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Abstract

We introduce SPRITE, a family of topic
models that incorporates structure into
model priors as a function of underlying
components. The structured priors can
be constrained to model topic hierarchies,
factorizations, correlations, and supervi-
sion, allowing SPRITE to be tailored to
particular settings. We demonstrate this
flexibility by constructing a SPRITE-based
model to jointly infer topic hierarchies and
author perspective, which we apply to cor-
pora of political debates and online re-
views. We show that the model learns in-
tuitive topics, outperforming several other
topic models at predictive tasks.

1 Introduction

Topic models can be a powerful aid for analyzing
large collections of text by uncovering latent in-
terpretable structures without manual supervision.
Yet people often have expectations about topics in
a given corpus and how they should be structured
for a particular task. It is crucial for the user expe-
rience that topics meet these expectations (Mimno
et al., 2011; Talley et al., 2011) yet black box topic
models provide no control over the desired output.

This paper presents SPRITE, a family of topic
models that provide a flexible framework for en-
coding preferences as priors for how topics should
be structured. SPRITE can incorporate many types
of structure that have been considered in prior
work, including hierarchies (Blei et al., 2003a;
Mimno et al., 2007), factorizations (Paul and
Dredze, 2012; Eisenstein et al., 2011), sparsity
(Wang and Blei, 2009; Balasubramanyan and Co-
hen, 2013), correlations between topics (Blei and
Lafferty, 2007; Li and McCallum, 2006), pref-
erences over word choices (Andrzejewski et al.,
2009; Paul and Dredze, 2013), and associations

between topics and document attributes (Ramage
et al., 2009; Mimno and McCallum, 2008).

SPRITE builds on a standard topic model,
adding structure to the priors over the model pa-
rameters. The priors are given by log-linear func-
tions of underlying components (§2), which pro-
vide additional latent structure that we will show
can enrich the model in many ways. By apply-
ing particular constraints and priors to the compo-
nent hyperparameters, a variety of structures can
be induced such as hierarchies and factorizations
(§3), and we will show that this framework cap-
tures many existing topic models (§4).

After describing the general form of the model,
we show how SPRITE can be tailored to partic-
ular settings by describing a specific model for
the applied task of jointly inferring topic hierar-
chies and perspective (§6). We experiment with
this topic+perspective model on sets of political
debates and online reviews (§7), and demonstrate
that SPRITE learns desired structures while outper-
forming many baselines at predictive tasks.

2 Topic Modeling with Structured Priors

Our model family generalizes latent Dirichlet al-
location (LDA) (Blei et al., 2003b). Under LDA,
there are K topics, where a topic is a categor-
ical distribution over V words parameterized by
φk. Each document has a categorical distribution
over topics, parameterized by θm for the mth doc-
ument. Each observed word in a document is gen-
erated by drawing a topic z from θm, then drawing
the word from φz . θ and φ have priors given by
Dirichlet distributions.

Our generalization adds structure to the gener-
ation of the Dirichlet parameters. The priors for
these parameters are modeled as log-linear com-
binations of underlying components. Components
are real-valued vectors of length equal to the vo-
cabulary size V (for priors over word distribu-
tions) or length equal to the number of topics K
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(for priors over topic distributions).
For example, we might assume that topics about

sports like baseball and football share a common
prior – given by a component – with general words
about sports. A fine-grained topic about steroid
use in sports might be created by combining com-
ponents about broader topics like sports, medicine,
and crime. By modeling the priors as combina-
tions of components that are shared across all top-
ics, we can learn interesting connections between
topics, where components provide an additional
latent layer for corpus understanding.

As we’ll show in the next section, by imposing
certain requirements on which components feed
into which topics (or documents), we can induce
a variety of model structures. For example, if we
want to model a topic hierarchy, we require that
each topic depend on exactly one parent compo-
nent. If we want to jointly model topic and ide-
ology in a corpus of political documents (§6), we
make topic priors a combination of one component
from each of two groups: a topical component and
an ideological component, resulting in ideology-
specific topics like “conservative economics”.

Components construct priors as follows. For the
topic-specific word distributions φ, there are C(φ)

topic components. The kth topic’s prior over φk
is a weighted combination (with coefficient vector
βk) of theC(φ) components (where component c is
denoted ωc). For the document-specific topic dis-
tributions θ, there are C(θ) document components.
The mth document’s prior over θm is a weighted
combination (coefficients αm) of the C(θ) compo-
nents (where component c is denoted δc).

Once conditioned on these priors, the model
is identical to LDA. The generative story is de-
scribed in Figure 1. We call this family of models
SPRITE: Structured PRIor Topic modEls.

To illustrate the role that components can play,
consider an example in which we are modeling re-
search topics in a corpus of NLP abstracts (as we
do in §7.3). Consider three speech-related topics:
signal processing, automatic speech recognition,
and dialog systems. Conceptualized as a hierar-
chy, these topics might belong to a higher level
category of spoken language processing. SPRITE

allows the relationship between these three topics
to be defined in two ways. One, we can model that
these topics will all have words in common. This
is handled by the topic components – these three
topics could all draw from a common “spoken lan-

• Generate hyperparameters: α, β, δ, ω (§3)

• For each document m, generate parameters:

1. θ̃mk = exp(
∑C(θ)

c=1 αmc δck), 1≤k≤K
2. θm ∼ Dirichlet(θ̃m)

• For each topic k, generate parameters:

1. φ̃kv = exp(
∑C(φ)

c=1 βkc ωcv), 1≤v≤V
2. φk ∼ Dirichlet(φ̃k)

• For each token (m,n), generate data:

1. Topic (unobserved): zm,n ∼ θm
2. Word (observed): wm,n ∼ φzm,n

Figure 1: The generative story of SPRITE. The difference
from latent Dirichlet allocation (Blei et al., 2003b) is the gen-
eration of the Dirichlet parameters.

guage” topic component, with high-weight words
such as speech and spoken, which informs the
prior of all three topics. Second, we can model that
these topics are likely to occur together in docu-
ments. For example, articles about dialog systems
are likely to discuss automatic speech recognition
as a subroutine. This is handled by the document
components – there could be a “spoken language”
document component that gives high weight to all
three topics, so that if a document draw its prior
from this component, then it is more likely to give
probability to these topics together.

The next section will describe how particular
priors over the coefficients can induce various
structures such as hierarchies and factorizations,
and components and coefficients can also be pro-
vided as input to incorporate supervision and prior
knowledge. The general prior structure used in
SPRITE can be used to represent a wide array of
existing topic models, outlined in Section 4.

3 Topic Structures

By changing the particular configuration of the hy-
perparameters – the component coefficients (α and
β) and the component weights (δ and ω) – we ob-
tain a diverse range of model structures and behav-
iors. We now describe possible structures and the
corresponding priors.

3.1 Component Structures

This subsection discusses various graph structures
that can describe the relation between topic com-
ponents and topics, and between document com-
ponents and documents, illustrated in Figure 2.
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(a) Dense DAG (b) Sparse DAG (c) Tree (d) Factored Forest

Figure 2: Example graph structures describing possible relations between components (middle row) and topics or documents
(bottom row). Edges correspond to non-zero values for α or β (the component coefficients defining priors over the document
and topic distributions). The root node is a shared prior over the component weights (with other possibilities discussed in §3.3).

3.1.1 Directed Acyclic Graph
The general SPRITE model can be thought of as a
dense directed acyclic graph (DAG), where every
document or topic is connected to every compo-
nent with some weight α or β. When many of
the α or β coefficients are zero, the DAG becomes
sparse. A sparse DAG has an intuitive interpre-
tation: each document or topic depends on some
subset of components.

The default prior over coefficients that we use
in this study is a 0-mean Gaussian distribution,
which encourages the weights to be small. We
note that to induce a sparse graph, one could use
a 0-mean Laplace distribution as the prior over α
and β, which prefers parameters such that some
components are zero.

3.1.2 Tree
When each document or topic has exactly one par-
ent (one nonzero coefficient) we obtain a two-level
tree structure. This structure naturally arises in
topic hierarchies, for example, where fine-grained
topics are children of coarse-grained topics.

To create an (unweighted) tree, we require
αmc ∈ {0, 1} and

∑
c αmc = 1 for each docu-

ment m. Similarly, βkc ∈ {0, 1} and
∑

c βkc = 1
for each topic k. In this setting, αm and βk are
indicator vectors which select a single component.

In this study, rather than strictly requiring αm
and βk to be binary-valued indicator vectors, we
create a relaxation that allows for easier parameter
estimation. We let αm and βk to real-valued vari-
ables in a simplex, but place a prior over their val-
ues to encourage sparse values, favoring vectors
with a single component near 1 and others near 0.
This is achieved using a Dirichlet(ρ < 1) distribu-
tion as the prior over α and β, which has higher
density near the boundaries of the simplex.1

1This generalizes the technique used in Paul and Dredze
(2012), who approximated binary variables with real-valued
variables in (0, 1), by using a “U-shaped” Beta(ρ < 1) distri-

For a weighted tree, α and β could be a product
of two variables: an “integer-like” indicator vec-
tor with sparse Dirichlet prior as suggested above,
combined with a real-valued weight (e.g., with a
Gaussian prior). We take this approach in our
model of topic and perspective (§6).

3.1.3 Factored Forest
By using structured sparsity over the DAG, we can
obtain a structure where components are grouped
into G factors, and each document or topic has
one parent from each group. Figure 2(d) illus-
trates this: the left three components belong to one
group, the right two belong to another, and each
bottom node has exactly one parent from each.
This is a DAG that we call a “factored forest” be-
cause the subgraphs associated with each group in
isolation are trees. This structure arises in “multi-
dimensional” models like SAGE (Eisenstein et al.,
2011) and Factorial LDA (Paul and Dredze, 2012),
which allow tokens to be associated with multiple
variables (e.g. a topic along with a variable denot-
ing positive or negative sentiment). This allows
word distributions to depend on both factors.

The “exactly one parent” indicator constraint is
the same as in the tree structure but enforces a
tree only within each group. This can therefore be
(softly) modeled using a sparse Dirichlet prior as
described in the previous subsection. In this case,
the subsets of components belonging to each fac-
tor have separate sparse Dirichlet priors. Using
the example from Figure 2(d), the first three com-
ponent indicators would come from one Dirichlet,
while the latter two component indicators would
come from a second.

3.2 Tying Topic and Document Components

A desirable property for many situations is for the
topic and document components to correspond to

bution as the prior to encourage sparsity. The Dirichlet distri-
bution is the multivariate extension of the Beta distribution.
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each other. For example, if we think of the com-
ponents as coarse-grained topics in a hierarchy,
then the coefficients β enforce that topic word dis-
tributions share a prior defined by their parent ω
component, while the coefficients α represent a
document’s proportions of coarse-grained topics,
which effects the document’s prior over child top-
ics (through the δ vectors). Consider the example
with spoken language topics in §2: these three top-
ics (signal processing, speech recognition, and di-
alog systems) are a priori likely both to share the
same words and to occur together in documents.
By tying these together, we ensure that the pat-
terns are consistent across the two types of com-
ponents, and the patterns from both types can re-
inforce each other during inference.

In this case, the number of topic components
is the same as the number of document compo-
nents (C(φ) = C(θ)), and the coefficients (βcz)
of the topic components should correlate with the
weights of the document components (δzc). The
approach we take (§6) is to define δ and β as a
product of two variables (suggested in §3.1.2): a
binary mask variable (with sparse Dirichlet prior),
which we let be identical for both δ and β, and a
real-valued positive weight.

3.3 Deep Components

As for priors over the component weights δ and
ω, we assume they are generated from a 0-mean
Gaussian. While not experimented with in this
study, it is also possible to allow the components
themselves to have rich priors which are functions
of higher level components. For example, rather
than assuming a mean of zero, the mean could be a
weighted combination of higher level weight vec-
tors. This approach was used by Paul and Dredze
(2013) in Factorial LDA, in which each ω compo-
nent had its own Gaussian prior provided as input
to guide the parameters.

4 Special Cases and Extensions

We now describe several existing Dirichlet prior
topic models and show how they are special cases
of SPRITE. Table 1 summarizes these models and
their relation to SPRITE. In almost every case, we
also describe how the SPRITE representation of
the model offers improvements over the original
model or can lead to novel extensions.

Model Sec. Document priors Topic priors
LDA 4.1 Single component Single component

SCTM 4.2 Single component Sparse binary β
SAGE 4.3 Single component Sparse ω
FLDA 4.3 Binary δ is transpose of β Factored binary β
PAM 4.4 α are supertopic weights Single component
DMR 4.5 α are feature values Single component

Table 1: Topic models with Dirichlet priors that are gen-
eralized by SPRITE. The description of each model can be
found in the noted section number. PAM is not equivalent,
but captures very similar behavior. The described component
formulations of SCTM and SAGE are equivalent, but these
differ from SPRITE in that the components directly define the
parameters, rather than priors over the parameters.

4.1 Latent Dirichlet Allocation
In LDA (Blei et al., 2003b), all θ vectors are
drawn from the same prior, as are all φ vectors.
This is a basic instance of our model with only
one component at the topic and document levels,
C(θ) = C(φ) = 1, with coefficients α = β = 1.

4.2 Shared Components Topic Models
Shared components topic models (SCTM) (Gorm-
ley et al., 2010) define topics as products of “com-
ponents”, where components are word distribu-
tions. To use the notation of our paper, the kth
topic’s word distribution in SCTM is parameter-
ized by φkv ∝

∏
c ω

βkc
cv , where the ω vectors are

word distributions (rather than vectors in RV ), and
the βkc ∈ {0, 1} variables are indicators denoting
whether component c is in topic k.

This is closely related to SPRITE, where top-
ics also depend on products of underlying com-
ponents. A major difference is that in SCTM,
the topic-specific word distributions are exactly
defined as a product of components, whereas in
SPRITE, it is only the prior that is a product of
components.2 Another difference is that SCTM
has an unweighted product of components (β is bi-
nary), whereas SPRITE allows for weighted prod-
ucts. The log-linear parameterization leads to sim-
pler optimization procedures than the product pa-
rameterization. Finally, the components in SCTM
only apply to the word distributions, and not the
topic distributions in documents.

4.3 Factored Topic Models
Factored topic models combine multiple aspects
of the text to generate the document (instead of
just topics). One such topic model is Factorial
LDA (FLDA) (Paul and Dredze, 2012). In FLDA,

2The posterior becomes concentrated around the prior
when the Dirichlet variance is low, in which case SPRITE be-
haves like SCTM. SPRITE is therefore more general.
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“topics” are actually tuples of potentially multiple
variables, such as aspect and sentiment in online
reviews (Paul et al., 2013). Each document distri-
bution θm is a distribution over pairs (or higher-
dimensional tuples if there are more than two fac-
tors), and each pair (j, k) has a word distribu-
tion φ(j,k). FLDA uses a similar log-linear pa-
rameterization of the Dirichlet priors as SPRITE.
Using our notation, the Dirichlet(φ̃(j,k)) prior for
φ(j,k) is defined as φ̃(j,k),v=exp(ωjv+ωkv), where
ωj is a weight vector over the vocabulary for the
jth component of the first factor, and ωk encodes
the weights for the kth component of the second
factor. (Some bias terms are omitted for sim-
plicity.) The prior over θm has a similar form:
θ̃m,(j,k)=exp(αmj + αmk), where αmj is docu-
ment m’s preference for component j of the first
factor (and likewise for k of the second).

This corresponds to an instantiation of SPRITE

using an unweighted factored forest (§3.1.3),
where βzc = δcz (§3.2, recall that δ are document
components while β are the topic coefficients).
Each subtopic z (which is a pair of variables in
the two-factor model) has one parent component
from each factor, indicated by βz which is binary-
valued. At the document level in the two-factor
example, δj is an indicator vector with values of 1
for all pairs with j as the first component, and thus
the coefficient αmj controls the prior for all such
pairs of the form (j, ·), and likewise δk indicates
pairs with k as the second component, controlling
the prior over (·, k).

The SPRITE representation offers a benefit over
the original FLDA model. FLDA assumes that the
entire Cartesian product of the different factors is
represented in the model (e.g. φ parameters for ev-
ery possible tuple), which leads to issues with effi-
ciency and overparameterization with higher num-
bers of factors. With SPRITE, we can simply fix
the number of “topics” to a number smaller than
the size of the Cartesian product, and the model
will learn which subset of tuples are included,
through the values of β and δ.

Finally, another existing model family that al-
lows for topic factorization is the sparse additive
generative model (SAGE) (Eisenstein et al., 2011).
SAGE uses a log-linear parameterization to define
word distributions. SAGE is a general family of
models that need not be factored, but is presented
as an efficient solution for including multiple fac-
tors, such as topic and geography or topic and au-

thor ideology. Like SCTM, φ is exactly defined as
a product of ω weights, rather than our approach
of using the product to define a prior over φ.

4.4 Topic Hierarchies and Correlations

While the two previous subsections primarily fo-
cused on word distributions (with FLDA being an
exception that focused on both), SPRITE’s priors
over topic distributions also have useful charac-
teristics. The component-specific δ vectors can
be interpreted as common topic distribution pat-
terns, where each component is likely to give high
weight to groups of topics that tend to occur to-
gether. Each document’s α weights encode which
of the topic groups are present in that document.

Similar properties are captured by the Pachinko
allocation model (PAM) (Li and McCallum,
2006). Under PAM, each document has a distri-
bution over supertopics. Each supertopic is as-
sociated with a Dirichlet prior over subtopic dis-
tributions, where subtopics are the low level top-
ics that are associated with word parameters φ.
Documents also have supertopic-specific distribu-
tions over subtopics (drawn from each supertopic-
specific Dirichlet prior). Each topic in a document
is drawn by first drawing a supertopic from the
document’s distribution, then drawing a subtopic
from that supertopic’s document distribution.

While not equivalent, this is quite similar to
SPRITE where document components correspond
to supertopics. Each document’s α weights can
be interpreted to be similar to a distribution over
supertopics, and each δ vector is that supertopic’s
contribution to the prior over subtopics. The prior
over the document’s topic distribution is thus af-
fected by the document’s supertopic weights α.

The SPRITE formulation naturally allows for
powerful extensions to PAM. One possibility is
to include topic components for the word distri-
butions, in addition to document components, and
to tie together δcz and βzc (§3.2). This models the
intuitive characteristic that subtopics belonging to
similar supertopics (encoded by δ) should come
from similar priors over their word distributions
(since they will have similar β values). That is,
children of a supertopic are topically related – they
are likely to share words. This is a richer alterna-
tive to the hierarchical variant of PAM proposed
by Mimno et al. (2007), which modeled separate
word distributions for supertopics and subtopics,
but the subtopics were not dependent on the super-
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topic word distributions. Another extension is to
form a strict tree structure, making each subtopic
belong to exactly one supertopic: a true hierarchy.

4.5 Conditioning on Document Attributes
SPRITE also naturally provides the ability to con-
dition document topic distributions on features of
the document, such as a user rating in a review.
To do this, let the number of document compo-
nents be the number of features, and the value of
αmc is the mth document’s value of the cth fea-
ture. The δ vectors then influence the document’s
topic prior based on the feature values. For exam-
ple, increasing αmc will increase the prior for topic
z if δcz is positive and decrease the prior if δcz is
negative. This is similar to the structure used for
PAM (§4.4), but here the α weights are fixed and
provided as input, rather than learned and inter-
preted as supertopic weights. This is identical to
the Dirichlet-multinomial regression (DMR) topic
model (Mimno and McCallum, 2008). The DMR
topic model define’s each document’s Dirichlet
prior over topics as a log-linear function of the
document’s feature values and regression coeffi-
cients for each topic. The cth feature’s regression
coefficients correspond to the δc vector in SPRITE.

5 Inference and Parameter Estimation

We now discuss how to infer the posterior of the
latent variables z and parameters θ and φ, and find
maximum a posteriori (MAP) estimates of the hy-
perparameters α, β, δ, and ω, given their hyperpri-
ors. We take a Monte Carlo EM approach, using a
collapsed Gibbs sampler to sample from the pos-
terior of the topic assignments z conditioned on
the hyperparameters, then optimizing the hyperpa-
rameters using gradient-based optimization condi-
tioned on the samples.

Given the hyperparameters, the sampling equa-
tions are identical to the standard LDA sampler
(Griffiths and Steyvers, 2004). The partial deriva-
tive of the collapsed log likelihood L of the corpus
with respect to each hyperparameter βkc is:

∂L
∂βkc

=
∂P (β)

∂βkc
+
∑

v

ωcvφ̃kv × (1)
(
Ψ(nkv+φ̃kv)−Ψ(φ̃kv) +Ψ(

∑
k′ φ̃k′v)−Ψ(

∑
k′n

k′
v +φ̃k′v)

)

where φ̃kv=exp(
∑

c′ βkc′ωc′v), nkv is the number
of times word v is assigned to topic k (in the
samples from the E-step), and Ψ is the digamma

function, the derivative of the log of the gamma
function. The digamma terms arise from the
Dirichlet-multinomial distribution, when integrat-
ing out the parameters φ. P (β) is the hyperprior.
For a 0-mean Gaussian hyperprior with variance
σ2, ∂P (β)

∂βkc
= −βkc

σ2 . Under a Dirchlet(ρ) hyper-
prior, when we want β to represent an indicator
vector (§3.1.2), ∂P (β)

∂βkc
= ρ−1

βkc
.

The partial derivatives for the other hyperpa-
rameters are similar. Rather than involving a sum
over the vocabulary, ∂L

∂δck
sums over documents,

while ∂L
∂ωcv

and ∂L
∂αmc

sum over topics.
Our inference algorithm alternates between one

Gibbs iteration and one iteration of gradient as-
cent, so that the parameters change gradually. For
unconstrained parameters, we use the update rule:
xt+1=xt + ηt∇L(xt), for some variable x and
a step size ηt at iteration t. For parameters con-
strained to the simplex (such as when β is a soft
indicator vector), we use exponentiated gradient
ascent (Kivinen and Warmuth, 1997) with the up-
date rule: xt+1

i ∝ xti exp(ηt∇iL(xt)).

5.1 Tightening the Constraints

For variables that we prefer to be binary but
have softened to continuous variables using sparse
Beta or Dirichlet priors, we can straightforwardly
strengthen the preference to be binary by modify-
ing the objective function to favor the prior more
heavily. Specifically, under a Dirichlet(ρ<1) prior
we will introduce a scaling parameter τt ≥ 1
to the prior log likelihood: τt logP (β) with par-
tial derivative τt ρ−1βkc

, which adds extra weight to
the sparse Dirichlet prior in the objective. The
algorithm used in our experiments begins with
τ1 = 1 and optionally increases τ over time. This
is a deterministic annealing approach, where τ
corresponds to an inverse temperature (Ueda and
Nakano, 1998; Smith and Eisner, 2006).

As τ approaches infinity, the prior-annealed
MAP objective maxβ P (φ|β)P (β)τ approaches
maxβ P (φ|β) maxβ P (β). Annealing only the
prior P (β) results in maximization of this term
only, while the outer max chooses a good β under
P (φ|β) as a tie-breaker among all β values that
maximize the inner max (binary-valued β).3

We show experimentally (§7.2.2) that annealing
the prior yields values that satisfy the constraints.

3Other modifications could be made to the objective func-
tion to induce sparsity, such as entropy regularization (Bala-
subramanyan and Cohen, 2013).
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6 A Factored Hierarchical Model of
Topic and Perspective

We will now describe a SPRITE model that en-
compasses nearly all of the structures and exten-
sions described in §3–4, followed by experimen-
tal results using this model to jointly capture topic
and “perspective” in a corpus of political debates
(where perspective corresponds to ideology) and
a corpus of online doctor reviews (where perspec-
tive corresponds to the review sentiment).

First, we will create a topic hierarchy (§4.4).
The hierarchy will model both topics and docu-
ments, where αm is documentm’s supertopic pro-
portions, δc is the cth supertopic’s subtopic prior,
ωc is the cth supertopic’s word prior, and βk is
the weight vector that selects the kth topic’s par-
ent supertopic, which incorporates (soft) indicator
vectors to encode a tree structure (§3.1.2).

We want a weighted tree; while each βk has
only one nonzero element, the nonzero element
can be a value other than 1. We do this by replac-
ing the single coefficient βkc with a product of two
variables: bkcβ̂kc. Here, β̂k is a real-valued weight
vector, while bkc is a binary indicator vector which
zeroes out all but one element of βk. We do the
same with the δ vectors, replacing δck with bkcδ̂ck.
The b variables are shared across both topic and
document components, which is how we tie these
together (§3.2). We relax the binary requirement
and instead allow a positive real-valued vector
whose elements sum to 1, with a Dirichlet(ρ<1)
prior to encourage sparsity (§3.1.2).

To be properly interpreted as a hierarchy, we
constrain the coefficients α and β (and by ex-
tension, δ) to be positive. To optimize these pa-
rameters in a mathematically convenient way, we
write βkc as exp(log βkc), and instead optimize
log βkc ∈ R rather than βkc ∈ R+.

Second, we factorize (§4.3) our hierarchy such
that each topic depends not only on its supertopic,
but also on a value indicating perspective. For ex-
ample, a conservative topic about energy will ap-
pear differently from a liberal topic about energy.
The prior for a topic will be a log-linear combina-
tion of both a supertopic (e.g. energy) and a per-
spective (e.g. liberal) weight vector. The variables
associated with the perspective component are de-
noted with superscript (P ) rather than subscript c.

To learn meaningful perspective parameters, we
include supervision in the form of document at-
tributes (§4.5). Each document includes a pos-

• bk ∼ Dirichlet(ρ < 1) (soft indicator)

• α(P ) is given as input (perspective value)

• δ(P )
k = β

(P )
k

• φ̃kv = exp(ω
(B)
v +β

(P )
k ω

(P )
v +

∑
c bkcβ̂kcωcv)

• θ̃mk = exp(δ
(B)
k +α

(P )
m δ

(P )
k +

∑
c bkcαmcδ̂ck)

Figure 3: Summary of the hyperparameters in our SPRITE-
based topic and perspective model (§6).

itive or negative score denoting the perspective,
which is the variable α(P )

m for document m. Since
α(P ) are the coefficients for δ(P ), positive values
of δ(P )

k indicate that topic k is more likely if the au-
thor is conservative (which has a positive α score
in our data), and less likely if the author is liberal
(which has a negative score). There is only a single
perspective component, but it represents two ends
of a spectrum with positive and negative weights;
β(P ) and δ(P ) are not constrained to be positive,
unlike the supertopics. We also set β(P )

k = δ
(P )
k .

This means that topics with positive δ(P )
k will also

have a positive β coefficient that is multiplied with
the perspective word vector ω(P ).

Finally, we include “bias” component vectors
denoted ω(B) and δ(B), which act as overall
weights over the vocabulary and topics, so that the
component-specific ω and δ weights can be inter-
preted as deviations from the global bias weights.

Figure 3 summarizes the model. This includes
most of the features described above (trees, fac-
tored structures, tying topic and document compo-
nents, and document attributes), so we can ablate
model features to measure their effect.

7 Experiments

7.1 Datasets and Experimental Setup

We applied our models to two corpora:

• Debates: A set of floor debates from the 109th–
112th U.S. Congress, collected by Nguyen et
al. (2013), who also applied a hierarchical topic
model to this data. Each document is a tran-
script of one speaker’s turn in a debate, and each
document includes the first dimension of the
DW-NOMINATE score (Lewis and Poole, 2004),
a real-valued score indicating how conservative
(positive) or liberal (negative) the speaker is.
This value is α(P ). We took a sample of 5,000
documents from the House debates (850,374 to-
kens; 7,426 types), balanced across party affilia-
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tion. We sampled from the most partisan speak-
ers, removing scores below the median value.

• Reviews: Doctor reviews from RateMDs.com,
previously analyzed using FLDA (Paul et al.,
2013; Wallace et al., 2014). The reviews con-
tain ratings on a 1–5 scale for multiple aspects.
We centered the ratings around the middle value
3, then took reviews that had the same sign for
all aspects, and averaged the scores to produce
a value for α(P ). Our corpus contains 20,000
documents (476,991 tokens; 10,158 types), bal-
anced across positive/negative scores.

Unless otherwise specified, K=50 topics and
C=10 components (excluding the perspective
component) for Debates, and K=20 and C=5 for
Reviews. These values were chosen as a qualita-
tive preference, not optimized for predictive per-
formance, but we experiment with different values
in §7.2.2. We set the step size ηt according to Ada-
Grad (Duchi et al., 2011), where the step size is
the inverse of the sum of squared historical gradi-
ents.4 We place a sparse Dirichlet(ρ=0.01) prior
on the b variables, and apply weak regulariza-
tion to all other hyperparameters via a N (0, 102)
prior. These hyperparameters were chosen after
only minimal tuning, and were selected because
they showed stable and reasonable output qualita-
tively during preliminary development.

We ran our inference algorithm for 5000 itera-
tions, estimating the parameters θ and φ by aver-
aging the final 100 iterations. Our results are aver-
aged across 10 randomly initialized samplers.5

7.2 Evaluating the Topic Perspective Model

7.2.1 Analysis of Output
Figure 4 shows examples of topics learned from
the Reviews corpus. The figure includes the high-
est probability words in various topics as well as
the highest weight words in the supertopic com-
ponents and perspective component, which feed
into the priors over the topic parameters. We see
that one supertopic includes many words related to
surgery, such as procedure and performed, and has
multiple children, including a topic about dental
work. Another supertopic includes words describ-
ing family members such as kids and husband.

4AdaGrad decayed too quickly for the b variables. For
these, we used a variant suggested by Zeiler (2012) which
uses an average of historical gradients rather than a sum.

5Our code and the data will be available at:
http://cs.jhu.edu/˜mpaul.

One topic has both supertopics as parents, which
appears to describe surgeries that saved a family
member’s life, with top words including {saved,
life, husband, cancer}. The figure also illustrates
which topics are associated more with positive or
negative reviews, as indicated by the value of δ(P ).

Interpretable parameters were also learned from
the Debates corpus. Consider two topics about
energy that have polar values of δ(P ). The
conservative-leaning topic is about oil and gas,
with top words including {oil, gas, companies,
prices, drilling}. The liberal-leaning topic is
about renewable energy, with top words includ-
ing {energy, new, technology, future, renewable}.
Both of these topics share a common parent of an
industry-related supertopic whose top words are
{industry, companies, market, price}. A nonparti-
san topic under this same supertopic has top words
{credit, financial, loan, mortgage, loans}.

7.2.2 Quantitative Evaluation

We evaluated the model on two predictive tasks as
well as topic quality. The first metric is perplex-
ity of held-out text. The held-out set is based on
tokens rather than documents: we trained on even
numbered tokens and tested on odd tokens. This is
a type of “document completion” evaluation (Wal-
lach et al., 2009b) which measures how well the
model can predict held-out tokens of a document
after observing only some.

We also evaluated how well the model can pre-
dict the attribute value (DW-NOMINATE score or
user rating) of the document. We trained a linear
regression model using the document topic distri-
butions θ as features. We held out half of the docu-
ments for testing and measured the mean absolute
error. When estimating document-specific SPRITE

parameters for held-out documents, we fix the fea-
ture value α(P )

m = 0 for that document.
These predictive experiments do not directly

measure performance at many of the particular
tasks that topic models are well suited for, like
data exploration, summarization, and visualiza-
tion. We therefore also include a metric that more
directly measures the quality and interpretability
of topics. We use the topic coherence metric intro-
duced by Mimno et al. (2011), which is based on
co-occurrence statistics among each topic’s most
probable words and has been shown to correlate
with human judgments of topic quality. This met-
ric measures the quality of each topic, and we
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Figure 4: Examples of topics (gray boxes) and components (colored boxes) learned on the Reviews corpus with 20 topics and
5 components. Words with the highest and lowest values of ω(P ), the perspective component, are shown on the left, reflecting
positive and negative sentiment words. The words with largest ω values in two supertopic components are also shown, with
manually given labels. Arrows from components to topics indicate that the topic’s word distribution draws from that component
in its prior (with non-zero β value). There are also implicit arrows from the perspective component to all topics (omitted for
clarity). The vertical positions of topics reflect the topic’s perspective value δ(P ). Topics centered above the middle line are
more likely to occur in reviews with positive scores, while topics below the middle line are more likely in negative reviews.
Note that this is a “soft” hierarchy because the tree structure is not strictly enforced, so some topics have multiple parent
components. Table 3 shows how strict trees can be learned by tuning the annealing parameter.

measure the average coherence across all topics:

1

K

K∑

k=1

M∑

m=2

m−1∑

l=1

log
DF (vkm, vkl) + 1

DF (vkl)
(2)

where DF (v, w) is the document frequency of
words v andw (the number of documents in which
they both occur), DF (v) is the document fre-
quency of word v, and vki is the ith most probable
word in topic k. We use the top M = 20 words.
This metric is limited to measuring only the qual-
ity of word clusters, ignoring the potentially im-
proved interpretability of organizing the data into
certain structures. However, it is still useful as an
alternative measure of performance and utility, in-
dependent of the models’ predictive abilities.

Using these three metrics, we compared to sev-
eral variants (denoted in bold) of the full model
to understand how the different parts of the model
affect performance:

• Variants that contain the hierarchy components
but not the perspective component (Hierarchy
only), and vice versa (Perspective only).
• The “hierarchy only” model using only docu-

ment components δ and no topic components.
This is a PAM-style model because it exhibits

similar behavior to PAM (§4.4). We also com-
pared to the original PAM model.
• The “hierarchy only” model using only topic

components ω and no document components.
This is a SCTM-style model because it exhibits
similar behavior to SCTM (§4.2).
• The full model where α(P ) is learned rather than

given as input. This is a FLDA-style model that
has similar behavior to FLDA (§4.3). We also
compared to the original FLDA model.
• The “perspective only” model but without the
ω(P ) topic component, so the attribute value af-
fects only the topic distributions and not the
word distributions. This is identical to the DMR
model of Mimno and McCallum (2008) (§4.5).
• A model with no components except for the

bias vectors ω(B) and δ(B). This is equiva-
lent to LDA with optimized hyperparameters
(learned). We also experimented with using
fixed symmetric hyperparameters, using val-
ues suggested by Griffiths and Steyvers (2004):
50/K and 0.01 for topic and word distributions.

To put the results in context, we also compare to
two types of baselines: (1) “bag of words” base-
lines, where we measure the perplexity of add-one
smoothed unigram language models, we measure
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Debates Reviews
Model Perplexity Prediction error Coherence Perplexity Prediction error Coherence

Full model †1555.5 ± 2.3 †0.615 ± 0.001 -342.8 ± 0.9 †1421.3 ± 8.4 †0.787 ± 0.006 -512.7 ± 1.6
Hierarchy only †1561.8 ± 1.4 0.620 ± 0.002 -342.6 ± 1.1 †1457.2 ± 6.9 †0.804 ± 0.007 -509.1 ± 1.9

Perspective only †1567.3 ± 2.3 †0.613 ± 0.002 -342.1 ± 1.2 †1413.7 ± 2.2 †0.800 ± 0.002 -512.0 ± 1.7
SCTM-style 1572.5 ± 1.6 0.620 ± 0.002 †-335.8 ± 1.1 1504.0 ± 1.9 †0.837 ± 0.002 †-490.8 ± 0.9
PAM-style †1567.4 ± 1.9 0.620 ± 0.002 -347.6 ± 1.4 †1440.4 ± 2.7 †0.835 ± 0.004 -542.9 ± 6.7
FLDA-style †1559.5 ± 2.0 0.617 ± 0.002 -340.8 ± 1.4 †1451.1 ± 5.4 †0.809 ± 0.006 -505.3 ± 2.3

DMR 1578.0 ± 1.1 0.618 ± 0.002 -343.1 ± 1.0 †1416.4 ± 3.0 †0.799 ± 0.003 -511.6 ± 2.0
PAM 1578.9 ± 0.3 0.622 ± 0.003 †-336.0 ± 1.1 1514.8 ± 0.9 †0.835 ± 0.003 †-493.3 ± 1.2
FLDA 1574.1 ± 2.2 0.618 ± 0.002 -344.4 ± 1.3 1541.9 ± 2.3 0.856 ± 0.003 -502.2 ± 3.1

LDA (learned) 1579.6 ± 1.5 0.620 ± 0.001 -342.6 ± 0.6 1507.9 ± 2.4 0.846 ± 0.002 -501.4 ± 1.2
LDA (fixed) 1659.3 ± 0.9 0.622 ± 0.002 -349.5 ± 0.8 1517.2 ± 0.4 0.920 ± 0.003 -585.2 ± 0.9
Bag of words 2521.6 ± 0.0 0.617 ± 0.000 †-196.2 ± 0.0 1633.5 ± 0.0 0.813 ± 0.000 †-408.1 ± 0.0
Naive baseline 7426.0 ± 0.0 0.677 ± 0.000 -852.9 ± 7.4 10158.0 ± 0.0 1.595 ± 0.000 -795.2 ± 13.0

Table 2: Perplexity of held-out tokens and mean absolute error for attribute prediction using various models (± std. error).
† indicates significant improvement (p < 0.05) over optimized LDA under a two-sided t-test.

the prediction error using bag of words features,
and we measure coherence of the unigram distri-
bution; (2) naive baselines, where we measure the
perplexity of the uniform distribution over each
dataset’s vocabulary, the prediction error when
simply predicting each attribute as the mean value
in the training set, and the coherence of 20 ran-
domly selected words (repeated for 10 trials).

Table 2 shows that the full SPRITE model sub-
stantially outperforms the LDA baseline at both
predictive tasks. Generally, model variants with
more structure perform better predictively.

The difference between SCTM-style and
PAM-style is that the former uses only topic com-
ponents (for word distributions) and the latter uses
only document components (for the topic distri-
butions). Results show that the structured priors
are more important for topic than word distribu-
tions, since PAM-style has lower perplexity on
both datasets. However, models with both topic
and document components generally outperform
either alone, including comparing the Perspec-
tive only and DMR models. The former includes
both topic and document perspective components,
while DMR has only a document level component.

PAM does not significantly outperform opti-
mized LDA in most measures, likely because it up-
dates the hyperparameters using a moment-based
approximation, which is less accurate than our
gradient-based optimization. FLDA perplexity
is 2.3% higher than optimized LDA on Reviews,
comparable to the 4% reported by Paul and Dredze
(2012) on a different corpus. The FLDA-style
SPRITE variant, which is more flexible, signifi-
cantly outperforms FLDA in most measures.

The results are quite different under the co-
herence metric. It seems that topic components

(which influence the word distributions) improve
coherence over LDA, while document compo-
nents worsen coherence. SCTM-style (which uses
only topic components) does the best in both
datasets, while PAM-style (which uses only doc-
uments) does the worst. PAM also significantly
improves over LDA, despite worse perplexity.

The LDA (learned) baseline substantially out-
performs LDA (fixed) in all cases, highlighting the
importance of optimizing hyperparameters, con-
sistent with prior research (Wallach et al., 2009a).

Surprisingly, many SPRITE variants also outper-
form the bag of words regression baseline, even
though the latter was tuned to optimize perfor-
mance using heavy `2 regularization, which we
applied only weakly (without tuning) to the topic
model features. We also point out that the “bag
of words” version of the coherence metric (the co-
herence of the top 20 words) is higher than the av-
erage topic coherence, which is an artifact of how
the metric is defined: the most probable words in
the corpus also tend to co-occur together in most
documents, so these words are considered to be
highly coherent when grouped together.

Parameter Sensitivity We evaluated the full
model at the two predictive tasks with varying
numbers of topics ({12,25,50,100} for Debates
and {5,10,20,40} for Reviews) and components
({2,5,10,20}). Figure 5 shows that performance is
more sensitive to the number of topics than com-
ponents, with generally less variance among the
latter. More topics improve performance mono-
tonically on Debates, while performance declines
at 40 topics on Reviews. The middle range of com-
ponents (5–10) tends to perform better than too
few (2) or too many (20) components.

Regardless of quantitative differences, the
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Figure 5: Predictive performance of full model with differ-
ent numbers of topics K across different numbers of compo-
nents, represented on the x-axis (log scale).

τt Debates Reviews
0.000 (Sparse DAG) 58.1% 42.4%
1.000 (Soft Tree) 93.2% 74.6%
1.001t (Hard Tree) 99.8% 99.4%
1.003t (Hard Tree) 100% 100%

Table 3: The percentage of indicator values that are sparse
(near 0 or 1) when using different annealing schedules.

choice of parameters may depend on the end ap-
plication and the particular structures that the user
has in mind, if interpretability is important. For
example, if the topic model is used as a visual-
ization tool, then 2 components would not likely
result in an interesting hierarchy to the user, even
if this setting produces low perplexity.

Structured Sparsity We use a relaxation of the
binary b that induces a “soft” tree structure. Ta-
ble 3 shows the percentage of b values which are
within ε = .001 of 0 or 1 under various anneal-
ing schedules, increasing the inverse temperature
τ by 0.1% after each iteration (i.e. τt = 1.001t)
as well as 0.3% and no annealing at all (τ = 1).
At τ = 0, we model a DAG rather than a tree, be-
cause the model has no preference that b is sparse.
Many of the values are binary in the DAG case, but
the sparse prior substantially increases the number
of binary values, obtaining fully binary structures
with sufficient annealing. We compare the DAG
and tree structures more in the next subsection.

7.3 Structure Comparison
The previous subsection experimented with mod-
els that included a variety of structures, but did
not provide a comparison of each structure in iso-
lation, since most model variants were part of a
complex joint model. In this section, we exper-

iment with the basic SPRITE model for the three
structures described in §3: a DAG, a tree, and a
factored forest. For each structure, we also exper-
iment with each type of component: document,
topic, and both types (combined).

For this set of experiments, we included a third
dataset that does not contain a perspective value:

• Abstracts: A set of 957 abstracts from the ACL
anthology (97,168 tokens; 8,246 types). These
abstracts have previously been analyzed with
FLDA (Paul and Dredze, 2012), so we include
it here to see if the factored structure that we
explore in this section learns similar patterns.

Based on our sparsity experiments in the pre-
vious subsection, we set τt = 1.003t to induce
hard structures (tree and factored) and τ = 0 to in-
duce a DAG. We keep the same parameters as the
previous subsection: K=50 and C=10 for Debates
and K=20 and C=5 for Reviews. For the factored
structures, we use two factors, with one factor hav-
ing more components than the other: 3 and 7 com-
ponents for Debates, and 2 and 3 components for
Reviews (the total number of components across
the two factors is therefore the same as for the
DAG and tree experiments). The Abstracts exper-
iments use the same parameters as with Debates.

Since the Abstracts dataset does not have a per-
spective value to predict, we do not include predic-
tion error as a metric, instead focusing on held-out
perplexity and topic coherence (Eq. 2). Table 4
shows the results of these two metrics.

Some trends are clear and consistent. Topic
components always hurt perplexity, while these
components typically improve coherence, as was
observed in the previous subsection. It has pre-
viously been observed that perplexity and topic
quality are not correlated (Chang et al., 2009).
These results show that the choice of components
depends on the task at hand. Combining the two
components tends to produce results somewhere
in between, suggesting that using both component
types is a reasonable “default” setting.

Document components usually improve per-
plexity, likely due to the nature of the document
completion setup, in which half of each document
is held out. The document components capture
correlations between topics, so by inferring the
components that generated the first half of the doc-
ument, the prior is adjusted to give more probabil-
ity to topics that are likely to occur in the unseen
second half. Another interesting trend is that the
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Perplexity Coherence
DAG Tree Factored DAG Tree Factored

Debates
Document 1572.0 ± 0.9 1568.7 ± 2.0 1566.8 ± 2.0 -342.9 ± 1.2 -346.0 ± 0.9 -343.2 ± 1.0

Topic 1575.0 ± 1.5 1573.4 ± 1.8 1559.3 ± 1.5 -342.4 ± 0.6 -339.2 ± 1.7 -333.9 ± 0.9
Combined 1566.7 ± 1.7 1559.9 ± 1.9 1552.5 ± 1.9 -342.9 ± 1.3 -342.6 ± 1.2 -340.3 ± 1.0

Reviews
Document 1456.9 ± 3.8 1446.4 ± 4.0 1450.4 ± 5.5 -512.2 ± 4.6 -527.9 ± 6.5 -535.4 ± 7.4

Topic 1508.5 ± 1.7 1517.9 ± 2.0 1502.0 ± 1.9 -500.1 ± 1.2 -499.0 ± 0.9 -486.1 ± 1.5
Combined 1464.1 ± 3.3 1455.1 ± 5.6 1448.5 ± 8.5 -504.9 ± 1.4 -527.8 ± 6.1 -535.5 ± 8.2

Abstracts
Document 3107.7 ± 7.7 3089.5 ± 9.1 3098.7 ± 10.2 -393.2 ± 0.8 -390.8 ± 0.9 -392.8 ± 1.5

Topic 3241.7 ± 2.1 3455.9 ± 10.2 3507.4 ± 9.7 -389.0 ± 0.8 -388.8 ± 0.7 -332.2 ± 1.1
Combined 3200.8 ± 3.5 3307.2 ± 7.8 3364.9 ± 19.1 -373.1 ± 0.8 -360.6 ± 0.9 -342.3 ± 0.9

Table 4: Quantitative results for different structures (columns) and different components (rows) for two metrics (± std. error)
across three datasets. The best (structure, component) pair for each dataset and metric is in bold.

factored structure tends to perform well under both
metrics, with the lowest perplexity and highest co-
herence in a majority of the nine comparisons (i.e.
each row). Perhaps the models are capturing a nat-
ural factorization present in the data.

To understand the factored structure qualita-
tively, Figure 6 shows examples of components
from each factor along with example topics that
draw from all pairs of these components, learned
on Abstracts. We find that the factor with the
smaller number of components (left of the figure)
seems to decompose into components represent-
ing the major themes or disciplines found in ACL
abstracts, with one component expressing compu-
tational approaches (top) and the other expressing
linguistic theory (bottom). The third component
(not shown) has words associated with speech, in-
cluding {spoken, speech, recognition}.

The factor shown on the right seems to decom-
pose into different research topics: one compo-
nent represents semantics (top), another syntax
(bottom), with others including morphology (top
words including {segmentation, chinese, morphol-
ogy}) and information retrieval (top words includ-
ing {documents, retrieval, ir}).

Many of the topics intuitively follow from the
components of these two factors. For example,
the two topics expressing vector space models and
distributional semantics (top left and right) both
draw from the “computational” and “semantics”
components, while the topics expressing ontolo-
gies and question answering (middle left and right)
draw from “linguistics” and “semantics”.

The factorization is similar to what had been
previously been induced by FLDA. Figure 3 of
Paul and Dredze (2012) shows components that
look similar to the computational methods and
linguistic theory components here, and the factor

with the largest number of components also de-
composes by research topic. These results show
that SPRITE is capable of recovering similar struc-
tures as FLDA, a more specialized model. SPRITE

is also much more flexible than FLDA. While
FLDA strictly models a one-to-one mapping of
topics to each pair of components, SPRITE allows
multiple topics to belong to the same pair (as in
the semantics examples above), and conversely
SPRITE does not require that all pairs have an as-
sociated topic. This property allows SPRITE to
scale to larger numbers of factors than FLDA, be-
cause the number of topics is not required to grow
with the number of all possible tuples.

8 Related Work

Our topic and perspective model is related to su-
pervised hierarchical LDA (SHLDA) (Nguyen et
al., 2013), which learns a topic hierarchy while
also learning regression parameters to associate
topics with feature values such as political per-
spective. This model does not explicitly incorpo-
rate perspective-specific word priors into the top-
ics (as in our factorized approach). The regression
structure is also different. SHLDA is a “down-
stream” model, where the perspective value is a re-
sponse variable conditioned on the topics. In con-
trast, SPRITE is an “upstream” model, where the
topics are conditioned on the perspective value.
We argue that the latter is more accurate as a gen-
erative story (the emitted words depend on the
author’s perspective, not the other way around).
Moreover, in our model the perspective influences
both the word and topic distributions (through the
topic and document components, respectively).

Inverse regression topic models (Rabinovich
and Blei, 2014) use document feature values (such
as political ideology) to alter the parameters of the
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Figure 6: Examples of topics (gray boxes) and components (colored boxes) learned on the Abstracts corpus with 50 topics
using a factored structure. The components have been grouped into two factors, one factor with 3 components (left) and one
with 7 (right), with two examples shown from each. Each topic prior draws from exactly one component from each factor.

topic-specific word distributions. This is an alter-
native to the more common approach to regression
based topic modeling, where the variables affect
the topic distributions rather than the word distri-
butions. Our SPRITE-based model does both: the
document features adjust the prior over topic dis-
tributions (through δ), but by tying together the
document and topic components (with β), the doc-
ument features also affect the prior over word dis-
tributions. To the best of our knowledge, this is the
first topic model to condition both topic and word
distributions on the same features.

The topic aspect model (Paul and Girju, 2010a)
is also a two-dimensional factored model that has
been used to jointly model topic and perspective
(Paul and Girju, 2010b). However, this model
does not use structured priors over the parameters,
unlike most of the models discussed in §4.

An alternative approach to incorporating user
preferences and expertise are interactive topic
models (Hu et al., 2013), a complimentary ap-
proach to SPRITE.

9 Discussion and Conclusion

We have presented SPRITE, a family of topic mod-
els that utilize structured priors to induce pre-
ferred topic structures. Specific instantiations of
SPRITE are similar or equivalent to several exist-
ing topic models. We demonstrated the utility of
SPRITE by constructing a single model with many
different characteristics, including a topic hierar-
chy, a factorization of topic and perspective, and

supervision in the form of document attributes.
These structures were incorporated into the pri-
ors of both the word and topic distributions, unlike
most prior work that considered one or the other.
Our experiments explored how each of these var-
ious model features affect performance, and our
results showed that models with structured priors
perform better than baseline LDA models.

Our framework has made clear advancements
with respect to existing structured topic models.
For example, SPRITE is more general and of-
fers simpler inference than the shared compo-
nents topic model (Gormley et al., 2010), and
SPRITE allows for more flexible and scalable fac-
tored structures than FLDA, as described in earlier
sections. Both of these models were motivated by
their ability to learn interesting structures, rather
than their performance at any predictive task. Sim-
ilarly, our goal in this study was not to provide
state of the art results for a particular task, but
to demonstrate a framework for learning struc-
tures that are richer than previous structured mod-
els. Therefore, our experiments focused on un-
derstanding how SPRITE compares to commonly
used models with similar structures, and how the
different variants compare under different metrics.

Ultimately, the model design choice depends on
the application and the user needs. By unifying
such a wide variety of topic models, SPRITE can
serve as a common framework for enabling model
exploration and bringing application-specific pref-
erences and structure into topic models.
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