
AUTOMATIC PLANNING FROM A 
FRAMES POINT OF VIEW 

Richard E. Fikes 
SRI Artificial Intelligence Center 

I. Introduction 

In this note I would like to consider 
some of the ways in which Minsky's ideas 
concerning frames relate to automatic 
planning systems. I will proceed by making 
some observations about how knowledge is 
represented in planners and will relate some 
of the frame ideas to actual running 
systems. Hopefully, the presentation will 
increase the reader's understanding and 
intuition of both the systems and the ideas. 

Typically, a planning system is one 
that assists in the accomplishment of tasks 
by generating plans and then monitoring 
their execution. The active agent that 
actually carries out the plans might be 
another part of the system (e.g. a 
mechanical manipulator), or a human that the 
system is providing instructions to. A task 
is usually specified to such a system by 
describing an initial situation and a 
desired (goal) situation. The system is 
aware of a collection of actions that the 
active agent can carry out, and the plan it 
produces is a sequence of these actions that 
are expected to transform the initial 
situation into the desired situation. 

Taking a broader view, a planner can be 
thought of as being a constructor of 
scenarios or thematic frames for whatever 
reasons they are needed. For example, the 
system may be involved in understanding a 
natural language narrative that describes a 
sequence of actions, or it may be 
participating in an instructional dialogue 
with a human about some procedure, or it may 
be answering questions about how some task 
would be accomplished. 

II. Action Frames as Plan Steps 

The building blocks that a planner uses 
to construct a new plan can be usefully 
thought of as frames that describe some 
action. In order for a planner to make use 
of such existing "action" frames, they must 
include certain descriptive information 
about themselves. In particular, the 
planner needs to know under what conditions 
the action represented by a frame can be 
carried out. These are the action's 
,,preconditions" or ,,applicability 
conditions". They provide a source of 
subgoals during the planning process and 
allow the planner to assure that an 
executable plan is being produced. In 
addition, the planner needs a description of 
the transformations that execution of an 
action is expected to make. This 
information allows the planner to simulate 
hypothetical action sequences and thereby 
investigate their results. Finally, the 
planner needs to know what kinds of tasks or 
subgoals each action is useful for 
achieving. This information indicates to 
the planner which actions to consider 
putting into the plan being constructed. 

8. 

Typically, the action frames that are 
available to a planner as potential plan 
steps actually represent an entire class of 
actions by containing slots that must be 
filled by specific values. For example, a 
robot action for moving a box might include 
slots for the name of the box, the starting 
location of the move, and the final location 
of the move; hence, the action can be used 
to move any box from any location to any 
other location. An action frame will 
specify constraints on the values that can 
fill its slots such as type requirements 
and, for the box example, perhaps a 
restriction that the two locations be in the 
same room. A significant part of the 
planning activity is the determining of 
values for these slots that both satisfy the 
frame's constraints and produce an instance 
of the frame that is useful in the new plan. 
Hence, the planning process involves both 
selecting and "instantiating" a sequence of 
action frames that will achievethe desired 
goal situation. 

III. Plans as Action Frames 

One would like for the plans produced 
by a planner to be retained as new frames so 
that the system could be considered to be 
learning new scenarios and new themes. In 
some of our earlier work with the STRIPS 
planning system we made a reasonably 
successful attempt at developing such a 
learning mechanism [Fikes, Hart, and 
Nilsson, 1972]. The challange in such an 
effort is to have the system derive and 
store with the new frame the information 
required for its use by other parts of the 
system including the planner. This 
information includes all the kinds of 
information that is included with the 
original action frames, namely a set of 
preconditions for the plan, a description of 
the effects of the plan's execution, and 
indications of the class of tasks the plan 
is relevant to achieving. In addition, for 
the new frame to be useful in situations 
other than just reoccurrences of the one for 
which it was originally constructed, it must 
somehow be generalized so that, like the 
other action frames, there are slots at the 
frame's "terminals" that can be filled in 

• with values suited to any of a class of 
situations and goals. 

The basic goal of the STRIPS learning 
work was to generalize and save plans so 
that they could be used as single steps in 
fUture plans. Two aspects of this work seem 
worth mentioning here. 

A. Kernels 

First, the preconditions for the plan 
were directly available as a side effect of 
the determination of "kernels" preceding 
each step of the plan. The kernel preceding 
step i of a plan is a partial description of 
the situation that the planner expects to 
exist after execution of the first i-I steps 
of the plan. In particular, it specifies a 
set of relational statements that must be 
true if the remainder of the plan is to 



succeed. Hence, in effect, the kernel for 
each step is the preconditions for the 
remainder of the plan. The kernels for a 
plan can be computed in a direct manner by 
considering what relational statements were 
made true by each step in the plan and by 
knowing what statements were needed to 
assure the achievement of the final goal and 
each action's preconditions. 

A plan's kernels provide extremely 
valuable information for many uses of the 
plan, and therefore are prime candidates for 
inclusion in the plan's action frame. First 
of all, the kernel preceeding the first step 
of the plan specifies the preconditions for 
the plan. Second, the kernels specify what 
tests the execution monitor should make 
after each action to determine whether the 
plan is proceeding as expected. Third, the 
kernels are useful for modifying or 
extending the plan to accomodate a new 
situation or new task goals. That is, 
instead of forming a completely new plan to 
accomplish some task goal, the planner has 
the option of modifying an existing frameby 
adding and/or changing some of its steps. 
The basic information that is needed to 
allow such modification ~ to occur is 
contained in the kernels since each kernel 
indicates what must remain true between any 
two adjacent steps in a plan. Hence, the 
planner can add any number of steps between 
step i-I and step i of an existing plan as 
long as the kernel between those two steps 
is not violated. 

H. Plan Generalization 

The second comment to be made about the 
STRIPS learning work relates to the 
generalization that was done on the plans 
before they were stored. The goal was to 
"unbind" the slots in each of the plan's 
steps so that, whenever possible, they 
became unvalued slots in the frame for the 
entire plan. The logical structure of the 
plan imposes restrictions on this unbinding 
process so that some pairs of slots are 
required to take on the same value (i.e., 
they become a single slot in the new frame), 
and others must retain their binding (i.e., 
they lose their status as slots in the new 
frame). For example, if one step of the 
plan causes the robot to go to a door, and 
the next step causes the robot to go through 
a door, then the door in those two steps 

must be the same door. 

This generalization process essentially 
parameterizes the plan and thereby provides 
it with enough generality to make it 
worthwhile to save. For example, consider a 
plan that takes a robot from room RI through 
aoor DI into room R2 and then has the robot 
bring box BI from room R2 back into room ~I 
through door DI. That plan would be 
generalized so that it would take the robot 
z rom any room into any adjacent room through 
any connecting door and then take any box in 
the room into any adjacent room through any 
connecting door. The generalization removes 
all bindings to the particular rooms, doors, 
and box, and allows the room into which the 
box is taken to be different from the one in 

which the robot was initially located. 

9. 

Hence, we can expand our 
characterization of the activities of a 
planner to include the instantiation and 
modification of plans that have been 
previously produced, generalized, and 
stored. This type of activity corresponds 
to Minsky's frame matching processes, where 
values are being assigned to frame terminals 
to produce an instance of a frame that 
matches the situation of interest. 

IV. Subplanners vs Action Frames 

The question arises as to whether 
thematic or action frames in the spirit of 
the STRIPS generalized plans are a useful 
way of storing knowledge about plans and 
planning strategies. It is essential that 
there be some means of communicating to our 
planning systems knowledge about scenarios 
and strategies for accomplishing tasks in 
the domain of interest. For example, in an 
equipment maintenance domain, the planning 
strategy for assembling any given device 
might be to create a plan to install each 
component of the device, and the scenario 
for connecting two components to each other 
might be to first position the components 
with respect to each other and then fasten 
them together. 

In most planning systems, however, Such 
planning strategies and domain ~pecific 
scenarios are not stored in frame-like data 
structures, but are represented procedurally 
as "subplanners" (e.g. consequent theorems, 
if-needed methods, goal team members) that 
are applicable to highly specific 
situations. In many cases, such procedural 
representations seem to be necessary, 
primarily because of the complexity of the 
strategies involved. For example, in 
Fahlman's BUILD program [Fahlman, 1974], the 
planner has the task of building.complicated 
towers out of toy blocks of several 
different shapes. The basic planning 
strategy is to build the tower from the 
bottom up by adding a block to the tower 
only after all the blocks that are to 
support it are already in place. This 
strategy is embedded in a procedure that 
computes the support relationships for the 
entire tower and then uses those 
relationships Lo determine a block placement 
ordering. Such a procedural representation 
suffers @rom the standard difficulty chat 
the strategy is "hidden" inside une 
procedure so that the system cannot answer 
questions about it, modify it, investigate 
its properties, etc. However, it is 
difficult to imagine how such a strategy 
could be represented as an action frame or 
thematic frame since the number and ordering 
of the steps depends on the particular tower 
being constructed. Similar arguments would 
hold for robot route finding situations and 
the equipment assembly example given above. 

There do seem to be interesting 
planning domains where it is desirable to 
input to the system thematic frames 
containing scenarios with all of their steps 
explicitly included. In such <~ases, the 
system is Deing told that the identity and 
order of the steps in the plan are not in 



question. The planner's task is one of 
~etermining values for the scenario's slots 
~i.e. determining an instantiation) that 
both satisfy the scenario's constraints and 
match the situation and task goal that the 
planner is considering. 

For example, we have found such 
explicit scenarios useful in a management 
support system currently being developed at 
SRI. In that work, we wish to allow a 
manager to specify to the system various 
operational procedures that he uses in his 
organization. The system can then act as an 
administrative assistant by planning and 
monitoring the execution of these procedures 
at the manager's request. The planning 
activity in this system is primarily one of 
scheduling the individual steps of an 
operation, and this scheduling is concerned 
with assuring the availability of resourses 
and personnel at specific times. 

In particular, we have been considering 
management problems on board a Navy aircraft 
carrier. One operation of interest in that 
domain is the flying of training missions. 
Such a mission involves steps such as 
preflight and postflight maintenance of the 
aircraft, fueling the aircraft, briefing and 
~ebriefing the pilot, launching and 
recovering the aircraft, etc. These steps 
and the order in which they must occur do 
not vary from mission to mission, hence they 
can be included in a thematic frame that is 
part of the definition of a mission. 

The mission scenario or action frame 
has many terminals with unassigned values, 
and the planner's basic task is to find an 
acceptable set of values for them. Most of 
these slots specify the start or the end 
time of some step in the plan; others 
specify the identity of the pilot and 
aircraft, the amount of fuel to be carried, 
bearings and locations to indicate the 
flight route, ere. 

We include at each terminal of the 
mission's action frame a set of constraints 
on the value to be assigned there. The most 
common constraints are those that are 
derived from the temporal partial ordering 
of the steps (e.g. fueling of the aircraft 
must occur after the preflight maintenance 
and before the launch). Default values are 
included at the terminals, usually expressed 
as functions of other slot values in the 
frame. For example, the default value for 
the start of preflight mainten@nce is 
expressed as the time of launch minus 
constant. These default values allow the 
planner to make feasibility estimates and to 
make scheduling decisions before all of the 
constraints from the other schedulers have 
oeen determined. 

Also included at each terminal is a 
specification of what part of the system can 
be called upon to determine a value for the 
terminal. These are typically cails on 
planners and schedulers that are responsible 
for other operational areas on the carrier 
such as maintenance, pilot assignment, 
aircraft assignment, the flight deck, etc. 
Hence, the mission planner engages in a 

*,egotiation dialogue with these other 
planners in an attempt to reach agreement on 
an acceptable schedule. In this domain, 
Minsky's idea of action frames as a 
representation of the system's understanding 
of various procedures seems a natural and 
useful one. 

We conclude, then, that action frames 
are a useful representation as opposed to 
completely procedural subplanners in 
situations where the identity and ordering 
of the steps in a scenario do not vary from 
situation to situation. When that is not 
the case, a more traditional planning 
activity is required to construct an 
appropriate scenario; the strategy 
information needed to perform such scenario 
construction is often complex and can 
apparently be most naturally represented 
procedurally rather than in a frame-like 
structure. 

i0. 

V. Subplanners as Action Frames 

Even though subplanners are procedural 
in nature, they can usefully be embedded in 
frame-like structures as if they were 
actions ~o be included as single steps in a 
plan. That is, we can talk about the 
preconditions, effects, task relevance, etc. 
of subplanners such as the tower builder, 
the route tinder, and the device assembler 
as if they were single actions. These 
"meta-action, frames can provide the system 
with descriptive information to allow such 
activities as planning, question answering, 
and discourse about the "scenario,, even 
though the actual steps in the scenario for 
any particular situation have not been 
determined. The subplanner acts as an 
implicit scenario and it can be called 
whenever the scenario needs to be made 
explicit. 

The availability of such meta-actlon 
frames allows the system to do "hierarchical 
planning,, in the sense that a meta-actlon 
can be included in a plan without calling 
its subplanner to determine the plan steps 
that it represents. This approach to 
planning has been carefully explored by 
Sacerdoti in two systems [Sacerdoti, 
~974,1975], and found to PrOVide significant 
advantages both during the generation and 
the execution of Plans. ~n these systems, 
plans tend to grow in a top-down 
"breadth-first, manner in that typically a 
complete plan will be constructed using nigh 
level meta-actions %efore the detailed steps 
of any of the meta-actions are determined. 
Since a meta-action's subplanner may itself 
Produce a plan containing meta-actions, a 
multiple level plan hierarchy can be formed, 
and the planner can make independent 
decisions for each meta-action as to whether 
its subplanner should be called. 

The advantages of hierarchical planning 
derive basically from the fact that by using 
meta-aetions the system can ignore detailed 
actions until it is confident that they will 
become part of the final plan. Indeed, in 
many situations the detailed steps may not 
be needed at all. For example, the system 



may be giving instructions to a human who is 
skilled in the task domain and therefore 
does not need detailed instructions; or the 
system may be only answering a specific 
question about a task such as "Can the robot 
fetch the box?" or "How long will it take to 
replace the pump?". 

REFERENCES 
[I] Fahlman, S. E., "A Planning System for 
Hobot Construction Tasks", Artificial 
Intelligence Journal, Vol. 5 (1974), pp 
1-49. 
[2] Fikes, R. E., Hart, P. E., and 
Nilsson, N. J., "Learning and Executing 
Generalized Robot Plans", Artificial 
Intelligence Journal, Vol. 3 (1972), pp 
251-288. 
[3] Sacerdotl, E. D., "Planning in a 
Hierarchy of Abstraction Spaces", Artificial 
Intelligence Journal, Vol. 5 (1974), pp 
115-135. 
[4] Sacerdoti, E. D., "A Structure for 
Flans and Behavior", Ph.D. Thesis , 
t'orthcoming. 

Ii. 


