
Proceedings of Recent Advances in Natural Language Processing, pages 1338–1345,
Varna, Bulgaria, Sep 2–4, 2019.

https://doi.org/10.26615/978-954-452-056-4_153

1338

Sequential Graph Dependency Parser

Sean Welleck
New York University
wellecks@nyu.edu

Kyunghyun Cho
New York University

CIFAR Azrieli Global Scholar
Facebook AI Research

kyunghyun.cho@nyu.edu

Abstract

We propose a method for non-projective
dependency parsing by incrementally pre-
dicting a set of edges. Since the edges
do not have a pre-specified order, we pro-
pose a set-based learning method. Our
method blends graph, transition, and easy-
first parsing, including a prior state of
the parser as a special case. The pro-
posed transition-based method success-
fully parses near the state of the art on both
projective and non-projective languages,
without assuming a certain parsing order.

1 Introduction

Dependency parsing methods can be categorized
as graph-based and transition-based. Typical
graph-based methods support non-projective pars-
ing, but introduce independence assumptions and
rely on external decoding algorithms. Conversely,
transition-based methods model joint dependen-
cies, but without modification are typically limited
to projective parses.

There are two recent exceptions of interest here.
(Ma et al., 2018) developed the Stack-Pointer
parser, a transition-based, non-projective parser
that maintains a stack populated in a top-down,
depth-first manner, and uses a pointer network to
determine the dependent of the stack’s top node,
resulting in a transition sequence of length 2n −
1. Recently, (Fernández-González and Gómez-
Rodrguez, 2019) developed a variant of the Stack-
Pointer parser which parses in n steps by travers-
ing the sentence left-to-right, selecting the head of
the current node in the traversal, while incremen-
tally checking for, and prohibiting, cycles.

We take inspiration from both graph-based and

transition-based approaches by viewing parsing
as sequential graph generation. In this view, a
graph is incrementally built by adding edges to
an edge set. No distinction between projective
and non-projective trees is necessary. Since edges
do not have a pre-specified order, we propose
a set-based learning method. Like (Fernández-
González and Gómez-Rodrguez, 2019), our parser
runs in n steps. However, our learning method
and transitions do not impose a left-to-right pars-
ing order, allowing easy-first (Tsuruoka and Tsu-
jii, 2005; Goldberg and Elhadad, 2010) behavior.
Experimentally, we find that the proposed method
can yield a sequential parser with preferred, input-
dependent generation orders and performance
gains over strong one-step methods.1

2 Graph Dependency Parser

Given a sentence x = x1, . . . , xN , a dependency
parser constructs a graph G = (V,E) with V =
(x0, x1, . . . , xN) and E = {(i, j)1, . . . (i, j)N},
where x0 is a special root node, and E ⊂ E forms
a dependency tree.2

We describe a family of sequential graph-based
dependency parsers. A parser in this family gen-
erates a sequence of graphs where V is fixed and
E =

⋃T
t=1Et:

Henc = fenc(x0, . . . xN) (1)

Hhead
t , H

dep
t = fV(H

enc, E<t, ht−1) (2)

St = fE(H
head
t , H

dep
t , St−1) (3)

Et = fdec(St, E<t). (4)

Steps (2-4) run for T ≤ N time-steps. At each
time-step, first fV generates head and dependent

1Code will be made available at https://github.
com/wellecks/nonmonotonic_parsing.

2See properties (1-5) in Appendix A.

https://github.com/wellecks/nonmonotonic_parsing
https://github.com/wellecks/nonmonotonic_parsing

1339

representations for each vertex, H ·t ∈ RV×dH ,
based on vertex representations Henc ∈ RV×d,
previously predicted edges E<t, and a recurrent
state ht−1 ∈ Rd. Then fE computes a score for
every possible edge, St ∈ RV×V , and the scores
are used by fdec to predict a set of edgesEt.

This general sequential family includes the bi-
affine parser of (Dozat and Manning, 2017) as a
one-step special case, as well as a recurrent vari-
ant which we discuss below.

2.1 Biaffine One-Step

The Biaffine parser of (Dozat and Manning, 2017)
is a one-step variant, implementing steps (1-4) us-
ing a bidirectional LSTM, head and dependent
neural networks, a biaffine scorer, and a maximum
spanning tree decoder, respectively:

Henc = BiLSTM(x1, . . . , xN)

Hhead, Hdep = MLPh(Henc),MLPd(Henc)

S = BiAffine(Hhead, Hdep)

E = MST(S),

where each row of scores S(i) is interpreted as a
distribution over i’s potential head nodes:

p((j → i)|x) ∝ softmaxj(S(i)),

and MST(·) is an off-the-shelf maximum-
spanning-tree algorithm. This model assumes
conditional independence of the edges.

2.2 Recurrent Weight

We propose a variant which iteratively adjusts a
distribution over edges at each step, based on the
predictions so far. A recurrent function generates
a weight matrix W which is used to form vertex
embeddings and in turn adjust edge scores.

Specifically, we first obtain an initial score matrix
S0 using the biaffine one-step parser (2.1), and ini-
tialize a recurrent hidden state h0 using a linear
transformation of fenc’s final hidden state. Then
fV is defined as:

W,ht = LSTM(femb(Et−1), ht−1)

Hhead
t = embh(0, . . . , N)W

H
dep
t = embd(0, . . . , N)W,

and fE(H
head
t , H

dep
t , St−1) is defined as:

S∆
t = BiAffine(Hhead

t , H
dep
t)

St = St−1 + S∆
t ,

where t ranges from 1 to N , W ∈ Rdemb×dH , and
each emb(·) : N → Rdemb is a learned embedding
layer, yielding emb(·)(0, . . . , N) in RV×demb . We
use a bidirectional LSTM as fenc.

The scores at each step yield a distribution over all
V × V edges, which we denote by π:

π((i→ j)|E<t, x) ∝ softmax(flatten(St)). (5)

Unlike the one-step model, this recurrent model
can predict edges based on past predictions.

Inference We must ensure the incrementally de-
coded edges E =

⋃T
t=1Et form a valid depen-

dency tree. To do so, we choose fdec to be a de-
coder which greedily selects valid edges,

Et = fvalid(St, E<t),

which we refer to as the valid decoder, detailed
in Appendix A. We only predict one edge per step
(|Et| = 1), leaving the setting of multiple predic-
tions per step as future work.

Embedding Edges We embed a predicted edge
Et = { ˆ(i, j)} as:

femb(Et) = eedge; ehead; edependent

eedge =WeH
enc
(i) −WeH

enc
(j)

ehead = embh(i)

edependent = embd(j),

where Henc
(·) ∈ Rd are row vectors, We ∈ Rde×d

is a learned weight matrix, emb(·) are learned em-
bedding layers, and ; is concatenation.

Future Work The proposed method does not
specifically require a BiLSTM encoder, LSTM,
or the BiAffine function. For instance, fV could
use a Transformer (Vaswani et al., 2017) to out-
put states that are linearly transformed into Hhead

and Hdep. Additionally, partial graphs (V,E<t)
might be embedded using neural networks specif-
ically designed for graphs (Gilmer et al., 2017).
Finally, predicting edge sets of size greater than
1 could potentially be achieved using a partially-
autoregressive model, trained with a ‘masked

1340

edges’ objective, similar to recent work in ma-
chine translation with conditional masked lan-
guage models (Ghazvininejad et al., 2019). Each
call to fV would involve a separate forward pass
which calls a Transformer fenc. The partial tree
is encoded via non-masked inputs to fenc. fE cor-
responds to having V outputs, each a distribution
over V edges. The multi-step decoder (Appendix
A) might be used at test time.

3 Learning

In this paper, we restrict to the case of predict-
ing a single edge ˆ(i, j) per step, so that the recur-
rent weight model generates a sequence of edges
with the goal of matching a target edge set, i.e.⋃N
t=1

ˆ(i, j)t = E. Since the target edges E are a
set, the model’s generation order is not determined
a priori. As a result, we propose to use a learning
method that does not require a pre-specified gen-
eration order and allows the model to learn input-
dependent orderings.

Our proposed method is based on the multiset loss
(Welleck et al., 2018) and its recent extensions for
non-monotonic generation (Welleck et al., 2019).
The method is motivated from the perspective of
learning-to-search (Daumé III et al., 2009; Chang
et al., 2015), which involves learning a policy πθ
that mimics an oracle policy π∗. The policy maps
states to distributions over actions.

For the proposed graph parser, an action is an edge
(i, j) ∈ E , and a state st is an input sentence x
along with the edges predicted so far, Ê<t. The
policy is a conditional distribution over E ,

πθ((i, j)|Ê<t, x),

such as the distribution in equation (5).

Learning consists of minimizing a cost, computed
by first sampling states from a roll-in policy πin,
then using a roll-out policy πout to estimate cost-
to-go for all actions at the sampled states. For-
mally, we minimize the following objective with
respect to θ:

Ex∼DEs1,...,s|x|∼πinC(πθ, πout, st). (6)

This objective involves sampling a sentence x
from a dataset, sampling a sequence of edges
from the roll-in policy, then computing a cost C
at each of the resulting states. We now describe

our choices of C, πout, π∗, and πin, and evaluate
them later in the experiments (4).

3.1 Cost Function and Roll-Out

Following (Welleck et al., 2018, 2019) we use a
KL-divergence cost:

C(πθ, πout, s) = DKL(π
out(·|s)||πθ(·|s)). (7)

We use the oracle π∗ as the roll-out πout.

3.2 Oracle

Based on the free labels set in (Welleck et al.,
2018), we first define a free edge set containing
the un-predicted target edges at time t:

Etfree = E \
t−1⋃
t′=1

ˆ(i, j)t′ , (8)

where E0
free = E. We then construct a family

of oracle policies that place non-zero probability
mass only on free edges:

π∗((i, j)|Etfree) =

{
pij (i, j) ∈ Etfree

0 otherwise.
(9)

We now describe several oracles by varying how
pij is defined.

Uniform This oracle treats each permutation of
the target edge set as equally likely by assigning a
uniform probability to each free edge:

π∗unif((i, j)|Etfree) =

{
1
|Et

free|
(i, j) ∈ Etfree

0 otherwise.

Coaching Motivated by (He et al., 2012;
Welleck et al., 2019), we define a coaching oracle
which weights free edges by πθ:

π∗coaching((i, j)|Etfree) ∝ π∗unif(·|Etfree)πθ(·|E<t, X).

This oracle prefers certain edge permutations over
others, reinforcing πθ’s preferences. The coaching
and uniform oracles can be mixed to ensure each
free edge receives probability mass:

βπ∗unif + (1− β)π∗coaching, (10)

where β ∈ [0, 1].

1341

Annealed Coaching This oracle begins with the
uniform oracle, then anneals towards the coach-
ing oracle as training progresses by annealing the
β term in (10). This may prevent the coaching
oracle from reinforcing sub-optimal permutations
early in training.

Linearized This oracle uses a deterministic
function to linearize an edge set E into a sequence
Eseq. The oracle selects the t’th element of Eseq at
time t with probability 1. We linearize an edge set
in increasing edge-index order: (i1, j1) precedes
(i2, j2) if (i1, j1) < (i2, j2). This oracle serves as
a baseline that is analogous to the fixed generation
orders used in conventional parsers.

3.3 Roll-In

The roll-in policy determines the state distribution
that πθ is trained on, which can address the mis-
match between training and testing state distribu-
tions (Ross et al., 2011; Chang et al., 2015) or nar-
row the set of training trajectories. We evaluate
several alternatives:

1. uniform (i, j) ∼ π∗unif

2. coaching (i, j) ∼ πθ � π∗unif

3. valid-policy (i, j) ∼ valid(πθ)

where valid(πθ) is the set of edges that keeps the
predicted tree as a valid dependency tree. The
coaching and valid-policy roll-ins choose edge
permutations that are preferred by the policy, with
valid-policy resembling test-time behavior.

4 Experiments

In Experiments 4.1 and 4.2 we evaluate on En-
glish, German, Chinese, and Ancient Greek since
they vary with respect to projectivity, size, and per-
formance in (Qi et al., 2018). Based on these de-
velopment set results, we then test our strongest
model on a large suite of languages (4.3).

Experimental Setup Experiments are done us-
ing datasets from the CoNLL 2018 Shared Task
(Zeman et al., 2018). We build our implementa-
tion from the open-source version of (Qi et al.,
2018)3, and use their experimental setup (e.g.

3https://github.com/stanfordnlp/
stanfordnlp.

Figure 1: Per-step edge distributions from recur-
rent weight models trained with the given oracle.

pre-processing, data-loading, pre-trained vectors,
evaluation) which follows the shared task setup.
Our model uses the same encoder from (Qi et al.,
2018). For the (Qi et al., 2018) baseline, we use
their pretrained models4 and evaluation script. For
the (Dozat and Manning, 2017) baseline, we use
the (Qi et al., 2018) implementation with auxil-
iary outputs and losses disabled, and train with
the default hyper-parameters and training script.
For our models only, we changed the learning rate
schedule (and model-specific hyper-parameters),
after observing diverging loss in preliminary ex-
periments with the default learning rate. Our mod-
els did not require the additional AMSGrad tech-
nique used in (Qi et al., 2018). We evaluate vali-
dation UAS every 2k steps (vs. 100 for the base-
line). Models are trained for up to 100k steps, and
the model with the highest validation unlabeled at-
tachment score (UAS) is saved.

4.1 Multi-Step Learning

In this experiment we evaluate the sequential as-
pect of the proposed recurrent model by compar-
ing it with one-step baselines. We compare against
a baseline (‘One-Step’) that simply uses the first
step’s score matrix S0 from the recurrent weight
model and minimizes (6) for one time-step using
a uniform oracle. At test time the valid decoder
uses S0 for all timesteps. We also compare against
the biaffine one-step model of (Dozat and Man-
ning, 2017) which uses Chu-Liu-Edmonds maxi-
mum spanning tree decoding instead of valid de-
coding. Since we only evaluate UAS, we disable
its edge label output and loss. Finally, we com-
pare against (Qi et al., 2018) which is based on
(Dozat and Manning, 2017) plus auxiliary losses
for length and linearization prediction.

Results are shown in Table 1, including results for

4https://stanfordnlp.github.io/
stanfordnlp/installation_download.html.

https://github.com/stanfordnlp/stanfordnlp
https://github.com/stanfordnlp/stanfordnlp
https://stanfordnlp.github.io/stanfordnlp/installation_download.html
https://stanfordnlp.github.io/stanfordnlp/installation_download.html

1342

En De Grc Zh

D & M (2017) 91.14 90.38 78.99 86.50
Qi et al. (2018) 92.11 89.46 81.35 86.73
One-Step 91.74 91.07 79.60 86.61
Recurrent (U) 91.92 91.02 79.15 86.69
Recurrent (C) 91.99 91.19 79.93 86.77

Table 1: Development set UAS for single vs.
multi-step methods. (U) is uniform oracle and
roll-in, (C) is coaching with greedy valid roll-in
(β = 0.5). D & M (2017) is an abbreviation for
(Dozat and Manning, 2017).

a recurrent model trained with coaching (‘Recur-
rent (C)’) using a mixture (eq. 10) with β = 0.5.
The one-step baseline is strong, even outperform-
ing the uniform recurrent variant on some lan-
guages. The recurrent weight model with coach-
ing, however, outperforms the one-step and (Dozat
and Manning, 2017) baselines on all four lan-
guages. Adding in auxiliary losses to the (Dozat
and Manning, 2017) model yields improved UAS
as seen in the (Qi et al., 2018) performance, sug-
gesting that our proposed recurrent model might
be improved further with auxiliary losses.

Temporal Distribution Adjustment Figure 1
shows per-step edge distributions on an eight-edge
example. The recurrent weight variants learned to
adjust their distributions over time based on past
predictions. The model trained with the uniform
oracle has a decreasing number of high probabil-
ity edges per step since it aims to place equal mass
on each free edge (i, j) ∈ Êtfree. The model trained
with coaching learned to prefer certain free edges
over others, but with β = 0.5 the uniform term
in the loss still encourages placing mass on multi-
ple edges per step. By annealing β, however, the
coaching model exhibits vastly different behavior
than the uniform-trained policy. The low entropy
distributions at early steps followed by higher en-
tropy distributions later on (e.g. t ∈ {5, 6}) may
indicate easy-first behavior.

4.2 Oracle and Roll-In Choice

In this experiment, we study the effects of vary-
ing the oracle and roll-in distributions. Table (2)
shows results on German, analyzed below. Mod-
els trained with coaching (C) use a mixture with
β = 0.5, after observing lower UAS in prelim-

Oracle Roll-in UAS Loss

Linear π∗linear 81.03 0.04

U π∗unif 91.02 0.35
C π∗unif 91.04 0.17

U π∗coach 90.93 0.45
C π∗coach 91.17 0.33
CA π∗coach 90.89 0.34

U πvalid
θ 90.99 0.51

C πvalid
θ 91.19 0.31

CA πvalid
θ 90.91 0.30

Table 2: Varying oracle and roll-in policies on
German. (U), (C), (A) refer to uniform, coaching,
and annealing, respectively. The π∗coach and πvalid

θ

roll-ins are mixtures with a uniform oracle, with
β = 0.5 for coaching (C), and β linearly annealed
by 0.02 every 2000 steps for annealing (CA).

inary experiments with lower β. The π∗coach and
πvalid
θ roll-ins use a mixture with β = 0.5 and

greedy decoding, which generally outperformed
stochastic sampling.

Set-Based Learning The model trained with
the linearized oracle (UAS 81.03), which teaches
the model to adhere to a pre-specified generation
order, significantly under-performs the set-based
models (UAS ≥ 90.89), which do not have a
pre-specified generation order and can in principle
learn strategies such as easy-first.

Coaching Models trained with coaching (C,
UAS ≥ 91.04) had higher UAS and lower loss
than models trained with the uniform oracle (U,
UAS ≤ 91.02), for all roll-in methods. This sug-
gests that for the proposed model, weighting free
edges in the loss based on the model’s distribution
is more effective than a uniform weighting.

Annealing the β parameter generally did not fur-
ther improve UAS (CA vs. C), possibly due to the
annealing schedule or overfitting; despite lower
losses with annealing, eventually validation UAS
decreased as training progressed.

Roll-In With the coaching oracle (C), the choice
of roll-in impacted UAS, with coaching roll-in
(π∗coach, 91.17) and valid roll-in (πvalid

θ , 91.19)
achieving higher UAS than uniform oracle roll-
in (π∗unif, 91.04). This suggests that when using
coaching, narrowing the set of training trajectories

1343

Ours Qi et al. (2018)

AR 88.22 88.35
CA 94.13 94.13
CS (CAC) 93.53 93.22
CS (PDT) 93.80 93.21
DE 88.39 87.21
EN (EWT) 91.28 91.21
ES 93.70 93.38
ET 89.56 89.40
FR (GSD) 91.07 90.90
GRC (Perseus) 80.90 82.77
HI 96.78 96.78
IT (ISDT) 94.06 94.24
KO (KAIST) 91.02 90.55
LA (ITTB) 93.66 93.00
NO (Bokmaal) 94.63 94.27
NO (Nynorsk) 94.44 94.02
PT 91.22 91.67
RU (SynTagRus) 94.57 94.42
ZH 87.31 88.49

Table 3: Test set results (UAS) on datasets from
the CoNLL 2018 shared task with greater than
200k examples, plus the Ancient Greek (GRC)
and Chinese (ZH) datasets. Bold denotes the high-
est UAS on each dataset.

to those preferred by the policy may be more ef-
fective than sampling uniformly from the set of all
correct trajectories. Based on these results, we use
the coaching oracle and valid roll-in for training
our final model in the next experiment.

4.3 CoNLL 2018 Comparison

In this experiment, we evaluate our best model on
a diverse set of multi-lingual datasets. We use the
CoNLL 2018 shared task datasets that have at least
200k examples, along with the four datasets used
in the previous experiments. We train a recurrent
weight model for each dataset using the coaching
oracle and valid roll-in. We compare against (Qi
et al., 2018) which placed highly in the CoNLL
2018 competition, reporting test UAS evaluated
using their pre-trained models.

Table 3 shows the results on the 19 datasets
from 17 different languages. The proposed model
trained with coaching achieves a higher UAS than
the Qi et al. (2018) model on 12 of the 19 datasets,
plus two ties.

5 Related Work

Transition-based dependency parsing has a rich
history, with methods generally varying by the
choice of transition system and feature represen-
tation. Traditional stack-based arc-standard and
arc-eager (Yamada and Matsumoto, 2003; Nivre,
2003) transition systems only parse projectively,
requiring additional operations for pseudo-non-
projectivity (Gómez-Rodrı́guez et al., 2014) or
projectivity (Nivre, 2009), while list-based non-
projective systems have been developed (Nivre,
2008). Recent variations assume a generation or-
der such as top-down (Ma et al., 2018) or left-to-
right (Fernández-González and Gómez-Rodrguez,
2019). Other recent models focus on unsuper-
vised settings (Kim et al., 2019). Our focus here
is a non-projective transition system and learning
method which does not assume a particular gener-
ation order.

A separate thread of research in sequential mod-
eling has demonstrated that generation order can
affect performance (Vinyals et al., 2015), both in
tasks with set-structured outputs such as objects
(Welleck et al., 2017, 2018) or graphs (Li et al.,
2018), and in sequential tasks such as language
modeling (Ford et al., 2018). Developing mod-
els with relaxed or learned generation orders has
picked up recent interest (Welleck et al., 2018,
2019; Gu et al., 2019; Stern et al., 2019). We in-
vestigate this for dependency parsing, framing the
problem as sequential set generation without a pre-
specified order.

Finally, our work is inspired by techniques for
improving upon maximum likelihood training
through error exploration and dynamic oracles
(Goldberg and Nivre, 2012, 2013), and related
techniques in imitation learning for structured pre-
diction (Daumé III et al., 2009; Ross et al., 2011;
He et al., 2012; Goodman et al., 2016). In par-
ticular, our formulation is closely related to the
framework of (Chang et al., 2015), where our ora-
cle can be seen as an optimal roll-out policy which
computes action costs without explicit roll-outs.

6 Conclusion
We described a family of dependency parsers
which construct a dependency tree by generating
a sequence of edge sets, and a learning method
that does not presuppose a generation order. Ex-

1344

perimentally, we found that a ‘coaching’ method,
which weights actions in the loss according to the
model, improves parsing accuracy compared to a
uniform weighting and allows the parser to learn
preferred, input-dependent generation orders. The
model’s sequential aspect, along with the coaching
method and training on a state distribution which
resembles the model’s own behavior, yielded im-
provements in unlabeled dependency parsing over
strong one-step baselines.

References

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agar-
wal, Hal Daumé III, and John Langford. 2015. Learn-
ing to search better than your teacher. arXiv preprint
arXiv:1502.02206.

Hal Daumé III, John Langford, and Daniel Marcu.
2009. Search-based Structured Prediction. Technical
report.

Timothy Dozat and Christopher D Manning. 2017.
Deep Biaffine Attention for Neural Dependency Pars-
ing. In International Conference on Learning Repre-
sentations (ICLR).

Daniel Fernández-González and Carlos Gómez-
Rodrguez. 2019. Left-to-right dependency parsing
with pointer networks.

Nicolas Ford, Daniel Duckworth, Mohammad
Norouzi, and George E Dahl. 2018. The importance of
generation order in language modeling. arXiv preprint
arXiv:1808.07910.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Constant-time machine trans-
lation with conditional masked language models.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley,
Oriol Vinyals, and George E Dahl. 2017. Neural Mes-
sage Passing for Quantum Chemistry.

Yoav Goldberg and Michael Elhadad. 2010. An ef-
ficient algorithm for easy-first non-directional depen-
dency parsing. In Human Language Technologies: The
2010 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 742–750. Association for Computational Lin-
guistics.

Yoav Goldberg and Joakim Nivre. 2012. A Dynamic
Oracle for Arc-Eager Dependency Parsing. Technical
report.

Yoav Goldberg and Joakim Nivre. 2013. Training
deterministic parsers with non-deterministic oracles.
Transactions of the Association for Computational Lin-
guistics, 1:403–414.

Carlos Gómez-Rodrı́guez, Francesco Sartorio, and
Giorgio Satta. 2014. A polynomial-time dynamic or-

acle for non-projective dependency parsing. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
917–927. Association for Computational Linguistics.

James Goodman, Andreas Vlachos, and Jason Narad-
owsky. 2016. Noise reduction and targeted exploration
in imitation learning for abstract meaning representa-
tion parsing. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1–11, Berlin, Ger-
many. Association for Computational Linguistics.

Jiatao Gu, Qi Liu, and Kyunghyun Cho. 2019.
Insertion-based decoding with automatically inferred
generation order.

He He, Jason Eisner, and Hal Daume. 2012. Imitation
learning by coaching. In Advances in Neural Informa-
tion Processing Systems, pages 3149–3157.

Yoon Kim, Alexander M Rush, Lei Yu, Adhiguna Kun-
coro, Chris Dyer, and Gábor Melis. 2019. Unsuper-
vised Recurrent Neural Network Grammars.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu,
and Peter Battaglia. 2018. Learning deep generative
models of graphs. In ICML 2018.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
Pointer Networks for Dependency Parsing. Technical
report.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
Eighth International Workshop on Parsing Technolo-
gies (IWPT, pages 149–160, Nancy, France.

Joakim Nivre. 2008. Algorithms for deterministic
incremental dependency parsing. Comput. Linguist.,
34(4):513–553.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, pages 351–359. As-
sociation for Computational Linguistics.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D. Manning. 2018. Universal dependency pars-
ing from scratch. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 160–170, Brussels,
Belgium. Association for Computational Linguistics.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell.
2011. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings
of the fourteenth international conference on artificial
intelligence and statistics, pages 627–635.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations.

https://arxiv.org/pdf/0907.0786.pdf
http://arxiv.org/abs/1611.01734v3
http://arxiv.org/abs/1611.01734v3
http://arxiv.org/abs/arXiv:1903.08445
http://arxiv.org/abs/arXiv:1903.08445
http://arxiv.org/abs/arXiv:1904.09324
http://arxiv.org/abs/arXiv:1904.09324
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
http://www.aclweb.org/anthology/C12-1059
http://www.aclweb.org/anthology/C12-1059
https://doi.org/10.1162/tacl_a_00237
https://doi.org/10.1162/tacl_a_00237
https://doi.org/10.3115/v1/D14-1099
https://doi.org/10.3115/v1/D14-1099
https://doi.org/10.18653/v1/P16-1001
https://doi.org/10.18653/v1/P16-1001
https://doi.org/10.18653/v1/P16-1001
http://arxiv.org/abs/arXiv:1902.01370
http://arxiv.org/abs/arXiv:1902.01370
http://arxiv.org/abs/1904.03746
http://arxiv.org/abs/1904.03746
http://arxiv.org/abs/1805.01087v1
http://arxiv.org/abs/1805.01087v1
https://www.aclweb.org/anthology/W03-3017
https://www.aclweb.org/anthology/W03-3017
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
http://aclweb.org/anthology/P09-1040
http://aclweb.org/anthology/P09-1040
https://nlp.stanford.edu/pubs/qi2018universal.pdf
https://nlp.stanford.edu/pubs/qi2018universal.pdf
http://arxiv.org/abs/arXiv:1902.03249
http://arxiv.org/abs/arXiv:1902.03249

1345

Yoshimasa Tsuruoka and Jun’ichi Tsujii. 2005. Bidi-
rectional inference with the easiest-first strategy for
tagging sequence data. In Proceedings of the con-
ference on human language technology and empirical
methods in natural language processing, pages 467–
474. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in Neural Information Processing
Systems 30, pages 5998–6008. Curran Associates, Inc.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur.
2015. Order Matters: Sequence to sequence for sets.

Sean Welleck, Kiant Brantley, Hal Daum III, and
Kyunghyun Cho. 2019. Non-monotonic sequential text
generation.

Sean Welleck, Kyunghyun Cho, and Zheng Zhang.
2017. Saliency-based sequential image attention with
multiset prediction. In Advances in neural information
processing systems.

Sean Welleck, Zixin Yao, Yu Gai, Jialin Mao, Zheng
Zhang, and Kyunghyun Cho. 2018. Loss functions for
multiset prediction. In Advances in Neural Information
Processing Systems, pages 5788–5797.

H. Yamada and Y. Matsumoto. 2003. Statistical De-
pendency Analysis with Support Vector machines. In
The 8th International Workshop of Parsing Technolo-
gies (IWPT2003).

Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 shared task: Multilin-
gual parsing from raw text to universal dependencies.
In Proceedings of the CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies, pages 1–21, Brussels, Belgium. Association
for Computational Linguistics.

A Sequential Valid Decoder

We wish to sequentially sample E1, E2, . . . , ET
from score matrices S1, S2, . . . , ST , respectively,
such that E =

⋃
tEt is a dependency tree. A de-

pendency tree must satisfy:

1. The root node has no incoming edges.

2. Each non-root node has exactly one incoming
edge.

3. There are no duplicate edges.

4. There are no self-loops.

5. There are no cycles.

We first consider predicting one edge per step
|Et| = 1, then address the case |Et| ≥ 1.

One Edge Per Step Let x = x0, x1, . . . , xN
where x0 is a root node. We define a function
fvalid(St, E<t) → (i, j) which chooses the high-
est scoring edge (i, j) such that E<t ∪{(i, j)} is a
dependency tree, given edges E<t and scores St.
We representE<t as an adjacency matrixA<t, and
implement fvalid(St, A<t) by masking St to yield
scores S̃ that satisfy (1-5) as follows:

1. S̃·,0 = −∞

2. Ai,j = 1 implies S̃·,j = −∞

3. Ai,j = 1 implies S̃i,j = −∞

4. S̃i,i = −∞ for all i

5. Ri,j = 1 implies S̃j,i = −∞, where R ∈
{0, 1}N×N is the reachability matrix (transi-
tive closure) of A. That is, Ri,j = 1 when
there is a directed path from i to j. 5

The selected edge is then argmax(i,j) S̃i,j .

A full tree is decoded by calling fvalid for T steps,
using the current step scores St and an adjacency
matrix A<t =

⋃t−1
t′=1{(i, j)t′}.

Multiple Edges Per Step To decode multiple
edges per step, i.e. |Et| ≥ 1, we propose to repeat-
edly call fvalid, adding the returned edge to the ad-
jacency matrix after each call, and stopping once
the returned edge’s score is below a pre-defined
threshold τ .

5The reachability matrix R can be computed with batched
matrix multiplication as

∑t
k=1 A

k where t is the maximum
path length; other methods could potentially improve speed.

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1511.06391
http://arxiv.org/abs/arXiv:1902.02192
http://arxiv.org/abs/arXiv:1902.02192
http://www.aclweb.org/anthology/K18-2001
http://www.aclweb.org/anthology/K18-2001

