performance of the natural language processing
is sufficiently robust such that output will be substantially correct English given noisy input.
(Note: Input data is pre-processed to remove any html mark-up for this investigation.)

We consider a trending topic to be one that shows an increase in the number of occurrences of
associated features, be they nouns or named entities, from that expected. For this we employ
a a traditional Poisson model parameterised by the observed mean feature occurrence rate.
The model assumes that features occur at random and independently, the intervals between
occurrences being Poisson distributed. The reciprocal of the expected interval gives the expected
frequency. Positive deviations (decrease in arrival time) from expectation are indicative of a
trending feature, with strength measured by the size of the deviation.

A random variable X with a Poisson distribution, expectation E[X ] = λ, has the model:

P(X = k|λ) = λ
ke−λ

k!
, k ≥ 0 (1)

The mean frequency is simply the inverse of the expected gap between occurrences for the
feature k, i.e. 1/λ. As the variance of the Poisson distribution is also λ trend strength can be
measured as the number of standard deviations,

p
λ, the gap reduction is from the mean. It

follows that for feature k with expected frequency 1
λk

and observed frequency 1
λ′k

, the strength

of a trend in k is given by:
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T (k) =
λk −λ′kp
λk

(2)

A daily trend in feature occurrence is measured in standard deviations given by T(k) from
the expected frequency, calculated by averaging observed frequency over preceding days.
Feature frequencies are calculated on a daily basis with average frequencies being calculated
accumulatively. A number of days of observation are required to establish a reasonable estimate
of the average frequency 1/λX for each feature X = 1,2, .... In this study, one week of
observations are used prior to application of trend detection.

Following the method of Lloyd et al. [21],trend analysis is applied independently to the
“MAINSTREAM NEWS” and “BLOG” classes of posts in the corpus, thus allowing the likely trend
source to be identified. The focus, then, is on named entities and nouns that show trending
behaviour, originating in social media blogs.

4 Experiments and Results

Over the two full months of data in the corpus, August and September 2008, there are
1,593,868 posts from mainstream news sources, while there are 36,740,061 blog postings. Of
these, 1,428,482 news stories and 27,074,356 blogs contain at least one entity, and all bar
157 blog postings contain English nouns (although there is no guarantee the post is actually in
English).

The amount of material produced each day is not consistent however as can be seen from the
graphs shown in figures 2 and 3, although News postings show a periodic nature as one might
expect. There is a notable increase in noun output in blogs but not in news towards the end
of the period, although this increase is not seen named entity output. The number of postings
made per day shows no significant change suggesting that the rise in noun output is due to a
relatively small number of long blog postings that do not mention a correspondingly higher
number of named entities.

We now turn our attention to those features that demonstrated a rising trend in occurrence in
blogs during the period of the corpus, either exclusively or prior to a trend in news articles.
Minimum criteria for feature selection are that they have a minimum of over five occurrences or
show a positive deviation of over five standard deviations from their average daily occurrence
at the time of their maximum positive trend. Trends for features that have trended in news
articles within the previous seven days are not considered. No trend analysis is carried out for
the first seven days to allow a fair estimate of average daily occurrence to be established, so
occurrences on the 8th August are the first to be considered, being reported therefore on the 9th.
This selection process yields a total of 47639 features that show a positive trend originating in
social media from the 8th Augusts 2008 to 30th September 2008. An average of 60.4% of these
trending features are also seen in later trends within news articles. The break-down across
nouns and named entities is given in table 1.

A high proportion of nouns that show trending behaviour originating in blogs, about 73%,
are within the vocabulary of news articles. The lack of editorial control together with tagger
inaccuracies account for much of the remainder. A much lower proportion of named entities
that originally trend within blogs are also seen in news at all. We may conclude that while
some people, organisations, and places etc. may be of topical interest in the social media, only
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Figure 2: Nouns in blogs and news per day in ICWSM 2009 corpus

Type No. Trending No. in News pre/post trend %
Nouns 12157 8827 72.6%
Misc 11260 5303 47.1%
Location 9809 5331 54.3%
Person 9365 5993 64.0%
Organisation 9823 5889 60.0%
Totals 47639 28776 60.4%

Table 1: Unique social media originating trending feature totals & amount in news use

abut half of them (between 47% and 64%) are also in the sphere of interest of the mainstream
media organisations.

As trend strength is measured relative to the average occurrence of a feature rather than in
absolute occurrence numbers, the most popular nouns and entities are not necessarily the same
as those that show the strongest trend. Table 2 notes the top ten most frequent nouns and
the top ten strongest trending nouns with their average frequency and trend strengths at the
time of they showed their strongest trend. There are two observations to make: Firstly that a
significant number of these “nouns” are not correctly identified by the part-of-speech identifier
and named entity tagger, being either broken mark-up or proper nouns; Secondly the strongest
trending contain the unidentified proper nouns.

Tables 3,4,5 and 6 show the top ten by average occurrence and by maximum trend strength
for Organisation, Person, Location and Miscellaneous names. The most frequent entities are
mentioned several thousand times a day (about an order of magnitude less than the most
frequent nouns). Their trend strengths range from a few 10’s of std deviations from their
average daily occurrence to a few thousand, similar in strength to the top occurring nouns. The
trend strengths are typically well under those shown by the top ten entities by maximum trend
strength, which are in the region of several thousand standard deviations. These too are an
order of magnitude less than trend strengths shown by the maximally trending nouns. Overall,
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Top Occurring Top Trending
Noun Avg per Day Max Trend Noun Avg per Day Max Trend
QUE 67072.4 958.9 WON 184.2 92152.5
% 60444.3 1002.7 −−−−−−−−−− ...− 14.8 83949.8
THINGS 52755.2 410.4 3A 36.1 76574.3
COM 51408.7 5322.4 BEHAR 59.4 75912.3
SOMETHING 48963.0 547.2 PEARCE 87.6 69001.3
DA 46427.7 4269.0 PROP 163.2 68665.7
GIRL 44684.9 1255.9 <BR?/> 810.1 51689.2
MUSIC 44454.6 740.1 PIVEN 705.3 50291.6
DVD 44327.5 4001.1 ANTOFAGASTA 16.2 48510.5
EL 41919.9 666.7 JEUDI 142.1 46578.9

Table 2: Top ten ‘nouns’ by average daily occurrence and by trend strength in blogs

Top Occurring Top Trending
Noun Avg per Day Max Trend Noun Avg per Day Max Trend
GOOGLE 10443.0 303.9 ILWU 0.8 5929.3
APPLE 3138.6 577.7 ADM 24.4 5459.2
UA 3083.5 2359.9 OHIO STATE 211.1 5452.2
YAHOO 2279.1 2409.3 STATE FARM 15.4 5147.4
VMWARE 2142.2 1494.6 SOA 243.7 4935.9
HOUSE 2009.3 146.9 IBM 1944.4 4341.8
IDF 1945.2 1663.6 HEALTH MINISTRY 52.9 4122.3
IBM 1944.4 4341.8 BUCS 82.4 4000.3
MCKINSEY 1726.6 1059.5 ACORN 109.3 3967.0
HET 1641.5 1610.4 USAF 115.4 3965.7

Table 3: Top ten Organisations by average daily occurrence and by trend strength in blogs

Top Occurring Top Trending
Noun Avg per Day Max Trend Noun Avg per Day Max Trend
OBAMA 34008.6 64.1 BEHAR 16.4 7119.4
MCCAIN 14677.7 53.3 KWAME KILPATRICK 517.2 6698.0
JOHN MCCAIN 12280.5 68.7 ALICE COOPER 63.2 6345.6
JACK 5415.7 3098.2 FREEMAN 111.9 6155.8
JESUS 3924.7 1994.1 CORSI 166.0 5619.6
JENSEN 2661.4 1675.2 MRS. CLINTON 71.3 5575.4
RYAN 2163.1 2375.9 OLMERT 134.1 5238.0
DAVID 2156.5 1503.5 SANTANA 72.1 5127.6
PETER 1703.3 2613.4 BUFFETT 93.4 5101.8
GOD 1688.5 2767.8 CARL ICAHN 37.0 5028.9

Table 4: Top ten Persons by average daily occurrence and by trend strength in blogs

Top Occurring Top Trending
Noun Avg per Day Max Trend Noun Avg per Day Max Trend
NEW YORK 6267.8 67.2 GOLD COAST 10.6 4005.6
INDIA 6188.3 70.4 BISHKEK 103.6 3912.0
UK 4146.9 293.8 LIMA 358.6 3683.3
FRANCE 3269.7 56.4 WELLS 18.6 3674.3
FLORIDA 3207.1 69.3 WIRED.COM 91.3 3632.4
DELHI 3171.2 1805.5 HAMPTON 30.4 3630.7
IRAN 2755.7 269.6 CALCUTTA 54.8 3613.2
ISRAEL 2750.3 371.8 HULU 167.2 3491.8
LOS ANGELES 2320.7 74.1 YUNNAN 64.9 3463.6
PARIS 2110.3 183.4 TRIPOLI 180.4 3421.1

Table 5: Top ten Locations by average daily occurrence and by trend strength in blogs
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Figure 3: Entities in blogs and news per day in ICWSM 2009 corpus

Top Occurring Top Trending
Noun Avg per Day Max Trend Noun Avg per Day Max Trend
INTERNET 6428.6 85.4 ALPS 42.8 2523.1
WINDOWS 1882.7 1416.4 GENESIS 76.9 2430.3
DEMOCRAT 1669.7 78.0 LITTLE LEAGUE WORLD SERIES 49.4 2263.7
GMT 1479.2 1183.7 SUMMER OLYMPIC 11.0 2050.8
ALS 1267.9 865.3 TEAM 21.3 2029.0
FACEBOOK 1217.0 1385.2 VIETNAM WAR 76.5 1928.7
TWITTER 791.6 1029.4 BOLIVARIAN ALTERNATIVE 3.9 1927.5
CHRISTMAS 786.4 1174.1 BRITONS 71.9 1772.3
JAVA 745.7 923.8 SERIE A 18.3 1765.6
MUSLIMS 703.2 665.0 CHINA OPEN 62.6 1696.2

Table 6: Top ten Miscellaneous by average daily occurrence and by trend strength in blogs

people tend to appear in trends more strongly than organisations and places, as well as showing
higher average daily occurrences.

To get a sense of any linkage between average daily occurrence and maximum trends strengths
in social media originated trends, the two can be plotted against one another. Distributions can
be further divided into those features that are unique to language seen in social media, that
which is also seen in news articles and those that also trend in news articles after a trend is seen
originating from blogs. Plots for nouns and each entity type are shown in Figure 4. Also shown
are the mean and standard deviation of the distributions in log occurrences and log maximum
trend strength.

Trending features that are unique to blogs tend to be fewer and weaker than those that also
appear in news vocabulary, although the separation is greatest for nouns. However, the presence
of these for nouns at all may be for the reasons of noise and tagger errors described above.
Many trending named entities occurring uniquely in blogs have average daily occurrence of less
than ten per day.

Features that show trends in news after the original trend in social media tend to be the most
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Figure 4: Distributions of occurrence per day and trend strengths for trends originating in blogs
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Figure 5: (a) Minimum trend strength of top n trending features (b) Minimum of top n ranked
normalised trend strengths

frequently occurring. Within these features, entities also tend to show higher trend strengths
and, while some nouns show higher trend strengths, nouns overall have a similar spread in
trend strength as those not trending subsequently in the news: A separation in distributions of
trend strength for features later trending in news and those not, is not present. Overall these
distributions have significant overlap with those of corresponding feature types appearing in
news articles without subsequent trends therein. The vast majority of those features showing
subsequent trends in news articles have an average occurrence of at least one mention per day
at the time of the trend.

These distributions suggest that entities being written about by bloggers that may be of wider
interest at any particular time, tend to show trend strengths of a few hundred standard
deviations from their average daily occurrence, although this can be less for very common
entities (those with daily occurrence in excess of 1,000). Strengths for nouns in topics of
potential wider interest tend to be an order of magnitude higher (average daily occurrence
also being about an order of magnitude higher). However, this magnitude difference in trend
strength is also true for nouns not subsequently trending in news articles. This suggests that
comparisons between feature types would be better made having normalised by the average
trend strength within a feature type.

A comparison of maximum trend strengths in feature types given the top n trending features
is shown in Figure 5: Graph (a) shows the raw trend strengths while Graph (b) shows the
normalised trend strengths. Note that normalisation of trend strength by feature type average
de-emphasises the dominance of nouns, while the relative difference between entity types
shows little change, although Locations have slightly more prominence.

In a monitoring application, it is likely one would wish to select only the most significant
trending features. This suggests applying a threshold to observed trend strength. Graph (a)
in Figure 6 shows the number of features that would be selected from this corpus given a
normalised feature trend strength threshold. Each feature type is plotted separately as well as
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Figure 6: (a) Number of features selected for given normalised trend strength threshold (b)
Relative trend strengths for those seen first in blogs and subsequently in news

for combined named entities. Note here that although the total number of trending entities
outnumbers that for nouns, the spread of entity trend strengths has a narrower spread that
for them. Figure 6 Graph (b) shows the un-normalised trend strength for features that also
show a later trend in mainstream news articles, against that subsequent news trend strength.
This shows that there is some correlation between the strength shown in the news trend and
that shown in the original social media trend. If trending in news stories is indicative of wider
interest then this suggests that trending features originating in social media are quite likely to
be of topical appeal. Furthermore, as we have seen, many of these features are likely to be
named entities.

5 Conclusions

This initial study into the type of language in trends originating in social media has shown that
although much that is discussed by bloggers is whatever is currently topical in mainstream media,
there is a significant amount of material of wider interest that originates in blogs. Furthermore
it suggests that a significant proportion of this material may be linked to that which is later
topical in news articles. The amount of material produced by bloggers is approximately 20
times greater in number of articles than professional news organisations, and the amount of
individual nouns and named entities suggest their postings are also longer. Size of vocabulary is
also much greater amongst social bloggers than within the mainstream media (although some
of this one would consider to be erroneous or “noisy” text). There is great potential, then, for
finding material in social media that is of wider interest.

Although maximum trend strengths shown for nouns are considerably greater than those shown
in named entities, named entities are marginally more frequent in social media originated
trends. Higher trend strengths are displayed by those features that are seen, and particularly
later trend, in news articles, although these strengths are relative to the distribution seen for
the feature type. Nouns trends that will later trend in news articles are not separable by trend
strength alone. Selecting trends purely by highest trend strength is unlikely to be be optimal,
therefore, as many trending entities of potential interest may be missed. A better strategy for
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selecting trends likely to be indicative of topics of wider interest would be to select the strongest
trends within classes of nouns and named entities, and possibly applying appropriate thresholds.
Normalisation of trend strength by average class type trend strength may be another possibility,
as this seems to make trend scores for feature types more comparable. Normalised trend scores
show a narrower distribution around the mean score for entities that subsequently trend in
news stories than nouns, suggesting that a threshold could be effectively applied in deciding
what should be considered a genuinely trending feature.

If we believe that news stories have a wide interest, then these results suggest it is more likely
that the trending feature in social media is a named entity than a noun. (Even though the
very strongest trend strengths seem to be displayed by nouns.) The identification and analysis
of named entities as separate features to detect trends in is, therefore, potentially of great
benefit when seeking to find emerging topics of interest. The Named Entity Recogniser was not
trained or tuned for social media, but rather well prepared newswire text. One would expect
errors to occur both in recognition of named entities and in mis-typing of detected entities,
and some errors were observed. However, a sufficiently high accuracy for differences in trends
to be detected was observed. The extent to which named entity detection and recognition
performance may impact remains to be determined.

Given that there are a significant number of trends originating from social media, it is natural
to ask whether one can predict which will go one to be subjects in the news, and what the delay
between social media interest and mainstream media interest is. Further work may also focus
on determining the topic(s) named entities are involved in. These are areas for future study.
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