
A Meta-grammar for CCG

Mark FOREMAN

Dept. of Electrical and Electronic Eng.

The University of Adelaide

Adelaide SA 5005

Mark.Foreman@csiro.au

Daniel McMICHAEL

Information Enhancement Group

CSIRO ICT Centre

Waite Road, Urrbrae SA 5064

Daniel.McMichael@csiro.au

Abstract

Applying CCG to domains outside of
linguistics could require different sets of
combinators to be developed for each domain.
The meta-grammar described in this paper
aims to assist such development by enabling
simple, succinct expression of both existing
and new combinator definitions. It favours the
development of an easily-configurable, one-
time-coded module that can perform CCG
combinations for any combinator set of the
researcher’s choosing. A preliminary
implementation shows both the feasibility and
potential of the meta-grammar.

1 Introduction

The merits of Combinatory Categorial Grammar
(CCG) have been established via natural language
parser implementations like that of Hockenmaier
and Steedman (2002) and Clark and Curran (2004).
But recent findings show that categorial grammars
based on CCG also display promise in domains
outside of linguistics (McMichael et al., 2004).
Over the years, new combinators have been
developed to extend the system of pure categorial
grammar (Steedman 2003), but although the set of
combinators for CCG seems to have stabilised, this
same set may not necessarily be applicable to
analyses in other domains. In fact, McMichael et
al. introduce two combinators – functional
application and modificational application, both
defined in section 2.1 – that are not part of the
existing set of CCG combinators. Additionally,
functional application cannot even be cleanly
defined via a traditional combinator pattern. It is
partly this inability of the existing techniques to
cleanly define new combinators that motivates the
proposal of a meta-grammar for combinator
specification.
In this paper, we explain the motivations for and
give a specification of the meta-grammar, along
with complete examples of how it applies to new
and existing combinators. Lastly, we examine the
workings and potential of a preliminary

implementation. The remainder of this section,
however, presents a brief introduction to CCG.

1.1 A Practical Introduction to CCG

CCG operates by first assigning a syntactic
category to each word in the sentence, as will be
demonstrated in the proceeding example borrowed
from Hockenmaier (2003). At this point, the
notation for describing categories should be
observed. Assuming the simplistic
subject-verb-object (SVO) pattern for English, the
phrase “buys shares” will form a complete
sentence S if it is preceded by a noun phrase, and
we write this as:

buys shares ├ S\NP

So the phrase “buys shares” can be thought of as a
function that takes a noun phrase NP as an
argument to its left and returns a sentence S.
Furthermore, “buys” will form a S\NP if it is
followed by a noun phrase, and this is denoted as:

buys ├ (S\NP)/NP

In doing this, we have eliminated the need for a
separate verb category V, leaving us with the
following category assignments:

John ├ NP

buys ├ (S\NP)/NP

shares ├ NP

Formally, a category may be either atomic (S, NP,
etc) or complex (S\S, (S\NP)/NP), etc). Complex
categories take the general form α/β or α\β, where
α and β are themselves categories.
Given the above category assignments, a
derivation proceeds as follows: “buys” is combined
with “shares” under the operation of forward
application (the term forward referring to both the
direction of the slash). The phrase “buys shares” is
combined with “John” under the operation of
backward application. The combinators
(operators) that govern these two operations are
defined as follows:

X/Y Y ⇒> X
Y X\Y ⇒< X

where X and Y represent any category. Typically,
a derivation is represented in the following
manner:

John

NP

buys

(S\NP)/NP

shares

NP
>

S\NP
<

S

which corresponds to the following tree:

S

NP S\NP

John

(S\NP)/NP NP

buys shares

Several other combinators are defined by
Steedman (2000) for capturing long-range
dependencies in the English and Dutch languages:
coordination (Ф) type-raising (T), composition (B)
and substitution (S). These combinator families are
listed below:

X conj X ⇒<Ф> X
X ⇒>T Y/(Y\X)
X ⇒<T Y\(Y/X)
X/Y Y/Z ⇒>B X/Z
X/Y Y\Z ⇒>Bx X\Z
Y\Z X\Y ⇒<B X\Z
Y/Z X\Y ⇒<Bx X/Z
(X/Y)/Z Y/Z ⇒>S X/Z
(X/Y)\Z Y\Z ⇒>Sx X\Z
Y\Z (X\Y)\Z ⇒<S X\Z
Y/Z (X\Y)/Z ⇒<Sx X/Z

The usage of some of these combinators is shown
below, using example derivations taken from
Steedman (2000) and Hockenmaier (2003).

Anna

NP

met

(S\NP)/NP

and

conj

might

(S\NP)/VP

marry

VP/NP
>B

(S\NP)/NP
<Φ>

(S\NP)/NP

Manny

NP

>

S\NP
<

S

articles

NP

that

(NP\NP)/(S/NP)

I

NP
>T

S/(S\NP)

file

VP/NP

without

(VP\VP)/VP

reading

VP/NP
>B

(VP\VP)/NP
<Sx

(VP\VP)/NP
>B

S/NP
>

NP\NP
<

NP

For further reference on CCG, the reader is
directed to Steedman (1996) and (2000).

1.2 An Historical Note on CCG

The slash notation seen in categories of CCG stems
from that used in the early works on pure
categorial grammar by Ajdukiewicz (1935), Bar-
Hillel (1953) and Lambek (1958). Steedman
(1993) explains that he and Dowty refined these
earlier notations, leading to the more consistent
and readable style that is described in section 1.1.
The only rules permitted by pure categorial
grammar are forward and backward application.
CCG extends this system with the above-listed
rules, based on Curry and Feys’ combinators – a
term coined in their 1958 work on combinatory
logic, where they examined devices that operate on
functions, irrespective of the number of arguments.
The combinatory nature of CCG rules enables a
transparent mapping between syntactic and
semantic form, thus providing one of the major
appeals of this grammar formalism.

2 Motivations

As can be seen in section 1.1, enumerating the
entire set of combinators can be lengthy. Given
that combinators in a family like {>B, >Bx, <B,
<Bx} differ only by the direction of the slashes and
order of the operands, it seems wasteful to present
each one explicitly. A more compact
representation is afforded by specifying only the
pattern for >B, along with the transformations
required to obtain the variations >Bx, <B and <Bx.
The proposed meta-grammar provides a method
for succinctly specifying these variations.
Without recognising the similarity within
combinator families, and even between combinator
families, writing code to apply combinators can be
laborious, error-prone and wasteful, unless these
similarities are exploited for optimum code reuse.
The implementation of this meta-grammar takes
full advantage of intra- and inter-family
similarities.

2.1 New Domains

Providing a meta-grammar by which to specify
combinator families lends itself to a single-module
implementation that can be easily configured to
handle new combinators. This capability is
important because, although the set of combinators
for use in linguistics seems to have matured, there

are other domains that stand to benefit from CCG
analyses, but for which grammar development is
still in its infancy. In particular, the authors are
currently developing a generic parser capable of
being configured to specific domains, including,
but not limited to, NLP and situation assessment.
Research into applying CCG to these domains is
being assisted by an ability to perform rapid
prototyping on their grammars.
The two new combinators mentioned in the
introduction – functional application (F) and
modificational application (M) – are defined as
follows:

X/Y Y ⇒>F X
Y X\Y ⇒<F X
X/X X ⇒>M X
X X\X ⇒<M X

with the caveat that X≠Y. These combinators find
use in the authors’ research in both English parsing
and situation assessment. Note that >F and >M
together cover all combinations possible under the
traditional vanilla forward application rule >;
similarly for <F and <M with <. It will suffice to
say here that the reason for splitting the traditional
rules into two was to correctly handle head
inheritance while maintaining a simple
mathematical model; further explanation is not
within the scope of this paper1. The >F and <F
combinators defined above would incorrectly be
interpreted as the vanilla > and < combinators if it
were not for the caveat. So this example not only
demonstrates new combinators, but also highlights
the shortcomings of the current methods for
specifying combinators. The proposed meta-
grammar provides an elegant (caveat-free) solution
to this problem.
Another domain that is planned for investigation
is geology. The general intent is to analyse vertical
sequences of discrete sedimentary layers in a
manner analogous to English parsing, where
sequences of (discrete) words are analysed.
Griffiths (1989) founded the precursor to this
research by demonstrating that meaningful
analyses could be performed on sedimentary
sequences using a context-free grammar. He also
speculated that context-sensitive analyses might be
able to resolve some ambiguities, lending weight to
the application of CCG, which is mildly context-
sensitive, to such a task.

1 The authors would like to credit the work of Geoff

Jarrad in developing these two combinators.

2.2 Converting Treebanks

When employing a statistical parser, a suitable
corpus of pre-parsed sentences is required for
training the probabilities. However, altering the
grammar through the addition or deletion of
combinators (as is done when applying CCG to
new domains) requires a new corpus to be marked-
up accordingly. This process typically requires
converting the context-free derivation trees from
the Penn Treebank (Marcus et al., 1993, 1994) to
intermediate binary context-free trees and then
finally to CCG trees. The second stage of
conversion (binary CF to CCG) requires a
technique referred to as inverse combination,
where an unknown left or right category is
determined given the result category. This
contrasts to regular combination, where the
unknown result is deduced from two known
operands. There are two types of inverse
combination: missing-left (when the right operand
and result are known) and missing-right (when the
left operand and result are known. Missing-left and
missing-right scenarios are shown left and right
respectively below.

Cresult

Cright Cleft

Cresult

It will be shown in section 4.2 that a standard
implementation of the meta-grammar can be made
to perform these operations by merely permuting
some of the configuration information passed to
the module.

2.3 Python Implementation

The implementation described in this paper was
coded in Python (Python Programming Language,
2004). Python was chosen for its ability to aid
rapid prototyping and for its ease of integration
with much faster C code. Thus we hope to benefit
from lower coding times and easier debugging,
with the option to port to C and re-integrate any
mature code that is deemed time-critical.

3 The Meta-grammar

This section details the meta-grammar that controls
the specification of a CCG. The set of combinators
are specified as a list of combinator templates, one
template for each combinator family:

COMBINATOR-SET :=

 COMBINATOR-TEMPLATE 1
 …
 …
 COMBINATOR-TEMPLATE m

Each combinator template defined separately, as
well as any atomic variations referenced in the
templates. These are both described below, and
proceeded by some example templates.
It is worth noting that this proposal focuses
primarily on specifying combinators for the
express purpose of performing combinations. The
corresponding semantics (logical forms) may be
associated with operands and the result, following
from Steedman (2000).

3.1 Specifying a Combinator Template

A combinator template is specified as a tuple:

COMBINATOR-TEMPLATE :=
 (TYPE,
 OPERAND-PATTERN-LIST,
 RESULT-PATTERN,
 PERMITTED-VARIATIONS)

where the entries in the tuple are defined as:
TYPE: an identifier for the combinator that
should be unique across all other combinator
templates. Typically it is a single character; in
section 1.1 we saw them as Ф, T, B and S.
OPERAND-PATTERN-LIST: the ordered list of

n operand patterns. Typically n=2 since most
combinators are binary operations, although n=1
for type-raising (T). The syntax for these patterns
is given in section 3.2.
RESULT-PATTERN: a pattern that specifies
how to construct the resulting category from
operand categories that successfully match the
operand patterns.
PERMITTED-VARIATIONS: as mentioned in
section 2, only one pattern set is specified per
family of combinators. Each variation in the family
is specified as a tersely coded entry in this list. For
instance, the composition family (B) would have

permitted-variations = { >, >x, <, <x } .

3.2 Specifying a Pattern

The patterns specified in the combinator template
must conform to the following EBNF syntax:

<PATTERN> := <ATOMIC>|
<COMPOUND>

<ATOMIC> := <A>[‘e’|‘n’]<N>
<A> := (‘A’|…|‘Z’)+
<N> := (‘0’|…|‘9’)+
<COMPOUND> := <LEFT>

(<RIGHT>|‘[’<RIGHT>‘]’)

<LEFT> := <ATOMIC>|
‘(’<COMPOUND>‘)’

<RIGHT> := <SLASH><LEFT>
<SLASH> := (‘\’|‘/’)<N>

For simplicity of expression, we introduce the

semantic requirement that an <A>n<N> pattern
may only occur immediately after a slash. Alter-
natively, we could provide a completely context-
free grammar for patterns through a slightly less

intuitive EBNF, by redefining <ATOMIC> and
<RIGHT>:

<ATOMIC> := <A>[‘e’]<N>
<RIGHT> := <SLASH>

(<LEFT>|<A>‘n’<N>)

Some patterns that conform to this syntax
include:

X1

Y1/ 2Y3

(X 1/ 1Y1)\ 2X2

Atomic patterns (patterns without slashes or
brackets) are specified as alphanumeric strings
which to allows for greater control over pattern

specification. Any two atomic patterns (A’N’ and
A”N”) and the categories they match (C’ and C”
respectively) are governed by the following
constraints:

A′=A″, N ′=N″ ⇒ C ′=C″
A′=A″, N ′≠N″ ⇒ C ′≠C″

As an example, suppose we want to match some

category to the pattern ((X 1/ 1X1)/ 2X2)/ 3Y1,

then the subcategory in the position of the first X1

must be equal to the subcategory in the position of

the second X1, but must be distinct from the

subcategory in the position of the X2 (and any other

X<N> that might have been in the pattern). The

subcategories in the positions of X1, X1 and X2 are

independent of the subcategory in the position of

Y1. For example, this pattern would match the

categories ((A/A)/B)/A , ((A/A)/B)/B and

((A/A)/B)/C , but not ((A/C)/B)/A or

((A/A)/A)/A .

The presence of an ‘e’ in an atomic pattern
indicates that the atomic pattern will only match
with an atomic category. Thus Xe1 will match

category A, but not A/A .
The presence of an ‘n’ in an atomic pattern
indicates that the atomic pattern will allow
matching to an unlimited number of arguments,
similar to the “$ convention” described in

(Steedman 2000). A pattern X1/ 1Y
n

1 would match

categories A/B , (A/B)/C , ((A/B)/C)/D , etc.

Square brackets (if present) in a pattern surround
an optional portion of that pattern. For example,

the pattern Xe
1[/ 1Y

e
1] would match categories A

and A/B , but not (A/B)/C or A/(B/C) .

3.3 Specifying Variations

Each combinator in a given family corresponds to
exactly one variation in the permitted-variations
list of that family’s combinator-template. Suppose
we have operand and result patterns:

TYPE = B
OPERANDS = X1/ 1Y1, Y 1/ 2Z1
RESULT = X 1/ 3Z1

then a > in the permitted-variations list
corresponds to the combinator:

X1/Y 1 Y 1/Z 1 ⇒>B X 1/Z 1

That is, forward combination > does not alter slash
directions or operand order. On the other hand,

backward combination < reverses all slashes and
operand order, so a < in the permitted-variations
list would correspond to the combinator:

Y1\Z 1 X 1\Y 1 ⇒<B X 1\Z 1

Other atomic variations may be defined and used

with either < or >. An atomic variation that is used
in generating the composition (B) family is:

x:{/ 2,/ 3}

That is, the x variant reverses the direction of slash
2 and slash 3. The effect of atomic variations is

successive. So a variation like <x would have
operands and all slashes reversed by <, but the x
would reverse slashes 2 and 3 back to their original
orientation (in this case, forward):

Y1/Z 1 X 1\Y 1 ⇒<Bx X 1/Z 1

Taking this one step further, suppose we invent an

arbitrary variant i:{/ 3} , then the combinator
corresponding to variant <xi would be:

Y1/Z 1 X 1\Y 1 ⇒<Bxi X 1\Z 1

Slash 3 has been reversed once by <, again by x
and again by i , giving an overall effect of a single
reversal.

3.4 Some Example Templates

This section is a simple demonstration of how the
above-described meta-grammar can be used to
specify both existing (type-raising, composition)
and new (functional application, modificational
application) combinators.

3.4.1 Type Raising

TYPE = T
OPERANDS = X1
RESULT = Y 1/ 1(Y 1\ 2X1)
VARIATIONS = {>,<}

X1 ⇒>T Y 1/(Y 1\X 1)
X1 ⇒<T Y 1\(Y 1/X 1)

3.4.2 Composition

Note that this template specifies general
composition (Bn).

TYPE = B
OPERANDS = X1/ 1Y1, Y 1/ 2Z

n
1

RESULT = X 1/ 3Z
n

1
VARIATIONS = {>,>x,<,<x}

X1/Y 1 Y 1/Z
n

1 ⇒>B X 1/Z
n

1

X1/Y 1 Y 1\Z
n

1 ⇒>Bx X 1\Z
n

1

Y1\Z
n

1 X 1\Y 1 ⇒<B X 1\Z
n

1
Y1/Z

n
1 X 1\Y 1 ⇒<Bx X 1/Z

n
1

3.4.3 Functional Application

TYPE = F
OPERANDS = X1/ 1X2, X 2
RESULT = X 1
VARIATIONS = {>,<}

X1/X 2 X 2 ⇒>F X 1

X2 X 1\X 2 ⇒>F X 1

3.4.4 Modificational Application

TYPE = M
OPERANDS = X1/ 1X1, X 1
RESULT = X 1
VARIATIONS = {>,<}

X1/X 1 X 1 ⇒>F X 1

X1 X 1\X 1 ⇒>F X 1

4 Using the Implementation

A prototype module has been developed in Python
to implement the meta-grammar described in this
paper. The module can be thought of as a factory
which takes a combinator-set conforming to the

definition in section 3 and returns a single

function, combine() .

COMBINE
FACTORY

combinator
templates

combine()
function

fn

The combine() function takes any number of

operand categories as arguments and returns a list
of (result-category, combinator) tuples that
corresponds to all possible categories that can be
derived from the input categories.

4.1 Combination

As an example, let us consider the module when
configured by the type-raising and composition
combinator templates given in sections 3.1 and 3.2.

The input to the combine() function is a

sequence of operand categories, and the output is a
list of possible resulting categories and their
corresponding combinators.

Suppose the input is a pair of categories, A/B
and B\C . Type-raising is immediately discounted
by the function because it is unary and thus cannot
operate on a pair of categories. Consequently, the
function only considers the composition (B)
combinators. The function attempts to match the

first category, A/B , with the first operand pattern,
X1/ 1Y1, and the second category, B\C , with the
second operand pattern, Y1/ 2Z

n
1, ignoring slash

directions for the moment. This match is
successful, and results in a match dictionary of

{X 1:A, Y 1:B, Z n
1:C} . The slashes are then

found to match those required for forward crossing

(>x) composition {s 1:/, s 2:\} , but not for

vanilla forward composition {s 1:/, s 2:/} .

From these matches, the result can be built:

X1\Z
n

1:A\C . To attempt the backwards
combinations, the function then tries to match the
input categories to the reversed sequence of

operand patterns, i.e. A/B with Y1/ 2Z
n

1 and B\C
with X1/ 1Y1. This attempt fails because Y1=A in
the first category, while Y1=C in the second
category. So for the input A/B B\C , the output is a
single category-combinator pair: (A\C >Bx) .

If the input were A/B C, the output would be an
empty list since the second category C will not
match the structure of either of the operand
patterns.

Suppose now the input is a single category A.
The composition combinators can be immediately
discounted since they require two operands.
However, it does match the single operand pattern
for the type raising combinator, giving match

dictionary {X 1:A} . This conforms to both the
forward and backward type-raising, so the function

would output a pair list {(*/(*\A) >T) ,

(*\(*/A) <T)} , where the * character
indicates that there was no match for Y1 in the

input. The handling of these wildcards rests with
the client software.

4.2 Inverse Combination

A very useful property of the meta-grammar and
its associated implementation is that it can be
configured to deduce a child category given the
derived category and the other child/children. A
process we term inverse combination.
Consider the case of a binary combinator with
pattern:

OPERANDS = A B
RESULT = C
VARIATIONS = {>*,<*}

where A, B, C are pattern placeholders (– they are
obviously not valid patterns themselves), >*
represents some number of forward variations and

<* represents some number of backward
variations. Now suppose we know the left and
result categories (cA and cC), and wish to
enumerate all valid right categories (cB) – the
missing-right scenario. This is achieved via a two-
step process, involving the instantiation of two

combine() functions:

OPERANDS = A C
RESULT = B
VARIATIONS = {>*}
 ↓
[COMBINE FACTORY]
 ↓
combine 1()

OPERANDS = C A
RESULT = B
VARIATIONS = {<*}
 ↓
[COMBINE FACTORY]
 ↓
combine 2()

Simple addition of the two returned lists obtains
the desired result:

combine 1(c A,c C) + combine 2(c A,c C)

This works because combine 1() returns the list
of cB’s that result from valid matches of A:c A,

C:c C. combine 2() also matches A:c A, C:c C,

but its operation is a little less obvious: because

combine 2() only considers backward

combinations, it always reverses the order of its

operands cA and cC, so A is still compared with cA,

and C with cC.

Inverse combination for the missing-left scenario
can be performed similarly, so in the interest of
brevity its detail is omitted.
While the above approach may seem awkward,
keep in mind that no changes are required to the
meta-grammar definition or to the
implementation’s code base. So inverse
combination is obtained for free.

5 Conclusion

We have defined a meta-grammar for specifying
complete families of CCG combinators. This meta-
grammar covers existing combinators, but more
importantly, it provides a guide for specifying and
using new combinators. A brief look at a
preliminary implementation reveals that the meta-
grammar is indeed practical, and lends itself to
powerful exploitation.

6 Acknowledgements

This paper is based on work supported by
Boeing and CSIRO, and by a Commonwealth
scholarship (APA) plus Woodside PhD top-up
scholarship to the first author. The authors would
like to thank Geoff Jarrad for his input to
discussions and assistance with reviewing. Many
thanks also to the official reviewers for their
helpful suggestions.

References

(2004). Python Programming Language, Python
Software Foundation. 2004.

Ajdukiewicz, K. (1935). “Die syntaktische
Konnexität.” Studia Philosophica 1: 1-27.

Bar-Hillel, Y. (1953). “A Quasi-Arithmetical
Notation for Syntactic Description.” Language
29: 47-58.

Clark, S. and J. Curran (2004). Parsing the WSJ
using CCG and Log-Linear Models. 42nd
Annual Meeting of the Association for

Computational Linguistics (ACL-04), Barcelona,
Spain.

Curry, H. and R. Feys (1958). Combinatory logic.
Amsterdam, North-Holland.

Griffiths, C. M. (1989). “The nature of the
geological representation language and

consequent constraints on machine
interpretation.” Advances in Geophysical Data
Processing 3: 49-77.

Hockenmaier, J. (2003). Data and Models for
Statistical Parsing with Combinatory Categorial
Grammar. School of Informatics. Edinburgh,
University of Edinburgh: 280.

Hockenmaier, J. and M. Steedman (2002).
Generative Models for Statistical Parsing with
Combinatory Categorial Grammar. 40th Annual
Meeting of the Association for Computational

Linguistics, Philadelphia.

Lambek, J. (1958). “The mathematics of sentence
structure.” American Mathematical Monthly 65:
154-170.

Marcus, M. P., G. Kim, et al. (1994). The Penn
treebank: Annotating predicate argument
structure. Human Language Technology

Workshop.

Marcus, M. P., B. Santorini, et al. (1993).
“Building a Large Annotated Corpus of English:
The Penn Treebank.” Computational Linguistics
19(2): 313-330.

McMichael, D., G. Jarrad, et al. (2004). Modelling,
Simulation and Estimation of Situation Histories.
7th International Conference on Information

Fusion (Fusion 2004), Stockholm, Sweden,
International Society for Information Fusion.

Steedman, M. (1993). “Categorial grammar.”
Lingua 90(3): 221-258.

Steedman, M. (1996). Surface Structure and
Interpretation. Massachusetts, MIT Press.

Steedman, M. (2000). The Syntactic Process.
Massachusetts, MIT Press.

Steedman, M. and J. Baldridge (2003).
Combinatory Categorial Grammar (Draft 4.0,
August 10, 2003).
ftp://ftp.cogsci.ed.ac.uk/pub/steedman/ccg/manif
esto.pdf [Internet]. Accessed 15 September 2004.

