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Introduction

The last few years have seen a surge in interest in modeling techniques aimed at measuring
semantic equivalence and entailment, with work on paraphrase acquisition/generation, WordNet-
based expansion, distributional similarity, supervised learning of semantic variability in information
extraction, and the identification of patterns in template-based QA. Being able to identify when two
strings "mean the same thing” or that one entails the other are crucial abilities for a broad range of
NLP-related applications, ranging from question answering to summarization.

These proceedings contain a rich variety of papers centered on the problem of modeling semantic
overlap between linguistic strings. This is a difficult problem space, encompassing issues of lexical
choice, syntactic alternation, semantic inference, and reference/discourse structure.

We were pleased by the strong level of interest in the workshop, which resulted in a number of high-
quality submissions. Each paper was blind-reviewed by 2-3 members of the Program Committee, and
we were forced to make some difficult choices in determining the final schedule.

This workshop is intended to bring together people working on empirical, application-independent
approaches to the practical problems of semantic inference. While different applications face similar
underlying semantic problems, these problems have typically been addressed in an application-specific
manner. In the absence of a generic evaluation framework, it is difficult to compare semantic methods
that were developed for different applications. We are particularly hopeful that the workshop will help
foster discussion around common datasets and evaluation strategies that will help guide future work in
this area.

We would like to express our deepest gratitude to the hard-working members of the program committee.
We'd also like to thank Mirella Lapata, Jason Eisner, Philipp Koehn, and Dragomir Radev for their
organizational help.

We hope you enjoy this workshop!

Bill Dolan and Ido Dagan
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Classification of semantic relations by humans and machines

Erwin Marsi

and Emiel Krahmer

Communication and Cognition
Tilburg University, The Netherlands

{e.c.marsi,

Abstract

This paper addresses the classification of
semantic relations between pairs of sen-
tences extracted from a Dutch parallel cor-
pus at the word, phrase and sentence level.
We first investigate the performance of hu-
man annotators on the task of manually
aligning dependency analyses of the re-
spective sentences and of assigning one
of five semantic relations to the aligned
phrases (equals, generalizes, specifies, re-
states and intersects). Results indicate that
humans can perform this task well, with
an F-score of98 on alignment and an F-
score of.95 on semantic relations (after
correction). We then describe and evalu-
ate a combined alignment and classifica-
tion algorithm, which achieves an F-score
on alignment of .85 (using EuroWordNet)
and an F-score of .80 on semantic relation
classification.

e.j . krahmer j@uvt . nl

is very useful to know whether some senterstes
more specific (entails) or more general than (is en-
tailed by) an alternative sentenég, or whether the
two sentences express essentially the same informa-
tion albeit in a different way (paraphrasing).

Research on automatic methods for recognizing
semantic relations between sentences is still rela-
tively new, and many basic issues need to be re-
solved. In this paper we address two such related is-
sues: (1) to what extent can human annotators label
semantic overlap relations between words, phrases
and sentences, and (2) what is the added value of
linguistically informed analyses.

It is generally assumed that pure string overlap
is not sufficient for recognizing semantic relations;
and that using some form of syntactic analysis may
be beneficial (e.g., (Herrera et al., 2005), (Vander-
wende et al., 2005)). Our working hypothesis is that
semantic overlap at the word and phrase levels may
provide a good basis for deciding the semantic re-
lation between sentences. Recognising semantic re-
lations between sentences then becomes a two-step
procedure: first, the words and phrases in the re-

1 Introduction spective sentences need to be aligned, after which

6he relations between the pairs of aligned words and

An automatic method that can determine how tw ) :
phrases should be labeled in terms of semantic rela-

sentences relate to each other in termseafan- i
tic overlap or textual entailment (e.g., (Dagan and |ons.. . _
Glickman, 2004)) would be a very useful thing to Various alignment algorithms have been devel-
have for robust natural language applications. APed for data-driven approaches to machine trans-
summarizer, for instance, could use it to extrad@tion (€.9. (Och and Ney, 2000)). Initially work
the most informative sentences, while a questiorfocused on word-based alignment, but more and
answering system — to give a second example more work is also addressing alignment at the higher
could use it to select potential answer string (PurleVels (substrings, syntactic phrases or trees), e.g.,
yakanok et al., 2004), perhaps preferring more spéMeyers et al., 1996), (Gildea, 2003). For our pur-
cific answers over more general ones. In general, Roses, an additional advantage of aligning syntac-
S _ o tic structures is that it keeps the alignment feasible
This work was carried out within the IMIX-IMOGEN (In-

teractive Multimodal Output Generation) project, spoesidoy (a_s the number of arblt.rary substrings that may be
the Netherlands Organization of Scientific Research (NWO). aligned grows exponentially to the number of words
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in the sentence). Here, following (Herrera et al.used in the Spoken Dutch Corpus. These include de-
2005) and (Barzilay, 2003), we will align sentencegpendencies such &gad/subjecthead/modifiemand

at the level ofdependency structures In addition, coordination/conjunction If a full parse could not
we will label the alignments in terms of five basicbe obtained, Alpino produced partial analyses col-
semantic relations to be defined below. We will perlected under a single root node. Errors in lemmati-
form this task both manually and automatically, s@ation, POS tagging, and syntactic dependency pars-
that we can address both of the issues raised aboviag were not subject to manual correction.

Section 2 describes a monolingual parallel cor- _
pus consisting of two Dutch translations, and for-z'2 Task definition
malizes the alignment-classification task to be perFhe task to be performed can be described infor-
formed. In section 3 we report the results on alignmally as follows: given two dependency analyses,
ment, first describing interannotator agreement oalign those nodes that are semantically related. More
this task and then the results on automatic alignmerirecisely: For each nodein the dependency struc-

In section 4, then, we address the semantic relatiddre for a sentencé, we definesTR(v) as the sub-
classification; again, first describing interannotatostring of all tokens under (i.e., the composition of
results, followed by results obtained using memorythe tokens of all nodes reachable frain An align-

based machine learning techniques. We end withraent between sentencésand S’ pairs nodes from

general discussion. the dependency graphs for both sentences. Aligning
nodev from the dependency graph of sentence

2 Corpus and Task definition S with node’ from the graphD’ of S’ indicates
that there is a semantic relation betweam(v) and

2.1 Corpus STR(v'), that is, between the respective substrings

We have developed garallel monolingual corpus ~ associated withy and«’. We distinguish five po-
consisting of two different Dutch translations of thetential, mutually exclusive, relations between nodes
French book “Le petit prince”the little princg by  (with illustrative examples):

Antoine de Saint-Exupéry (published 1943), one by 1
Laetitia de Beaufort-van Hamel (1966) and one by ~
Ernst Altena (2000). For our purposes, this proved
to be a good way to quickly find a large enough
set of related sentence pairs, which differ semanti-
cally in interesting and subtle ways. In this work,
we used the first five chapters, with 290 sentences
and 3600 words in the first translation, and 277 sen-
tences and 3358 words in the second translation.
The texts were automatically tokenized and split into
sentences, after which errors were manually cor-
rected. Corresponding sentences from both trans-

lations were manually aligned; in most cases this the plane_t ' : : .

. ’ : 4. v generalizesv’ iff STR(v') is more specific
was a one-to-_one mapping, but occasionally a sin- than STR(v). Example: “the planet” general-
gle sentence in one translation mapped onto two or . «

. . ) izes “the planet B 6127;
more sentences in the other: this occurred 23 timesg  iotersects o' iff STR(v) and STR(v/) share

'S ?Ilhflve chgpters. i\leixt,zégei\lpmo parsde][ for ; some informational content, but also each ex-
utch (e.g., (Bouma etal., )) was used for part- press some piece of information not expressed

?f-spegch. tagg(ljng an(;j Iemmanlz 'ng ta” \::Iordi’ and in the other. Example: “Jupiter and Mars” in-
or assigning a dependency analysis to all sentences. .. s “Mars and Venus”

The POS labels indicate the major word class (e.g.
verb noun adj, andady). The dependency rela- Figure 1 shows an example alignment with seman-
tions hold between tokens and are identical to thod& relations between the dependency structures of

v equalsy’ iff STR(v) andsTR(v') are literally

identical (abstracting from case). Example: “a

small and a large boa-constrictor” equals “a

large and a small boa-constrictor”;

. v restates v’ iff STR(v) is a paraphrase of
STR(v') (same information content but differ-
ent wording). Example: “a drawing of a boa-
constrictor snake” restates “a drawing of a boa-
constrictor”;

3. v specifiesv’ iff STR(v) is more specific than

STR(v'). Example: “the planet B 612" specifies



hebben
hebhen

za contact met in de loop,van ik

veel perseon leven, . e U ' komen
heel serieus veel mijn | ) X L . ik op e +in in aanraking met
heel 'Illr;;r;ie'r""le'ven massa
'..olii(;"""het mens

gewichtig

Figure 1. Dependency structures and alignment for the seesZo heb ik in de loop van mijn leven heel
veel contacten gehad met heel veel serieuze persofiien.'Thus have | in the course of my life very
many contacts had with very many serious persons’)@pdlie manier kwam ik in het leven met massa’s
gewichtige mensen in aanrakinglit. ‘In that way came | in the life with mass-of weighty/portant people

in touch’). The alignment relations aegjuals(dotted gray)restates(solid gray),specifiedotted black),
andintersectqdashed gray). For the sake of transparency, dependerationsl have been omitted.

two sentences. Note that there is an intuitive relaand then selecting a corresponding node (if possible)
tion with entailment here: botbhqualsandrestates in the other structure, after which the user can select
can be understood as mutual entailment (i.e., if thime relevant alignment relation. The tool offers addi-
root nodes of the analyses correspondihgnd S’  tional support for folding parts of the graphs, high-
stand in an equal or restate relatichentailsS’ and  lighting unaligned nodes and hiding dependency re-
S’ entailsS), if S specifiesS’ thenS also entailsS”  lation labels.
and if S generalizesS’ then S is entailed bysS’. All text material was aligned by the two authors.
In remainder of this paper, we will distinguish twoThey started with annotating the first ten sentences
aspects of this taskalignmentis the subtask of pair- of chapter one together in order to get a feel for
ing related nodes — or more precise, pairing the tdhe task. They continued with the remaining sen-
ken strings corresponding to these noadgssifica- tences from chapter one individually (35 sentences
tion of semantic relationsis the subtask of labeling and 521 in the first translation, and 35 sentences and
these alignments in terms of the five types of sema#81 words in the second translation). Next, both

tic relations. annotators discussed annotation differences, which
triggered some revisions in their respective annota-
2.3 Annotation procedure tion. They also agreed on a single consensus annota-

For creating manual alignments, we developed téon. Interannotator agreement will be discussed in
special-purpose annotation tool which shows, sigie next two sections. Finally, each author annotated

by side, two sentences, as well as their respecti\%’o additional chapters, bringing the total to five.

dependency graphs. When the user clicks on anode
v in the graph, the corresponding strirgr&(v)) is 3 Alignment
shown at the bottom. The tool enables the user tg

. 1
manually construct an alignment graph on the basis
of the respective dependency graphs. This is done lyterannotator agreement was calculated in terms of
focusing on a node in the structure for one sentencprecision, recall and F-score (with= 1) on aligned

Interannotator agreement



(A1, A2) (Av,Ay) (Ac, Av) (Ac, Ay) matching pairs of their descendants. The node simi-

#real: 322 323 322 322 larity function relies either on identity of the lemmas
#pred: 312 321 323 321 or on synonym, hyperonym, and hyponym relations
#correct: 293 315 317 318 .

o between them, as retrieved from EuroWordNet.
precision: .94 .98 .98 .99 ] . )
recall: 91 98 98 99 Automatic alignment was evaluated with the con-
F-score: 92 98 98 99 sensus alignment of the first chapter as the gold

standard. A baseline was constructed by aligning

Table_ 1. Interannotator agreement with reSPeGhse nodes which stand in aqualsrelation to each
to alignment between annotators 1 and 2 beforgther ie., a node in D is aligned to a node’

(A1, Az) and after( A/, Ay) revision , and between .~ -,
the consensus and annotatdr4l, A;,) and annota-
tor 2 (A,, Ay ) respectively.

iff STR(v) =STR(v'). This baseline already
achieves a relatively high score (an F-score of .56),
which may be attributed to the nature of our mate-
node pairs as follows: rial: the translated sentence pairs are relatively close
to each other and may show a sizeable amount of lit-
precision = | Ayeqt NV Apred | / | Aprea | (1) eral string overlap. In order to test the contribution
of synonym and hyperonym information for node
recall = | Aveqt N Aprea | / | Arear | (2)  matching, performance is measured with and with-
out the use of EuroWordNet. The results for auto-
matic alignment are shown in Table 2. In compari-
whereA, . is the set of all real alignments (the ref-son with the baseline, the alignment algorithm with-
erence or golden standardj,,.q is the set of all out use of Eurowordnet loses a few points on preci-
predicted alignments, andl,;..q N Acq is the setall  sjon, but improves a lot on recall (a 200% increase),
correctly predicted alignments. For the purpose Gfhich in turn leads to a substantial improvement on
calculating interannotator agreement, one of the aghe overall F-score. The use of EurWordNet leads to
notations @;) was considered the ‘real’ alignment, 3 small increase (two points) on both precision and
the other {,) the ‘predicted’. The results are sum-recall, and thus to small increase in F-score. How-
marized in Table 1 in columf;, A).! ever, in comparison with the gold standard human
As explained in section 2.3, both annotators rescore for this task (.95), there is clearly room for
vised their initial annotations. This improved theirfurther improvement.
agreement, as shown in colunidy/, As/). In ad-
dition, they agreed on a single consensus annotatidh Classification of semantic relations
(A.). The last two columns of Table 1 show the re-
sults of evaluating each of the revised annotatiorfé1  Interannotator agreement
against this consensus annotation. The F-score pf addition to alignment, the annotation procedure
.98 can therefore be regarded as the upper bound @4 the first chapter oT he little princeby two anno-
the alignment task. tators (cf. section 2.3) also involved labeling of the
semantic relation between aligned nodes. Interanno-
tator agreement on this task is shown Table 3, before
Our tree alignment algorithm is based on the dyand after revision. The measures aightedpreci-
namic programming algorithm in (Meyers et al. sjon, recall and F-score. For instance, the precision
1996), and similar to that used in (Barzilay, 2003)js the weighted sum of the separate precision scores
It calculates the match between each node in deyr each of the five relations. The table also shows
pendency tree) against each node in dependencyhe x-score. The F-score 097 can be regarded as
tree D'. The score for each pair of nodes only dethe upper bound on the relation labeling task. We
pends on the similarity of the words associated witkhink these numbers indicate that the classification
the nodes and, recursively, on the scores of the best semantic relations is a well defined task which

INote that since there are no classes, we can not calculdt&n be accompllshed with a hlgh level of interanno-
change agreement retiéappa statistic. tator agreement.

F-score = (2 x prec x rec) | (prec+rec) (3)

3.2 Automatic alignment



Alignment : Prec: Rec: F-score: Prec: Rec: F-score:

baseline .87 41 .56 equals 93£.06 95+.04 .94+ .02
algorithm without wordnet .84 .82 .83 restates b6£.08 .78+.04 .65+ .05
algorithm with wordnet .86 .84 .85 specifies n.a. 0 n.a.
generalizes .19+.06 .37+.09 .24+.05

Table 2: Precision, recall and F-score on automatic _Ntersects n.a. 0 n.a.
a|ignment Combined: .62+ .01 .704+.02 .64 4 .02

Table 4. Average precision, recall and F-score (and

A1, A2) (Ay,Ay) (Ao, Ay) (Ao, Ay . o
(A, 42) (Av,Az) (A 4v) (A A42) SD) over all 5 folds on automatic classification of

precision: .86 .96 .98 97 : ;

recall: .86 95 97 97 semantic relations

F-score: .85 .95 97 97 ; ; : PP

o e 9 96 96 cause a proliferation of errors: wrong classification

of daughter nodes may in turn cause wrong classifi-
Table 3: Interannotator agreement with respect to seation of the mother node. To investigate this risk,
mantic relation labeling between annotators 1 and ¢lassification experiments were run both with and
before (A, A;) and after(A/, Ay) revision , and Without (i.e. using the annotation) previous deci-
between the consensus and annotatqrdl, A;/) Sions.

and annotator 24, Ay ) respectively. Since our amount of data is limited, we used
a memory-based classifier, which — in contrast to

) ) ) most other machine learning algorithms — performs
For the purpose outomaticsemantic relation la- 4 apstraction, allowing it to deal with productive

beling, we approach the task as a classification proys o\ -frequency exceptions typically occurring in
lem to be solved by machine learning. Alignmentg p tasks(Daelemans et al., 1999). All memory-
between node pairs are classified on the basis of thg e learning was performed with TIMBL, version
lexical-semantic relation between the nodes, thek ¢ (Daelemans et al., 2004), with its default set-

corresponding strings, and — recursively — on previings (overlap distance function, gain-ratio feature
ous decisions about the semantic relations of da“gWeighting k=1).

ter nodes. The input features used are:

4.2 Automatic classification

The five first chapters of he little princewere
e a boolean feature representing string identityised to run a 5-fold cross-validated classification ex-
between the strings corresponding to the nodgseriment. The first chapter is the consensus align-
¢ a boolean feature for each of the five semantiment and relation labeling, while the other four were
relations indicating whether the relation holdsdone by one out of two annotators. The alignments

for at least one of the daughter nodes; to be classified are those from to thamanalign-
e a boolean feature indicating whether at leashent. The baseline of always guessaguals— the
one of the daughter nodesrist aligned; majority class — gives a precision @26, a recall of

e acategorical feature representing the lexical s@-.51, and an F-score @f.36. Table 4 presents the re-
mantic relation between the nodes (i.e. thgults broken down to relation type. The combined F-
lemmas and their part-of-speech) as found i8core 0f0.64 is almost twice the baseline score. As
EuroWordNet, which can bsynonymhyper- expected, the highest score goegtuals followed
onym or hyponynt by a reasonable score oestates Performance on

To allow for the use of previous decisions, thethe other relation types is rather poor, with even no

nodes of the dependency analyses are traversed'olwd'C_t'onS ofspecmesa.ndlnterse.c.tsat all. _
a bottom-up fashion. Whenever a node is aligned, Faking perfect previous decisions by using the
the classifier assigns a semantic label to the alig@nnotation gives a considerable improvement, as
ment. Taking previous decisions into account ma§hown in Table 5, especially aspecifies general-
——— ) _ izesandintersects This reveals that the prolifera-
These three form the bulk of all relations in Dutch Eu-,. fol ificati is indeed bl h
roWordnet. Since no word sense disambiguation was involveElIon of classification errors Is indeed a problem that
we simply used all word senses. should be addressed.



Prec: Rec:  F-score: point concerns the type of text material. The sen-

equals 99+.02 97+.02 984 .01 tence pairs from our current corpus are relatively
restates  .65+.04 .82+.04 .73+.03 close, in the sense that both translations more or less
specifies 60+ .12 484+.10 .53+£.09 . . .

generalizes 50+ .11 52+.10 .50+ .09 convey the same information. Although this seems a
intersects .69+ .27 .354+.12 .46+ .16 good starting point to study alignment, we intend to
Combined: .82+ .02 .81+.02 .80+ .02 continue with other types of text material in future

work. For instance, in extending our work to the ac-
Table 5: Average precision, recall and F-score (an@ial output of a QA system, we expect to encounter
SD) over all 5 folds on automatic classification ofsentences with far less overlap.

semantic relations without using previous decisions.
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tomatic alignment and classification. Yet another tailment Challenge WorkshoSouthampton, U.K.
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Abstract

This work explores computing distribu-
tional similarity between sub-parses, i.e.,
fragments of a parse tree, as an extension
to general lexical distributional similarity
techniques. In the same way that lexical
distributional similarity is used to estimate
lexical semantic similarity, we propose us-
ing distributional similarity between sub-
parses to estimate the semantic similarity of
phrases. Such a technique will allow us to
identify paraphrases where the component
words are not semantically similar. We
demonstrate the potential of the method by
applying it to a small number of examples
and showing that the paraphrases are more
similar than the non-paraphrases.

1 Introduction

An expression is said to textually entail another ex-
pression if the meaning of the second expression can
be inferred from the meaning of the first. For exam-
ple, the sentence “London is an English city,” tex-
tually entails the sentence “London is in England.”
As discussed by Dagan et al. (2005) in their intro-
duction to the first Recognising Textual Entailment
Challenge, identifying textual entailment can be seen
as a subtask of a variety of other natural language
processing (NLP) tasks. For example, Question An-
swering (QA) can be cast as finding an answer which
is entailed by the proposition in the question. Other
identified tasks include summarization, paraphras-
ing, Information Extraction (IE), Information Re-
trieval (IR) and Machine Translation (MT).

The Natural Habitats (NatHab) project! (Weeds
et al., 2004; Owen et al., 2005) provides an inter-
esting setting in which to study paraphrase and tex-

"http://www.informatics.susx.ac.uk/projects/nathab/
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tual entailment recognition as a tool for natural lan-
guage understanding. The aim of the project is to
enable non-technical users to configure their perva-
sive computing environments. They do this by stat-
ing policies in natural language which describe how
they wish their environment to behave. For exam-
ple, a user, who wishes to restrict the use of their
colour printer to the printing of colour documents,
might have as a policy, “Never print black-and-white
documents on my colour printer.” Similarly, a user,
who wishes to be alerted by email when their mobile
phone battery is low, might have as a policy, “If my
mobile phone battery is low then send me an email.”
The natural language understanding task is to in-
terpret the user’s utterance with reference to a set
of policy templates and an ontology of services (e.g.
print) and concepts (e.g. document). The use of pol-
icy templates and an ontology restricts the number of
possible meanings that a user can express. However,
there is still considerable variability in the way these
policies can be expressed. Simple variations on the
theme of the second policy above include, “Send me
an email whenever my mobile phone battery is low,”
and “If the charge on my mobile phone is low then
email me.” Our approach is to tackle the interpreta-
tion problem by identifying parts of expressions that
are paraphrases of those expressions whose interpre-
tation with respect to the ontology is more directly
encoded. Here, we investigate extending distribu-
tional similarity methods from words to sub-parses.

The rest of this paper is organised as follows. In
Section 2 we discuss the background to our work.
We consider the limitations of an approach based on
lexical similarity and syntactic templates, which mo-
tivates us to look directly at the similarity of larger
units. In Section 3, we introduce our proposed ap-
proach, which is to measure the distributional simi-
larity of sub-parses. In Section 4, we consider exam-
ples from the Pascal Textual Entailment Challenge

Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entalagss 7-12,
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Datasets? (Dagan et al., 2005) and demonstrate em-
pirically how similarity can be found between corre-
sponding phrases when parts of the phrases cannot
be said to be similar. In Section 5, we present our
conclusions and directions for further work.

2 Background

One well-studied approach to the identification of
paraphrases is to employ a lexical similarity func-
tion. As noted by Barzilay and Elhadad (2003), even
a lexical function that simply computes word over-
lap can accurately select paraphrases. The prob-
lem with such a function is not in the accuracy of
the paraphrases selected, but in its low recall. One
popular way of improving recall is to relax the re-
quirement for words in each sentence to be identi-
cal in form, to being identical or similar in mean-
ing. Methods to find the semantic similarity of two
words can be broadly split into those which use lex-
ical resources, e.g., WordNet (Fellbaum, 1998), and
those which use a distributional similarity measure
(see Weeds (2003) for a review of distributional sim-
ilarity measures). Both Jijkoun and deRijke (2005)
and Herrara et al. (2005) show how such a measure
of lexical semantic similarity might be incorporated
into a system for recognising textual entailment be-
tween sentences.

Previous work on the NatHab project (Weeds et
al., 2004) used such an approach to extend lexi-
cal coverage. Each of the user’s uttered words was
mapped to a set of candidate words in a core lexicon?®,
identified using a measure of distributional similar-
ity. For example, the word send is used when talk-
ing about printing or about emailing, and a good
measure of lexical similarity would identify both of
these conceptual services as candidates. The best
choice of candidate was then chosen by optimising
the match between grammatical dependency rela-
tions and paths in the ontology over the entire sen-
tence. For example, an indirect-object relation be-
tween the verb send and a printer can be mapped to
the path in the ontology relating a print request to
its target printer.

As well as lexical variation, our previous work
(Weeds et al., 2004) allowed a certain amount of
syntactic variation via its use of grammatical depen-
dencies and policy templates. For example, the pas-
sive “paraphrase” of a sentence can be identified by
comparing the sets of grammatical dependency rela-
tions produced by a shallow parser such as the RASP

http://www.pascal-network.org/Challenges/RTE/
3The core lexicon lists a canonical word form for each
concept in the ontology.

parser (Briscoe and Carroll, 1995). In other words,
by looking at grammatical dependency relations, we
can identify that “John is liked by Mary,” is a para-
phrase of “Mary likes John,” and not of “John likes
Mary.” Further, where there is a limited number of
styles of sentence, we can manually identify and list
other templates for matches over the trees or sets of
dependency relations. For example, “If C1 then C2”
is the same as “C2 if C1”.

However, the limitations of this approach, which
combines lexical variation, grammatical dependency
relations and template matching, become increas-
ingly obvious as one tries to scale up. As noted by
Herrera (2005), similarity at the word level is not
required for similarity at the phrasal level. For ex-
ample, in the context of our project, the phrases “if
my mobile phone needs charging” and “if my mobile
phone battery is low” have the same intended mean-
ing but it is not possible to obtain the second by
making substitutions for similar words in the first. It
appears that “X needs charging” and “battery (of X)
is low” have roughly similar meanings without their
component words having similar meanings. Further,
this does not appear to be due to either phrase being
non-compositional. As noted by Pearce (2001), it is
not possible to substitute similar words within non-
compositional collocations. In this case, however,
both phrases appear to be compositional. Words
cannot be substituted between the two phrases be-
cause they are composed in different ways.

3 Proposal

Recently, there has been much interest in find-
ing words which are distributionally similar e.g.,
Lin (1998), Lee (1999), Curran and Moens (2002),
Weeds (2003) and Geffet and Dagan (2004). Two
words are said to be distributionally similar if they
appear in similar contexts. For example, the two
words apple and pear are likely to be seen as the
objects of the verbs eat and peel, and this adds to
their distributional similarity. The Distributional
Hypothesis (Harris, 1968) proposes a connection be-
tween distributional similarity and semantic simi-
larity, which is the basis for a large body of work
on automatic thesaurus construction using distribu-
tional similarity methods (Curran and Moens, 2002;
Weeds, 2003; Geffet and Dagan, 2004).

Our proposal is that just as words have distribu-
tional similarity which can be used, with at least
some success, to estimate semantic similarity, so do
larger units of expression. We propose that the unit
of interest is a sub-parse, i.e., a fragment (connected
subgraph) of a parse tree, which can range in size
from a single word to the parse for the entire sen-
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Figure 1: Parse trees for “my mobile phone needs
charging” and “my mobile phone battery is low”

tence. Figure 1 shows the parses for the clauses,
“my mobile phone needs charging,” and “my mobile
phone battery is low” and highlights the fragments
(“needs charging” and “battery is low”) for which we
might be interested in finding similarity.

In our model, we define the features or contexts of
a sub-parse to be the grammatical relations between
any component of the sub-parse and any word out-
side of the sub-parse. In the example above, both
sub-parses would have features based on their gram-
matical relation with the word phone. The level of
granularity at which to consider grammatical rela-
tions remains a matter for investigation. For exam-
ple, it might turn out to be better to distinguish
between all types of dependent or, alternatively, it
might be better to have a single class which covers
all dependents. We also consider the parents of the
sub-parse as features. In the example, “Send me an
email if my mobile phone battery is low,” this would
be that the sub-parse modifies the verb send i.e., it
has the feature, <mod-of, send>.

Having defined these models for the unit of inter-
est, the sub-parse, and for the context of a sub-parse,
we can build up co-occurrence vectors for sub-parses
in the same way as for words. A co-occurrence vec-
tor is a conglomeration (with frequency counts) of
all of the co-occurrences of the target unit found in
a corpus. The similarity between two such vectors
or descriptions can then be found using a standard
distributional similarity measure (see Weeds (2003)).

The use of distributional evidence for larger units
than words is not new. Szpektor et al. (2004) auto-
matically identify anchors in web corpus data. An-
chors are lexical elements that describe the context
of a sentence and if words are found to occur with
the same set of anchors, they are assumed to be
paraphrases. For example, the anchor set {Mozart,
1756} is a known anchor set for verbs with the mean-
ing “born in”. However, this use of distributional
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evidence requires both anchors, or contexts, to oc-
cur simultaneously with the target word. This dif-
fers from the standard notion of distributional sim-
ilarity which involves finding similarity between co-
occurrence vectors, where there is no requirement for
two features or contexts to occur simulultaneously.

Our work with distributional similarity is a gen-
eralisation of the approach taken by Lin and Pantel
(2001). These authors apply the distributional sim-
ilarity principle to paths in a parse tree. A path
exists between two words if there are grammatical
relations connecting them in a sentence. For exam-
ple, in the sentence “John found a solution to the
problem,” there is a path between “found” and “so-
lution” because solution is the direct object of found.
Contexts of this path, in this sentence, are then the
grammatical relations <ncsubj, John> and <iobj,
problem> because these are grammatical relations
associated with either end of the path. In their work
on QA, Lin and Pantel restrict the grammatical re-
lations considered to two “slots” at either end of the
path where the word occupying the slot is a noun.
Co-occurrence vectors for paths are then built up us-
ing evidence from multiple occurrences of the paths
in corpus data, for which similarity can then be cal-
culated using a standard metric (e.g., Lin (1998)).
In our work, we extend the notion of distributional
similarity from linear paths to trees. This allows us
to compute distributional similarity for any part of
an expression, of arbitrary length and complexity
(although, in practice, we are still limited by data
sparseness). Further, we do not make any restric-
tions as to the number or types of the grammatical
relation contexts associated with a tree.

4 Empirical Evidence

Practically demonstrating our proposal requires a
source of paraphrases. We first looked at the MSR
paraphrase corpus (Dolan et al., 2004) since it con-
tains a large number of sentences close enough in
meaning to be considered paraphrases. However, in-
spection of the data revealed that the lexical overlap
between the pairs of paraphrasing sentences in this
corpus is very high. The average word overlap (i.e.,
the proportion of exactly identical word forms) cal-
culated over the sentences paired by humans in the
training set is 0.70, and the lowest overlap* for such
sentences is 0.3. This high word overlap makes this
a poor source of examples for us, since we wish to
study similarity between phrases which do not share
semantically similar words.

4A possible reason for this is that candidate sentences
were first identified automatically.



Consequently, for our purposes, the Pascal Textual
Entailment Recognition Challenge dataset is a more
suitable source of paraphrase data. Here the average
word overlap between textually entailing sentences is
0.39 and the lowest overlap is 0. This allows us to
easily find pairs of sub-parses which do not share sim-
ilar words. For example, in paraphrase pair id.19, we
can see that “reduce the risk of diseases” entails “has
health benefits”. Similarly in pair id.20, “may keep
your blood glucose from rising too fast” entails “im-
proves blood sugar control,” and in id.570, “charged
in the death of” entails “accused of having killed.”

In this last example there is semantic similarity
between the words used. The word charged is seman-
tically similar to accused. However, it is not possible
to swap the two words in these contexts since we do
not say “charged of having killed.” Further, there is
an obvious semantic connection between the words
death and killed, but being different parts of speech
this would be easily missed by traditional distribu-
tional methods.

Consequently, in order to demonstrate the poten-
tial of our method, we have taken the phrases “reduce
the risk of diseases”, “has health benefits”, “charged
in the death of” and “accused of having killed”, con-
structed corpora for the phrases and their compo-
nents and then computed distributional similarity
between pairs of phrases and their respective com-
ponents. Under our hypotheses, paraphrases will be
more similar than non-paraphrases and there will be
no clear relation between the similarity of phrases as
a whole and the similarity of their components.

We now discuss corpus construction and distribu-
tional similarity calculation in more detail.

4.1 Corpus Construction

In order to compute distributional similarity between
sub-parses, we need to have seen a large number of
occurrences of each sub-parse. Since data sparse-
ness rules out using traditional corpora, such as the
British National Corpus (BNC), we constructed a
corpus for each phrase by mining the web. We also
constructed a similar corpus for each component of
each phrase. For example, for phrase 1, we con-
structed corpora for “reduce the risk of diseases”,
“reduce” and “the risk of diseases”. We do this in or-
der to avoid only have occurrences of the components
in the context of the larger phrase. Each corpus was
constructed by sending the phrase as a quoted string
to Altavista. We took the returned list of URLSs (up
to the top 1000 where more than 1000 could be re-
turned), removed duplicates and then downloaded
the associated files. We then searched the files for
the lines containing the relevant string and added
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Phrase Types Tokens
reduce the risk of diseases 156 389
reduce 3652 14082
the risk of diseases 135 947
has health benefits 340 884
has 3709 10221
health benefits 143 301
charged in the death of 624 1739
charged in 434 1011
the death of 348 1440
accused of having killed 88 173
accused of 679 1760
having killed 569 1707

Table 1: Number of feature types and tokens ex-
tracted for each Phrase

each of these to the corpus file for that phrase. Each
corpus file was then parsed using the RASP parser
(version 3.0) ready for feature extraction.

4.2 Computing Distributional Similarity

First, a feature extractor is run over each parsed cor-
pus file to extract occurrences of the sub-parse and
their features. The feature extractor reads in a tem-
plate for each phrase in the form of dependency re-
lations over lemmas. It checks each sentence parse
against the template (taking care that the same word
form is indeed the same occurrence of the word in the
sentence). When a match is found, the other gram-
matical relations® for each word in the sub-parse are
output as features. When the sub-parse is only a
word, the process is simplified to finding grammati-
cal relations containing that word.

The raw feature file is then converted into a co-
occurrence vector by counting the occurrences of
each feature type. Table 1 shows the number of fea-
ture types and tokens extracted for each phrase. This
shows that we have extracted a reasonable number
of features for each phrase, since distributional sim-
ilarity techniques have been shown to work well for
words which occur more than 100 times in a given
corpus (Lin, 1998; Weeds and Weir, 2003).

We then computed the distributional similarity be-
tween each co-occurrence vector using the a-skew
divergence measure (Lee, 1999). The a-skew diver-
gence measure is an approximation to the Kullback-
Leibler (KL) divergence meassure between two dis-
tributions p and ¢:

D(pllq) = ;p(x)logzgg

SWe currently retain all of the distinctions between
grammatical relations output by RASP.



The a-skew divergence measure is designed to be
used when unreliable maximum likelihood estimates
(MLE) of probabilities would result in the KL diver-
gence being equal to co. It is defined as:

dista(q,7m) = D(r||la.q+ (1 — a).r)

where 0 < a < 1. We use a = 0.99, since this
provides a close approximation to the KL divergence
measure. The result is a number greater than or
equal to 0, where 0 indicates that the two distribu-
tions are identical. In other words, a smaller distance
indicates greater similarity.

The reason for choosing this measure is that it
can be used to compute the distance between any
two co-occurrence vectors independent of any infor-
mation about other words. This is in contrast to
many other measures, e.g., Lin (1998), which use the
co-occurrences of features with other words to com-
pute a weighting function such as mutual information
(MI) (Church and Hanks, 1989). Since we only have
corpus data for the target phrases, it is not possible
for us to use such a measure. However, the a-skew
divergence measure has been shown (Weeds, 2003)
to perform comparably with measures which use MI,
particularly for lower frequency target words.

4.3 Results

The results, in terms of a-skew divergence scores be-
tween pairs of phrases, are shown in Table 2. Each
set of three lines shows the similarity score between
a pair of phrases and then between respective pairs
of components. In the first two sets, the phrases
are paraphrases whereas in the second two sets, the
phrases are not.

From the table, there does appear to be some po-
tential in the use of distributional similarity between
sub-parses to identify potential paraphrases. In the
final two examples, the paired phrases are not se-
mantically similar, and as we would expect, their re-
spective distributional similarities are less (i.e., they
are further apart) than in the first two examples.

Further, we can see that there is no clear relation
between the similarity of two phrases and the simi-
larity of respective components. However in 3 out of
4 cases, the similarity between the phrases lies be-
tween that of their components. In every case, the
similarity of the phrases is less than the similarity
of the verbal components. This might be what one
would expect for the second example since the com-
ponents “charged in” and “accused of” are seman-
tically similar. However, in the first example, we
would have expected to see that the similarity be-
tween “reduce the risk of diseases” and “has health
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Phrase 1 Phrase 2 Dist.
reduce the risk of diseases has health benefits 5.28
reduce has 4.95
the risk of diseases health benefits 5.58
charged in the death of accused of having killed 5.07
charged in accused of 4.86
the death of having killed 6.16
charged in the death of has health benefits 6.04
charged in has 5.54
the death of health benefits 4.70
reduce the risk of diseases accused of having killed 6.09
reduce accused of 5.77
the risk of diseases having killed 6.31

Table 2: a-skew divergence scores between pairs of
phrases

benefits” to be greater than either pair of compo-
nents, which it is not. The reason for this is not clear
from just these examples. However, possibilities in-
clude the distributional similarity measure used, the
features selected from the corpus data and a combi-
nation of both. It may be that single words tend to
exhibit greater similarity than phrases due to their
greater relative frequencies. As a result, it may be
necessary to factor in the length or frequency of a
sub-parse into distributional similarity calculations
or comparisons thereof.

5 Conclusions and Further Work

In conclusion, it is clear that components of phrases
do not need to be semantically similar for the encom-
passing phrases to be semantically similar. Thus,
it is necessary to develop techniques which estimate
the semantic similarity of two phrases directly rather
than combining similarity scores calculated for pairs
of words.

Our approach is to find the distributional similar-
ity of the sub-parses associated with phrases by ex-
tending general techniques for finding lexical distri-
butional similarity. We have illustrated this method
for examples, showing how data sparseness can be
overcome using the web.

We have shown that finding the distributional sim-
ilarity between phrases, as outlined here, may have
potential in identifying paraphrases. In our exam-
ples, the distributional similarities of paraphrases
was higher than non-paraphrases. However, obvi-
ously, more extensive evaluation of the technique is
required before drawing more definite conclusions.

In this respect, we are currently in the pro-
cess of developing a gold standard set of similar
phrases from the Pascal Textual Entailment Chal-



lenge dataset. This task is not trivial since, even
though pairs of sentences are already identified as
potential paraphrases, it is still necessary to ex-
tract pairs of phrases which convey roughly the same
meaning. This is because 1) some pairs of sentences
are almost identical in word content and 2) some
pairs of sentences are quite distant in meaning sim-
ilarity. Further, it is also desirable to classify ex-
tracted pairs of paraphrases as to whether they are
lexical, syntactic, semantic or inferential in nature.
Whilst lexical (e.g. “to gather” is similar to “to col-
lect”) and syntactic (e.g. “Cambodian sweatshop”
is equivalent to “sweatshop in Cambodia”) are of in-
terest, our aim is to extend lexical techniques to the
semantic level (e.g. “X won presidential election” is
similar to “X became president”). Once our analysis
is complete, the data will be used to evaluate vari-
ations on the technique proposed herein and also to
compare it empirically to other techniques such as
that of Lin and Pantel (2001).

References

Regina Barzilay and Noemie Elhadad. 2003. Sentence
alignment for monolingual comparable corpora. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP2003), pages
25-33, Sapporo, Japan.

Edward Briscoe and John Carroll. 1995. Developing and
evaluating a probabilistic Ir parser of part-of-speech
and punctuation labels. In 4th ACL/SIGDAT Inter-
national Workshop on Parsing Technologies, pages 48—
58.

Kenneth W. Church and Patrick Hanks. 1989. Word
association norms, mutual information and lexicogra-
phy. In Proceedings of the 27th Annual Conference of
the Association for Computational Linguistics (ACL-
1989), pages 76-82.

James R. Curran and Marc Moens. 2002. Improve-
ments in automatic thesaurus extraction. In ACL-
SIGLEX Workshop on Unsupervised Lexical Acquisi-
tion, Philadelphia.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Proceedings of the Recognising Textual En-
tailment Challenge 2005.

Bill Dolan, Chris Brockett, and Chris Quirk. 2004. Un-
supervised construction of large paraphrase corpora:
Exploiting massively parallel news sources. In Pro-
ceedings of the 20th International Conference on Com-
putational Linguistics, Geneva.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database. MIT Press.

Maayan Geffet and Ido Dagan. 2004. Feature vector
quality and distributional similarity. In Proceedings of

12

the 20th International Conference on Computational
Linguistics (COLING-2004), pages 247-253, Geneva.

Zelig S. Harris. 1968. Mathematical Structures of Lan-
guage. Wiley, New York.

Jesus Herrera, Anselmo Penas, and Felisa Verdejo. 2005.
Textual entailment recognition based on dependency
analysis and wordnet. In Proceedings of the Recognis-
ing Textual Entailment Challenge 2005, April.

Valentin Jijkoun and Maarten de Rijke. 2005. Recognis-
ing textual entailment using lexical similarity. In Pro-
ceedings of the Recognising Textual Entailment Chal-
lenge 2005, April.

Lillian Lee. 1999. Measures of distributional similarity.
In Proceedings of the 87th Annual Meeting of the As-
sociation for Computational Linguistics (ACL-1999),
pages 23-32.

Dekang Lin and Patrick Pantel. 2001. Discovery of in-
ference rules for question answering. Natural Language
Engineering, 7(4):343-360.

Dekang Lin. 1998. Automatic retrieval and clustering of
similar words. In Proceedings of the 36th Annual Meet-
ing of the Association for Computational Linguistics
and the 17th International Conference on Computa-
tional Linguistics (COLING-ACL 98), pages T68-774,
Montreal.

Tim Owen, lan Wakeman, Bill Keller, Julie Weeds, and
David Weir. 2005. Managing the policies of non-
technical users in a dynamic world. In IEEE Workshop
on Policy in Distributed Systems, Stockholm, Sweden,
May.

Darren Pearce. 2001. Synonymy in collocation extrac-
tion. In Proceedings of the NAACL Workshop on
WordNet and Other Lexical Resources: Applications,
Extensions and Customizations, Carnegie Mellon Uni-
versity, Pittsburgh.

Idan Szpektor, Hristo Tanev, Ido Dagan, and Bonaven-
tura Coppola. 2004. Scaling web-based acquisition
of entailment relations. In Proceedings of Empirical
Methods in Natural Language Processing (EMNLP)
2004, Barcelona.

Julie Weeds and David Weir. 2003. A general frame-
work for distributional similarity. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP-2008), Sapporo, Japan.

Julie Weeds, Bill Keller, David Weir, Tim Owen, and
Tan Wakemna. 2004. Natural language expression of
user policies in pervasive computing environments. In
Proceedings of OntoLex2004, LREC Workshop on On-
tologies and Lezical Resources in Distributed Environ-
ments, Lisbon, Portugal, May.

Julie Weeds. 2003. Measures and Applications of Lexical
Distributional Similarity. Ph.D. thesis, Department of
Informatics, University of Sussex.



Measuring the Semantic Similarity of Texts

Courtney Corley and Rada Mihalcea
Department of Computer Science
University of North Texas
{corl ey, rada}@s. unt. edu

Abstract

This paper presents a knowledge-based
method for measuring the semantic-
similarity of texts. While there is a large
body of previous work focused on find-
ing the semantic similarity of concepts
and words, the application of these word-
oriented methods to text similarity has not
been yet explored. In this paper, we in-
troduce a method that combines word-
to-word similarity metrics into a text-to-
text metric, and we show that this method
outperforms the traditional text similarity
metrics based on lexical matching.

1 Introduction

Measures of text similarity have been used for a
long time in applications in natural language pro-
cessing and related areas. One of the earliest ap-
plications of text similarity is perhaps the vectorial
model in information retrieval, where the document
most relevant to an input query is determined by
ranking documents in a collection in reversed or-
der of their similarity to the given query (Salton and
Lesk, 1971). Text similarity has been also used for
relevance feedback and text classification (Rocchio,
1971), word sense disambiguation (Lesk, 1986), and
more recently for extractive summarization (Salton
etal., 1997b), and methods for automatic evaluation
of machine translation (Papineni et al., 2002) or text
summarization (Lin and Hovy, 2003).

The typical approach to finding the similarity be-
tween two text segments is to use a simple lexical
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matching method, and produce a similarity score
based on the number of lexical units that occur in
both input segments. Improvements to this simple
method have considered stemming, stop-word re-
moval, part-of-speech tagging, longest subsequence
matching, as well as various weighting and normal-
ization factors (Salton et al., 1997a). While success-
ful to a certain degree, these lexical matching simi-
larity methods fail to identify the semantic similarity
of texts. For instance, there is an obvious similarity
between the text segments | own a dog and | have
an animal, but most of the current text similarity
metrics will fail in identifying any kind of connec-
tion between these texts. The only exception to this
trend is perhaps the latent semantic analysis (LSA)
method (Landauer et al., 1998), which represents
an improvement over earlier attempts to use mea-
sures of semantic similarity for information retrieval
(Voorhees, 1993), (Xu and Croft, 1996). LSA aims
to find similar terms in large text collections, and
measure similarity between texts by including these
additional related words. However, to date LSA has
not been used on a large scale, due to the complex-
ity and computational cost associated with the algo-
rithm, and perhaps also due to the “black-box™ ef-
fect that does not allow for any deep insights into
why some terms are selected as similar during the
singular value decomposition process.

In this paper, we explore a knowledge-based
method for measuring the semantic similarity of
texts.  While there are several methods previ-
ously proposed for finding the semantic similar-
ity of words, to our knowledge the application of
these word-oriented methods to text similarity has
not been yet explored. We introduce an algorithm
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that combines the word-to-word similarity metrics
into a text-to-text semantic similarity metric, and we
show that this method outperforms the simpler lex-
ical matching similarity approach, as measured in a
paraphrase identification application.

2 Measuring Text Semantic Similarity

Given two input text segments, we want to auto-
matically derive a score that indicates their similar-
ity at semantic level, thus going beyond the simple
lexical matching methods traditionally used for this
task. Although we acknowledge the fact that a com-
prehensive metric of text semantic similarity should
take into account the relations between words, as
well as the role played by the various entities in-
volved in the interactions described by each of the
two texts, we take a first rough cut at this problem
and attempt to model the semantic similarity of texts
as a function of the semantic similarity of the com-
ponent words. We do this by combining metrics of
word-to-word similarity and language models into
a formula that is a potentially good indicator of the
semantic similarity of the two input texts.

2.1 Semantic Similarity of Words

There is a relatively large number of word-to-word
similarity metrics that were previously proposed in
the literature, ranging from distance-oriented mea-
sures computed on semantic networks, to metrics
based on models of distributional similarity learned
from large text collections. From these, we chose to
focus our attention on six different metrics, selected
mainly for their observed performance in natural
language processing applications, e.g. malapropism
detection (Budanitsky and Hirst, 2001) and word
sense disambiguation (Patwardhan et al., 2003), and
for their relatively high computational efficiency.
We conduct our evaluation using the following
word similarity metrics: Leacock & Chodorow,
Lesk, Wu & Palmer, Resnik, Lin, and Jiang & Con-
rath. Note that all these metrics are defined be-
tween concepts, rather than words, but they can be
easily turned into a word-to-word similarity metric
by selecting for any given pair of words those two
meanings that lead to the highest concept-to-concept
similarity. We use the WordNet-based implemen-
tation of these metrics, as available in the Word-
Net::Similarity package (Patwardhan et al., 2003).
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We provide below a short description for each of
these six metrics.

The Leacock & Chodorow (Leacock and
Chodorow, 1998) similarity is determined as:

length
2% D

@

Simycn, = —log

where length is the length of the shortest path be-
tween two concepts using node-counting, and D is
the maximum depth of the taxonomy.

The Lesk similarity of two concepts is defined as a
function of the overlap between the corresponding
definitions, as provided by a dictionary. It is based
on an algorithm proposed in (Lesk, 1986) as a solu-
tion for word sense disambiguation.

The Wu and Palmer (Wu and Palmer, 1994) simi-
larity metric measures the depth of the two concepts
in the WordNet taxonomy, and the depth of the least
common subsumer (LCS), and combines these fig-
ures into a similarity score:

2 % depth(LCS)
depth(concepti) + depth(concept2)

SiMwup = (2
The measure introduced by Resnik (Resnik, 1995)
returns the information content (IC) of the LCS of
two concepts:

Simyes = IC(LCS) ®)

where IC is defined as:

I1C(c) = —log P(c) 4)

and P(c) is the probability of encountering an in-
stance of concept c in a large corpus.

The next measure we use in our experiments is the
metric introduced by Lin (Lin, 1998), which builds
on Resnik’s measure of similarity, and adds a nor-
malization factor consisting of the information con-
tent of the two input concepts:

2% IC(LCS)
IC(concepty) + IC(concepts)

S’imlm = (5)
Finally, the last similarity metric we consider is
Jiang & Conrath (Jiang and Conrath, 1997), which
returns a score determined by:

1
IC(concept1) + IC(concepta) — 2+ IC(LC'S)
(6)

Sim]‘nc =



2.2 Language Models

In addition to the semantic similarity of words, we
also want to take into account the specificity of
words, so that we can give a higher weight to a se-
mantic matching identified between two very spe-
cific words (e.g. collie and sheepdog), and give less
importance to the similarity score measured between
generic concepts (e.g. go and be). While the speci-
ficity of words is already measured to some extent
by their depth in the semantic hierarchy, we are re-
inforcing this factor with a corpus-based measure of
word specificity, based on distributional information
learned from large corpora.

Language models are frequently used in natural
language processing applications to account for the
distribution of words in language. While word fre-
quency does not always constitute a good measure of
word importance, the distribution of words across an
entire collection can be a good indicator of the speci-
ficity of the words. Terms that occur in a few docu-
ments with high frequency contain a greater amount
of discriminatory ability, while terms that occur in
numerous documents across a collection with a high
frequency have inherently less meaning to a docu-
ment. We determine the specificity of a word us-
ing the inverse document frequency introduced in
(Sparck-Jones, 1972), which is defined as the total
number of documents in the corpus, divided by the
total number of documents that include that word.
In the experiments reported in this paper, we use the
British National Corpus to derive the document fre-
quency counts, but other corpora could be used to
the same effect.

2.3 Semantic Similarity of Texts

Provided a measure of semantic similarity between
words, and an indication of the word specificity, we
combine them into a measure of text semantic sim-
ilarity, by pairing up those words that are found to
be most similar to each other, and weighting their
similarity with the corresponding specificity score.
We define a directional measure of similarity,
which indicates the semantic similarity of a text seg-
ment T; with respect to a text segment 77;. This def-
inition provides us with the flexibility we need to
handle applications where the directional knowledge
is useful (e.g. entailment), and at the same time it
gives us the means to handle bidirectional similarity
through a simple combination of two unidirectional
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metrics.

For a given pair of text segments, we start by cre-
ating sets of open-class words, with a separate set
created for nouns, verbs, adjectives, and adverbs.
In addition, we also create a set for cardinals, since
numbers can also play an important role in the un-
derstanding of a text. Next, we try to determine pairs
of similar words across the sets corresponding to the
same open-class in the two text segments. For nouns
and verbs, we use a measure of semantic similarity
based on WordNet, while for the other word classes
we apply lexical matching?.

For each noun (verb) in the set of nouns (verbs)
belonging to one of the text segments, we try to iden-
tify the noun (verb) in the other text segment that has
the highest semantic similarity (maxSim), accord-
ing to one of the six measures of similarity described
in Section 2.1. If this similarity measure results in a
score greater than 0, then the word is added to the set
of similar words for the corresponding word class
WS,,OSZ. The remaining word classes: adjectives,
adverbs, and cardinals, are checked for lexical sim-
ilarity with their counter-parts and included in the
corresponding word class set if a match is found.

The similarity between the input text segments T;
and T} is then determined using a scoring function
that combines the word-to-word similarities and the
word specificity:

S (mazSim(wi)  idfw,,))
] pos Wi €{W Spos}
Ti7T' . = 9
stm(Ty, Ty) S idfw,
wkE{Tq:pm}

O]

This score, which has a value between 0 and 1, is
a measure of the directional similarity, in this case
computed with respect to 7;. The scores from both
directions can be combined into a bidirectional sim-
ilarity using a simple average function:

sim(Ty, Tj) 7, + sim(T;, Tj) 1y
2

sim(Ti7 Tj) = (8)

1The reason behind this decision is the fact that most of the
semantic similarity measures apply only to nouns and verbs, and
there are only one or two relatedness metrics that can be applied
to adjectives and adverbs.

2All similarity scores have a value between 0 and 1. The
similarity threshold can be also set to a value larger than 0,
which would result in tighter measures of similarity.



Text Segment 1. The jurors were taken into the courtroom in
groups of 40 and asked to fill out a questionnaire.

e Setnn = {juror, courtroom, group, questionnaire}
Sety g = {be, take, ask, fill}
Setrp = {out}
Setcp = {40}

Text Segment 2: About 120 potential jurors were being asked
to complete a lengthy questionnaire.

e Setnn = {juror, questionnaire}
Sety g = {be, ask, complete}
Set sy = {potential, lengthy }
Setcp = {120}

Figure 1: Two text segments and their corresponding
word class sets

3 A Walk-Through Example

We illustrate the application of the text similarity
measure with an example. Given two text segments,
as shown in Figure 1, we want to determine a score
that reflects their semantic similarity. For illustration
purposes, we restrict our attention to one measure of
word-to-word similarity, the Wu & Palmer metric.

First, the text segments are tokenized, part-of-
speech tagged, and the words are inserted into their
corresponding word class sets. The sets obtained for
the given text segments are illustrated in Figure 1.

Starting with each of the two text segments, and
for each word in its word class sets, we determine
the most similar word from the corresponding set in
the other text segment. As mentioned earlier, we
seek a WordNet-based semantic similarity for nouns
and verbs, and only lexical matching for adjectives,
adverbs, and cardinals. The word semantic similar-
ity scores computed starting with the first text seg-
ment are shown in Table 3.

[ Text1 | Text2 | maxSim | IDF |
jurors jurors 1.00 5.80
courtroom jurors 0.30 5.23
questionnaire | questionnaire 1.00 3.57
groups questionnaire 0.29 0.85
were were 1.00 0.09
taken asked 1.00 0.28
asked asked 1.00 0.45
fill complete 0.86 1.29

[ out [ - | 0 J0.06]

[ 40 [ - | 0 [ 1.39 |

Table 1: Wu & Palmer word similarity scores for
computing text similarity with respect to text 1
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Next, we use equation 7 and determine the seman-
tic similarity of the two text segments with respect
to text 1 as 0.6702, and with respect to text 2 as
0.7202. Finally, the two figures are combined into
a bidirectional measure of similarity, calculated as
0.6952 based on equation 8.

Although there are a few words that occur in both
text segments (e.g. juror, questionnaire), there are
also words that are not identical, but closely related,
e.g. courtroom found similar to juror, or fill which
is related to complete. Unlike traditional similar-
ity measures based on lexical matching, our metric
takes into account the semantic similarity of these
words, resulting in a more precise measure of text
similarity.

4 Evaluation

To test the effectiveness of the text semantic simi-
larity metric, we use this measure to automatically
identify if two text segments are paraphrases of
each other. We use the Microsoft paraphrase cor-
pus (Dolan et al., 2004), consisting of 4,076 training
pairs and 1,725 test pairs, and determine the number
of correctly identified paraphrase pairs in the cor-
pus using the text semantic similarity measure as the
only indicator of paraphrasing. In addition, we also
evaluate the measure using the PASCAL corpus (Da-
gan et al., 2005), consisting of 1,380 test-hypothesis
pairs with a directional entailment (580 development
pairs and 800 test pairs).

For each of the two data sets, we conduct two
evaluations, under two different settings: (1) An un-
supervised setting, where the decision on what con-
stitutes a paraphrase (entailment) is made using a
constant similarity threshold of 0.5 across all exper-
iments; and (2) A supervised setting, where the op-
timal threshold and weights associated with various
similarity metrics are determined through learning
on training data. In this case, we use a voted percep-
tron algorithm (Freund and Schapire, 1998)3.

We evaluate the text similarity metric built on top
of the various word-to-word metrics introduced in
Section 2.1. For comparison, we also compute three
baselines: (1) A random baseline created by ran-
domly choosing a true or false value for each text
pair; (2) A lexical matching baseline, which only

3Classification using this algorithm was determined optimal
empirically through experiments.



counts the number of matching words between the
two text segments, while still applying the weighting
and normalization factors from equation 7; and (3)
A vectorial similarity baseline, using a cosine sim-
ilarity measure as traditionally used in information
retrieval, with tf.idf term weighting. For compari-
son, we also evaluated the corpus-based similarity
obtained through LSA; however, the results obtained
were below the lexical matching baseline and are not
reported here.

For paraphrase identification, we use the bidirec-
tional similarity measure, and determine the sim-
ilarity with respect to each of the two text seg-
ments in turn, and then combine them into a bidi-
rectional similarity metric. For entailment identifi-
cation, since this is a directional relation, we only
measure the semantic similarity with respect to the
hypothesis (the text that is entailed).

We evaluate the results in terms of accuracy, rep-
resenting the number of correctly identified true or
false classifications in the test data set. We also mea-
sure precision, recall and F-measure, calculated with
respect to the true values in each of the test data sets.

Tables 2 and 3 show the results obtained in the
unsupervised setting, when a text semantic similar-
ity larger than 0.5 was considered to be an indica-
tor of paraphrasing (entailment). We also evaluate a
metric that combines all the similarity measures us-
ing a simple average, with results indicated in the
Combined row.

The results obtained in the supervised setting are
shown in Tables 4 and 5. The optimal combination
of similarity metrics and optimal threshold are now
determined in a learning process performed on the
training set. Under this setting, we also compute an
additional baseline, consisting of the most frequent
label, as determined from the training data.

5 Discussion and Conclusions

For the task of paraphrase recognition, incorporating
semantic information into the text similarity mea-
sure increases the likelihood of recognition signifi-
cantly over the random baseline and over the lexi-
cal matching baseline. In the unsupervised setting,
the best performance is achieved using a method that
combines several similarity metrics into one, for an
overall accuracy of 68.8%. When learning is used to
find the optimal combination of metrics and optimal
threshold, the highest accuracy of 71.5% is obtained
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Metric

[ Acc. [ Prec. [ Rec. [ F |

Semantic similarity (knowledge-based)
J&C 0.683 [ 0.724 | 0.846 | 0.780
L&C 0.680 | 0.724 | 0.838 | 0.777
Lesk 0.680 | 0.724 | 0.838 | 0.777
Lin 0.679 | 0.717 | 0.855 | 0.780
W &P 0.674 | 0.722 | 0.831 | 0.773
Resnik 0.672 | 0.725 | 0.815 | 0.768
Combined | 0.688 | 0.741 | 0.817 | 0.777

Baselines
LexMatch | 0.661 | 0.722 | 0.798 | 0.758
Vectorial 0.654 | 0.716 | 0.795 | 0.753
Random 0.513 | 0.683 | 0.500 | 0.578

Table 2. Text semantic similarity for paraphrase
identification (unsupervised)

[ Metric | Acc. | Prec. [ Rec. | F ]
Semantic similarity (knowledge-based)
J&C 0.573 ] 0.543 ] 0.908 | 0.680
L&C 0.569 | 0.543 | 0.870 | 0.669
Lesk 0.568 | 0.542 | 0.875 | 0.669
Resnik 0.565 | 0.541 | 0.850 | 0.662
Lin 0.563 | 0.538 | 0.878 | 0.667
W&P 0.558 | 0.534 | 0.895 | 0.669
Combined | 0.583 | 0.561 | 0.755 | 0.644
Baselines
LexMatch | 0.545 | 0.530 | 0.795 | 0.636
Vectorial 0.528 | 0.525 | 0.588 | 0.555
Random 0.486 | 0.486 | 0.493 | 0.489

Table 3: Text semantic similarity for entailment
identification (unsupervised)

by combining the similarity metrics and the lexical
matching baseline together.

For the entailment data set, although we do not
explicitly check for entailment, the directional sim-
ilarity computed for textual entailment recognition
does improve over the random and lexical matching
baselines. Once again, the combination of similar-
ity metrics gives the highest accuracy, measured at
58.3%, with a slight improvement observed in the
supervised setting, where the highest accuracy was
measured at 58.9%. Both these figures are compet-
itive with the best results achieved during the PAS-
CAL entailment evaluation (Dagan et al., 2005).

Although our method relies on a bag-of-words ap-
proach, as it turns out the use of measures of seman-
tic similarity improves significantly over the tradi-
tional lexical matching metrics*. We are nonetheless

“The improvement of the combined semantic similarity met-
ric over the simpler lexical matching measure was found to be
statistically significant in all experiments, using a paired t-test
(p < 0.001).



Metric

[ Acc. [ Prec. [ Rec. [ F |

Semantic similarity (knowledge-based)
Lin 0.702 ] 0.706 | 0.947 | 0.809
W&P 0.699 | 0.705 | 0.941 | 0.806
L&C 0.699 | 0.708 | 0.931 | 0.804
J&C 0.699 | 0.707 | 0.935 | 0.805
Lesk 0.695 | 0.702 | 0.929 | 0.800
Resnik 0.692 | 0.705 | 0.921 | 0.799
Combined 0.715 | 0.723 | 0.925 | 0.812
Baselines
LexMatch 0.671 ] 0.693 | 0.908 | 0.786
Vectorial 0.665 | 0.665 | 1.000 | 0.799
Most frequent | 0.665 | 0.665 | 1.000 | 0.799

Table 4. Text semantic similarity for paraphrase
identification (supervised)

[ Metric | Acc. [ Prec. [ Rec. [ F |
Semantic similarity (knowledge-based)
L&C 0.583 | 0.573 | 0.650 | 0.609
W &P 0.580 | 0.570 | 0.648 | 0.607
Resnik 0.579 | 0.572 | 0.628 | 0.598
Lin 0.574 | 0.568 | 0.620 | 0.593
J&C 0.575 | 0.566 | 0.643 | 0.602
Lesk 0.573 | 0.566 | 0.633 | 0.597
Combined 0.589 | 0.579 | 0.650 | 0.612
Baselines
LexMatch 0.568 | 0.573 | 0.530 | 0.551
Most frequent | 0.500 | 0.500 | 1.000 | 0.667
Vectorial 0.479 | 0.484 | 0.645 | 0.553

Table 5: Text semantic similarity for entailment
identification (supervised)

aware that a bag-of-words approach ignores many of
important relationships in sentence structure, such as
dependencies between words, or roles played by the
various arguments in the sentence. Future work will
consider the investigation of more sophisticated rep-
resentations of sentence structure, such as first order
predicate logic or semantic parse trees, which should
allow for the implementation of more effective mea-
sures of text semantic similarity.
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Abstract

Generally speaking, statistical machine
translation systems would be able to attain
better performance with more training sets.
Unfortunately, well-organized training sets
are rarely available in the real world. Con-
sequently, it is necessary to focus on modi-
fying the training set to obtain high
accuracy for an SMT system. If the SMT
system trained the translation model, the
translation pair would have a low probabil-
ity when there are many variations for tar-
get sentences from a single source sentence.
If we decreased the number of variations
for the translation pair, we could construct
a superior translation model. This paper de-
scribes the effects of modification on the
training corpus when consideration is given
to synonymous sentence groups. We at-
tempt three types of modification: com-
pression of the training set, replacement of
source and target sentences with a selected
sentence from the synonymous sentence
group, and replacement of the sentence on
only one side with the selected sentence
from the synonymous sentence group. As a
result, we achieve improved performance
with the replacement of source-side sen-
tences.

1 Introduction

Recently, many researchers have focused their in-
terest on statistical machine translation (SMT) sys-
tems, with particular attention given to models and
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decoding algorithms. The quantity of the training
corpus has received less attention, although of
course the earlier reports do address the quantity
issue. In most cases, the larger the training corpus
becomes, the higher accuracy is achieved. Usually,
the quantity problem of the training corpus is dis-
cussed in relation to the size of the training corpus
and system performance; therefore, researchers
study line graphs that indicate the relationship be-
tween accuracy and training corpus size.

On the other hand, needless to say, a single sen-
tence in the source language can be used to trans-
late several sentences in the target language. Such
various possibilities for translation make MT sys-
tem development and evaluation very difficult.
Consequently, here we employ multiple references
to evaluate MT systems like BLEU (Papineni et al.,
2002) and NIST (Doddington, 2002). Moreover,
such variations in translation have a negative effect
on training in SMT because when several sen-
tences of input-side language are translated into the
exactly equivalent output-side sentences, the prob-
ability of correct translation decreases due to the
large number of possible pairs of expressions.
Therefore, if we can restrain or modify the training
corpus, the SMT system might achieve high accu-
racy.

As an example of modification, different out-
put-side sentences paired with the exactly equiva-
lent input-side sentences are replaced with one
target sentence. These sentence replacements are
required for synonymous sentence sets. Kashioka
(2004) discussed synonymous sets of sentences.
Here, we employ a method to group them as a way
of modifying the training corpus for use with SMT.
This paper focuses on how to control the corpus
while giving consideration to synonymous sen-
tence groups.

Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailagsst 1924,
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2 Target Corpus

In this paper, we use a multilingual parallel corpus
called BTEC (Takezawa et al., 2002) for our ex-
periments. BTEC was used in IWSLT (Akiba et al.,
2004). This parallel corpus is a collection of Japa-
nese sentences and their translations into English,
Korean and Chinese that are often found in phrase
books for foreign tourists. These parallel sentences
cover a number of situations (e.g., hotel reserva-
tions, troubleshooting) for Japanese going abroad,
and most of the sentences are rather short. Since
the scope of its topics is quite limited, some very
similar sentences can be found in the corpus, mak-
ing BTEC appropriate for modification with com-
pression or replacement of sentences. We use only
a part of BTEC for training data in our experiments.
The training data we employ contain 152,170
Japanese sentences, with each sentence combined
with English and Chinese translations. In Japanese,
each sentence has 8.1 words on average, and the
maximum sentence length is 150 words. In English,
each sentence contains an average of 7.4 words,
with a maximum sentence length of 117 words. In
Chinese, each sentence has an average of 6.7
words and maximum length of 122 words. Some
sentences appear twice or more in the training cor-
pus. In total, our data include 94,268 different
Japanese sentences, 87,061 different Chinese sen-
tences, and 91,750 different English sentences.
Therefore, there are some sentence pairs that con-
sist of exactly the same sentence in one language
but a different sentence in another language, as Fig.
1 shows. This relationship can help in finding the
synonymous sentence group.

The test data contain 510 sentences from differ-
ent training sets in the BTEC. Each source sen-
tence in the test data has 15 target sentences for
evaluations. For the evaluation, we do not use any
special process for the grouping process. Conse-
guently, our results can be compared with those of

S1=T1
S2&T1
S1=T2
S3<T1

other MT systems.
Figure 1. Sample sentence pairs

3 Modification Method
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When an SMT system learns the translation model,
variations in the translated sentences of the pair are
critical for determining whether the system obtains
a good model. If the same sentence appears twice
in the input-side language and these sentences
form pairs with two different target sentences in
the output-side language, then broadly speaking
the translation model defines almost the same
probability for these two target sentences.

In our model, the translation system features the
ability to generate an output sentence with some
variations; however, for the system to generate the
most appropriate output sentence, sufficient infor-
mation is required. Thus, it is difficult to prepare a
sufficiently large training corpus.

3.1  Synonymous Sentence Group

Kashioka (2004) reported two steps for making a
synonymous sentence group. The first is a con-
catenation step, and the second is a decomposition
step. In this paper, to form a synonymous sentence
group, we performed only the concatenation step,
which has a very simple idea. When the expression
“Exp_A:” in language A is translated into the ex-
pressions “Exp_Bi;, Exp_B,, ..., Exp_B,” in lan-
guage B, that set of expressions form one
synonymous group. Furthermore, when the sen-
tence “Exp_A,” in language A is translated into the
sentences “Exp_B;, EXp_By+1, ..., EXp_Bp” in lan-
guage B, “Exp_Byi, Exp_Bp1, ..., EXp_Bn(n <m)”
form one synonymous group. In this situation,
“Exp_A;” and “Exp_A,” form a synonymous
group because both “Exp_A;” and “Exp_A,” have
a relationship with the translation pairs of
“Exp_By;.” Thus, “Exp_A;, Exp_A,” in language A
and “Exp_By ..., Exp_B,” in language B form a
synonymous group. If other language information
is available, we can extend this synonymous group
using information on translation pairs for other
languages.

In this paper, we evaluate an EJ/JE system and a
CJ/JC system, and our target data include three
languages, i.e., Japanese, English, and Chinese.
We make synonymous sentence groups in two dif-
ferent environments. One is a group using Japanese
and English data, and other is a group that uses
Japanese and Chinese data.

The JE group contained 72,808 synonymous sentence
groups, and the JC group contained 83,910 synonymous
sentence groups as shown in Table 1.



# of Groups | # of Sent per Group
JE | 72,808 2.1
JC | 83,910 1.8

Table 1 Statistics used in BTEC data

3.2 Modification

We prepared the three types of modifications for
training data.
1. Compress the training corpus based on the
synonymous sentence group (Fig. 2).
2. Replace the input and output sides’ sen-
tences with the selected sentence, consider-
ing the synonymous sentence group (Fig. 3).
3. Replace one side’s sentences with a se-
lected sentence, considering the synony-
mous sentence group (Figs. 4, 5).
We describe these modifications in more detail
in the following subsections.

3.2.1 Modification with Compression

Here, a training corpus is constructed with several
groups of synonymous sentences. Then, each
group keeps only one pair of sentences and the
other pairs are removed from each group, thereby
decreasing the total number of sentences and nar-
rowing the variation of expressions. Figure 2
shows an example of madification in this way. In
the figure, S1, S2, and S3 indicate the input-side
sentences while T1 and T2 indicate the output-side
sentences. The left-hand side box shows a syn-
onymous sentence group in the original training
corpus, where four sentence pairs construct one
synonymous sentence group. The right-hand side
box shows a part of the modified training corpus.
In this case, we keep the S1 and T1 sentences, and
this resulting pair comprises a modified training
corpus.

The selection of what sentences to keep is an im-
portant issue. In our current experiment, we select
the most frequent sentence in each side’s language
from within each group. In Fig. 2, S1 appeared
twice, while S2 and S3 appeared only once in the
input-side language. As for the output-side lan-
guage, T1 appeared three times and T2 appeared
once. Thus, we keep the pair consisting of S1 and
T1. When attempting to separately select the most
frequent sentence in each language, we may not
find suitable pairs in the original training corpus;
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however, we can make a new pair with the ex-
tracted sentences for the modified training corpus.

S1eT1
S20T1 | o | g1e71
S1eT2
SR T1
Figure 2. Modification sample for compression
3.2.2 Modification of replacing the sentences

of both sides

In the compression stage, the total number of sen-
tences in the modified training corpus is decreased,
and it is clear that fewer sentences in the training
corpus leads to diminished accuracy. In order to
make a comparison between the original training
corpus and a modified training corpus with the
same number of sentences, we extract one pair of
sentences from each group, and each pair appears
in the modified training corpus in the same number
of sentences. Figure 3 shows an example of this
modification. The original training data are the
same as in Fig. 2. Then we extract S1 and T1 by
the same process from each side with this group,
and replacing all of the input-side sentences with
S1 in this group. The output side follows the same
process. In this case, the modified training corpus
consists of four pairs of S1 and T1.

S1eT1 s1eT1
2071 | _, | SleTt
s1eT12 s1eT1
SReT1 S1eT1

Figure 3. Sample modifications for replacement of
both sentences

3.2.3 Modification to replace only one side’s

sentence

With the previous two modifications, the lan-
guage variations in both sides decrease. Next, we
propose the third modification, which narrows the
range of one side’s variations.

The sentences of one side are replaced with the
selected sentence from that group. The sentence for
replacement is selected by following the same
process used in the previous modifications. As a
result, two modified training corpora are available



as shown in Figs. 4 and 5. Figure 4 illustrates the
output side’s decreasing variation, while Fig. 5
shows the input side’s decreasing variation.

S1eT1 S1eT1
S2eT1 = S2eT1
S1eT2 S1eT1
SR&T1 SR&T1

Figure 4. Modification example of replacing the
output side’s sentence

S1eT1 S1eT1
S2eT1 = S1eT1
S1e72 S172
SReT1 S1eT1

Figure 5. Modification example of replacing the
input side’s sentence

4  SMT System and Evaluation method

In this section, we describe the SMT systems used
in these experiments. The SMT systems’ decoder
is a graph-based decoder (Ueffing et al., 2002;
Zhang et al., 2004). The first pass of the decoder
generates a word-graph, a compact representation
of alternative translation candidates, using a beam
search based on the scores of the lexicon and lan-
guage models. In the second pass, an A* search
traverses the graph. The edges of the word-graph,
or the phrase translation candidates, are generated
by the list of word translations obtained from the
inverted lexicon model. The phrase translations
extracted from the Viterbi alignments of the train-
ing corpus also constitute the edges. Similarly, the
edges are also created from dynamically extracted
phrase translations from the bilingual sentences
(Watanabe and Sumita, 2003). The decoder used
the IBM Model 4 with a trigram language model
and a five-gram part-of-speech language model.
Training of the IBM model 4 was implemented by
the GIZA++ package (Och and Ney, 2003). All
parameters in training and decoding were the same
for all experiments. Most systems with this training
can be expected to achieve better accuracy when
we run the parameter tuning processes. However,
our purpose is to compare the difference in results
caused by modifying the training corpus.

We performed experiments for JE/EJ and JC/CJ
systems and four types of training corpora:

1) Original BTEC corpus;

2) Compressed BTEC corpus (see 3.2.1);

3) Replace both languages (see 3.2.2);
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4) Replace one side language (see 3.2.3)
4-1) replacement on the input side
4-2) replacement on the output side.
For the evaluation, we use BLEU, NIST, WER,
and PER as follows:

BLEU: A weighted geometric mean of the n-
gram matches between test and reference
sentences multiplied by a brevity penalty
that penalizes short translation sentences.

NIST: An arithmetic mean of the n-gram
matches between test and reference sen-
tences multiplied by a length factor, which
again penalizes short translation sentences.

MWER (Niessen et al., 2000): Multiple refer-
ence word-error rate, which computes the
edit distance (minimum number of inser-
tions, deletions, and substitutions) between
test and reference sentences.

mPER: Multiple reference position-independent
word-error rate, which computes the edit
distance without considering the word order.

5 Experimental Results

In this section, we show the experimental results
for the JE/EJ and JC/CJ systems.
51 EJ/JE-system-based JE group

Tables 2 and 3 show the evaluation results for the

EJ/JE system.

EJ BLEU | NIST | mMWER | mPER
Original 0.36 | 3.73 0.55 0.51
Compress 0.47 | 5.83 0.47 0.44
Replace Both 0.42| 571 0.50 0.47
Replace J. 0.44 | 2.98 0.60 0.58
Replace E. 0.48 | 6.05 0.44 0.41

Table 2. Evaluation results for EJ System

JE BLEU | NIST | mMWER | mPER
Original 0.46 3.96 | 0.52 0.49
Compress 0.53 8.53 |0.42 0.38
Replace Both | 0.49 8.10 |0.46 0.41
Replace J. 0.54 8.64 |0.42 0.38
Replace E. 0.51 6.10 | 0.52 0.49

Table 3. Evaluation results for JE system




Modification of the training data is based on the
synonymous sentence group with the JE pair.

The EJ system performed at 0.55 in mMWER with

the original data set, and the system replacing the
Japanese side achieved the best performance of
0.44 in mMWER. The system then gained 0.11 in
MWER. On the other hand, the system replacing
the English side lost 0.05 in mMWER. The mPER
score also indicates a similar result. For the BLEU
and NIST scores, the system replacing the Japa-
nese side also attained the best performance.
The JE system attained a score of 0.52 in mMWER
with the original data set, while the system with
English on the replacement side gave the best per-
formance of 0.42 in mMWER, a gain of 0.10. On the
other hand, the system with Japanese on the re-
placement side showed no change in mMWER, and
the case of compression achieved good perform-
ance. The ratios of mMWER and mPER are nearly
the same for replacing Japanese. Thus, in both di-
rections replacement of the input-side language
derives a positive effect for translation modeling.

5.2 CJ/JC system-based JC group

Tables 4 and 5 show the evaluation results for the
EJ/JE system based on the group with a JC lan-
guage pai.

CJ BLEU | NIST | mMWER | mPER
Original 0.51 6.22 0.41 0.38
Compress 0.52 6.43 0.43 0.40
Replace both 0.53 5.99 0.40 0.37
Replace J. 0.50 5.98 0.41 0.39
Replace C. 0.51 6.22 0.41 0.38

Table 4. Evaluation results for CJ based on the JC
language pair

JC BLEU | NIST | mWER | mPER
Original 0.56 845 10.38 0.34
Compress 0.55 8.22 0.41 0.36
Replace both 0.56 8.32 0.39 0.35
Replace J. 0.56 8.25 0.40 0.36
Replace C. 0.57 833 ]0.38 0.35

Table 5. Evaluation results for JC based on the JC
language pair

The CJ system achieved a score of 0.41 in
MWER with the original data set, with the other
cases similar to the original; we could not find a
large difference among the training corpus modifi-
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cations. Furthermore, the JC system performed at
0.38 in mMWER with the original data, although the
other cases’ results were not as good. These results
seem unusual considering the EJ/JE system, indi-
cating that they derive from the features of the
Chinese part of the BTEC corpus.

6 Discussion

Our EJ/JE experiment indicated that the system
with input-side language replacement achieved
better performance than that with output-side lan-
guage replacement. This is a reasonable result be-
cause the system learns the translation model with
fewer variations for input-side language.

In the experiment on the CJ/JC system based on
the JC group, we did not provide an outline of the
EJ/JE system due to the features of BTEC. Initially,
BTEC data were created from pairs of Japanese
and English sentences in the travel domain. Japa-
nese-English translation pairs have variation as
shown in Fig. 1. However, when Chinese data was
translated, BTEC was controlled so that the same
Japanese sentence has only one Chinese sentence.
Accordingly, there is no variation in Chinese sen-
tences for the pair with the same Japanese sentence.
Therefore, the original training data would be simi-
lar to the situation of replacing Chinese. Moreover,
replacing the Japanese data was almost to the same
as replacing both sets of data. Considering this fea-
ture of the training corpus, i.e. the results for the
CJ/JC system based on the group with JC language
pairs, there are few differences between keeping
the original data and replacing the Chinese data, or
between replacing both side’s data and replacing
only the Japanese data. These results demonstrate
the correctness of the hypothesis that reducing the
input side’s language variation makes learning
models more effective.

Currently, our modifications only roughly proc-
ess sentence pairs, though the process of making
groups is very simple. Sometimes a group may
include sentences or words that have slightly dif-
ferent meanings, such as. fukuro (bag), kamibukuro
(paper bag), shoppingu baggu (shopping bag),
tesagebukuro (tote bag), and biniiru bukuro (plas-
tic bag). In this case if we select tesagebukuro
from the Japanese side and “paper bag” from the
English side, we have an incorrect word pair in the
translation model. To handle such a problem, we
would have to arrange a method to select the sen-



tences from a group. This problem is discussed in
Imamura et al. (2003). As one solution to this
problem, we borrowed the measures of literalness,
context freedom, and word translation stability in
the sentence-selection process.

In some cases, the group includes sentences with
different meanings, and this problem was men-
tioned in Kashioka (2004). In an attempt to solve
the problem, he performed a secondary decomposi-
tion step to produce a synonymous group. How-
ever, in the current training corpus, each
synonymous group before the decomposition step
is small, so there would not be enough difference
for modifications after the decomposition step.

The replacement of a sentence could be called
paraphrasing. Shimohata et al. (2004) reported a
paraphrasing effect in MT systems, where if each
group would have the same meaning, the variation
in the phrases that appeared in the other groups
would reduce the probability. Therefore, consider-
ing our results in light of their discussion, if the
training corpus could be modified with the module
for paraphrasing in order to control phrases, we
could achieve better performance.

7 Conclusion

This paper described the modification of a training
set based on a synonymous sentence group for a
statistical machine translation system in order to
attain better performance. In an EJ/JE system, we
confirmed a positive effect by replacing the input-
side language. Because the Chinese data was spe-
cific in our modification, we observed an inconclu-
sive result for the modification in the CJ/JC system
based on the synonymous sentence group with a JC
language pair. However, there was still some effect
on the characteristics of the training corpus. In this
paper, the modifications of the training set are
based on the synonymous sentence group, and we
replace the sentence with rough processing. If we
paraphrased the training set and controlled the
phrase pair, we could achieve better performance
with the same training set.
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Abstract

We present first results using paraphrase as well as
textual entailment data to test the language univer-
sal constraint posited by Wu’s (1995, 1997) Inver-
sion Transduction Grammar (ITG) hypothesis. In
machine translation and alignment, the ITG Hypoth-
esis provides a strong inductive bias, and has been
shown empirically across numerous language pairs
and corpora to yield both efficiency and accuracy
gains for various language acquisition tasks. Mono-
lingual paraphrase and textual entailment recogni-
tion datasets, however, potentially facilitate closer
tests of certain aspects of the hypothesis than bilin-
gual parallel corpora, which simultaneously exhibit
many irrelevant dimensions of cross-lingual varia-
tion. We investigate this using simple generic Brack-
eting ITGs containing no language-specific linguis-
tic knowledge. Experimental results on the MSR
Paraphrase Corpus show that, even in the absence
of any thesaurus to accommodate lexical variation
between the paraphrases, an uninterpolated aver-
age precision of at least 76% is obtainable from
the Bracketing ITG’s structure matching bias alone.
This is consistent with experimental results on the
Pascal Recognising Textual Entailment Challenge
Corpus, which show surpisingly strong results for a
number of the task subsets.

Introduction

Thelnversion Transduction Grammar ITG formalism,

nities for meaningful analysis of the ITG Hypothesis in a
monolingual setting.

The strong inductive bias imposed by the ITG Hypoth-
esis has been repeatedly shown empirically to yield both
efficiency and accuracy gains for numerous language ac-
quisition tasks, across a variety of language pairs and
tasks. For example, Zens and Ney (2003) show that
ITG constraints yield significantly better alignment cov-
erage than the constraints used in IBM statistical ma-
chine translation models on both German-English (Verb-
mobil corpus) and French-English (Canadian Hansards
corpus). Zhang and Gildea (2004) find that unsuper-
vised alignment using Bracketing ITGs produces signif-
icantly lower Chinese-English alignment error rates than
a syntactically supervised tree-to-string model (Yamada
and Knight, 2001). With regard to translation rather than
alignment accuracy, Zeret al. (2004) show that decod-
ing under ITG constraints yields significantly lower word
error rates and BLEU scores than the IBM constraints.

We are conducting a series of investigations motivated
by the following observation: the empirically demon-
strated suitability of ITG paraphrasing constraints across
languages should hold, if anything, even more strongly
in the monolingual case. The monolingual case allows in
some sense closer testing of various implications of the
ITG hypothesis, without irrelevant dimensions of varia-
tion arising from other cross-lingual phenomena.

Asymmetric textual entailment recognition (RTE)

which historically was developed in the context of transdatasets, in particular the Pascal Recognising Textual En-
lation and alignment, hypothesizes strong expressivend@iiment Challenge Corpus (Dagahal, 2005), provide
restrictions that constrain paraphrases to vary word otestbeds that abstract over many tasks, including infor-
der only in certain allowable nested permutations of amation retrieval, comparable documents, reading com-
guments (Wu, 1997). The ITG Hypothesis has been mogrehension, question answering, information extraction,
extensively studied across different languages, but newiyachine translation, and paraphrase acquisition.
available paraphrase datasets provide intriguing opportu- At the same time, the emergence of paraphrasing
Y , datasets presents an opportunity for complementary ex-
The author would like to thank the Hong Kong Re'Eeriments on the task of recognizing symmetric bidirec-

search Grants Council (RGC) for supporting this researc . . .
in part through grants RGC6083/99E, RGC6256/00E, an onal entailment rather than asymmetric directional en-

DAG03/04.EG09, and Marine Carpuat and Yihai Shen for infailment. In particular, for this study we employ the MSR
valuable assistance in preparing the datasets and stoplist. ~ Paraphrase Corpus (Quigk al,, 2004).
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2 Inversion Transduction Grammars Polynomial-time algorithms are possible for various

. . tasks including translation using ITGs, as well as bilin-
Formally, ITGs can be defined as the restricted subset. al parsing obiparsing where the task is to build the

syntax-directed transduction grammars or SDTGs Lewi ighest-scored parse tree given an input bi-sentence.

and Stearns (1968) where all of the rules are either o For present purposes we can employ the special case of

straight or invertedorientation. Ordinary SDTGs allow Bracketing ITGs, where the grammar employs only one
any permutation of the symbols on the right-hand side tgingle, undisting,uished “dummy” nonterminal category

be specified when translating from the input language tf?)r any non-lexical rule. Designating this categoty a

the output language. In contrast, ITGs only allow wo Oufsracketing ITG has the following form (where, as usual
of the possible permutations. If a rule is straight, the orE ! '

o ical i f the f — ibl
der of its right-hand symbols must be the same for bot exical transductions of the forot — ¢/ f may possibly

language. On the other hand, if a rule is inverted, then the. singletons of the form — e/c or A — ¢/ f).

order is left-to-right for the input language and right-to- A — [A4]
left for the output language. Since inversion is permitted A = (AA)
at any level of rule expansion, a derivation may intermix

- . . . - A — €€
productions of either orientation within the parse tree.
The ability to compose multiple levels of straight and in- A — e/fr

verted constituents gives ITGs much greater expressive- e
ness than might seem at first blush. A — eff;
A simple example may be useful to fix ideas. Consider

the following pair of parse trees for sentence translations: The simplest class of ITGsBracketing ITGs are
particularly interesting in applications like paraphras-

[[[The Authoritylyp [will [[be accountable]yy [to ing, because they impose ITG constraints in language-
[the [[Financial Secretarylyn Innn Ine Ipp Ive independent fashion, and in the simplest case do not re-
Ive Isp s quire any language-specific linguistic grammar or train-

" oA ; ing. In Bracketing ITGs, the grammar uses only a
[[f[;iii%]’\“’ LR 22 [0 DM sl Innn Ine T single, undifferentiated non-terminal (Wu, 1995). The
(V5w Ive Jve Isp - s key modeling property of Bracketing ITGs that is most

Even though the order of constituents under the inndflévant to paraphrase recognition is that they assign

VP is inverted between the languages, an ITG can caplrong preference to candidate paraphrase pairs in which

ture the common structure of the two sentences. This RESted constituent subtrees can be recursively aligned

compactly shown by writing the parse tree together fofith a minimum of constituent boundary violations. Un-
both sentences with the aid of dh angle bracket no- like Ianguage-specmcIlng_wstlc_ approache_s, howevgr, the
tation marking parse tree nodes that instantiate rules hape of the trees are driven in unsupervised fashion by

inverted orientation: the data. One way to view this is that the trees are
hidden explanatory variables. This not only provides

[[[The/ € Authority/& 3 Rlne  [willk 4 significantly higher robustness than more highly con-
([bel e accountable/fit Fi]ww [to/l] [thel e strained manually constructed grammars, but also makes
[[Financial/lit EtSecretary/7l]nn Innn Ine 1pp the model widely applicable across languages in econom-

e Ive Isple 1s ical fashion without a large investment in manually con-

r r rces.

In a We.i.ghFEd or st_ochasti_c ITG (SITG)_’ a weight or aSt Itjﬂtgreedovzs;?gor?fgasons discussed by Wu (1997), ITGs
probablllty Is associated V_V'th each rewrite rule. I:Ollo\’\"possess an interesting intrinsic combinatorial property of
Ny the__standard conve.nt|0n, we useandb to denoFe )})ermitting roughly up to four arguments of any frame to
probabilities for syntactic and lexical rules, respectivel be transposed freely, but not more. This matches supris-
For example, the probability of the rule N [A N] is ingly closely the preponderance of linguistic verb frame
ann—[an] = 0.4. The probability of a lexical rule R2 theories from diverse linguistic traditions that all allow
x/yisba(z,y) = 0.001. Let W5, W5 be the vocabulary up to four arguments per frame. Again, this property
sizes of the two languages, and = {A;,..., Ay} be emerges naturally from ITGs in language-independent
the set of nonterminals with indicés. .., N. fashion, without any hardcoded language-specific knowl-

Wu (1997) also showed that ITGs can be equivalentlgdge. This further suggests that ITGs should do well
be defined in two other ways. First, ITGs can be definedt picking out paraphrase pairs where the order of up
as the restricted subset of SDTGs where all rules are & four arguments per frame may vary freely between
rank 2. Second, ITGs can also be defined as the restrictdge two strings. Conversely, ITGs should do well at re-
subset of SDTGs where all rules are of rank 3. jecting pairs where (1) too many words in one sentence
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find no correspondence in the other, (2) frames do nats the maximum probability of any derivation frarthat
nest in similar ways in the candidate sentence pair, @uccessfully parses bo#y ; andc,. ,. Then the best
(3) too many arguments must be transposed to achieve parse of the sentence pair has probabdity o v (S).
alignment—all of which would suggest that the sentences The algorithm compute 10,1 (S) using the follow-
probably express different ideas. ing recurrences. Note that we generalizemax to the

As an illustrative example, in common similarity mod-case where maximization ranges over multiple indices,
els, the following pair of sentences (found in actual dathy making it vector-valued. Also note thgtand () are
arising in our experiments below) would receive an inapsimply constants, written mnemonically. The condition
propriately high score, because of the high lexical simit.S — s)(t —.5) + (U —u)(v—U) # 0 is a way to specify
larity between the two sentences: that the substring in one but not both languages may be
split into an empty string and the substring itself; this
ensures that the recursion terminates, but permits words
that have no match in the other language to map te an
instead.

Chinese president Jiang Zemin arrived in Japan
today for a landmark state visit .

TLPERS K 2 B FUAS i 71 (6 B AL
P
(Jiang Zemin will be the first Chinese national

1. Initialization

: 1<t<T

president to pay a state vist to Japan.) Ot—1tw—10(3) = bi(e/cy), 1 Zw<V
However, the ITG based model is sensitive enough s () = bie/e) 1<t<T
to the differences in the constituent structure (reflecting t=htvw I 0<v<V
underlying differences in the predicate argument struc- . 0<t<T
ture) so that our experiments show that it assigns a low  Ottv-1.0(1) = bi(e/Cy), <0<V

score. On the other hand, the experiments also show that

it successfully assigns a high score to other candidate bi- . ' OisgivT
sentences representing a true Chinese translation of théRecursion Foralli, s, t, u,vsuchtha ;===
same English sentence, as well as a true English transla- t=stv—u>2
tion of the same Chinese sentence. N 0 /n <O /s
We investigate a model for the paraphrase recognition Ostun(i) = max{dpy, ([Z)’ 55“‘”(2)1)
problem that employ simple generic Bracketing ITGs. o . _ { [ if 8L (1) > 60, (0)
The experimental results show that, even in the absence () otherwise
of any thesaurus to accommodate lexical variation be- S
tween the two strings, the Bracketing ITG’s structureV €€
matching bias alone produces a significant improvement sl ;) — ax ik Ossurr () Osevro (k)
in average precision. lsjsN
1<k<N
sSSSt
i u<U<v
3 Scoring Method (S )b} T (V) (0—U)D

All words of the vocabulary are included among the lex-
ical transductions, allowing exact word matches betwee

K 1 .
the two strings of any candidate paraphrase pair. ﬁ“”( ,) = argmax a;[jx) dssuv (J) Ostvv(k)
Each candidate pair of the test set was scored via th U[S]t“”(?) Eié%
ITG biparsing algorithm, which employs a dynamic pro- L stus(9) sSEt
gramming approach as follows.Let the_inp_ut Englis_h sen- (S—s)(t— si)t+(U Uu)(v U)£0
tence beey, .. ., er and the corresponding input Chinese 5Oy = 5 N i
sentence bey, ..., cy. As an abbreviation we write, , stun(l) = 1S58 Gim (k) 9sS5Uv (4) dstuv (k)
for the sequence of words, 1, €,.2,...,€, and simi- 1S<<’g<<1;’
larly for c,. ,; also,e,. s = € is the empty string. It is u<U<v
convenient to use a 4-tuple of the forgm= (s, t,u,v) (§=8)(t=8)+(U—u)(v—U)#0
to identify each node of the parse tree, where the sub ng(i)
stringse;. ; andc,_, both derive from the node. De- t (i) ‘
note the nonterminal label apby ¢(¢). Then for any S “”(Z) = argmax ai (i) dssuw(J) Ostur (k)
nodeq = (s,t,u,v), define 5“‘” 1SheN
Gfm)(Z) s<S<t
u<U<wv

64(1) = dstuv(i) = max P[subtree of, ¢(q) = i,i = €, ;/Cu. ]

S—
subtrees af (
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3. Reconstruction

Initialize by setting the root of the methods, making it difficult to make specific claims about

parse tree to; = (0,7,0,V) and its nonterminal la- distributional neutrality, due to the arbitrary nature of the
bel to ¢(qg1) = S. The remaining descendants in theexample selection process.
optimal parse tree are then given recursively for any The ITG scoring model produced an uninterpolated

q = (S) t7 u’ /U) by:

LEFT(q) =

If t—s+v—u<2
if 04(¢(q)) =[]
if 0,(¢(q)) = ()

average precision (also known as confidence weighted
score) of 76.1%. This represents an improvement of
roughly 10% over the random baseline. Note that this
improvement can be achieved with no thesaurus or lexi-
cal similarity model, and no parameter training.

5 Experimental Results—Textual

RIGHT(q) = Entailment Recognition
NIL if t—s+v—u<2 - ) | dure for th i | |
(0 (] : B e experimental procedure for the monolingual textua
(J%(g(q))’t’ v (%(q))’v) !f B (t(a)) = ] entailment recognition task is the same as for paraphrase
(0q' (€(q)), t,u,vg (£(q))) if 04(€(q)) = )

recognition, except that one string serves as the Text and
the other serves as the Hypothesis.

Results on the textual entailment recognition task are
consistent with the above paraphrase recognition results.
For the PASCAL RTE challenge datasets, across all sub-

As mentioned earlier, biparsing for ITGs can be ac-

complished efficiently in polynomial time, rather than theSets overall, the model produced a confidence-weighted

0,
exponential time required for classical SDTGs. The re=C0re 0f 54.979% (better than chanqe atthe 0.05 level). Al
xamples were labeled, so precision, recall, and f-score

sult in Wu (1997) implies that for the special case of

; ) 0
Bracketing ITGs, the time complexity of the algorithmalre equivalent; the accuracy was 51'25 %. i
is© (T3V3) whereT andV’ are the lengths of the two For the RTE task we also investigated a second variant

sentences. This is a factor & more than monolingual of the model, in which a list of 172 words from a stoplist

chart parsing, but has turned out to remain quite practic}:l'\f"i_S eﬁcluorlle_d fro(T Ithe Iexmg_l transduhcnorf]fs. Thfe m%t"
for corpus analysis, where parsing need not be real-tim&2tion for this model was to discount the effect of words
ch as “the” or “of” since, more often than not, they

The ITG scoring model can also be seen as a variafit Id be irrel t10 the RTE task
of the approach described by Leusattal. (2003), which could berretevant to the ¢ ask.
allows us to forego training to estimate true probabilities; SU'Prisingly, the stoplisted model produced worse

instead, rules are simply given unit weights. The |Téesult§. Tgehoverall confldence—we(l)ghted Zgore Wahs
scores can be interpreted as a generalization of classe-61%; and the accuracy was 50.50%. We discuss the

cal Levenshtein string edit distance, where inverted bloci€@S0ns below in the context of specific subsets.
As one might expect, the Bracketing ITG models per-

transpositions are also allowed. Even without probabilit !
estimation, Leuscht al. found excellent correlation with 1ormed better on the subsets more closely appr(_)X|maF-
human judgment of similarity between translated pardld the tasks for which Bracketing ITGs were designed:
phrases. comparable documents (CD), paraphrasing (PP), and in-

formation extraction (IE). We will discuss some impor-
tant caveats on the machine translation (MT) and reading
comprehension (RC) subsets. The subsets least close to
the Bracketing ITG models are information retrieval (IR)

Our objective here was to isolate the effect of the IT@nd question answering (QA).
constraint bias. No training was performed with the avail-
able development sets. Rather, the aim was to establig
foundational baseline results, to see in this first round dfhe CD task definition can essentially be characterized as
paraphrase recognition experiments what results could becognition of noisy word-aligned sentence pairs. Among

obtained with the simplest versions of the ITG models. all subsets, CD is perhaps closest to the noisy word align-

The MSR Paraphrase Corpus test set consists of 178%ent task for which Bracketing ITGs were originally de-

candidate paraphrase string pairs, each annotated for seloped, and indeed produced the best results for both
mantic equivalence by two or three human collectorof the Bracketing ITG models. The basic model pro-

Within the test set, 66.5% of the examples were annotatefliced a confidence-weighted score of 79.88% (accuracy
as being semantically equivalent. The corpus was orig¥l1.33%), while the stoplisted model produced an essen-
nally generated via a combination of automatic filteringially unchanged confidence-weighted score of 79.83%

ULEFT(q)) = 1gr““D(e(q))
URIGHT(q)) = rgr @) (¢(q))

4 Experimental Results—Paraphrase
Recognition

pL  Comparable Documents (CD)
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(accuracy 70.00%). appears to arise from the greater importance of function

The results on the RTE Challenge datasets closely resords in ensuring correct information extraction, as com-
flect the larger-scale findings of Wu and Fung (2005)pared with the CD task.
who demonstrate that an ITG based model yields far ) )
more accurate extraction of parallel sentences from quasl-# Machine Translation (MT)
comparable non-parallel corpora than previous state-ofine exception to expectations is the machine translation
the-art methods. Wu and Fung's results also use the evalibset, a task for which Bracketing ITGs were devel-
uation metric of uninterpolated average precision (i.egped. The basic model produced a confidence-weighted
confidence-weighted score). score of 34.30% (accuracy 40.00%), while the stoplisted

Note also that we believe the results here are artificialljnodel produced a comparable confidence-weighted score
lowered by the absence of any thesaurus, and that signifif 35.96% (accuracy 39.17%).
cantly further improvements would be seen with the addi- However, the performance here on the machine trans-
tion of a suitable thesaurus, for reasons discussed beldstion subset cannot be directly interpreted, for two rea-
under the MT subsection. sons.

First, the task as defined in the RTE Challenge datasets
is not actually crosslingual machine translation, but rather
The PP task is also close to the task for which Brackevaluation of monolingual comparability between an au-
eting ITGs were originally developed. For the PP taskiomatic translation and a gold standard human transla-
the basic model produced a confidence-weighted scoretidn. This is in fact closer to the problem of defining a
57.26% (accuracy 56.00%), while the stoplisted modejood MT evaluation metric, rather than MT itself. Leusch
produced a lower confidence-weighted score of 51.65%t al. (2003 and personal communication) found that
(accuracy 52.00%). Unlike the CD task, the greateBracketing ITGs as an MT evaluation metric show ex-
importance of function words in determining equivalentellent correlation with human judgments.
meaning between paraphrases appears to cause the degr&econd, no translation lexicon or equivalent was used
dation in the stoplisted model. in our model. Normally in translation models, includ-

The effect of the absence of a thesaurus is mudhg ITG models, the translation lexicon accommodates
stronger for the PP task as opposed to the CD task. ltexical ambiguity, by providing multiple possible lexi-
spection of the datasets reveals much more lexical vaigal choices for each word or collocation being translated.
ation between paraphrases, and shows that cases whidee, there is no second language, so some substitute
lexis does not vary are generally handled accurately byechanism to accommodate lexical ambiguity would be
the Bracketing ITG models. The MT subsection belowneeded.
discusses why a thesaurus should produce significant im-The most obvious substitute for a translation lexicon

5.2 Paraphrase Acquisition (PP)

provement. would be a monolingual thesaurus. This would allow
) ) matching synonomous words or collocations between the
5.3 Information Extraction (IE) Text and the Hypothesis. Our original thought was to in-

The IE task presents a slight issue of misfit for thecorporate such athesaurus in collaboration with teams fo-

Bracketing ITG models, but yielded good results anycusing on creating suitable thesauri, but time limitations

how. The basic Bracketing ITG model attempts to aligriPrevented completion of these experiments. Based on our

all words/collocations between the two strings. HoweveQwn prior experiments and also on Leusattal’s expe-

for the IE task in general, only a substring of the Textiences, we believe this would bring performance on the

should be aligned to the Hypothesis, and the rest shouMT subset to excellent levels as well.

be disregarded as “noise”. We approximated this by al- . .

lowing words to be discarded from the Text at little cost>-> Réading Comprehension (RC)

by using parameters that impose only a small penalty ofhe reading comprehension task is similar to the infor-

null-aligned words from the Text. (As a reasonable firsination extraction task. As such, the Bracketing ITG

approximation, this characterization of the IE task igmodel could be expected to perform well for the RC sub-

nores the possibility of modals, negation, quotation, anget. However, the basic model produced a confidence-

the like in the Text.) weighted score of just 49.37% (accuracy 47.14%), and
Despite the slight modeling misfit, the Bracketing ITGthe stoplisted model produced a comparable confidence-

models produced good results for the IE subset. The basieighted score of 47.11% (accuracy 45.00%).

model produced a confidence-weighted score of 59.92% The primary reason for the performance gap between

(accuracy 55.00%), while the stoplisted model producethe RC and IE domains appears to be that RC is less

a lower confidence-weighted score of 53.63% (accuraayews-oriented, so there is less emphasis on exact lexical

51.67%). Again, the lower score of the stoplisted modethoices such as named entities. This puts more weight on
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the importance of a good thesaurus to recognize lexical Wu and Fung (2005) also discuss how to obtain any
variation. For this reason, we believe the addition of @esired tradeoff between precision and recall. This would
thesaurus would bring performance improvements simbe another interesting direction to pursue in the context of
lar to the case of MT. recognizing paraphrases or textual entailment.

Finally, using the development sets to train the param-
eters of the Bracketing ITG model would improve per-
The IR task diverges significantly from the tasks forformance. It would only be feasible to tune a few basic
which Bracketing ITGs were developed. The basic modglarameters, however, given the small size of the develop-
produced a confidence-weighted score of 43.14% (aeaent sets.
curacy 46.67%), while the stoplisted model produced a
comparable confidence-weighted score of 44.81% (acclReferences
racy 47.78%). Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal

Bracketing ITGs seek structurally parallelizable sub- recognising textual entailment challenge. RASCAL Pro-
strings, where there is reason to expect some degree ofceedings of the First Challenge Workshop—Recognizing Tex-
generalization between the frames (heads and arguments§ual Entailmentpages 1-8, Southampton, UK, April 2005.
of the two substrings from a lexical semantics standpoin€regor Leusch, Nicola Ueffing, and Hermann Ney. A novel
In contrast, the IR task relies on unordered keywords, so string-to-string distance measure with applications to ma-

. chine translation evaluation. Machine Translation Summit
:gebsf;?rcotn(g argument-head binding cannot be expected New Orleans, 2003.

P. M. Lewis and R. E. Stearns. Syntax-directed transduc-
5.7 Question Answering (QA) tion. Journal of the Association for Computing Machinery

. . 15:465-488, 1968.
The QA tas_k IS gxtr_e_mely free in the sense th_at que. Quirk, C. Brockett, and W. B. Dolan. Monolingual ma-
tions can differ significantly from the answers in both .fine translation for paraphrase generation. Ploceed-
syntactic structure and lexis, and can also require a ings of the 2004 Conference on Empirical Methods in Nat-
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ing real-world knowledge. The basic model pro- 2004. SIGDAT, Association for Computational Linguistics.
duced a confidence-weighted score of 33.20% (accuraBgkai Wu and Pascale Fung. Inversion Transduction Gram-
40.77%), while the stoplisted model produced a signifi- Mar constraints for mining parallel sentences from quasi-
cantly better confidence-weighted score of 38.26% (ac- COMParable corpora. IForthcoming 2005.
curacy 44.62%). Dekai Wu. An algorithm for simultaneously bracketing parallel

. : texts by aligning words. 183rd Annual Meeting of the Asso-
Aside from adding a thesaurus, to properly model the ciation for Computational Linguistics Conference (ACL-95)

QA task, at the very least the Bracketing ITG modgls Cambridge, MA, Jun 1995. Association for Computational
would need to be augmented with somewhat more lin- Linguistics.

guistic rules thatin(?lude aproper modelfnﬂn-words iN" pekai Wu. Stochastic inversion transduction grammars and
the Hypothesis, which otherwise cannot be aligned to the bilingual parsing of parallel corpor&omputational Linguis-
Text. In the Bracketing ITG models, the stoplist appears tics, 23(3), Sep 1997.

5.6 Information Retrieval (IR)

to help by normalizing out the effect of tiveh-words. Kenji Yamada and Kevin Knight. A syntax-based statistical
translation model. 1189th Annual Meeting of the Associ-
6 Conclusion ation for Computational Linguistics Conference (ACL-01)
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strings of a candidate paraphrase pair (or Text and Hy- 192-202, Hong Kong, August 2003.
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Abstract should count as linguistic knowledge. In this paper
we make a stab at this in the hope of getting a discus-
This paper argues that local textual in- sion going. For reasons that will become clear, we
ferences come in three well-defined vari- prefer to talk aboutrEXTUAL INFERENCES rather
eties (entailments, conventional implica- than about textual entailments when referring to the

tures/presuppositions, and conversational  general enterprise. We first explicitate what we think
implicatures) and one less clearly defined  should be covered by the term textual inferences, we
one, generally available world knowledge. then look at therAscAL development suite in the
Based on this taxonomy, it discusses some  light of our discussion and we conclude with a short

of the examples in theAscAL text suite proposal for extensions to the test suite.

and shows that these examples do not fall Before even starting at this, a point of clarification
into any of them. Itproposestoenlargethe  needs to be made: the correspondence of a linguis-
test suite with examples that are more di- ¢ opject to an object in the real world goes beyond
rectly related to the inference patterns dis-  \yhat can be learned from the text itself. When some-
cussed. body says or writehe earth is flabr The king of

France is baldbecause (s)he is a liar or ill-informed,
nothing in these linguistic expressions in themselves
The PASCAL initiative on “textual entailment” had alerts us to the fact that they do not correspond to sit-

the excellent idea of proposing a competition testingations in the real world (we leave texts in which the
NLP systems on their ability to understand languagauthor signals consciously or unconsiously that he is
separate from the ability to cope with world knowl-lying or fibbing out of consideration here.) What the
edge. This is obviously a welcome endeaverp  text does is give us information about the stance its
systems cannot be held responsible for knowmdgﬁ;ythor takes vigrvis the events or states described.
of what goes on in the world but na_p system can It is thus useful to distinguish between two ingre-
claim to “understand” language if it can’t cope withdients that go into determining the truth value of an
textual inferences. The task also shies away fromtterance, one is the trustworthiness of the utterer
creative metaphorical or metonymic use of languagand the other is the stance of the utterer aAgis
and makes the assumption that referential assigthe truth of the content. The latter we will call the
ments remain constant for entities that are describe@ridicity of the content. When we talk about tex-
in the same way. These all seem good features of thaal inferences we are only interested in veridicity
proposal as it stands. not in the truth which lies beyond what can be in-

Looking at the challenge as it was put before théerred from texts. Or, maybe more realistically, we
community, however, we feel that it might be usefubssume a trustworthy author so that veridical state-
to try to circumscribe more precisely what exactlynents are also true.

1 Introduction
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2 \Varieties of local textual inferences (4) Ames was a clever spy.

i i i i entailsAmes was a spy.
Under this assumption of trustworthiness, semantl% . ) . )
.Again negation reverses the entailment:

and pragmatics as practiced by philosophers and lin- ,

guists can give us some insights that are of practicaq‘r’) Ame; wasn'ta sp¥.

relevance. Work done in the last century has led re- entgl!sAmes wasn taclever spy. . _
searchers to distinguish between entailments, con-Quantifiers, easily among the most intensively
ventional implicatures and conversational implicaStudied lexical items, also exhibit upward or down-
tures. We describe these three classes of inferenciard monotonicity: To give just one example:

and illustrate why the distinctions are important for (6) All companies have to file annual reports.
NLP. entailsAll Fortune 500 companies have to file

annual reports.
2.1 Entailments but

The most uncontroversional textual inferences ar€7) All companies have to file annual reports.

those that can be made on the basis of what is as- does not entaiRll companies have to file an-
serted in a text. If the author makes the statement nual reports to thesec.

thatTony Hall arrived in Baghdad on Sunday night The fact that there are both upwards monotonic
then we can conclude thabny Hall was in Bagh- and downwards monotonic expressions means that
dad on Sunday nigl{keeping referring expressionssimple matching on an inclusion of relevant mate-
constant, as proposed in thescAL task). The sec- rial cannot work as a technique to detect entailments.
ond sentence is true when the first is true (assunypward monotone expressions preserve truth by
ing we are talking about the same Tony Hall, théeaving out material whereas downward monotone
same Baghdad and the same Sunday) just by virt@gpressions don’t: adding material to them can be

of what the words mean. truth preserving.
In simple examples such as that in (1) Apart from a more specific/less specific relation,
(1) Bill murdered John. lexical items can establish a part-subpart relation be-
Bill killed John. tween the events they describe. If we followed the

one can go to a resource such as WordNet, look JESt sentence in (1) by

murde, discover that it meankill with some fur- ~ (8) John died. o _

ther conditions. “Ontologies” or thesauruses typiVe would still have a lexical inference. In this case

cally order terms in a hierarchy that encodes a rén€ in which the event described in the second sen-
lation from less specific at the top of the hierarchy€nce is a subpart of the event described in the first.

to more specific at the bottom. In simple clauses The investigation of entailments leads one to dis-

the replacement of a more specific term with a leséguish several types of lexical items that have pre-
specific one, ensures an upward monotonic relatigictable effects on meaning that can be exploited to
between these sentences. As is well known this réiscover sentences that are inferentially related (by

lation is inversed when the sentences are negatede@l entailments in this case). Other examples are
scope bearing elements (an aspect of meaning that

(2) Bill didn’t murder John. often leads to ambiguities which are not always eas-
does not entaiBill didn’t kill John. ily perceived) and perception reports.
but 2A quantifierQ is downward monotonic with respect to its
il didn’t ki restrictorg iff ((Q ¢) ¥) remains true when the is narrowed,
(3) Bill didn't I.(II! Jo.hn', e.g. fromcompaniego Fortune 500 companie#\ quantifierQ
does entaiBill didn’t murder John. is upward monotonic with respect to its scopeff ((Q ¢) )

Monotonicity relations also hold when adjectivalremains true whet is broadened, e.g. frotmave to file reports

e e . to thescEto justhave to file reports
modification is introduced as in (4) ®Dagan and Glickman (2004) explore inferencing by syn-

A sentence is downward monotonic iff it remains true whertactic pattern matching techniques but consider only upward
itis narrowed. A sentence is upward monotonic when it remainsionotonic expressions. Their proposal ensures loss of recall
true when it is broadened. on downward monotonic expressions.
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Two types of relations deserve special mentioto be non-controversial. In newspapers and other in-
here because they are pervasive and they are at feemation sources they are a favorite way to distin-
borderline between linguistic and world knowledgeguish background knowledge, that the reader might
temporal relations and spatial relations. Whethdrave or not, without confusing it with what is news-
knowing that Tuesday follows Monday or that therewvorthy in the report at hand. A very common ex-
are leap years and non-leap years is linguistic knowkmple of this, exploited in theasCAL test suite, is
edge or world knowledge might not be totally cleathe use of appositives. illustrated in the following
but it is clear that one wants this information to beexample:
part of what textual entailment can draw upon. The(9) The New York Times reported that Hanssen,
consequences in a Eucledian space of the place and who soldFBI secrets to the Russians, could face
movement of objects are similar. There is arich set  the death penalty.
of entailment relations that builds on these temporal  Did Hanssen seltBI reports to the Russians?

and spatial notions. YES
. _ From the perspective of tasks, the way conven-
2.2 Conventional Implicatures’ tional implicatures behave under negation is one rea-

Apart from making assertions, however, an authcton to pay close attention to them. The following

will often “conventionally implicate” certain things. €xamples illustrate this:

We use here the term conventional implicature fot10) Kerry realized that Bush was right.

what has been called by that name or labeled as (se- Bush was right.

mantic) presupposition. Some of us have argued 1) Kerry didn’t realize that Bush was right.

elsewhere there is no need for a distinction between  Bush was right.

these two notions (Karttunen and Peters, 1979) and other types of embedded clauses that are conven-

that presupposition is a less felicitous term becaus%na”y implicated are temporal adverbials (except

it tends to be confused with “old information”. those introduced bipeforeor until. Other types of
Traditionally these implications are not consid-material that can introduce a conventional implica-

ered to be part of what makes the sentence true, e are adverbial expressions suctesislentlyand
the author iscOMMITTED to them and we consider simple adverbs such againor still.

them part of what textual inferences should be based |t js important to point out that the syntactic struc-

on. We take this position because we think it is reayre doesn’t guide the interpretation here. Consider
sonable, forE tasks, to assume that material that ishe following contrast:

way as assertions, for instance, to provide answers spy.
to questions. When somebody sl acknowl-  .,nyentionally implicates that Ames was a success-
edges that the earth is roungve know something ¢ spy, but
about the author’s as well as Bill's beliefs in the mat- 13) A:ccording to the press, Ames was a successful
ter, namely that the author is committed to the belieg‘ spy ’
that the earth is round. '
. N . does not.
If all conventionally implied material were also

discourse old information, this might not matter very2.3  Conversational Implicatures

much as the same information would be availablg ,iqrs can be held responsible for more than just
elsewhere in the text, but often conventionally imyggertions and conventional implicatures. Conversa-
plied material is new information that is presentediq | impiicatures are another type of author com-
as not being under discussion. Conventional implig,iiment. A conversational implicature rests on the
catures are a rich source of information fartasks assumption that, in absence of evidence to the con-
because the material presented in them is sUppOsggy 4 collaborative author will say as much as she

“For more on conventional implicatures, see e.g. Karttunen SFor more on conversational implicatures, see e.g. Grice
and Peters (1979) and Potts (2005) (1989) and Horn (2003)

33



knows. So if Sue says that she has four children, It might also be thought that the generalizations
we tend to conclude that she has no more than fouhat we need here can be reduced to syntactic dis-
This type of implicature can be destroyed withoutinctions. We don’t have the space to show in great
any contradiction arisingHe not only ate some of detail that this is not the case but some reflection
the cake, he ate all of iWVithin the context of atex- on and experimentation with the examples given
tual inference task such as that defined in#ag-  throughout this paper will convince the reader that
CAL initiative, it is clear that inferences based orthis is not the cases. For instance, if one replaces the
conversational implicatures might be wrongas-  adjectivecleverwith the equally good adjectival-

CAL doesn't give the context. In a more developedegedin (4) above, the entailment relation between
type of inference task, a distinction should be madt&he sentences doesn’t hold anymore. Substituting
between this type of inference and the ones we dishowfor realizein (11) has the same effect.

cussed earlier, but when inferencing is reduced to

one sentence it seems more reasonable to take gémd Some world knowledge?

eralized conversational implicatures into account §$, our mind this exhausts the ways in which an au-
bona fide cases of inferences (except of course s can be held responsible for her writings on the
they are cancelled in the sentence itself, as in the,gis of text internal elements. Textual inferences
example above). are based on textual material that is either an en-
(14) I had the time to read your paper. tailment of what is explicitly asserted, or material
conversationally implies that | read your paper. Buthat conventionally or conversationally implied by
it could be followed bybut | decided to go play ten- the author. These inferences can be made solely on
nis instead. the basis of the way the meaning of the words and
(15) Some soldiers were killed. construction she uses are related to other words and
constructions in the language. But even in a task that
tries to separate out linguistic knowledge from world
of them are dead. knowledge, it i§ not possible to avoid the Iatte_r com-
. _ pletely. There is world knowledge that underlies just
(16) He certainly has three children. about everything we say or write: the societies we
conversationally implieste doesn’t have more than jie in use a common view of time to describe events
three_ childrenbut it could be followed byn facthe 54 rely on the assumptions of Euclidean geometry,
has five, three daughters and two sons.  |ga4ing to shared calendars and measurement sys-
Apart from the general conversational implicayems. It would be impossible to separate these from
tures, implicatures can also arise by virtue of SoM&jqistic knowledge. Then there is knowledge that
thing being said or not said in a particular context. Ifg commonly available and static, e.g. that Baghdad
in a letter of recommendation, one praises the cakks i, Irag. It seems pointless to us to exclude the

didate’s handwriting without saying anything about s e 1o such knowledge from the test suite but it
his intellectual abilities, this allows the reader tuould be good to define it more explicitly.

draw some conclusions. We assume here that this

type of inference is not part of tteascAL task, as 3 ThepascaL development suite.

too little context is given for it to be reliably calcu-

lated. We now discuss some of tiascAL development
One might agree with the analysis of variouset examples in the light of the discussion above and

sources of author commitment given above but bexplain why we think some of them do not belong

of the opinion that it doesn’t matter because, givein a textual inference task. First a numberrafs-

enough data, it will come out in the statistical washcAL examples are based on spelling variants or even

We doubt, however, that this will happen any timespelling mistakes. While it is clear that coping with

soon without some help: the semantic distinctionghis type of situation is important faxwLp applica-

are rather subtle and knowing about them will helpions we think they do not belong in a textual infer-

develop adequate features for statistical training. ence test bed. We first discuss a couple of examples

conversationally implieblot all soldiers were killed.
But it could be cancelled bin fact we fear that all
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that we think should not have been in the test suiteor somebody who knows a lot about hippos it might

and then some that do not confirm to our view ofbe reasonable to assume that a conflict is necessarily

inferencing but which might belong in a textual in-an attack but in general there is no inferenmenflict

ference test suite. is the less general term aattackthe more specific
one.

3.1 Errors? (21) A statement said to be from al Qaida claimed

A problem arises with an example like the follow-  the terror group had killed one American and

ing: kidnapped another in Riyadh.
(17) A farmer who was in contact with cows suffer- A U.S. citizen working in Riyadh has been kid-

ing from BSE — the so-called mad cow disease napped.
— has died from what is regarded as the human Tryg

form of the disease. This seems betray a rather implausible belief in the
Bovine spongiform encephalopathy is anotheglaims of al Qaida and while we are assuming that
name for the “mad cow disease”. the author of the text is trustworthy, this assumption
TRUE does not extend to the sources he invokes. In this

If one googlesssE, one finds that it is an abbre- case especially, the usedfim can be construed as
viation that can stand for many things, includingndication the doubt of the author about the veracity
the Bombay, Bulgarian, Baku or Bahrain Stock Exgf what the source says.

Change, Breast Self'Examination, and Brain Sur('22) Wal-Mart is being sued by a number of its
face Extractor. To select the right alternative, one  female employees who claim they were kept
needs the knOWIEdge that “bovine Spongiform en- out of jobs in management because they were
cephalopathy” is a name of a disease and the other \yomen.

competing BSE expansions are not. Wal-Mart is sued for sexual discrimination.
The authors of th@ASCAL test suite don't seem TRUE

to allow for as much world knowledge when theya minute of reflection will make clear that here the
mark the following relation asALse. relation between the two sentences involves quite a
(18) “I just hope | don’t become so blissful | be-p;t of specialized legal knowledge and goes beyond

come boring” — Nirvana leader Kurt Cobainieytyal inferencing. How isexual discrimination
said, giving meaning to his “Teen Spirit” coda, gifferent fromsexual harassment

?denial. . o _ (23) South Korean’s deputy foreign minister says
FALSE

o . soldiers to Iraqg.
Apparently, it isSNOT OK to know that the Nirvana South Korea continues to send troops.
song “Smells like Teen Spirit” is often referred to as TRUE

“Teen Spirit”. But why should we then know that\ye assume that in context the second sentence

bovine spongiform encephalopathy is a disease? eans that South Korea continues to plan to send
The test suite also contains examples that can On%ops but normallycontinuedoes not mearon-

be classified as plain errors. A couple of exampleg, e to planand the first sentence certainly doesn't

are the following: _ . imply that South Korea has already sent troops. Here
(19) Green cards are becoming more difficult to Obt'he way the test suite has been put together leads

tain. _ - , to odd results. A headline is paired up with a full
Green card is now difficult to receive. sentence. Headlines are not meant to be understood
TRUE

completely out of context and it would be prudent to
i use them sparingly in inference tasks of the sort pro-
be easy, if it starts out that way.

. . L .._posed here. We discuss other consequences of the
(20) Hippos do come into conflict with people CIUIteway the test suite was constructed in the next sub-

Something that is becoming more difficult can still

often. . . .

: section with examples that to our mind need some
Hippopotamus attacks human. ) .
TRUE kind of accommodation.
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3.2 Not atextual inference as such but ... 4 A proposal for some refinements

There are a couple of examples such as the followinfs the discussion above has shown, the way the test
in the test suite: suite was put together leads sometimes to the in-
, _ clusion of material that should not be there given
(24) The White House failed to act on the domest-he definition of the task. Most of the data that

tic threat from al Qaida prior to September 11form the basis oPASCAL are extracted from differ-

20r(])_l. ) d the th ‘ K ent newspaper articles about the same event, often
\T/\Ilths House ignored the threat of attack. from the same newswire. This means that the infor-

mation packaging is very similar, reducing the con-
Here there is no entailment either way and Sure|§trUCti0nal and lexical range that can be used to ex-
fail to actis not a synonym olgnore The examples Press a same idea. This situation will not pertain in
are due to the way theaSCAL test suite was put to- the more general setting of question answering and
gether. It was evidently at least in part developed b{pany types of paraphrases or inferences that would
finding snippets of text that refer to the same everite useful for question answering in general will not
in different news sources; this is a fertile method foP€e found or will be very rare iRASCAL-like suites.
finding inferences but it will lead to the inclusion of We would propose to augment the types of pairs
some material that mixes factual description and vathat one can get through tRascAL extraction tech-
ious APPRECIATIONSOf the described facts. For in- hiques with some that take the type of relations that
stance in (24) above, two different authors describedie have discussed explicitly into account. It can be
what the White house did, putting a different spirPbjected that this introduces a new level of artificial-
on it. While the fact described in both cases waly by allowing made-up sentences but the separa-
the same, the appreciations that the two rendering@n of world knowledge from linguistic knowledge
gi\/e, while both negati\/e, are not equiva|ent_ Bui:S in any case artificial. But it is necessary because
although there is no legitimate inference for the sere Will not be able to solve the inferencing problem
tences as a whole, they both entail that the Whiteithout slicing the task into manageable pieces.
House did not act. Here the test suite is the victim oAcknowledgments

its self imposed (_:onstraints, namely that the relatiop,is article was supported in part by the Advanced
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One can conceive of a thesaurus wheagalogue implicature. In Choon-Kyu Oh and David A. Dinneen,
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Abstract

In this work we investigate methods to en-
able the detection of a specific type of tex-
tual entailment gtrict entailment), start-
ing from the preliminary assumption that
these relations are often clearly expressed
in texts. Our method is a statistical ap-
proach based on what we cé#dixtual en-
tailment patterns prototypical sentences
hiding entailment relations among two ac-
tivities. We experimented the proposed
method using the entailment relations of
WordNet as test case and the web as cor-
pus where to estimate the probabilities;
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be calledstrict entailment detectionGenerally, this
task is faced under the simplifying assumption that
the analysed text fragments represtatts (f; for

the ones in the text anf}, for those in the hypothe-
sis) in an assertive or negative wdBaraphrase de-
tectionis then needed when the hypothésisarries
afactf thatis also in the target texbut is described
with different words, e.g.Yahoo acquired Overture
vs. Yahoo bought OverturéOn the other handtrict
entailmentemerges when target sentences carry dif-
ferent facts,f;, # f:. The challenge here is to derive
the truth value of the entailmerfit — f;,. For exam-
ple, a strict entailment isYahoo acquired Overture
— Yahoo owns Overtute In fact, it does not de-
pend on the possible paraphrasing between the two

obtained results will be shown. expressions but on an entailment of the tfaots

governed byacquireandown

Whatever the form of textual entailment is, the
real research challenge consists in finding a rel-
Textual entailment has been recently defined asevant number oftextual entailment prototype re-
common solution for modelling language variabilitylations such as X acquired YentailsX owns Y or
in different NLP tasks (Glickman and Dagan, 2004): X acquired YentailsX bought Y that can be used
Roughly, the problem is to recognise if a given texto recognise entailment relations. Methods for ac-
tual expression, theext (), entails another expres- quiring such textual entailment prototype relations
sion, thehypothesigh). An example is determining are based on the assumption that specific facts are
whether or not Yahoo acquired Overturg) entails often repeated in possibly different linguistic forms.
Yahoo owns Overtur@)”. More formally, the prob- These forms may be retrieved using thairchors
lem of determining a textual entailment between generally nouns or noun phrases completely char-
andh is to find a possibly graded truth value for theacterising specific facts. The retrieved text frag-
entailment relation — h. ments are thus considered alternative expressions

Since the task involves natural language expre$sr the same fact. This supposed equivalence is
sions, textual entailment has a more difficult naturéhen exploited to derive textual entailment proto-
with respect to logic entailment, as it hides two diftype relations. For example, the specific f¥ahoo
ferent problemsparaphrase detectioand what can bought Overtures characterised by the two anchors

1 Introduction
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{Yahoo, Overturg, that are used to retrieve in theas test cases and the web as corpus where to esti-
corpus text fragments where they co-occur, 8Yg-  mate the probabilities (Sec. 3). Finally we will draw
hoo purchased Overture (July 2003)"Now that some conclusions (Sec. 4).

Overture is completely owned by Yahoo!..These

retrieved text fragments are then considered godl The method

candidate for paraphrasingbought Y i . . ) . .
Anchor-based learning methods have been us&yjscovering entailment relations within texts im-

to investigate many semantic relations ranging frorRi€s the understanding of two aspects: firstly, how
very general ones as tigrelation in (Morin, 1999) these entailment relatlor!s are usual'ly expressed and,
to very specific ones as in (Ravichandran and Hovy€condly, when an entailment relation may be con-

2002) where paraphrases of question-answer paﬁgiered stable and commonly shared. Assessing the

are searched in the web or as in (Szpektor et afirst aspect requires the investigation of which are

2004) where a method to scan the web for searchif§® Prototypical textual forms that describe entail-
textual entailment prototype relations is presented€nt relations. We will call thertextual entailment
These methods are mainly devoted to induce entaff{terns These patterns (analysed in Sec. 2.2) will
ment pairs related to the first kind of textual entail€NabPle the detection @oint-wise entailment asser-

ment, that isparaphrasingas their target is mainly tions, that is, candidat_e \_/erb pairs that still n_eed a
to look for the same “fact” in different textual forms. further step of analysis in order to be considered
Incidentally, these methods can come across stritH€ entailment expressions. In fact, some of these
entailment relations whenever specific anchors afédndidates may be not enough stable and commonly
used for both a facf; and astrictly entailed factf;,. Snared in the language to be considered true en-
In this work we will investigate specific meth- tailments. To better deal with this second aspect,

ods to induce the second kind of textual entailmerdf'€thods for statistically analysing large corpora are

relations, that isstrict entailment. We will focus N€eded (see laterin Sec. 2.3).
on entailment between verbs, due to the fact that e method we propose may be used in either: (1)
verbs generally govern the meaning of sentencg€cognisingif entailment holds between two verbs,
The problem we are facing is to look for (or ver-OT (2) extractingfrom a corpusC’ all the implied
ify) entailment relations likey, — vy, (Whereuv, is entailment relations. Imecognition given a verb
the text verb andy, the hypothesis verb). Our ap- pair_, the rel_ated textual entailment ex_pressions are
proach is based on an intuition: strict entailment red€rived as instances of thextual entailment pat-
lations among verbs are often clearly expressed fgrnsand, then, the statistical entailment indicators
texts. For instance the text fragmémiayer wins ©N @ corpug’ are computed to evaluate the stability
$50K in Montana Cash’hides an entailment rela- Of the relation. Inextraction the corpusC' should
tion between two activities, namepfay andwin. If be scanned to extract textual expressions that are in-
someone wins, he has first of all to play, thes — stances of the textual entailment patterns. The re-
play. The idea exploits the existence of what can paulting pairs are sorted according to the statistical
calledtextual entailment pattetra prototypical sen- entailment indicators and only the best ranked are
tence hiding an entailment relation among two actii€tained as useful verb entailment pairs.
ities. In the abovementioned example the pattern in- L
stanceplayer winsubsumes the entailment relationz'1 An intuition
“win — play’. Our method stems from an observation: verb logical
In the following we will firstly describe in Sec. subjects, as any verb role filler, have to satisfy spe-
2 our method to recognise entailment relations besific preconditions as the theory stlectional re-
tween verbs that uses: (1) the prior linguistic knowlstrictions suggests. Then, if in a given sentence a
edge of thesextual entailment patterrend (2) sta- verbwv has a specific logical subjeet its selectional
tistical models to assess stability of the implied rerestrictions imply that the subject has to satisfy some
lations in a corpus. Then, we will experiment oumpreconditions, that is,v(x) — p(x). This can be
method by using the WordNet entailment relationsead also as: it has the property of doing the action
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v this implies thatr has the property. For example, cation), e.g.,play vs. player. Whether or not an

if the verb isto eat the selectional restrictions et entailment relation between two verfs, v;,) holds
would imply, among other things, that its subject isaccording to some writer can be verified looking for
ananimal If the preconditiorp is “having the prop- sentences with expressions involving the agentive
erty of doing an actiom”, the constraint may imply nominalization of the hypothesis verl. Then, the
that the action entails the actiom, that is,uy — a.  procedure to verify if entailment between two verbs

As for selectional restriction acquisition, the pre<{v;, v;,) holds in a point-wise assertion is: whenever
vious observation can enable the use of corpora #ss possible to personify the hypothesjg scan the
enormous sources of candidate entailment relatiomsrpus to detect the expressions where the personi-
among verbs. For examptdohn McEnroe won the fied hypothesis verb is the subject of a clause gov-
match...”can contribute to the definition of the selec-erned by the text verb;.
tional restrictionwin(x) — human(z) (sinceJohn  Given the two investigated verlss,, v;) we will
McEnroeis ahumar), as well as to the induction (or refer to this first set of textual entailment patterns
verification) of the entailment relation betweain  as personified pattern®,c,s(ve, v,). This set will
andplay, sinceJohn McEnroehas theproperty of contain the following textual patterns:
playing However, as the example shows, classes
relevant for acquiring selectional preferences may Prers (v, 0) =
be more explicit than active properties useful to de- {“pers(vn)|number:sing  Vt|person:third,tense:present” ;
rive entailment relations (i.e., it is easier to derive “pe’"sgzh)}"umb” plur ﬂperm nothird,tense:present”
thatJohn McEnrods a human than that he has the ey ) Imumbersing - Utltenseipast
property of playing).

This limitation can be overcome wheyentive wherepers(v) is the noun deriving from the person-
nounssuch asunnerplay subject roles in some sen-ification of the vertw and elements such &s, . s,
tences. Agentive nouns usually denote the “doer” aiire the tokens generated from lemniasy apply-
“performer” of some actior. This is exactly what ing constraints expressed via the featufgs.., fv.
is needed to make clearer the relevant property @&for example, in the case of the venflay andwin,
the noun playing the logical subject role, in order tahe related set of textual entailment expressions de-
discover entailment. The actiarwill be the one en- rived from the patterns will beP,.,s(win, play)
tailed by the verb heading the sentence. For exam-{ “player wins”, “players win”, “player won”,
ple, in“the player wins”, the actionplay evocated “players won” }. In the experiments hereafter de-
by the agentive nouplayeris entailed bywin. scribed, the required verbal inflections (except per-
sonification) have been obtained using the publicly
available morphological tools described in (Minnen
As observed for thésa relations in (Hearst, 1992) et al., 2001) whilst simple heuristics have been used
local and simple inter-sentential patterns may carno personify verbs
relevant semantic relations. As we saw in the pre- As the statistical measures introduced in the fol-
vious section, this also happens for entailment r@owing section are those usually used for study-
lations. Our aim is thus to search for an initial sefng co-occurrences, two more sets of expressions,
of textual patterns that describe possible Ilngwstlg: +(v) andF(v), are needed to represent the sin-

forms eXpreSSIng entailment relations between tWQle events in the pa”' These are defined as:
verbs(vg, vy). By using these patterns, actual point-

wise assertions of entailment can be detected orvery ) _
ified in texts. We call these prototypical pattetes-  F(v) =
tual enta”ment patterns “U|pev‘son nothird,tense: present ’ U'tenae :past }

The idea described in Sec. 2.1 can be straight-

forwardly applied to generate textual entailment pat- 'Personification, i.e. agentive nominalization, has been ob-
t it often h that b d tained adding “-er” to the verb root taklng into account possible
erns, as it often happens that verbs can undergo émeual cases such as verbs ending in “-y”. A form is retained

agentive nominalization (hereafter callpdrsonifi- as a correct personification if it is in WordNet.

Uh ‘number :plur Uf|tense :past }

2.2 Textual entailment patterns

{ pers(v)lnumber szng 7 pers( )|number:plu7‘”}

{ /U‘pereon third,tense:pr escnt a
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2.3 Measures to estimate the entailment where logarithm is used to contrast the effect of the
strength Zipf's law. This measure is often positively used in

The above textual entailment patterns defiont- terminology extraction (e.g., (Daille, 1994)).

wise entailment assertions. In fact, if pattern in- Secopdly, anothgr measmi(”t’”h) related to
stances are found in texts, the only conclusion th&PiNt-wise mutual information (Fano, 1961) may
may be drawn is that someone (the author of thae also us_e_c!. Given the po,ss'b"”Y Of, estlmat'lng
text) sustains the related entailment pairs. A seﬁbe probab|I|t_|e_s. thrf)ugh maxmum-hkehhood prin-
tence like" Painter drawson old techniques but cre- ciple, the definition is straightforward:

ates only decorative objectsuggests thgtainting P(Ppers (2, 1))
entailsdrawing However, it may happen that these ~ Smi(vi, vn) = logio Vs P 7}“
correctly detected entailments are accidental, that is, P(Fpers(0))P(F (vn)

the detected relation is only valid for that given textwherep(z) = fo(z)/fc(.). The aim of this mea-

For example, the text fragmetwhen apainter dis-  syre is to indicate the relatedness between two el-
coversthis hidden treasure, other people are immegments composing a pair. Mutual information has
diately struck by its beautyif taken in insulation peen positively used in many NLP tasks such as col-
suggests thataintingentailsdiscoveringbut thisis  |ocation analysis (Church and Hanks, 1989), termi-
questionable. Furthermore, it may also happen thablogy extraction (Damerau, 1993), and word sense

patterns detect wrong cases due to ambiguous &fsambiguation (Brown et al., 1991).
pressions like' Painter drawsinspiration from for-
est, field” where the sense of the vedraw is not 3 Experimental Evaluation
the one expected. L
In order to get rid of these wrong verb pairs, ar’ﬁs many other corpus linguistic approaches, our en-

. . . . tailment detection model relies partially on some lin-
assessment of point-wise entailment assertions over

a corpus is needed to understand how much the uistic prior knowledge (th_e expected stru_cture of
. . . f e searched collocations, i.e., tlegtual entailment
rived entailment relations are shared and Commonﬁ/atterns) and partially on some probability distribu
agreed. This validation activity can be obtained b P y P y

. . . ¥|on estimation. Only a positive combination of both
both analysing large textual collections and applyin : . :
- ese two ingredients can give good results when ap-
statistical measures relevant for the task.

: . _ . ... plying (and evaluating) the model.
Before introducing the statistical entailment |nd|-on g(g d evaluat g)_t e mode L
s . The aim of the experimental evaluation is then to
cators, some definitions are necessary. Given a cor-

pusC containing samples, we will refer to the abso_understand, on the one side, if the propotedual

L entailment patternsre useful to detect entailment
lute frequency of a textual expressibim the corpus

C with fe(t). The definition is easily extended to abetwgen verbs and,lon the other, if a statistical mea-
: i sure is preferable with respect to the other. We will
set of expressions as follows:

here evaluate the capability of our methode¢oog-
- niseentailment between given pairs of verbs.

fe(@) =" fo(t) We carried out the experiments using the web as
the corpus”’ where to estimate our two textual en-
Given a pairv; andv, we may thus define the fol- tailment measuresS{ andS,,,;) and GoogléM as
lowing entailment strength indicatorS (v, vy,), re-  a count estimator. The findings described in (Keller
lated to more general statistical measures. and Lapata, 2003) seem to suggest that count estima-

The first relevance indicata$ (v, vy, ), is related  tions we need in the present study o%emject-Verb
to the probability of the textual entailment patterrbigrams are highly correlated to corpus counts.
as it is. This probability may be represented by the As test bed we used existing resources: a non triv-
frequency, as the fixed corpdsmakes constant the ial set of controlled verb entailment pairs is in fact

teT

total number of pairs: contained in WordNet (Miller, 1995). There, the en-
tailment relation is a semantic relation defined at the
S¢(ve,vn) = logio(fo(Ppers(vi,vn))) synset level, standing in the verb subhierarchy. Each
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between théfrue Setand theControl Setis empty,

we are not completely sure that tBentrol Setdoes

not contains any pair where the entailment relation

holds. What we may assume is that this last set at

least contains a smaller number of positive pairs.
Sensitivity i.e. the probability of having positive

answers for positive pairs, argpecificity i.e. the

probability of having negative answers for negative

pairs, are then defined as:

Sensitivity(t) = p((vp,ve) € T'S|S(vp, ve) > t)
Speci ficity(t) = p((vn,vr) € CS|S(unrur) < 1)

wherep((vp,v;) € T'S|S(vp,v) > t) is the prob-
ability of a candidate paifvy,v;) to belong toTS

if the test is positive, i.e. the valug(vy,v;) of the
entailment detection measure is greater thavhile
p((vp,ve) € CS|S(vp,v¢) < t) is the probability
of belonging toCSif the test is negative. The ROC
pair of synset$S;, S;,) is an oriented entailment re- curve (Sensitivity vs. 1 — Speci ficity) naturally
lation betweenS; and S;. WordNet contains 415 follows (see Fig. 1).
entailed synsets. These entailment relations are con-Results are encouraging as textual entailment pat-
sequently stated also at the lexical level. The paterns show a positive correlation with the entailment
(S¢, Sp) naturally implies that, entailsvy, for each relation. Both ROC curves, the one related to the fre-
possiblev; € S; andwv, € Sy,. Itis then possible quency indicatoiSy (f in figure) and the one related
to derive from the 415 entailment synset a test set & the mutual informatiorSy;; (Ml in figure), are
2,250 verb pairs. As the proposed model is appliabove theBaseline curve. Moreover, both curves
cable only when hypotheses can be personified, tlage above the second baselid#seline2) applica-
number of the pairs relevant for the experiment ible when it is really possible to use the indicators. In
thus reduced to 856. This set is hereafter called tHact, textual entailment patterns have a non-zero fre-
True Se(T'S). guency only for61.4% of the elements in th@&rue

As theTrue Sefis our starting point for the eval- Set This is true also fod8.1% of the elements in the

uation, it is not possible to produce a natural distric©Ntrol Set The presence-absence in the corpus is

bution in the verb pair space between entailed arffjen already an indicator for the entailment relation
not-entailed elements. Then, precision, recall, arigf Verb pairs, _bUt th(_a gppllcatlon of the two indica-
f-measure are not applicable. The only solution jlors can help in deciding among elements that have

to use a ROC (Green and Swets, 1996) curve mif. Non-zero fre_zquency_in the corpus. Finally, in 'Fhis_
ing sensitityandspecificity What we then need is a case, mutual mfor_matlon appears Fo be a better indi-
Control Set(C'S) of verb pairs that in principle are cator for the entailment relation with respect to the
not in entailment relation. Théontrol Sethas been T€dUeNcy.

randomly built on the basis of thErue Set given
the set of all the hypothesis verlds and the set of
all the text verbd" of the True Setcontrol pairs are We have defined a method to recognise and extract
obtained randomly extracting one element fréin entailment relations between verb pairs based on
and one element froM. A pair is considered a con- what we calltextual entailment patterrin this work

trol pair if it is not in theTrue Set For comparative we defined a first kernel dextual entailment pat-
purposes theControl Sethas the same cardinality ternsbased on subject-verb relations. Potentials of
of the True Set However, even if the intersection the method are still high as different kinds of textual

Figure 1: ROC curves

4 Conclusions
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entailment patterns may be defined or discovereeJd. Damerau. 1993. Evaluating domain-oriented multi-
investigating relations between sentences and sub-word terms from text. Information Processing and
sentences as done in (Lapata and Lascarides, 2004}12nagement29(4):433-447.

for temporal relations or between near sentences RSM. Fano. 1961.Transmission of Information: a sta-
done in (Basili et al., 2003) for cause-effect relations tistical theory of communicationsMIT Press, Cam-
between domain events. Some interesting and sim-Pridge.MA.

ple inter-sentential patters are defined in (Chklovskbren Glickman and Ido Dagan. 2004. Probabilistic
and Pantel, 2004). Moreover, with respect to anchor- textual entailment: Generic applied modeling of lan-

uage variability. InProceedings of the Workshop on
bgsed azg:oackles, .tTe fm?thOd V\f; presz:‘lted ?erfearning Methods for Text Understanding and Mining
offers a different point of view on the problem of o 0pje, France.
acquiring textual entailment relation prototypes, as '
textual entailment patterns do not depend on the refrén Glickman, Ido Dagan, and Moshe Koppel. 2005.

. it . . . Web based probabilistic textual entailment. Rro-
etition of “similar” facts. This practically indepen- ceedings of the 1st Pascal Challenge Workshop

dent view may open the possibility to experiment soyuthampton, UK.

co-training algorithms (Blum and Mitchell, 1998) M. G d 1A Swets. 1998ianal Detection Th
o : . Green and J.A. Swets. ignal Detection The-
also in this area. Finally, the approach proposed cé%ory and PsychophysicsJohn Wiley and Sons, New

be useful to define better probability estimations in ygrk UsA.
probabilistic entailment detection methods such as

the one described in (Glickman et al., 2005). Marti A. Hearst. 1992. Automatic acquisitio_n of hy-
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Abstract

This paper proposes a general probabilis-
tic setting that formalizes a probabilistic
notion of textual entailment. We further
describe a particular preliminary model
for lexical-level entailment, based on
document cooccurrence probabilities,
which follows the general setting. The
model was evaluated on two application
independent datasets, suggesting the rele-
vance of such probabilistic approaches for
entailment modeling.

1 Introduction

Many Natural Language Processing (NLP)
applications need to recognize when the meaning
of one text can be expressed by, or inferred from,
another text. Information Retrieval (IR), Question
Answering (QA), Information Extraction (IE), text
summarization and Machine Translation (MT)
evaluation are examples of applications that need
to assess this semantic relationship between text
segments. The Textual Entailment Recognition
task (Dagan et al., 2005) has recently been pro-
posed as an application independent framework for
modeling such inferences.

Within the textual entailment framework, a text
t is said to entail a textual hypothesis 4 if the truth
of h can be inferred from ¢. Textual entailment cap-
tures generically a broad range of inferences that
are relevant for multiple applications. For example,
a QA system has to identify texts that entail a hy-
pothesized answer. Given the question "Does John
Speak French?", a text that includes the sentence
"John is a fluent French speaker" entails the sug-
gested answer "John speaks French." In many
cases, though, entailment inference is uncertain
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and has a probabilistic nature. For example, a text
that includes the sentence "John was born in
France." does not strictly entail the above answer.
Yet, it is clear that it does increase substantially the
likelihood that the hypothesized answer is true.

The uncertain nature of textual entailment calls
for its explicit modeling in probabilistic terms. We
therefore propose a general generative probabilistic
setting for textual entailment, which allows a clear
formulation of concrete probabilistic models for
this task. We suggest that the proposed setting may
provide a unifying framework for modeling uncer-
tain semantic inferences from texts.

An important sub task of textual entailment,
which we term lexical entailment, is recognizing if
the lexical concepts in a hypothesis 4 are entailed
from a given text ¢, even if the relations which hold
between these concepts may not be entailed from z.
This is typically a necessary, but not sufficient,
condition for textual entailment. For example, in
order to infer from a text the hypothesis "Chrysler
stock rose," it is a necessary that the concepts of
Chrysler, stock and rise must be inferred from the
text. However, for proper entailment it is further
needed that the right relations hold between these
concepts. In this paper we demonstrate the rele-
vance of the general probabilistic setting for mod-
eling lexical entailment, by devising a preliminary
model that is based on document co-occurrence
probabilities in a bag of words representation.

Although our proposed lexical system is rela-
tively simple, as it doesn’t rely on syntactic or
other deeper analysis, it nevertheless was among
the top ranking systems in the first Recognising
Textual Entailment (RTE) Challenge (Glickman et
al., 2005a). The model was evaluated also on an
additional dataset, where it compares favorably
with a state-of-the-art heuristic score. These results
suggest that the proposed probabilistic framework
is a promising basis for devising improved models
that incorporate richer information.

Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailagsst 4348,
Ann Arbor, June 2005©)2005 Association for Computational Linguistics



example text hypothesis

1 John is a French Speaker

2 John was born in France John speaks French

3 Harry's birthplace is lowa .

4 Harry is returning to his lowa hometown Harry was born in lowa

Table 1: example sentence pairs
2 Probabilistic Textual Entailment

2.1 Motivation

A common definition of entailment in formal se-
mantics (Chierchia. and McConnell-Ginet, 1990)
specifies that a text ¢ entails another text & (hy-
pothesis, in our terminology) if & is true in every
circumstance (possible world) in which ¢ is true.
For example, in examples 1 and 3 from Table 1
we’d assume humans to agree that the hypothesis
is necessarily true in any circumstance for which
the text is true. In such intuitive cases, textual en-
tailment may be perceived as being certain, or, tak-
ing a probabilistic perspective, as having a
probability of 1.

In many other cases, though, entailment infer-
ence is uncertain and has a probabilistic nature. In
example 2, the text doesn’t contain enough infor-
mation to infer the hypothesis’ truth. And in exam-
ple 4, the meaning of the word hometown is
ambiguous and therefore one cannot infer for cer-
tain that the hypothesis is true. In both of these
cases there are conceivable circumstances for
which the text is true and the hypothesis false. Yet,
it is clear that in both examples, the text does in-
crease substantially the likelihood of the correct-
ness of the hypothesis, which naturally extends the
classical notion of certain entailment. Given the
text, we expect the probability that the hypothesis
is indeed true to be relatively high, and signifi-
cantly higher than its probability of being true
without reading the text. Aiming to model applica-
tion needs, we suggest that the probability of the
hypothesis being true given the text reflects an ap-
propriate confidence score for the correctness of a
particular textual inference. In the next sub-
sections we propose a concrete probabilistic setting
that formalizes the notion of truth probabilities in
such cases.

2.2 A Probabilistic Setting

Let T denote a space of possible texts, and t€T a
specific text. Let H denote the set of all possible
hypotheses. A hypothesis heH is a propositional
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statement which can be assigned a truth value. For
now it is assumed that / is represented as a textual
statement, but in principle it could also be ex-
pressed as a formula in some propositional lan-
guage.

A semantic state of affairs is captured by a
mapping from H to {O=false, 1=true}, denoted by
w: H— {0, 1} (called here possible world, follow-
ing common terminology). A possible world w
represents a concrete set of truth value assignments
for all possible propositions. Accordingly, W de-
notes the set of all possible worlds.

2.2.1 A Generative Model

We assume a probabilistic generative model for
texts and possible worlds. In particular, we assume
that texts are generated along with a concrete state
of affairs, represented by a possible world. Thus,
whenever the source generates a text ¢, it generates
also corresponding hidden truth assignments that
constitute a possible world w.

The probability distribution of the source, over
all possible texts and truth assignments T x W, is
assumed to reflect inferences that are based on the
generated texts. That is, we assume that the distri-
bution of truth assignments is not bound to reflect
the state of affairs in a particular "real” world, but
only the inferences about propositions' truth which
are related to the text. In particular, the probability
for generating a true hypothesis / that is not related
at all to the corresponding text is determined by
some prior probability P(4). For example, h="Paris
is the capital of France" might have a prior smaller
than 1 and might well be false when the generated
text 1s not related at all to Paris or France. In fact,
we may as well assume that the notion of textual
entailment is relevant only for hypotheses for
which P(h) < 1, as otherwise (i.e. for tautologies)
there is no need to consider texts that would sup-
port A's truth. On the other hand, we assume that
the probability of / being true (generated within w)
would be higher than the prior when the corre-
sponding ¢ does contribute information that sup-
ports h's truth.



We define two types of events over the prob-
ability space for 7' x W:
I) For a hypothesis &, we denote as Tr;, the random
variable whose value is the truth value assigned to
h in a given world. Correspondingly, Tr,=1 is the
event of / being assigned a truth value of 1 (true).
IT) For a text #, we use ¢ itself to denote also the
event that the generated text is ¢ (as usual, it is
clear from the context whether ¢ denotes the text or
the corresponding event).

2.3 Probabilistic
definition

textual entailment

We say that a text ¢ probabilistically entails a hy-
pothesis 4 (denoted as ¢ = h) if ¢ increases the like-
lihood of h being true, that is, if P(Tr, = 11 ¢) >
P(Tr, = 1) or equivalently if the pointwise mutual
information, I(Trh=1,t), is greater then 0. Once
knowing that t=h, P(Tr,=1l 1) serves as a probabil-
istic confidence value for 4 being true given .

Application settings would typically require
that P(Tr;, = 11 ) obtains a high value; otherwise,
the text would not be considered sufficiently rele-
vant to support A's truth (e.g. a supporting text in
QA or IE should entail the extracted information
with high confidence). Finally, we ignore here the
case in which 7 contributes negative information
about 4, leaving this relevant case for further in-
vestigation.

2.4 Model Properties

It is interesting to notice the following properties
and implications of our model:

A) Textual entailment is defined as a relationship
between texts and propositions whose representa-
tion is typically based on text as well, unlike logi-
cal entailment which is a relationship between
propositions only. Accordingly, textual entail-
ment confidence is conditioned on the actual gen-
eration of a text, rather than its truth. For
illustration, we would expect that the text “His
father was born in Italy” would logically entail
the hypothesis “He was born in Italy” with high
probability — since most people who’s father was
born in Italy were also born there. However we
expect that the text would actually not probabilis-
tically textually entail the hypothesis since most
people for whom it is specifically reported that
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their father was born in Italy were not born in
Ttaly.'

B) We assign probabilities to propositions (hy-
potheses) in a similar manner to certain probabil-
istic reasoning approaches (e.g. Bacchus, 1990;
Halpern, 1990). However, we also assume a gen-
erative model of text, similar to probabilistic lan-
guage and machine translation models, which
supplies the needed conditional probability distri-
bution. Furthermore, since our conditioning is on
texts rather than propositions we do not assume
any specific logic representation language for text
meaning, and only assume that textual hypotheses
can be assigned truth values.

C) Our framework does not distinguish between
textual entailment inferences that are based on
knowledge of language semantics (such as mur-
dering = killing) and inferences based on domain
or world knowledge (such as live in Paris = live
in France). Both are needed in applications and it
is not clear at this stage where and how to put
such a borderline.

D) An important feature of the proposed frame-
work is that for a given text many hypotheses are
likely to be true. Consequently, for a given text ¢
and hypothesis A, 2,P(Tr,=1l¢) does not sum to 1.
This differs from typical generative settings for
IR and MT (Ponte and croft, 1998; Brown et al.,
1993), where all conditioned events are disjoint
by construction. In the proposed model, it is
rather the case that P(Tr,=1lf) + P(Tr,=0l¢) = 1, as
we are interested in the probability that a single
particular hypothesis is true (or false).

E) An implemented model that corresponds to our
probabilistic setting is expected to produce an
estimate for P(Tr, = 11 7). This estimate is ex-
pected to reflect all probabilistic aspects involved
in the modeling, including inherent uncertainty of
the entailment inference itself (as in example 2 of
Table 1), possible uncertainty regarding the cor-
rect disambiguation of the text (example 4), as
well as probabilistic estimates that stem from the
particular model structure.

3 A Lexical Entailment Model

We suggest that the proposed setting above pro-
vides the necessary grounding for probabilistic

! This seems to be the case, when analyzing the results of en-
tering the above text in a web search engine.



modeling of textual entailment. Since modeling the
full extent of the textual entailment problem is
clearly a long term research goal, in this paper we
rather focus on the above mentioned sub-task of
lexical entailment - identifying when the lexical
elements of a textual hypothesis /& are inferred
from a given text ¢.

To model lexical entailment we first assume that
the meanings of the individual content words in a
hypothesis can be assigned truth values. One pos-
sible interpretation for such truth values is that
lexical concepts are assigned existential meanings.
For example, for a given text ¢, Try,o=1 if it can be
inferred in #’s state of affairs that a book exists.
Our model does not depend on any such particular
interpretation, though, as we only assume that truth
values can be assigned for lexical items but do not
explicitly annotate or evaluate this sub-task.

Given this setting, a hypothesis is assumed to be
true if and only if all its lexical components are
true as well. This captures our target perspective of
lexical entailment, while not modeling here other
entailment aspects. When estimating the entailment
probability we assume that the truth probability of
a term u in a hypothesis % is independent of the
truth of the other terms in 4, obtaining:

P(Tr, = 11 £) = I1,,P(Tr,=1lf) 1)

P(Tr, = 1) = I,e,P(Tr,=1)

In order to estimate P(Tr,=1lv, ..., v,) for a
given word u and text t={v,, ..., v,}, we further
assume that the majority of the probability mass
comes from a specific entailing word in ¢:

P(Tr,=1lt)=max,_ P(Tr, =11T,)

where Tv denotes the event that a generated text
contains the word v. This corresponds to expecting
that each word in 4 will be entailed from a specific
word in ¢ (rather than from the accumulative con-
text of 7 as a whole®). Alternatively, one can view
(2) as inducing an alignment between terms in the
h to the terms in the 7, somewhat similar to align-
ment models in statistical MT (Brown et al., 1993).

Thus we propose estimating the entailment
probability based on lexical entailment probabili-
ties from (1) and (2) as follows:

P(Tr, =1l =] | max_P(T7, =11T)) (3)

% Such a model is proposed in (Glickman et al., 2005b)
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3.1 Estimating Lexical Entailment

Probabilities

We perform unsupervised empirical estimation of
the lexical entailment probabilities, P(Tr,=1IT,),
based on word co-occurrence frequencies in a cor-
pus. Following our proposed probabilistic model
(cf. Section 2.2.1), we assume that the domain
corpus is a sample generated by a language source.
Each document represents a generated text and a
(hidden) possible world. Given that the possible
world of the text is not observed we do not know
the truth assignments of hypotheses for the ob-
served texts. We therefore further make the sim-
plest assumption that all hypotheses stated
verbatim in a document are true and all others are
false and hence P(Tr,=11T,) = P(T,IT,). This simple
co-occurrence probability, which we denote as
lexical entailment probability — lep(u,v), is easily
estimated from the corpus based on maximum like-
lihood counts:

n

u,v

lep(u,v)=P(Tr, =11T)) = 4)

nV
where n, is the number of documents containing
word v and n,,, is the number of documents con-
taining both u and v.

Given our definition of the textual entailment
relationship (cf. Section 2.3) for a given word v we
only consider for entailment words u for which
P(Tr,=11T,)> P(Tr,=1) or based on our estimations,
for which n,,/n, > n,/N (N is total number of
documents in the corpus).

We denote as fep the textual entailment probability
estimation as derived from (3) and (4) above:

tep(t,h) = Hueh max ¢, lep (u,v) (5

3.2 Baseline model

As a baseline model for comparison, we use a
score developed within the context of text summa-
rization. (Monz and de Rijke, 2001) propose mod-
eling the directional entailment between two texts
11, , via the following score:
2 idf (w)

we(t;Nt,)

D idf (w)

wet,
where idf(w) = log(N/n,), N is total number of
documents in corpus and n, is number of docu-

entscore (t,,t,) =

(6)



ments containing word w. A practically equivalent
measure was independently proposed in the con-
text of QA by (Saggion et al., 2004)’. This baseline
measure captures word overlap, considering only
words that appear in both texts and weighs them
based on their inverse document frequency.

4 The RTE challenge dataset

The RTE dataset (Dagan et al., 2005) consists
of sentence pairs annotated for entailment. Fo this
dataset we used word cooccurrence frequencies
obtained from a web search engine. The details of
this experiment are described in Glickman et al.,
2005a. The resulting accuracy on the test set was
59% and the resulting confidence weighted score
was 0.57. Both are statistically significantly better
than chance at the 0.01 level. The baseline model
(6) from Section 3.2, which takes into account only
terms appearing in both the text and hypothesis,
achieved an accuracy of only 56%. Although our
proposed lexical system is relatively simple, as it
doesn’t rely on syntactic or other deeper analysis,
it nevertheless was among the top ranking systems
in the RTE Challenge.

5 RCVI1 dataset

In addition to the RTE dataset we were interested
in evaluating the model on a more representative
set of texts and hypotheses that better corresponds
to applicative settings. We focused on the informa-
tion seeking setting, common in applications such
as QA and IR, in which a hypothesis is given and it
is necessary to identify texts that entail it.

An annotator was asked to choose 60 hypothe-
ses based on sentences from the first few docu-
ments in the Reuters Corpus Volume I (Rose et al.,
2002). The annotator was instructed to choose sen-
tential hypotheses such that their truth could easily
be evaluated. We further required that the hypothe-
ses convey a reasonable information need in such a
way that they might correspond to potential ques-
tions, semantic queries or IE relations. Table 2
shows a few of the hypotheses.

In order to create a set of candidate entailing
texts for the given set of test hypotheses, we fol-
lowed the common practice of WordNet based ex-

? (Saggion et al., 2004) actually proposed the above score with
no normalizing denominator. However for a given hypothesis
it results with the same ranking of candidate entailing texts.
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pansion (Nie and Brisebois, 1996; Yang and Chua,
2002). Using WordNet, we expanded the hypothe-
ses’ terms with morphological alternations and
semantically related words®.

For each hypothesis stop words were removed
and all content words were expanded as described
above. Boolean Search included a conjunction of
the disjunction of the term’s expansions and was
performed at the paragraph level over the full
Reuters corpus, as common in IR for QA. Since we
wanted to focus our research on semantic variabil-
ity we excluded from the result set paragraphs that
contain all original words of the hypothesis or their
morphological derivations. The resulting dataset
consists of 50 hypotheses and over a million re-
trieved paragraphs (10 hypotheses had only exact
matches). The number of paragraphs retrieved per
hypothesis range from 1 to 400,000.

5.1 Evaluation

The model’s entailment probability, tep, was com-
pared to the following two baseline models. The
first, denoted as base, is the naive baseline in
which all retrieved texts are presumed to entail the
hypothesis with equal confidence. This baseline
corresponds to systems which perform blind ex-
pansion with no weighting. The second baseline,
entscore, s the entailment score (6) from 3.2.

The top 20 best results for all methods were
given to judges to be annotated for entailment.
Judges were asked to annotate an example as true
if given the text they can infer with high confi-
dence that the hypothesis is true (similar to the
guidelines published for the RTE Challenge data-
set). Accordingly, they were instructed to annotate
the example as false if either they believe the hy-
pothesis is false given the text or if the text is unre-
lated to the hypothesis. In total there were 1683
text-hypothesis pairs, which were randomly di-
vided between two judges. In order to measure
agreement, we had 200 of the pairs annotated by
both judges, yielding a moderate agreement (a
Kappa of 0.6).

* The following WordNet relations were used: Synonyms, see
also, similar to, hypernyms/hyponyms, meronyms/holonyms,
pertainyms, attribute, entailment, cause and domain

> The dataset is available at:
http://ir-srv.cs.biu.ac.il:64080/emsee05_dataset.zip



5.2 Results

base | entscore | tep
precision | 0.464 | 0.568 | 0.647
CcWs 0.396 | 0.509 | 0.575

Table 2: Results

Table 2 includes the results of macro averaging the
precision at top-20 and the average confidence
weighted score (cws) achieved for the 50 hypothe-
ses. Applying Wilcoxon Signed-Rank Test, our
model performs significantly better (at the 0.01
level) than entscore and base for both precision and
cws. Analyzing the results showed that many of
the mistakes were not due to wrong expansion but
rather to a lack of a deeper analysis of the text and
hypothesis (e.g. example 3 in Table 2). Indeed this
is a common problem with lexical models. Incor-
porating additional linguistic levels into the prob-
abilistic entailment model, such as syntactic
matching, co-reference resolution and word sense
disambiguation, becomes a challenging target for
future research.

6 Conclusions

This paper proposes a generative probabilistic set-
ting that formalizes the notion of probabilistic tex-
tual entailment, which is based on the conditional
probability that a hypothesis is true given the text.
This probabilistic setting provided the necessary
grounding for a concrete probabilistic model of
lexical entailment that is based on document co-
occurrence statistics in a bag of words representa-
tion. Although the illustrated lexical system is
relatively simple, as it doesn’t rely on syntactic or
other deeper analysis, it nevertheless achieved en-
couraging results. The results suggest that such a
probabilistic framework is a promising basis for
improved implementations incorporating deeper
types of knowledge and a common test-bed for
more sophisticated models.
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Abstract

We describe our efforts to generate a
large (100,000 instance) corpus of textual
entailment pairs from the lead paragraph
and headline of news articles. We manu-
ally inspected a small set of news stories
in order to locate the most productive
source of entailments, then built an anno-
tation interface for rapid manual evalua-
tion of further exemplars. With this
training data we built an SVM-based
document classifier, which we used for
corpus refinement purposes—we believe
that roughly three-quarters of the resulting
corpus are genuine entailment pairs. We
also discuss the difficulties inherent in
manual entailment judgment, and suggest
ways to ameliorate some of these.

1 Introduction

MITRE has a long-standing interest in robust text
understanding, and, like many, we believe that
adequate progress in such an endeavor requires a
well-designed evaluation methodology. We have
explored in great depth the use of human reading
comprehension exams for this purpose (Hirschman
et al., 1999, Wellner et al., 2005) as well as TREC-
style question answering (Burger, 2004).

In this context, the recent Pascal RTE evaluation
(Recognizing Textual Entailment, Dagan et al.,
2005) captured our interest. The goal of RTE is to
assess systems’ abilities at judging semantic en-
tailment with respect to a pair of sentences, e.g.:

49

* Fred spilled wine on the carpet.
* The rug was wet.

In RTE parlance, the antecedent sentence is
known as the fext, while the consequent sentence is
known as the hypothesis. Simply put, the chal-
lenge for an RTE system is to judge whether the
text entails the hypothesis. Judgments are Boo-
lean, and the primary evaluation metric is simple
accuracy, although there were other, secondary
metrics used in the evaluation.

The RTE organizers provided 567 exemplar sen-
tence pairs. This is adequate for system develop-
ment, but not for the application of large-scale
statistical models. In particular, we wished to cast
the problem as one of statistical alignment as used
in machine translation. MT systems typically use
millions of sentence pairs, and so we decided to
find or generate a much larger corpus. This paper
describes our efforts along these lines, as well as
some observations about the problems of annotat-
ing entailment data. In Section 2 we describe our
initial search for an entailment corpus. Section 3
briefly describes an annotation interface we de-
vised, as well as our efforts to refine our corpus.
Section 4 explains many of the issues and prob-
lems inherent in manual annotation of entailment
data.

2 Finding Entailment Data

In our study of the Pascal RTE development cor-
pus, we found that a considerable majority of the
TRUE pairs exhibit a stronger relationship than
entailment; namely, the hypothesis is a paraphrase
of a subset of the text. For instance, given the text
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No. articles | No. articles

Source examined in 1.5 mos.
miami-herald (US) 19 94,278
washington-post (US) 18 13,813
cs-monitor (US) 11 7,102
all-africa 18 68,521
dawn (Pakistan) 17 46,839
gulf-daily-news 10 26,837
national-post (Canada) 18 14,124

Figure 1: MiTAP News Sources Examined

John murdered Bill yesterday, the hypothesis Bill
is dead is an entailment, while the hypothesis Bill
was killed by John exhibits the stronger partial
paraphrase relationship to the text. We found that
94% (131/140) of the TRUE pairs in the Pascal
RTE dev2 corpus were these sorts of paraphrases.

In our search for an entailment corpus, we ob-
served that the headline of a news article is often a
partial paraphrase of the lead paragraph, much like
the RTE data, or is sometimes a genuine entail-
ment. We thus deduced that headlines and their
corresponding lead paragraphs might provide a
readily available source of training data. As an
initial test of this hypothesis, we manually in-
spected over 200 news stories from 11 different
sources. We found a great deal of variety in head-
line formats, and ultimately found the Xinhua
News Agency English Service articles from the
Gigaword corpus (Graff, 2003) to be the richest
source, though somewhat limited in subject do-
main. We describe here our data collection and
analysis process.

Because our goal was to automatically generate
an extremely large corpus of exemplars, we fo-
cused on large data sources. We first examined
111 news stories culled from MiTAP (Damianos et
al., 2003), which collects over one million articles
per month from approximately 75 different
sources. By first counting the number of articles
typically collected for each source, we selected a
mixture of sources that each had more than 10,000
articles for our sample period of one and half
months. As discussed further below, part way
through our investigation it became clear that we
needed to include more native English sources, so

though they fell below our arbitrary 10K mark.
Figure 1 summarizes the MiTAP news sources ex-
amined.

For each lead paragraph/headline pair, a human
rendered a judgment of yes, no, or maybe as to
whether the lead paragraph entailed the headline,
where maybe meant that the headline was very
close to being an entailment or paraphrase. This is
likely equivalent to the notion of “more or less se-
mantically equivalent” used in the Microsoft Re-
search Paraphrase Corpus (Dolan et al., 2005).
The purpose of maybe in this case was that we
thought that many of the near-miss pairs would
make adequate training data for statistical algo-
rithms, in spite of being less than perfect.

There were many types of news articles in the
MiTAP data that did not yield good headline/lead
paragraph pairs for our purposes. Many would be
difficult to filter out using automated heuristics.
Two frequent examples of this were opinion-ed
itorial pieces and daily Wall Street summaries.
Others would be more amenable to automatic
elimination, including obituaries and collections of
news snippets like the Washington Post’s “World
in Brief”. Articles consisting of personal narra-
tives never yielded good headlines, but these could
easily be eliminated by recognizing first person
pronouns in the lead paragraph. Figure 2 shows
the judgments for all the MiTAP articles examined,
where the Filtered row excludes these easily elimi-
nated article types.

As Figure 2 shows, the MiTAP data did not
yield a high percentage of good pairs. In addition,
whether due to poor machine translation or English
dialectal differences, our evaluator found it diffi-
cult to understand some of the text from sources
that were not English-primary. A certain amount
of ill-formed text was acceptable, since the Pascal
RTE challenge included training and test data
drawn from MT scenarios, but we did not wish our
data to be too dominated by such sources. Thus,
we selected additional native-English articles to
add to our sample set.

Despite the overall poor yield from this data, it

- 3 ) . Source Yes No Maybe | Total
the Christian Science Monitor articles were added, APW 8(31%) | 12(46%) | 6 (23%) 26
Yes No Maybe Total AFE 14 (56%) | 4 (16%) 7 (28%) 25
All 54 (49%) | 39 (35%) | 18 (16%) 111 NYT 8 (31%) | 17 (65%) 1 (4%) 26
Pairs XIE 22(85%) | 4(15%)| 0(0%)| 26
Filtered | 54 (53%) | 33 (33%) | 14 (14%) 101 Total 52 (50%) | 37 (36%) | 14 (14%) | 103

Figure 2: MiTAP Corpus Results
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Figure 3: Gigaword Corpus Results



was apparent that some news sources tended to be
more fruitful than others. For example, 13 out of
18 of the Washington Post articles yielded good
pairs, as opposed to only 1 of the 11 Christian Sci-
ence Monitor articles.

This generalization was likewise true in the sec-
ond corpus we examined, the Gigaword newswire
corpus (Graff, 2003). Gigaword contains over 4
million documents from four news sources:

* Agence France Press English Service (AFE)

* Associated Press Worldstream English Service
(APW)

* The New York Times Newswire Service
(NYT)

* The Xinhua News Agency English Service
(XIE)

For each source, Gigaword articles are classified
into several types, including newswire advisories,
etc. We restricted our investigations to actual
news stories. As Figure 3 shows, overall results
were much the same as the MiTAP articles, but
85% of the XIE articles yielded adequate pairs.

fata &

Based on these preliminary results we decided to
focus further manual investigations on the XIE
articles from Gigaword. We also decided to ex-
pend some effort on an annotation tool that would
allow us to proceed more quickly than the early
annotation experiments described above.

3 Refining the Data

MITRE has developed a series of annotation tools
for a variety of linguistic phenomena (Day et al,
1997; Day et al, 2004), but these are primarily de-
signed for fine-grained tasks such as named entity
and syntactic annotation. For our headline corpus,
we wanted the ability to rapidly annotate at a docu-
ment level from a small set of categories. Further,
we wanted the interface to easily support
distributed annotation efforts.

The resulting annotation interface is shown in
Figure 4. It is web-based, and annotations and
other document information are stored in an SQL
database. The document to be evaluated is dis-
played in the user’s chosen browser, with the XML

~

Tagging Document NYT19971001.0475

[« »J[cf{+] O

[JJ Address Bookv Musicv poster Tuning Apple Amazon weather Newsv Schoolsv

Tagging Document NYT19... ‘

Tagging Document NYT19971001.0475 |

Tag: E“@“Mavbe‘

Annotator: ignore

Comment:

Bundle: None

<DOC id="NYT19971001.0475" type="story" >

<HEADLINE>

BRAZIL TO SELECT WINNER OF $500 MLN ARGENTINE ENERGY CONTRACT

</HEADLINE>
<DATELINE>

Sao Paulo, Oct. 1 (Bloomberg) (BC-BRAZIL-ARGENTINA-ENERGY-BLOOM)

</DATELINE>

<TEXT>

<P>

Brazil next week plans to award

the rights for a $500 million project that will allow it to tap
into surplus Argentine electricity, while taking some of the

pressure off its own overtaxed power system.

Figure 4: Entailment Tagging Interface
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document zoning tags visible so that the user can
easily identify the headline and lead paragraph. At
the top of the document are three buttons from
which to select a yes/no/maybe judgment. The
user can also add a comment before moving to the
next document. Typically several documents can
be judged per minute. The client-server architec-
ture supports multiple annotations of the same
document by different annotators—accordingly, it
has a mode enabling reconciliation of inter-
annotator disagreements. All further annotation
efforts discussed below were carried out with this
tool.

Using the tool, we tagged approximately 900
randomly chosen Gigaword documents, including
520 XIE documents. From this, we estimate that
70% of the XIE headlines in Gigaword are entailed
by the corresponding lead paragraph. (This is
lower than the rough estimate described in Section
2, but that was based on a very small sample.) We
decided to explore ways to refine the data in order
to arrive at a smaller, but less noisy subcorpus. We
observed that different subgenres within the news-
paper corpus evinced the lead-entails-headline
quality to different degrees. For example, articles
about sports or entertainment often had whimsical
(non-entailed) headlines, while articles about poli-
tics or business more frequently had the headline
quality we sought.

Accordingly, we decided to treat the data re-
finement process as a text classification problem,
one of finding the mix of genres or topics that
would most likely possess the lead-entails-headline
quality. We used SVM-light (Joachims, 2002) as a
document classifier, training it on the initial set of
annotated articles. (Note that these text classifica-
tion experiments made use of the entire article, not
just the lead and headline.) We experimented with
a variety of feature representations and SVM pa-
rameters, but found the best performance with a
Boolean bag-of-words representation, and a simple
linear kernel. Leave-one-out estimates indicate
that SVM-light could identify documents with the
requisite entailment quality with 77% accuracy.

We performed one round of active learning
(Tong & Koller, 2000), in which we used SVM-
light to classify a large subset of the unannotated
corpus, and then selected a 100-document subset
about which the classifier was least certain. The
rationale is that annotating these uncertain docu-
ments will be more informative to further learning
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runs than a randomly selected subset. In the case
of large-margin classifiers like SVMs, the natural
choice is to select the instances closest to the mar-
gin. These were then annotated, and added back to
the training data for the next learning run. How-
ever, leave-one-out estimates indicated that the
classifier benefited little from these new instances.

As described above, we estimate that the base
rate of the headline entailment property in the XIE
portion of Gigaword is 70%. Our hypothesis in
training the SVM was that we could identify a
smaller but less noisy subset. In order to evaluate
this, we ran the trained SVM on all 679,000 of the
unannotated XIE documents, and selected the
100,000 “best” instances—that is, the documents
most likely (according to the SVM) to evince the
headline quality. We selected a random subset of
these best documents, and annotated them to
evaluate our hypothesis. 74% of these possessed
the lead-entails-headline property, a difference of
4% absolute over the XIE base rate. We used the
lead-headline pairs from this 100,000-best subset
to train our MT-alignment-based system for the
RTE evaluation (Bayer et al., 2005). This system
was one of the best performers in the evaluation,
which we ascribe to our large training corpus

Later examination showed that the 4% “im-
provement” in purity is not statistically significant.
We intend to perform further experiments in data
refinement, but this may prove unnecessary. Per-
haps the base rate of the entailment phenomenon in
the XIE documents is sufficient to train an effec-
tive alignment-based entailment system. In this
case, all of the XIE documents could be used, per-
haps resulting in a more robust, and even better
performing system.

4 Judging Headline Entailments

In the process of generating the training data, we
doubly-judged an additional 300 XIE documents to
measure inter-judge reliability. As in the pilot
phase described above, each pair was labeled as
yes, no, or maybe. In addition, the judges were
given a comment field to record their reasoning
and misgivings. The judging was performed in
two steps, first on a set of 100 documents and then
on a set of 200. One of the judges was already
well versed in the RTE task, and had performed the
earlier pilot investigations. Prior to judging the
first set, the second judge was given a brief verbal



Condition Set 1 Set 2
(100 docs) | (200 docs)
strict match 75.00% 77.50%
maybe = yes 79.00% 90.00%
maybe = no 84.00% 81.00%
maybe = * 88.00% 94.00%

Figure 5: Agreement for Two XIE Data Sets

overview of the task. After the first 100 docu-
ments had been doubly-judged, the more experi-
enced judge then reviewed the differences and
drafted a set of guidelines. The guidelines pro-
vided a synopsis of the official RTE guidelines,
plus a few rules unique to headlines. For example,
one rule specified what to do when partial entail-
ment only held if the lead were combined with lo-
cation or date information from the dateline. The
two evaluators then judged the second set. The
results for both sets are shown in Figure 5.

As these results show, the guidelines had only a
small effect on the strict measure of agreement.
Three problem areas existed:

(1) Raw, messy data. The Gigaword corpus was
automatically collected and zoned. Thus, the head-
lines in particular contained a number of irregulari-
ties that made it difficult to judge their
appropriateness. Such irregularities included trun-
cations, phrases lacking any proposition, pre-
pended alerts like URGENT:, and bylines and date
lines miszoned into the headline.

(2) Disagreement on what constitutes synon-
ymy. Our judges found they had irreconcilable
differences about differences in meaning. For ex-
ample, in the following pair, the judges disagreed
about whether safe operation in the lead paragraph
meant the same thing as, and thus entailed, oper-
ates smoothly in the headline:

* Shanghai's Honggiao Airport Operates Smoothly

* As of Saturday, Shanghai's Honggiao Airport

has performed safe operation for some 2,600
consecutive days, setting a record in the country.

(3) Disagreement on the amount of world
knowledge permitted. Figure 5 shows that if
maybe is counted as equivalent to yes, the agree-
ment level improves significantly. This is likely
because there were two important aspects of the
RTE definition of entailment that were not im-
parted to the second judge until the written guide-
lines: that one can assume “common human
understanding of language and some common
background knowledge.” However, our judges did
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not always agree on what counts as “common,”
which accounts for much of the high overlap be-
tween yes and maybe. Nevertheless, our 90%
agreement compares favorably to the 83% agree-
ment rate reported by Dolan et al. (2005) for their
judgments on “more or less semantically equiva-
lent” pairs. Our 78% strict agreement compares
favorably to the 80% agreement achieved by Da-
gan et al. (2005), given that our data was messier
than the pairs crafted for the RTE challenge.

Like Dagan et al. (2005), we did not force reso-
lution on all disagreements. Disagreements over
synonymy and common knowledge result in irrec-
oncilable differences, because it is neither possible
nor desirable to use guidelines to force a shared
understanding of an utterance. Thus, for the first
set of data 15 (15%) of the pairs were left unrecon-
ciled. In the second set, 42 (21%) were left un-
reconciled. Eleven (6%) of the irreconcilable pairs
in the second set were due to confusion stemming
from the telegraphic nature of headlines, which led
to misunderstandings about how to judge truncated
headlines (Chinese President Vows to Open New
Chapters With) vs. headlines lacking propositions
(subject headings like Mandela’s Speech) vs. well-
formed but terse headlines (Crackdown on Auto-
Mafia in Bulgaria).

Despite the high number of irreconcilable pairs,
one encouraging sign was evident from the com-
ment field. The judges’ comments revealed that on
pairs where they disagreed on how to label the
pair, they often agreed on what the problem was.

Our experience in generating a training corpus,
particularly the number of irreconcilable cases we
encountered, raises an important issue, namely, the
feasibility of semantic equivalence tasks. We sug-
gest that the optimum method for empirically
modeling semantic equivalence is to capture the
variation in human judgments. Three judges
would evaluate each pair, so that there would al-
ways be a tie breaker. After reconciling for dis-
agreements arising from human error, each distinct
judgment would become part of the data set. We
also recommend that where there is genuine dis-
agreement, the questionable portions of each pair
be annotated in some way to capture the source of
the problem, going one step further than the com-
ment field we found beneficial in our annotation
interface. The three judgments would result in a
four way classification of pairs:



TTT = TRUE

TTF = Likely TRUE, but possibly FALSE
TFF = Likely FALSE, but possibly TRUE
FFF = FALSE

System developers could choose to train on all
the data, or limit themselves to the TTT/FFF cases.
For evaluation purposes, the systems’ results on
the TTF/TFF pairs could be evaluated in light of
the human variation, providing a more realistic
measure of the complexity of the task.

5 Conclusion

Given the number of natural language processing
applications that require the ability to recognize
semantic equivalence and entailment, there is an
obvious need for both robust evaluation method-
ologies and adequate development and test data.
We’ve described here our work in generating sup-
plemental training data for the recent Pascal RTE
evaluation, with which we produced a competitive
system. Some news corpora provide a rich source
of exemplars, and an automatic document classifier
can be used to reduce the noisiness of the data.
There are lingering difficulties in achieving high
inter-judge agreement in determining paraphrase
and entailment, and we believe the best way to
cope with this is to allow the data to reflect the
variance that exists in cross-human judgments.
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Abstract

In this paper we define two intermediate
models of textual entailment, which corre-
spond to lexical and lexical-syntactic lev-
els of representation. We manually anno-
tated a sample from the RTE dataset ac-
cording to each model, compared the out-
come for the two models, and explored
how well they approximate the notion of
entailment. We show that the lexical-
syntactic model outperforms the lexical
model, mainly due to a much lower rate
of false-positives, but both models fail to
achieve high recall. Our analysis also
shows thatparaphrasesstand out as a
dominant contributor to the entailment
task. We suggest that our models and an-
notation methods can serve as an evalua-
tion scheme for entailment at these levels.

Introduction

}@cs.biu.ac.il

inference. The complexity of modeling entail-
ment was demonstrated in the first PASCAL Chal-
lenge Workshop on Recognizing Textual Entailment
(RTE) (Dagan et al., 2005). Systems that partici-
pated in the challenge used various combinations of
NLP components in order to perform entailment in-
ferences. These components can largely be classi-
fied as operating at the lexical, syntactic and seman-
tic levels (see Table 1 in (Dagan et al., 2005)). How-
ever, only little research was done to analyze the
contribution of each inference level, and on the con-
tribution of individual inference mechanisms within
each level.

This paper suggests that decomposing the com-
plex task of entailment into subtasks, and analyz-
ing the contribution of individual NLP components
for these subtasks would make a step towards bet-
ter understanding of the problem, and for pursuing
better entailment engines. We set three goals in this
paper. First, we consider two modeling levels that
employ only part of the inference mechanisms, but
perform perfectly at each level. We explore how
well these models approximate the notion of entail-

Textual entailment has been proposed recently asent, and analyze the differences between the out-
a generic framework for modeling semantic varicome of the different levels. Second, for each of the
ability in many Natural Language Processing appresented levels, we evaluate the distribution (and
plications, such as Question Answering, Informaeontribution) of each of the inference mechanisms
tion Extraction, Information Retrieval and Docu-typically associated with that level. Finally, we sug-

ment Summarization. The textual entailment relagest that the definitions of entailment at different

tionship holds between two text fragments, termetévels of inference, as proposed in this paper, can
text and hypothesis, if the truth of the hypothesis caserve as guidelines for manual annotation of a “gold
be inferred from the text.

standard” for evaluating systems that operate at a

Identifying entailment is a complex task that in-particular level. Altogether, we set forth a possible
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corporates many levels of linguistic knowledge andnethodology for annotation and analysis of entail-

Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailagsst 55-60,
Ann Arbor, June 2005©)2005 Association for Computational Linguistics



ment datasets. ence. This allows us to view the entailment model at
We introduce two levels of entailment.exical each level as an idealizeystemapproximating full

and Lexical-Syntactic We propose these levels asentailment, and to evaluate its overall success.

intermediate stages towards a complete entailmentThe rest of the paper is organized as follows: sec-

model. We define an entailment model for eaclion 2 provides definitions for the two entailment

level and manually evaluate its performance over kgvels; section 3 describes the annotation experiment

sample from the RTE test-set. We focus on thesge performed, its results and analysis; section 4 con-

two levels as they correspond to well-studied NLRIudes and presents planned future work.

tasks, for which robust tools and resources exist,

e.g. parsers, part of speech taggers and lexicons. At Definition of Entailment Levels

each level we included inference types that represelrF]t this section we present definitions for two en-

common practice in the field. More advanced prot_ailment models that correspond to thexical and
cessing levels which involve logical/semantic infer- P

Lexical-Syntacticlevels. For each level we de-
ence are less mature and were left beyond the scoge. . : .
of this paper. cribe the available inference mechanisms. Table 1

We found that the main difference between thgresents several examples from the RTE test-set to-
lexical and lexical-syntactic levels is that the Iexical-gether with annotation of entailment at the different

i o evels.

syntactic level corrects many false-positive infer-

ences done at the lexical level, while introducingz_l The Lexical entailment level
only a few false-positives of its own. As for iden-

tifying positive cases (recall), both systems exhibif\t the lexical level we assume that the tektand
similar performance, and were found to be compldlyPothesisiI are represented by a bag of (possibly

mentary. Neither of the levels was able to idenmulti-word) terms, ignoring function words. At this
tify more than half of the positive cases whichlevel we define that entailment holds betwédeand

emphasizes the need for deeper levels of analyst, If €very termh in I can be matched by a corre-
Among the different inference componengsmara- spgndmg er_1ta|I|ng terrhin T'. ¢ is considered as en-
phrasesstand out as a dominant contributor to thdailing % if either i andt share the same lemma and
entailment task, while synonyms and derivationdf@'t of speech, arcan be matched with through a
transformations were found to be the most frequerf€duénce of lexical transformations of the types de-
at the lexical level. scribed below.

Using our definitions of entailment models a§qmhological derivations This inference mech-
guidelines for manual annotation resulted in a higlisism considers two terms as equivalent if one can
level of agreement between two annotators, suggegfa optained from the other by some morphologi-

ing that the proposed models are well-defined. | jerivation. Examples include nominalizations
Our study follows on previous work (Vander—(e_g_ ‘acquisition<> acquire’), pertainyms (e.g.

wende et al., 2005), which analyzed the RTE ChalAfghaniStan@ Afghan’), or nominal derivations
lenge test-set to find the percentage of cases fiia ‘terrorist < terror.

which syntactic analysis alone (with optional use

of thesaurus for the lexical level) suffices to decid®ntological relations This inference mechanism
whether or not entailment holds. Our study extendsefers to ontological relations between terms. A
this work by considering a broader range of inferterm is inferred from another term if a chain of valid
ence levels and inference mechanisms and providimmtological relations between the two terms exists
a more detailed view. A fundamental difference befAndreevskaia et al., 2005). In our experiment we
tween the two works is that while Vanderwende et akegarded the following three ontological relations
did not make judgements on cases where additiona$ providing entailment inferences: (1) ‘synonyms’
knowledge was required beyond syntax, our entaile.g. ‘free< release’ in example 1361, Table 1);
ment models were evaluated over all of the case&) ‘hypernym’ (e.g. ‘produce= make’) and (3)
including those that require higher levels of infer-meronym-holonym’ (e.g. ‘executive> company’).
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No. | Text Hypothesis Task| Ent. | Lex.| Syn.
Ent. | Ent.

322 | Turnout for the historic vote for the first New members joined the IR | true | false| true
time since the EU took in 10 new mem-EU.
bers in May has hit a record low of
45.3%.
1361 | A Filipino hostage in Irag was releasedA Filipino hostage was CD | true | true | true
freed in Iraq.
1584 | Although a Roscommon man by birth,Albert Reynolds was borm QA | true | true | true
born in Rooskey in 1932, Albert “Thein Co. Roscommon.
Slasher” Reynolds will forever be @
Longford man by association.
1911 | The SPD got just 21.5% of the voteThe SPD is defeated by IE | true | false| false
in the European Parliament electionghe opposition parties.
while the conservative opposition par-
ties polled 44.5%.
2127 | Coyote shot after biting girl in Vanier Girl shot in park. IR | false| true | false
Park.

Table 1: Examples of text-hypothesis pairs, taken from the PASCAL RTE test-set. Each line includes the
example number at the RTE test-set, the text and hypothesis, the task within the test-set, whether entailment
holds between the text and hypothesis (Ent.), whether Lexical entailment holds (Lex. Ent.) and whether
Lexical-Syntactic entailment holds (Syn. Ent.).

Lexical World knowledge This inference mech- tional relations within7" are allowed). Otherwise,
anism refers to world knowledge reflected at thesuch coverage can be obtained by a sequence of
lexical level, by which the meaning of one termtransformations applied to the relationslinwhich
can be inferred from the other. It includes bothshould yield all the relations if/.
knowledge about named entities, such as ‘Tal- One type of such transformations are the lexical
iban = organization’ and ‘Roscommor= Co. transformations, which replace corresponding lexi-
Roscommon’ (example 1584 in Table 1), and othecal items, as described in sub-section 2.1. When ap-
lexical relations between words, such as WordNetplying morphological derivations it is assumed that
relations ‘cause’ (e.g. ‘kil=- die’) and ‘entail’ (e.g. the syntactic structure is appropriately adjusted. For
‘snore=- sleep’). example, “Mexico produces oil” can be mapped to
“0il production by Mexico” (the NOMLEX resource
(Macleod et al., 1998) provides a good example for
2.2 The Lexical-syntactic entailment level systematic specification of such transformations).

) . Additional types of transformations at this level
At the lexical-syntactic level we assume that theare specified below

text and the hypothesis are represented by the set of

syntactic dependency relations of their dependen@yntactic transformations This inference mech-
parse. At this level we ignore determiners and awanism refers to transformations between syntactic
iliary verbs, but do include relations involving otherstructures that involve the same lexical elements and
function words. We define that entailment holds bepreserve the meaning of the relationships between
tweenT" and H if the relations withinH can be them (as analyzed in (Vanderwende et al., 2005)).
“covered” by the relations if". In the trivial case, Typical transformations include passive-active and
lexical-syntactic entailment holds if all the relationsapposition (e.g. ‘An Wang, a native of Shanghkai
composingH appear verbatim il (while addi- An Wang is a native of Shanghai’).
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Entailment paraphrases This inference mecha- to various NLP applications. Each pair is annotated
nism refers to transformations that modify the synwith a boolean value, indicating whether the hypoth-
tactic structure of a text fragment as well as somesis is entailed by the text or not, and the test-set
of its lexical elements, while holding an entailmenis balanced in terms of positive and negative cases.
relationship between the original text and the trandA/e shall henceforth refer to this annotation as the
formed one. Such transformations are typically degold standard We constructed a sample of 240 pairs
noted as ‘paraphrases’ in the literature, where fmom four different tasks in the test-set, which corre-
wealth of methods for their automatic acquisitiorspond to the main applications that may benefit from
were proposed (Lin and Pantel, 2001; Shinyama entailment: information extraction (IE), information
al., 2002; Barzilay and Lee, 2003; Szpektor et alretrieval (IR), question answering (QA), and compa-
2004). Following the same spirit, we focus here omable documents (CD). We randomly picked 60 pairs
transformations that are local in nature, which, adrom each task, and in total 118 of the cases were
cording to the literature, may be amenable for largpositive and 122 were negative.
scale acquisition. Examples include: ‘X is Y man In our experiment, two of the authors annotated,
by birth — X was born in Y’ (example 1584 in Ta- for each of the two levels, whether or not entailment
ble 1), ‘X take in Y« Y join X’! and ‘X is holy can be established in each of the 240 pairs. The an-
book of Y = Y follow X’ 2. notators agreed on 89.6% of the cases at the lexical
. . level, and 88.8% of the cases at the lexical-syntactic
Co-reference Co-references provide equwalencq . e
. : . vel, with Kappa statistics of 0.78 and 0.73, re-
relations between different terms in the text an . . ) . ,
. ) spectively, corresponding to ‘substantial agreement
thus induce transformations that replace one ter : . ) ;
. ) ) Landis and Koch, 1977). This relatively high level
in a text with any of its co-referenced terms. Fo . .
P of agreement suggests that the notion of lexical and
example, the sentence “ltaly and Germany have - ) : )
) . lexical-syntactic entailment we propose are indeed
each played twice, and they haven'’t beaten anybo%/ .
w3 A ell-defined.
yet™ entails “Neither Italy nor Germany have

. . . Finally, in order to establish statistics from the an-
won yet”, involving the co-reference transformation . .
‘ , notations, the annotators discussed all the examples
they = Italy and Germany’'.

they disagreed on and produced a final joint deci-

Example 1584 in Table 1 demonstrates th&"°"

need to combine different inference mechanismg >  Evaluating the different levels of entailment
to achieve lexical-syntactic entailment, requiring

world-knowledge, paraphrases and syntactic trans- L S
formations. True positive (118)] 52| 59
3 Empirical Analysis False positive (122) 36 10

. ) i Recall 44% | 50%
In this section we present the experiment that we Precision 59% | 86%
conducted in order to analyze the two entailment j2) 05| 0.63
levels, which are presented in section 2, in terms of Accuracy 58% | 71%
relative performance and correlation with the notion
of textual entailment. Table 2: Results per level of entailment.

3.1 Data and annotation procedure

The RTE test-sét contains 800 Text-Hypothesis
pairs (usually single sentences), which are typic

Table 2 summarizes the results obtained from our
E}nnotated dataset for both lexical (L) and lexical-
6éyntactic (LS) levels. Taking a “system”-oriented
;Ezzmp:z :g ?255"1' r:rlﬁepﬁiscékLR;%iZgigt perspective, the annotations at each level can be
3Examg|e no 298 in the PASCAL RTE fest.set. viewed as the classifications made by an _|deaI|zed

system that includes a perfect implementation of the

“The complete RTE dataset can be obtained ! X ; -
http://www.pascal-network.org/Challenges/RTE/Datasets/  inference mechanisms in that level. The first two
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rows show for each level how the cases, which were Lexical-Syntactic

recognized as positive by this level (i.e. the entail- H=T | H=-T
ment holds), are distributed between “true positive” - H=T| 38 14

. " : Lexical

(i.e. positive according to the gold standard) and H=T| 21 45

“false positive” (negative according to the gold stan-

a) positive example
dard). The total number of positive and negative (8) positive examples

pairs in the dataset is reported in parentheses. The Lexical-Syntactic

rest of the table details recall, precisidn, and ac- H=T | H=-T

curacy. - . Lexical H=T 7 29
The distribution of the examples in the RTE test- H-T 3 83

set cannot be considered representative of a real-
world distribution (especially because of the con-
trolled balance between positive and negative exam-
ples). Thus, our statistics are not appropriate fofable 3: Correlation between the entailment lev-
accurate prediction of application performance. Inels. (a) includes only the positive examples from
stead, we analyze how well these simplified modelke RTE dataset sample, and (b) includes only the
of entailment succeed in approximating “real” ennegative examples.
tailment, and how they compare with each other.

The proportion between true and false positive
cases at the lexical level indicates that the correldntroduced only in the lexical-syntactic level. (e.g.
tion between lexical match and entailment is quitexample 322 in Table 1).
low, reflected in the low precision achieved by this This relatively symmetric situation changes as we
level (only 59%). This result can be partly attributedmove to the negative cases, as shown in Table 3(b).
to the idiosyncracies of the RTE test-set: as reporteBly adding syntactic constraints, the lexical-syntactic
in (Dagan et al., 2005), samples with high lexicalevel was able to fix 29 false positive errors, misclas-
match were found to be biased towards the negatiified at the lexical level (as demonstrated in exam-
side. Interestingly, our measured accuracy correlatpte 2127, Table 1), while introducing only 3 new
well with the performance of systems at the PASfalse-positive errors. This exemplifies the impor-
CAL RTE Workshop, where the highest reported actance of syntactic matching for precision.
curacy of a lexical system is 0.586 (Dagan et al.,
2005). 3.3 The contribution of various inference

As one can expect, adding syntax considerably re-  mechanisms
duces the number of false positives - from 36 to only

(b) negative examples

10. .S_urprisingly, at the same time the number of trU€|nference Mechanism ‘ 7 ‘ AR ‘ % ‘

positive cases grows from 52 to 59, and correspong=

ingly, precision rise to 86%. Interestingly, neither Synonym i 19 14'42/0 16'12/0

the lexical nor the lexical-syntactic level are able to Mor_phologlcal 161 10.1%) 13.5%

cover more than half of the positive cases (e.g. e Lexical World knowledgg 12| 8.4%) 10.1%

ample 1911 in Table 1). Hypernym 7| 42%) 5.9%
In order to better understand the differences bﬂ_Mernoym 1] 08%| 0.8%

Table 3(a), which contains only the positive cases,Coreference 10] 5.0%]| 8.4%

we see that many examples were recognized only l:Péble 4. The frequencyf{, contribution to recall

one of the levels. This interesting phenomenon c o -
be explained on the one hand by lexical matches th %R) and percentage (%), within the gold standard

could not be validated in the syntactic level, and oﬁositive examples, of the various inference mecha-
y ' nisms at each level, ordered by their significance.

the other hand by the use of paraphrases, which are

tween the two levels, we next analyze the overl%pE”t‘"lilment Paraphrases| 37 | 26.2% | 31.3%

59



In order to get a sense of the contribution of thdiigher levels of entailment, such as logical inference
various components at each level, statistics on the iand deep semantic understanding of the text.
ference mechanisms that contributed to the coverage
of the hypothesis by the text (either full or partialy’*Cknowledgements

were recorded by one annotator. Only the positiv@ye would like to thank Ido Dagan for helpful discus-

cases in the gold standard were considered. sions and for his scientific supervision. This work
For each inference mechanism we measured Ngas supported in part by the IST Programme of the

frequency, its contribution to the recall of the relate&uropean Community, under tiRASCAL Network

level and the percentage of cases in which it is resf Excellence 1IST-2002-506778. This publication

quired for establishing entailment. The latter als@nly reflects the authors’ views.

takes into account cases where only partial cover-

age could be achieved, and thus indicates the signif-

icance of each inference mechanism for any entaiReferences

ment system, regardless of the models presentedAiina Andreevskaia, Zhuoyan Li and Sabine Bergler.

this paper. The results are summarized in Table 4. 2005. Can Shallow Predicate Argument Structures
From Table 4 it stands that paraphrases are theDetermlne Entailment?. IfProceedings of Pascal
parap Challenge Workshop on Recognizing Textual Entail-

most notable contributors to recall. This result in- ment, 2005

[ he importan f paraphr h -
?ﬁatesttte K podta}[hce ° gafapl ases tolt © eQegina Barzilay and Lillian Lee. 2003. Learning to
alfment task an € need lor large-scale para- paraphrase: An unsupervised approach using multiple-

phrase collections. Syntactic transformations are sequence alignment. IRroceedings of HLT-NAACL
also shown to contribute considerably, indicating the 2003 pages 16-23, Edmonton, Canada.

need for collections of syntactic transformations ag, Dagan, Bernardo Magnini and Oren Glickman. 2005.

well. In that perspective, we propose our annota- The PASCAL Recognising Textual Entailment Chal-

tion framework as means for evaluating collections lenge. InProceedings of Pascal Challenge Workshop

of paraphrases or syntactic transformations in terms ©" Recognizing Textual Entailment, 2005
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Finally, we note that the co-reference moderate observer agreement for categorical daBiometrics

contribution can be partly attributed to the idiosyn- 33:159-174.

cracies of the RTE test-set: the annotators wei2ekang Lin and Patrick Pantel. 2001. Discovery of infer-

guided to replace anaphors with the appropriate ref- €nce rules for Question Answerinijatural Language

erence, as reported in (Dagan et al., 2005). Engineering 7(4):343-360.
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ment shows that the lexical-syntactic level outper- RalPh Grishman. 2002. Automatic paraphrase acqui-
sition from news articles. IfProceedings of Human

forms the lexical level in all measured aspects. Fur- | gnguage Technology Conference (HLT 2008an
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