
A Dynamic Programming Approach to

Document Length Constraints

Keith Vander Linden

Department of Computer Science

Calvin College

Grand Rapids, MI 49546, USA

kvlinden@calvin.edu

Abstract

Natural language generation (NLG) applica-

tions must occasionally deliver rhetorically

coherent output under length constraints. For

example, certain types of documents must fit

on a single webpage, on a cell phone screen,

or into a fixed number of printed pages. To

date, applications have achieved this goal by

structuring their content as a rhetorical tree

and using a greedy algorithm to pick the dis-

course elements to include in the final docu-

ment. Greedy algorithms are known to pick

sub-optimal solutions. This paper presents an

alternate approach based on dynamic pro-

gramming.

1 Document Length Constraints

A number of language engineering applications

have addressed the issue of generating coherent

documents under length constraints, including

NLG applications, e.g., SciFly (Paris, et al, 2008),

STOP (Reiter, 2000), ILEX (O'Donnell, 1997), and

summarization applications, e.g., Daniel Marcu

(1999). These applications all address the issue by

representing the content to be delivered as a rhetor-

ical tree and using some formulation of a greedy

algorithm that satisfies the length constraints by

either selecting the most important elements of the

tree or pruning the least important elements.
1

As an example, consider the two sample outputs

shown in Figure 1. Both outputs were produced by

1 The STOP system identifies the problem as a bin-packing

problem but then describes its mechanism using terms com-

mon to greedy algorithms (Reiter, 2000).

a prototype that delivers information about a com-

puter science department to prospective students

via email; cf. (Paris, et al, 2008). The output is

composed of coarse-grained elements (e.g., im-

ages, phrases and paragraphs) and is formatted in

post-card size using HTML and includes hyper-

links to related pages on the main department web-

site. The goal is to get the prospective student to

visit the main website. The key difference between

the two examples is their length. The one on the

left, which is shorter, was generated using a greedy

algorithm. The one on the right, which uses the

space more fully, was generated using a dynamic

programming algorithm. The greedy algorithm

included the “FAQ” section because it fit at the

time; the dynamic algorithm realized that waiting

to include the “News” and the “Alumni” sections

would be a more effective use of the space.

This paper discusses the mechanisms used to

generate these two examples. It starts with a dis-

cussion of the rhetorical tree used as input for both

sample outputs, and then details the algorithms

used to satisfy the length constraint. The length

constraint problem is viewed as a precedence-

constrained 0-1 knapsack problem, and the algo-

rithm is formulated using dynamic programming.

2 Rhetorical Structure Trees

Researchers have long viewed rhetorical trees

as a means of structuring textual output and of dis-

tinguishing those elements that should be ex-

pressed (often called nuclei) from those that could

be omitted (often called satellites) (Spark-Jones,

1993), and there is psycholinguistic evidence that

this view is valid (Marcu, 1999). This paper will

177

build its trees using Rhetorical Structure Theory

(RST), the most common of the theories deployed

for rhetorical structuring (Mann & Thompson,

1988).

Figure 2 shows the annotated RST tree used as

the basis for generating both of the sample outputs

shown in Figure 1. The highest level of the tree

shows a template that affixes the header image as a

preparation satellite and the footer as a background

satellite. The next level down shows the structure

of the content of the email. Each node is asso-

ciated with a block of text or an image in the out-

put. The initial line (i.e., “Ima Sample…”) is

represented as a satellite setting the context for the

main content in the nucleus (i.e., “Thanks for your

interest…”). There then follows a set of six elabo-

ration satellites, each with internal structures of its

own (i.e., an image/caption pair, which is not rea-

lized in either sample output because of its cost,

and a set of five topic/hyperlink pairs).

Each expressible node in the figure has an esti-

mated length, denoted as a cost c measured in pix-

els, and an estimated importance, denoted as a

benefit b. The cost of an expressible node is esti-

mated based on the size of the text/image and spe-

cified format. Generally, the leaves are the

expressible nodes, but in the case where multiple

leaves should be expressed together, the RST tree

places a combined cost value in the parent node

(e.g., the header and footer should be expressed

together or not at all, so their parent node shows

their combined cost of 100 pixels).

The benefit setting, denoted b(n,D), for a node n

in a discourse tree D is formulated as follows:

Here, P(n) denotes the parent of node n and W(r)

denotes the weight of the satellite’s rhetorical rela-

tion (e.g., in this paper, more important relations

like context have weight 0.5 and less important

relations like preparation, elaboration, background

have weight 0.4). This formulation gives higher

benefit values to nuclei. No penalty is placed on

nodes lower in the tree. This formulation is imple-

mented as a recursive decent algorithm whose val-

ues for the samples can be seen in Figure 2.

The tree is produced by a Moore and Paris-

styled text planner (Moore & Paris, 1993). Select-

ing the appropriate content from a content man-

agement system, structuring it appropriately and

estimating the cost/benefit of each node are inter-

esting problems, but are not the focus of this paper.

In preparation for the length constraint algo-

rithm, the system creates a queue of expressible

nodes, each with its cost and benefit values. Nuc-

lei are queued before satellites.

Figure 1. Two Sample Outputs – The greedy output is on the left, the dynamic is on the right.

178

3 A Length Constraint Algorithm

This paper views the length constraint problem as a

precedence-constrained 0-1 knapsack problem

(Samphaiboon & Yamada, 2000); the output im-

ages/paragraphs are viewed as items for the knap-

sack, their length in pixels is viewed as their cost,

and their rhetorical importance is viewed as their

benefit. The prohibition against expressing a satel-

lite without also expressing its governing nuclei is

viewed as a precedence constraint on the items.

A common formulation for this problem is to

define the solution in terms of the maximum bene-

fit for a subset of the first k nodes given a maxi-

mum cost c as follows:

Here, and are the benefit and cost of node k

respectively, and is defined by b(n, D) above. If

the node k will fit within the maximum cost con-

straint c, then B(k, c) is defined as the maximum of

either the:

 previous solution for the first k-1 nodes not

including node k; or

 previous solution with space for node k.

A dynamic programming algorithm that imple-

ments this formulation can be specified as follows:

Function: format(C, Q, T)

Input:

 A positive integer maximum cost limit C

 A queue Q of N nodes with positive integer

cost (ci) and real benefit (bi) settings

 A tree T specifying rhetorical relationships

Output:

 A 2-D array B[n+1, c+1] specifying the val-

ues for B(k,c) as defined above

for c ← 0 to C

B[0,c] ← 0

for k ← 1 to N

for c ← 0 to C

B[0,c] ← B[0,c-1]

for c ← ck to C

if (not unexpressedNucleus(B,c,k,T) and

 B[k-1,c-ci] + bi > B[k-1,c])

B[k,c] ← B[k-1,c-ci] + bi

The format(C, Q, T) algorithm declares a 2-D array

of maximum benefit values and sets the first row to

0s. For each expressible node k in Q (rows 1

through N), it copies the previous row of benefit

values and then, for each cost value above the cost

of the current node (columns ck through C), it ei-

ther keeps the previous benefit value without node

k or inserts the benefit that includes node k.

Given the array of maximal benefit values out-

put by format(C, Q, T), the following algorithm

will compute set of nodes corresponding to a given

benefit value:

Figure 2. Sample Discourse Tree for the Output in Figure 1 with Cost/Benefit Settings

179

Function: output(B, k, c)

Input:

 An array B of maximal benefit values

 A node number k

 B’s maximum cost value c.

Output:

 The set of nodes with total cost c and total

benefit B(k, c).

while k,c > 0

if B[k,c] ≠ B[k-1,c]

include nodek

c ← c - ck

k ← k - 1

The use of unexpressedNucleus(B,c,k,T) in the

format(C, Q, T) if-condition is an extension of the

standard algorithm for the 0-1 knapsack problem

that addresses rhetorical precedence constraints. In

RST-based NLG, satellites are not expressed with-

out their nuclei. For example, we would not want

to include the context expression (i.e., “Ima Sam-

ple…”) without also including its nucleus (i.e.,

“Thanks for…”). Note that these “governing” nuc-

lei are not always at the same level in the tree (e.g.,

the header image satellite is dependent upon the

“Thanks for…” nucleus one level down).

The unexpressedNucleus(B,c,k,T) condition im-

plements this constraint by requiring that

 before including any

node n, where G(n,T) is the set of governing nuclei

for n in tree T and is formulated as follows:

Here, G+() looks up the tree, G-() looks down the

tree, P(n) is n’s parent node, and NC(n) is the set

of n’s nucleus children. G() includes only express-

ible nodes. G() can be implemented by a set of

three mutually recursive functions and can be me-

moized to improve efficiency.

The greedy algorithm used for the output in Fig-

ure 1 uses the same input and a precedence queue

of expressible nodes ordered by decreasing benefit.

4 Analysis and Conclusions

The dynamic programming algorithm will always

perform at least as well as the greedy algorithm,

and sometimes better. For example, given a total

cost maximum of 325, the greedy algorithm’s out-

put in Figure 1 has total cost/benefit: 297/3.7,

while the dynamic algorithm’s output has 316/4.1.

Dynamic programming algorithms are noto-

riously expensive in terms of space and time re-

quirements. They are pseudo-polynomial time,

O(NC), but if N and C are “small” they can work

in practice. Typical document formatting problems

with dozens of expressible nodes and hundreds of

pixels of length are tractable.

Further work on this project will follow a num-

ber of directions, including: (1) doing a more com-

plete quantitative analysis of the algorithm; (2)

figuring out a more principled way to assign bene-

fit values; (3) generalizing the problem to two di-

mensions and multiple pages; (4) drawing the

content from a content management system.

References

Mann, W. C., & Thompson, S. A. (1988). Rhetorical

structure theory: Toward a functional theory of text

organization. Text , 8 (3), 243-281.

Marcu, D. (1999). Discourse trees are good indicators of

importance in text. In I. Mani, & M. Maybury (Ed.),

Advances in Automatic Text Summarization (pp.

123-136). MIT Press.

Moore, J. D., & Paris, C. L. (1993). Planning text for

advisory dialogues: Capturing intentional and

rhetorical information. Computational Linguistics ,

19 (4), 651-694.

O'Donnell, M. (1997). Variable Length On-Line

Document Generation. Proceedings of the Sixth

European Workshop on NLG. Duisburg, Germany:

Gehard Mercator University.

Paris, C. L., Colineau, N., Lampert, A., & Giralt Duran,

J. (2008). Generation under Space Constraints.

Sydney: CSIRO.

Reiter, E. (2000). Pipelines and Size Constraints.

Computational Linguistics , 26 (2), 251-259.

Samphaiboon, N., & Yamada, T. (2000). Heuristic and

Exact Algorithms for the Precedence-Constrained

Knapsack Problem. Journal of Optimization Theory

and Applications , 105 (3), 659-676.

Spark-Jones, K. (1993). What might be in a summary?

In Knorz, Krause, & Womser-Hacker (Ed.),

Proceedings of Information Retrieval 93: Von der

modellierung zur anwendung (pp. 9-26).

Universitatsverlag Konstanz.

180

