
Proceedings of the Fourth Linguistic Annotation Workshop, ACL 2010, pages 172–176,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

From Descriptive Annotation to Grammar Specification

Lars Hellan
NTNU

Trondheim, Norway
lars.hellan@hf.ntnu.no

Abstract

The paper presents an architecture for connecting
annotated linguistic data with a computational gram-
mar system. Pivotal to the architecture is an annota-
tional interlingua – called the Construction Labeling
system (CL) - which is notationally very simple, de-
scriptively finegrained, cross-typologically applica-
ble, and formally well-defined enough to map to a
state-of-the-art computational model of grammar. In
the present instantiation of the architecture, the com-
putational grammar is an HPSG-based system called
TypeGram. Underlying the architecture is a research
program of enhancing the interconnectivity between
linguistic analytic subsystems such as grammar for-
malisms and text annotation systems.

1 Introduction

This paper advocates the view that all aspects of
descriptive, theoretical, typological, and compu-
tational linguistics should hang together in over-
all precisely defined networks of terminologies
and formalisms, but flexibly so such that each
field can choose suitable formats, and different
traditions can maintain their preferred terminol-
ogies and formalisms. Terms and symbols used
for linguistic annotation are central in this enter-
prise, and the paper describes an algorithm by
which a code suitable for sentence level annota-
tion can be aligned with a system of attribute-
value matrix (AVM) representations. An aim for
further development is a similar alignment for
PoS/morpheme annotation symbols.

The alignment described has as its theoretical
and computational reference point an HPSG-
based system, where, aside from AVMs, types
play a crucial role. Most likely, alignment archi-
tectures with similar capacities to the one here
described can have other formal frameworks in-
tegrated. For such alternatives the present system
may serve as a roadmap, and hopefully more: the
architecture is sought to be modular such that
parts of it – such as the formal framework, or an
annotation tag system - can be replaced while

keeping other parts constant. At the present
point, however, this is a demonstration tied to
unique choices for each module in the architec-
ture. It serves as a feasibility demonstration of
the design as such, and equally much to motivate
the specific annotation code presented, which is
pivotal to the system as a whole.

This paper has two parts. The first part presents
the sentence-level annotation code. It consists of
strings of labels (connected by hyphens) where
each label represents a possible property of a
sentential sign, such as, e.g., ‘has Argument
structure X’, ‘has Aspect Y’, ‘has a Subject with
properties Z’, ‘expresses situation type S’, etc.
The construction type specification in (1) is a
first illustration of the code:

(1) v-tr-suAg_obAffincrem-

COMPLETED_MONODEVMNT
 (Ex.: English: the boy ate the cake)

This reads: the sign is headed by verb; its syntac-
tic frame is transitive; it has a Subject (su) whose
thematic role is agent, and an Object (ob) whose
thematic role is incrementally affected; its aspec-
tual type is characterized as a combination of
completed and monotonic development.

Expressions like that in (1), characterizing a
sentence from its ‘global’ perspective, are re-
ferred to as templates. The code is flexible in
having no upward bound on the number of labels
used in a template, and expressive in that each
label represents a statement about some part or
aspect of the sign. The code as such will be re-
ferred to as the Construction Labeling (CL)
system; see section 2.

The circumstance that each individual label has
the logic of a statement, is essential to the trans-
parency of the code. This propositional character
of a label also opens for the alignment of CL
with a formal grammar system, which is ad-
dressed in the second part of the paper. Here we
show how templates can be linked to AVMs, like
the template in (1) to an AVM like (2) (in mixed
HPSG/LFG style),

172

(2)

[]

[]

H E A D verb

S U B J IN D X 1 R O LE agen t
G F

O B J IN D X 2 R O LE aff-increm

IN D X ref-index
A S P E C T com pleted

A C T 1 1
A C T N T S

A C T 2 2
S IT -T Y P E m ono ton ic_developm en t

⎡ ⎤
⎢ ⎥

⎡ ⎤⎡ ⎤⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥
⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

and in such a way that each individual label in the
template can be seen as inducing its specific part
of the AVM, as informally and partially indicated
in (3):

(3)
v - - - []HEAD verb

tr - - - S U B J IN D X 1
G F

O B J IN D X 2

A C T 1 1
A C T N T S

A C T 2 2

⎡ ⎤⎡ ⎤⎡ ⎤
⎣ ⎦⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦

suAg - - - []GF SUBJ INDX ROLE agent⎡ ⎤⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦

obAffincrem - - - []GF OBJ INDX ROLE aff-increm⎡ ⎤⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦

Thus, while the labels have a descriptive trans-
parency essential to the descriptive functionality
of the over-all code, this transparency can be
‘cashed out’ also in the definition of a linking
between CL and grammar formalisms like that
illustrated in (2) and (3). Section 3 describes a
possible architecture for achieving this, centered
around the computational grammar TypeGram.

2 Construction Labeling

In its first development, the coding system has
been based on two typologically very diverse
languages: Norwegian, and the West African lan-
guage Ga. An overview of the system is given in
(Hellan and Dakubu 2010). The end product of
its application to a language is called a construc-
tion profile of the language, abbreviated its c-
profile. This is an assembly of between 150 and
250 templates encoding the span of variation of-
fered by the language in a fixed number of re-
spects, in a code immediately comparable to c-
profiles of other languages. A c-profile for both
Ga and Norwegian is given in (Hellan and Da-
kubu op. cit.); see also (Hellan and Dakubu 2009,
Dakubu 2008, Hellan 2008).

The typical method of establishing c-profiles is
through paradigm building, where, based on one
sentence of the language, one establishes the
various paradigms relative to which the sentence

instantiates choices, and supplements these para-
digms with paradigms spun out of other sen-
tences or constructions, ultimately establishing a
full network of construction types for the lan-
guage relative to the discriminants selected.
(‘Construction’ is here used in a theory neutral
way.)

The creation of c-profiles is obviously an in-
cremental process, both in the building of tem-
plates instantiating possibilities defined by the
range of discriminants recognized at any point,
and in extending this range reflecting new phe-
nomena and new languages investigated. Thus,
while the stage referred to above reflects in depth
work on Germanic and Kwa, significant en-
hancements are currently made through work on
Ethio-semitic (especially through the study
(Wakjira, to appear) on Kistaninya), Bantu,
Indic, and other language groups, mostly not yet
having achieved full c-profiles.

Although presentable as networks, in normal
displays c-profiles are given as lists, with strict
principles of ordering. Some c-profiles are also
entered in the TypeCraft database
(http://www.typecraft.org/), where one can
search according to any labels serving as con-
stituents of templates. At present, the number of
labels employed in the code is about 40 for va-
lence types, 90 for specifications relating to the
syntactic form of specific constituents, 40 for
thematic roles of specific constituents, 20 for
aspect and Aktionsart values, and 60 for situation
types. For valence and grammatical functions,
language and framework independence in the
code is made possible due to considerable agree-
ment across traditions, whereas for participant
roles and situation types, there is much less of a
consolidated basis, and in these areas code de-
velopment and evaluation is still a primary issue.

3 TypeGram

TypeGram is in most respects a normal HPSG-
based computational grammar built on the LKB
platform (Copestake 2002). Crucial to the pre-
sent discussion, it has some components de-
signed for linking it up with the CL code, which
makes it possible for it to
- provide an AVM display of any CL template
(like (2) above, for (1));
- provide a basis for a rapid development of a
parsing grammar for any language for which a
c-profile has been created;

173

- provide an intermediate parsing facility for
sentences of any language even when no gram-
mar specific to the language has been created, as
long as the language has been assigned a c-
profile.

We will refer to the ‘basic’ part of TypeGram
as its Core. Relative to current grammar formal-
isms using AVMs, such as LFG and HPSG (cf.
Bresnan 2001, Butt et al. 1999, Pollard and Sag
1994), the TypeGram Core borrows from LFG
an inventory of grammatical functions, and from
HPSG the use of types, and a design by which
all components of a grammar are encoded in
AVMs. Unlike most computational grammars,
the Core defines analyses for phenomena not
restricted to one language, but for the union of
all languages for which c-profiles have been de-
fined. (In this respect it resembles the HPSG
Grammar Matrix (‘the Matrix’ - see Bender et.
al, and http://www.delph-in.net/matrix/); we
comment on its relationship to this system be-
low.) The mediation between the Core and the c-
profiles is induced by special type files:

- one file for each c-profile (of which there are
currently three, for Ga, Norwegian and Kistan-
inya)

- one general file, called Labeltypes, for defin-
ing CL labels as types in terms of the Core types.

This architecture can be summed up as follows
(with ‘Ga c-types’ meaning ‘types correspond-
ing to the templates constituting the c-profile for
Ga’, and items in boldface being items defined
inside the TypeGram system):

(4)

c-profile of Ga Ga c-types

c-profile of
Norwegian Norw.c-typ Labeltypes

c-profile of
Kistaninya Kistane c-types Core

Thus, what communicates between the Core and
the construction specifications in the CL code is
Labeltypes, which in turn feeds into the lan-
guage specific template definition files. The lat-
ter files build only on Labeltypes, which in turn
builds only on the Core. This allows for modu-
larity: the content of the Core can be changed,
e.g., to the system of the Matrix (or even an
LFG-based system), without affecting the c-
profiles or the c-type inventories.

We now describe possibilities offered by the
architecture.

3.1 Providing AVM displays of templates

In exemplifying this function, we use a template
from Ga, along with a glossed example to illus-
trate the construction type:

(5) v-ditr-obPostp-
suAg_obEndpt_ob2Mover-PLACEMENT
Amɛ-wo tsɔne lɛ mli yɛlɛ
3P.AOR-put vehicle DEF inside yam
V N Art N N
‘They put [vehicle’s inside] [yam]’ = ‘They
put yams in the lorry.’

Here the two objects represent a Mover (the
yam) and where the Mover is finally placed (the
lorry’s inside). This Endpoint is characterized as
the inside of something, where the expression of
this inside is structurally like a possessive NP
construction.

In the type-file ‘Ga c-types’, the template in
(5) is turned into a grammatical type by the type
definition (6) (where ‘:=’ means ‘is a subtype
of’ and ‘&’ is the operation of unification):

(6)

v-ditr-obPostp-suAg_obEndpt_ob2Th-
PLACEMENT :=
v & ditr & obPostp & suAg & obEndpt & ob2Th
& PLACEMENT.

The way in which the individual types v, ditr,
obPostp, etc., are here unified to constitute a
definition of the type corresponding to the full
template, corresponds to the way in which, in
(3), the constituent labels of the template (1) are
portrayed as contributing to its full AVM.

The defining types in (6) are in turn defined in
labeltypes, by definitions whose defining terms
are in turn defined in the Core.

With such type definitions in the background,
the template v-ditr-obPostp-
suAg_obEndpt_ob2Th-PLACEMENT is a type
recognized in the grammar. Using the view type
definition offered in a standard LKB interface,
one sees the AVM assigned to this template.

3.2 Developing a parsing grammar

Suppose that we want to develop a grammar
of Ga – GaGram -, taking advantage of the type
apparatus already described. (For Ga, the lexi-
con (Dakubu 2009) is partly informed by the c-
profile and is a resource in building the lexicon
of the grammar.) What is missing is defining a
lexicon, inflectional rules, derivational rules and

174

syntactic combinatorial rules. The latter is partly
deducible from the constructional templates, and
for templates which reflect verb subcategoriza-
tion frames, lexical frame types are fairly di-
rectly derivable from the templates. What needs
to be done in addition is specifying the lexical
root items of Ga, and the inflectional and deriva-
tional formatives used in the language.

This ‘grammar construction kit’ offered by
TypeGram clearly resembles the HPSG Gram-
mar Matrix (‘Matrix’; cf. Bender et al. 2002). It
differs from the Matrix most essentially through
the way in which the grammar internal specifica-
tions are ‘semi-automatically’ updated as the c-
profile grows. This systematic linkage between a
cross-linguistic descriptive classification code
and a computational grammar code is not yet
available in the Matrix. Nothing, though, pre-
cludes introducing the TypeGram architecture
also there, in this respect.

3.3 An intermediate parsing facility

TypeGram has specifications which, in addition
to the above, in principle enable it to parse the
Ga string in (5) – viz.,
(7) Amɛ-wo tsɔne lɛ mli yɛlɛ
as a structure like (8) (AVM not shown):

(8) VP

 V NP NP
 NP N

 N Art

V3PputAor Nvehicle ArtDEF Ninside Nyam

We may informally refer to (8) as an ‘x-ray’ of
(7). As terminal nodes in the parse tree, it has
the English glosses corresponding to the Ga
roots, and functional morph glosses for the ac-
tual formatives of the Ga string. This is achieved
through having as input to the parser not the
string (7) itself, but the standard gloss associated
with the string – (9a) – suitably modified to stan-
dard LKB parse input format:

(9)
a.
3P.AOR-put vehicle DEF inside yam
V N Art N N

b. V3PputAor Nvehicle ArtDEF Ninside Nyam

This is achieved by having the TypeGram lexi-
con contain all those English roots which ever
appear in the glosses of Ga sentences (obviously
relative to a limited, but in principle expandable
corpus), and having these roots be associated
with exactly the frame types which the corre-
sponding Ga roots have relative to Ga. Thus, to
produce (8), this lexicon would have to include
an entry like (10) (using LKB style format),
‘put’ being the counterpart to wo in this context:

(10)
put := v-ditr-obPostp-suAg_obEndpt_ob2Th-
PLACEMENT & [ORTH <“put“>,
 ACTANTS.PRED put_rel].

What this facility amounts to is a parser dis-
playing the structure of sentences of a language
for which one has designed a c-profile, but not
yet a parsing grammar. It would be useful as a
tool for typological comparison. To work, such a
system would require a highly disciplined set of
conventions for ‘standard’ glossing, and an in-
terface in addition to LKB where such a glossing
would be ‘read in’ as a string-to-parse; the latter
is a facility not yet implemented (the only exist-
ing candidate interface for this purpose, to our
knowledge, would be TypeCraft (cf. Beermann
and Mihaylov 2009), while the development of
the former (presumably with reference to exist-
ing glossing conventions such as the Leipzig
Glossing rules, see References) would be part of
the over-all initiative described at the outset.

4 Conclusion

With the Construction Labeling code and its de-
ployment across languages as a basis, we have
shown how this code can be mapped to a gram-
mar formalism, both formally and computation-
ally. We are thereby able to, at one and the same
time, develop descriptive sentence level annota-
tions across typologically diverse languages with
a unitary code, and derive from these annota-
tions facilities for automatic display of AVMs
for any coded annotation, for rapid grammar de-
velopment for the language concerned, and – so
far less robustly - for intermediate ‘gloss’-
reflecting parsing.

We have thereby provided a system where de-
scriptive, theoretical, typological, and computa-
tional concerns are brought together in an over-
all precisely defined network of terminologies
and formalisms, and flexibly so such that each
field – here annotation and grammar develop-
ment – have their respective suitable formats.

175

References
Dorothee Beermann and Pavel Mihaylov 2009. Type-

Craft – Glossing and Databasing for Linguists.
Proceedings of the 23rd Scandinavian Conference
of Linguistics, Uppsala, Sweden, October 2008.

Emily M Bender, Dan Flickinger, and Stephan Oepen.
2002. The Grammar Matrix: An open-source
starter kit for the rapid development of cross-
linguistically consistent broad-coverage precision
grammars. In Proceedings of the Workshop on
Grammar Engineering and Evaluation, COLING
2002, Taipei.

Joan Bresnan. 2001. Lexical Functional Grammar.
Oxford: Blackwell.

Miriam Butt, Tracy Holloway King, Maria-Eugenia
Nini and Frederique Segond. 1999. A Grammar-
writer's Cookbook. Stanford: CSLI Publications.

Ann Copestake. 2002. Implementing Typed Feature
Structure Grammars. CSLI Publications.

Mary Esther Kropp Dakubu,. 2008. The Construction
label project: a tool for typological study. Pre-
sented at West African Languages Congress
(WALC), Winneba, July 2008.

Mary Esther Kropp Dakubu. 2009. Ga-English Dic-
tionary. Accra.

Lars Hellan. 2008. Enumerating Verb Constructions
Cross-linguistically. COLING Workshop on Gram-
mar Engineering Across frameworks. Manchester.
http://www.aclweb.org/anthology-
new/W/W08/#1700

Lars Hellan and Mary Esther Kropp Dakubu. 2009:
A methodology for enhancing argument structure
specification. In: Proceedings from the 4th Lan-
guage Technology Conference (LTC 2009),
Poznan.

Lars Hellan and Mary Esther Kropp Dakubu. 2010.
Identifying Verb Constructions Cross-
linguistically. SLAVOB series, Univ. of Ghana
(http://www.typecraft.org/w/images/d/db/1_Introla
bels_SLAVOB-final.pdf,
http://www.typecraft.org/w/images/a/a0/2_Ga_app
endix_SLAVOB-final.pdf,
http://www.typecraft.org/w/images/b/bd/3_Norweg
ian_Appendix_plus_3_SLAVOB-final.pdf)

Carl Pollard and Ivan Sag. 1994. Head-Driven Phrase
Structure Grammar. Chicago University Press.

Bedilu Debela Wakjira. To appear. Kistaninya Verb
Morphology and Verb Constructions. PhD disserta-
tion. NTNU.

Some web sites:

Leipzig glossing rules:

http://www.eva.mpg.de/lingua/resources/glossing-
rules.php

TypeGram:

http://www.typecraft.org/tc2wiki/TypeGram

TypeCraft:

http://www.typecraft.org/
Construction Labeling site:

http://www.typecraft.org/research/projects/Verbconstr
uctions/

176

