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Abstract

This paper presents an unsupervised batch
learner for the quantity-insensitive stress
systems described in Gordon (2002). Un-
like previous stress learning models, the
learner presented here is neither cue based
(Dresher and Kaye, 1990), nor reliant on
a priori Optimality-theoretic constraints
(Tesar, 1998). Instead our learner ex-
ploits a property called neighborhood-
distinctness, which is shared by all of the
target patterns. Some consequences of this
approach include a natural explanation
for the occurrence of binary and ternary
rhythmic patterns, the lack of higher n-ary
rhythms, and the fact that, in these sys-
tems, stress always falls within a certain
window of word edges.

1 Introduction

The central premise of this research is that phonotac-
tic patterns are have properties which reflect prop-
erties of the learner. This paper illustrates this ap-
proach for quantity-insensitive (QI) stress systems
(see below).

I present an unsupervised batch learner that cor-
rectly learns every one of these languages. The
learner succeeds because there is a universal prop-
erty of QI stress systems which I refer to as
neighborhood-distinctness (to be defined below).
This property, which is a structural notion of local-
ity, is used by the learning algorithm to successfully
infer the target pattern from samples.

A learner is a function from a set of observations
to a grammar. An observation is some linguistic
sign, in this case a word-sized sequence of stress val-
ues. A grammar is some device that must at least re-
spond Yes or No when asked if a linguistic sign is a
possible sign for this language (Chomsky and Halle,
1968; Halle, 1978).1

The remainder of the introduction outlines the ty-
pology of the QI stress systems, motivates represent-
ing phonotactics with regular languages, and exam-
ines properties of the attested patterns. In §2, I define
the class of neighborhood-distinct languages. The
learning algorithm is presented in two stages. §3 in-
troduces a basic version of the learner the learner,
which successfully acquires just under 90% of the
target patterns. In §4, one modification is made to
this learner which consequently succeeds on all tar-
get patterns. §5 discusses predictions made by these
learning algorithms. The appendix summarizes the
target patterns and results.

1.1 Quantity-Insensitive Stress Systems

Stress assignment in QI languages is indifferent to
the weight of a syllable. For example, Latin is
quantity-sensitive (QS) because stress assignment
depends on the syllable type: if the penultimate syl-
lable is heavy (i.e. has a long vowel or coda) then
it receives stress, but otherwise the antepenult does.
The stress systems under consideration here, unlike
Latin, do not distinguish syllable types.

1In this respect, this work departs from (or is a special case
of) gradient phonotactic models (Coleman and Pierrehumbert,
1997; Frisch et al., 2000; Albright, 2006; Hayes and Wilson,
2006)
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There are 27 types of QI stress systems found in
Gordon’s (2002) typology. Gordon adds six plausi-
bly attestable QI systems by considering the behav-
ior of all-light-syllabled words from QS systems.

These 33 patterns are divided into four kinds: sin-
gle, dual, binary and ternary. Single systems have
one stressed syllable per word, and dual systems up
to two. Binary and ternary systems stress every sec-
ond (binary) or third (ternary) syllable.

The choice to study QI stress systems was made
for three reasons. First, they are well studied and the
typology is well established (Hayes, 1995; Gordon,
2002). Secondly, learning of stress systems has been
approached before (Dresher and Kaye, 1990; Gupta
and Touretzky, 1991; Goldsmith, 1994; Tesar, 1998)
making it possible to compare learners and results.
Third, these patterns have been analyzed with ad-
jacency restrictions (e.g. no clash), as disharmony
(e.g. a primary stress may not be followed by an-
other), and with recurrence requirements (e.g. build
trochaic feet iteratively from the left). Thus the pat-
terns found in the QI stress systems are represen-
tative of other phonotactic domains that the learner
should eventually be extended to.

The 33 types are shown in Table 1. See Gor-
don (2002) and Hayes (1995) for details, exam-
ples, and original sources. Note that some patterns
have a minimal word condition (Prince, 1980; Mc-
Carthy and Prince, 1990; Hayes, 1995), banning ei-
ther monosyllables or light monosyllables. For ex-
ample, Cayuvava bans all monosyllables, whereas
Hopi bans only light monosyllables. Because this
paper addresses QI stress patterns I abstract away
from the internal structure of the syllable. For con-
venience, when stress patterns are explicated in this
paper I assume (stressed) monosyllables are permit-
ted. The learning study, however, includes each
stress pattern both with and without stressed mono-
syllables. Predictions our learner makes with respect
to the minimal word condition are given in §5.2.

2We use the (first) language name to exemplify the stress
pattern. The number in parentheses is an index to the lan-
guage Gordon’s 2003 appendix. All stress representations fol-
low Gordon’s notation, who uses the metrical grid (Liberman
and Prince, 1977; Prince, 1983). Thus, primary stress is indi-
cated by 2, secondary stress by 1, and no stress by 0.

1.2 Phonotactics as Regular Languages

I represent phonotactic descriptions as regular sets,
accepted by finite-state machines. A finite state ma-
chine is a 5-tuple (Σ, Q, q0, F, δ) where Σ is a finite
alphabet, Q is a set of states, q0 ∈ Q is the start state,
F ⊆ Q is a set of final states, and δ is a set of tran-
sitions. Each transition has an origin and a terminus
and is labeled with a symbol of the alphabet; i.e. a
transition is a 3-tuple (o, a, t) where o, t ∈ Q and
a ∈ Σ.

Empirically, it has been observed that most
phonological phenomena are regular (Johnson,
1972; Kaplan and Kay, 1981; Kaplan and Kay, 1994;
Ellison, 1994; Eisner, 1997; Karttunen, 1998). This
is especially true of phonotactics: reduplication and
metathesis, which have higher complexity, are not
phonotactic patterns as they involve alternations.3

Formally, regular languages are widely studied in
computer science, and their basic properties are well
understood (Hopcroft et al., 2001). Also, a learning
literature exists. E.g. the class of regular languages
is not exactly identifiable in the limit (Gold, 1967),
but certain subsets of it are (Angluin, 1980; Angluin,
1982). Thus it is becomes possible to ask: What
subset of the regular languages delimits the class of
possible human phonotactics and can properties of
this class be exploited by a learner?

This perspective also connects to finite state mod-
els of Optimality Theory (OT) (Prince and Smolen-
sky, 1993). Riggle (2004) shows that if OT con-
straints are made finite-state, it is possible to build a
transducer that takes any input to a grammatical out-
put. Removing from this transducer the input labels
and hidden structural symbols (such as foot bound-
aries) in the output labels yields a phonotactic ac-
ceptor for the language, a target for our learner.

Consider Pintupi, #26 in Table 1, which exempli-
fies a binary stress pattern. Its phonotactic gram-
mar is given in Figure 1. The hexagon indicates the
start state, and final states are marked by the double
perimeter.

This machine accepts the Pintupi words, but not
other words of the same length. Also, the Pin-
tupi grammar accepts an infinite number of words–
just like the grammars in Hayes (1995) and Gordon

3See Albro (1998; 2005) for restricted extensions to regular
languages.
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Table 1: The Quantity-Insensitive Stress Systems.2

Single Systems
1. (1) Chitimacha 20000000 2000000 200000 20000 2000 200 20 2
2. (2) Lakota 02000000 0200000 020000 02000 0200 020 02 2
3. (3) Hopi (qs) 02000000 0200000 020000 02000 0200 020 20 2
4. (4) Macedonian 00000200 0000200 000200 00200 0200 200 20 2
5. (5) Nahuatl / Mohawk† 00000020 0000020 000020 00020 0020 020 20 2
6. (6) Atayal / Diegueño‡ 00000002 0000002 000002 00002 0002 002 02 2

Dual Systems
7. (7f) Quebec French 10000002 1000002 100002 10002 1002 102 12 2
8. (9f) Udihe 10000002 1000002 100002 10002 1002 102 02 2
9. (10i) Lower Sorbian 20000010 2000010 200010 20010 2010 200 20 2
10. (11f) Sanuma 10000020 1000020 100020 10020 1020 020 20 2
11. (15f) Georgian 10000200 1000200 100200 10200 0200 200 20 2
12. (16i) Walmatjari 20000100 2000100 200100 20100 2010 200 20 2

(optional variants) 20000010 2000010 200010 20010
Binary Systems

13. (24i) Araucanian 02010101 0201010 020101 02010 0201 020 02 2
14. (24f) Creek‡ (qs) 01010102 0101020 010102 01020 0102 020 02 2
15. (25f) Urubu Kaapor 01010102 1010102 010102 10102 0102 102 02 2
16. (26i) Malakmalak 20101010 0201010 201010 02010 2010 020 20 2
17. (26f) Cavineña† 10101020 0101020 101020 01020 1020 020 20 2
18. (27i) Maranungku 20101010 2010101 201010 20101 2010 201 20 2
19. (27f) Palestinean Arabic‡ (qs) 10101020 1010102 101020 10102 1020 102 20 2

Binary Systems with Clash
20. (28i) Central Alaskan Yupik‡ 01010102 0101012 010102 01012 0102 012 02 2
21. (29i) Southern Paiute‡ 02010110 0201010 020110 02010 0210 020 20 2
22. (30i) Gosiute Shoshone 20101011 2010101 201011 20101 2011 201 21 2
23. (32f) Biangai 10101020 1101020 101020 11020 1020 120 20 2
24. (33f) Tauya 11010102 1010102 110102 10102 1102 102 12 2

Binary Systems with Lapse
25. (34f) Piro 10101020 1010020 101020 10020 1020 020 20 2
26. (36i) Pintupi / Diyari† 20101010 2010100 201010 20100 2010 200 20 2
27. (40f) Indonesian 10101020 1001020 101020 10020 1020 020 20 2
28. (42i) Garawa 20101010 2001010 201010 20010 2010 200 20 2

Ternary Systems
29. (48i) Ioway-Oto 02001001 0200100 020010 02001 0200 020 02 2
30. (49f) Cayuvava† 00100200 0100200 100200 00200 0200 200 20 2
31. (67i) Estonian (qs) 20010010 2001010 201010 20010 2010 200 20 2

(optional variants) 20101010 2010100 200100 20100
20100100 2010010
20010100

32. (71f) Pacific Yupik (qs) 01001002 0100102 010020 01002 0102 020 02 2
33. (72i) Winnebago‡ (qs) 00200101 0020010 002001 00201 0020 002 02 2
† Bans monosyllables.
‡ Bans light monosyllables.
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Figure 1: Stress in Pintupi as a finite state machine

(2002), who take the observed forms as instances of
a pattern that extends to longer words. The learner’s
task is to take the Pintupi words in Table 1 and return
the pattern represented by Figure 1.

1.3 Properties of QI Stress Patterns

The deterministic acceptor with the fewest states for
a language is called the language’s canonical accep-
tor. Therefore, let us ask what properties the canoni-
cal acceptors for the 33 stress types have in common
that might be exploited by a learner.

One property shared by all grammars except Es-
tonian is that they have exactly one loop (Estonian
has two). Though this restriction is nontrivial, it is
insufficient for learning to be guaranteed.4 A second
shared property is slenderness. A machine is slender
iff it accepts only one word of length n. The only ex-
ceptions to this are Walmatjari and Estonian, which
have free variation in longer words (see Table 1).

I focus in this paper on another property which are
shared by all machines without exception. In 29 of
the canonical acceptors, each state can be uniquely
identified by its incoming symbol set, its outgo-
ing symbol set, and whether it is final or non-final.
These items make up the neighborhood of a state,
which will be formally defined in the next section.
The other four stress systems have non-canonical
acceptors wherein each state can also be uniquely
identified by its neighborhood. This property I call
neighborhood-distinctness. Thus, neighborhood-
distinctness is a universal property of QI stress sys-
tems, and it is this property that the learner will ex-
ploit.

4The proof is similar to the one used to show the cofinite
languages are not learnable (Osherson et al., 1986).

2 Neighborhood-Distinctness

2.1 Neighborhood-Distinct Acceptors

The neighborhood of a state in an acceptor
(Σ, Q, q0, F, δ) is defined in (1).

(1) The neighborhood of a state q is triple
(f, I,O) where f = 1 iff q ∈ F and f = 0
otherwise, I = {a | ∃o ∈ Q, (o, a, q) ∈ δ},
and O = {a | ∃t ∈ Q, (q, a, t) ∈ δ}

Thus the neighborhood of state can be determined
by looking solely at whether or not it is final, the set
of symbols labeling the transitions which reach that
state, and the set of symbols labeling the transitions
which depart that state. For example in Figure 2,
states p and q have the same neighborhood because
they are both nonfinal, can both be reached by some
element of {a, b}, and because each state can only
be exited by observing a member of {c, d}.5

q

a c

db
p

a
c

d
a

b

Figure 2: Two states with the same neighborhood.

Neighborhood-distinct acceptors are defined in
(2).

(2) An acceptor is said to be neighborhood-
distinct iff no two states have the same
neighborhood.

This class of acceptors is finite: there are 22|Σ|+1

neighborhoods, i.e. types of states. Since each state
in a neighborhood-distinct machine has a unique
neighborhood, this becomes an upper bound on ma-
chine size.6

5The notion of neighborhood can be generalized to neigh-
borhoods of size k, where sets I and O are defined as the in-
coming and outgoing paths of length k. However, this paper is
only concerned with neighborhoods of size 1.

6For some acceptor, the notion of neighborhood lends it-
self to an equivalence relation RN over Q: pRNq iff p and q
have the same neighborhood. Therefore, RN partitions Q into
blocks, and neighborhood-distinct machines are those where
this partition equals the trivial partition.
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2.2 Neighborhood-Distinct Languages

The class of neighborhood-distinct languages is de-
fined in (3).

(3) The neighborhood-distinct languages are
those for which there is an acceptor which
is neighborhood-distinct.

The neighborhood-distinct languages are a (finite)
proper subset of the regular languages over an
alphabet Σ: all regular languages whose small-
est acceptors have more than 22|Σ|+1 states cannot
be neighborhood-distinct (since at least two states
would have the same neighborhood).

The canonically neighborhood-distinct languages
are defined in (4).

(4) The canonically neighborhood-distinct
languages are those for which the canonical
acceptor is neighborhood-distinct.

The canonically neighborhood-distinct languages
form a proper subset of the neighborhood-distinct
languages. For example, the canonical accep-
tor shown in Figure 3 of Lower Sorbian (#9 in
Table 1) is not neighborhood-distinct (states 2
and 3 have the same neighborhood). However,
there is a non-canonical (because non-deterministic)
neighborhood-distinct acceptor for this language, as
shown in Figure 4.
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Figure 3: The canonical acceptor for Lower Sorbian.
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Figure 4: A neighborhood-distinct acceptor for
Lower Sorbian.

Neighborhood-distinctness is a universal property
of the patterns under consideration. Additionally, it
is a property which a learner can use to induce a
grammar from surface forms.

3 The Neighborhood Learner

In this section, I present the basic unsupervised
batch learner, called the Neighborhood Learner,
which learns 29 of the 33 patterns. In the next
section, I introduce one modification to this learner
which results in perfect accuracy.

The basic version of the learner operates in two
stages: prefix tree construction and state-merging,
cf. Angluin (1982). These two stages find smaller
descriptions of the observed data; in particular state-
merging may lead to generalization (see below).

A prefix tree is constructed as follows. Set the ini-
tial machine M = (Σ, {q0}, q0, ∅, ∅) and the current
state c = q0. With each word, each symbol a is con-
sidered in order. If ∀t ∈ Q, (c, a, t) ∈ δ then set
c = t. Otherwise, add a new state n to Q and a new
arc (c, a, n) to δ. A new arc is therefore created on
every symbol in the first word. The last state for a
word is added to F . The process is repeated for each
word. The prefix tree for Pintupi words from Table
1 is shown in Figure 5.
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Figure 5: The prefix tree of Pintupi words.

The second stage of the learner is state-merging,
a process which reduces the number of states in the
machine. A key concept in state merging is that
when two states are merged into a single state, their
transitions are preserved. Specifically, if states p and
q merge, then a merged state pq is added to the ma-
chine, and p and q are removed. For every arc that
left p (or q) to a state r, there is now an arc from pq
going to r. Likewise, for every arc from a state r to
p (or q), there is now an arc from r to pq.

The post-merged machine accepts every word that
the pre-merged machine accepts, and possibly more.
For example, if there is a path between two states
which become merged, a loop is formed.
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What remains to be explained is the criteria the
learner uses to determine whether two states in
the prefix tree merge. The Neighborhood Learner
merges two states iff they have the same neighbor-
hood, guaranteeing that the resulting grammar is
neighborhood-distinct.

The intuition is that the prefix tree provides
a structured representation of the input and has
recorded information about different environments,
which are represented in the tree as states. Learning
is a process which identifies actually different envi-
ronments as ‘the same’— here states are ‘the same’
iff their local features, i.e their neighborhoods, are
the same. For example, suppose states p and q in the
prefix tree are both final or both nonfinal, and they
share the same incoming symbol set and outgoing
symbol set. In the learner’s eyes they are then ‘the
same’, and will be merged.

The merging criteria partitions the states of the
Pintupi prefix tree into five groups. States 3,5 and
7 are merged; states 2,4,6 are merged, and states
8,9,10,12 are merged. Merging of states halts when
no two nodes have the same neighborhood– thus, the
resulting machine is neighborhood-distinct. The re-
sult for Pintupi is shown in Figure 6.

0 1
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2-4-6
0

3-5-7
1

8-9-10-11

0

0

Figure 6: The grammar learned for Pintupi.

The machine in Figure 6 is equivalent to the one
in Figure 1– they accept exactly the same language.7

I.e. neighborhood merging of the prefix tree in Fig-
ure 5 generalizes from the data exactly as desired.

3.1 Results of Neighborhood Learning

The Neighborhood Learner successfully learns 29 of
the 33 language types (see appendix). These are ex-
actly the 29 canonically neighborhood-distinct lan-
guages. This suggests the following claim, which
has not been proven.8

7This can be verified by checking to see if the minimized
versions of the two machines are isomorphic.

8The proof is made difficult by the fact that the acceptor
returned by the Neighborhood Learner is not necessarily the

(5) Conjecture: The Neighborhood Learner
identifies the class of canonically
neighborhood-distinct languages.

In §4, I discuss why the learner fails where it does,
and introduce a modification which results in perfect
accuracy.

4 Reversing the Prefix Tree

This section examines the four cases where neigh-
borhood learning failed and modifies the learning al-
gorithm, resulting in perfect accuracy. The goal is to
restrict generalization because in every case where
learning failed, the learner overgeneralized by merg-
ing more states than it should have. Thus, the re-
sulting grammars recognize multiple words with n
syllables.

The dual stress pattern of Lower Sorbian places
stress initially and, in words of four or more sylla-
bles, on the penult (see #9 Table 1). The prefix tree
built from these words is shown in Figure 7.

0 1
2

2
0

151

3

0

11 120

13 140

160

1

4

0

1

5

0

9
1

6

0
100

7
1

8
0

Figure 7: The prefix tree for Lower Sorbian.

Here the Neighborhood Learner fails because it
merges states 2 and 3. The resulting grammar incor-
rectly accepts words of the form 20∗.

The proposed solution follows from the observa-
tion that if the prefix tree were constructed in reverse
(reading each word from right to left) then the corre-
sponding states in this structure would not have the
same neighborhoods, and thus not be merged. A re-
verse prefix tree is constructed like a forward prefix
tree, the only difference being that the order of sym-
bols in each word is reversed. When neighborhood
learning is applied to this structure and the result-
ing machine reversed again, the correct grammar is
obtained, shown in Figure 4.

How is the learner to know whether to construct
the prefix tree normally or in reverse? It simply does
both and intersects the results. Intersection of two

canonical acceptor.
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languages is an operation which returns a language
consisting of the words common to both. Similarly,
machine intersection returns an acceptor which rec-
ognizes just those words that both machines recog-
nize. This strategy is thus conservative: the learner
keeps only the most robust generalizations, which
are the ones it ‘finds’ in both the forward and reverse
prefix trees.

This new learner is called the Forward Backward
Neighborhood (FBN) Learner and it succeeds with
all the patterns (see appendix).

Interestingly, the additional languages the FBN
Learner can acquire are ones that, under foot-based
analyses like those in Hayes (1995), require feet to
be built from the right word edge. For example,
Lower Sorbian has a binary trochee aligned to the
right word edge; Indonesian iteratively builds binary
trochaic feet from the right word edge; Cayuvava it-
eratively builds anapests from the right word edge.
Thus structuring the input in reverse appears akin to
a footing procedure which proceeds from the right
word boundary.

5 Predictions of Neighborhood Learning

In this section, let us examine some of the predic-
tions that are made by neighborhood learning. In
particular, let us consider the kinds of languages that
the Neighborhood Learner can and cannot learn and
compare them with the attested typology.

5.1 Binary and Ternary Stress Patterns

Neighborhood learning suggests an explanation of
the fact that the stress rhythms found in natural
language are binary or ternary and not higher n-
ary, and of the fact that stress falls within a three-
syllable window of the word edge: perhaps only sys-
tems with these properties are learnable. This is be-
cause the neighborhood learner cannot distinguish
between sequences of the same symbol with length
greater than two.

As an example, consider the quaternary (and
higher n-ary) stress pattern 2(0001)∗(0|00|000).9 If
the learner is exposed to samples from this pattern,
it incorrectly generalizes to 2(000∗1)∗(0|00|000).

9I follow Hopcroft et al (2001) in our notation of regular
expressions with one substitution– we use | instead of + to in-
dicate disjunction.

Similarly, neighborhood learning cannot distin-
guish a form like 02000 from 020000, so a sys-
tem that places stress on the pre-antepenult (e.g.
02000, 002000, 0002000) is not learnable. With
samples from the pre-antepenultimate language
(0∗2000|200|20|2), the learner incorrectly general-
izes to 0∗20∗.

5.2 Minimal Word Conditions

A subtle prediction made by neighborhood-learning
is that a QI stress language with a pattern like the
one exemplified by Hopi (shown in Figure 8) cannot
have a minimal word condition banning monosylla-
bles. This is because if there were no monosyllables
in this language, then state 4 in Figure 8 would have
the same neighborhood as state 2 (as in Figure 9).
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Figure 8: The stress pattern exemplified by Hopi,
allowing monosyllables.
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Figure 9: The stress pattern exemplified by Hopi,
not allowing monosyllables.

Since such a grammar recognizes a non-
neighborhood-distinct language it cannot be learned
by the Neighborhood Learner.

As it happens, Hopi is a QS language which pro-
hibits light, but permits heavy, monosyllables. Since
I have abstracted away from the internal structure of
the syllable in this paper, this prediction is not dis-
confirmed by the known typology: there are in fact
no QI Hopi-like stress patterns in Gordon’s (2002)
typology which ban all monosyllables; i.e there are
no QI patterns like the one in Figure 9.

Some QI languages do have a minimal word con-
dition banning all monosyllables. To our knowl-
edge these are Cavineña and Cayuvava (see Ta-
ble 1), Mohawk (which places stress on the penult
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like Nahuatl), and Diyari, Mohwak, Pitta Pitta and
Wangkumara (all which assign stress like Pintupi)
(Hayes, 1995). The Forward Backward Neighbor-
hood Learner learns all of these patterns successfully
irrespective of whether the patterns (and correspond-
ing input samples) permit monosyllables, predicting
that such patterns do not correlate with a prohibition
on monosyllables (see appendix).

Other QI languages prohibit light monosyllables.
Diegueño, for example, places stress finally like
Atayal (see Table 1), but only allows heavy mono-
syllables. This is an issue to attend to in future re-
search when trying to extend the learning algorithm
to QS patterns, when the syllable type (light/heavy)
is included in the representational scheme.

5.3 Restrictiveness and Other Approaches

There are languages that can be learned by neighbor-
hood learning that phonologists do not consider to
be natural. For example, the Neighborhood Learner
learns a pattern in which words with an odd number
of syllables bear initial stress but words with an even
number of syllables bear stress on all odd syllables.
However, the grammar for this language differs from
all of the attested systems in that it has two loops but
is slender (cf. Estonian which has two loops but is
not slender). Thus this case suggests a further formal
restriction to the class of possible stress systems.

More serious challenges of unattestable, but
Neighborhood Learner-able, patterns exist; e.g.
21*. In other words, it does not follow
from neighborhood-distinctness that languages with
stress must have stressless syllables. Nor does the
notion that every word must bear some stress some-
where (i.e. Culminativity– see Hayes (1995)).

However, despite the existence of learnable patho-
logical languages, this approach is not unrestricted.
The class of languages to be learned is finite—as
in the Optimality-theoretic and Principles and Pa-
rameters frameworks—and is a proper subset of the
regular languages. Future research will seek addi-
tional properties to better approximate the class of
QI stress systems that can be exploited by inductive
learning.

This approach offers more insight into QI stress
systems than earlier learning models. Optimality-
theoretic learning models (e.g. (Tesar, 1998)) and
models set in the Principles and Parameters frame-

work (e.g. (Dresher and Kaye, 1990)) make no use
of any property of the class of patterns to be learned
beyond its finiteness. Also, our learner is much sim-
pler than these other models, which require a large
set of a priori switches and cues or constraints.

6 Conclusions

This paper presented a batch learner which correctly
infers the attested QI stress patterns from surface
forms. The key to the success of this learner is that it
takes advantage of a universal property of QI stress
systems, neighborhood-distinctness. This property
provides a natural explanation for why stress falls
within a particular window of the word edge and
why rhythms are binary and ternary. It is strik-
ing that all of the attested patterns are learned by
this simple approach, suggesting that it will be fruit-
ful and revealing when applied to other phonotactic
learning problems.
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Appendix. Target Grammars and Results

See Table 2. Circled numbers mean the learner iden-
tified the pattern. The × mark means the learner
failed to identify the pattern. The number inside the
circle indicates which forms were necessary for con-
vergence. Specifically, in the “With Monosyllables”
column, ©n means the learner succeeded learning
the “With Monosyllables” pattern with words with
one to n syllables. Likewise, in the “Without Mono-
syllables” column, ©n means the learner succeeded
learning the “Without Monosyllables” pattern with
words with two to n syllables. For example, in
the “With Monosyllables” column, ©5 means that
the learner succeeded only with words with one to
five syllables. The learners still succeed when given
longer words. The number n may be thought of as
the smallest word needed for generalization.
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Table 2: Learning Results
With Monosyllables Without Monosyllables

Language RegExp N
H

L

F
B

N
L

RegExp N
H

L

F
B

N
L

Single
1. Chitimacha 20∗ ©4 ©4 20+ ©4 ©4
2. Lakota (2|020∗) ©5 ©5 020∗ ©5 ©5
3. Hopi (qs) (2|20|020+) ©5 ©5 (020∗|2)0 × ×
4. Macedonian (2|20|0∗200) ©6 ©6 (2|0∗20)0 × ©6
5. Nahuatl (2|0∗20) ©5 ©5 0∗20 ©5 ©5
6. Atayal 0∗2 ©4 ©4 0+2 ©4 ©4

Dual
7. Quebec French (2|10∗2) ©5 ©5 10∗2 ©5 ©5
8. Udihe (2|(10∗)?02) ©5 ©6 (10∗)?02 ©5 ©6
9. Lower Sorbian (2|2(0|0+1)0) × ©6 2(0|0+1)0 × ©6
10. Sanuma (2|20|020|10+20) ©6 ©7 (2|02|10+2)0 ©6 ©7
11. Georgian (2|20|0?200|10+200) ©7 ©8 (2|0?20|10+20)0 × ©8
12. Walmatjari (2|20(0∗10)?0?) × ©6 20(0∗10)?0? × ©6

Binary
13. Araucanian (2|02(01)∗0?) ©6 ©6 02(01)∗0? ©6 ©6
14. Creek (qs) (2|(01)∗020?) ©6 ©6 (01)∗020? ©6 ©6
15. Urubu Kappor 0?(10)∗2 ©5 ©5 (0|10)(10)∗2 ©5 ©5
16. Malakmalak (2|0?2(01)∗0) ©6 ©6 0?2(01)∗0 ©6 ©6
17. Cavineña (2|0?(10)∗20) ©6 ©6 0?(10)∗20 ©6 ©6
18. Maranungku 2(01)∗0? ©5 ©5 20(10)∗1? ©5 ©5
19. Palestinean Arabic (qs) (10)∗20? ©5 ©5 (20|(10)+20?) ©5 ©5

Binary w/clash
20. Central Alaskan Yupik (0(10)∗1?)?2 ©5 ©5 0(10)∗1?2 ©5 ©5
21. Southern Paiute (2|(2|02(01) ∗ 1?)0) ©7 ©8 (2|02(01) ∗ 1?)0 ©7 ©8
22. Gosiute Shoshone 2((01)∗0?1)? ©5 ©6 2(01)∗0?1 ©5 ©6
23. Biangai (2|1?(10)∗20) ©7 ©7 1?(10)∗20 ©7 ©7
24. Tauya (2|1?(10)∗2) ©6 ©6 1?(10)∗2 ©6 ©6

Binary w/lapse
25. Piro (2|(10)∗0?20) ©6 ©7 (10)∗0?20 ©6 ©7
26. Pintupi 2(0(10)∗0?)? ©6 ©6 20(10)∗0? ©6 ©6
27. Indonesian (2|(10)?0?(10)∗20) × ©8 (10)?0?(10)∗20 × ©8
28. Garawa 2(00?(10)∗)? ©6 ©6 200?(10)∗ ©6 ©6

Ternary
29. Ioway Oto (2|02(001)∗0?0?) ©7 ©8 02(001)∗0?0? ©7 ©8
30. Cayuvava (0?0?(100)∗200|20|2) × ©9 (0?0?(100)∗20|2)0 × ©9
31. Estonian (qs) 20?0?(100|10)∗ ©6 ©6 200?(100|10)∗ ©6 ©6
32. Pacific Yupik (qs) (2|0(100)∗(20?|102)) ©7 ©7 0(100)∗(20?|102) ©7 ©7
33. Winnebago (qs) (2|02|002(001)∗0?1?) ©9 ©9 (02|002(001)∗0?1?) ©9 ©9

NHL : Neighborhood Learner FBNL : Forward Backward Neighborhood Learner
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