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Abstract

We describe the approach to event extrac-
tion which the &LIELab Team from FSU
Jena (Germany) pursued to solve Task 1 in
the “BioNLP’09 Shared Task on Event Ex-
traction”. We incorporate manually curated
dictionaries and machine learning method-
ologies to sort out associated event triggers
and arguments on trimmed dependency graph
structures. Trimming combines pruning ir-
relevant lexical material from a dependency
graph and decorating particularly relevant lex-
ical material from that graph with more ab-
stract conceptual class information. Given
that methodological framework, thedieLab
Team scored on 2nd rank among 24 competing
teams, with 45.8% precision, 47.5% recall and
46.7% F1-score on all 3,182 events.

Introduction

ahn }@uni-jena.de

et al. (1999), Hakenberg et al. (2005) or Huang et
al. (2004)), rule-based ones (e.g., by Yakushiji et al.
(2001), Sart et al. (2004) or Fundel et al. (2007)),
and machine learning-based ones (e.g., by Katrenko
and Adriaans (2006), Seaetre et al. (2007) or Airola et
al. (2008)), yet without conclusive results.

In the following, we present our approach to solve
Task 1 within the “BioNLP’09 Shared Task on Event
Extraction”! Task 1 “Event detection and charac-
terization” required to determine the intended rela-
tion givena priori supplied protein annotations. Our
approach considers dependency graphs as the cen-
tral data structure on which various trimming oper-
ations are performed involving syntactic simplifica-
tion but also, even more important, semantic enrich-
ment by conceptual overlays. A description of the
component subtasks is provided in Section 2, while
the methodologies intended to solve each subtask
are discussed in Section 3. The system pipeline for
event extraction reflecting the task decomposition is

Semantic forms of text analytics for the life scienced€Scribed in Section 4, while Section 5 provides the

have long been equivalent with named entity reco

9e_valuation results for our approach.

nition and interpretation, i.e., finding instances of se-

Event Extraction Task

mantic classes such as proteins, diseases, or drués.

For a couple of years, th.'s fO(.:US has_ been Compl%'vent extraction is a complex task that can be sub-
mented by analytics dealing with relation extractlondivideol into a number of subtasks depending on

i.e., finding instances of relations which link one Orvvhether the focus is on the event itself or on the ar-

more (usually two) arguments, the latter being ml%uments involved:
"Event trigger identification deals with the large

stances of semantic classes, such as the interact

between two proteins (PPIs). . ) o
. . variety of alternative verbalizations of the same
PPI extraction is a complex task since cascades . . .
. . évent type, i.e., whether the event is expressed in
of molecular events are involved which are hard to

sort out. Many different approaches have already g /mww-tsujii.is.s.u-tokyo.ac.jp/
been tried — pattern-based ones (e.g., by BlaschlgENIA/SharedTask/
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a verbal or in a nominalized form (e.g.A"is ex- Pre-processing
pressedl and “the expression of’Aoth refer to the |
same event typeviz. expression(A)). Since the [ |
same trigger may stand for more than one event type, g ‘;frfg’:fr:“ Dep?ﬂ”;;“ﬂ':g gfraphs
event trigger ambiguity has to be resolved as well. . .
Event trigger disambiguation selects the correct ;
event name from the set of alternative event triggers.
Event typing, finally, deals with the semantic Argument Identification with
classification of a disambiguated event name and the Ensemble of Claseiers
assignment to an event type category. l -
Argument identification is concerned with find- Post-processing
ing all necessary participants in an event, i.e., the
arguments of the relation. Figure 1: General Architecture of the Event Extraction
Argument typing assigns the correct semanticSolution of the dLIELab Team.
category (entity class) to each of the determined par-

ticipants in an event (which can be considered as i%\'nd, third, the identification of arguments for the

stances of that cla_ss). . . . event under scrutiny (cf. Section 3.3). Event typ-

_ Argument ord.erlng aSS|gns.each identified par'ing results from proper event trigger identification
ticipant its func_tlonal role within the event, mostly (see Section 3.1.2), which is interlinked with the out-
Agent (and Pa’uent/Theme). come of the argument identification. We talk about

The sentenceRegulation ofun andfosgeneex- ativetriggers because we consider, in a greedy

presson |.n human monocytes by thg macrophag%anner’ all relevant lexical items (see Section 3.1.1)
colony-stimulating factdt e.g., contains mentions ¢ o stential event triggers which might represent an
of two Gene Expressiorevents with respective gy ant Only those event triggers that can eventually
THEME arguments jun” and “fos’, triggered inthe o connected to arguments, finally, represent a true
text by the literal phrasegene expressidn event. To achieve this goal we preprocessed both the

Task 1 of the “BioNLP'09 Shared Task on Eventyigina| training and test data such that we enrich the

Extraction” was defined in such a way as 10 idengigina| training data with automatically predicted

tify a proper relation (event) name and link it with g\ en triggers in order to generate more negative ex-

its type, plus one or more associated arguments dgaples for a more effective learning of true evéhts.
noting proteins. To focus on relation extraction only

no automatic named entity recognition and interprez 1 Event Trigger Identification
tation had to be performed (subtask ‘argument typ- . ] ] ] o
ing’ from above); instead candidate proteins weré?Ok'ng at the wide variety of potential lexicalized

already pre-tagged. The complexity of Task 1 walliggers for an event, their lacking discriminative
power relative to individual event types and their

inherent potential for ambiguity,we decided on

a dictionary-based approach whose curation princi-

3 Event Extraction Solution ples are described in Section 3.1.1. Our disambigua-
tion policy for the ambiguous lexicalized event trig-

Our event extraction approach is summarized in Fig-

ure 1 and consists of three major streams — first, the 3Although the training data contains cross-sentence event

detection of lexicalized event triggers (cf Sectioﬁiescriptions, our approach to event extraction is restricted to
) the sentence level only.

3'1_)' S_econd' the tr_lmmmg of dependency graphs “Most of the triggers are neither specific for molecular event
which involves pruning irrelevant and semanticallygescriptions, in general, nor for a special event type. “Induc-
enriching relevant lexical material (cf, Section 3,2);i0n”, e.g., occurs 417 times in the training data. In 162 of these
cases it acts as a trigger fBositiveregulation 6 times as a
2In our approach, event trigger disambiguation already imtrigger for Transcription 8 instances triggeGeneexpression
plies event typing. while 241 occurrences do not trigger an event at all.

Event Detection

allowed to be arguments but also were events.
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gers assembled in this suite of dictionaries, one p&1.2 Event Trigger Disambiguation

event type, is discussed in Section 3.1.2. Preliminary experiments indicated that the dis-

ambiguation of event triggers might be beneficial

We started collecti dicti ios 1 h for the overall event extraction results since events
Yve started coflecting our dictionanes from &g, q 44 pe expressed via highly ambiguous triggers.
original GENIA event corpus (Kim et al.,

. 2008,8)' Therefore, we performed a disambiguation step pre-
The extracted event triggers were then automatlcallé/

. . eding the extraction of any argument structures.
lemmatized and the resulting lemmata were subse- . . .
qguently ranked by two students of biology accordin% Itis based on thémportanceof an evgnt trg-

. . . ert; for a particular event typ& as defined by
to their predictive power to act as a trigger for a par= T T I
ticular event type. This expert assessment led us {§2(1i ) := 5=~57ry, wheref(t;) is the frequency
four trigger groups (for each event type these groupd the event trigget; of the selected event tyge
were determined separately): in a training corpus divided by the total amount of
(1) Triggers arémportantanddiscriminativefor ~ all event triggers of the selected event typein
a specific event type. This group contains event trighat training corpus. The frequencies are measured
gers such as “upregulate” fBositiveregulation on stemmed event triggers. For exampleyp for
(2) Triggers ardmportant though not fu”y dis- the trigger stem depend amounts to 0.013 for the
criminativefor a particular event type; yet, this defi-event typePositiveregulation while for the event
ciency can be overcome by other lexical cues withifyPe Regulationit yields 0.036 . If a text span con-
the context of the same sentence. This group with if@ins several event triggers with the same span off-
context disambiguators contains lexical items sucBet, the eventtrigger witlhaz(Imp) is selected and
as “proteo|yse" foProtein.catabolism other putative triggers are discarded. The trigger
(3) Triggers arenon-discriminativefor an event Stem ‘dependremains thus only foRegulation
type and even cannot be disambiguated by linguistic
cues within the context of the same sentence. This2 Trimming Dependency Graphs
group contains lexical items such as “presence’

3.1.1 Manual Curation of the Dictionaries

o X 1 fc\V\lhen we consider event (relation) extraction as a se-
LocalizationandGeneexpression mantic interpretation task, plain dependency graphs
(4) Triggers are absolutelyon-discriminativeior  ,q yhey result from deep syntactic parsing might not
an event. This group holds general lexical triggerge appropriate to directly extract semantic informas-
such as “observe’, "demonstrate” or "function”. o from, This is due to two reasons - they contain
The final dictionaries used for the detection of, o of apparently irrelevant lexical nodes (from the
putative event triggers are a union of the first tWQemantic perspective of event extraction) and they
groups. They were further extended by biologists|sg contain much too specific lexical nodes that
with additional lexical material of the first group. might better be grouped and further enriched se-
The dictionaries thus became event type-specific mantically. Trimming dependency graphs for the
they contain all morphological forms of the originalIourposes of event extraction, therefore, amounts to
lemma, which were automatically generated using|iminate semantically irrelevant and to semantically
the Specialist NLP Tools (2008 release). enrich relevant lexical nodes (i.e., overlay with con-
We matched the entries from the final set of diccepts). This way, we influence the final representa-
tionaries with the shared task data using the Lingion for the machine learners we employ (in terms of
pipe Dictionary Chunkef. After the matching pro- features or kernel-based representations) — we may

cess, some cleansing had to be déne. avoid an overfitting of the feature or kernel spaces
SWe used the lemmatizer from the Specialist NLP ToolsWlth s_yntactlc_an(_j IeXIF:aI d_atfa and thu? reduce struc-
(http://lexsrv3.nlm.nih.gov/SPECIALIST/ tural information in a linguistically motivated way.
index.html , 2008 release).
Shttp://alias-i.com/lingpipe/ a longer event trigger, (3) overlapped with a longer trigger of

"Event triggers were removed which (1) were found withinthe same event type, (4) occurred inside an entity mention an-
sentences without any protein annotations, (2) occurred withinotation.
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3.2.1 Syntactic Pruning node in the dependency graph is overlaid with that
Pruning targets auxiliary and modal verbs whictfat€gory applying the ranking in cases of conflicts.
govern the main verb in syntactic structures such as e also enriched the gene name mentions with
passives, past or future tense. We delete the auk€ir Er;espectn_/e Gene Ontology Annotations from
iliars/modals as govenors of the main verbs fronpOA-~ For this purpose, we first categorized GO
the dependency graph and propagate the semantit&ms poth from the “molecular funcgon and from
preserving dependency relations of these nodes die “biological process” branch with respect to

rectly to the main verbs. Adhering to the depenth€il matching event type, e.gPhosphorylation
dency tree format and labeling conventions set uyf Positiveregulation We then mapped all gene
for the 2006 and 2007 6NLL shared tasks on de- hame mentions which occurred in the text to their
pendency parsing main verbs are usually connectédN! PROT identifier using the gene name normalizer
with the auxiliar by the VC dependency relation (se&ENO (Wermter et al., 2009). This identifier links a
Figure 2). Accordingly, in our example, the verbdene with a set of (curated) GO annotations.

“activate is promoted to the ROT in the depen- [N addition, we inserted semantic information in
dency graph and governs all nodes that were origierms of the event trigger type and the experimen-
nally governed by the modahtay’. tal methods. As far as experimental methods are
concerned, we extracted all instances of them an-

( e ) = ) B notated in the GNIA event corpus. One student

NFkappaB may activate TNF-alpha probuction of biology sorted the experimental methods relative

to the event categories under scrutiny. For example
“affinity chromatographiywas assigned both to the

Syntactic pruning

suB 08)

) RWOD Geneexpressiorand to theBinding category. For
NFkappaB may  actlite TH-alfha production our purposes, we only included those GO annota-
Conceptual Overlays tions and experimental methods which matched the
sus | o5} event types to be identified in a sentence.

NMOD

Egiﬁggﬁm?’;‘%gﬁi?%h‘ POSITIVE_REGULATION ~ GENE GENE_EXPRESSION 3 3 Argument Identification and Ordering

The argument identification task can be subdivided
into three complexity levels. Level (1) incorpo-
rates five event typesseneexpressionTranscrip-
3.2.2 Conceptual Decoration tio_n, Prote_irLca_ltaboIism Lgcalizatior]_ I_Dhosphqry-
ical nodes in th ib| 9 d lation) which involve a single participant with a
q Lexica n: ZS n tde (EOS_S' y prunfe ) ePENTHEME role only. Level (2) is concerned with one
ency grapns deeme to_ € 'mp‘_’”a”t or argumeg{/enttypeBinding)thatprovides an n-ary argument
extraction were then enriched with semantic Classctructure where all arguments occupy theeMEe(n)
annotations, instead of keeping the original Iexicq]ole Level (3) comprises three event typ&ogi-
Stﬁ_m()j rﬁprzsentgtlon (see Figure 2). The rat'on‘?hl%/e,reguIation Negativeregulation or an unspeci-
ehind this decision was to generate_ more powertga g Regulation that represent a regulatory relation
kernel-based or features representations (see SeCtB)é}ween the above-mentioned event classes or pro-

3.3.2and 3.3.1). teins. These events have usually a binary structure,

Th_e_ whole pr_oce_ss is based on a thre_e—tler taslkith a THEME argument and a AUSE argument.
specific semantic hierarchy of named entity classes. . argument extraction, we built sentence-wise

The top_ra_nk is constitgteq by t_he equivalent Class?ﬁairs of putative triggers and their putative argu-
Transcription factor Binding site and Promoter ,o4s) ‘the latter involving ontological informa-
The second rank is occupied byeH terms, and tion about the event type. For Level (1), we built

the third tier assembles the named entity Classes,; s o1y with proteins, while for Level (3) we al-
GeneandProtein Whenever a lexical item is cat-

egorized by one of these categories, the associated®http://www.ebi.ac.uk/GOA

Figure 2: Trimming of Dependency Graphs.
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lowed all events as possible arguments. For Level { sus
(2), Binding events, we generated binary (trigger, | | : ;

. . . . . (&) transcription_factor positive_regulation_.M  gene gene_expression_M
protein) pairs as well as triples (trigger, protgin GO_positive_regulation

08) 0.9

%2~ NMOD22,

proteiny) to adequately represent the binding be- 03 09
. . . Y
tween two proteind. Pairs of mentions not con- , ( } s
| i i
neCted by a dependency path COU|d nOt be detected transcription_factor positivev_regulation_M gen'e gene_éxpression_M
GO_positive_regulation NMOD O0B]

For the argument extraction we chose two ma- sus
chine learning-based approaches, feature-based and ] )
a kernel-based one. as described befow. Figure 3: Graph Kernel Representation for a Trimmed
' Dependency Graph — (1) original representation, (2)
3.3.1 Feature-based Classifier representation without graph dependency edge nodes
We distinguished three groups of features. Firs{yvaghts (0.9, 0.3) taken from Airola et al. (2008)).

lexical features (covering lexical items before, af-

ter and between both mentions (of the event trigger For our experiments, we tried some variants of the
and an argument) as described by Zhou and Zhaggiginal graph kernel. In the original version each
(2007)); secondchunkingfeatures (concerned with dependency graph edge is represented as a node.
head words of the phrases between two mentions #gat means that connections between graph token
described by Zhou and Zhang (2007)); thidk- nodes are expressed througaph dependency edge
pendency parséeatures (considering both the seyodeg(see Figure 3; (1)). To represent the connec-
lected dependency levels of the arguments (parenigns between original tokens as direct connections
and least common subsumer) as discussed by K@-the graph, we removed the edge nodes and each
trenko and Adriaans (2006), as well as a shortest dgsken was assigned the edge label (its dependency
pendency path structure between the arguments @ge|; see Figure 3; (2)). Further variants included
used by Kim et al. (2008b) fowalk features). encodings for (1) the shortest dependency psith (
For the feature-based approach, we chose thguveen two mentions (argument and trigge(p)
Maximum Entropy (ME) classifier from MLLET.1! 1 complete dependency gragp{dep, and (3) the
3.3.2 Graph Kemel Classifier complete dependency graph and linear information

sp-dep-lin (the original configuration from Airola
The graph kernel uses a converted form of deperﬁat al. (2008)).

dency graphs in which each dependency node is rep- )
resented by a set of labels associated with that node /0" the graph kernel, we chose the LibSVM
The dependency edges are also represented as noedng and Lin, 2001) Support Vector Machine as
in the new graph such that they are connected to tifSSifier.

nodes adjacent in the dependency graph. Subgraphs

which represent, e.g., the linear order of the words-4 Postprocessing

in the sentence can be added, if required. The entifthe postprocessing step varies for the three different
graph is represented in terms of an adjacency matrevels (see Section 3.3). For every event trigger of
which is further processed to contain the summegevel (1) (e.g.,Geneexpressiojy we generate one
weights of paths connecting two nodes of the grapBvent per relation comprising a trigger and its argu-
(see Airola et al. (2008) for details). ment. For Level (2)Binding), we create &inding

*We did not account for the binding of more than two pro-€vent with two arguments only for triples (trigger,
teins as this would have led to a combinatory explosion of poprotein, proteiny). For the third Level, we create
sible classifications. for each event trigger and its associated arguments

10 : .
In our experiments, we used full conceptual overlaying
(see Section 3.2) for the kernel-based representation and partial n x m events, fom CAUSE arguments aneh

overlaying for the dependency parse features (only gene/protelHEME arguments.
annotation was exploited here). Graph representations allow for

many semantic labels to be associated with a node. 12For Binding we extracted the shortest path between two
Uhttp://mallet.cs.umass.edu/index.php/ protein mentions if we encounter a triple (trigger, protein
Main_Page protein).
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4 Pipeline its “sp without dependency-edge-nddesnfigura-

) o ) tion, while for the prediction offranscriptionand
The event extraction pipeline consists of two MaGeneexpressiorevents we used an ensemble of the
jor parts, a pre-processor and the dedicated ev ph kernel in its §p with dependency-edge-notes
extractor. As far as pre-processing is concerne ariant, and an ME model. For the prediction of
we imported the sentence splitting, tokenization anginding we used an ensemble of the graph kernel
GDep parsing results (Sagae and Tsujii, 2007) ¥Bsp-dep with dependency-edge-ndilesd an ME

prepared by the shared task organizers for all dajgoqe|. For the prediction of regulatory events we
sets (training, development and test). We processgdaq ME models for each regulatory type.
this data with the OpenNLP POS tagger and Chun-

ker, both re-trained on the GENIA corpus (Buyko e pagits
al., 2006). Additionally, we enhanced the original

tokenization by one which includes hyphenizatiomhe baseline against which we compared our ap-
of lexical items such as inPMA-dependefit ** proach can be captured in a single rule. We extract
The data was further processed with the gene ndfier every pair of a putative trigger and a putative ar-
malizer GENo(Wermter et al., 2009) and a num-gument the shortest dependency path between them.
ber of regex- and dictionary-based entity taggers the shortest dependency path does not contain any
(covering promoters, binding sites, and transcripdirection change, i.e., the argument is either a direct
tion factors). We also enriched gene name merehild or a direct parent of the trigger, and if the path
tions with their respective Gene Ontology annotagdoes not contain any other intervening event trig-
tions (see Section 3.2.2). Thed8H thesaurus (ex- gers, the argument is taken as theEME role.
cept chemical and drugs branch) was mapped on thewe performed evaluations on the shared task de-
data using the Lingpipe Dictionary Chunké. velopment and test set. Our baseline achieved com-
After preprocessing, event extraction was startegetitive results of 36.0% precision, 34.0% recall,
distinguishing between the event trigger recognitiod5.0% F-score on the development set (see Table
(cf. Section 3.1), the trimming of the dependency), and 30.4% precision, 35.7% recall, 32,8% F-
graphs (cf. Section 3.2), and the argument extragcore on the test set (see Table 2). In particular
tion proper (cf. Section 3.3% We determined in the one-argument events, i.6eneexpressionPro-
our experiments on the development data the perfaein catabolism Phosphorylatiorare effectively ex-
mance of every classifier type and its variants (fofracted with an F-score around 70.0%. More com-
the graph kernel), and of ensembles of the most pggtex events, in particular events of Level (3), i.e.,
formant (F-Score) graph kernel variant and an MERegulation) were less properly dealt with because
modell® We present here the argument extractionf their strong internal complexity.
configuration used for the official rud. For the
prediction of Phosphorylation Localization Pro-

: : . Event Class gold | recall | prec. | F-score
tein_catabolismtypes we used the graph kernel i —
yp grap Localization 53 75.47 | 30.30| 43.24
*This tokenization is more advantageous for the detection Binding 248 | 33.47 | 20.80 | 25.66
of additional event triggers as it allows to generate depen- Geneexpression | 356 | 76.12 | 75.07 | 75.59
dency relations from hyphenated terms. For examplePMA- Transcription 82 68.29 | 40.58 | 50.91

dependerit “PMA” will be a child of “dependeritlinked by Protein.catabolism | 21 76.19 | 66.67 | 71.11
the AMOD dependency relation, andépenderitreceives the Phosphorylation | 47 76.60 | 72.00| 74.23

original dependency relation of th@MA-dependefitoken. Regulation 169 | 14.20 | 15.09| 14.63

T4 tn: ffaliac. i P—
http://alias-i.com/lingpipe/ Positiveregulation | 617 | 156.40 | 20.83| 17.71

5For the final configurations of the graph kernel, we opti - -
mized theC parameter in the spectrum betwezr® and2® on Negativeregulation | 196 | 11.73 | 13.22| 12.43
TOTAL 1789 | 36.00 | 34.02 | 34.98

the final training data for every event type separately.

18n theensembleonfiguration we built the union of positive .
instances. Table 1: Baseline results on the shared task development

"We achieved with this configuration the best performancg_ata- Appr_oximate Span Matching/Approximate Recur-
on the development set. sive Matching.

24



Event Class gold | recall | prec. | F-score || gold | recall | prec. | F-score
Localization 174 | 42,53 | 44.85| 43.66 174 | 42,53 | 44.85| 43.66
Binding 347 | 32.28 | 37.09| 34.51 398 | 44.22 | 58.28 | 50.29
Geneexpression | 722 | 61.36 | 80.55| 69.65 722 | 61.36 | 80.55| 69.65
Transcription 137 | 39.42 | 35.06| 37.11 137 | 39.42 | 35.06| 37.11
Proteincatabolism | 14 71.43 | 66.67 | 68.97 14 71.43 | 66.67 | 68.97
Phosphorylation | 135 | 65.93 | 90.82 | 76.39 135 | 65.93 | 90.82| 76.39
EVT-TOTAL 1529 | 51.14 | 60.90 | 55.60 1580 | 53.54 | 65.89 | 59.08
Regulation 291 | 9.62 | 11.72| 10.57 338 | 9.17 | 12.97| 10.75
Positiveregulation | 983 | 10.38 | 11.33| 10.83 1186 | 14.67 | 19.33 | 16.68
Negativeregulation | 379 | 14.25 | 19.22| 16.36 416 | 14.18 | 21.00| 16.93
REG-TOTAL 1653 | 11.13 | 12.96| 11.98 1940 | 13.61 | 18.59| 15.71

[ ALL-TOTAL | 3182] 30.36 | 35.72] 32.82 | 3520] 31.53 [ 41.05] 35.67 |

Table 2: Baseline results on the shared task test data. Rippate Span Matching/Approximate Recursive Matching
(columns 3-5). Event decomposition, Approximate Span KiatyApproximate Recursive Matching (columns 7-9).

The event extraction approach, in its final configs.1 Error Discussion
uration (see Section 4), achieved a performance of
50.4% recall, 45.8% precision and 48.0% F-score orne expert biologist analyzed 30 abstracts randomly
the development set (see Table 4), and 45.8% recaqap’(tracted from the development error data. We de-
47.5% precision and 46.7% F-score on the test stgrmined seven groups of errrors based on this anal-
(see Table 3). This approach clearly outperforme¥sis. The first group contains examples for which
the baseline with an increase of 14 percentage poirfd €vent should be determined, but a false argument
on the test data. In particular, the events of Level (2¥as found (e.g.Bindingarguments were not prop-
and (3) were more properly dealt with than by theerly sorted, or correct and false arguments were de-
baseline. In the event decomposition mode (argdiiected for the same trigger) (44 examples). The sec-
ment detection is evaluated in a decomposed ever@d group comprised examples where no trigger was
we achieved a performance of 49.4% recall, 56.29und (23 examples). Group (3) stands for cases

precision, and 52.6% F-score (see Table 3). where no events were detected although a trigger
was properly identified (14 examples). Group (4)

holds examples detected in sentences which did not

Our experiments on the development set showeiPntain any events (12 examples). Group (5) lists bi-
that the combination of the feature-based and tHdogically meaningful analyses, actually very close
graph kernel-based approach can boost the resultsi@pthe gold annotation, especially for the cascaded
to 6 percentage points F-score (for Biadingevent regulatory events (12 examples), while Group (6) in-
type). Itis interesting that the combination Bind-  Corporates examples of a detected event with incor-
ingincreased recall without dropping precision. Thé€ct type (1 example). Group (7) gathers misleading
original graph kernel approach f@inding events 90ld annotations (10 examples).
performs with 38.3% recall, 27.9% precision and This assessment clearly indicates that a major
32.3% F-score on the development set. The conseource of errors can be traced to the level of argu-
bined approach comes with a remarkable increageent identification, in particular fdindingevents.
of 14 percentage points in recall. The combinatiofhe second major source has its offspring at the
could also boost the recall of tHeeneexpression level of trigger detection (we ignored, for exam-
andTranscriptionby 15 percentage points and 5 perple, triggers such asitf the presence d&f “wher,
centage points, respectively, without seriously drog-normal’). About 10% of the errors are due to a
ping the precision (4 points for every type). Forslight difference between extracted events and gold
the other event types, no improvements were founglents. For example, in the phraselé for NF-
when we combined both approaches. kappaB in the regulation of FasL expressione
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Event Class gold | recall | prec. | F-score || gold | recall | prec. | F-score
Localization 174 | 43.68 | 77.55 | 55.88 174 | 43.68 | 77.55| 55.88
Binding 347 | 49.57 | 35.25 | 41.20 398 | 63.57 | 54.88 | 58.91
Geneexpression | 722 | 64.82 | 80.27 | 71.72 722 | 64.82 | 80.27 | 71.72
Transcription 137 | 35.77 | 62.03 | 45.37 137 | 35.77 | 62.03 | 45.37
Proteincatabolism | 14 78.57 | 84.62 | 81.48 14 78.57 | 84.62| 81.48
Phosphorylation | 135 | 76.30 | 91.15 | 83.06 135 | 76.30 | 91.15| 83.06
EVT-TOTAL 1529 | 57.49 | 63.97 | 60.56 1580 | 60.76 | 71.27| 65.60
Regulation 291 | 31.27 | 30.13 | 30.69 338 | 35.21 | 37.54| 36.34
Positiveregulation | 983 | 34.08 | 37.18 | 35.56 1186 | 40.64 | 49.33 | 44.57
Negativeregulation | 379 | 40.37 | 31.16 | 35.17 416 | 42.31| 39.11| 40.65
REG-TOTAL 1653 | 35.03 | 34.18 | 34.60 1940 | 40.05 | 44.55| 42.18

[ ALL-TOTAL | 3182] 45.82 | 47.52] 46.66 | 3520] 49.35 | 56.20] 52.55 |

Table 3: Offical Event Extraction results on the shared ta&st tlata of the ULIELab Team. Approximate
Span Matching/Approximate Recursive Matching (columris).3Event decomposition, Approximate Span Match-
ing/Approximate Recursive Matching (columns 7-9).

could not extract the gold eveRegulationof Regu- Event Class gold | recall | prec. | F-score
lation (Geneexpression (FasL)ssociated with the Localization | 53 | 71.70 | 74.51 | 73.08
trigger “role”, but we were able to find the (inside) Binding 248 | 52.42 | 29.08 | 37.41
eventRegulation (Genexpression (FasL)associ- Geneexpression | 356 | 75.28 | 81.46 | 78.25

. . . . Transcription 82 60.98 | 73.53 | 66.67
ated with the triggerregulatiori. Interestingly, the “Protein catabolism | 21 9048 | 7917 | 84.44

typing of evgnts i§ not _an error source .in spite_ f Phosphorylation | 47 8598 | 84.78 | 83.87
the simple disambiguation approach. Still, our dis=—Regulation 169 | 37.87 | 36.78 | 37.32
ambiguation strategy is not appropriate for the anal-positiveregulation | 617 | 34.36 | 35.99 | 35.16
ysis of double-annotatedriggers such as “overex- | Negativeregulation | 196 | 41.33 | 33.61 | 37.07
pression”, “transfection”, etc., which are annotated TOTAL 1789 | 50.36| 45.76 | 47.95
asGeneexpressiorandPositiveregulationand are Table 4: Event extraction results on the shared task
a major source of errors in Group (2). As GrOUpdevelopment data of the official run of they.JeLab

(6) is an insignificant source of errors in our raNream. Approximate Span Matching/Approximate Recur-
domly selected data, we focused our error analysige Matching.

on the especially ambiguous event typanscrip-

tion. We found from 34 errors that 14 of them were . o

due to the disambiguation strategy (in particular foP€tiNg teams, with 45.8% precision, 47.5% recall
triggers “(gene) expression” and “induction”). and 46.7% F1-score on all 3,182 events.
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