
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 766–770,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

TopicThunder at SemEval-2017 Task 4: Sentiment Classification Using a
Convolutional Neural Network with Distant Supervision

Simon Müller
Zurich University of Applied Sciences

Switzerland
muellsi3@students.zhaw.ch

Tobias Huonder
Zurich University of Applied Sciences

Switzerland
huondtob@students.zhaw.ch

Jan Deriu
Zurich University of Applied Sciences

Switzerland
deri@zhaw.ch

Mark Cieliebak
Zurich University of Applied Sciences

Switzerland
ciel@zhaw.ch

Abstract

In this paper, we propose a classifier for
predicting topic-specific sentiments of En-
glish Twitter messages. Our method is
based on a 2-layer CNN. With a distant su-
pervised phase we leverage a large amount
of weakly-labelled training data. Our sys-
tem was evaluated on the data provided
by the SemEval-2017 competition in the
Topic-Based Message Polarity Classifica-
tion subtask, where it ranked 4th place.

1 Introduction

The goal of sentiment analysis is to teach the ma-
chine the ability to understand emotions and opin-
ions expressed in text. There are numerous chal-
lenges which make this task very difficult, for in-
stance the complexity of natural language which
makes use of intricate concepts like irony, sar-
casm, and metaphors to name a few. Usually
we are not interested in the overall sentiment of
a tweet but rather in the sentiment the tweet ex-
presses towards a topic of interest. Subtask B in
SemEval-2017 (Rosenthal et al., 2017) consists of
predicting the sentiment of a tweet towards a given
topic as either positive or negative.
Convolutional neural networks (CNN) have shown
to be very efficient at tackling the task of senti-
ment analysis, as they are able to learn features
themselves instead of relying on manually crafted
ones (Kalchbrenner et al., 2014; Kim, 2014). Our
work is based on the system proposed by (De-

riu et al., 2016), which in turn is based on (Sev-
eryn and Moschitti, 2015). CNNs typically have a
large number of parameters which need sufficient
data to be trained efficiently. In this work, we
leverage a large amount of data to train a multi-
layer CNN. The training is based on the follow-
ing 3-phase procedure (see Figure 1): (i) creation
of word embeddings based on an unsupervised
corpus of 200M English tweets, (ii) a distant su-
pervised phase using an additional 100M tweets,
where the labels are inferred by weak sentiment
indicators (e.g. smileys), and (iii) a supervised
phase, where the pre-trained network is trained on
the provided data.
We evaluated the approach on the datasets of
SemEval-2017 for the subtask B, where it ranked
4th out of 23 submissions.

Figure 1: Overview of the 3-Phase training proce-
dure.

766



2 Model

Our system is based on the 2-layer CNN proposed
by (Deriu et al., 2016), as depicted in Figure 2 and
described in details below. We refer to a layer as
one convolutional and one pooling layer, thus, a 2-
layer network consists of two consecutive pairs of
convolutional-pooling layers.

Word embeddings. The word embeddings are
initialized using word2vec (Mikolov et al., 2013)
and then trained on an unlabelled corpus of 200M
tweets. We apply a skipgram model of window
size 5 and filter words that occur less than 15
times. The dimensionality of the vector represen-
tation is set to d = 52. The resulting vocabulary is
stored as a mapping V : t→ iwhich maps a token
to an index, where unknown tokens are mapped to
a default index. The word embeddings are stored
in a matrix E ∈ Rv×d where v is the size of the
vocabulary and the i-th row represents the embed-
ding for the token with index V (t) = i.

Preprocessing The preprocessing is done by: (i)
lower-case the tweet, (ii) replace URLs and user-
names with a special token, and (iii) tokenize the
tweet using the NLTK-TwitterTokenizer1.

Input Layer. Each tweet is converted to a set
of indices by applying the aforementioned prepro-
cessing. The tokens are mapped to their respective
indices in the vocabulary V .

Sentence model. Each word is associated to
a vector representation, which consists in a d-
dimensional vector. A tweet is represented by the
concatenation of the representations of its n con-
stituent words. This yields a matrix X ∈ Rd×n,
which is used as input to the convolutional neural
network.

Convolutional layer. In this layer, a set ofm fil-
ters is applied to a sliding window of length h over
each sentence. Let X[i:i+h] denote the concatena-
tion of word vectors xi to xi+h. A feature ci is
generated for a given filter F by:

ci :=
∑
k,j

(X[i:i+h])k,j · Fk,j (1)

A concatenation of all vectors in a sentence pro-
duces a feature vector c ∈ Rn−h+1. The vectors
c are then aggregated over all m filters into a fea-
ture map matrix C ∈ Rm×(n−h+1). The filters are

1http://www.nltk.org/api/nltk.tokenize.html

learned during the training phase of the neural net-
work.

Max pooling. The output of the convolutional
layer is passed through a non-linear activation
function before entering a pooling layer. The lat-
ter aggregates vector elements by taking the max-
imum over a fixed set of non-overlapping inter-
vals. The resulting pooled feature map matrix has
the form: Cpooled ∈ Rm×n−h+1

s , where s is the
length of each interval. In the case of overlap-
ping intervals with a stride value st, the pooled
feature map matrix has the form Cpooled ∈
Rm×n−h+1−s

st . Depending on whether the borders
are included or not, the result of the fraction is
rounded up or down respectively.

Hidden layer. A fully connected hidden layer
computes the transformation α(W∗x+b), where
W ∈ Rm×m is the weight matrix, b ∈ Rm the
bias, and α the rectified linear (relu) activation
function (Nair and Hinton, 2010). The output vec-
tor of this layer, x ∈ Rm, corresponds to the sen-
tence embeddings for each tweet.

Softmax. Finally, the outputs of the final pool-
ing layer x ∈ Rm are fully connected to a soft-
max regression layer, which returns the class ŷ ∈
[1,K] with largest probability. i.e.,

ŷ := arg max
j

P (y = j|x,w,a)

= arg max
j

ex
ᵀwj+aj∑K

k=1 e
xᵀwk+aj

,
(2)

where wj denotes the weights vector of class j and
aj the bias of class j.

Network parameters. Training the neural net-
work consists in learning the set of parameters
Θ = {E,F1,b1,F2,b2,W,a}, where E is the
sentence matrix, with each row containing the d-
dimensional embedding vector for a specific word;
Fi,bi(i = {1, 2}) the filter weights and biases of
the first and second convolutional layers; W the
concatenation of the weights wj for every output
class in the soft-max layer; and a the bias of the
soft-max layer.

Training. We pre-train the word embeddings on
an unsupervised corpus of 200M tweets. During
the distant-supervised phase, we use emoticons
to infer the polarity of a set of additional 100M
tweets (Read, 2005; Go et al., 2009). The result-
ing dataset contains positive 79M tweets and 21M

767



Sentence Matrix Convolutional 
Feature Map

pooled 
repr.

Convolutional 
Feature Map

pooled 
repr.

Hidden
Layer

Softmax

Figure 2: The architecture of the CNNs used in our approach.

negative tweets. The neural network is trained
on these 100M tweets for one epoch. Then, the
neural network is trained in a supervised phase
on the labelled data provided by SemEval-2017.
To avoid over-fitting we employed early-stopping,
where we stop the training if the score on the val-
idation set did not increase for 50 epochs. The
word-embeddings E ∈ Rd×n are updated during
both the distant and the supervised training phases,
as back-propagation is applied through the entire
network.
The network parameters are learned using
AdaDelta (Zeiler, 2012), which adapts the learn-
ing rate for each dimension using only first or-
der information. We used the hyper-parameters
ε = 1e−6 and ρ = 0.95 as suggested by (Zeiler,
2012).

Computing Resources. The implementation of
the system is written in Python. We used
the Keras framework (Chollet, 2015) using the
Theano (Theano Development Team, 2016) back-
end. Theano allows to accelerate the computa-
tions using a GPU. We used an NVIDIA TITAN X
GPU to conduct our experiments. To generate the
word embeddings we used the Gensim framework
(Řehůřek and Sojka, 2010) which implements the
word2vec model in Python. It took about 2 days to
generate the word embeddings. The distant phase
takes approximately 5 hours and the supervised
phase up to 10 minutes.

3 Experiments & Results

3.1 Data
We evaluate our system on the datasets provided
by SemEval-2017 for subtask B (see Table 3.1).
The training-set is composed by Train 2016, Dev
2016, and DevTest 2016, whereas we use Test 2016
as validation set. The training and the validation

set have 100 topics each. Since our dataset of
200M tweets for the word embeddings consists
primarily of tweets from 2013, some of the top-
ics are not covered by the vocabulary. Thus, we
download an additional 20M tweets where we use
the topic-names as search key. This reduced the
percentage of unknown words from 14% to 13%.

Dataset Total Posit. Negat. Topics
Train 2016 5355 2749 762 60
Dev 2016 1269 568 214 20
DevTest 2016 1779 883 276 20
Test: Test 2016 20632 7059 3231 100

Table 1: Overview of datasets and number of
tweets (or sentences) provided in SemEval-2016.
The data was divided into training, development
and testing sets.

3.2 Setup
We use the following hyper parameters for the 2-
layer CNN: In both layers we use 200 filters, a
filter length of 6, and for the first layer we use a
pooling length of 4 with striding 2.
In order to optimize our results, we varied the
batch-sizes, we introduced class-weights to lessen
the impact of the unbalanced training set, and we
experimented with different schemes for shuffling
the training set (see below). To determine the
class-weight of class i we used the following for-
mula: n

c∗ni
, where n is the total number of sam-

ples in the training set, c is the number of classes,
namely 2, and ni is the number of samples that
belong to class i.

3.3 Results
The following results are computed on Test 2016.
We use the macroaveraged recall ρ as scoring
mechanism for our experiments, which is more ro-
bust regarding class imbalances (Rosenthal et al.,

768



2017; Esuli and Sebastiani, 2015).
The results show that the usage of class weights in-
creases the score by approximately 2 points from
0.8225 to 0.8403 points.
Figure 3 shows the score depending on the batch
size used. The results show that higher batch sizes
tend to give higher scores. This effect however
subsides when batch sizes greater than 1200 are
used.
Figure 4 shows the result when different schemes
for shuffling the training set before training are
applied. When we do not shuffle the training
set, the macroaveraged recall score drops by 4-5
points. We compare two schemes for shuffling: (i)
the epoch based shuffling, where the training set
is shuffled entirely before each epoch, (ii) batch
based shuffling, where the training set is split into
batches and each batch is shuffled separately. The
results in Figure 4 show that there is just a small
difference of 1 point among the two strategies.

0.7318 

0.8258 

1 200 400 600 800 1000 1200 1400 1600 1800 2000

Batch Sizes 

Recall

Figure 3: The architecture of the CNNs used in
our approach.

0.7682 

0.8171 

0.8257 

None Epoch Batch

Shuffle 

Recall

Figure 4: The architecture of the CNNs used in
our approach.

Table 2 shows the results on the Test 2017 set,
which is the official test set of the competition.
The system achieves a macroaveraged recall of
0.846, thus, ranking at 4th place. The BB twtr
system, ranked 1st, outperforms our approach by
4 points, whereas the DataStories system and the
Tweester system outperform our system by only 1

point.

System ρ FPN
1 Acc

TopicThunder 0.846 0.847 0.854
BB twtr 0.882 0.890 0.897
DataStories 0.856 0.861 0.869
Tweester 0.854 0.854 0.863

Table 2: Official results on Test 2017. We compare
our system to the systems that ranked 1st, 2nd, and
3rd.

4 Conclusion

We described a deep learning approach to solve
the problem of topic-specific sentiment analysis
on twitter. The approach is based on a 2-layer
Convolutional Neural Network which is trained
using a large amount of data. Furthermore, we
experimented with different parameters to fine
tune our system. The system was evaluated at
SemEval-2017 for the task of Topic-Based Mes-
sage Polarity Classification, ranking at 4th place.

References
Franois Chollet. 2015. keras. https://github.
com/fchollet/keras.

Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli, Au-
relien Lucchi, Valeria De Luca, and Martin Jaggi.
2016. Swisscheese at semeval-2016 task 4: Sen-
timent classification using an ensemble of convo-
lutional neural networks with distant supervision.
Proceedings of SemEval pages 1124–1128.

Andrea Esuli and Fabrizio Sebastiani. 2015. Optimiz-
ing text quantifiers for multivariate loss functions.
ACM Transactions on Knowledge Discovery from
Data (TKDD) 9(4):27.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford 1:12.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A Convolutional Neural Network for
Modelling Sentences. In ACL - Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics. Baltimore, Maryland, USA,
pages 655–665.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In EMNLP 2014 - Empiri-
cal Methods in Natural Language Processing. pages
1746–1751.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013.
Exploiting Similarities among Languages for Ma-
chine Translation. arXiv .

769



Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference
on Machine Learning (ICML-10). pages 807–814.

Jonathon Read. 2005. Using emoticons to reduce de-
pendency in machine learning techniques for senti-
ment classification. In Proceedings of the ACL stu-
dent research workshop. Association for Computa-
tional Linguistics, pages 43–48.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. ELRA, Valletta,
Malta, pages 45–50. http://is.muni.cz/
publication/884893/en.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
SemEval-2017 task 4: Sentiment analysis in Twit-
ter. In Proceedings of the 11th International Work-
shop on Semantic Evaluation. Association for Com-
putational Linguistics, Vancouver, Canada, SemEval
’17.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Twitter sentiment analysis with deep convolutional
neural networks. In Proceedings of the 38th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, pages
959–962.

Theano Development Team. 2016. Theano: A
Python framework for fast computation of mathe-
matical expressions. arXiv e-prints abs/1605.02688.
http://arxiv.org/abs/1605.02688.

Matthew D. Zeiler. 2012. ADADELTA: An Adap-
tive Learning Rate Method. arXiv page 6.
http://arxiv.org/abs/1212.5701.

770


