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Abstract

Lexical Chains are powerful representa-
tions of documents. In particular, they
have successfully been used in the field
of Automatic Text Summarization. How-
ever, until now, Lexical Chaining algo-
rithms have only been proposed for Eng-
lish. In this paper, we propose a greedy
Language-Independent algorithm that au-
tomatically extracts Lexical Chains from
texts. For that purpose, we build a hier-
archical lexico-semantic knowledge base
from a collection of texts by using the
Pole-Based Overlapping Clustering Algo-
rithm. As a consequence, our method-
ology can be applied to any language
and proposes a solution to language-
dependent Lexical Chainers.

1 Introduction

Lexical Chains are powerful representations of doc-
uments compared to broadly used bag-of-words rep-
resentations. In particular, they have successfully
been used in the field of Automatic Text Summa-
rization (Barzilay and Elhadad, 1997). However, un-
til now, Lexical Chaining algorithms have only been
proposed for English as they rely on linguistic re-
sources such as Thesauri (Morris and Hirst, 1991) or
Ontologies (Barzilay and Elhadad, 1997; Hirst and
St-Onge, 1997; Silber and McCoy, 2002; Galley and
McKeown, 2003).

Morris and Hirst (1991) were the first to propose
the concept of Lexical Chains to explore the dis-

course structure of a text. However, at the time of
writing their paper, no machine-readable thesaurus
was available so they manually generated Lexical
Chains using Roget’s Thesaurus (Roget, 1852).

A first computational model of Lexical Chains
is introduced by Hirst and St-Onge (1997). Their
biggest contribution to the study of Lexical Chains
is the mapping of WordNet (Miller, 1995) relations
and paths (transitive relationships) to (Morris and
Hirst, 1991) word relationship types. However, their
greedy algorithm does not use a part-of-speech tag-
ger. Instead, the algorithm only selects those words
that contain noun entries in WordNet to compute
Lexical Chains. But, as Barzilay and Elhadad (1997)
point at, the use of a part-of-speech tagger could
eliminate wrong inclusions of words such as read,
which has both noun and verb entries in WordNet.

So, Barzilay and Elhadad (1997) propose the first
dynamic method to compute Lexical Chains. They
argue that the most appropriate sense of a word can
only be chosen after examining all possible Lexi-
cal Chain combinations that can be generated from
a text. Because all possible senses of the word are
not taken into account, except at the time of inser-
tion, potentially pertinent context information that
is likely to appear after the word is lost. However,
this method of retaining all possible interpretations
until the end of the process, causes the exponential
growth of the time and space complexity.

As a consequence, Silber and McCoy (2002) pro-
pose a linear time version of (Barzilay and Elhadad,
1997) lexical chaining algorithm. In particular, (Sil-
ber and McCoy, 2002)’s implementation creates a
structure, called meta-chains, that implicitly stores
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all chain interpretations without actually creating
them, thus keeping both the space and time usage
of the program linear.

Finally, Galley and McKeown (2003) propose a
chaining method that disambiguates nouns prior to
the processing of Lexical Chains. Their evaluation
shows that their algorithm is more accurate than
(Barzilay and Elhadad, 1997) and (Silber and Mc-
Coy, 2002) ones.

One common point of all these works is that Lex-
ical Chains are built using WordNet as the standard
linguistic resource. Unfortunately, systems based on
static linguistic knowledge bases are limited. First,
such resources are difficult to find. Second, they
are largely obsolete by the time they are available.
Third, linguistic resources capture a particular form
of lexical knowledge which is often very different
from the sort needed to specifically relate words or
sentences. In particular, WordNet is missing a lot
of explicit links between intuitively related words.
Fellbaum (1998) refers to such obvious omissions
in WordNet as the “tennis problem” where nouns
such as nets, rackets and umpires are all present,
but WordNet provides no links between these related
tennis concepts.

In order to solve these problems, we propose to
automatically construct from a collection of docu-
ments a lexico-semantic knowledge base with the
purpose to identify cohesive lexical relationships be-
tween words based on corpus evidence. This hi-
erarchical lexico-semantic knowledge base is built
by using the Pole-Based Overlapping Clustering Al-
gorithm (Cleuziou et al., 2004) that clusters words
with similar meanings and allows words with mul-
tiple meanings to belong to different clusters. The
second step of the process aims at automatically
extracting Lexical Chains from texts based on our
knowledge base. For that purpose, we propose a
new greedy algorithm which can be seen as an ex-
tension of (Hirst and St-Onge, 1997) and (Barzilay
and Elhadad, 1997) algorithms which allows polyse-
mous words to belong to different chains thus break-
ing the “one-word/one-concept per document” par-
adigm (Gale et al., 1992)1. In particular, it imple-

1This characteristic can be interesting for multi-topic docu-
ments like web news stories. Indeed, in this case, there may be
different topics in the same document as different news stories
may appear. In some way, it follows the idea of (Krovetz, 1998).

ments (Lin, 1998) information-theoretic definition
of similarity as the relatedness criterion for the at-
tribution of words to Lexical Chains2.

2 Building a Similarity Matrix

In order to build the lexico-semantic knowledge
base, the Pole-Based Overlapping Clustering Algo-
rithm needs as input a similarity matrix that gathers
the similarities between all the words in the corpus.
For that purpose, we propose a contextual analysis
of each nominal unit (nouns and compound nouns)
in the corpus. In particular, each nominal unit is as-
sociated to a word context vector and the similar-
ity between nominal units is calculated by the in-
formative similarity measure proposed by (Dias and
Alves, 2005).

2.1 Data Preparation
The context corpus is first pre-processed in order
to extract nominal units from it. The TnT tagger
(Brants, 2000) is first applied to our context cor-
pus to morpho-syntactically mark all the words in
it. Once all words have been morpho-syntactically
tagged, we apply the statistically-based multiword
unit extractor SENTA (Dias et al., 1999) that ex-
tracts multiword units based on any input text3. For
example, multiword units are compound nouns (free
kick), compound determinants (an amount of), ver-
bal locutions (to put forward), adjectival locutions
(dark blue) or institutionalized phrases (con carne).
Finally, we use a set of well-known heuristics
(Daille, 1995) to retrieve compound nouns using the
idea that groups of words that correspond to a pri-
ori defined syntactical patterns such as Adj+Noun,
Noun+Noun, Noun+Prep+Noun can be identified
as compound nouns. Indeed, nouns usually con-
vey most of the information in a written text. They
are the main contributors to the “aboutness” of a
text. For example, free kick, city hall, operating sys-
tem are compound nouns which sense is not com-
positional i.e. the sense of the multiword unit can

2Of course, other similarity measures (Resnik, 1995; Jiang
and Conrath, 1997; Leacock and Chodorow, 1998) could be
implemented and should be evaluated in further work. How-
ever, we used (Lin, 1998) similarity measure as it has shown
improved results for Lexical Chains construction.

3By choosing both the TnT tagger and the multiword unit
extractor SENTA, we guarantee that our architecture remains as
language-independent as possible.
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not be expressed by the sum of its constituents
senses. So, identifying lexico-semantic connections
between nouns is an adequate means of determining
cohesive ties between textual units4.

2.2 Word Context Vectors

The similarity matrix is a matrix where each cell cor-
responds to a similarity value between two nominal
units5. In this paper, we propose a contextual analy-
sis of nominal units based on similarity between
word context vectors.

Word context vectors are an automated method
for representing information based on the local con-
text of words in texts. So, for each nominal unit in
the corpus, we associate an N-dimension vector con-
sisting of its N most related words6.

In order to find the most relevant co-occurrent
nominal units, we implement the Symmetric Con-
ditional Probability (Silva et al., 1999) which is
defined in Equation 1 where p(w1, w2), p(w1)
and p(w2) are respectively the probability of co-
occurrence of the nominal units w1 and w2 and the
marginal probabilities of w1 and w2.

SCP (w1, w2) =
p(w1, w2)

2

p(w1)× p(w2)
(1)

In particular, the window context for the calcula-
tion of co-occurrence probabilities is settled to F=20
words. In fact, we count, in all the texts of the
corpus, the number of occurrences of w1 and w2

appearing together in a window context of F − 2
words. So, p(w1, w2) represents the density func-
tion computed as follows: the number of times w1

and w2 co-occur divided by the number of words in
the corpus7. In the present work, the values of the
SCP (., .) are not used as a factor of importance be-
tween words in the word context vector i.e. no dif-
ferentiation is made in terms of relevance between
the words within the word context vector. This issue
will be tackled in future work8.

4However, we acknowledge that verbs and adjectives should
also be tackled in future work.

5Many works have been proposed on word similarity (Lin,
1998).

6In our experiments, N=10.
7We note that multiword units are counted as single words

as when they are identified (e.g. President of the United States),
they are re-written in the corpus by linking all single words with
an underscore (e.g. President of the United States)

8We may point at the fact that satisfying results were

2.3 Similarity between Context Vectors
The closeness of vectors in the space is equivalent to
the closeness of the subject content. Thus, nominal
units that are used in a similar local context will have
vectors that are relatively close to each other. How-
ever, in order to define similarities between vectors,
we must transform each word context vector into
a high dimensional vector consisting of real-valued
components. As a consequence, each co-occurring
word of the word context vector is associated to a
weight which evaluates its importance in the corpus.

2.3.1 Weighting score
The weighting score of any word in a document

can be directly derived from an adaptation of the
score proposed in (Dias and Alves, 2005). In par-
ticular, we consider the combination of two main
heuristics: the well-known tf.idf measure proposed
by (Salton et al., 1975) and a new density measure
(Dias and Alves, 2005).

tf.idf: Given a word w and a document d, the
tf.idf(w, d) is defined in Equation 2 where tf(w, d)
is the number of occurrences of w in d, |d| corre-
sponds to the number of words in d, N is the num-
ber of documents in the corpus and df(w) stands for
the number of documents in the corpus in which the
word w occurs.

tf.idf(w, d) =
tf(w, d)

|d| × log2

�
N

df(w)

�
(2)

density: The basic idea of the word density mea-
sure is to evaluate the dispersion of a word within
a document. So, very disperse words will not be
as relevant as dense words. This density measure
dens(., .) is defined in Equation 3.

dens(w, d) =

tf(w,d)−1X
k=1

1

ln(dist(o(w,k), o(w,k+1)) + e)
(3)

For any given word w, its density dens(w, d)
is calculated from all the distances between all
its occurrences in document d, tf(w, d). So,
dist(o(w,k), o(w,k+1)) calculates the distance that
separates two consecutive occurrences of w in terms
of words within the document. In particular, e is the

obtained by the Symmetric Conditional Probability measure
compared to the Pointwise Mutual Information for instance
(Cleuziou et al., 2003)
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base of the natural logarithm so that ln(e) = 1. This
argument is included into Equation 3 as it will give
a density value of 1 for any word that only occurs
once in the document. In fact, we give this word a
high density value.

final weight: The weighting score weight(w) of
any word w in the corpus can be directly derived
from the previous two heuristics. This score is de-
fined in Equation 4 where tf and dens are respec-
tively the average of tf(., .) and dens(., .) over all
the documents in which the word w occurs i.e. Nw.

weight(w) = tf .idf(w)× dens(w) (4)

where tf =
P

d tf(w,d)

Nw
and dens(w) =

P
d dens(w,d)

Nw

2.3.2 Informative Similarity Measure
The next step aims at determining the similarity

between all nominal units. Theoretically, a similar-
ity measure can be defined as follows. Suppose that
Xi = (Xi1, Xi2, Xi3, , Xip) is a row vector of ob-
servations on p variables associated with a label i.
The similarity between two words i and j is defined
as Sij = f(Xi, Xj) where f is some function of the
observed values. In the context of our work, Xi and
Xj are 10-dimension word context vectors.

In order to avoid the lexical repetition problem of
similarity measures, (Dias and Alves, 2005) have
proposed an informative similarity measure called
infoSimBA, which basic idea is to integrate into
the Cosine measure, the word co-occurrence fac-
tor inferred from a collection of documents with
the Symmetric Conditional Probability (Silva et al.,
1999). See Equation 5.

InfoSimBA(Xi, Xj) =
Aij

Bi ×Bj + Aij
(5)

where

Aij =

pX
k=1

pX
l=1

Xik ×Xjl × SCP (wik, wjl)

∀i, Bi =

vuut pX
k=1

pX
l=1

Xik ×Xil × SCP (wik, wil)

and any Xzv corresponds to the word weighting fac-
tor weight(wzv), SCP (wik, wjl) is the Symmetric
Conditional Probability value between wik, the word
that indexes the word context vector i at position k

and wjl, the word that indexes the word context vec-
tor j at position l.
In particular, this similarity measure has proved to
lead to better results compared to the classical simi-
larity measure (Cosine) and shares the same idea as
the Latent Semantic Analysis (LSA) but in a differ-
ent manner. Let’s consider the following two sen-
tences.
(1) Ronaldo defeated the goalkeeper once more.

(2) Real_Madrid_striker scored again.

It is clear that both sentences (1) and (2) are simi-
lar although they do not share any word in common.
Such a situation would result in a null Cosine value
so evidencing no relationship between (1) and (2).
To solve this problem, the InfoSimBA(., .) func-
tion would calculate for each word in sentence (2),
the product of its weight with each weight of all the
words in sentence (1), and would then multiply this
product by the degree of cohesiveness existing be-
tween those two words calculated by the Symmet-
ric Conditional Probability measure. For example,
Real Madrid striker would give rise to the sum of
6 products i.e. Real Madrid striker with Ronaldo,
Real Madrid striker with defeated and so on and
so forth. As a consequence, sentence (1) and (2)
would show a high similarity as Real Madrid striker
is highly related to Ronaldo.

Once the similarity matrix is built based on the
infoSimBA between all word context vectors of
all nominal units in the corpus, we give it as in-
put to the Pole-Based Overlapping Clustering Algo-
rithm (Cleuziou et al., 2004) to build a hierarchy of
concepts i.e. our lexico-semantic knowledge base.

3 Hierarchy of Concepts

Clustering is the task that structures units in such
a way it reflects the semantic relations existing be-
tween them. In our framework nominal units are first
grouped into overlapping clusters (or soft-clusters)
such that final clusters correspond to conceptual
classes (called “concepts” in the following). Then,
concepts are hierarchically structured in order to
capture semantic links between them.

Many clustering methods have been proposed in
the data analysis research fields. Few of them
propose overlapping clusters as output, in spite of
the interest it represents for domains of application
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such as Natural Language Processing or Bioinfor-
matics. PoBOC (Pole-Based Overlapping Cluster-
ing) (Cleuziou et al., 2004) and CBC (Clustering By
Committees) (Pantel and Lin, 2002) are two clus-
tering algorithms suitable for the word clustering
task. They both proceed by first constructing tight
clusters9 and then assigning residual objects to their
most similar tight clusters.

A recent comparative study (Cicurel et al., 2006)
shows that CBC and PoBOC both lead to relevant
results for the task of word clustering. Neverthe-
less CBC requires parameters hard to tune whereas
PoBOC is free of any parametrization. The last ar-
gument encouraged us to use the PoBOC algorithm.

Unlike most of commonly used clustering algo-
rithms, the Pole-Based Overlapping Clustering Al-
gorithm shows the following advantages among oth-
ers : (1) it requires no parameters i.e. input is re-
stricted to a single similarity matrix, (2) the num-
ber of final clusters is automatically found and (3) it
provides overlapping clusters allowing to take into
account the different possible meanings of lexical
units.

3.1 A Graph-based Approach

The Pole-Based Overlapping Clustering Algorithm
is based on a graph-theoretical framework. Graph
formalism is often used in the context of cluster-
ing (graph-clustering). It first consists in defining
a graph structure which illustrates the data (vertices)
with links (edges) between them and then in propos-
ing a graph-partitioning process.

Numerous graph structures have been proposed
(Estivill-Castro et al., 2001). They all consider the
data set as set of vertices but differ on the way to de-
cide that two vertices are connected. Some method-
ologies are listed below where V is the set of ver-
tices, E the set of edges, G(V,E) a graph and d a
distance measure:

• Nearest Neighbor Graph (NNG) : each vertex
is connected to its nearest neighbor,

• Minimum Spanning Tree (MST) : ∀(xi, xj) ∈
V ×V a path exists between xi and xj in G withP

(xi,xj)∈E d(xi, xj) minimized,

9The tight clusters are called “committees” in CBC and
“poles” in PoBOC.

• Relative Neighborhood Graph (RNG) : xi and
xj are connected iff ∀xk ∈ V \ {xi, xj},
d(xi, xj) ≤ max{d(xi, xk), d(xj , xk)}

• Gabriel Graph (GG) : xi and xj are connected
iff the circle with diameter xixj is empty,

• Delaunay Triangulation (DT) : xi and xj are
connected iff the associated Voronoi cells are
adjacent.

In particular, an inclusion order exists on these
graphs. One can show that NNG ⊆ MST ⊆ RNG ⊆
GG ⊆ DT .

The choice of the suitable graph structure depends
on the expressiveness we want an edge to capture
and the partitioning process we plan to perform. The
Pole-Based Overlapping Clustering Algorithm aims
at retrieving dense subsets in a graph where two
similar data are connected and two dissimilar ones
are disconnected. Noticing that previous structures
do not match with this definition of a proximity-
graph10, a new variant is proposed with the Pole-
Based Overlapping Clustering Algorithm in defini-
tion 3.1.

Definition 3.1 Given a similarity measure s on a
data set X , the graph (denoted Gs(V,E)) is defined
by the set of vertices V = X and the set of edges E
such that (xi, xj) ∈ E ⇔ xi ∈ N (xj) ∧ xj ∈ N (xi).

In particular, N (xi) corresponds to the local neigh-
borhood of xi built as in equation 6.

N (xi) = {xj ∈ X|s(xi, xj) > s(xi, X)} (6)

where the notation s(xi, I) denotes the average sim-
ilarity of xi with the set of objects I i.e.

X
xk∈I

s(xi, xk)

|I| (7)

This definition of neighborhood is a way to avoid
requiring to a parameter that would be too dependent
of the similarity used. Furthermore, the use of lo-
cal neighborhoods avoids the use of arbitrary thresh-
olds which mask the variations of densities. Indeed,
clusters are extracted from a similarity graph which
differs from traditional proximity graphs (Jarom-
czyk and Toussaint, 1992) in the definition of local

10Indeed, for instance, all of these graphs connect an outlier
with at least one other vertex. This is not the case with PoBOC.
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neighborhoods which condition edges in the graph.
Neighborhood is different for each object and is
computed on the basis of similarities with all other
objects. Finally, an edge connects two vertices if
they are both contained in the neighborhood of the
other one. Figure 1 illustrates the neighborhood con-
straint above. In this case, as xi and xj are not both
in the intersection, they would not be connected.

Figure 1: To be connected, both xi and xj must be
in the intersection.

3.2 Discovery of Poles

The graph representation helps to discover a set
of fully-connected subgraphs (cliques) highly sep-
arated, denoted as Poles. Because Gs(V,E) is built
such that two vertices xi and xj are connected if and
only if they are similar11, a clique has the required
properties to be a good cluster. Indeed, such a clus-
ter guarantees that all its constituents are similar.

The search of maximal cliques in a graph is an
NP-complete problem. As a consequence, heuristics
are used in order to (1) build a great clique around a
starting vertex (Bomze et al., 1999) and (2) choose
the starting vertices in such a way cliques are as dis-
tant as possible.

Given a starting vertex x, the first heuristic con-
sists in adding iteratively the vertex xi which satis-
fies the following conditions:

• xi is connected to each vertex in P (with P the
clique/Pole in construction),

• among the connected vertices, xi is the nearest
one in average (s(xi, P )).

11In the sense that xi (resp. xj) is more similar to xj (resp.
xi) than to other data on average.

As a consequence, initialized with P = {x}, the
clique then grows until no vertex can be added.

The second heuristic guides the selection of the
starting vertices in a simple manner. Given a set
of Poles P1, . . . , Pm already extracted, we select the
vertex x as in Equation 8.

s(x, P1 ∪ · · · ∪ Pm) = min
xi

s(xi, P1 ∪ · · · ∪ Pm) (8)

A new Pole is then built from x if and only if x
satisfies the following conditions:

• ∀k ∈ {1, . . . , m} , x /∈ Pk ,

• s(x, P1 ∪ · · · ∪ Pm) < s(X, X) =
1

|X|2
X

xi

X

xj

s(xi, xj)

Poles are thus extracted while P1 ∪ · · · ∪ Pm 6=
X and the next starting vertex x is far enough from
the previous Poles. In particular, as Poles represent
the seeds of the further final clusters, this heuristic
gives no restriction on the number of clusters. The
first Pole is obtained from the starting point x∗ that
checks Equation 9.

x∗ = arg min
xk∈X

s(xk, X) (9)

3.3 Multi-Assignment
Once the Poles are built, the Pole-Based Overlap-
ping Clustering algorithm uses them as clusters rep-
resentatives. Membership functions m(., .) are de-
fined in order to assign each object to its nearest
Poles as shown in Equation 10.

∀xi ∈ X, Pj ∈ {P1, . . . , Pm} : m(xi, Pj) = s(xi, Pj) (10)

For each object xi to assign, the set of poles is
ordered (P1(xi), . . . , Pm(xi)) such that P1(xi) de-
notes the nearest pole12 for xi, P2(xi) the second
nearest pole for xi and so on. We first assign xi to its
closest Pole (P1(xi)). Then, for each pole Pk(xi)(in
the order previously defined) we decide to assign xi

to Pk(xi) if it satisfies to the following two condi-
tions :

• ∀k′ < k, xi is assigned to Pk′ (xi),

• if k < m,

s(xi, Pk(xi)) ≥
s(xi, Pk−1(xi)) + s(xi, Pk+1(xi))

2

This methodology results into a coverage of the
starting data set with overlapping clusters (extended
Poles).

12P1(xi) = arg maxPj
s(xi, Pj)
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3.4 Hierarchical Organization

A final step consists in organizing the obtained clus-
ters into a hierarchical tree. This structure is use-
ful to catch the topology of a set of a priori discon-
nected groups. The Pole-Based Overlapping Clus-
tering algorithm integrates this stage and proceeds
by successive merging of the two nearest clusters
like for usual agglomerative approaches (Sneath and
Sokal, 1973). In this process, the similarity be-
tween two clusters is obtained by the average-link
(or complete-link) method:

s(Ip, Iq) =
1

|Ip|.|Iq|
X

xi∈Ip

X
xj∈Iq

s(xi, xj) (11)

To deal with overlapping clusters we considere in
Equation 11 the similarity between an object and it-
self to be equal to 1 : s(xi, xi) = 1.

4 Lexical Chaining Algorithm

Once the lexico-semantic knowledge base has been
built, it is possible to use it for Lexical Chaining.
In this section, we propose a new greedy algorithm
which can be seen as an extension of (Hirst and St-
Onge, 1997) and (Barzilay and Elhadad, 1997) al-
gorithms as it allows polysemous words to belong
to different chains thus breaking the “one-word/one-
concept per document” paradigm (Gale et al., 1992).
Indeed, multi-topic documents like web news sto-
ries may introduce different topics in the same doc-
ument/url and do not respect the “one sense per dis-
course” paradigm. As we want to deal with real-
world applications, this characteristic may show in-
teresting results for the specific task of Text Summa-
rization for Web documents. Indeed, comparatively
to the experiments made by (Gale et al., 1992) that
deal with “well written discourse”, web documents
show unusual discourse structures. In some way,
our algorithm follows the idea of (Krovetz, 1998).
Finally, it implements (Lin, 1998)’s information-
theoretic definition of similarity as the relatedness
criterion for the attribution of words to Lexical
Chains.

4.1 Algorithm

Our chaining algorithm is based on both approaches
of (Barzilay and Elhadad, 1997) and (Hirst and St-
Onge, 1997). So, our chaining model is developed

according to all possible alternatives of word senses.
In fact, all senses of a word are defined by the clus-
ters the word appears in13. We present our algorithm
below.
Begin with no chain.
For all distinct nominal units in text order do
For all its senses do
a) - among present chains find the sense

which satisfies the relatedness
criterion and link the new word to
this chain.

- Remove unappropriate senses of the
new word and the chain members.

b)if no sense is close enough, start a new chain.
End For

End For
End

4.2 Assignment of a word to a Lexical Chain

In order to assign a word to a given Lexical Chain,
we need to evaluate the degree of relatedness of the
given word to the words in the chain. This is done
by evaluating the relatedness between all the clusters
present in the Lexical Chain and all the clusters in
which the word appears.

4.2.1 Scoring Function
In order to determine if two clusters are semanti-

cally related, we use our lexico-semantic knowledge
base and apply (Lin, 1998)’s measure of semantic
similarity defined in Equation 12.

simLin(C1, C2) =
2× log P (C0)

log P (C1) + log P (C2)
(12)

The computation of Equation 12 is illustrated be-
low using the fragment of WordNet in Figure 2.

Figure 2: Fragment of WordNet (Lin, 1998).

13From now on, for presentation purposes, we will take as
synonymous the words clusters and senses
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In this case, it would be easy to compute the sim-
ilarity between the concepts of hill and coast where
the number attached to each node C is P (C). It is
shown in Equation 13.

simLin(hill, coast) =
2 log P (geological − formation)

log P (hill) + log P (coast)
= 0.59 (13)

However, in our taxonomy, as in any knowl-
edge base computed by hierarchical clustering algo-
rithms, only leaves contain words. So, upper clusters
(i.e. nodes) in the taxonomy gather all distinct words
that appear in the clusters they subsume. We present
this situation in Figure 3.

Figure 3: Fragment of our taxonomy.

In particular, clusters C305 and C306 of our
hierarchical tree, for the domain of Economy,
are represented by the following sets of words
C305 ={life, effort, stability, steps, negotiations}
and C306 ={steps, restructure, corporations, abuse,
interests, ministers} and the number attached to each
node C is P (C) calculated as in Equation 1414.

P (Ci) =
# of words in the cluster

# of distinct words in all clusters
(14)

4.2.2 Relatedness criterion
The relatedness criterion is the threshold that

needs to be respected in order to assign a word to
a Lexical Chain. In fact, it works like a threshold.
In this case, it is based on the average semantic sim-
ilarity between all the clusters present in the taxon-
omy. So, if all semantic similarities between a candi-
date word cluster Ck and all the clusters in the chain
∀l, Cl respect the relatedness criterion, the word is

14The value 2843 in Figure 3 is the total number of distinct
words in our concept hierarchy.

assigned to the Lexical Chain. This situation is de-
fined in Equation 15 where c is a constant to be tuned
and n is the number of words in the taxonomy. So,
if Equation 15 is satisfied, the word w with cluster
Ck is agglomerated to the Lexical Chain.

∀l, simLin(Ck, Cl) > c×

nX
i=0

nX
j=i+1

simLin(Ci, Cj)

n2

2
− n

(15)

In the following section, we present an example
of our algorithm.

4.2.3 Example of the Lexical Chain algorithm
The example below illustrates our Lexical Chain

algorithm. Let’s consider that a node is created
for the first nominal unit encountered in the text
i.e. crisis with its sense (C31). The next ap-
pearing candidate word is recession which has two
senses (C29 and C34). Considering a relatedness cri-
terion equal to 0.81 and the following similarities,
simLin(C31, C29) = 0.87, simLin(C31, C34) = 0.82 , the
choice of the sense for recession splits the Lexical
Chain into two different interpretations as shown
in Figure 4, as both similarities overtake the given
threshold 0.81.

Figure 4: Interpretations 1 and 2.

The next candidate word trouble has also two
senses (C29 and C32). As all the words in a Lexi-
cal Chain influence each other in the selection of the
respective senses of the new word considered, we
have the following situation in Figure 5.

So, three cases can happen: (1) all similarities
overtake the threshold and we must consider both
representations, (2) only the similarities related to
one representation overtake the threshold and we
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Figure 5: Selection of senses.

only consider this representation or (3) none of the
similarities overtake the threshold and we create a
new Lexical Chain. So, we proceed with our algo-
rithm for both interpretations.

Interpretation 1 shows the following similari-
ties simLin(C31, C29) = 0.87, simLin(C31, C32) =

0.75, simLin(C29, C29) = 1.0, simLin(C29, C32) =

0.78 and interpretation 2 the following ones,
simLin(C31, C29) = 0.87, simLin(C31, C32) = 0.75,

simLin(C34, C29) = 0.54, simLin(C34, C32) = 0.55 .
By computing the average similarities for in-

terpretations 1 and 2, we reach the following re-
sults: average(Interpretation1) = 0.85 > 0.81 and
average(Interpretation2) = 0.68 ≯ 0.81 .

As a consequence, the word trouble is inserted in
the Lexical Chain with the appropriate sense (C29)
as it maximizes the overall similarity of the chain
and the chain members senses are updated. In this
example, the interpretation with (C32) is discarded
as is the cluster (C34) for recession. This processing
is described in Figure 6.

Figure 6: Selection of appropriate senses.

4.2.4 Score of a chain
Once all chains have been computed, only the

high-scoring ones must be picked up as represent-
ing the important concepts of the original docu-

ment. Therefore, one must first identify the strongest
chains. Like in (Barzilay and Elhadad, 1997), we
define a chain score which is defined in Equation 16
where |chain| is the number of words in the chain.

score(chain) =

|chain|−1X
i=0

|chain|X
j=i+1

simLin(Ci, Cj)

(|chain| − 1)|chain|
2

(16)

As all chains will be scored, the ones with higher
scores will be extracted. Of course, a threshold will
have to be defined by the user. In the next section,
we will show some qualitative and quantitative re-
sults of our architecture.

5 Evaluation

The evaluation of Lexical Chains is generally diffi-
cult. Even if they can be effectively used in many
practical applications, Lexical Chains are seldom
desirable outputs in a real-world application, and
it is unclear how to assess their quality indepen-
dently of the underlying application in which they
are used (Budanitsky and Hirst, 2006). For example,
in Summarization, it is hard to determine whether a
good or bad performance comes from the efficiency
of the lexical chaining algorithm or from the appro-
priateness of using Lexical Chains in that kind of
application. It is also true that some work has been
done in this direction (Budanitsky and Hirst, 2006)
by collecting Human Lexical Chains to compare
against automatically built Lexical Chains. How-
ever, this type of evaluation is logistically impos-
sible to perform as we aim at developing a system
that does not depend on any language or topic. So,
in this section, we will only present some results
generated by our architecture (like (Barzilay and El-
hadad, 1997; Teich and Fankhauser, 2004) do), al-
though we acknowledge that other comparative eval-
uations (with WordNet, with Human Lexical Chains
or within independent applications like Text Sum-
marization) must be done in order to draw definitive
conclusions.

We have generated four taxonomies from four dif-
ferent domains (Sport, Economy, Politics and War)
from a set of documents of the DUC 200415. More-
over, we have extracted Lexical Chains for all four

15http://duc.nist.gov/duc2004/
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domains to show the ability of our system to switch
from domain to domain without any problem.

5.1 Quantitative Function
Four texts from each domain of the DUC 2004 cor-
pus have been used to extract Lexical Chains based
on the four knowledge bases built from all texts of
DUC 2004 for each one of the four following do-
mains: Sport, Economy, Politics and War. However,
in this section, we will only present the results from
the Sport Domain as results show similar behaviors
for the other domains. In particular, we present in
Table 1 the characteristics of each document.

# Words #Distinct Words #Distinct Nouns
Doc 1 8133 1956 672
Doc 2 3823 1630 708
Doc 3 4594 953 324
Doc 4 4530 1265 431

Table 1: Characteristics of Documents for Sport

The first interesting conclusion shown in Table 2
is that the number of Lexical Chains does not de-
pend on the document size but rather on the nominal
units distribution. Indeed, for example, the number
of words in Document 1 is twice as big as in Doc-
ument 2. Although, we have more Lexical Chains
in Document 2 than in Document 1, as Document 2
has more distinct nominal units.

c=5 c=6 c=7 c=8
Doc 1 27 43 73 73
Doc 2 31 52 81 83
Doc 3 28 40 51 51
Doc 4 29 53 83 87

Table 2: # Lexical Chains per Document

The second interesting conclusion is that our algo-
rithm does not gather words that belong to only one
cluster and take advantage of the automatically built
lexico-semantic knowledge base. This is illustrated
in Table 3. However, it is obvious that by increasing
the constant c the words in a chain tend to belong to
only one cluster as it is the case for most of the best
Lexical Chains with c = 8.

5.2 Qualitative Evaluation
In this section, as it is done in (Barzilay and Elhadad,
1997; Teich and Fankhauser, 2004), we present the

c=5 c=6 c=7 c=8
Doc 1 19 13 7 7
Doc 2 13 6 3 3
Doc 3 3 4 4 4
Doc 4 6 4 3 3

Table 3: # Clusters per Lexical Chain

five highest-scoring chains for the best threshold that
we experimentally evaluated to be c = 7 for each
domain (See Tables 4, 5, 6, 7). It is clear that the
obtained Lexical Chains show a desirable degree of
representativeness of the text in analysis.

Domain=Sport, Document=3, c=7
- #0, 1 cluster and score=1.0: {United States, couple, competition}

- #6, 3 clusters and score=1.0: {boats, Sunday night, sailor, Sword, Orion,
veteran, cutter, Winston Churchill, Solo Globe, Challenger, navy, Race, sup-
position, instructions, responsibility, skipper, east, Melbourne, deck, kilo-
meter, masts, bodies, races, GMT, Admiral’s, Cups, Britain, Star, Class,
Atlanta, Seattle, arms, fatality, sea, waves, dark, yacht’s, Dad, Guy’s, son,
Mark, beer, talk, life, Richard, Winning, affair, canopy, death}

- #9, 1 cluster and score=1.0: {record, days, hours, minutes, rescue}

- #16, 3 clusters and score=1.0: {Snow, shape, north, easters, thunder,
storm, change, knots, west, level, maxi’s, search, Authority, seas, helicopter,
night vision, equipment, feet, rescues, Campbell, suffering, hypothermia,
safety, foot, sailors, colleagues, Hospital, deaths, bodies, fatality}

- #19, 2 clusters and score=1.0: {challenge, crew, Monday, VC, Offshore,
Stand, Newcastle, mid morning, Eden, Rescuers, aircraft, unsure, where-
abouts, killing, contact}

Table 4: 5 best Lexical Chains for Sport

Domain=Economy, Document=5, c=7
- #88, 4 clusters and score=1.0: {sign, chance, Rio, Janeiro, Grande, Sul,
uphill, promise, hospitals, powerhouse, success, inhabitants, victory, pad,
presidency, contingent, exit, legislature}

- #50, 1 cluster and score=1.0: {transactions, taxes, Stabilization, spate,
fuel, income, fortunes, means}

- #77, 1 cluster and score=1.0: {proposal, factory, owners, Fund, Rubin’s}

- #126, 1 cluster and score=1.0: {disaster, control, investment, review}

- #12, 2 clusters and score=0.99: {issue, order, University, population, ques-
tion, timing, currencies}

Table 5: 5 best Lexical Chains for Economy

For instance, the Lexical Chain #16 in the domain
of Sport clearly exemplifies the tragedy of climbers
that were killed in a sudden change of weather in
the mountains and who could not be rescued by the
authorities.

However, some Lexical Chains are less expres-
sive. For instance, it is not clear what the Lexical
Chain #40 expresses in the domain of Politics. In-
deed, none of the words present in the chain seem
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Domain=Politics, Document=3, c=7
- #5, 1 cluster and score=1.0: {report, leaders, lives, information}

- #33, 1 cluster and score=1.0: {past, attention, defenders, investigations}

- #28, 2 clusters and score=0.95: {investigators, hospital, ward, wounds,
neck, description, fashion, suspects, raids, assault, rifles, door, further de-
tails, surgery, service, detective, Igor, Kozhevnikov, Ministry}

- #40, 2 clusters and score=0.92: {security, times, weeks, fire}

- #24, 3 clusters and score=0.85: {enemies, Choice, stairwell, assailants,
woman, attackers, entrance, car, guns, Friends, relatives, Mrs. Staravoitova,
founder, movement, well thought, Sergei, Kozyrev, Association, Societies,
supporter, Stalin’s, council, criminals, Yegor, Gaidar, minister, ally, sugges-
tions, measures, smile, commitment}

Table 6: 5 best Lexical Chains for Politics

Domain=War, Document=1, c=7
- #25, 2 clusters and score=1.0: {lightning, advance, Africa’s, nation,
outskirts, capital Kinshasa, troops, Angola, Zimbabwe, Namibia, chunk,
routes, Katanga, Eastern, Kasai, provinces, copper}

- #53, 1 cluster and score=1.0: {Back, years, Ngeyo, farm, farmers, organi-
zation, breadbasket, quarter, century, businessman, hotels, tourist, memory,
rivalry, rebellions}

- #56, 1 cluster and score=1.0: {political, freedoms, Hutus, Mai-Mai, war-
riors, Hunde, Nande, militiamen, Rwanda, ideology, weapons, persecu-
tion, landowners, ranchers, anarchy, Safari, Ngezayo, farmer, hotel, owner,
camps}

- #24, 2 clusters and score=0.87: {fighting, people, leaders, diplomats,
cause, president, Washington, U.S, units, weeks}

- #51, 2 clusters and score=0.82: {West, buildings, sight, point, tourists,
mountain, gorillas, shops, guest, disputes}

Table 7: 5 best Lexical Chains for War

to express any idea about Politics. Moreover, due
to the small number of inter-related nominal units
within the Lexical Chain, this one can not be under-
stood as it is without context. In fact, it was related
to problems of car firing that have been occurring in
the past few weeks and provoked security problems
in the town.

Although some Lexical Chains are understand-
able as they are, most of them must be replaced in
their context to fully understand their representative-
ness of the topics or subtopics of the text being an-
alyzed. As a consequence, we deeply believe that
Lexical Chains must be evaluated in the context of
Natural Language Processing applications (such as
Text Summarization (Doran et al., 2004)), as com-
paring Lexical Chains as they are is a very difficult
task to tackle which may even lead to inconclusive
results.

6 Conclusions and Future Work

In this paper, we implemented a greedy Language-
Independent algorithm for building Lexical Chains.

For that purpose, we first constructed a lexico-
semantic knowledge base by applying the Pole-
Based Overlapping Clustering algorithm (Cleuziou
et al., 2004) to word-context vectors obtained by the
application of the SCP (., .) measure (Silva et al.,
1999) and the InfoSimBA(., .) (Dias and Alves,
2005) similarity measure. In a second step, we im-
plemented (Lin, 1998)’s similarity measure and used
it to define the relatedness criterion in order to as-
sign a given word to a given chain in the lexical
chaining process. Finally, our experimental eval-
uation shows that relevant Lexical Chains can be
constructed with our lexical chaining algorithm, al-
though we acknowledge that more comparative eval-
uations must be done in order to draw definitive con-
clusions. In particular, in future work, we want to
compare our methodology using WordNet as the ba-
sic knowledge base, implement different similarity
measures (Resnik, 1995; Jiang and Conrath, 1997;
Leacock and Chodorow, 1998), experiment differ-
ent Lexical Chains algorithms (Hirst and St-Onge,
1997; Barzilay and Elhadad, 1997; Galley and McK-
eown, 2003), scale our greedy algorithm for real-
world applications following (Silber and McCoy,
2002) ideas and finally evaluate our system in inde-
pendent Natural Language Processing applications
such as Text Summarization (Doran et al., 2004).
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