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Abstract

In this work, we show how active learning
in some (target) domain can leverage infor-
mation from a different but related (source)
domain. We present an algorithm that har-
nesses the source domain data to learn the best
possible initializer hypothesis for doing active
learning in the target domain, resulting in im-
proved label complexity. We also present a
variant of this algorithm which additionally
uses the domain divergence information to se-
lectively query the most informative points in
the target domain, leading to further reduc-
tions in label complexity. Experimental re-
sults on a variety of datasets establish the effi-
cacy of the proposed methods.

1 Introduction

Acquiring labeled data to train supervised learning
models can be difficult or expensive in many prob-
lem domains. Active Learning tries to circumvent
this difficultly by only querying the labels of the
most informative examples and, in several cases, has
been shown to achieve exponentially lower label-
complexity (number of queried labels) than super-
vised learning (Cohn et al., 1994). Domain Adap-
tation (Daumé & Marcu, 2006), although motivated
somewhat differently, attempts to address a seem-
ingly similar problem: lack of labeled data in some
target domain. Domain Adaptation deals with this
problem using labeled data from a different (but re-
lated)sourcedomain.

In this paper, we consider thesuperviseddomain
adaptation setting (Finkel & Manning, 2009; Daumé

III, 2007) having a large amount of labeled data from
a source domain, a large amount of unlabeled data
from a target domain, andadditionally a small bud-
get for acquiring labels in the target domain. We
show how, apart from leveraging information in the
usual domain adaptation sense, the information from
the source domain can be leveraged to intelligently
query labels in the target domain.We achieve this
by first training the best possible classifierwithout
using target domain labeled data1 and then using
the learned classifier to leverage the inter-domain in-
formation when we are additionally provided some
fixed budget for acquiring extralabeled target data
(i.e., the active learning setting (Settles, 2009)).

There are several ways in which our “best clas-
sifier” can be utilized. Our first approach uses this
classifier as the initializer while doing (online) ac-
tive learning in the target domain (Section 3). Then
we present a variant augmenting the first approach
using a domain-separator hypothesis which leads to
additionally ruling out querying the labels of those
target examples that appear “similar” to the source
domain (Section 4).

Figure 1 shows our basic setup which uses a
source (or unsupervised domain-adapted source)
classifierv0 as an initializer for doing active learn-
ing in the target domain having some small, fixed
budget for querying labels. Our framework consists
of 2 phases: 1) Learning the best possible classi-

1For instance, either by simply training a supervised classi-
fier on the labeled source data, or by usingunsuperviseddomain
adaptation techniques (Blitzer et al., 2006; Sugiyama et al.,
2007) that use labeled data from the source domain, and ad-
ditionally unlabeleddata from the source and target domains.
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Figure 1: Block diagram of our basic approach. Stage-1 can
use any black-box unsupervised domain adaptation approach
(e.g., (Blitzer et al., 2006; Sugiyama et al., 2007))

fier v0 using source labeled (LS) and unlabeled data
(US), and target unlabeled (UT ) data, and 2) Query-
ing labels for target domain examples by leveraging
information from the classifier learned in phase-1.

2 Online Active Learning

The active learning phase of our algorithm is based
on (Cesa-Bianchi et al., 2006), henceforth referred
to as CBGZ. In this section, we briefly describe this
approach for the sake of completeness.

Their algorithm (Algorithm 1) starts with a zero
initialized weight vectorw0

T
and proceeds in rounds

by querying the label of an examplexi with proba-
bility b

b+|ri|
, where|ri| is theconfidence(in terms of

margin) of the current weight vector onxi. b is a pa-
rameter specifying how aggressively the labels are
queried. A large value ofb implies that a large num-
ber of labels will be queried (conservative sampling)
whereas a small value would lead to a small number
of examples being queried. For each label queried,
the algorithm updates the current weight vector if the
label was predicted incorrectly. It is easy to see that
the total number of labels queried by this algorithm
is

∑
T

i=1
E[ b

b+|ri|
].

3 Active Online Domain Adaptation

In our supervised domain adaptation setting, we are
given a small budget for acquiring labels in a tar-
get domain, which makes it imperative to use active
learning in the target domain. However, our goal
is toadditionallyalso leverage inter-domain related-
ness by exploiting whatever information we might
already have from the source domain. To accom-
plish this, we take the online active learning ap-

Algorithm 1 CBGZ

Input: b > 0; T : number of rounds
Initialization: w 0

T
= 0; k = 1;

for i = 1 to T do
x̂i = xi/||xi||, setri = wi−1

T
x̂i;

predictŷi = SIGN(ri);
sampleZi ∼ Bernoulli( b

b+|ri|
);

if Zi = 1 then
query labelyi ∈ {+1,−1}
if ŷi 6= yi then

update:wk
T

= wk−1

T
+ yix̂i; k ← k + 1;

end if
end if

end for

proach of (Cesa-Bianchi et al., 2006) described in
Section 2 and adapt it such that the algorithm uses
the best possible classifier learned (withouttarget la-
beled data; see Figure 1) as the initializer hypothesis
in the target domain, and thereafter updates this hy-
pothesis in an online fashion using actively acquired
labels as is done in (Cesa-Bianchi et al., 2006). This
amounts to usingw0

T
= v0 in Algorithm 1. We refer

to this algorithm as Active Online Domain Adapta-
tion (AODA). It can be shown that the modified al-
gorithm (AODA) yields smaller mistake bound and
smaller label complexity than the CBGZ algorithm.
We skip the proofs here and reserve the presentation
for a longer version. It is however possible to pro-
vide an intuitive argument for the smaller label com-
plexity: Since AODA is initialized with a non-zero
(but not randomly chosen) hypothesisv0 learned us-
ing data from a related source domain, the sequence
of hypotheses AODA produces are expected to have
higher confidences margins|r′

i
| as compared that of

CBGZ which is based on azero initialized hypothe-
sis. Therefore, at each round, the sampling proba-
bility of AODA given by b

b+|r′

i
| will also be smaller,

leading to a smaller number of queried labels since
it is nothing but

∑
T

i=1
E[ b

b+|r′

i
| ].

4 Using Domain Separator Hypothesis

The relatedness of source and target domains can be
additionally leveraged tofurther improve the algo-
rithm described in Section 3. Since the source and
target domains are assumed to be related, one can
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use this fact to upfront rule out acquiring the labels
of some target domain examples that “appear” to be
similar to the source domain examples. As an il-
lustration, Fig. 2 shows a typical distribution sepa-
rator hypothesis (Blitzer et al., 2007a) which sepa-
rates thesourceand target examples. If the source
and target domains are reasonably different, then the
separator hypothesis can perfectly distinguish be-
tween the examples drawn from these two domains.
On the other hand, if the domains are similar, one
would expected that there will be some overlap and
therefore some of the target domain examples will
lie on the source side (cf., Fig. 2). Acquiring la-
bels for such examples is not really needed since
the initializing hypothesisv0 (cf., Fig 1) of AODA
would already have taken into account such exam-
ples. Therefore, such target examples can be out-
rightly ignored from being queried for labels. Our
second algorithm (Algorithm 2) is similar to Algo-
rithm 1, but also makes use of the distribution sepa-
rator hypothesis (which can be learned using source
and targetunlabeledexamples) as a preprocessing
step before doing active learning on each incom-
ing target example. We denote this algorithm by
DS-AODA (for Domain-Separator based AODA).
Since some of the target examples are upfront ruled
out from being queried, this approach resulted even
smaller number of queried labels (Section 5.4).

wds

w

DS

DT

Figure 2: An illustrative diagram showing distribution
separator hypothesiswds separating source data from tar-
get data.w is the actual target hypothesis

5 Experiments

In this section, we demonstrate the empirical perfor-
mance of our algorithms and compare them with a

Algorithm 2 DS-AODA
Input: b > 0; wds: distribution separator hypoth-
esis;v0 : initializing hypothesis ;T : number of
rounds
Initialization: w 0

T
= v0; k = 1;

for i = 1 to T do
x̂i = xi/||xi||,
if x̂i does not lie on the source side ofw′

ds
then

setri = wi−1

T
x̂i;

predictŷi = SIGN(ri);
sampleZi ∼ Bernoulli( b

b+|ri|
);

if Zi = 1 then
query labelyi ∈ {+1,−1}
if ŷi 6= yi then

update:wk
T

= wk−1

T
+yix̂i; k ← k+1;

end if
end if

end if
end for

number of baselines. Table 1 summarizes the meth-
ods used with a brief description of each. Among the
first three (ID,SDA, FEDA), FEDA (Daumé III,
2007) is a state-of-the-artsuperviseddomain adap-
tation method but assumespassivelyacquired la-
bels. The last four, RIAL, ZIAL, SIAL and AODA
methods in Table 1 acquire labels in an active fash-
ion. As the description denotes, RIAL and ZIAL
start active learning intarget with a randomly ini-
tialized and zero initialized base hypothesis, respec-
tively. It is also important to distinguish between
SIAL and AODA here: SIAL uses an unmodi-
fied classifier learned only fromsourcelabeled data
as the initializer, whereas AODA uses anunsuper-
viseddomain-adaptation technique (i.e., without us-
ing labeled target data) to learn the initializer. In our
experiments, we use the instance reweighting ap-
proach (Sugiyama et al., 2007) to perform the unsu-
pervised domain adaptation step. However, we note
that this step can also be performed using any other
unsupervised domain adaptation technique such as
Structural Correspondence Learning (SCL) (Blitzer
et al., 2006). We compare all the approaches based
on classification accuracies achieved for a given
budget of labeled target examples (Section-5.2), and
number of labels requested for a fixed pool of unla-
beled target examples and corresponding accuracies
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Method Summary Active ?
ID In-domain (DT ) data No

SDA UDA followed by passivelychosen labeled target data No
FEDA Frustratingly Easy Domain Adaptation Daumé III (2007) No
ZIAL Zero initialized active learning Cesa-Bianchi et al. (2006) Yes
RIAL Randomly initialized active learning with fixed label budget Yes
SIAL Source hypothesis initialized active learning Yes

AODA UDA based source hypothesis initialized active learning Yes

Table 1: Description of the methods compared

(Section-5.3). We use the vanilla Perceptron as the
base classifier of each of the algorithms and each
experiment has been averaged over 20 runs corre-
sponding to random data order permutations.

5.1 Datasets

We report our empirical results for the task of senti-
ment classification using data provided by (Blitzer
et al., 2007b) which consists of user reviews of
eight product types (apparel, books, DVD, electron-
ics, kitchen, music, video, and other) from Ama-
zon.com. We also apply PCA to reduce the data-
dimensionality to 50. The sentiment classification
task for this dataset is binary classification which
corresponds to classifying a review as positive or
negative. The sentiment dataset consists of several
domain pairs with varyingA-distance (which mea-
sures the domain separation), akin to the sense de-
scribed in (Ben-David et al., 2006). Table 2 presents
the domain pairs used in our experiments and their
corresponding domain divergences in terms of the
A-distance (Ben-David et al., 2006).

To compute theA-distance from finite samples of
source and target domain, we use a surrogate to the
trueA-distance (theproxyA-distance) in a manner
similar to (Ben-David et al., 2006): First, we train a
linear classifier to separate thesourcedomain from
the target domain using only unlabeled examples
from both. The average per-instance hinge-loss of
this classifier subtracted from1 serves as our esti-
mate of theproxyA-distance. A score of 1 means
perfectly separable distributions whereas a score of
0 means that the two distributions are essentially the
same. As a general rule, a high score means that the
two domains are reasonably far apart.

Source Target A-distance

Dvd (D) Book (B) 0.7616
Dvd (D) Music (M) 0.7314

Books (B) Apparel (A) 0.5970
Dvd (D) Apparel (A) 0.5778

Electronics (E) Apparel (A) 0.1717
Kitchen (K) Apparel (A) 0.0459

Table 2: ProxyA-distances between some domain pairs

5.2 Classification Accuracies

In our first experiment, we compare our first ap-
proach of Section 3 (AODA, and also SIAL
which naı̈vely uses theunadaptedsource hypoth-
esis) against other baselines on two domain pairs
from the sentiments dataset: DVD→BOOKS (large
A distance) and KITCHEN→APPAREL (smallA
distance) with varying target budget (1000 to 5000).
The results are shown in Table 3 and Table 4. As
the results indicate, on both datasets, our approaches
(SIAL, AODA) perform consistently better than the
baseline approaches (Table 1) which also include
one of the state-of-the-art supervised domain adap-
tation algorithms (Daumé III, 2007). On the other
hand, we observe that the zero-initialized and ran-
domly initialized approaches do not perform as well.
In particular, the latter case suggests that it’s impor-
tant to have a sensible initialization.

5.3 Label Complexity Results

Next, we compare the various algorithms on the
basis of the number of labels acquired (and corre-
sponding accuracies) when given the complete pool
of unlabeled examples from the target domain. Ta-
ble 5 shows that our approaches result in much
smaller label complexities as compared to other ac-
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Met- Target Budget
hod 1000 2000 3000 4000 5000

Acc (Std) Acc (Std) Acc (Std) Acc (Std) Acc (Std)
ID 65.94 (±3.40) 66.66 (±3.01) 67.00 (±2.40) 65.72 (±3.98) 66.25 (±3.18)

SDA 66.17 (±2.57) 66.45 (±2.88) 65.31 (±3.13) 66.33 (±3.51) 66.22 (±3.05)
RIAL 51.79 (±4.36) 53.12 (±4.65) 55.01 (±4.20) 57.56 (±4.18) 58.57 (±2.44)
ZIAL 66.24 (±3.16) 66.72 (±3.30) 63.97 (±4.82) 66.28 (±3.61) 66.36 (±2.82)
SIAL 68.22 (±2.17) 69.65 (±1.20) 69.95 (±1.55) 70.54 (±1.42) 70.97 (±0.97)
AODA 67.64 (±2.35) 68.89 (±1.37) 69.49 (±1.63) 70.55 (1.15) 70.65 (±0.94)
FEDA 67.31 (±3.36) 68.47 (±3.15) 68.37 (±2.72) 66.95 (3.11) 67.13 (±3.16)

Acc: Accuracy| Std: Standard Deviation

Table 3: Classification accuracies for DVD→BOOKS, for fixed target budget.

Met- Target Budget
hod 1000 2000 3000 4000 5000

Acc (Std) Acc (Std) Acc (Std) Acc (Std) Acc (Std)
ID 69.64 (±3.14) 69.61 (±3.17) 69.36 (±3.14) 69.77 (±3.58) 70.77 (±3.05)

SDA 69.70 (±2.57) 70.48 (±3.42) 70.29 (±2.56) 70.86 (±3.16) 70.71 (±3.65)
RIAL 52.13 (±5.44) 56.83 (±5.36) 58.09 (±4.09) 59.82 (±4.16) 62.03 (±2.52)
ZIAL 70.09 (±3.74) 69.96 (±3.27) 68.6 (±3.94) 70.06 (±2.84) 69.75 (±3.26)
SIAL 73.82 (±1.47) 74.45 (±1.27) 75.11 (±0.98) 75.35 (±1.30) 75.58 (±0.85)
AODA 73.93 (±1.84) 74.18 (±1.85) 75.13 (±1.18) 75.88 (±1.32) 76.02 (±0.97)
FEDA 70.05 (±2.47) 69.34 (±3.50) 71.22 (±3.00) 71.67 (±2.59) 70.80 (±3.89)

Acc: Accuracy| Std: Standard Deviation

Table 4:Classification accuracies for KITCHEN→APPAREL, for fixed target budget.

tive learning based baselines and still gives better
classification accuracies. We also note that although
RIAL initializes with a non-zero hypothesis and
queries almost similar number of labels as our algo-
rithms, it actually performs worse than even ZIAL
in terms of classification accuracies, which implies
the significant of a sensible initializing hypothesis.

5.4 DS-AODA Results

Finally, we evaluate our distribution separator hy-
pothesis based approach (DS-AODA) discussed in
Section 4. As our experimental results (on four do-
main pairs, Fig. 3) indicate, this approach leads to
considerably smaller number of labels acquired than
our first approach AODA which does not use the
information about domain separation, without any
perceptible loss in classification accuracies. Simi-
lar improvements in label complexity (although not
reported here) were observed when we grafted the
distribution separator hypothesis around SIAL (the
unaltered source initialized hypothesis).

Met- DVD→BOOK KITCHEN →APPAREL
hod Acc (Std) Labels Acc (Std) Labels

RIAL 62.74 (±3.00) 7618 62.15 (±4.51) 4871
ZIAL 65.65 (±2.82) 10459 70.19 (±2.64) 6968
SIAL 72.11 (±1.20) 7517 75.62 (±1.14) 4709
AODA 72.00 (±1.31) 7452 75.62 (±0.82) 4752

Acc: Accuracy| Std: Standard Deviation

Table 5: Accuracy and label complexity of DVD→BOOKS
and KITCHEN→APPAREL with full target training data
treated as the unlabeled pool.
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Figure 3:Test accuracy and label complexity of D→B, D→M,
E→A and K→A.
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5.5 SIAL vs AODA

Some of the results might indicate from naı̈vely ini-
tializing using even the unadapted source trained
classifier (SIAL) tends to be as good as initializing
with a classifer trained using unsupervised domain
adaptation (AODA). However, it is mainly due to
the particular unsupervised domain adaptation tech-
nique (naı̈ve instance weighting) we have used here
for the first stage. In some cases, the weights es-
timated using instance weighting may not be accu-
rate and the bias in importance weight estimation is
potentially the reason behind AODA not doing bet-
ter than SIAL in such cases. As mentioned earlier,
however, any other unsupervised domain adaptation
technique can be used here and, in general, AODA
is expected to perform better than SIAL.

6 Related Work

Active learning in a domain adaptation setting has
received little attention so far. One interesting set-
ting was proposed in (Chan & Ng, 2007) where they
apply active learning for word sense disambiguation
in a domain adaptation setting. Their active learn-
ing setting is pool-based whereas ours is a stream-
ing (online) setting. Furthermore, our second algo-
rithm also uses the domain separator hypothesis to
rule out querying the labels of target examples simi-
lar to the source. A combination of transfer learning
with active learning has been presented in (Shi et al.,
2008). One drawback of their approach is the re-
quirement of an initial pool of labeled target domain
data used to train an in-domain classifier. Without
this in-domain classifier, no transfer learning is pos-
sible in their setting.

7 Discussion

There are several interesting variants of our ap-
proach that can worth investigating. For instance,
one can use a hybrid oracle setting where the source
classifierv0 could be used as an oracle that provides
labels for free, whenever it is reasonably highly con-
fident about its prediction (maybe in terms of its rel-
ative confidence as compared to the actual classifier
being learned; it would also be interesting to set,
and possibly adapt, this confidence measure as the
active learning progresses). Besides, in the distri-
bution separator hypothesis based approach of Sec-

tion 4, we empirically observed significant reduc-
tions in label-complexity, and it is supported by in-
tuitive arguments. However, it would be interesting
to be able to precisely quantify the amount by which
the label-complexity is expected to reduce.
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