
A Pointer Network Architecture for Context-Dependent Semantic Parsing

Xuanli He♣ Quan Hung Tran♥ Gholamreza Haffari♣

♣Monash University, Australia
♥Adobe Research, San Jose, CA

{xuanli.he1,gholamreza.haffari}@monash.edu
qtran@adobe.com

Abstract

Semantic parsing targets at mapping human
utterances into structured meaning represen-
tations, such as logical forms, programming
snippets, SQL queries etc. In this work, we
focus on logical form generation, which is ex-
tracted from an automated email assistant sys-
tem. Since this task is dialogue-oriented, in-
formation across utterances must be well han-
dled. Furthermore, certain inputs from users
are used as arguments for the logical form,
which requires a parser to distinguish the func-
tional words and content words. Hence, an
intelligent parser should be able to switch be-
tween generation mode and copy mode. In or-
der to address the aforementioned issues, we
equip the vanilla seq2seq model with a pointer
network and a context-dependent architecture
to generate more accurate logical forms. Our
model achieves state-of-the-art performance
on the email assistant task.

1 Introduction

Recently, due to the breakthrough of the deep
learning, numerous and various tasks within the
filed of natural language processing (NLP) have
made impressive achievements (Vaswani et al.,
2017; Devlin et al., 2018; Edunov et al., 2018).
However, most these achievements are assessed by
automatic metrics, which are relatively superficial
and brittle, and can be easily tricked (Paulus et al.,
2017; Jia and Liang, 2017; Läubli et al., 2018).
Hence, understanding the underlying meaning of
natural language sentences is crucial to NLP tasks.

As an appealing direction in natural language
understanding, semantic parsing has been widely
studied in the NLP community (Ling et al., 2016;
Dong and Lapata, 2016; Jia and Liang, 2017).
Semantic parsing aims at converting human ut-
terances to machine executable representations.
Most existing work focuses on parsing individual

utterances independently, even they have an access
to the contextual information. In spite of several
pioneering efforts (Zettlemoyer and Collins, 2009;
Srivastava et al., 2017), these pre-neural models
suffer from complicated hand-crafted feature en-
gineering, compared to their neural counterparts
(Dong and Lapata, 2018; Rabinovich et al., 2017).
One notable exception is the work of Suhr et al.
(2018), who incorporate context into ATIS data
with a neural approach.

In this work, we propose a neural semantic
parser for email assistant task which incorporates
the conversation context as well as a copy mech-
anism to fill-in the arguments of the logical forms
from the input sentence. Our model achieves state-
of-the-art (SOTA) performance. We further pro-
vide details analysis about where these improve-
ments come from.

2 Models

To build our models, we follow a process of error-
driven design. We first start with a simple seq2seq
model, then we closely examine the errors, group
them, and then propose a solution to each of these
error groups. From our examination, we identify
two main sources of errors of a seq2seq model: i)
the overly strong influence of the language model
component, and ii) the lack of contextual informa-
tion. Thus we design our model to incorporate the
Pointer Mechanism and Context-dependent Mech-
anism to solve these problems. From this point,
we refer to the errors caused by the first source
(language model) as Copy-related errors, and the
ones caused by the second source (lack of context)
as Context-related errors.

2.1 Word Copy using the Pointer Mechanism

With the basic seq2seq architecture, the model’s
generation is heavily influenced by the language

Figure 1: A example of semantic parsing on the email
assistant system.

model aspect. Thus, it tends to use the strings it
has seen in the training dataset (see Table 1).

current utterance:
set body to blue
logical form
reference: (setFieldFromString (getProbMutableField-
ByFieldName body) (stringValue ” blue ”))
seq2seq: (setFieldFromString (getProbMutableFieldBy-
FieldName body) (stringValue ” charlie is on his way ”)
)

Table 1: An error made by the base seq2seq model.
Copy mechanism can fix it.

From this analysis, we realize that it would be
crucial for the model to learn when to copy from
the source sentence, and when to generate a new
token. Thus, we incorporate the pointer mecha-
nism into our base seq2seq approach.

As shown in Figure 1, for an email assistant sys-
tem, users inputs are usually comprised of a func-
tional part and a content part. A semantic parser
should be able to distinguish and handle them in a
different way. Specifically, the parser must gener-
ate a series of lambda-like functions for the func-
tional part, while the content part should be copied
to the argument slot.

Our pointer network is inspired by that of See
et al. (2017) designed for the summarisation task.
Given an utterance x and a logical form y, at each
time step t, we have a soft switch which deter-
mines the contributions of the token generator and
the copier which uses a pointer over the words of
the input utterance:

P (yt) = pgenPvocab(yt) + (1− pgen)
∑

i:xi=yt

αt
i

where αt
i is the attention score over the position i

in the t-th generation step, and Pvocab is a prob-
ability distribution over the vocabulary. pgen ∈
[0, 1] is the generation probability, modelled as:

pgen = σ(wT
c ct +wT

s st +wT
xxt + b)

where ct and st are the context vector and the de-
coder state respectively, while wT

c , wT
s , wT

x and b
are learnable parameters.

2.2 Conditioning on Conversation Context
Understanding conversations between a user and
the system requires the comprehension of the flow
of the discourse among sequence of utterances.
Processing utterances independently within a con-
versation leads to misinterpreting users inputs,
which will result in incorrect logical form genera-
tion (see Table 2). Therefore, we incorporate the
context when processing the current utterance for
a better generation.

dialog history
...
user: compose a new email. the recipient is mom. the
subject is hello
user: cancel
...
current utterance:
cancel
logical form
reference: (undo)
seq2seq: (cancel)

Table 2: An error made by the base seq2seq model. It
is clear that without the context information, the model
cannot infer the correct logical form.

Basically, a conversation consists of a sequence
of user utterances:{x1, ...,xT } paired with a list
of logical forms: {y1, ...,yT }. For a given ut-
terance sequence xi = {xi

1, ...,x
i
m}, a semantic

parser should predict its associated logical form
yi = {yi

1, ...,y
i
n}. Inspired by Suhr et al. (2018),

we introduce a hierarchical architecture to model
both utterance-level and conversation-level infor-
mation; see Figure 2. At the utterance level, we
use an attentional seq2seq model to establish the
mapping from an utterance xi to its corresponding
logical form yi:

hi
1:m = Encoder(xi

1, ...,x
i
m), (1)

cit = Attention(hi
1:m, s

i
t−1), (2)

yi
t, s

i
t = Decoder(yi

t−1, s
i
t−1, c

i
t) (3)

As the seq2seq model, we investigate the use of
RNN-based and Transformer-based architectures.
Furthermore, we make use of a conversation-level
RNN to capture the wider conversational context:

gi = RNN(hi
m,gi−1) (4)

where hi
m is the last hidden state of the ith ut-

terance, and g is the conversational hidden state.

In order to incorporate the conversational infor-
mation into our model, we modify the Equ. 1 by
injecting gi−1:

hi
1:m = Encoder([xi

1 : gi−1], ..., [x
i
m : gi−1])

where [:] denotes a concatenation operation.

Figure 2: Overall architecture of our semantic parser.
We omit the pointer network due to lack of space.

Similar to memory networks (Sukhbaatar et al.,
2015), it is essential to give the decoder a di-
rect access to the last k utterances, if we want
to leverage the discourse information effectively.
Hence, we concatenate the previous k utterance
{xi−k, ..,xi−1} with the current utterance. Now
Equ. 2 is rewritten as:

cit = Attention(hi−k
1:m, ..,h

i−1
1:m,h

i
1:m, s

i
t−1)

In addition, since the importance of the concate-
nated utterances is different, it is significant to
differentiate these utterances to reduce confusion.
Therefore, as suggested by Suhr et al. (2018), we
add relative position embeddings Epos[·] to the ut-
terances when we compute attention scores. De-
pending on their distances from the current utter-
ance, we append Epos[0], ..,Epos[k] to the previ-
ous utterances respectively.

3 Experiments

Dataset Semantic paring is crucial to dialogue
systems, especially for multi-turn conversations.
Additionally, understanding users’ intentions and
extracting salient requirements play an important
role in the dialogue-related semantic parsing. We
use a dataset created by Srivastava et al. (2017)

as a case study to explore the performance of se-
mantic parsing in dialogue systems. This dataset is
collected from an email assistant, which can help
users to manage their emails. As shown in Table 3
Users can type some human sentences from the
interface. Then the email assistant can automati-
cally convert the natural sentences to the machine-
understandable logical forms.

dialog history
...
user: Define the concept “ contact ”
user: add field “ email ” to concept “ contact ”
user: create contact “ Mom ”
...
logical form
...
(defineConcept (stringNoun “ contact ”))
(addFieldToConcept contact (stringNoun “ email ”))
(createInstanceByFullNames contact (stringNoun “ mom
”))
...

Table 3: A partial conversation from the data

Following Srivastava et al. (2017), we partition
the dataset into a training fold (93 conversations)
and a test fold (20 conversations) as well. How-
ever, this partition might be different from Sri-
vastava et al. (2017), as they only release the raw
Email Assistant dataset. The total number of user
utterances is 4759, the number of sessions is 113,
and the mean/max of the number of utterances per
interactive session is 42/273.

3.1 Main Results
Prior to this work, Srivastava et al. (2017) also in-
corporate the conversational context into a CCG
parser (Zettlemoyer and Collins, 2007). CCG re-
quires extensive hand-feature engineering to con-
struct text-based features. However, neural se-
mantic parsers have been demonstrating impres-
sive improvement over various and numerous
dataset (Suhr et al., 2018; Dong and Lapata, 2018).
Hence, we explore both RNN-based (Bahdanau
et al., 2014) and transformer-based (Vaswani et al.,
2017) architectures for our attentional seq2seq
model, denoted as RNNS2S and Transformer re-
spectively. Hyperparameters, architecture details,
and other experimental choices are detailed in the
supplementary material. Unless otherwise men-
tioned, we use 3 previous utterances as the his-
tory. Since there is no validation set, we use 10-
fold cross validation over the training set to find
the best parameters.

Table 4 demonstrates the accuracy of differ-
ent models. Our RNNS2S baseline already sur-
passes the previous SOTA result with a large mar-
gin. However, since we use our own partition,
this comparison should not be as a reference.
Both pointer network and conversational architec-
ture dramatically advance the accuracy. Finally,
our transformer model combining these two tech-
niques obtains a new SOTA result.

Accuracy
Previous methods
Seq2seq (Srivastava et al., 2017) 52.3
SPCon (Srivastava et al., 2017) 62.3
Our models
RNNS2S 68.0
RNNS2S + pointer 69.3
RNNS2S + context 69.8
RNNS2S + context + pointer 70.5
Transformer 69.3
Transformer + pointer 72.2
Transformer + context 71.0
Transformer + context + pointer 73.4

Table 4: Test accuracy on Email Assistant dataset.
Bold indicates the best result. SPCon is the best CCG
parser with contextual information in Srivastava et al.
(2017)

3.2 Analysis
In this section we provide some deep analysis
on our models. Since we see the same trend in
both RNNS2S and Transformer, we only report
the analysis of RNNS2S. The supplementary ma-
terial reports the analysis of Transformer.
The effects of the copy mechanism We analyze
the test data, and count the number of errors that
can be rectified by introducing the pointer network
for both vanilla and context-dependent seq2seq
models. In the test set, we identify that a total of
37 errors made by the seq2seq model and 36 er-
rors made by the seq2seq+context model can be
rectified by the copy mechanism. According to
Figure 3, our pointer network fixes at least half of
the incorrect instances. Clearly, the pointer mech-
anism cannot solve all copy-related errors. After
scrutinizing the system-generated results, we re-
alize that the pointer network tends to retain the
copy mode once it is triggered. This phenomenon
is consistent with the observations by See et al.
(2017). Consequently, the extra copies impinge
on the accuracy of the system.

Figure 3: Number of copy-related incorrect instances
that can be corrected by a pointer network.

The effects of the context-dependent mecha-
nism. In the experiments, our context-dependent
mechanism is shown to be able to address context-
related errors, especially when user’s input implies
a complex and compositional command. These
complex commands usually involve a series of
complicated actions, as shown in Table 5. Ac-
cording to Table 6, our context-dependent model
rectifies 27 out of 68 context-related errors.

Figure 4: Accuracy of different size of history.

Figure 5: Heat map of different size of history.

Since we notice that previous utterances can
also obfuscate the model, we conduct an ablation
study over the size of history. As shown in Fig-
ure 4, incorporating 3 previous utterances reach
the best performance. According to Figure 5, we
believe that incorporating 3 previous utterances
covers sufficient contextual information. Less than
this number, the system cannot better utilize con-
text, while the salient information is contaminated
by the extra history. The same behavior is ob-
served in Transformer model. We argue that the
size of the effective history would be dependent

utterance:
Set recipient to Mom’s email . Set subject to hello and send the email
logical form:
(doSeq (setFieldFromFieldVal (getProbMutableFieldByFieldName body) (evalField (getProbFieldByInstanceName-
AndFieldName inbox body))) (doSeq (setFieldFromFieldVal (getProbMutableFieldByFieldName recipient list) (eval-
Field (getProbFieldByInstanceNameAndFieldName inbox sender))) (send email)))

Table 5: An example of complex and compositional commands.

#incorrect
complex command
RNNS2S 39
RNNS2S + context 20
context dependency
RNNS2S 29
RNNS2S + context 21

Table 6: Incorrect instances of RNNS2S and context-
dependent RNNS2S models in terms of complex com-
mands and context dependency.

on different datasets, but they will demonstrate the
same trend.

4 Conclusions

In this work, we explore a neural semantic parser
architecture that incorporates conversational con-
text and copy mechanism. These modelling im-
provements are solidly grounded by our analysis,
and they significantly boost the performance of the
base model. As a result, our best architecture es-
tablish a new state-of-the-art on the Email Assis-
tant dataset. In the future, we would explore other
architectural innovations for the system, for exam-
ple, the neural denoising mechanisms.

5 Acknowledgement

We would like to thank three anonymous re-
viewers for their valuable comments and sugges-
tions. This work was supported by the Multi-
modal Australian ScienceS Imaging and Visual-
isation Environment (MASSIVE).1 This work is
partly supported by the ARC Future Fellowship
FT190100039 to G.H.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep

1https://www.massive.org.au/

bidirectional transformers for language understand-
ing.

Li Dong and Mirella Lapata. 2016. Language to
logical form with neural attention. arXiv preprint
arXiv:1601.01280.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. arXiv preprint
arXiv:1805.04793.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. arXiv preprint arXiv:1808.09381.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
arXiv preprint arXiv:1707.07328.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Samuel Läubli, Rico Sennrich, and Martin Volk. 2018.
Has machine translation achieved human parity? a
case for document-level evaluation. arXiv preprint
arXiv:1808.07048.

Wang Ling, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kočiskỳ, Andrew Senior, Fumin
Wang, and Phil Blunsom. 2016. Latent predic-
tor networks for code generation. arXiv preprint
arXiv:1603.06744.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint arXiv:1705.04304.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code gen-
eration and semantic parsing. arXiv preprint
arXiv:1704.07535.

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get to the point: Summarization
with pointer-generator networks. arXiv preprint
arXiv:1704.04368.

Shashank Srivastava, Amos Azaria, and Tom M
Mitchell. 2017. Parsing natural language conversa-
tions using contextual cues. In IJCAI, pages 4089–
4095.

Alane Suhr, Srinivasan Iyer, and Yoav Artzi. 2018.
Learning to map context-dependent sentences
to executable formal queries. arXiv preprint
arXiv:1804.06868.

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in neural information processing systems, pages
2440–2448.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed ccg grammars for parsing to log-
ical form. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 678–687.

Luke S Zettlemoyer and Michael Collins. 2009. Learn-
ing context-dependent mappings from sentences to
logical form. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP: Volume 2-Volume
2, pages 976–984. Association for Computational
Linguistics.

A Implementation Details

In RNNS2S model, at the utterance level, a one-
layer bidiretional RNNs for the encoder, while the
decoder is a two-layer RNNs. We use a one-layer
RNNs to represent the conversational information
flow. All RNNs use LSTM cells, with a hidden
size of 128. The sizes of word embeddings and
position embeddings are 128 and 50 respectively.
We train our models for 10 epochs by Adam opti-
mizer (Kingma and Ba, 2014) with an initial learn-
ing rate of 0.001. The batch size of non-context
training is 16, while the context variant is 1.

For Transformer model, we use 3 identical
transformer blocks for both encoder and decoder.
Within each block, the size of the embeddings is
256, while the feed forward network has 512 neu-
rons. We set the size of heads to 4. The conversa-
tional encoder is a one-layer RNNs with the size of
256. The optimizer and training schedule is same
as Vaswani et al. (2017), except warmup steps =
500. Due to the warmup steps, We train this model
for 14 epochs. The batch size is same as that of
RNNS2S.

B Analysis of Transformer

The effects of the pointer mechanism According
to Figure 6, half of the incorrect instances are fixed
by the pointer mechanism.

#incorrect
complex command
Transformer 35
Transformer + context 24
context dependency
Transformer 25
Transformer + context 16

Table 7: Incorrect instances of Transformer and
context-dependent Transformer models in terms of
complex commands and context dependency.

Figure 6: Number of copy-related incorrect instances
that can be corrected by a pointer network.

The effects of the context-dependent mecha-
nism. Similarly, incorporating the contextual in-
formation is able to address the context-oriented
issues by a larger margin (see Table 7).

Finally, as observed in the main paper, having
an access to the 3 previous utterances achieves the
best performance.

Figure 7: Accuracy of different size of history.

