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Abstract

Corry is a system for coreference resolution
in English. It supports both local (Soon et
al. (2001)-style) and global (Integer Linear
Programming, Denis and Baldridge (2007)-
style) models of coreference. Corry relies on a
rich linguistically motivated feature set, which
has, however, been manually reduced to 64
features for efficiency reasons. Three runs
have been submitted for the SemEval task 1
on Coreference Resolution (Recasens et al.,
2010), optimizing Corry’s performance for
BLANC (Recasens and Hovy, in prep), MUC
(Vilain et al., 1995) and CEAF (Luo, 2005).
Corry runs have shown the best performance
level among all the systems in their track for
the corresponding metric.

1 Introduction

Corry is a system for coreference resolution in En-
glish. It supports both local (Soon et al. (2001)-style)
and global (ILP, Denis and Baldridge (2007)-style)
models of coreference. The backbone of the system
is a family of SVM classifiers for pairs of mentions:
each mention type receives its own classifier. A sep-
arate anaphoricity classifier is learned for the ILP
setting. Corry relies on a rich linguistically moti-
vated feature set, which has, however, been manu-
ally reduced to 64 features for efficiency reasons.

Corry has only participated in the “open” setting,
as it has already a number of preprocessing mod-
ules integrated into the system: the Stanford NLP
toolkit for parsing (Klein and Manning, 2003) and
NE-tagging (Finkel et al., 2005), Wordnet for se-
mantic classes and the U.S. census data for assigning
gender values to person names.

Three runs have been submitted for the Se-
mEval task 1 on Coreference Resolution, optimizing
Corry’s performance for BLANC, MUC and CEAF.
The runs differ with respect to the model (local for
BLANC, global for MUC and CEAF) and the defi-
nition of mention types.

2 Preprocessing and Mention Extraction

In our previous study (Uryupina, 2008) we have
shown that up to 35% recall and 20% precision er-
rors in coreference resolution for MUC corpora are
due to inaccurate mention detection. We have there-
fore invested substantial efforts into our mention de-
tection module.

Most state-of-the-art coreference resolution sys-
tems operate either ongold markables or on the
output of an ACE-style mention detection module.
We are not aware of extensive studies on mention
extraction algorithms for such datasets as SemEval
(OntoNotes) where mentions are complex NPs not
constrained with respect to their semantic types.

We rely on the Stanford NLP toolkit for extract-
ing named entities (Finkel et al., 2005) and parse
trees for each sentence (Klein and Manning, 2003).
We then merge the output of the NE-tagger and the
parser to create a list of mentions in the following
way:

1. Named entities are considered mentions if
they correspond to a sequence of parsing con-
straints.

2. Pronouns are considered mentions if they are
not a part of an NE-mention.

3. NPs are considered “candidate mentions” if
they are not a part of an NE-mention. The set of
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candidate mentions is then filtered to eliminate
pairs of NPs with the same head noun (coor-
dinate NPs receive unique artificial heads). For
possessive NPs we adjust the boundaries and
the head to exclude the “’s” token. The remain-
ing candidates are aligned with NE-mentions –
if an NE and an NP have the same last word,
they are considered the same mention of a spe-
cial type. Finally, the list of candidates is op-
tionally filtered using a small stop-list (for ex-
ample, all the “there” NPs in “There is ..” are
discarded).

We rely on the Stanford NLP toolkit, WordNet
and the U.S. census data to assign numerous proper-
ties to our mentions: semantic type, number, gender
and others.

3 Features

Corry relies on two SVM1 classifiers forcoreference
and anaphoricity. The former determines whether
two given mentionsMi and Mj are coreferent or
not. The latter determines whether a given mention
Mi is anaphoric or discourse new. In Section 4 we
show how these classifiers help us build coreference
chains. We use the SVM-Light package (Joachims,
1999) for learning our classifiers.

The strength of our system lies in its rich fea-
ture set for the coreference classifier. In our previous
studies (Uryupina, 2006; 2007) we have tested up to
351 nominal/continuous (1096 boolean/continuous)
features showing significant improvements over ba-
sic feature sets advocated in the literature. For the
SemEval task 1, we have reduced our rich feature set
to 64 nominal/continuous features for efficiency rea-
sons: on the one hand, our new set is large enough to
cover complex linguistic patterns of coreference, on
the other hand, it allows us to test different settings
and investigate possibilities for global modeling.

Our anaphoricity classifier is used by the ILP
model. It relies on 26 boolean/continuous features.
More details on the classifier itself can be found in
(Uryupina, 2003).

1Corry supports a number of machine learning algorithms:
C4.5, TiMBL, Ripper, MaxEnt and SVM. See Uryupina (2006)
for a comparison of Corry’s performance with different learners.

4 Modeling

Corry supports both global and local views of coref-
erence. Our evaluation experiments (cf. Section 5)
show that the choice of a particular model should be
motivated by the desired scoring metric.

Our local model of coreference is a reimplementa-
tion of the algorithm, proposed by Soon et al. (2001)
with an extended feature set. The core of Soon et
al.’s (2001) approach is alink-based classifier: it
determines whether a given pair of markables are
coreferent or not. During testing, a greedy cluster-
ing algorithm (link-first) is next used to build coref-
erence chains on the output of the classifier.

We have slightly extended this model to allow
separate classifiers for differentmention types: each
candidate anaphor receives a type (e.g. “pronoun”)
and is processed with a corresponding classifier. We,
thus, rely on a family of classifiers, with the same
feature set and the same machine learner. The ex-
act definition of mention types is a parameter to be
determined empirically on the development set.

Our global model is largely motivated by Denis
and Baldridge (2007; 2008) and Finkel and Manning
(2008). Following these studies, we use Integer Lin-
ear Programming to find the most globally optimal
solution, given the decisions made by ourcorefer-
ence andanaphoricity classifiers.

In general, an ILP problem is determined by an
objective function to be maximized (or minimized)
and a set of task-specific constraints. The function
is defined by costslink<i,j>, anddnewj reflecting
potential gains and losses for committing to specific
variable assignments. We assume that costs can be
positive (for pairs of markables that are likely to be
coreferent) or negative (for pairs of markables that
are unlikely to be coreferent). The costs are com-
puted by an external module (such as a family of lo-
cal classifiers described above). The objective func-
tion then takes the form:

max
( ∑

<i,j>

link<i,j> ∗ L<i,j> −
∑
j

dnewj ∗Dj

)
(1)

Binary variablesL<i,j> indicate that two mark-
ablesMi andMj are coreferent in the output assign-
ment. Binary variablesDj indicate that the mark-
able Mj is considered anaphoric in the output as-
signment. The ILP solver thus assigns values to
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L<i,j>,∀i, j : i < j andDj ,∀j whilst maximizing
the objective in (1). We take the transitive closure of
all the proposedL<i,j> to build the output partition.

Note that the objective in (1) is not constrained
in any way and will thus allow illegal variable as-
signments. For example it does not constrain the
assignment ofL and D variables to be consistent
with one another and does not enforce transitivity.
The following constraints suggested in the literature
(Denis and Baldridge, 2007; Denis and Baldridge,
2008; Finkel and Manning, 2008) ensure that these
and other coreference properties are respected:

1. Best-link constraint

B :
∑

i

L<i,j> ≤ 1,∀j (2)

2. Transitivity constraints

∀i, j, k : i < j < k

T : L<i,j> + L<j,k> − 1 ≤ L<i,k> (3)

L : L<j,k> + L<i,k> − 1 ≤ L<i,j> (4)

R : L<i,j> + L<i,k> − 1 ≤ L<j,k> (5)

3. Anaphoricity constraints

A :
∑

i L<i,j> >= Dj ∀j (6)

D : L<i,j> ≤ Dj ∀i, j (7)

We refer the reader to the above-mentioned pa-
pers for detailed discussions of these constraints and
their impact on coreference resolution. As we show
in Section 5 below, the usability of a particular con-
straint should be determined experimentally based
on the desired system behaviour.

5 Evaluation

5.1 Development
Corry has participated in thegold andregular open
settings for English. We have collected a number of
runs on the development data to optimize the per-
formance level for a particular score: BLANC (Re-
casens and Hovy, in prep), MUC (Vilain et al., 1995)
or CEAF (Luo, 2005). The runs differ with respect to
the model (local vs. global with varying sets of con-
straints) and the definition of mention types. We de-
liberately left the B-CUBE score (Bagga and Bald-
win, 1998) completely out of our preliminary ex-
periments. The official SemEval scorer was used for
these experiments.

Our experiments on the development set show
that no configuration is able to produce equally re-
liable scores according to all the metrics (note, for
example, that on the test set the BLANC difference
between Corry-M and Corry-B in thegold setting
is almost 10%). We believe that it is a challenging
point for future research.

We have selected the best configurations for each
score and submitted them as separate runs. The
Corry-C system, optimized for CEAF-φ4, is a global
model with theL, D andA constraints. For thegold
setting, mention types are defined as pronouns and
non-pronouns. For theregular setting, the system
distinguishes between “speech” pronouns, 3rd per-
son pronouns, names and nominals.

Corry-M, optimized for MUC, is a global model
with the D constraint and separate classifiers for
pronouns, names and nominals. Note that, compared
to Corry-C, this setting allows for more coreference
links – it is well known from the literature (cf., for
example, Bagga and Baldwin (1998)) that the MUC
metric is biased towards recall.

Finally, Corry-B, optimized for BLANC, is a
local model that distinguishes between pronouns,
nominals and names. The fact that such a simple
model is able to outperform much more complex
versions of Corry strengthens the importance of fea-
ture engineering.

5.2 Testing
Table 1 shows the SemEval task 1 scores for the
gold/regular open setting. Corry has shown reliable
performance for both mention detection and coref-
erence resolution. For mention detection, Corry’s F-
score is 4% higher than the one of the competing ap-
proach. For coreference, all the Corry runs yielded
the best performance level for a score under opti-
mization.

Finally, for the B-CUBE metric that had not been
optimized at all, Corry lost only marginally to the
RelaxCor system in the gold setting and came first
in the regular setting.

6 Conclusion

We have presented Corry – a system for coreference
resolution in English. Our plans include extending it
to cover multiple languages. However, as the main
strength of Corry lies in its rich linguistically moti-
vated feature set, this remains an issue.
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Mention detection CEAF MUC B3 BLANC
R P F1 R P F1 R P F1 R P F1 R P F1

Language: en, Information: open, Annotation: gold
Corry-B 100 100 100 77.5 77.5 77.5 56.1 57.5 56.8 82.6 85.7 84.1 69.3 75.3 71.8
Corry-C 100 100 100 77.7 77.7 77.7 57.4 58.3 57.9 83.1 84.7 83.9 71.3 71.6 71.5
Corry-M 100 100 100 73.8 73.8 73.8 62.5 56.2 59.2 85.5 78.6 81.9 76.2 58.8 62.7
RelaxCor 100 100 100 75.8 75.8 75.8 22.6 70.5 34.2 75.2 96.7 84.6 58.0 83.8 62.7
Language: en, Information: open, Annotation: regular

BART 76.1 69.8 72.8 70.1 64.3 67.1 62.8 52.4 57.1 74.9 67.7 71.1 55.3 73.2 57.7
Corry-B 79.8 76.4 78.1 70.4 67.4 68.9 55.0 54.2 54.6 73.7 74.1 73.9 57.1 75.7 60.6
Corry-C 79.8 76.4 78.1 70.9 67.9 69.4 54.7 55.5 55.1 73.8 73.1 73.5 57.4 63.8 59.4
Corry-M 79.8 76.4 78.1 66.3 63.5 64.8 61.5 53.4 57.2 76.8 66.5 71.3 58.5 56.2 57.1

Table 1:System scores for the gold/regular open setting. The best F-score for each metric shown in bold.

An important advantage of Corry is its flexibility:
the system allows for a number of modeling solu-
tions that can be tested on the development set to
optimize the performance level for a particular ob-
jective. Our SemEval task 1 results confirm that a
system might benefit a lot from a direct optimization
for a given performance metric.
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