
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 645–651
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

645

 

 

Abstract 

In this paper, we describe our submissions 

to SemEval-2019 task 6 contest. We tackled 

all three sub-tasks in this task “OffensEval - 

Identifying and Categorizing Offensive 

Language in Social Media”. In our system 

called JCTICOL (Jerusalem College of 

Technology Identifies and Categorizes 

Offensive Language), we applied various 

supervised ML methods. We applied 

various combinations of word/character n-

gram features using the TF-IDF scheme. In 

addition, we applied various combinations 

of seven basic preprocessing methods. Our 

best submission, an RNN model was 

ranked at the 25th position out of 65 

submissions for the most complex sub-task 

(C). 

1 Introduction 

Offensive language is frequent in social media. For 

instance, ScanSafe's monthly "Global Threat 

Report" reported that up to 80% of blogs contained 

offensive contents and 74% included porn in the 

format of the image, video, or offensive language 

(Cheng, 2007). There are people that take 

advantage of the perceived anonymity of 

computer-mediated communication, using this to 

write in behavior that many of them would not 

consider in real life.  

Online news and social networking services, 

online communities, social media platforms, and 

various computer companies have been investing a 

lot of effort, time and money to cope with offensive 

language in order to prevent abusive behavior. 

Computational methods are among the most 

effective strategies to identify various types of 

aggression, offense, and hate speech in user-

generated content (e.g., comments, microblogs, 

posts, and tweets). Detection of offensive 

language has been investigated in recent years in 

various studies (Waseem et al. 2017; Davidson et 

al., 2017, Malmasi and Zampieri, 2018, Kumar et 

al. 2018) and various workshops such as 

ALW (Abusive Language Online) and TRAC 

(Trolling, Aggression, and Cyberbullying).  

In this paper, we describe our submissions to 

SemEval-2019 task 6 contest. In Task-6, 

OffensEval, there are three different sub-tasks. 

Sub-task A deals with offensive language 

identification. Sub-task B deals with the 

automatic categorization of offense types. Sub-

task C deals with offense target identification. 

The report of the OffensEval task is described 

in Zampieri et al. (2019A) and the description of 

the OLID dataset that was used for the 

competition is in Zampieri et al. (2019B). 

The structure of the rest of the paper is as 

follows. Section 2 discusses work related to 

offensive language in social media, tweet 

classification, and data preprocessing. Section 3 

presents, in general, the task description. In 

Section 4, we describe the submitted models and 

their experimental results. Section 6 summarizes 

and suggests ideas for future research. 

2 Background 

2.1 Offensive Language in Social Media 

In recent years, there has been an increase in the 

number of studies dealing with Offensive 

language in social media. Nobata et al. (2016) 

developed a machine learning based method to 

detect hate speech on online user comments from 

two domains. They also built a corpus of user 

comments annotated accordingly to three 

subcategories (hate speech, derogatory, 
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profanity). Waseem and Hovy (2016) introduced 

a list of criteria founded in critical race theory and 

used them to label a publicly available corpus of 

more than 16k tweets with tags about both racial 

and sexist offenses.  

A survey on hate speech detection is presented 

by Schmidt and Wiegand (2017). The authors 

introduced various NLP methods that were 

developed in order to detect hate speech. 

Davidson et al. (2017) presented a multi-class 

classifier to distinguish between three categories: 

hate speech, offensive language, and none of these 

two. The analysis of the predictions and the errors 

show when we can reliably separate hate speech 

from other offensive language and when this 

differentiation is more difficult. Anzovino et al. 

(2018) built a labelled corpus containing 2,227 

misogynous (hate speech against women) tweets 

and no-misogynous tweets and explored various 

NLP features and ML models for detecting and 

classifying misogynistic language. 

2.2 Tweet Classification 

Sriram et al. (2010) presented a new classification 

model that uses a small set of domain-specific 

features extracted from the author‟s profile and 

text. Experimental results showed that the 

classification accuracy of their model is better 

than the classification accuracy of the traditional 

Bag-Of-Words model. Batool et al. (2013) 

introduced a system that extracts knowledge from 

tweets and then classifies the tweets based on the 

semantics of knowledge contained in them. For 

avoiding information loss, knowledge enhancer is 

applied that enhances the knowledge extraction 

process from the collected tweets. 

Stance classification of tweets was investigated 

by HaCohen-Kerner et al. (2017). Given test 

datasets of tweets from five various topics, they 

classified the stance of the tweet authors as either 

in FAVOR of the target, AGAINST it, or NONE. 

Their algorithm used a few tens of features mainly 

character-based features where most of them are 

skip char ngram features. The experimental 

results showed that this algorithm significantly 

outperforms the traditional ‘bag-of-words’ model. 

2.3 Data preprocessing 

Data preprocessing is an important step in data 

mining (DM) and ML processes. In tweets, it is 

                                                           
1 https://github.com/phatpiglet/autocorrec. 

common to find typos, emojis, slang, HTML tags, 

spelling mistakes, irrelevant and redundant 

information. Analyzing data that has not been 

carefully cleaned or pre-processed might lead to 

misleading results. 

Not all of the preprocessing types are 

considered effective in the text classification 

community. For instance, Forman (2003), in his 

study on feature selection metrics for text 

classification, claimed that stop words occurring 

frequently and are ambiguous and therefore 

should be removed, However, HaCohen-Kerner et 

al. (2008) demonstrated that the use of word 

unigrams including stop words lead to improved 

text classification results compared to the results 

obtained using word unigrams excluding stop 

words in the domain of Hebrew-Aramaic Jewish 

law documents.  

In our system, we applied various combinations 

of seven basic preprocessing types: C - spelling 

Correction1 using a dictionary of containing 479k 

English words2, L – converting to Lowercase 

letters, P – Punctuation removal, S – Stopwords 

Removal, R – Repeated characters removal, T – 

sTemming, and M - leMmatizion) in order to 

employ the best combination. 

3 The Competition of Task 6 

SemEval-2019 Task 6 consists of three subtasks:  

1. Subtask A: Given a tweet, predict whether it 

contains offensive language or a targeted 

(veiled or direct) offense or it does not contain 

offense or profanity.  

2. Subtask B: Given a tweet containing 

offensive language, predict whether it 

contains an insult or threat to an individual, a 

group, or others, or contains non targeted 

profanity and swearing. 

3. Subtask C: Given a tweet containing an insult 

or threat, predict whether the target is an 

individual or a group of people considered as 

a unity due to the same ethnicity, gender or 

sexual orientation, political affiliation, 

religious belief, or something else, or does not 

belong to any of the previous two categories 

(e.g., an organization). 

The dataset of Task 6 contains tweets that were 

annotated using crowdsourcing. The dataset of 

sub-task A contains 13,240 tweets: 4,404 OFF 

(Offensive language) tweets (about 33%) and 

8,836 NOT (Not Offensive) tweets (about 67%). 

2 https://github.com/dwyl/english-words. 
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The dataset of sub-task B contains 4,400 offensive 

tweets: 3,876 TIN (Targeted Insult) tweets (about 

88%) and 524 UNT (Untargeted) tweets. The 

dataset of sub-task C contains 3,876 tweets: 2,407 

IND (Individual) tweets (about 62%), 1,074 GRP 

(Group) tweets (about 28%), and 395 OTH 

(Other) (about 10%). The test data of sub-tasks A, 

B, and C contain 860, 240, and 213 unlabeled 

tweets, respectively. 

4  The Submitted Models and 

Experimental Results 

We have submitted 17 models: 6 models to task 

6-A, 6 models to task 6-B, and 5 models to task 6-

C. We applied the Python module called Scikit-

learn (Pedregosa et al., 2011) using the TF-IDF 

scheme called TfidfTransformer3 and we applied 

various supervised ML methods with various 

numbers of n-gram features, skip word/char n-

grams (HaCohen-Kerner et al., 2017) and 

combinations of pre-processing types.  

While all teams’ submissions in all three sub-

tasks of task 6 were ranked according to their F-

Measure scores, we were wrong in all these sub-

tasks in the sense that we submitted models 

according to their accuracy scores. 

Most of our submitted models were RNN models. 

Each RNN model was a bidirectional RNN with 4 

hidden layers, with different numbers of LSTMs, 

values of Dropout, and number of vectors of GloVe 

(Pennington et al., 2014). Additional explanations 

to our RNN models, which are given in the next 

paragraphs are mainly based on the explanations 

given by Nikolai Janakiev in “Practical Text 

Classification with Python and Keras”4. 

We used the Tokenizer utility class, which 

converts a text corpus into a list of integers. Each 

                                                           
3 https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.

text.TfidfTransformer.html#sklearn.feature_extraction.text.Tfi

dfTransformer 

integer maps to a value in a dictionary that encodes 

the entire corpus, with the dictionary’s keys being 

the vocabulary terms themselves. 

We chose to use the Twitter-aware tokenizer, 

designed to be flexible and easy to adapt to new 

domains and tasks (e.g., for tweet processing). 

We used the word embeddings method. This 

method represents words as dense word vectors, 

which are trained, unlike the one-hot encoding 

which is hardcoded. The word embeddings map 

the statistical structure of the language used in the 

corpus. Their aim is to map semantic meaning into 

a geometric space. This geometric space is then 

called the embedding space. This method would 

map semantically similar words close on the 

embedding space. 

There are two options to get such a word 

embedding. One way is to train the word 

embeddings during the training of our neural 

network. The other way is to use a precomputed 

embedding space that utilizes a larger corpus. 

Among the most popular methods are GloVe 

(Global Vectors for Word Representation) 

developed by the Stanford NLP Group 

(Pennington et al., 2014) and 

Word2Vec developed by Mikolov et al. (2013). 

GloVe applies a co-occurrence matrix and by 

using matrix factorization while Word2Vec 

applies neural networks. Word2Vec is more 

accurate and GloVe is faster to compute. We used 

the GloVe method for our model. 

4.1 Results of Task 6-A 

Table 1 presents the main characteristics and results 

of our six submitted models to task 6-A. The 

models are presented in descending order 

according to their F-measure score on the test set. 

4 https://realpython.com/python-keras-text-

classification/#author 
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Table 1: Results of our 6 models in task-A. 

 

 

 

The main results and conclusions that can be 

derived from Table 1 are as follows: 

 The best submitted model is an RNN 

model with F-measure of 0.74 and 

accuracy of 0.81 obtaining the 43rd 

position out of 103 submissions. 

 The best combination of N-gram features 

for this model contains 5000 word 

unigrams and 100 word bigrams (without 

any word trigrams). 

 In addition, this model used 512 LSTMs 

and in its FC layer, it used seven different 

ML methods. 

 This model did not use any combination 

of pre-processing types. 

 Simpler RNN models and non RNN 

models e.g. the SVM-linear model (last 

row in Table 1) as well as other models 

                                                           
5 DFS – Decision Function Shape.  

that were tested but not submitted, were 

less successful. 
 

 

 

 

 

 

 

4.2 Results of Task 6-B 

Table 2 presents the main characteristics and results 

of our six submitted models to task 6-B. The 

models are presented in descending order 

according to their F-measure score on the test set. 

It should be noted that the train set for sub-task b 

contains imbalanced sets of tweets. The number of 

tweets classified as UNT is 524 (about 12%) while 

the number of tweets classified as TIN is 3,876 

(about 88%). The main results and conclusions that 

can be derived from Table 2 are as follows: 

 Our best submitted model is a SVC - support 

vector classifier with F-measure of 0.49 and 

accuracy of 0.85 obtaining the 62nd position 

The first 

name of the 

model 

authors 

Pre-

proc-

essing 

                            Model Score 

ML 

Meth

od 

N-Gram 

Features 

Additional 

Features 

(for RNN 

only) 

FC Layer 

(for RNN only) 

CV Test Scores 

Acc. F-M Acc. Rank 

JCTICOL- 

Ziv Ben- 

David 

- RNN 

5000 word 

unigrams, 100 

word bigrams 

512 LSTMs, 

0.2 Dropout. 

GloVe: 

100d. 

Logistic Regression       

Random Forest                  

SVM-linear                                 

SVC (kernel=linear)    

SVC (kernel=rbf)             

SVC (DFS5=ovo)       

KNeighbors 

0.85 0.74 0.81 
49/ 

103 

JCTICOL- 

Eli Cahn 
CLS RNN None 

512 LSTMs, 

0.2 Dropout. 

GloVe: 

100d. 

- 0.77 0.73 0.8 
50/ 

103 

JCTICOL- 

Gal Didi 
- RNN 

5000 word 

unigrams, 100 

word bigrams 

512 LSTMs, 

0.3 Dropout. 

GloVe: 

100d. 

Logistic Regression        

Random Forest               

         SVM-linear 

0.85 0.73 0.79 
52/ 

103 

JCTICOL- 

Shalom 

Rochman 

L RNN None 

512 LSTMs, 

0.2 Dropout. 

GloVe: 

100d. 

- 0.75 0.73 0.81 
59/ 

103 

JCTICOL- 

Elyashiv 

Shayovitz 

- RNN 

5000 word 

unigrams, 100 

word bigrams 

512 LSTMs, 

0.2 Dropout. 

GloVe: 

100d. 

SVC (kernel=rbf) 0.86 0.72 0.81 
62/ 

103 

JCTICOL- 

Yaakov 

HaCohen-

Kerner 

- 
SVM-

linear 

5000 word 

unigrams, 200 

word bigrams, 

100 words 

trigrams 

- - 0.72 0.72 0.78 
67/ 

103 
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out of 75 submissions. This model used a 

combination of the MPR pre-processing types. 

 This model used 10,000 char trigrams where 

for each character trigram we allow up to a 

maximum of 7 skipped characters in-between 

the chosen ones. 

 As mentioned before, while the submitted 

models were ranked according to their F-

Measure results, we were wrong and submit 

models according to their accuracy results. 

 

 

Table 2: Results of our 6 models in task-B. 

 

4.3 Results of Task 6-C 

Table 3 presents the main characteristics and results 

of our six submitted models to task 6-C. The 

models are presented in descending order 

according to their F-measure score on the test set. 

The main results and conclusions that can be 

derived from Table 3 are as follows: 

 Our best submitted model is an RNN 

model with F-measure of 0.53 and accuracy of 

0.64 obtaining the 25th position out of 65 

submissions. 

 The best combination of N-gram features 

for this model contains 5000 word unigrams 

and 200 word bigrams (without any word 

trigrams). 

 In addition, this model used 512 LSTMs 

and in its FC layer it used only the SVC ML 

method. 

 This model did not use any combination of 

pre-processing types.  

 Simpler RNN models and non RNN models 

such as the SVC-linear model (last row in 

Table 3) as well as other models that were 

tested but not submitted to the competition, 

were less successful.

 

 

 

 

 

 

User 
Pre- 

processing 

Model Score 

ML Method N-Gram Features 

CV Test Score 

Acc. 
Macro-

F1 
Acc. Rank 

JCTICOL- 

Eli Cahn 
MPR 

SVC - Support 

vector classifier 

10000 char trigrams 

with 7 skips 
0.87 0.49 0.85 62 / 75 

JCTICOL- 

Ziv Ben- David 
L 

MLP - Multilayer 

perceptron 

10000 char 

unigrams  

with 4 skips 

0.87 0.48 0.85 63 / 75 

JCTICOL- 

Gal Didi 
MPRS 

SVC - Support 

vector classifier 

7000 word bigrams 

with 0 skips 
0.87 0.47 0.82 65 / 75 

JCTICOL- 

Elyashiv 

Shayovitz 

CMPR 
LR -  Logistic 

regression 

10000 char bigrams 

with 7 skips 
0.87 0.47 0.89 66 / 75 

JCTICOL- 

Yaakov 

HaCohen-

Kerner 

CLS 
SVC - Support 

vector classifier 

1000 char trigrams 

with 9 skips 
0.87 0.47 0.89 67 / 75 

JCTICOL- 

Shalom 

Rochman 

CMP 
RF - Random 

forest 

7000 word 

unigrams 

with 0 skips 

0.87 0.47 0.81 69 / 75 
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Table 3: Results of our 6 models in task-C. 

 

5 Conclusions and Future Research 

In this paper, we describe our submissions to three 

sub-tasks of Task 6 of SemEval-2019 contest. Our 

system JCTICOL (Jerusalem College of 

Technology Identifies and Categorizes Offensive 

Language) includes 17 formal submissions: 6 for 

sub-task A, 6 for sub-task B, and 5 for sub-task C. 

We used the TF-IDF scheme and we applied 

various supervised ML methods with various 

numbers of n-gram features and combinations of 

pre-processing types. Our best submission was 

ranked at the 25th position out of 65 submissions 

for the most complex sub-task (C). 

Future research proposals that may contribute 

to better classification are as follows. (1) Using 

additional feature sets such as stylistic feature sets 

(HaCohen-Kerner et al., 2010B) and keyphrases 

that can be extracted from the text corpora 

(HaCohen-Kerner et al., 2007); (2) Using 

acronym disambiguation (e.g., HaCohen-Kerner 

et al., 2010A), i.e., selecting the correct long form 

of the acronym depending on its context will 

enrich the tweet’s text; and (3) Using other deep 

learning models. 
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