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Abstract

We present a description of the system submit-
ted to the Semantic Textual Similarity (STS)
shared task at SemEval 2016. The task is
to assess the degree to which two sentences
carry the same meaning. We have designed
two different methods to automatically com-
pute a similarity score between sentences. The
first method combines a variety of semantic
similarity measures as features in a machine
learning model. In our second approach, we
employ training data from the Interpretable
Similarity subtask to create a combined word-
similarity measure and assess the importance
of both aligned and unaligned words. Finally,
we combine the two methods into a single hy-
brid model. Our best-performing run attains
a score of 0.7732 on the 2015 STS evaluation
data and 0.7488 on the 2016 STS evaluation
data.

1 Introduction

If you ask a computer if two sentences are identical,
it will return an accurate decision in a split-second.
Ask it to do the same for a million sentence pairs
and it will take a few seconds — far quicker than any
human. But similarity has many dimensions. Ask a
computer if two sentences mean the same and it will
stall, yet the human can answer instantly. Now we
have the edge. But what metrics do we use in our
personal cognitive similarity-scoring systems? The
answer is at the heart of the semantic similarity task.
In our solution, we have incorporated several cat-
egories of features from a variety of sources. Our
approach covers both low-level visual features such

as length and edit-distance as well as high-level se-
mantic features such as topic-models and alignment
quality measures.

Throughout our approach, we have found it easier
to consider similarity at the lexical level. This is un-
surprising, as each lexeme may be seen as a seman-
tic unit with the sentence’s meaning built directly
from a specific combination of lexemes. We have
explored several methods for abstracting our lexical-
level features to the sentence level as explained in
Section 4. Our methods are built from both intuitive
features as well as the results of error-analyses on
our trial runs. We have combined multiple feature
sources to build a powerful semantic-similarity clas-
sifier, discarding non-performing features as neces-
sary.

2 Related Work

The presented system has been submitted to the Se-
mantic Textual Similarity (STS) shared task at Se-
mEval 2016, which has been organised since 2012
(Agirre et al., 2016). Existing approaches to the
problem adopt a plethora of similarity measures in-
cluding string-based, content-based and knowledge-
based methods. String-based methods (Bär et al.,
2012; Malakasiotis and Androutsopoulos, 2007;
Jimenez et al., 2012) exploit surface features (e.g.,
character n-grams, lemmas) to compute a seman-
tic similarity score between two sentences. Bär
et al. (2012) showed that string-based features im-
prove performance when using machine learning.
Knowledge-based features (Mihalcea et al., 2006;
Gabrilovich and Markovitch, 2007) estimate the
semantic similarity of textual units using external
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knowledge resources (e.g., WordNet). As an ex-
ample, Liu et al. (2015) used the shortest path that
links two words in the WordNet taxonomy as a sim-
ilarity measure between words. To calculate a simi-
larity score between sentences, the authors used the
sum of the similarity scores of the constituent words.
Content-based features are based upon the distribu-
tional similarity of words and sentences. Distribu-
tional semantics methods (Mikolov et al., 2013; Ba-
roni et al., 2014) encode the lexical context of words
into a vector representation. A vector representation
of a sentence may be estimated as a function of the
vectors of the constituent words (Mitchell and Lap-
ata, 2010). The semantic relatedness between sen-
tences is measured using the cosine of the angle of
the composed sentence vectors.

3 Feature Sources

We have collected a variety of resources to help us
create semantic similarity features. Some of these
(Subsections 3.2 and 3.4) give features at the level
of the sentence itself. Other resources (Subsections
3.1, 3.3, 3.5. 3.6 and 3.7) give features at the level
of the individual words. We explain how we adapt
these features to sentence-level metrics in Section 4.

3.1 Distributional semantics

We use a count-based distributional semantics
model (Turney and Pantel, 2010) and the Continu-
ous Bag-Of-Words (CBOW) model (Mikolov et al.,
2013) to learn word vectors. The training corpus
that we used is a combination of all monolingual
texts provided by the organiser of the 2014 Machine
Translation Shared Task1, whose size is about 20
GB. Before training, we tokenised and transferred
the corpus into lowercase text. The size of the
context window is 5 for both of the models. The
numbers of dimensions in the resulting vectors are
150,000 and 300 for the count-based and the CBOW
models respectively.

3.2 Machine translation

A pair of input sentences can be considered as the
input and output of a machine translation system.
Therefore, we can apply machine translation (MT)

1http://www.statmt.org/wmt14/
translation-task.html#download

metrics to estimate the semantic relatedness of the
input pair. Specifically, we used three popular MT
metrics: BLEU (Papineni et al., 2002), Translation
Edit Rate (TER) (Snover et al., 2006), and ME-
TEOR (Denkowski and Lavie, 2014).

3.3 Lexical paraphrase scores
Another promising resource for similarity estima-
tion is the lexical paraphrase database (PPDB) by
Ganitkevitch et al. (2013). Each of the word pairs
in the PPDB has a set of 31 different features (Gan-
itkevitch and Callison-Burch, 2014). In this work,
we calculate the similarity of a word pair by using
the formula that Ganitkevitch and Callison-Burch
(2014) recommended to measure paraphrases’ qual-
ity. However, for word pairs that have been seen
very rarely, i.e., their rarity penalty score in PPDB is
higher than 0.1, we simply set the similarity score at
0 instead of applying the formula.

3.4 Topic modelling
We induce a topic-based vector representation of
sentences by applying the Latent Dirichlet Allo-
cation (LDA) method (Blei et al., 2003). We
hypothesise that a varying granularity of vector-
representations provide complementary information
to the machine learning system. Based upon this,
we extract 26 different topic-based vector represen-
tations by varying the number of topics; starting
from a small number of 5 topics which resulted in a
coarse-grained topic-based representation to a larger
number of 800 topics which produced a more fine-
grained representation. In our experiments, we used
the freely available MALLET toolkit (McCallum,
2002). Additionally, we performed hyper-parameter
optimisation for every 10 Gibbs sampling iterations
and set the total number of iterations to 2, 000.

3.5 WordNet
For WordNet-based similarity between a pair of
words we have chosen Jiang-Conrath (Jiang and
Conrath, 1997) similarity based on an evaluation by
Budanitsky and Hirst (2006). To compute the score,
we lemmatise the words using Stanford CoreNLP
(Manning et al., 2014), find corresponding synsets
in Princeton WordNet (Fellbaum, 1998) and obtain
the Jiang-Conrath value using the WS4J library2.

2https://code.google.com/archive/p/ws4j/
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3.6 Character string

Sometimes semantically related words are very sim-
ilar as sequences of characters, e.g. cooperate and
co-operate or recover and recovery. To handle
such cases we compute Levenshtein distance (Lev-
enshtein, 1966) between words. To keep the similar-
ity score xl in the [0, 1] range, we adjust the obtained
distance d by computing xl = (l− d)/l, where l de-
notes the length of the longer word.

3.7 Word importance measures

We calculated the combined probability of each
word occurring in a given context. We used
smoothed unigram and bigram probabilities taken
from the Google Web1T data (Brants and Franz,
2006). We multiplied the smoothed unigram prob-
ability of a word together with the smoothed bi-
gram probability of both the word itself and the word
immediately before it to give the 2-word contex-
tual probability of a word’s appearance. Whilst this
model could theoretically be extended to longer se-
quences, we found that memory resources limited
our capacity to a sequence of 2 words.

p(wi|wi−1, wi) = p(wi−1, wi)× p(wi)

We also investigated psycholinguistic properties as
measures of word importance. We used the MRC
Psycholinguistic norms (Wilson, 1988) to attain val-
ues for the ‘familiarity’, ‘imagery’ and ‘concrete-
ness’ of each word. These metrics can be defined
as follows:

Familiarity: This indicates how likely a word is to
be recognised by a user. Words which occur
very often such as cat are likely to be more fa-
miliar than less common words such as feline.

Concreteness: This indicates whether a reader per-
ceives a word as referring to a physical entity.
A conceptual phrase such as truth will have
a lower value for concreteness than an object
which is more easily relatable such as house or
man.

Imagery: This metric indicates how easy it is to
call-up images associated with a word. This is
related to concreteness, but may differ in some

cases. For example, some actions (jumping, fly-
ing) or common emotions (joy, sadness, fear)
may have high imagery, but low concreteness.

4 Feature Generation

We found that the greatest challenge of the task was
to combine different existing word-level relatedness
cues into a sentence-level similarity measure. We
have submitted three permutations of our system, as
allowed by the task. The first system ‘Aggregation
(Macro)’ passes a set of 36 features through a ran-
dom forest classifier. The second system ‘Alignment
(Micro)’ first aligns the sentences using word-level
metrics and then calculates 49 features describing
this alignment. Our final system ‘Hybrid’ is simply
the combination of the former two approaches.

4.1 Aggregation (Macro)
In this approach feature sources are used separately,
each applied as a sentence similarity measure that is
further represented as a single feature.

• Compositional semantic vectors. A sentence
vector is simply calculated by cumulatively
adding its component word vectors. The simi-
larity of a sentence pair is then estimated by the
cosine of the angle between the corresponding
vectors.

• Average maximum cosine. Given a sentence
pair of (s, t) whose number of words are m and
n respectively, the similarity score is calculated
as the average of the maximum cosine similar-
ity of word pairs as follows:

score(s, t) =

∑m
i=1maxnj=1 cos(

−→wi,
−→wj)

max(m,n)

• MT metrics. We apply MT metrics at the sen-
tence level. We used smoothed BLEU-4 and
TER implemented within Stanford Phrasal3

while the METEOR score was provided using
techniques from Denkowski and Lavie (2014).

• Paraphrase DB. To compute sentence similar-
ity using PPDB, we find the most similar coun-
terpart for each of the words and return an aver-
age of obtained similarity scores, weighted by
word length.

3http://nlp.stanford.edu/phrasal/
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• Topic modelling metric. Given that each sen-
tence is represented by a topic-based vector, we
can compute a similarity score for a sentence
pair using the cosine similarity.

This leads to 36 features, each expected to be posi-
tively correlated with sentence similarity.

4.2 Alignment (Micro)
In this approach we combine different techniques of
assessing relatedness to create a single word similar-
ity measure, use it to align compared sentences, and
compute features describing a quality of alignment.

4.2.1 Word-level similarity
We employ a machine learning model to create a
measure of semantic similarity between words. The
model uses four measures:

1. adjusted Levenshtein distance xl,

2. word-vector cosine similarity xwv,

3. WordNet Jiang-Conrath similarity xwn,

4. paraphrase database score xp.

Each measure returns values between 0 (no similar-
ity) and 1 (identical words). As a training set, we
have used all the data from the previous year’s in-
terpretable subtask (Agirre et al., 2015), which in-
cludes pairs of chunks with assigned similarity be-
tween 0 and 5. As this set contain pairs of chunks,
not words, we extended these measures for multi-
word arguments. This has been done by (1) using the
whole chunk for Levenshtein distance, (2) finding
the best pair for WordNet similarity and (3) using
solutions for sentence-level aggregation (described
in the previous section) for word vectors and para-
phrase database.

Negative examples have been created by selecting
unaligned pairs and assigning to them a score equal
to 0. In that way we obtain 19,673 training cases,
from which the following linear regression model
has been deduced:

y = −0.3285 + 1.3343× xl + 0.8625× xwv

+0.9875× xwn + 2.1496× xp

The coefficients of this model show that the word
vectors and WordNet features have a lower influ-
ence on the final score output by the model, whereas

the paraphrase database score has a greater influ-
ence. Although the final model was trained on all
the data from last year’s interpretable similarity sub-
task, we performed a separate evaluation on this data
in which we partitioned the data into train and test
subsets. The resulting correlation on the test subset
was 0.8964, which we consider to be very reason-
able.

4.2.2 Finding alignment

Having a universal similarity measure between
words, we can compute an alignment of sentences.
To do this, we tokenise each sentence and compute
similarity value between every pair of words. Then
we find an alignment in a greedy way, by pairing
free words in order of decreasing similarity of pairs.
This process stops when we reach 1 (in a 0-5 scale,
see previous section), which usually leaves some of
the words unaligned.

4.2.3 Features

The features generated in this approach describe
the quality of the alignment of a pair of sentences.
The simple measures are: mean similarity between
aligned pairs, length of aligned parts as a pro-
portion of sentence length (average from two sen-
tences) and a number of crossings in permutation de-
fined by the alignment, i.e. Kendall’s tau (Kendall,
1955). Secondly, we also include sums of lengths
of aligned and unaligned words with particular tags,
using Stanford CoreNLP (Manning et al., 2014) with
slightly simplified Brown tagset (19 tags). This fol-
lows our intuition that significance of success or fail-
ure of alignment of a particular word is different for
different parts of speech (e.g proper nouns vs. de-
terminers). Finally, we measure the importance of
matched and unmatched words by their probability
(sum of logarithms) and psycholinguistic metrics –
familiarity, concreteness and imagery (sum of val-
ues). As a result of this process we get 49 features.

4.3 Hybrid

The hybrid approach simply combines outputs
from the two feature generation solutions described
above. This leads to 85 features, some of which may
be redundant.
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Feature Impurity decrease
Paraphrase DB score 8082.91

METEOR 4611.94
Average max. cosine 2262.56

Compositional sem. cosine 1895.34
LDA (800 topics) 967.74
LDA (675 topics) 907.32
LDA (600 topics) 852.86
Smoothed BLEU 753.78
LDA (525 topics) 735.61

Translation Edit Rate 706.48

Table 1: Ten most useful variables from the aggregation ap-

proach according to random forest importance measure, i.e.

mean decrease in residual sum of squares.

5 Learning

Each of the three feature sets described above has
been used to create a single regression model. For
this purpose we explored different methods avail-
able in the R environment (R Core Team, 2013): lin-
ear regression, decision trees (Breiman et al., 1984),
multivariate adaptive regression splines (Friedman,
1991) and generalised additive models (Hastie and
Tibshirani, 1990), but internal evaluation has shown
that random forests (Breiman, 2001) perform the
best in this task. Since the dimensionality of the
task is not very high, we have not performed any
feature selection, leaving this to the random forests.
They offer a useful measure of variable importance,
namely the decrease in residual sum of squares aver-
aged over all trees. Tables 1 and 2 show the ten most
useful variables for this purpose from the aggrega-
tion and alignment approaches, respectively.

6 Evaluation

As explained in previous sections, we have used
three features sets to create three classification mod-
els, called Macro (from aggregation-based features),
Micro (from alignment-based features) and Hybrid
(including both feature sets). According to the
shared task guidelines, the performance has been
measured by computing a correlation between pre-
dicted and gold standard (assigned by humans)
scores in each data set, and then obtaining their av-
erage.

We have performed two main experiments.

Feature Impurity decrease
Alignment ratio 9350.65

Prob. of aligned words 4809.45
Mean similarity 2361.40

Unaligned nouns 1691.97
Prob. of unaligned words 1576.07

Aligned nouns 1258.54
Fam. of aligned words 1224.19

Im. of aligned words 1073.80
Fam. of unaligned words 905.14
Con. of unaligned words 874.51

Table 2: Ten most useful variables from the alignment approach

according to random forest importance measure, i.e. mean de-

crease in residual sum of squares (Prob. – probability, Fam. –

familiarity, Im. – imagery, Con. – concreteness).

Firstly, we have used the data that have been avail-
able for training and testing in the 2015 competi-
tion (Agirre et al., 2015) to select the best approach.
Then, we have created three final models on all
available 2015 data and used them to label the test
data provided by the organisers of the 2016 task. Ta-
ble 3 shows the results of both experiments.

7 Discussion

What may seem the most surprising in the results is
their diversity – some of the methods achieve corre-
lation well over 0.8 for one data set and below 0.6
for another. In our opinion, that not only shows that
there is room for improvement but also reveals a fun-
damental problem in this task, namely that training
and test sets come from different sources. The dis-
tribution of features also differs. This situation sim-
ulates many real-world scenarios, but also impedes
any ML-based approach. In this light, our drop in
performance between development (2015) and eval-
uation (2016) sets seems satisfactorily small.

The data sets related to questions and answers
have turned out to cause the most difficulties for our
system. We have performed a post-hoc error analy-
sis to understand why. We found that these sets ex-
pose weaknesses of our reliance on abstracting from
word-level similarity to the sentence-level. For ex-
ample, consider the following two questions: What
is the difference between Erebor and Moria? and
What is the difference between splicing and superim-
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Features set
Data set Macro Micro Hybrid

2015
images 0.8022 0.8129 0.8457

headlines 0.7963 0.8183 0.8263
belief 0.7107 0.7031 0.7455

answers-students 0.6994 0.7264 0.7378
answers-forum 0.6186 0.6797 0.7108

Mean 0.7254 0.7481 0.7732
2016

headlines 0.7976 0.7914 0.8046
plagiarism 0.7895 0.8313 0.8148
postediting 0.8261 0.8266 0.8286

answer-answer 0.5848 0.5521 0.6024
question-question 0.6704 0.6124 0.6937

Mean 0.7337 0.7228 0.7488

Table 3: Correlations of predicted and actual similarity scores

measured for datasets available in 2015 and 2016 shared task.

position? As you can see, they have the same struc-
ture and a lot of identical words, but the two remain-
ing words create a wholly different meaning. This
means that our approach, confirmed by the ranking
of features (see table 2), deserves further work.

We may be able to boost our performance on the
2016 task by a few simple measures. Firstly, we
could include semantic features from a wider variety
of sources. Especially for the word-importance met-
rics. Secondly, we could consider pre-filtering the
sentences for a list of stop-words which typically do
not contain much semantic importance to a sentence.
Finally, we could attempt to weight our word-level
measures based on the semantic importance of each
word in a sentence. For example, verbs and nouns
are probably more important than adjectives and ad-
verbs, which in turn are likely to be more important
than conjunctions.
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