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Abstract

The second BioNLP Shared Task on Event
Extraction (BioNLP-ST’11) follows up the
previous shared task competition with a focus
on generalization with respect to text types,
event types and subject domains. In this spirit,
we re-engineered and extended our event ex-
traction system, emphasizing linguistic gener-
alizations and avoiding domain-, event type-
or text type-specific optimizations. Similar
to our earlier system, syntactic dependencies
form the basis of our approach. However, di-
verging from that system’s more pragmatic na-
ture, we more clearly distinguish the shared
task concerns from a general semantic com-
position scheme, that is based on the no-
tion of embedding. We apply our methodol-
ogy to core bio-event extraction and specu-
lation/negation detection tasks in three main
tracks. Our results demonstrate that such a
general approach is viable and pinpoint some
of its shortcomings.

1 Introduction

In the past two years, largely due to the availabil-
ity of GENIA event corpus (Kim et al., 2008) and
the resulting shared task competition (BioNLP’09
Shared Task on Event Extraction (Kim et al.,
2009)), event extraction in biological domain has
been attracting greater attention. One of the crit-
icisms towards this paradigm of corpus annota-
tion/competition has been that they are concerned
with narrow domains and specific representations,
and that they may not generalize well. For in-
stance, GENIA event corpus contains only Medline
abstracts on transcription factors in human blood
cells. Whether models trained on this corpus would

perform well on full-text articles or on text focusing
on other aspects of biomedicine (e.g., treatment or
etiology of disease) remains largely unclear. Since
annotated corpora are not available for every con-
ceivable domain, it is desirable for automatic event
extraction systems to be generally applicable to dif-
ferent types of text and domains without requiring
much training data or customization.

GENIA EPI ID BB BI
# core events 9 15 10 2 10
Triggers? Y Y Y N N
Full-text? Y N Y N N
Spec/Neg? Y Y Y N N

Table 1: An overview of BioNLP-ST’11 tracks

In the follow-up event to BioNLP’09 Shared
Task on Event Extraction, organizers of the second
BioNLP Shared Task on Event Extraction (BioNLP-
ST’11) (Kim et al., 2011a) address this challenge to
some extent. The theme of BioNLP-ST’11 is gen-
eralization and the net is cast much wider. There
are 4 event extraction tracks: in addition to the GE-
NIA track that again focuses on transcription fac-
tors (Kim et al., 2011b), the epigenetics and post-
translational modification track (EPI) focuses on
events relating to epigenetic change, such as DNA
methylation and histone modification, as well as
other common post-translational protein modifica-
tions (Ohta et al., 2011), whereas the infectious dis-
eases track (ID) focuses on bio-molecular mecha-
nisms of infectious diseases (Pyysalo et al., 2011a).
Both GENIA and ID tracks include data pertaining
to full-text articles, as well. The fourth track, Bacte-
ria, consists of two sub-tracks: Biotopes (BB) and
Interactions (BI) (Bossy et al. (2011) and Jourde
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et al. (2011), respectively). A summary of the
BioNLP-ST’11 tracks is given in Table (1).

We participated in three tracks: GENIA, EPI, and
ID. In the spirit of the competition, our aim was to
demonstrate a methodology that was general and re-
quired little, if any, customization or training for in-
dividual tracks. For this purpose, we used a two-
phase approach: a syntax-driven composition phase
that exploits linguistic generalizations to create a
general semantic representation in a bottom-up man-
ner and a mapping phase, which relies on the shared
task event definitions and constraints to map rele-
vant parts of this semantic representation to event
instances. The composition phase takes as its input
simple entities and syntactic dependency relations
and is intended to be fully general. On the other
hand, the second phase is more task-specific even
though the kind of task-specific knowledge it re-
quires is largely limited to event definitions and trig-
ger expressions. In addition to extracting core bio-
logical events, our system also addresses speculation
and negation detection within the same framework.
Our results demonstrate the feasibility of a method-
ology that uses little training data or customization.

2 Methodology

In our general research, we are working towards
a linguistically-grounded, bottom-up discourse in-
terpretation scheme. In particular, we focus on
lower level discourse phenomena, such as causation,
modality, and negation, and investigate how they in-
teract with each other, as well as their effect on ba-
sic propositional semantic content (who did what to
who?) and higher discourse/pragmatics structure. In
our model, we distinguish three layers of proposi-
tions: atomic, embedding, and discourse. An atomic
proposition corresponds to the basic unit and low-
est level of meaning: in other words, a semantic re-
lation whose arguments correspond to ontologically
simple entities. Atomic propositions form the ba-
sis for embedding propositions, that is, propositions
taking as arguments other propositions (embedding
them). In turn, embedding and atomic propositions
act as arguments for discourse relations1. Our main

1Discourse relations, also referred to as coherence or rhetor-
ical relations (Mann and Thompson, 1988), are not relevant to
the shared task and, thus, we will not discuss them further in

motivation in casting the problem of discourse in-
terpretation in this structural manner is two-fold: a)
to explore the semantics of the embedding layer in
a systematic way b) to allow a bottom-up semantic
composition approach, which works its way from
atomic propositions towards discourse relations in
creating general semantic representations.

The first phase of our event extraction system
(composition) is essentially an implementation of
this semantic composition approach. Before delving
into further details regarding our implementation for
the shared task, however, it is necessary to briefly ex-
plain the embedding proposition categorization that
our interpretation scheme is based on. With this cat-
egorization, our goal is to make explicit the kind
of semantic information expressed at the embedding
layer. We distinguish three basic classes of embed-
ding propositions: MODAL, ATTRIBUTIVE, and RE-
LATIONAL. We provide a brief summary below.

2.1 MODAL type

The embedding propositions of MODAL type mod-
ify the status of the embedded proposition with re-
spect to its factuality, possibility, or necessity, and
so on. They typically involve a) judgement about
the status of the proposition, b) evidence for the
proposition, c) ability or willingness, and d) obli-
gations and permissions, corresponding roughly to
EPISTEMIC, EVIDENTIAL, DYNAMIC and DEONTIC

types (cf. Palmer (1986)), respectively. Further sub-
divisions are given in Figure (1). In the shared task
context, the MODAL class is mostly relevant to the
speculation and negation detection tasks.

2.2 ATTRIBUTIVE type

The ATTRIBUTIVE type of embedding serves to
specify an attribute of an embedded proposition (se-
mantic role of an argument). They typically involve
a verbal predicate (undergo in Example (1) below),
which takes a nominalized predicate (degradation)
as one of its syntactic arguments. The other syntac-
tic argument of the verbal predicate corresponds to
a semantic argument of the embedded predicate. In
Example (1), p105 is a semantic argument of PA-
TIENT type for the proposition indicated by degra-
dation.

this paper.
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(1) . . . p105 undergoes degradation . . .

Verbs functioning in this way are plenty (e.g., per-
form for the AGENT role, experience for experiencer
role). With respect to the shared task, we found that
the usefulness of the ATTRIBUTIVE type of embed-
ding was largely limited to verbal predicates involve
and require and their nominal forms.

2.3 RELATIONAL type
The RELATIONAL type of embedding serves to se-
mantically link two propositions, providing a dis-
course/pragmatic function. It is characterized by
permeation of a limited set of discourse relations to
the clausal level, often signalled lexically by “dis-
course verbs” (Danlos, 2006) (e.g., cause, mediate,
lead, correlate), their nominal forms or other ab-
stract nouns, such as role. We categorize the RELA-
TIONAL class into CAUSAL, TEMPORAL, CORREL-
ATIVE, COMPARATIVE, and SALIENCY types. In the
example below, the verbal predicate leads to indi-
cates a CAUSAL relation between the propositions
whose predicates are highlighted.

(2) Stimulation of cells leads to a rapid phospho-
rylation of IκBα . . .

While not all the subtypes of this class were relevant
to the shared task, we found that CAUSAL, CORREL-
ATIVE, and SALIENCY subtypes play a role, partic-
ularly in complex regulatory events. The portions of
the classification that pertain to the shared task are
given in Figure (1).

3 Implementation

In the shared task setting, embedding propositions
correspond to complex regulatory events (e.g., Reg-
ulation, Catalysis) as well as event modifications
(Negation and Speculation), whereas atomic propo-
sitions correspond to simple event types (e.g., Phos-
phorylation). While the treatment of these two types
differ in significant ways, they both require that sim-
ple entities are recognized, syntactic dependencies
are identified and a dictionary of trigger expressions
is available. We first briefly explain the construction
of the trigger dictionary.

3.1 Dictionary of Trigger Expressions
In the previous shared task, we relied on training
data and simple statistical measures to identify good

Figure 1: Embedding proposition categorization relevant
to the shared task

trigger expressions for events and used a list of trig-
gers that we manually compiled for speculation and
negation detection (see Kilicoglu and Bergler (2009)
for details). With respect to atomic propositions,
our method of constructing a dictionary of trigger
expressions remains essentially the same, including
the use of statistical measures to distinguish good
triggers. The only change we made was to consider
affixal negation and set polarity of several atomic
proposition triggers to negative (e.g., nonexpression,
unglycosylated). On the other hand, we have been
extending our manually compiled list of specula-
tion/negation triggers to include other types of em-
bedding triggers and to encode finer grained distinc-
tions in terms of their categorization and trigger be-
haviors. The training data provided for the shared
task also helped us expand this trigger dictionary,
particularly with respect to RELATIONAL trigger ex-
pressions. It is worth noting that we used the same
embedding trigger dictionary for all three tracks that
we participated in. Several entries from the embed-
ding trigger dictionary are summarized in Table (2).

Lexical polarity and strength values play a role
in the composition phase in associating a context-
dependent scalar value with propositions. Lexical
polarity values are largely derived from a polarity
lexicon (Wilson et al., 2005) and extended by us-
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Trigger POS Semantic Type Lexical Polarity Strength
show VB DEMONSTRATIVE positive 1.0
unknown JJ EPISTEMIC negative 0.7
induce VB CAUSAL positive 1.0
fail VB SUCCESS negative 0.0
effect NN CAUSAL neutral 0.5
weakly RB HEDGE neutral -
absence NN REVERSE negative -

Table 2: Several entries from the embedding dictionary

ing heuristics involving the event types associated
with the trigger2. Some polarity values were as-
signed manually. Some strength values were based
on prior work (Kilicoglu and Bergler, 2008), oth-
ers were manually assigned. As Table (2) shows, in
some cases, the semantic type (e.g., DEMONSTRA-
TIVE, CAUSAL) is simply a mapping to the embed-
ding categorization. In other cases, such as weakly
or absence, the semantic type identifies the role that
the trigger plays in the composition phase. The em-
bedding trigger dictionary incorporates ambiguity;
however, for the shared task, we limit ourselves to
one semantic type per trigger to avoid the issue of
disambiguation. For ambiguous triggers extracted
from the training data, the semantic type with the
maximum likelihood is used. On the other hand, we
determined the semantic type to use manually for
triggers that we compiled independent of the train-
ing data. In this way, we use 466 triggers for atomic
propositions and 908 for embedding ones3.

3.2 Composition

As mentioned above, the composition phase as-
sumes simple entities, syntactic dependency rela-
tions and trigger expressions. Using these elements,
we construct a semantic embedding graph of the
document. To obtain syntactic dependency relations,
we segment documents into sentences, parse them
using the re-ranking parser of Charniak and John-
son (2005) adapted to the biomedical domain (Mc-
Closky and Charniak, 2008) and extract syntactic

2For example, if the most likely event type associated with
the trigger is Negative regulation, its polarity is considered neg-
ative.

3Note, however, that not all embedding propositions (or their
triggers) were directly relevant to the shared task.

dependencies from parse trees using the Stanford
dependency scheme (de Marneffe et al., 2006). In
addition to syntactic dependencies, we also require
information regarding individual tokens, including
lemma, part-of-speech, and positional information,
for which we also rely on Stanford parser tools. We
present a high level description of the composition
phase below.

3.2.1 From syntactic dependencies to
embedding graphs

As the first step in composition, we convert syn-
tactic dependencies into embedding relations. An
embedding relation, in our definition, is very simi-
lar to a syntactic dependency; it is typed and holds
between two textual elements. It diverges from a
syntactic dependency in two ways: its elements can
be multi-word expressions and it is aimed at better
reflecting the direction of the semantic dependency
between its elements. Take, for example, the sen-
tence fragment in Example (3a). Syntactic depen-
dencies are given in (3b) and the corresponding em-
bedding relations in (3c). The fact that the adjecti-
val predicate in modifier position (possible) semanti-
cally embeds its head (involvement) is captured with
the first embedding relation. The second syntactic
dependency already reflects the direction of the se-
mantic dependency between its elements accurately
and, thus, is unchanged as an embedding relation.

(3) (a) . . . possible involvement of HCMV . . .
(b) amod(involvement,possible)

prep of (involvement,HCMV)
(c) amod(possible,involvement)

prep of (involvement,HCMV)

To obtain the embedding relations in a sentence,
we apply a series of transformations to its syntactic
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Figure 2: The embedding graph for the sentence Our previous results show that recombinant gp41 (aa565-647), the
extracellular domain of HIV-1 transmembrane glycoprotein, stimulates interleukin-10 (IL-10) production in human
monocytes. in the context of the document embedding graph for the Medline abstract with PMID 10089566.

dependencies. A transformation may not be neces-
sary, as with the prep of dependency in the exam-
ple above. It may result in collapsing several syn-
tactic dependencies into one, as well, or in splitting
one into several embedding relations. In addition
to capturing semantic dependency behavior explic-
itly, these transformations serve to incorporate se-
mantic information (entities and triggers) into the
embedding structure and to correct syntactic depen-
dencies that are systemically misidentified, such as
those that involve modifier coordination.

After these transformations, the resulting directed
acyclic embedding graph is, in the simplest case, a
tree, but more often a forest. An example graph is
given in Figure (2). The edges are associated with
the embedding relation types, and the nodes with
textual elements.

3.2.2 Composing Propositions

After constructing the embedding graph, we tra-
verse it in a bottom-up manner and compose se-
mantic propositions. Before this procedure can take

place, though, the embedding graph pertaining to
each sentence is further linked to the document em-
bedding graph in a way to reflect the proximity of
sentences, as illustrated in Figure (2). This is done
to enable discourse interpretation across sentences,
including coreference resolution.

Traversal of the embedding structure is guided by
argument identification rules, which apply to non-
leaf nodes in the embedding graph. An argument
identification rule is essentially a mapping from the
type of the embedding relation holding between a
parent node and its child node and part-of-speech of
the parent node to a logical argument type (logical
subject, logical object or adjunct). Constraints on
and exclusions from a rule can be defined, as shown
in Table (3). We currently use about 80 such rules,
mostly adapted from our previous shared task sys-
tem (Kilicoglu and Bergler, 2009).

After all the descendants of a non-leaf node are
recursively processed for arguments, a semantic
proposition can be composed. We define a seman-
tic proposition as consisting of a trigger, a collection
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Relation Applies to Argument Constrained to Exclusions
prep on NN Object influence,impact,effect -
agent VB Subject - -
nsubjpass VB Object - -
whether comp VB Object INTERROGATIVE -
prep in NN Adjunct - effect, role, influence, importance

Table 3: Several argument identification rules. Note that constraints and exclusions may apply to trigger categories, as
well as to lemmas.

of core and adjunct arguments as well as a polarity
value and a scalar value. The polarity value can be
positive, negative or neutral. The scalar value is in
the (0,1) range. Atomic propositions are simply as-
signed polarity value of neutral4 and the scalar value
of 1.0. On the other hand, in the context of embed-
ding propositions, the computation of these values,
through which we attempt to capture some of the in-
teractions occurring at the embedding layer, is more
involved. For the sentence depicted in Figure (2),
the relevant resulting embedding and atomic propo-
sitions are given below.

(4) DEMONSTRATIVE(em1,Trigger=show,
Object=em2, Subject=Our previous results,
Polarity=positive, Value=1.0)

(5) CAUSAL(em2, Trigger=stimulates, Object=ap1,
Subject=recombinant gp41, Polarity=positive,
Value=1.0)

(6) Gene expression(ap1, Trigger= production,
Object= interleukin-10, Adjunct= human
monocytes, Polarity=neutral, Value=1.0)

The composition phase also deals with coordina-
tion of entities and propositions as well as with prop-
agation of arguments at the lower levels.

3.3 Mapping Propositions to Events
The goal of the mapping phase is to impose the
shared task constraints on the partial interpretation
achieved in the previous phase. We achieve this in
three steps.

The first step is to map embedding proposition
types to event (or event modification) types. We de-
fined constraints that guide this mapping. Some of

4Unless affixal negation is involved, in which case the as-
signed polarity value is negative.

these mappings are presented in Table (4). In this
way, Example (4) is pruned, since embedding propo-
sitions of DEMONSTRATIVE type satisfy the con-
straints only if they have negative polarity, as shown
in Table (4).

We then apply constraints concerned with the se-
mantic roles of the participants. For this step, we
define a small number of logical argument/semantic
role mappings. These are similar to argument identi-
fication rules, in that the mapping can be constrained
to certain event types or event types can be excluded
from it. We provide some of these mappings in Ta-
ble (5). With these mappings, the Object and Sub-
ject arguments of the proposition in Example (5) are
converted to Theme and Cause semantic roles, re-
spectively.

As the final step, we prune event participants that
do not conform to the event definition as well as the
propositions whose types could not be mapped to a
shared task event type. For example, a Cause par-
ticipant for a Gene expression event is pruned, since
only Theme participants are relevant for the shared
task. Further, a proposition with DEONTIC seman-
tic type is pruned, because it cannot be mapped to
a shared task type. The infectious diseases track
(ID) event type Process is interesting, because it may
take no participants at all, and we deal with this id-
iosyncrasy at this step, as well. This concludes the
progressive transformation of the graph to event and
event modification annotations.

4 Results and Discussion

With the two-phase methodology presented above,
we participated in three tracks: GENIA (Tasks 1 and
3), ID, and EPI. The official evaluation results we
obtained for the GENIA track are presented in Ta-
ble (6) and the results for the EPI and ID tracks in
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Track Prop. Type Polarity Value Correspond. Event (Modification) Type
GENIA,ID CAUSAL neutral - Regulation
GENIA,ID,EPI SUCCESS negative - Negation
EPI CAUSAL positive - Catalysis
GENIA,ID,EPI SPECULATIVE - > 0.0 Speculation
GENIA,ID,EPI DEMONSTRATIVE negative - Speculation

Table 4: Several event (and event modification) mappings

Logical
Arg.

Semantic
Role

Constraint Exclusion

Object Theme - Process
Subject Cause - -
Subject Theme Binding -
Object Participant Process -
Object Scope Speculation,

Negation
-

Table 5: Logical argument to semantic role mappings

Table (7). With the official evaluation criteria, we
were ranked 5th in the GENIA track (5/15), 7th in
the EPI track (7/7) and 4th in the ID track (4/7).
There were only two submissions for the GENIA
speculation/negation task (Task 3) and our results
in this task were comparable to those of the other
participating group: our system performed slightly
better with speculation, and theirs with negation.

Our core module extracts adjunct arguments, us-
ing ABNER (Settles, 2005) as its source for addi-
tional named entities. We experimented with map-
ping these arguments to non-core event participants
(Site, Contextgene, etc.); however, we did not in-
clude them in our official submission, because they
seemed to require more work with respect to map-
ping to shared task specifications. Due to this short-
coming, the performance of our system suffered sig-
nificantly in the EPI track.

A particularly encouraging outcome for our sys-
tem is that our results on the GENIA development
set versus on the test set were very close (an F-
score of 51.03 vs. 50.32), indicating that our gen-
eral approach avoided overfitting, while capturing
the linguistic generalizations, as we intended. We
observe similar trends with the other tracks, as well.
In the EPI track, development/test F-score results
were 29.10 vs. 27.88; while, in the ID track, inter-

Event Class Recall Precis. F-score
Localization 39.27 90.36 54.74
Binding 29.33 49.66 36.88
Gene expression 65.87 86.84 74.91
Transcription 32.18 58.95 41.64
Protein catabolism 66.67 71.43 68.97
Phosphorylation 75.14 94.56 83.73
EVT-TOTAL 52.67 78.04 62.90
Regulation 33.77 42.48 37.63
Positive regulation 35.97 47.66 41.00
Negative regulation 36.43 43.88 39.81
REG-TOTAL 35.72 45.85 40.16
Negation 18.77 44.26 26.36
Speculation 21.10 38.46 27.25
MOD-TOTAL 19.97 40.89 26.83
ALL-TOTAL 43.55 59.58 50.32

Table 6: Official GENIA track results, with approximate
span matching/approximate recursive matching evalua-
tion criteria

estingly, our test set performance was better (39.64
vs. 44.21). We also obtained the highest recall in
the ID track, despite the fact that our system typi-
cally favors precision. We attribute this somewhat
idiosyncratic performance in the ID track partly to
the fact that we did not use a track-specific trigger
dictionary. Most of the ID track event types are
the same as those of GENIA track, which probably
led to identification of some ID events with GENIA-
only triggers5.

One of the interesting aspects of the shared task
was its inclusion of full-text articles in training and
evaluation. Cohen et al. (2010) show that structure
and content of biomedical abstracts and article bod-
ies differ markedly and suggest that some of these

5This clearly also led to low precision particularly in com-
plex regulatory events.
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Track-Eval. Type Recall Precis. F-score
EPI-FULL 20.83 42.14 27.88
EPI-CORE 40.28 76.71 52.83

ID-FULL 49.00 40.27 44.21
ID-CORE 50.77 43.25 46.71

Table 7: Official evaluation results for EPI and ID tracks.
Primary evaluation criteria underlined.

differences may pose problems in processing full-
text articles. Since one of our goals was to determine
the generality of our system across text types, we
did not perform any full text-specific optimization.
Our results on article bodies are notable: our system
had stable performance across text types (in fact, we
had a very slight F-score improvement on full-text
articles: 50.40 vs. 50.28). This contrasts with the
drop of a few points that seems to occur with other
well-performing systems. Taking only full-text arti-
cles into consideration, we would be ranked 4th in
the GENIA track. Furthermore, a preliminary error
analysis with full-text articles seems to indicate that
parsing-related errors are more prevalent in the full-
text article set than in the abstract set, consistent with
Cohen et al.’s (2010) findings. At the same time, our
results confirm that we were able to abstract away
from this complexity to some degree with our ap-
proach.

We have a particular interest in speculation and
negation detection. Therefore, we examined our re-
sults on the GENIA development set with respect to
Task 3 more closely. Consistent with our previous
shared task results, we determined that the majority
of errors were due to misidentified or missed base
events (70% of the precision errors and 83% of the
recall errors)6. Task 3-specific precision errors in-
cluded cases in which speculation or negation was
debatable, as the examples below show. In Exam-
ple (7a), our system detected a Speculation instance,
due to the verbal predicate suggesting, which scopes
over the event indicated by role. In Example (7b),
our system detected a Negation instance, due to the
nominal predicate lack, which scopes over the events
indicated by expression. Neither were annotated as

6Even a bigger percentage of speculation/negation-related
errors in the EPI and ID tracks were due to the same problem,
as the overall accuracy in those tracks is lower.

such in the shared task corpus.

(7) (a) . . . suggesting a role of these 3’ elements
in beta-globin gene expression.

(b) . . . DT40 B cell lines that lack expression
of either PKD1 or PKD3 . . .

Another class of precision errors was due to argu-
ment propagation up the embedding graph. It seems
the current algorithm may be too permissive in some
cases and a more refined approach to argument prop-
agation may be necessary. In the following example,
while suggest, an epistemic trigger, does not embed
induction directly (as shown in (8b)), the intermedi-
ate nodes simply propagate the proposition associ-
ated with the induction node up the graph, leading
us to conclude that the proposition triggered by in-
duction is speculated, leading to a precision error.

(8) (a) . . . these findings suggest that PWM is able
to initiate an intracytoplasmic signaling
cascade and EGR-1 induction . . .

(b) suggest → able → initiate → induction

Among the recall errors, some of them were due
to shortcomings of the composition algorithm, as it
is currently implemented. One recall problem in-
volved the embedding status of and rules concern-
ing copular constructions, which we had not yet ad-
dressed. Therefore, we miss the relatively straight-
forward Speculation instances in the following ex-
amples.

(9) (a) . . . the A3G promoter appears constitu-
tively active.

(b) . . . the precise factors that mediate this in-
duction mechanism remain unknown.

Similarly, the lack of a trigger expression in our dic-
tionary may cause recall errors. The example below
shows an instance where this occurs, in addition to
lack of an appropriate argument identification rule:

(10) mRNA was quantified by real-time PCR for
FOXP3 and GATA3 expression.

Our system also missed an interesting, domain-
specific type of negation, in which the minus sign
indicates negation of the event that the entity partic-
ipates in.

(11) . . . CD14- surface Ag expression . . .
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5 Conclusions and Future Work

We explored a two-phase approach to event ex-
traction, distinguishing general linguistic principles
from task-specific aspects, in accordance with the
generalization theme of the shared task. Our results
demonstrate the viability of this approach on both
abstracts and article bodies, while also pinpointing
some of its shortcomings. For example, our error
analysis shows that some aspects of semantic com-
position algorithm (argument propagation, in partic-
ular) requires more refinement. Furthermore, using
the same trigger expression dictionary for all tracks
seems to have negative effect on the overall perfor-
mance. The incremental nature of our system de-
velopment ensures that some of these shortcomings
will be addressed in future work.

We participated in three supporting tasks, two
of which (Co-reference (CO) and Entity Relations
(REL) tasks (Nguyen et al. (2011) and Pyysalo et
al. (2011b), respectively) were relevant to the main
portion of the shared task; however, due to time con-
straints, we were not able to fully incorporate these
modules into our general framework, with the ex-
ception of the co-reference resolution of relative pro-
nouns. Since our goal is to move towards discourse
interpretation, we plan to incorporate these modules
(inter-sentential co-reference resolution, in particu-
lar) into our framework. After applying the lessons
we learned in the shared task and fully incorporating
these modules, we plan to make our system available
to the scientific community.
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