
Proceedings of the Fourteenth Conference on Computational Natural Language Learning: Shared Task, pages 138–143,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Features for Detecting Hedge Cues

Nobuyuki Shimizu
Information Technology Center

The University of Tokyo
shimizu@r.dl.itc.u-tokyo.ac.jp

Hiroshi Nakagawa
Information Technology Center

The University of Tokyo
n3@dl.itc.u-tokyo.ac.jp

Abstract
We present a sequential labeling approach
to hedge cue detection submitted to the bi-
ological portion of task 1 for the CoNLL-
2010 shared task. Our main approach is
as follows. We make use of partial syntac-
tic information together with features ob-
tained from the unlabeled corpus, and con-
vert the task into one of sequential BIO-
tagging. If a cue is found, a sentence is
classified as uncertain and certain other-
wise. To examine a large number of fea-
ture combinations, we employ a genetic al-
gorithm. While some features obtained by
this method are difficult to interpret, they
were shown to improve the performance of
the final system.

1 Introduction

Research on automatically extracting factual in-
formation from biomedical texts has become pop-
ular in recent years. Since these texts are abundant
with hypotheses postulated by researchers, one
hurdle that an information extraction system must
overcome is to be able to determine whether or not
the information is part of a hypothesis or a factual
statement. Thus, detecting hedge cues that indi-
cate the uncertainty of the statement is an impor-
tant subtask of information extraction (IE). Hedge
cues include words such as “may”, “might”, “ap-
pear”, “suggest”, “putative” and “or”. They also
includes phrases such as “. . .raising an intriguing
question that. . .” As these expressions are sparsely
scattered throughout the texts, it is not easy to gen-
eralize results of machine learning from a training
set to a test set. Furthermore, simply finding the
expressions listed above does not guarantee that
a sentence contains a hedge. Their function as a
hedge cue depends on the surrounding context.

The primary objective of the CoNLL-2010
shared task (Farkas et al., 2010) is to detect hedge

cues and their scopes as are present in biomedi-
cal texts. In this paper, we focus on the biological
portion of task 1, and present a sequential labeling
approach to hedge cue detection. The following
summarizes the steps we took to achieve this goal.
Similarly to previous work in hedge cue detec-
tion (Morante and Daelemans, 2009), we first con-
vert the task into a sequential labeling task based
on the BIO scheme, where each word in a hedge
cue is labeled as B-CUE, I-CUE, or O, indicating
respectively the labeled word is at the beginning
of a cue, inside of a cue, or outside of a hedge
cue; this is similar to the tagging scheme from
the CoNLL-2001 shared task. We then prepared
features, and fed the training data to a sequential
labeling system, a discriminative Markov model
much like Conditional Random Fields (CRF), with
the difference being that the model parameters are
tuned using Bayes Point Machines (BPM), and
then compared our model against an equivalent
CRF model. To convert the result of sequential
labeling to sentence classification, we simply used
the presence of a hedge cue, i.e. if a cue is found, a
sentence is classified as uncertain and certain oth-
erwise.

To prepare features, we ran the GENIA tag-
ger to add partial syntactic parse and named en-
tity information. We also applied Porter’s stem-
mer (Jones and Willet, 1997) to each word in the
corpus. For each stem, we acquired the distribu-
tion of surrounding words from the unlabeled cor-
pus, and calculated the similarity between these
distributions and the distribution of hedge cues in
the training corpus. Given a stem and its similari-
ties to different hedge cues, we took the maximum
similarity and discretized it. All these features are
passed on to a sequential labeling system. Using
these base features, we then evaluated the effects
of feature combinations by repeatedly training the
system and selecting feature combinations that in-
creased the performance on a heldout set. To au-

138

tomate this process, we employed a genetic algo-
rithm.

The contribution of this paper is two-fold. First,
we describe our system, outlined above, that we
submitted to the CoNLL-2010 shared task in more
detail. Second, we analyze the effects of partic-
ular choices we made when building our system,
especially the feature combinations and learning
methods.

The rest of this paper is organized as follows.
In Section 2, we detail how the task of sequential
labeling is formalized in terms of linear classifi-
cation, and explain the Viterbi algorithm required
for prediction. We next present several algorithms
for optimizing the weight vector in a linear classi-
fier in Section 3. We then detail the complete list
of feature templates we used for the task of hedge
cue detection in Section 4. In order to evaluate the
effects of feature templates, in Section 5, we re-
move each feature template and find that several
feature templates overfit the training set. We fi-
nally conclude with Section 6.

2 Sequential Labeling

We discriminatively train a Markov model us-
ing Bayes Point Machines (BPM). We will first
explain linear classification, and then apply a
Markov assumption to the classification formal-
ism. Then we will move on to BPM. Note that
we assume all features are binary in this and up-
coming sections as it is sufficient for the task at
hand.

In the setting of sequential labeling, given the
input sequence x = (x1, x2, x3, ...xn), a system
is asked to produce the output sequence y =
(y1, y2, y3, ...yn). Considering that y is a class,
sequential labeling is simply a classification with
a very large number of classes. Assuming that the
problem is one of linear classification, we may cre-
ate a binary feature vector φ(x) for an input x and
have a weight vector wy of the same dimension
for each class y. We choose a class y that has the
highest dot product between the input vector and
the weight vector for the class y. For binary classi-
fication, this process is very simple: compare two
dot product values. Learning is therefore reduced
to specifying the weight vectors.

To follow the standard notations in sequential
labeling, let weight vectors wy be stacked into
one large vector w, and let φ(x,y) be a binary
feature vector such that w>φ(x,y) is equal to

w>
y φ(x). Classification is to choose y such that

y = argmaxy′(w>φ(x,y′)).
Unfortunately, a large number of classes created

out of sequences makes the problem intractable,
so the Markov assumption factorizes y into a se-
quence of labels, such that a label yi is affected
only by the label before and after it (yi−1 and yi+1

respectively) in the sequence. Each structure, or
label y is now associated with a set of the parts
parts(y) such that y can be recomposed from the
parts. In the case of sequential labeling, parts con-
sist of states yi and transitions yi → yi+1 between
neighboring labels. We assume that the feature
vector for an entire structure y decomposes into
a sum over feature vectors for individual parts as
follows: φ(x,y) =

∑
r∈parts(y) φ(x, r). Note that

we have overloaded the symbol φ to apply to either
a structure y or its parts r.

The Markov assumption for factoring labels lets
us use the Viterbi algorithm (much like a Hidden
Markov Model) in order to find

y = argmaxy′ (w>φ(x,y′))
= argmaxy′ (

∑n

j=1
w>φ(x, y′j)

+
∑n−1

j=1
w>φ(x, y′j → y′j+1)).

3 Optimization

We now turn to the optimization of the weight pa-
rameter w. We compare three approaches – Per-
ceptron, Bayes Point Machines and Conditional
Random Fields, using our c++ library for struc-
tured output prediction 1.

Perceptron is an online update scheme that
leaves the weights unchanged when the predicted
output matches the target, and changes them when
it does not. The update is:

wk := wk − φ(xi,y) + φ(xi,yi).

Despite its seemingly simple update scheme, per-
ceptron is known for its effectiveness and perfor-
mance (Collins, 2002).

Conditional Random Fields (CRF) is a condi-
tional model

P (y|x) =
1

Zx
exp(w>φ(x,y))

where w is the weight for each feature and Zx is a
normalization constant for each x.

Zx =
∑

y

exp(w>φ(x,y))

1Available at http://soplib.sourceforge.net/

139

for structured output prediction. To fit the weight
vector w using the training set {(xi,yi)}n

i=1, we
use a standard gradient-descent method to find the
weight vector that maximizes the log likelihood∑n

i logP (yi|xi) (Sha and Pereira, 2003). To
avoid overfitting, the log likelihood is often pe-
nalized with a spherical Gaussian weight prior:∑n

i logP (yi|xi) − C||w||
2 . We also evaluated this

penalized version, varying the trade-off parameter
C.

Bayes Point Machines (BPM) for structured
prediction (Corston-Oliver et al., 2006) is an en-
semble learning algorithm that attempts to set the
weight w to be the Bayes Point which approxi-
mates to Bayesian inference for linear classifiers.
Assuming a uniform prior distribution over w, we
revise our belief of w after observing the training
data and produce a posterior distribution. We cre-
ate the final wbpm for classification using a poste-
rior distribution as follows:

wbpm = Ep(w|D)[w] =
|V (D)|∑

i=1

p(wi|D)wi

where p(w|D) is the posterior distribution of the
weights given the data D and Ep(w|D) is the ex-
pectation taken with respect to this distribution.
V (D) is the version space, which is the set of
weights wi that classify the training data correctly,
and |V (D)| is the size of the version space. In
practice, to explore the version space of weights
consistent with the training data, BPM trains a few
different perceptrons (Collins, 2002) by shuffling
the samples. The approximation of Bayes Point
wbpm is the average of these perceptron weights:

wbpm = Ep(w|D)[w] ≈
K∑

k=1

1
K

wk.

The pseudocode of the algorithm is shown in Al-
gorithm 3.1. We see that the inner loop is simply
a perceptron algorithm.

4 Features

4.1 Base Features

For each sentence x, we have state features, rep-
resented by a binary vector φ(x, y′j) and transition
features, again a binary vector φ(x, y′j → y′j+1).

For transition features, we do not utilize lexical-
ized features. Thus, each dimension of φ(x, y′j →

Algorithm
3.1: BPM(K, T, {(xi,yi)}n

i=1)

wbpm := 0;
for k := 1 to K

Randomly shuffle the sequential order of
samples {(xi,yi)}n

i=1

wk := 0;
for t := 1 to T # Perceptron iterations

for i := 1 to n # Iterate shuffled samples
y := argmaxy′(w>

k φ(xi,y′))
if (y 6= yi)

wk := wk − φ(xi,y) + φ(xi,yi);
wbpm := wbpm + 1

K wk;
return (wbpm)

y′j+1) is an indicator function that tests a com-
bination of labels, for example, O→B-CUE, B-
CUE→I-CUE or I-CUE→O.

For state features φ(x, y′j), the indicator func-
tion for each dimension tests a combination of
y′j and lexical features obtained from x =
(x1, x2, x3, ...xn). We now list the base lexical
features that were considered for this experiment.

F 0 a token, which is usually a word. As a part of
preprocessing, words in each input sentence
are tokenized using the GENIA tagger 2. This
tokenization coincides with Penn Treebank
style tokenization 3.

We add a subscript to indicate the position. F 0
j is

exactly the input token xj . From xj , we also create
other lexical features such as F 1

j , F 2
j , F 3

j , and so
on.

F 1 the token in lower case, with digits replaced
by the symbol #.

F 2 1 if the letters in the token are all capitalized,
0 otherwise.

F 3 1 if the token contains a digit, 0 otherwise.

F 4 1 if the token contains an uppercase letter, 0
otherwise.

F 5 1 if the token contains a hyphen, 0 otherwise.
2Available at: http:// www-tsujii.is.s.u-tokyo.ac.jp/ GE-

NIA/ tagger/
3A tokenizer is available at: http:// www.cis.upenn.edu/

treebank/ tokenization.html

140

F 6 first letter in the token.

F 7 first two letters in the token.

F 8 first three letters in the token.

F 9 last letter in the token.

F 10 last two letters in the token.

F 11 last three letters in the token.

The features F 0 to F 11 are known to be useful
for POS tagging. We postulated that since most
frequent hedge cues tend not to be nouns, these
features might help identify them.

The following three features are obtained by
running the GENIA tagger.

F 12 a part of speech.

F 13 a CoNLL-2000 style shallow parse. For ex-
ample, B-NP or I-NP indicates that the token
is a part of a base noun phrase, B-VP or I-VP
indicates that it is part of a verb phrase.

F 14 named entity, especially a protein name.

F 15 a word stem by Porter’s stemmer 4. Porter’s
stemmer removes common morphological
and inflectional endings from words in En-
glish. It is often used as part of an informa-
tion retrieval system.

Upon later inspection, it seems that Porter’s
stemmer may be too aggressive in stemming
words. The word putative, for example, after be-
ing processed by the stemmer, becomes simply put
(which is clearly erroneous).

The last nine types of features utilize the unla-
beled corpus for the biological portion of shared
task 1, provided by the shared task organizers.
For each stem, we acquire a histogram of sur-
rounding words, with a window size of 3, from
the unlabeled corpus. Each histogram is repre-
sented as a vector; the similarity between his-
tograms was then computed. The similarity met-
ric we used is called the Tanimoto coefficient, also
called extended/vector-based Jaccard coefficient.

vi · vj

||vi||+ ||vj || − vi · vj

It is based on the dot product of two vectors and
reduces to Jaccard coefficient for binary features.

4Available at: http://tartarus.org/ martin/PorterStemmer/

This metric is known to perform quite well for
near-synonym discovery (Hagiwara et al., 2008).
Given a stem and its similarities to different hedge
cues, we took the maximum similarity and dis-
cretized it.

F 16 1 if similarity is bigger than 0.9, 0 otherwise.

...

F 19 1 if similarity is bigger than 0.6, 0 otherwise.

...

F 24 1 if similarity is bigger than 0.1, 0 otherwise.

This concludes the base features we considered.

4.2 Combinations of Base Features

In order to discover combinations of base features,
we implemented a genetic algorithm (Goldberg,
1989). It is an adaptive heuristic search algorithm
based on the evolutionary ideas of natural selec-
tion and genetics. After splitting the training set
into three partitions, given the first partition as the
training set, the fitness is measured by the score
of predicting the second partition. We removed
the feature sets that did not score high, and intro-
duced mutations – new feature sets – as replace-
ments. After several generations, surviving fea-
ture sets performed quite well. To avoid over fit-
ting, occasionally feature sets were evaluated on
the third partition, and we finally chose the feature
set according to this partition.

The features of the submitted system are listed
in Table 1. Note that Table 1 shows the dimensions
of the feature vector that evaluate to 1 given x and
y′j . The actual feature vector is created by instan-
tiating all the combinations in the table using the
training set.

Surprisingly, our genetic algorithm removed
features F 10 and F 11, the last two/three let-
ters in a token. It also removed the POS in-
formation F 12, but kept the sequence of POS
tags F 12

j−1, F
12
j , F 12

j+1, F
12
j+2, F

12
j+3. The reason for

longer sequences is due to our heuristics for muta-
tions. Occasionally, we allowed the genetic algo-
rithm to insert a longer sequence of feature com-
binations at once. One other notable observation
is that shallow parses and NEs are removed. Be-
tween the various thresholds from F 16 to F 24,
it only kept F 19, discovering 0.6 as a similarity
threshold.

141

State φ(x, y′j)
y′j
y′j , F

0
j−2

y′j , F
0
j−1

y′j , F
0
j

y′j , F
0
j , F 19

j

y′j , F
0
j−1, F

0
j , F 0

j+1, F
0
j+2, F

0
j+3, F

0
j+4 –(1)

y′j , F
0
j+1

y′j , F
0
j+2

y′j , F
1
j

y′j , F
2
j –(2)

y′j , F
3
j

y′j , F
4
j

y′j , F
4
j−2, F

4
j−1, F

4
j , F 4

j+1, F
4
j+2

y′j , F
5
j

y′j , F
5
j , F 7

j−1

y′j , F
6
j

y′j , F
7
j

y′j , F
8
j

y′j , F
9
j−1, F

9
j , F 9

j+1, F
9
j+2, F

9
j+3

y′j , F
12
j−1, F

12
j , F 12

j+1, F
12
j+2, F

12
j+3

y′j , F
15
j , F 15

j+1, F
15
j+2, F

15
j+3

y′j , F
19
j−2, F

19
j−1, F

19
j , F 19

j+1, F
19
j+2

Table 1: Features for Sequential Labeling

5 Experiments

In order to examine the effects of learning parame-
ters, we conducted experiments on the test data af-
ter it was released to the participants of the shared
task.

While BPM has two parameters, K and T , we
fixed T = 5 and varied K, the number of percep-
trons. As increasing the number of perceptrons re-
sults in more thorough exploration of the version
space V (D), we expect that the performance of
the classifier would improve as K increases. Ta-
ble 2 shows how the number of perceptrons affects
the performance.

TP stands for True Positive, FP for False Pos-
itive, and FN for False Negative. The evaluation
metrics were precision P (the number of true pos-

K TP FP FN P (%) R (%) F1 (%)
10 641 80 149 88.90 81.14 84.84
20 644 79 146 89.07 81.52 85.13
30 644 80 146 88.95 81.52 85.07
40 645 81 145 88.84 81.65 85.09
50 645 80 145 88.97 81.65 85.15

Table 2: Effects of K in Bayes Point Machines

itives divided by the total number of elements la-
beled as belonging to the positive class) recall R
(the number of true positives divided by the to-
tal number of elements that actually belong to the
positive class) and their harmonic mean, the F1

score (F1 = 2PR/(P + R)). All figures in this
paper measure hedge cue detection performance at
the sentence classification level, not word/phrase
classification level. From the results, once the
number of perceptrons hits 20, the performance
stabilizes and does not seem to show any improve-
ment.

Next, in order to examine whether or not we
have overfitted to the training/heldout set, we re-
moved each row of Table 1 and reevaluated the
performance of the system. Reevaluation was
conducted on the labeled test set released by the
shared task organizers after our system’s output
had been initially evaluated. Thus, these figures
are comparable to the sentence classification re-
sults reported in Farkas et al. (2010).

TP FP FN P (%) R (%) F1 (%)
1 647 79 143 89.12 81.90 85.36
2 647 80 143 89.00 81.90 85.30

1,2 647 81 143 88.87 81.90 85.24

Table 3: Effects of removing features (1) or (2), or
both

Table 3 shows the effect of removing (1), (2),
or both (1) and (2), showing that they overfit the
training data. Removing any other rows in Ta-
ble 1 resulted in decreased classification perfor-
mance. While there are other large combination
features such as ones involving F 4, F 9, F 12, F 15

and F 19, we find that they do help improving the
performance of the classifier. Since these fea-
tures seem unintuitive to the authors, it is likely
that they would not have been found without the
genetic algorithm we employed. Error analysis
shows that inclusion of features involving F 9 af-
fects prediction of “believe”, “possible”, “puta-
tive”, “assumed”, “seemed”, “if”, “presumably”,
“perhaps”, “suggestion”, “suppose” and “intrigu-
ing”. However, as this feature template is unfolded
into a large number of features, we were unable to
obtain further linguistic insights.

In the following experiments, we used the cur-
rently best performing features, that is, all fea-
tures except (1) in Table 1, and trained the classi-
fiers using the formalism of Perceptron and Con-
ditional Random Fields besides Bayes Point Ma-

142

chines as we have been using. The results in Table
4 shows that BPM performs better than Percep-
tron or Conditional Random Fields. As the train-
ing time for BPM is better than CRF, our choice
of BPM helped us to run the genetic algorithm re-
peatedly as well. After several runs of empirical
tuning and tweaking, the hyper-parameters of the
algorithms were set as follows. Perceptron was
stopped at 40 iterations (T = 40). For BPM, we
fixed T = 5 and K = 20. For Conditional Ran-
dom Fields, we compared the penalized version
with C = 1 and the unpenalized version (C = 0).
The results in Table 4 is that of the unpenalized
version, as it performed better than the penalized
version.

Perceptron
TP FP FN P (%) R (%) F1 (%)
671 128 119 83.98 84.94 84.46

Conditional Random Fields
TP FP FN P (%) R (%) F1 (%)
643 78 147 89.18 81.39 85.11

Bayes Point Machines
TP FP FN P (%) R (%) F1 (%)
647 79 143 89.12 81.90 85.36

Table 4: Performance of different optimization
strategies

6 Conclusion

To tackle the hedge cue detection problem posed
by the CoNLL-2010 shared task, we utilized a
classifier for sequential labeling following previ-
ous work (Morante and Daelemans, 2009). An
essential part of this task is to discover the fea-
tures that allow us to predict unseen hedge expres-
sions. As hedge cue detection is semantic rather
than syntactic in nature, useful features such as
word stems tend to be specific to each word and
hard to generalize. However, by using a genetic al-
gorithm to examine a large number of feature com-
binations, we were able to find many features with
a wide context window of up to 5 words. While
some features are found to overfit, our analysis
shows that a number of these features are success-
fully applied to the test data yielding good general-
ized performance. Furthermore, we compared dif-
ferent optimization schemes for structured output
prediction using our c++ library, freely available

for download and use. We find that Bayes Point
Machines have a good trade-off between perfor-
mance and training speed, justifying our repeated
usage of BPM in the genetic algorithm for feature
selection.

Acknowledgments

The authors would like to thank the reviewers for
their comments. This research was supported by
the Information Technology Center through their
grant to the first author. We would also like to
thank Mr. Ono, Mr. Yonetsuji and Mr. Yamada
for their contributions to the library.

References
Michael Collins. 2002. Discriminative training meth-

ods for hidden Markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings
of Empirical Methods in Natural Language Process-
ing (EMNLP).

Simon Corston-Oliver, Anthony Aue, Kevin Duh, and
Eric Ringger. 2006. Multilingual dependency pars-
ing using bayes point machines. In Proceedings of
the Human Language Technology Conference of the
NAACL, Main Conference, pages 160–167, June.

Richárd Farkas, Veronika Vincze, György Móra, János
Csirik, and György Szarvas. 2010. The CoNLL-
2010 Shared Task: Learning to Detect Hedges and
their Scope in Natural Language Text. In Proceed-
ings of the Fourteenth Conference on Computational
Natural Language Learning (CoNLL-2010): Shared
Task, pages 1–12, Uppsala, Sweden. ACL.

David E. Goldberg. 1989. Genetic Algorithms
in Search, Optimization, and Machine Learning.
Addison-Wesley Professional.

Masato Hagiwara, Yasuhiro Ogawa, and Katsuhiko
Toyama. 2008. Context feature selection for distri-
butional similarity. In Proceedings of IJCNLP-08.

Karen Spärk Jones and Peter Willet. 1997. Readings
in Information Retrieval. Morgan Kaufmann.

Roser Morante and Walter Daelemans. 2009. Learn-
ing the scope of hedge cues in biomedical texts.
In BioNLP ’09: Proceedings of the Workshop on
BioNLP, pages 28–36.

Fei Sha and Fernando Pereira. 2003. Shallow pars-
ing with conditional random fields. In Proceed-
ings of the Human Language Technology Confer-
ence (HLT).

143

