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Abstract

This paper addresses the classification of
semantic relations between pairs of sen-
tences extracted from a Dutch parallel cor-
pus at the word, phrase and sentence level.
We first investigate the performance of hu-
man annotators on the task of manually
aligning dependency analyses of the re-
spective sentences and of assigning one
of five semantic relations to the aligned
phrases (equals, generalizes, specifies, re-
states and intersects). Results indicate that
humans can perform this task well, with
an F-score of.98 on alignment and an F-
score of.95 on semantic relations (after
correction). We then describe and evalu-
ate a combined alignment and classifica-
tion algorithm, which achieves an F-score
on alignment of .85 (using EuroWordNet)
and an F-score of .80 on semantic relation
classification.

1 Introduction

An automatic method that can determine how two
sentences relate to each other in terms ofseman-
tic overlap or textual entailment (e.g., (Dagan and
Glickman, 2004)) would be a very useful thing to
have for robust natural language applications. A
summarizer, for instance, could use it to extract
the most informative sentences, while a question-
answering system – to give a second example –
could use it to select potential answer string (Pun-
yakanok et al., 2004), perhaps preferring more spe-
cific answers over more general ones. In general, it

∗This work was carried out within the IMIX-IMOGEN (In-
teractive Multimodal Output Generation) project, sponsored by
the Netherlands Organization of Scientific Research (NWO).

is very useful to know whether some sentenceS is
more specific (entails) or more general than (is en-
tailed by) an alternative sentenceS′, or whether the
two sentences express essentially the same informa-
tion albeit in a different way (paraphrasing).

Research on automatic methods for recognizing
semantic relations between sentences is still rela-
tively new, and many basic issues need to be re-
solved. In this paper we address two such related is-
sues: (1) to what extent can human annotators label
semantic overlap relations between words, phrases
and sentences, and (2) what is the added value of
linguistically informed analyses.

It is generally assumed that pure string overlap
is not sufficient for recognizing semantic relations;
and that using some form of syntactic analysis may
be beneficial (e.g., (Herrera et al., 2005), (Vander-
wende et al., 2005)). Our working hypothesis is that
semantic overlap at the word and phrase levels may
provide a good basis for deciding the semantic re-
lation between sentences. Recognising semantic re-
lations between sentences then becomes a two-step
procedure: first, the words and phrases in the re-
spective sentences need to be aligned, after which
the relations between the pairs of aligned words and
phrases should be labeled in terms of semantic rela-
tions.

Various alignment algorithms have been devel-
oped for data-driven approaches to machine trans-
lation (e.g. (Och and Ney, 2000)). Initially work
focused on word-based alignment, but more and
more work is also addressing alignment at the higher
levels (substrings, syntactic phrases or trees), e.g.,
(Meyers et al., 1996), (Gildea, 2003). For our pur-
poses, an additional advantage of aligning syntac-
tic structures is that it keeps the alignment feasible
(as the number of arbitrary substrings that may be
aligned grows exponentially to the number of words
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in the sentence). Here, following (Herrera et al.,
2005) and (Barzilay, 2003), we will align sentences
at the level ofdependency structures. In addition,
we will label the alignments in terms of five basic
semantic relations to be defined below. We will per-
form this task both manually and automatically, so
that we can address both of the issues raised above.

Section 2 describes a monolingual parallel cor-
pus consisting of two Dutch translations, and for-
malizes the alignment-classification task to be per-
formed. In section 3 we report the results on align-
ment, first describing interannotator agreement on
this task and then the results on automatic alignment.
In section 4, then, we address the semantic relation
classification; again, first describing interannotator
results, followed by results obtained using memory-
based machine learning techniques. We end with a
general discussion.

2 Corpus and Task definition

2.1 Corpus

We have developed aparallel monolingual corpus
consisting of two different Dutch translations of the
French book “Le petit prince” (the little prince) by
Antoine de Saint-Exupéry (published 1943), one by
Laetitia de Beaufort-van Hamel (1966) and one by
Ernst Altena (2000). For our purposes, this proved
to be a good way to quickly find a large enough
set of related sentence pairs, which differ semanti-
cally in interesting and subtle ways. In this work,
we used the first five chapters, with 290 sentences
and 3600 words in the first translation, and 277 sen-
tences and 3358 words in the second translation.
The texts were automatically tokenized and split into
sentences, after which errors were manually cor-
rected. Corresponding sentences from both trans-
lations were manually aligned; in most cases this
was a one-to-one mapping, but occasionally a sin-
gle sentence in one translation mapped onto two or
more sentences in the other: this occurred 23 times
in all five chapters. Next, theAlpino parser for
Dutch (e.g., (Bouma et al., 2001)) was used for part-
of-speech tagging and lemmatizing all words, and
for assigning a dependency analysis to all sentences.
The POS labels indicate the major word class (e.g.
verb, noun, adj, and adv). The dependency rela-
tions hold between tokens and are identical to those

used in the Spoken Dutch Corpus. These include de-
pendencies such ashead/subject, head/modifierand
coordination/conjunction. If a full parse could not
be obtained, Alpino produced partial analyses col-
lected under a single root node. Errors in lemmati-
zation, POS tagging, and syntactic dependency pars-
ing were not subject to manual correction.

2.2 Task definition

The task to be performed can be described infor-
mally as follows: given two dependency analyses,
align those nodes that are semantically related. More
precisely: For each nodev in the dependency struc-
ture for a sentenceS, we defineSTR(v) as the sub-
string of all tokens underv (i.e., the composition of
the tokens of all nodes reachable fromv). An align-
ment between sentencesS andS′ pairs nodes from
the dependency graphs for both sentences. Aligning
nodev from the dependency graphD of sentence
S with nodev′ from the graphD′ of S′ indicates
that there is a semantic relation betweenSTR(v) and
STR(v′), that is, between the respective substrings
associated withv and v′. We distinguish five po-
tential, mutually exclusive, relations between nodes
(with illustrative examples):

1. v equalsv′ iff STR(v) andSTR(v′) are literally
identical (abstracting from case). Example: “a
small and a large boa-constrictor” equals “a
large and a small boa-constrictor”;

2. v restates v′ iff STR(v) is a paraphrase of
STR(v′) (same information content but differ-
ent wording). Example: “a drawing of a boa-
constrictor snake” restates “a drawing of a boa-
constrictor”;

3. v specifiesv′ iff STR(v) is more specific than
STR(v′). Example: “the planet B 612” specifies
“the planet”;

4. v generalizesv′ iff STR(v′) is more specific
than STR(v). Example: “the planet” general-
izes “the planet B 612”;

5. v intersects v′ iff STR(v) and STR(v′) share
some informational content, but also each ex-
press some piece of information not expressed
in the other. Example: “Jupiter and Mars” in-
tersects “Mars and Venus”

Figure 1 shows an example alignment with seman-
tic relations between the dependency structures of
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hebben
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ik op in in aanraking met

zo contact met in de loop van

veel

heel

persoon

serieus veel
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gewichtig

heel

leven
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leven

het
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die mens

Figure 1: Dependency structures and alignment for the sentencesZo heb ik in de loop van mijn leven heel
veel contacten gehad met heel veel serieuze personen.(lit. ‘Thus have I in the course of my life very
many contacts had with very many serious persons’) andOp die manier kwam ik in het leven met massa’s
gewichtige mensen in aanraking.. (lit. ‘In that way came I in the life with mass-of weighty/important people
in touch’). The alignment relations areequals(dotted gray),restates(solid gray),specifies(dotted black),
andintersects(dashed gray). For the sake of transparency, dependency relations have been omitted.

two sentences. Note that there is an intuitive rela-
tion with entailment here: bothequalsand restates
can be understood as mutual entailment (i.e., if the
root nodes of the analyses correspondingS andS′

stand in an equal or restate relation,S entailsS′ and
S′ entailsS), if S specifiesS′ thenS also entailsS′

and ifS generalizesS′ thenS is entailed byS′.
In remainder of this paper, we will distinguish two

aspects of this task:alignment is the subtask of pair-
ing related nodes – or more precise, pairing the to-
ken strings corresponding to these nodes;classifica-
tion of semantic relationsis the subtask of labeling
these alignments in terms of the five types of seman-
tic relations.

2.3 Annotation procedure

For creating manual alignments, we developed a
special-purpose annotation tool which shows, side
by side, two sentences, as well as their respective
dependency graphs. When the user clicks on a node
v in the graph, the corresponding string (STR(v)) is
shown at the bottom. The tool enables the user to
manually construct an alignment graph on the basis
of the respective dependency graphs. This is done by
focusing on a node in the structure for one sentence,

and then selecting a corresponding node (if possible)
in the other structure, after which the user can select
the relevant alignment relation. The tool offers addi-
tional support for folding parts of the graphs, high-
lighting unaligned nodes and hiding dependency re-
lation labels.

All text material was aligned by the two authors.
They started with annotating the first ten sentences
of chapter one together in order to get a feel for
the task. They continued with the remaining sen-
tences from chapter one individually (35 sentences
and 521 in the first translation, and 35 sentences and
481 words in the second translation). Next, both
annotators discussed annotation differences, which
triggered some revisions in their respective annota-
tion. They also agreed on a single consensus annota-
tion. Interannotator agreement will be discussed in
the next two sections. Finally, each author annotated
two additional chapters, bringing the total to five.

3 Alignment

3.1 Interannotator agreement

Interannotator agreement was calculated in terms of
precision, recall and F-score (withβ = 1) on aligned

3



(A1, A2) (A1′ , A2′) (Ac, A1′) (Ac, A2′)

#real: 322 323 322 322
#pred: 312 321 323 321
#correct: 293 315 317 318
precision: .94 .98 .98 .99
recall: .91 .98 .98 .99
F-score: .92 .98 .98 .99

Table 1: Interannotator agreement with respect
to alignment between annotators 1 and 2 before
(A1, A2) and after(A1′ , A2′) revision , and between
the consensus and annotator 1(Ac, A1′) and annota-
tor 2 (Ac, A2′) respectively.

node pairs as follows:

precision = | Areal ∩ Apred | / | Apred | (1)

recall = | Areal ∩ Apred | / | Areal | (2)

F -score = (2 × prec × rec) / (prec + rec) (3)

whereAreal is the set of all real alignments (the ref-
erence or golden standard),Apred is the set of all
predicted alignments, andApred∩Areal is the set all
correctly predicted alignments. For the purpose of
calculating interannotator agreement, one of the an-
notations (A1) was considered the ‘real’ alignment,
the other (A2) the ‘predicted’. The results are sum-
marized in Table 1 in column(A1, A2).1

As explained in section 2.3, both annotators re-
vised their initial annotations. This improved their
agreement, as shown in column(A1′ , A2′). In ad-
dition, they agreed on a single consensus annotation
(Ac). The last two columns of Table 1 show the re-
sults of evaluating each of the revised annotations
against this consensus annotation. The F-score of
.98 can therefore be regarded as the upper bound on
the alignment task.

3.2 Automatic alignment

Our tree alignment algorithm is based on the dy-
namic programming algorithm in (Meyers et al.,
1996), and similar to that used in (Barzilay, 2003).
It calculates the match between each node in de-
pendency treeD against each node in dependency
treeD′. The score for each pair of nodes only de-
pends on the similarity of the words associated with
the nodes and, recursively, on the scores of the best

1Note that since there are no classes, we can not calculate
change agreement retheKappa statistic.

matching pairs of their descendants. The node simi-
larity function relies either on identity of the lemmas
or on synonym, hyperonym, and hyponym relations
between them, as retrieved from EuroWordNet.

Automatic alignment was evaluated with the con-
sensus alignment of the first chapter as the gold
standard. A baseline was constructed by aligning
those nodes which stand in anequalsrelation to each
other, i.e., a nodev in D is aligned to a nodev′

in D′ iff STR(v) =STR(v′). This baseline already
achieves a relatively high score (an F-score of .56),
which may be attributed to the nature of our mate-
rial: the translated sentence pairs are relatively close
to each other and may show a sizeable amount of lit-
eral string overlap. In order to test the contribution
of synonym and hyperonym information for node
matching, performance is measured with and with-
out the use of EuroWordNet. The results for auto-
matic alignment are shown in Table 2. In compari-
son with the baseline, the alignment algorithm with-
out use of EuroWordnet loses a few points on preci-
sion, but improves a lot on recall (a 200% increase),
which in turn leads to a substantial improvement on
the overall F-score. The use of EurWordNet leads to
a small increase (two points) on both precision and
recall, and thus to small increase in F-score. How-
ever, in comparison with the gold standard human
score for this task (.95), there is clearly room for
further improvement.

4 Classification of semantic relations

4.1 Interannotator agreement

In addition to alignment, the annotation procedure
for the first chapter ofThe little princeby two anno-
tators (cf. section 2.3) also involved labeling of the
semantic relation between aligned nodes. Interanno-
tator agreement on this task is shown Table 3, before
and after revision. The measures areweightedpreci-
sion, recall and F-score. For instance, the precision
is the weighted sum of the separate precision scores
for each of the five relations. The table also shows
theκ-score. The F-score of.97 can be regarded as
the upper bound on the relation labeling task. We
think these numbers indicate that the classification
of semantic relations is a well defined task which
can be accomplished with a high level of interanno-
tator agreement.
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Alignment : Prec : Rec : F-score:

baseline .87 .41 .56
algorithm without wordnet .84 .82 .83
algorithm with wordnet .86 .84 .85

Table 2: Precision, recall and F-score on automatic
alignment

(A1, A2) (A1′ , A2′) (Ac, A1′) (Ac, A2′)

precision: .86 .96 .98 .97
recall: .86 .95 .97 .97
F-score: .85 .95 .97 .97
κ: .77 .92 .96 .96

Table 3: Interannotator agreement with respect to se-
mantic relation labeling between annotators 1 and 2
before(A1, A2) and after(A1′ , A2′) revision , and
between the consensus and annotator 1(Ac, A1′)
and annotator 2(Ac, A2′) respectively.

4.2 Automatic classification

For the purpose ofautomaticsemantic relation la-
beling, we approach the task as a classification prob-
lem to be solved by machine learning. Alignments
between node pairs are classified on the basis of the
lexical-semantic relation between the nodes, their
corresponding strings, and – recursively – on previ-
ous decisions about the semantic relations of daugh-
ter nodes. The input features used are:

• a boolean feature representing string identity
between the strings corresponding to the nodes

• a boolean feature for each of the five semantic
relations indicating whether the relation holds
for at least one of the daughter nodes;

• a boolean feature indicating whether at least
one of the daughter nodes isnot aligned;

• a categorical feature representing the lexical se-
mantic relation between the nodes (i.e. the
lemmas and their part-of-speech) as found in
EuroWordNet, which can besynonym, hyper-
onym, or hyponym.2

To allow for the use of previous decisions, the
nodes of the dependency analyses are traversed in
a bottom-up fashion. Whenever a node is aligned,
the classifier assigns a semantic label to the align-
ment. Taking previous decisions into account may

2These three form the bulk of all relations in Dutch Eu-
roWordnet. Since no word sense disambiguation was involved,
we simply used all word senses.

Prec : Rec : F-score:

equals .93 ± .06 .95 ± .04 .94 ± .02
restates .56 ± .08 .78 ± .04 .65 ± .05
specifies n.a. 0 n.a.
generalizes .19 ± .06 .37 ± .09 .24 ± .05
intersects n.a. 0 n.a.

Combined: .62 ± .01 .70 ± .02 .64 ± .02

Table 4: Average precision, recall and F-score (and
SD) over all 5 folds on automatic classification of
semantic relations

cause a proliferation of errors: wrong classification
of daughter nodes may in turn cause wrong classifi-
cation of the mother node. To investigate this risk,
classification experiments were run both with and
without (i.e. using the annotation) previous deci-
sions.

Since our amount of data is limited, we used
a memory-based classifier, which – in contrast to
most other machine learning algorithms – performs
no abstraction, allowing it to deal with productive
but low-frequency exceptions typically occurring in
NLP tasks(Daelemans et al., 1999). All memory-
based learning was performed with TiMBL, version
5.1 (Daelemans et al., 2004), with its default set-
tings (overlap distance function, gain-ratio feature
weighting,k = 1).

The five first chapters ofThe little princewere
used to run a 5-fold cross-validated classification ex-
periment. The first chapter is the consensus align-
ment and relation labeling, while the other four were
done by one out of two annotators. The alignments
to be classified are those from to thehumanalign-
ment. The baseline of always guessingequals– the
majority class – gives a precision of0.26, a recall of
0.51, and an F-score of0.36. Table 4 presents the re-
sults broken down to relation type. The combined F-
score of0.64 is almost twice the baseline score. As
expected, the highest score goes toequals, followed
by a reasonable score onrestates. Performance on
the other relation types is rather poor, with even no
predictions ofspecifiesandintersectsat all.

Faking perfect previous decisions by using the
annotation gives a considerable improvement, as
shown in Table 5, especially onspecifies, general-
izesand intersects. This reveals that the prolifera-
tion of classification errors is indeed a problem that
should be addressed.
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Prec : Rec : F-score:

equals .99 ± .02 .97 ± .02 .98 ± .01
restates .65 ± .04 .82 ± .04 .73 ± .03
specifies .60 ± .12 .48 ± .10 .53 ± .09
generalizes .50 ± .11 .52 ± .10 .50 ± .09
intersects .69 ± .27 .35 ± .12 .46 ± .16

Combined: .82 ± .02 .81 ± .02 .80 ± .02

Table 5: Average precision, recall and F-score (and
SD) over all 5 folds on automatic classification of
semantic relations without using previous decisions.

In sum, these results show that automatic classifi-
cation of semantic relations is feasible and promis-
ing – especially when the proliferation of classifica-
tion errors can be prevented – but still not nearly as
good as human performance.

5 Discussion and Future work

This paper presented an approach to detecting se-
mantic relations at the word, phrase and sentence
level on the basis of dependency analyses. We inves-
tigated the performance of human annotators on the
tasks of manually aligning dependency analyses and
of labeling the semantic relations between aligned
nodes. Results indicate that humans can perform this
task well, with an F-score of.98 on alignment and an
F-score of.92 on semantic relations (after revision).
We also described and evaluated automatic methods
addressing these tasks: a dynamic programming tree
alignment algorithm which achieved an F-score on
alignment of.85 (using lexical semantic information
from EuroWordNet), and a memory-based seman-
tic relation classifier which achieved F-scores of.64
and .80 with and without using real previous deci-
sions respectively.

One of the issues that remains to be addressed
in future work is the effect of parsing errors. Such
errors were not corrected, but during manual align-
ment, we sometimes found that substrings could not
be properly aligned because the parser had failed to
identify them as syntactic constituents. As far as
classification of semantic relations is concerned, the
proliferation of classification errors is an issue that
needs to be solved. Classification performance may
be further improved with additional features (e.g.
phrase length information), optimization, and more
data. Also, we have not yet tried to combine au-
tomatic alignment and classification. Yet another

point concerns the type of text material. The sen-
tence pairs from our current corpus are relatively
close, in the sense that both translations more or less
convey the same information. Although this seems a
good starting point to study alignment, we intend to
continue with other types of text material in future
work. For instance, in extending our work to the ac-
tual output of a QA system, we expect to encounter
sentences with far less overlap.
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