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Abstract

A linear time extension of determinis-
tic pushdown automata is introduced that
recognizes all deterministic context-free
languages, but also languages such as
{anbncn | n ≥ 0} and the MIX lan-
guage. It is argued that this new class of
automata, calledλ-acyclic read-first deter-
ministic stack+bag pushdown automata,
has applications in natural language pro-
cessing.

1 Introduction

This article presents a linear time extension of
deterministic pushdown automata (DPAs). DPAs
have numerous applications in computer science,
as many programming languages can be recog-
nized by such automata, but they are not expres-
sive enough for natural language parsing. There
are at least two reasons for this; namely, that nat-
ural languages are heavily ambiguous, and that
natural languages exhibit non-context-free con-
structions. Deterministic stack+bag pushdown au-
tomata introduce a limited form of nondetermin-
ism, since information can be stored in bags. The
bag construction also gives us limited context-
sensitivity. It is argued that at least for some of
the complex constructions in natural languages the
degrees of nondeterminism and context-sensitivity
are adequate. Our example in Sect. 6 concerns
German scrambling.

∗Thanks to Thomas Hanneforth for pointing out previous
work onφ-transitions to me. This work was done while the
author was a Senior Researcher at the Dpt. of Linguistics,
University of Potsdam, supported by the German Research
Foundation.

2 Formal preliminaries

A stack+bag pushdown automaton(SBPA) is a
6-tupleP = 〈Q,Σ, Γ, δ, q0, F 〉 whereQ is a finite
set of states,Σ the finite alphabet,Γ the finite stack
symbols,q0 ∈ Q the initial state,F ⊆ Q the final
states, andδ ⊆ Q×(Σ∪{λ})×(Γ∪{λ})×Q×(Γ∪
{λ}) × {{γ1, . . . , γn}M | γ1 . . . γn ∈ Γ, n ≥ 0}
a finite set of transitions, where{. . .}M is a bag
or a multiset, i.e.{{γ1, . . . , γn}M | γ1, . . . , γn ∈
Γ, n ≥ 0} is the set of multisets over elements of
Γ.

The elements of δ, e.g. δ(qi, a,A) =
(qj, λ, {A}M ), are transitions between states aug-
mented with instructions to read or process string
elements from the alphabet and pop and push stack
symbols from the stack and the bag. The transi-
tion δ(qi, a,A) = (qj , λ, {A′}M ) is, for example,
an instruction to reada, move fromqi to qj and
pop a stack symbolA from either the stack or the
bag and push a symbolA′ into the bag. If the tran-
sition had beenδ(qi, a,A) = (qj, A

′, ∅M ) A′ had
been pushed onto the stack instead of into the bag.

The notion of an instantaneous description
(q, w, γ, γ′) ∈ Q× Σ∗ × Γ∗ × {{γ1, . . . , γn}M |
γ1 . . . γn ∈ Γ, n ≥ 0} is introduced to define the
language of a SBPA, whereq is the state the SBPA
is currently in,w the input string still to be pro-
cessed,γ the contents of the stack, andγ′ the con-
tents of the bag. The derivability relation is the
transitive, reflexive closure (⊢∗) of the following
binary relation over the class of instantaneous de-
scriptions (ID),⊢⊆ ID × ID, where

• (q, xw, zγ, γ′) ⊢ (q′, w, αγ, γ′) if
(q′, α, ∅M ) ∈ δ(q, x, z), [pop z from
stack, pushα to stack]

• (q, xw, zγ, γ′) ⊢ (q′, w, γ, α′ ∪ γ′) if
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(q′, λ, α′) ∈ δ(q, x, z), [pop z from stack,
pushα′ to bag]

• (q, xw, γ, {z}M ∪ γ′) ⊢ (q′, w, αγ, γ′) if
(q′, α, ∅M ) ∈ δ(q, x, z), and [popz from bag,
pushα to stack]

• (q, xw, zγ, {z}M ∪γ′) ⊢ (q′, w, γ, α′ ∪γ′) if
(q′, λ, α′) ∈ δ(q, x, z), [popz from bag, push
α′ to bag],

with x ∈ Σ ∪ {λ}, z ∈ Γ ∪ {λ}, α ∈ Γ∗, and
α′ ∈ {{γ1, . . . , γn}M | γ1 . . . γn ∈ Γ, n ≥ 0}.
The definition of the language of a SBPAS is now
as follows:

L(S) = {w | (q0, w, λ, ∅M ) ⊢∗

(q, λ, λ, ∅M ) ∧ q ∈ F}

The languages that can be recognized by SBPAs
are called stack+bag pushdown languages.

A SBPAS is calleddeterministic if for all pos-
sible instantaneous descriptions overS at most
one transition inS is applicable. The languages
that can be recognized by deterministic SBPAs
are called deterministic stack+bag pushdown lan-
guages. Note that it can be assumed without loss
of generalization that a deterministic SPBA for
any stateq ∈ Q contains noλ-transitions or cy-
cles ofλ-transitions fromq to q.

If a transition that reads an element of the alpha-
bet is always chosen over a transition that readsλ,
a read-first strategy is said to have been adopted.
A SBPA S is said to beread-first deterministic
if it is always clear what transition to apply under
a read-first strategy, i.e. if for all instantaneous de-
scriptions overS at most one transition of the form
(q, a,A) = . . . wherea ∈ Σ, and at most one
transition of the form(q, λ,A′) = . . ., is applica-
ble. If an automaton isnot read-first deterministic
it thus means that there are two transitions inδ of
the form:

δ(qi, a,A) ∈ (q′i, . . . , . . .)
δ(qi, a,A′′) ∈ (q′′i , . . . , . . .)

or two transitions of the form:

δ(qj , λ,A) ∈ (q′j , . . . , . . .)

δ(qj , λ,A′) ∈ (q′′j , . . . , . . .)

and it is eithernot the case thatA,A′ never oc-
cur in the same bag, or it is not the case thatA can
never be the top element withA′ in the bag, or vice
versa, or both. The languages that can be recog-
nized by read-first deterministic SBPAs running in
read-first mode are called read-first deterministic

stack+bag pushdown languages.1 Obviously, the
read-first deterministic stack+bag pushdown lan-
guages include the deterministic stack+bag push-
down languages.

Finally, we say that a read-first deterministic
stack+bag pushdown automaton isλ-acyclic if it
is impossible to apply a transition

δ(q, λ, . . .) ∈ . . .

more than once without reading an element from
the input string first. The languages that can be
recognized byλ-acyclic read-first deterministic
SBPAs are calledλ-acyclic read-first determinis-
tic stack+bag pushdown languages.

3 Related work

This section compares our work to three rather dis-
parate strands of research, namely (i) work onφ-
transitions in the automata literature, (ii) determin-
istic parsing strategies for shift-reduce parsers and
(iii) recent work on linguistically motivated ex-
tensions of tree-adjoining grammar. The first two
comparisons serve to provide a bit of background
on the read-first strategy. The third provides a bit
of background on our use of bags.

Aho and Corasick (1975) design a class of au-
tomata for bibliographic search in which transi-
tions are replaced by a functiong : Q × Σ → Q

that maps pairs of states and input symbols into
states or the failure messagefail. There are no
empty transitions, i.e.λ 6∈ Σ; instead a failure
function f : Q → Q is consulted wheneverg
returnsfail. It is not difficult to see that this is
equivalent to a read-first strategy.

The read-first strategy is also related to
work on deterministic shift-reduce parsers,
e.g. Nivre (2003) for projective dependency
grammars. A projective dependency grammar
annotates a finite stringw1 . . . wn with directed
edgesE, i.e. governor-dependent relations, such
that the string positions, decorated by words,
and the edges form an acyclic connected graph
G = 〈{w1 . . . wn}, E〉 in which each node has at
most one governor and the edges are wellnested.
Call such a graph a projective dependency graph.
The deterministic shift-reduce parser introduced
in Nivre (2003) begins with a 3-tuple〈nil, λ, ∅〉,
in which the first element is the empty stack
and the third element is the empty graph, and

1Below it is assumed that read-first deterministic SPBAs
always run in read-first mode.
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terminates when the string has been read, i.e. in
〈T,w1 . . . wn, G〉 where T is a possibly non-
empty stack. The string is accepted ifG is a
projective dependency graph. The algorithm ap-
plies four transitions to these states in a prioritized
way, i.e. Left-Arc first if applicable, otherwise
Right-Arc , then Reduce, and finally, if nothing
else works,Shift.2

• The first transitionLeft-Arc adds an edge to
the graph that encodes that the first element
on the stackn is a dependent of the initial po-
sitionn′ in the substring still to be processed.
The edge is licensed by a grammar rule that
relates the two words that decorate the nodes
in question in this way, i.e.R is a set of such
word-to-word rules. The requirement thatn

is not governed by anything else is also nec-
essary. The noden is removed from the stack
to avoid cycles.

• The second transitionRight-Arc adds an
edge to the graph that encodes that the initial
position in the substring to be processed is a
dependent of the first element on the stack.
The edge is again licensed by the grammar,
and it is required that the dependent is not al-
ready governed. The dependent node is im-
mediately shifted; again, to prevent cycles.

• The third transitionReducesimply pops the
first element of the stack. Note that an ele-
ment can only be popped this way if it is al-
ready assigned a governor.

• The fourth transitionShift pushes the next
position onto the stack.

While this is technically a bit different from the
read-first strategy adopted in our proposal, the in-
tuition is the same: The constructive transitions
Left-Arc and Right-Arc are tried out first, and
only if no constructive transitions are applicable
can theλ-transitions be applied. The underlying
if-then-else structure means that the procedure re-
mains deterministic. The three algorithms intro-
duced in Nivre (2003) all terminate in linear time.

Other related classes of automata include
extended pushdown automata (Vijay-Shanker,

2In fact this simple set-up is only used to obtain a base-
line in Nivre (2003). Two superior parsing algorithms are
introduced that complicates this simple scenario by introduc-
ing limited lookahead. The details are unimportant for our
purposes.

1987), weakly equivalent to tree-adjoining gram-
mars, which use nested stacks to provide an ad-
ditional control layer, and thread automata (Ville-
monte de La Clergerie, 2002), weakly equivalent
to simple range concatenation grammar. These
classes are not discussed here, but it should be
noted that they were constructed to capture the ex-
pressivity of linguistic theories, while the class of
automata introduced here “cross-cuts the Chom-
sky hierarchy” in a non-standard way. It restricts
expressivity in some ways (by read-first determin-
ism andλ-acylicity), but adds expressivity in other
ways (by introducing a bag).

In the conclusion, once we have established the
necessary results, our proposal is also compared to
Bertsch and Nederhof (1999). Bertsch and Neder-
hof (1999) define another linear time extension of
deterministic pushdown automata, but their exten-
sion remains context-free.

Finally, our use of bags is related to the use
of sets of elementary trees in certain linguisti-
cally motivated extensions of tree-adjoining gram-
mar, incl. Becker et al. (1991) and Lichte (2007).
A very brief summary of tree-adjoining gram-
mar: Tree substitution grammar is a variation over
context-free grammar. Instead of production rules
of the form

S → NP VP

tree fragments of the following form are intro-
duced:

S
@@��

NP VP

In derivation, trees with root labelsA are
plugged into trees with leaf nodes labeled byA.
If a tree is obtained with root labelS (the start
symbol) and all leaf nodes are labeled by termi-
nal symbols, the tree is a parse of its yield. Tree-
adjoining grammar extends this context-free for-
malism by an operation on trees called adjunction,
e.g.:

S
HHH

���
NP

Bill

VP
b

b
"

"
V

knows

NP

Moira

+ VP
HHH

���
V

knows

S
ll,,

NP

Bill

VP∗
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=⇒ S
aaaa

!!!!
NP

Bill

VP
aaaa

!!!!
V

knows

S
HHH

���
NP

Bill

VP
b

b
"

"
V

knows

NP

Moira

If an auxiliary treet, with a root node and a leaf
node both labeledA, is adjoined at some noden
also labeledA in a derived treet′, the subtrees′

(of t′) rooted atn is replaced byt, ands′ is then
inserted at the leaf node oft.

The adjunction operator buys us limited
context-sensitivity. In particular, tree-adjoining
grammar is weakly equivalent to linear indexed
grammar (Vijay-Shanker and Weir, 1994a) or level
2 control grammars (Weir, 1992). The universal
recognition problem and the parsing problem can
both be solved in timeO(|G|n6) (Vijay-Shanker
and Weir, 1994b).

The formalism presented in Becker et al. (1991)
is called (nonlocal) multicomponent tree-
adjoining grammar (MCTAG). In fact, MCTAG
comes in a number of varieties, but the intuition
behind all of them is to introduce sets of auxiliary
trees rather than just singular trees. Scrambling
is now obtained when a set of multiple auxiliary
trees is used in a relatively unconstrained context.
The set must be emptied, i.e. each element must be
adjoined, but the adjunctions can in unconstrained
contexts result in any possible permutation of the
yields of the auxiliary trees. See also Kallmeyer
and Yoon (2004) for an analysis of scrambling in
Korean in MCTAG.

Lichte (2007) replaces sets of auxiliary trees
with 2-tuples〈t, {a1, . . . , an}〉 wheret can be any
kind of tree, anda1, . . . , am are auxiliary trees.
This separation is similar to what is adopted in our
analysis of German scrambling below.

4 Weak generative capacity

Lemma 4.1. The stack+bag pushdown languages
strictly include the context-free languages.

Proof. The languages that can be recognized by
pushdown automata, i.e. stack+bag pushdown au-
tomata without bags, are exactly the context-
free languages (Chomsky, 1962). The languages

that can be recognized by pushdown automata
can be recognized by stack+bag pushdown au-
tomata, by definition, and thus stack+bag push-
down automata recognize context-free languages.
It is not difficult to show that the inclusion is
strict either. Simply note that the SBPAS1 =
〈{q0, q1, q2, q3}, {a, b, c}, {A,B,C}, δ, q0, {q3}〉
with the following transitionsδ generates the lan-
guageL(S1) = {anbncn | n ≥ 0} which is non-
context-free by the Bar-Hillel pumping lemma
(Aho and Ullman, 1972):

δ(q0, λ, λ) ∈ δ(q0, λ, {A,B,C}M )
δ(q0, λ, λ) ∈ δ(q3, λ, ∅M )
δ(q0, a, λ) ∈ δ(q1, λ, ∅M )
δ(q1, b, λ) ∈ δ(q2, λ, ∅M )
δ(q2, c, λ) ∈ δ(q3, λ, ∅M )
δ(q1, a,A) ∈ δ(q1, λ, ∅M )
δ(q2, b, B) ∈ δ(q2, λ, ∅M )
δ(q3, c, C) ∈ δ(q3, λ, ∅M )

The automaton pushes an arbitrary number of
A,B,C ’s into the bag in transitions from stateq0

to stateq0. Since the stack symbols are pushed
into the bag simultaneously, it is guaranteed that
the bag always contains the same number ofA’s,
B’s andC ’s in stateq0. Unless the automaton rec-
ognizes the empty string, in which case it does not
push any stack symbols into the bag, but proceeds
immediately to the final stateq3, it will first have
to remove anA from the bag by moving into state
q1. In fact it has to removeall A’s, since if it
moves toq2 by removing aB, it is no longer pos-
sible to remove theA’s that remain, and the input
string will not be recognized. Once theA’s have
been removed, it proceeds toq2 to removeB’s,
and so on. Note that the automaton reads ana,
resp.b or c, whenever it removes anA, resp.B or
C. Since it is guaranteed that the bag always con-
tains the same number ofA’s, B’s andC ’s in state
q0, the strings that are recognized by this automa-
ton will be of the formanbncn for n ≥ 0. Since
the stack+bag pushdown languages include the
context-free languages and at least one language
that is not context-free, namely{anbncn | n ≥ 0},
it follows that they strictly include the context-free
languages.

It is not difficult to see how the automaton
in the proof of Lemma 4.1 can be modified to
recognize the MIX language, i.e. the language
that consists of any permutation of a string in
{anbncn | n ≥ 0}. This is of some interest, since
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the MIX language is conjectured not to be rec-
ognized by any linear indexed grammar (Gazdar,
1988).3 The context-free languages constitute the
first level of the hierarchy of controlled languages
(Weir, 1992), the linear indexed languages the sec-
ond level. Lemma 4.3 below relates the stack+bag
pushdown languages to the entire hierarchy and
shows that they are not included in thekth level
of the hierarchy for any fixedk either.

Lemma 4.2. The stack+bag pushdown languages
include the MIX language.

Proof. The SBPA S2 =
〈{q0}, {a, b, c}, {A,B,C}, δ, q0, {q0}〉 with
the following transitionsδ generates the MIX
language:

δ(q0, λ, λ) ∈ δ(q0, λ, {A,B,C}M )
δ(q0, a,A) ∈ δ(q0, λ, ∅M )
δ(q0, b, B) ∈ δ(q0, λ, ∅M )
δ(q0, c, C) ∈ δ(q0, λ, ∅M )

In the light of our description of the automa-
ton in Lemma 4.1 it should be easy to see how
the automaton works. It recognizes the empty
string, since the initial state is also a final state,
and it recognizes all permutations of strings in
{anbncn | n ≥ 0}, since the transitions that forced
us to first removeA’s, thenB’s, and so on, in the
above, have been removed.

Note that none of the two automataS1, S2

in the lemmas above are deterministic. Con-
sider, for instance, the instantaneous descrip-
tions(q0, aabbcc, λ, ∅M ) whenS1 reads the string
aabbcc. In this case there are three applicable tran-
sitions (the first three on the list).

Note also that the two automata are both read-
first deterministic. Another language that is non-
deterministic and read-first deterministic is the
language of palindromes{wwR | w ∈ Σ∗}.

Finally, the automaton for the MIX language is
λ-acyclic, but the one for{anbncn | n ≥ 0} isn’t.
It is easy to see that there are equivalent stack+bag
pushdown automata for{anbncn | n ≥ 0} that
are λ-acyclic. Consider, for instance, the SBPA
S3 = 〈{q0, q1, q2}, {a, b, c}, {B,C}, δ, q0, {q2}〉
with the following transitionsδ:

3Bill Marsh’s stronger original conjecture, from an un-
published 1985 ASL paper, is that the MIX language is not
even an indexed language.

δ(q0, λ, λ) ∈ δ(q2, λ, ∅M )
δ(q0, a, λ) ∈ δ(q0, λ, {B,C}M )
δ(q0, b, B) ∈ δ(q1, λ, ∅M )
δ(q1, b, B) ∈ δ(q1, λ, ∅M )
δ(q1, c, C) ∈ δ(q2, λ, ∅M )
δ(q2, c, C) ∈ δ(q2, λ, ∅M )

When the automaton reads ana it pushes aB
and aC into the bag. The first inputb takes the au-
tomaton to its second stateq1 in which subsequent
bs (if any) are read; the first inputc takes the au-
tomaton to its final stateq2 in which subsequentcs
(if any) are read. Each reading of ab, resp.c, re-
moves aB, resp.C, from the bag. Consequently,
for eacha there is exactly oneb and onec. The
transitions between the three states ensure that the
as precede thebs, and that thebs precede thecs.

Lemma 4.3. The stack+bag pushdown languages
are not included in thekth level of the hierarchy of
control languages (Weir, 1992) for any fixedk.

Proof. It is known that there exists ak-level con-
trol grammar for the language{an

1 . . . an
2k | n ≥

0}, but not for{an
1 . . . an

2k+1
| n ≥ 0} (Palis and

Shende, 1995). It is easy to see by inspection of
the automatonS1 that we can always build a SBPA
that accepts{an

1 . . . an
2k+1

| n ≥ 0} for any fixed
k.

It can be seen in the same way by inspection of
the automatonS3 that the same holds forλ-acyclic
read-first deterministic stack+bag pushdown lan-
guages.

Corollary 4.4. Theλ-acyclic read-first determin-
istic stack+bag pushdown languages are not in-
cluded in thekth level of the hierarchy of control
languages (Weir, 1992) for any fixedk.

Note also that theλ-acyclic read-first determin-
istic stack+bag pushdown languages include the
deterministic context-free ones, since a determin-
istic pushdown automaton will never visit aλ-
transition more than once without processing a
string, since, equivalently, for any stateq ∈ Q it
contains noλ-transitions or cycles ofλ-transitions
from q to q. This observation is stated as a lemma
for further reference:

Lemma 4.5. Theλ-acyclic read-first determinis-
tic stack+bag pushdown languages include the de-
terministic context-free languages.

5 Complexity

In this section it is shown that the universal recog-
nition problem ofλ-acyclic read-first determinis-
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tic stack+bag pushdown automata can be solved in
linear time.

Theorem 5.1. The universal recognition problem
of read-first deterministic stack+bag pushdown
automata can be solved in time quadratic in the
length of the input string, and in linear time for
λ-acyclic ones.

Proof. Consider the universal recognition prob-
lem if for some stringw1 . . . wn and some read-
first stack+bag pushdown automataP = 〈Q,Σ,

Γ, δ, q0, F 〉 with start ID (q0, w1 . . . wn, λ, ∅M ).
The stringw1 . . . wn is recognized byP iff the
procedure in Figure 1 returnstrue on the start ID
when called recursively.

Under the assumption that the procedure halts
and outputsfalsewhen it reads the same state and
string for thenth time,4 this procedure will loop
at mostn2 many times ifP is read-first determin-
istic. If P is alsoλ-acyclic, the number of loops
required is at most2n.

Step 2 can be done in timeO(|F |), and read
andprint are obviously linear time. The compli-
cated steps are 4 and 7. The reason is of course that
⊢ has not been computed, so it must be checked if
there is a transition inδ that licenses the relevant
derivation, say

(q, wi . . . wn, γ1, γ2) ⊢ (q′, wi+1 . . . wn, γ′1, γ
′

2)

This is linear in|δ|, but on a naïve implementa-
tion it may also depend on the size of the bag,
which again depends on the length of the input
string and the maximum number of stack symbols
a transition can push to the bag. Consequently,
on such an implementation, the overall runtime
would be cubic in the length of the input string for
unrestricted read-first SBPAs, and quadratic forλ-
acyclic ones. A more efficient option is to keep
a table of stack symbols with numerical counters
of size |Γ|. If a stack symbolA is pushed to the
bag the value of the counter in columnA is in-
creased by one; ifA is popped the value decreases.
The overall runtime, with such a counter, is in
O(n2× |Γ| × |δ| × |F |) for otherwise unrestricted
read-first deterministic pushdown automata, and
in O(n× |Γ| × |δ| × |F |) for λ-acyclic ones.5

4This move is safe. It is left for the reader to verify this.
5One of our reviewers observe that the bit complexity of

this algorithm is actuallyO(n log n× |Γ| × |δ × |F |) for λ-
acyclic read-first deterministic pushdown automata. The dis-
tinction here is comparable to bit complexity vs. word com-
plexity in graph theory.

6 Scrambling in German

This section presents an indication that it is possi-
ble to analyze German scrambling phenomena in
λ-acyclic read-first deterministic SBPAs in ways
similar in spirit to what has been presented in
Becker et al. (1991) and Lichte (2007). Un-
like these formalisms, both extensions of tree-
adjoining grammars,λ-acyclic read-first deter-
ministic SBPAs are computationally efficient. The
formalism used in Becker et al. (1991), called non-
local MCTAG, recognizes NP-complete languages
(Rambow and Satta, 1992).6

The phenomenon of scrambling is illustrated by
the example in Figure 2:

The point in this case is that all possible per-
mutations of the four NPs are grammatical in Ger-
man. They can be scrambled in any way. One
of the relevant syntactic construction involved in
scrambling is of the following form, ignoring the
internal syntax of the verb cluster:

dasspermute(NP1. . . NPn−1 NP’) V1. . . Vn

where NPi is the object complement ofVi

for 1 ≤ i < n. The NP’ is the subject of
the finite verb Vn. This construction is rec-
ognized by the SBPAS4 = 〈{q0, q1, q2, q3},
{NP1, . . . ,NPn−1,NP ′,V1, . . . Vn},
{NP1, . . . ,NPn−1,NP ′,V1, . . . Vn}, δ,
q0, {q3}〉 with the following transitionsδ:7

6Its set-local variant (Weir, 1988), which may not suffice
for analyses of scrambling (Rambow et al., 1992), though
see Xia and Bleam (2000) for discussion, is weakly equiv-
alent to simple range concatenation grammar whose univer-
sal recognition problem can be solved in deterministic time
O(|G|n6k), wherek, intuitively, is the number of (possibly
scrambled) complements a verb may take. The complexity is
to be preciseO(|G|n2k(l+1)) wherel is the maximum num-
ber of RHS nonterminals/predicates. See Boullier (1998) for
an example of a parsing algorithm, applicable via the con-
version described in Weir (1988). Set-local MCTAG is more
succinct than simple range concatenation grammar, however,
and its universal recognition problem can be shown to be
NP-complete (Søgaard et al., 2007). The formalism used in
Lichte (2007) has also been shown to be NP-complete (Sø-
gaard et al., 2007).

7The indeces here should not lead the reader to think that
we are not accounting for an unbounded number of depen-
dencies. If the NPs in the above example are all the same,
sayJohn, andn− 1 of the verbs arelet, except the transitive,
most embedded one, our automaton only needs two transiti-
sions for reading NPs (no matter how long the sentence is).
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1. read (q, wi . . . wn, γ1, γ2)
2. if q ∈ F,wi . . . wn = λ, γ1 = λ, γ2 = ∅M

3. print true
4. elsif (q, wi . . . wn, γ1, γ2), (q

′, wi+1 . . . wn, γ′1, γ
′

2) ∈ ⊢
5. print (q′, wi+1 . . . wn, γ′1, γ

′

2)
6. return
7. elsif (q, wi . . . wn, γ1, γ2), (q

′, wi . . . wn, γ′1, γ
′

2) ∈ ⊢
8. print (q′, wi . . . wn, γ′1, γ

′

2)
9. return
10. else
11. print false

Figure 1: Recognition procedure for read-first deterministic stack+bag pushdown automata.

dass der Dedektiv dem Klienten den Verdächtigen des Verbrechens
that the detective.NOM the client.DAT the suspect.ACC the crime.GEN

zu überführen versprochen hat
to indict promised has

’that the detective has promised the client to indict the suspect of the crime.’

Figure 2: Example from Becker et al. (1991).

δ(q0, λ, λ) ∈ δ(q1, λ, {NP ′,Vn}M )
δ(q1,NP1, λ) ∈ δ(q1, λ, {V1}M )

...
δ(q1,NPn−1, λ) ∈ δ(q1, λ, {Vn−1}M )

δ(q1,NP ′, λ) ∈ δ(q2, λ, ∅M )
δ(q2,V1,V1) ∈ δ(q2, λ, ∅M )

...
δ(q2,Vn−1,Vn−1) ∈ δ(q2, λ, ∅M )

δ(q2,Vn,Vn) ∈ δ(q3, λ, ∅M )

In the transition fromq0 to q1 a requirement that
there is a main verb that has a subject, intuitively,
is pushed into the bag. In the cyclic transitions in
q1, the NPs, incl. the subject of the finite verbVn,
are read, and when NPi for 1 ≤ i < n is read
the stack symbol for the corresponding embedded
verbVi is pushed into the bag. The verbs are read
in the cyclic transitions inq2. Finally, the finite
verbVn is read.

7 Conclusion

This article presents a class of extended push-
down automata, i.e.λ-acyclic read-first determin-
istic stack+bag pushdown automata, that recog-
nize a class of languages that strictly includes
the deterministic context-free languages (Lemma
4.5), but also languages conjectured not to be in-
dexed languages (by the observation that the au-
tomaton in Lemma 4.2 isλ-acyclic and read-first

deterministic). In fact, theλ-acyclic read-first de-
terministic stack+bag pushdown languages are not
included in thekth level of the hierarchy of con-
trol languages for any fixedk (Corollary 4.4). It
was shown that the universal recognition problem
for this class of pushdown automata can be solved
in linear time (Theorem 5.1).

Similar classes of linear time recognizable lan-
guages have been identified in the literature.
Bertsch and Nederhof (1999) also identify a class
of linear time recognizable pushdown languages,
namely the class of all languages that are in
the regular closure of the class of determinis-
tic pushdown languages. This class includes
a number of ambiguous context-free languages,
incl. {ambmcn}∪{ambncn}which is probably not
a read-first deterministic stack+bag pushdown lan-
guage, but no non-context-free languages. It fol-
lows, if so, that this class and the class ofλ-acyclic
read-first deterministic stack+bag pushdown lan-
guages are strict extensions of their intersection.

Since the paper was first submitted, a parser has
been implemented in Python. The parser hard-
wires a read-first strategy and warns the user about
nondeterminism andλ-cycles. It is of course diffi-
cult to test if the degree of nondeterminism given
to us by bags is adequate for natural language
processing, but a toy automaton has been con-
structed that parses attachment ambiguities, verbs
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with different subcategorization frames, and recur-
sive modifiers.
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