
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 645–651
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

645

Abstract

In this paper, we describe our submissions

to SemEval-2019 task 6 contest. We tackled

all three sub-tasks in this task “OffensEval -

Identifying and Categorizing Offensive

Language in Social Media”. In our system

called JCTICOL (Jerusalem College of

Technology Identifies and Categorizes

Offensive Language), we applied various

supervised ML methods. We applied

various combinations of word/character n-

gram features using the TF-IDF scheme. In

addition, we applied various combinations

of seven basic preprocessing methods. Our

best submission, an RNN model was

ranked at the 25th position out of 65

submissions for the most complex sub-task

(C).

1 Introduction

Offensive language is frequent in social media. For

instance, ScanSafe's monthly "Global Threat

Report" reported that up to 80% of blogs contained

offensive contents and 74% included porn in the

format of the image, video, or offensive language

(Cheng, 2007). There are people that take

advantage of the perceived anonymity of

computer-mediated communication, using this to

write in behavior that many of them would not

consider in real life.

Online news and social networking services,

online communities, social media platforms, and

various computer companies have been investing a

lot of effort, time and money to cope with offensive

language in order to prevent abusive behavior.

Computational methods are among the most

effective strategies to identify various types of

aggression, offense, and hate speech in user-

generated content (e.g., comments, microblogs,

posts, and tweets). Detection of offensive

language has been investigated in recent years in

various studies (Waseem et al. 2017; Davidson et

al., 2017, Malmasi and Zampieri, 2018, Kumar et

al. 2018) and various workshops such as

ALW (Abusive Language Online) and TRAC

(Trolling, Aggression, and Cyberbullying).

In this paper, we describe our submissions to

SemEval-2019 task 6 contest. In Task-6,

OffensEval, there are three different sub-tasks.

Sub-task A deals with offensive language

identification. Sub-task B deals with the

automatic categorization of offense types. Sub-

task C deals with offense target identification.

The report of the OffensEval task is described

in Zampieri et al. (2019A) and the description of

the OLID dataset that was used for the

competition is in Zampieri et al. (2019B).

The structure of the rest of the paper is as

follows. Section 2 discusses work related to

offensive language in social media, tweet

classification, and data preprocessing. Section 3

presents, in general, the task description. In

Section 4, we describe the submitted models and

their experimental results. Section 6 summarizes

and suggests ideas for future research.

2 Background

2.1 Offensive Language in Social Media

In recent years, there has been an increase in the

number of studies dealing with Offensive

language in social media. Nobata et al. (2016)

developed a machine learning based method to

detect hate speech on online user comments from

two domains. They also built a corpus of user

comments annotated accordingly to three

subcategories (hate speech, derogatory,

 JCTICOL at SemEval-2019 Task 6: Classifying Offensive Language

in Social Media using Deep Learning Methods,

Word/Character N-gram Features, and Preprocessing Methods

XXX at SemEval-2019 Task 6: OffensEval –

Identifying and Categorizing Offensive Language in Social Media

Yaakov HaCohen-Kerner, Ziv Ben-David, Gal Didi,

Eli Cahn, Shalom Rochman, and Elyashiv Shayovitz

Department of Computer Science, Jerusalem College of Technology, Lev Academic Center

21 Havaad Haleumi St., P.O.B. 16031, 9116001 Jerusalem, Israel

kerner@jct.ac.il,benda1237@gmail.com,

galdd8@gmail.com, eli.cahn@gmail.com,

shal.rochman@gmail.com, elyashiv12@gmail.com

Yaakov HaCohen-Kerner, Ziv Ben-David, Gal Didi, Eli Cahn, Shalom Rochman, and Elyashiv Shayovitz

Department of Computer Science, Jerusalem College of Technology, Lev Academic Center

21 Havaad Haleumi St., P.O.B. 16031, 9116001 Jerusalem, Israel

kerner@jct.ac.il,benda1237@gmail.com,galdd8@gmail.com,

eli.cahn@gmail.com, s.r.63914@gmail.com, elyashiv12@gmail.com

https://en.wikipedia.org/wiki/News
mailto:eli.cahn@gmail.com
mailto:kerner@jct.ac.il
mailto:eli.cahn@gmail.com
mailto:s.r.63914@gmail.com

646

profanity). Waseem and Hovy (2016) introduced

a list of criteria founded in critical race theory and

used them to label a publicly available corpus of

more than 16k tweets with tags about both racial

and sexist offenses.

A survey on hate speech detection is presented

by Schmidt and Wiegand (2017). The authors

introduced various NLP methods that were

developed in order to detect hate speech.

Davidson et al. (2017) presented a multi-class

classifier to distinguish between three categories:

hate speech, offensive language, and none of these

two. The analysis of the predictions and the errors

show when we can reliably separate hate speech

from other offensive language and when this

differentiation is more difficult. Anzovino et al.

(2018) built a labelled corpus containing 2,227

misogynous (hate speech against women) tweets

and no-misogynous tweets and explored various

NLP features and ML models for detecting and

classifying misogynistic language.

2.2 Tweet Classification

Sriram et al. (2010) presented a new classification

model that uses a small set of domain-specific

features extracted from the author‟s profile and

text. Experimental results showed that the

classification accuracy of their model is better

than the classification accuracy of the traditional

Bag-Of-Words model. Batool et al. (2013)

introduced a system that extracts knowledge from

tweets and then classifies the tweets based on the

semantics of knowledge contained in them. For

avoiding information loss, knowledge enhancer is

applied that enhances the knowledge extraction

process from the collected tweets.

Stance classification of tweets was investigated

by HaCohen-Kerner et al. (2017). Given test

datasets of tweets from five various topics, they

classified the stance of the tweet authors as either

in FAVOR of the target, AGAINST it, or NONE.

Their algorithm used a few tens of features mainly

character-based features where most of them are

skip char ngram features. The experimental

results showed that this algorithm significantly

outperforms the traditional ‘bag-of-words’ model.

2.3 Data preprocessing

Data preprocessing is an important step in data

mining (DM) and ML processes. In tweets, it is

1 https://github.com/phatpiglet/autocorrec.

common to find typos, emojis, slang, HTML tags,

spelling mistakes, irrelevant and redundant

information. Analyzing data that has not been

carefully cleaned or pre-processed might lead to

misleading results.

Not all of the preprocessing types are

considered effective in the text classification

community. For instance, Forman (2003), in his

study on feature selection metrics for text

classification, claimed that stop words occurring

frequently and are ambiguous and therefore

should be removed, However, HaCohen-Kerner et

al. (2008) demonstrated that the use of word

unigrams including stop words lead to improved

text classification results compared to the results

obtained using word unigrams excluding stop

words in the domain of Hebrew-Aramaic Jewish

law documents.

In our system, we applied various combinations

of seven basic preprocessing types: C - spelling

Correction1 using a dictionary of containing 479k

English words2, L – converting to Lowercase

letters, P – Punctuation removal, S – Stopwords

Removal, R – Repeated characters removal, T –

sTemming, and M - leMmatizion) in order to

employ the best combination.

3 The Competition of Task 6

SemEval-2019 Task 6 consists of three subtasks:

1. Subtask A: Given a tweet, predict whether it

contains offensive language or a targeted

(veiled or direct) offense or it does not contain

offense or profanity.

2. Subtask B: Given a tweet containing

offensive language, predict whether it

contains an insult or threat to an individual, a

group, or others, or contains non targeted

profanity and swearing.

3. Subtask C: Given a tweet containing an insult

or threat, predict whether the target is an

individual or a group of people considered as

a unity due to the same ethnicity, gender or

sexual orientation, political affiliation,

religious belief, or something else, or does not

belong to any of the previous two categories

(e.g., an organization).

The dataset of Task 6 contains tweets that were

annotated using crowdsourcing. The dataset of

sub-task A contains 13,240 tweets: 4,404 OFF

(Offensive language) tweets (about 33%) and

8,836 NOT (Not Offensive) tweets (about 67%).

2 https://github.com/dwyl/english-words.

647

The dataset of sub-task B contains 4,400 offensive

tweets: 3,876 TIN (Targeted Insult) tweets (about

88%) and 524 UNT (Untargeted) tweets. The

dataset of sub-task C contains 3,876 tweets: 2,407

IND (Individual) tweets (about 62%), 1,074 GRP

(Group) tweets (about 28%), and 395 OTH

(Other) (about 10%). The test data of sub-tasks A,

B, and C contain 860, 240, and 213 unlabeled

tweets, respectively.

4 The Submitted Models and

Experimental Results

We have submitted 17 models: 6 models to task

6-A, 6 models to task 6-B, and 5 models to task 6-

C. We applied the Python module called Scikit-

learn (Pedregosa et al., 2011) using the TF-IDF

scheme called TfidfTransformer3 and we applied

various supervised ML methods with various

numbers of n-gram features, skip word/char n-

grams (HaCohen-Kerner et al., 2017) and

combinations of pre-processing types.

While all teams’ submissions in all three sub-

tasks of task 6 were ranked according to their F-

Measure scores, we were wrong in all these sub-

tasks in the sense that we submitted models

according to their accuracy scores.

Most of our submitted models were RNN models.

Each RNN model was a bidirectional RNN with 4

hidden layers, with different numbers of LSTMs,

values of Dropout, and number of vectors of GloVe

(Pennington et al., 2014). Additional explanations

to our RNN models, which are given in the next

paragraphs are mainly based on the explanations

given by Nikolai Janakiev in “Practical Text

Classification with Python and Keras”4.

We used the Tokenizer utility class, which

converts a text corpus into a list of integers. Each

3 https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.

text.TfidfTransformer.html#sklearn.feature_extraction.text.Tfi

dfTransformer

integer maps to a value in a dictionary that encodes

the entire corpus, with the dictionary’s keys being

the vocabulary terms themselves.

We chose to use the Twitter-aware tokenizer,

designed to be flexible and easy to adapt to new

domains and tasks (e.g., for tweet processing).

We used the word embeddings method. This

method represents words as dense word vectors,

which are trained, unlike the one-hot encoding

which is hardcoded. The word embeddings map

the statistical structure of the language used in the

corpus. Their aim is to map semantic meaning into

a geometric space. This geometric space is then

called the embedding space. This method would

map semantically similar words close on the

embedding space.

There are two options to get such a word

embedding. One way is to train the word

embeddings during the training of our neural

network. The other way is to use a precomputed

embedding space that utilizes a larger corpus.

Among the most popular methods are GloVe

(Global Vectors for Word Representation)

developed by the Stanford NLP Group

(Pennington et al., 2014) and

Word2Vec developed by Mikolov et al. (2013).

GloVe applies a co-occurrence matrix and by

using matrix factorization while Word2Vec

applies neural networks. Word2Vec is more

accurate and GloVe is faster to compute. We used

the GloVe method for our model.

4.1 Results of Task 6-A

Table 1 presents the main characteristics and results

of our six submitted models to task 6-A. The

models are presented in descending order

according to their F-measure score on the test set.

4 https://realpython.com/python-keras-text-

classification/#author

https://realpython.com/python-keras-text-classification/#author
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html#sklearn.feature_extraction.text.TfidfTransformer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html#sklearn.feature_extraction.text.TfidfTransformer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html#sklearn.feature_extraction.text.TfidfTransformer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html#sklearn.feature_extraction.text.TfidfTransformer
https://nlp.stanford.edu/projects/glove/
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://realpython.com/python-keras-text-classification/#author
https://realpython.com/python-keras-text-classification/#author

648

Table 1: Results of our 6 models in task-A.

The main results and conclusions that can be

derived from Table 1 are as follows:

 The best submitted model is an RNN

model with F-measure of 0.74 and

accuracy of 0.81 obtaining the 43rd

position out of 103 submissions.

 The best combination of N-gram features

for this model contains 5000 word

unigrams and 100 word bigrams (without

any word trigrams).

 In addition, this model used 512 LSTMs

and in its FC layer, it used seven different

ML methods.

 This model did not use any combination

of pre-processing types.

 Simpler RNN models and non RNN

models e.g. the SVM-linear model (last

row in Table 1) as well as other models

5 DFS – Decision Function Shape.

that were tested but not submitted, were

less successful.

4.2 Results of Task 6-B

Table 2 presents the main characteristics and results

of our six submitted models to task 6-B. The

models are presented in descending order

according to their F-measure score on the test set.

It should be noted that the train set for sub-task b

contains imbalanced sets of tweets. The number of

tweets classified as UNT is 524 (about 12%) while

the number of tweets classified as TIN is 3,876

(about 88%). The main results and conclusions that

can be derived from Table 2 are as follows:

 Our best submitted model is a SVC - support

vector classifier with F-measure of 0.49 and

accuracy of 0.85 obtaining the 62nd position

The first

name of the

model

authors

Pre-

proc-

essing

 Model Score

ML

Meth

od

N-Gram

Features

Additional

Features

(for RNN

only)

FC Layer

(for RNN only)

CV Test Scores

Acc. F-M Acc. Rank

JCTICOL-

Ziv Ben-

David

- RNN

5000 word

unigrams, 100

word bigrams

512 LSTMs,

0.2 Dropout.

GloVe:

100d.

Logistic Regression

Random Forest

SVM-linear

SVC (kernel=linear)

SVC (kernel=rbf)

SVC (DFS5=ovo)

KNeighbors

0.85 0.74 0.81
49/

103

JCTICOL-

Eli Cahn
CLS RNN None

512 LSTMs,

0.2 Dropout.

GloVe:

100d.

- 0.77 0.73 0.8
50/

103

JCTICOL-

Gal Didi
- RNN

5000 word

unigrams, 100

word bigrams

512 LSTMs,

0.3 Dropout.

GloVe:

100d.

Logistic Regression

Random Forest

 SVM-linear

0.85 0.73 0.79
52/

103

JCTICOL-

Shalom

Rochman

L RNN None

512 LSTMs,

0.2 Dropout.

GloVe:

100d.

- 0.75 0.73 0.81
59/

103

JCTICOL-

Elyashiv

Shayovitz

- RNN

5000 word

unigrams, 100

word bigrams

512 LSTMs,

0.2 Dropout.

GloVe:

100d.

SVC (kernel=rbf) 0.86 0.72 0.81
62/

103

JCTICOL-

Yaakov

HaCohen-

Kerner

-
SVM-

linear

5000 word

unigrams, 200

word bigrams,

100 words

trigrams

- - 0.72 0.72 0.78
67/

103

649

out of 75 submissions. This model used a

combination of the MPR pre-processing types.

 This model used 10,000 char trigrams where

for each character trigram we allow up to a

maximum of 7 skipped characters in-between

the chosen ones.

 As mentioned before, while the submitted

models were ranked according to their F-

Measure results, we were wrong and submit

models according to their accuracy results.

Table 2: Results of our 6 models in task-B.

4.3 Results of Task 6-C

Table 3 presents the main characteristics and results

of our six submitted models to task 6-C. The

models are presented in descending order

according to their F-measure score on the test set.

The main results and conclusions that can be

derived from Table 3 are as follows:

 Our best submitted model is an RNN

model with F-measure of 0.53 and accuracy of

0.64 obtaining the 25th position out of 65

submissions.

 The best combination of N-gram features

for this model contains 5000 word unigrams

and 200 word bigrams (without any word

trigrams).

 In addition, this model used 512 LSTMs

and in its FC layer it used only the SVC ML

method.

 This model did not use any combination of

pre-processing types.

 Simpler RNN models and non RNN models

such as the SVC-linear model (last row in

Table 3) as well as other models that were

tested but not submitted to the competition,

were less successful.

User
Pre-

processing

Model Score

ML Method N-Gram Features

CV Test Score

Acc.
Macro-

F1
Acc. Rank

JCTICOL-

Eli Cahn
MPR

SVC - Support

vector classifier

10000 char trigrams

with 7 skips
0.87 0.49 0.85 62 / 75

JCTICOL-

Ziv Ben- David
L

MLP - Multilayer

perceptron

10000 char

unigrams

with 4 skips

0.87 0.48 0.85 63 / 75

JCTICOL-

Gal Didi
MPRS

SVC - Support

vector classifier

7000 word bigrams

with 0 skips
0.87 0.47 0.82 65 / 75

JCTICOL-

Elyashiv

Shayovitz

CMPR
LR - Logistic

regression

10000 char bigrams

with 7 skips
0.87 0.47 0.89 66 / 75

JCTICOL-

Yaakov

HaCohen-

Kerner

CLS
SVC - Support

vector classifier

1000 char trigrams

with 9 skips
0.87 0.47 0.89 67 / 75

JCTICOL-

Shalom

Rochman

CMP
RF - Random

forest

7000 word

unigrams

with 0 skips

0.87 0.47 0.81 69 / 75

650

Table 3: Results of our 6 models in task-C.

5 Conclusions and Future Research

In this paper, we describe our submissions to three

sub-tasks of Task 6 of SemEval-2019 contest. Our

system JCTICOL (Jerusalem College of

Technology Identifies and Categorizes Offensive

Language) includes 17 formal submissions: 6 for

sub-task A, 6 for sub-task B, and 5 for sub-task C.

We used the TF-IDF scheme and we applied

various supervised ML methods with various

numbers of n-gram features and combinations of

pre-processing types. Our best submission was

ranked at the 25th position out of 65 submissions

for the most complex sub-task (C).

Future research proposals that may contribute

to better classification are as follows. (1) Using

additional feature sets such as stylistic feature sets

(HaCohen-Kerner et al., 2010B) and keyphrases

that can be extracted from the text corpora

(HaCohen-Kerner et al., 2007); (2) Using

acronym disambiguation (e.g., HaCohen-Kerner

et al., 2010A), i.e., selecting the correct long form

of the acronym depending on its context will

enrich the tweet’s text; and (3) Using other deep

learning models.

Acknowledgments

This research was partially funded by the

Jerusalem College of Technology, Lev Academic

Center.

References

Rabia Batool, Asad Masood Khattak, Jahanzeb

Maqbool, and Sungyoung Lee 2013. Precise tweet

classification and sentiment analysis. In Computer

and Information Science (ICIS), 2013 IEEE/ACIS

12th International Conference on (pp. 461-466).

IEEE.

Jacqui Cheng. 2007. Report: 80 percent of blogs

contain "offensive" content, in ars technica. vol.

2011.

Thomas Davidson, Dana Warmsley, Michael Macy,

and Ingmar Weber. 2017. Automated hate speech

detection and the problem of offensive language.

In Eleventh International AAAI Conference on Web

and Social Media, pages 512-515.

User

Pre

proc

essi

ng

Model Score

ML

Method

N-Gram

Features

Additional

Features

(for RNN

only)

FC Layer

(for RNN only)

CV Test Scores

Acc. F-M Acc. Rank

JCTICOL-

Gal Didi
- RNN

5000 word

unigrams,

200 word

bigrams

512 LSTMs,

0.3 Dropout.

GloVe:

200d special

for Tweeter

SVC

(kernel=linear)
0.88 0.53 0.64 25 / 65

JCTICOL-

Ziv Ben-

David

- RNN

8000 word

unigrams,

200 word

bigrams

512 LSTMs,

0.3 Dropout.

GloVe:

200d special

for Tweeter

Logistic

Regression
0.89 0.51 0.64 33 / 65

JCTICOL-

Elyashiv

Shayovitz

- RNN

5000 word

unigrams,

200 word

bigrams

512 LSTMs,

0.3 Dropout.

GloVe:

200d special

for Tweeter

- 0.68 0.50 0.67 40 / 65

JCTICOL-

Yaakov

HaCohen-

Kerner

- RNN

5000 word

unigrams,

200 word

bigrams

512 LSTMs,

0.3 Dropout.

GloVe:

200d special

for Tweeter

SVM-linear 0.88 0.49 0.62 42 / 65

JCTICOL-

Shalom

Rochman

-

SVC_

(kernel=

linear)

5000 word

unigrams,

200 word

bigrams

- - 0.64 0.42 0.54 58 / 65

651

George Forman. 2003. An extensive empirical study of

feature selection metrics for text

classification. Journal of machine learning

research, 3(Mar), 1289-1305.

Yaakov HaCohen-Kerner, Ittay Stern, David Korkus,

and Erick Fredj. 2007. Automatic machine learning

of keyphrase extraction from short html documents

written in Hebrew. Cybernetics and Systems: An

International Journal, 38(1), 1-21.

Yaakov HaCohen-Kerner, Dror Mughaz, Hananya

Beck, and Elchai Yehudai 2008. Words as classifiers

of documents according to their historical period

and the ethnic origin of their authors. Cybernetics

and Systems: An International Journal, 39(3), 213-

228.

Yaakov HaCohen-Kerner, Ariel Kass, and Ariel Peretz.

2010A. HAADS: A Hebrew Aramaic abbreviation

disambiguation system. Journal of the American

Society for Information Science and

Technology, 61(9), 1923-1932.

Yaakov HaCohen-Kerner, Hananya Beck, Elchai

Yehudai, and Dror Mughaz. 2010B. Stylistic feature

sets as classifiers of documents according to their

historical period and ethnic origin. Applied

Artificial Intelligence, 24(9), 847-862.

Yaakov HaCohen-Kerner, Ziv Ido, and Ronen

Ya’akobov. 2017. Stance classification of tweets

using skip char Ngrams. In Joint European

Conference on Machine Learning and Knowledge

Discovery in Databases (pp. 266-278). Springer,

Cham.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and

Marcos Zampieri. 2018. Benchmarking aggression

identification in social media. In Proceedings of the

First Workshop on Trolling, Aggression, and

Cyberbullying (TRAC-2018) (pp. 1-11).

Shervin Malmasi and Marcos Zampieri. 2018.

Challenges in discriminating profanity from hate

speech. Journal of Experimental & Theoretical

Artificial Intelligence, 30(2), 187-202.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey

Dean. 2013. Efficient estimation of word

representations in vector space. arXiv preprint

arXiv:1301.3781.

Chikashi Nobata, Joel Tetreault, Achint Thomas,

Yashar Mehdad, and Yi Chang. 2016. Abusive

language detection in online user content. In:

Proceedings of the 25th International Conference on

World Wide Web, pp. 145–153. International World

Wide Web Conferences Steering Committee.

Fabian Pedregosa, Varoquaux, G., Gramfort, A.,

Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R. and Dubourg, V. and

Vanderplas, J., Passos, A., Cournapeau, D., Brucher,

M., Perrot, M., and Duchesnay, E. 2011. Scikit-

learn: Machine learning in Python. Journal of

machine learning research, 12(Oct), 2825-2830.

Jeffrey Pennington, Richard Socher, and Christopher

D. Manning. 2014. GloVe: Global Vectors for Word

Representation.

Anna Schmidt and Michael Wiegand. 2017. A survey

on hate speech detection using natural language

processing. In Proceedings of the Fifth International

Workshop on Natural Language Processing for

Social Media. Association for Computational

Linguistics, Valencia, Spain, pages 1–10.

Bharath Sriram, David Fuhry, Engin Demir, Hakan

Ferhatosmanoglu. 2010. Short text classification in

twitter to improve information filtering.

In Proceedings of the 33rd international ACM

SIGIR conference on Research and development in

information retrieval (pp. 841-842). ACM.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,

and Ingmar Weber. 2017. Understanding abuse: A

typology of abusive language detection

subtasks. arXiv preprint arXiv:1705.09899.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,

Sara Rosenthal, Noura Farra, and Ritesh Kumar.

2019A. SemEval-2019 Task 6: Identifying and

Categorizing Offensive Language in Social Media

(OffensEval). In Proceedings of the 13th

International Workshop on Semantic Evaluation

(SemEval).

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,

Sara Rosenthal, Noura Farra, and Ritesh Kumar.

2019B. Predicting the Type and Target of Offensive

Posts in Social Media. In Proceedings of NAACL.

https://www.tandfonline.com/author/Beck%2C+Hananya

