
Proceedings of the 5th International Workshop on Semantic Evaluation, ACL 2010, pages 182–185,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

SEERLAB: A System for Extracting Keyphrases from Scholarly
Documents

Pucktada Treeratpituk1 Pradeep Teregowda2 Jian Huang1 C. Lee Giles1,2

1 Information Sciences and Technology
2 Computer Science and Engineering

Pennsylvania State University, University Park, PA, USA

Abstract

We describe the SEERLAB system
that participated in the SemEval 2010’s
Keyphrase Extraction Task. SEERLAB
utilizes the DBLP corpus for generating
a set of candidate keyphrases from a
document. Random Forest, a supervised
ensemble classifier, is then used to select
the top keyphrases from the candidate set.
SEERLAB achieved a 0.24 F-score in
generating the top 15 keyphrases, which
places it sixth among 19 participating sys-
tems. Additionally, SEERLAB performed
particularly well in generating the top 5
keyphrases with an F-score that ranked
third.

1 Introduction

Keyphrases are phrases that represent the impor-
tant topics of a document. There are two types of
keyphrases associated with scholarly publications:
author-assigned ones and reader-assigned ones. In
the Keyphrase Extraction Task (Kim et al., 2010),
each system receives two set of scientific papers
from the ACM digital library; a training set and
a testing set. The author-assigned keyphrases and
reader-assigned keyphrases are given for each pa-
per in the training set. The objective is to produce
the keyphrases for each article in the testing set.

This paper is organized as followed. First, We
describe our keyphrase extraction system, SEER-
LAB. We then discuss its performance in SemEval
2010. Lastly, we analyze the effectiveness of each
feature used by SEERLAB, and provide a sum-
mary of our findings.

2 System Description

SEERLAB consists of three main components: a
section parser, a candidate keyphrase extractor,
and a keyphrase ranker. To generate keyphrases

for a paper, the section parser first segments the
document into pre-defined generic section types.
Secondly, the candidate keyphrase extractor gen-
erates a list of candidate phrases based on the doc-
ument content. Then, the keyphrase ranker ranks
each candidate according to the likelihood that it
is a keyphrase. The top candidates are selected as
keyphrases of the paper.

2.1 Section Parser

The goal of the section parser is to parse each doc-
ument into the same set of pre-defined sections.
However, segmenting a scientific article into pre-
defined section types is not trivial. While schol-
arly publications generally contains similar sec-
tions (such as Abstract and Conclusion), a sec-
tion’s exact header description and the order in
which it appears can vary from document to docu-
ment. For example, the “Related Work” section is
sometimes referred to as “Previous Research” or
“Previous Work.” Also, while the “Related Work”
section often appears right after the introduction,
it could also appear near the end of a paper.

(Nguyen and Kan, 2007) had success in us-
ing a maximum entropy (ME) classifier to clas-
sify sections into 14 generic section types includ-
ing those such as Motivation, Acknowledgement,
References. However, their approach requires an-
notated training data, which is not always avail-
able. Instead, SEERLAB uses regular expres-
sions to parse each document into 6 generic sec-
tion types: Title, Abstract, Introduction, Related
Work, Methodology + Experiments, and Conclu-
sion + Future Work. We decided to go with the
smaller number of section types (only 6), unlike
previous work in (Nguyen and Kan, 2007), be-
cause we believed that many sections, such as Ac-
knowledgement, are irrelevant to the task.

182



2.2 Extracting Candidate Keyphrases

In this section, we describe how SEERLAB de-
rives a set of candidate keyphrases for a given doc-
ument. The goal of the candidate extractor is to in-
clude as many actual keyphrases in the candidate
set as possible, while keeping the number of can-
didates small. The performance of the candidate
extractor determines the maximum achievable Re-
call of the whole system. The more correct can-
didates extracted at this step, the higher the possi-
ble Recall. But a bigger candidate set potentially
could lower Precision. In our implementation, we
decided to ignore the Methodology + Experiments
sections to limit the size of candidate sets.

First, SEERLAB extracts a list of bigrams, tri-
grams and quadgrams that appear at least 3 times
in titles of papers in DBLP1, ignoring those that
contain stopwords. Prepositions such as “of”,
“for”, “to” are allowed to be present in the ngrams.
From 2,144,390 titles in DBLP, there are 376,577
of such ngrams. It then constructs a trie (a prefix-
tree) of all ngrams so that it can later perform the
longest-prefix matching lookup efficiently.

To generate candidates from a body of text, we
start the cursor at the beginning of the text. The
DBLP trie is then used to find the longest-prefix
match. If no match is found, the cursor is moved
to the next word in the text. If a match is found,
the matched phrase is extracted and added to the
candidate set, while the cursor is moved to the end
of the matched phrase. The process is repeated
until the cursor reaches the end of the text.

However, the trie constructed as described
above can only produce non-unigram candidates
that appear in the DBLP corpus. For example,
it is incapable of generating candidates such as
“preference elicitation problem,” which does not
appear in DBLP, and “bet,” which is an unigram.
To remedy such limitations, for each document we
also include its top 30 most frequent unigrams,
its top 30 non-unigram ngrams and the acronyms
found in the document as candidates.

Our method of extracting candidate keyphrases
differs from most previous work. Previous work
(Kim and Kan, 2009; Nguyen and Kan, 2007) uses
hand-crafted regular expressions for candidate ex-
tractions. Many of these rules also require POS
(part of speech) inputs. In contrast, our method
is corpus-driven and requires no additional input
from the POS tagger. Additionally, our approach

1http://www.informatik.uni-trier.de/ ley/db/index.html

allows us to effectively include phrases that appear
only once in the document as candidates, as long
as they appear more than twice in the DBLP data.

2.3 Ranking Keyphrases

We train a supervised Random Forest (RF) clas-
sifier to identify keyphrases from a candidate set.
A Random Forest is a collection of decision trees,
where its prediction is simply the aggregated votes
of each tree. Thus, for each candidate phrase, the
number of votes that it receives is used as its fit-
ness score. Candidates with the top fitness scores
are then chosen as keyphrases. The detail of the
Random Forest algorithm and the features used in
the model are given below.

2.3.1 Features

We represent each candidate as a vector of fea-
tures. There are the total of 11 features.

N: The length of the keyphrase.
ACRO: A binary feature indicating whether the

keyphrase appears as an acronym in the document.
TFdoc: The number of times that the keyphrase

appears in the document.
DF: The document frequency. This is com-

puted based on the DBLP data. For document-
specific candidates (unigrams and those not found
in DBLP), their DFs are set to 1.

TFIDF: The TFIDF weight of the keyphrase,
computed using TFdoc and DF.

TFheaders: The number of occurrences that the
keyphrase appears in any section headers and sub-
section headers.

TFsectioni : The number of occurrences that
the keyphrase appears in the sectioni, where
sectioni ∈ {Title, Abstract, Introduction, Related
Work, Conclusion}. These accounted for the total
of 5 features.

2.3.2 Random Forest

Since a random forest (RF) is an ensemble clas-
sifier combining multiple decision trees (Breiman,
2001), it makes predictions by aggregating votes
of each of the trees. To built a random forest, mul-
tiple bootstrap samples are drawn from the origi-
nal training data, and an unpruned decision tree is
built from each bootstrap sample. At each node
in a tree, when selecting a feature to split, the se-
lection is done not on the full feature set but on a
randomly selected subset of features instead. The

183



Gini index2, which measures the class dispersion
within a node, is used to determine the best splits.

RFs have been successfully applied to various
classification problems with comparable results
to other state-of-the-art classifiers such as SVM
(Breiman, 2001; Treeratpituk and Giles, 2009). It
achieves high accuracy by keeping a low bias of
decision trees while reducing the variance through
the introduction of randomness.

One concern in training Random Forests for
identifying keyphrases is the data imbalanced
problem. On average, 130 candidates are extracted
per document but only 8 out of 130 are correct
keyphrases (positive examples). Since the training
data is highly imbalanced, the resulting RF classi-
fier tends to be biased towards the negative class
examples. There are two methods for dealing with
imbalanced data in Random Forests (Chen et al.,
2004). The first approach is to incorporate class
weights into the algorithm, giving higher weights
to the minority classes, so that misclassifying a
minority class is penalized more. The other ap-
proach is to adjust the sampling strategy by down-
sampling the majority class so that each tree is
grown on a more balanced data. In SEERLAB,
we employ the down-sampling strategy to correct
the imbalanced data problem (See Section 3).

3 Results

In this section, we discuss the performance and
the implementation detail of our system in the
Keyphrase Extraction Task. Each model in the ex-
periment is trained on the training data, containing
144 documents, and is evaluated on a separate data
set of 100 documents. The performance of each
model is measured using Precision (P), Recall (R)
and F-measure (F) for the top 5, 10 and 15 can-
didates. A keyphrase is considered correct if and
only if it exactly matches one of the answer keys.
No partial credit is given.

Three baseline systems were provided by the or-
ganizer: TF.IDF, NB and ME. All baselines use the
simple unigrams, bigrams and trigrams as candi-
dates and TFIDF as features. TF.IDF is an unsu-
pervised method that ranks each candidate based
on TFIDF scores. NB and ME are supervised
Naive Bayes and Maximum Entropy respectively.

We use the randomForest package in R for our

2For a set S of data with K classes, its Gini index is defined
as: Gini(S) =

PK
j=1 p2

j , where pi denotes the probability
of observing class i in S.

tf.headers
tf.conclusion
tf.related_work
tf.abs
tf.intro
tf.doc
acro
tf.title
tfidf
df
n

0.02 0.06
MeanDecreaseAccuracy

acro
tf.title
tf.related_work
tf.headers
tf.abs
tf.conclusion
n
tf.intro
tf.doc
df
tfidf

0 10 25
MeanDecreaseGini

Figure 1: Variable importance for each feature

keyphrase ranker (Liaw and Wiener, 2002). All
RF models are built with the following parame-
ters: the number of trees = 200 and the number of
features considered at each split = 3. The average
training and testing time are around 15s and 5s.

Table 1. compares the performance of three
different SEERLAB models against the baselines.
RF0 is the basic model, where the training data
is imbalanced. For RF1:1, the negative examples
are down-sampled to make the data balanced. For
RF1:7, the negative examples are down-sampled
to where its ratio with the positive examples is 7
to 1. All three models significantly outperform
the baselines. The RF1:7 model has the high-
est performance, while the RF1:1 model performs
slightly worse than the basic model RF0. This
shows that while the sampling strategy helps, over-
doing it can hurt the performance. The optimal
sampling ratio (RF1:7) is chosen according to a
10-fold cross-validation on the training data. For
the top 15 candidates, RF1:7’s F-score (C) ranks
sixth among the 19 participants with a 24.34% F-
score approximately 1% lower than the third place
team. We also observed that SEERLAB performs
quite well for the top 5 candidates with 39% Preci-
sion (C). Its F-scores at the top 5, 19.84% (C) and
18.19% (R), place SEERLAB third and second re-
spectively among other participants.

Figure 1. shows two variable importance in-
dicators for each feature: mean decrease accu-
racy (MDA) and mean decrease Gini (MDG).
Both indicators measure each feature’s contribu-
tion in identifying whether a candidate phrase is
a keyphrase. The MDA of a feature is computed
by randomly permuting the value of that feature in
the training data and then measuring the decrease
in prediction accuracy. If the permuted feature is

184



System by top 5 candidates top 10 candidates top 15 candidates
P R F P R F P R F

TF.IDF R 17.80 7.39 10.44 13.90 11.54 12.61 11.60 14.45 12.87
C 22.00 7.50 11.19 17.70 12.07 14.35 14.93 15.28 15.10

NB R 16.80 6.98 9.86 13.30 11.05 12.07 11.40 14.20 12.65
C 21.40 7.30 10.89 17.30 11.80 14.03 14.53 14.87 14.70

ME R 16.80 6.98 9.86 13.30 11.05 12.07 11.40 14.20 12.65
C 21.40 7.30 10.89 17.30 11.80 14.03 14.53 14.87 14.70

SEERLAB (RF0) R 29.00 12.04 17.02 22.50 18.69 20.42 18.20 22.67 20.19
C 36.00 12.28 18.31 28.20 19.24 22.87 22.53 23.06 22.79

SEERLAB (RF1:1) R 26.00 10.80 15.26 20.80 17.28 18.88 17.40 21.68 19.31
C 32.00 10.91 16.27 26.00 17.74 21.09 21.93 22.44 22.18

SEERLAB (RF1:7) R 31.00 12.87 18.19 24.10 20.02 21.87 19.33 24.09 21.45
C 39.00 13.30 19.84 29.70 20.26 24.09 24.07 24.62 24.34

Table 1: Performance (%) comparison for the Keyphrase Extraction Task. R (Reader) indicates that the
reader-assigned keyword is used as the gold-standard and C (Combined) means that both author-assigned
and reader-assigned keyword sets are used.

a very good predictor, then the prediction accu-
racy should decrease substantially from the orig-
inal model. The MDG of a feature implies that
average Gini decreases for the nodes in the forest
that use that feature as the splitting criteria.

TFIDF and DF are good indicators of perfor-
mance according to both MDA and MDG. Both
are very effective when used as splitting criteria,
and the prediction accuracy is very sensitive to
them. Surprisingly, the length of the phrase (N)
also has high importance. Also, TFtitle and ACRO
have high MDA but low MDG. They have high
MDA because if a candidate phrase is an acronym
or appears in the title, it is highly likely that it
is a keyphrase. However, most keyphrases are
not acronyms and do not appear in titles. Thus,
on average as splitting criteria, they do not de-
crease Gini index by much, resulting in a low
MDG. Also, TFrelated work and TFheaders have
lower MDA and MDG than TF of other sections
(TFintro, TFabs, and TFconclusion). This might
suggest that the occurrences in the “Related Work”
section or section headers are not strong indica-
tors of being a keyphrase as the occurrences in the
sections “Introduction,” “Abstract” and “Conclu-
sion.”

4 Conclusion

We have described our SEERLAB system that
participated in the Keyphrase Extraction Task.
SEERLAB combines unsupervised corpus-based

approach with Random Forests to identify
keyphrases. The experimental results show that
our system performs well in the Keyphrase Ex-
traction Task, especially on the top 5 key phrase
candidates. We also show that the down-sampling
strategy can be used to enhance our performance.

References
Leo Breiman. 2001. Random forests. Machine Learn-

ing, Jan.

Chao Chen, Andy Liaw, and Leo Breiman. 2004. Us-
ing random forest to learn imbalanced data. Techni-
cal Report, University of California, Berkeley.

Su Nam Kim and Min-Yen Kan. 2009. Re-examining
automatic keyphrase extraction approaches in scien-
tific articles. Proceedings of the Workshop on Mul-
tiword Expressions, ACL-IJCNLP, Jan.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. Semeval-2010 task 5: Au-
tomatic keyphrase extraction from scienctific article.
ACL workshop on Semantic Evaluations (SemEval
2010).

Andy Liaw and Matthew Wiener. 2002. Classification
and regression by randomforest. R News.

Thuy Dung Nguyen and Min-Yen Kan. 2007.
Keyphrase extraction in scientific publications. Pro-
ceedings of International Conference on Asian Dig-
ital Libraries (ICADL’07), Jan.

Pucktada Treeratpituk and C Lee Giles. 2009. Dis-
ambiguating authors in academic publications using
random forests. In Proceedings of the Joint Confer-
ence on Digital Libraries (JCDL’09), Jan.

185


