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Abstract 

This paper discusses the problem of learn- 
ing language from unprocessed text and 
speech signals, concentrating on the prob- 
lem of learning a lexicon. In particular, it 
argues for a representation of language in 
which linguistic parameters like words are 
built by perturbing a composition of exist- 
ing parameters.  The power of the represen- 
tation is demonstrated by several examples 
in text segmentation and compression, ac- 
quisition of a lexicon from raw speech, and 
the acquisition of mappings between text 
and artificial representations of meaning. 

1 Motivation 

Language is a robust and necessarily redundant 
communication mechanism. Its redundancies com- 
monly manifest themselves as predictable patterns 
in speech and text signals, and it is largely these 
patterns that  enable text and speech compression. 
Naturally, many patterns in text and speech re- 
flect interesting properties of language. For ex- 
ample, the is both an unusually frequent sequence 
of letters and an English word. This suggests us- 
ing compression as a means of acquiring under- 
lying properties of language from surface signals. 
The general methodology of language-learning-by- 
compression is not new. Some notable early propo- 
nents included Chomsky (1955), Solomonoff (1960) 
and Harris (1968), and compression has been used 
as the basis for a wide variety of computer programs 
that  attack unsupervised learning in language; see 
(Olivier, 1968; Wolff, 1982; Ellison, 1992; Stolcke, 
1994; Chen, 1995; Cartwright and Brent, 1994) 
among others. 

1.1 P a t t e r n s  a n d  L a n g u a g e  

Unfortunately, while surface patterns often reflect 
interesting linguistic mechanisms and parameters,  
they do not always do so. Three classes of exam- 
ples serve to illustrate this. 

1.1.1 E x t r a l l n g u l s t l c  P a t t e r n s  

The sequence it was a dark and stormy night is 
a pat tern in the sense it occurs in text far more 
frequently than the frequencies of its letters would 
suggest, but  that  does not make it a lexical or gram- 
matical primitive: it is the product of a complex 
mixture of linguistic and extra-linguistic processes. 
Such patterns can be indistinguishable from desired 
ones. For example, in the Brown corpus (Francis and 
Kucera, 1982) scratching her nose occurs 5 times, 
a corpus-specific idiosyncrasy. This phrase has the 
same structure as the idiom kicking the bucket. It is 
difficult to imagine any induction algorithm learn- 
ing kicking the bucket from this corpus without also 
(mistakenly) learning scratching her nose. 

1.1.2 T h e  D e f i n i t i o n  o f  I n t e r e s t i n g  

This discussion presumes there is a set of desired 
patterns to extract from input signals. What  is this 
set? For example, is kicking the bucket a proper lexi- 
cal unit? The answer depends on factors external to 
the unsupervised learning framework. For the pur- 
poses of machine translation or information retrieval 
this sequence is an important  idiom, but with re- 
spect to speech recognition it is unremarkable. Sim- 
ilar questions could be asked of subword units like 
syllables. Plainly, the answers depends on the learn- 
ing context, and not on the signal itself. 

1.1.3 T h e  D e f i n i t i o n  o f  P a t t e r n  

Any statistical definition of pattern depends on 
an underlying model. For instance, the sequence the 
dog occurs much more frequently than one would 
expect given an independence assumption about  let- 
ters. But for a model with knowledge of syntax and 
word frequencies, there is nothing remarkable about 
the phrase. Since all existing models have flaws, pat- 
terns will always be learned that  are artifacts of im- 
perfections in the learning algorithm. 

These examples seem to imply that unsupervised 
induction will never converge to ideal grammars and 
lexicons. While there is t ru th  to this, the rest of this 
paper describes a representation of language that  
bypasses many of the apparent difficulties. 
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[national football league] 

~ O ~ ]  [football] [league] 
/ \  / ' . .  

tnation] [al] [foot] [ball] [ a ]  [gue] 

,1/ / \ I -  ~ \ /  
[n] [t] [b] [1] [g] 

Figure I: A compositional representation. 

Code Length Components 
000 --- Co( 2 Co, c, 

001 = c,h. 3 c,,c~,ce 
010 = cln 2 ca, c ,  

0110 ----- c . . . .  4 C.,Co, Cm,Cc 
0111 = C . . . . .  nh. 3 C . . . . .  CoS, C, he 

10000 ---- . . . . . . . . .  

Figure 2: A coding of the first few words of a hypo- 
thetical lexicon. The first two columns can be coded 
succinctly, leaving the cost of pointers to component 
words as the dominant cost of both the lexicon and 
the representation of the input. 

2 A C o m p o s i t i o n a l  R e p r e s e n t a t i o n  

The examples in sections 1.1.1 and 1.1.2 seem to 
imply that  any unsupervised language learning pro- 
gram that  returns only one segmentation of the in- 
put  is bound to make many mistakes. And sec- 
tion 1.1.3 implies that  the decisions about linguistic 
units must be made relative to their representations. 
Both problems can be solved if linguistic units (for 
now, words in the lexicon) are built by composition 
of other units. For example, kicking the bucket might 
be built by composing kicking, the and bucket. 1 Of 
course, if a word is merely the composition of its 
parts, there is nothing interesting about it and no 
reason to include it in the lexicon. So the motiva- 
tion for including a word in the lexicon must be that  
it function differently from its parts. Thus a word is 
a perturbat ion of a composition. 

In the case of kicking the bucket the perturbation is 
one of both meaning and frequency. For scratching 
her nose the perturbat ion may just be frequency. ~ 
This is a very natural  representation from the view- 
point of language. It correctly predicts that  both  
phrases inherit their sound and syntax from their 
component words. At the same time it leaves open 
the possibility that  idiosyncratic information will be 
attached to the whole, as with the meaning of kick- 
ing the bucket. This structure is very much like the 
class hierarchy of a modern programming language. 
It is not the same thing as a context-free grammar,  
since each word does not act in the same way as the 
default composition of its components. 

Figure 1 illustrates a recursive decomposition (un- 
der concatenation) of the phrase national football 
league. The phrase is broken into three words, each 
of which are also decomposed in the lexicon. This 
process bot toms out in the terminal characters. This 
is a real decomposition achieved by a program de- 
scribed in section 4. Not shown are the perturba- 

1A simple composition operator is concatenation, but 
in section 6 a more interesting one is discussed. 

~Naturally, an unsupervised learning algorithm with 
no access to meaning will not treat them differently. 

tions (in this case merely frequency changes) that  
distinguish each word from its parts. This general 
framework extends to other perturbations. For ex- 
ample, the word wanna is naturally thought of as 
a composition of want and to with a sound change. 
And in speech the three different words to, two and 
too may well inherit the sound of a common ancestor 
while introducing new syntactic and semantic prop- 
erties. 

2.1 C o d i n g  

Of course, for this representation to be more than 
an intuition both the composition and perturbation 
operators must be exactly specified. In particular, 
a code must be designed that  enables a word (or a 
sentence) to be expressed in terms of its parts. As a 
simple example, suppose that  the composition oper- 
ator is concatenation, that  terminals are characters,  
and that  the only perturbation operator-is the abil- 
ity to express the frequency of a word independently 
of the frequency of its parts. Then to code either a 
sentence of the input or a (nonterminal) word in the 
lexicon, the number of component words in the rep- 
resentation must be written, followed by a code for 
each component word. Naturally, each word in the 
lexicon must be associated with its code, and under 
a near-optimal coding scheme like a Huffman code, 
the code length will be related to the frequency of 
the word. Thus, associating a word with a code sub- 
stitutes for writing down the frequency of a word. 
Furthermore, if words are written down in order of 
decreasing frequency, a Huffman code for a large 
lexicon can be specified using a negligible number 
of bits. This and the near-negligible cost of writ- 
ing down word lengths will not be discussed further. 
Figure 2 presents a portion of an encoding of a hy- 
pothetical lexicon. 

2.2 M D L  

Given a coding scheme and a particular lexicon (and 
a parsing algorithm) it is in theory possible to calcu- 
late the minimum length encoding of a given input. 
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Part of the encoding will be devoted to the lexicon, 
the rest to representing the input in terms of the 
lexicon. The lexicon that  minimizes the combined 
description length of the lexicon and the input max- 
imally compresses the input. In the sense of Rissa- 
nen's minimum description-length (MDL) principle 
(Rissanen, 1978; Rissanen, 1989) this lexicon is the 
theory that  best explains the data, and one can hope 
that  the patterns in the lexicon reflect the underly- 
ing mechanisms and parameters of the language that  
generated the input. 

2.3 P r o p e r t i e s  o f  the Representation 

Representing words in the lexicon as perturbations 
of compositions has a number of desirable properties. 

• The choice of composition and perturbation op- 
erators captures a particular detailed theory of 
language. They can be used, for instance, to 
reference sophisticated phonological and mor- 
phological mechanisms. 

• The length of the description of a word is a mea- 
sure of its linguistic plausibility, and can serve 
as a buffer against learning unnatural  coinci- 
dences. 

• Coincidences like scratching her nose do not ex- 
clude desired structure, since they are further 
broken down into components that they inherit 
properties from. 

• Structure is shared: the words blackbird and 
blackberry can share the common substructure 
associated with black, such as its sound and 
meaning. As a consequence, data  is pooled for 
estimation, and representations are compact. 

• Common irregular forms are compiled out. For 
example, if wang is represented in terms of go 
(presumably to save the cost of unnecessarily 
reproducing syntactic and semantic properties) 
the complex sound change need only be repre- 
sented once, not every time went  is used. 

• Since parameters  (words) have compact repre- 
sentations, they are cheap from a description 
length standpoint,  and many can be included 
in the lexicon. This allows learning algorithms 
to fit detailed statistical properties of the data. 

This coding scheme is very similar to that found in 
popular dictionary-based compression schemes like 
LZ78 (Ziv and Lempel, 1978). It is capable of com- 
pressing a sequence of identical characters of length 
n to size O(log n). However, in contrast to compres- 
sion schemes like LZ78 that  use deterministic rules 
to add parameters  to the dictionary (and do not ar- 
rive at linguistically plausible parameters), it is pos- 
sible t a  perform more sophisticated searches in this 
representation. 

Start  with lexicon of terminals. 
Iterate 

Iterate (EM) 
Parse input and words using current lexicon. 
Use word counts to update frequencies. 

Add words to the lexicon. 
Iterate (EM) 

Parse input and words using current lexicon. 
Use word counts to update frequencies. 

Delete words from the lexicon. 

Figure 3: An iterative search algorithm. Two it- 
erations of the inner loops are usually sufficient for 
convergence, and for the tests described in this pa- 
per after 10 iterations of the outer loop there is little 
change in the lexicon in terms of either compression 
performance or structure. 

3 A S e a r c h  Algori thm 

Since the class of possible lexicons is infinite, the 
minimization of description length is necessarily 
heuristic. Given a fixed lexicon, the expectation- 
maximization algorithm (Dempster et al., 1977) can 
be used to arrive at a (locally) optimal set of fre- 
quencies and codelengths for the words in the lex- 
icon. For composition by concatenation, the algo- 
r i thm reduces to the special case of the Baum-Welch 
procedure (Baum et al., 1970) discussed in (Deligne 
and Bimbot, 1995). In general, however, the parsing 
and reestimation involved in EM can be consider- 
ably more complicated. To update the structure of 
the lexicon, words can be added or deleted from it 
if this is predicted to reduce the description length 
of the input. This algorithm is summarized in fig- 
ure 3. 3 

3.1 A d d i n g  a n d  D e l e t i n g  W o r d s  

For words to be added to the lexicon, two things are 
needed. The first is a means of hypothesizing candi- 
date new words. The second is a means of evaluat- 
ing candidates. One reasonable means of generating 
candidates is to look at pairs (or triples) of words 
that  are composed in the parses of words and sen- 
tences of the input. Since words are built by com- 
posing other words and act like their composition, a 
new word can be created from such a pair and substi- 
tuted in place of the pair wherever the pair appears. 
For example, if water  and melon  are frequently com- 
posed, then a good candidate for a new word is water  
o me lon  = watermelon,  where o is the concatenation 

3For the composition operators and test sets we have 
looked at, using single (Viterbi) parses produces almost 
exactly the same results (in terms of both compression 
and lexical structure) as summing probabilities over mul- 
tiple parses. 
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operator.  In order to evaluate whether the addition 
of such a new word is likely to reduce the description 
length of the input, it is necessary to record during 
the EM step the extra statistics of how many times 
the composed pairs occur in parses. 

The effect on description length of adding a new 
word can not be exactly computed. Its addition 
will not only affect other words, but may also cause 
other words to be added or deleted. Furthermore, it 
is more computat ionally efficient to add and delete 
many words simultaneously, and this complicates 
the estimation of the change in description length. 
Fortunately, simple approximations of the change 
are adequate. For example, if Viterbi analyses are 
being used then the new word watermelon will com- 
pletely take the place of all compositions of water  
and melon. This reduces the counts of water and 
melon accordingly, though they are each used once 
in the representation of watermelon. If it is assumed 
that  no other word counts change, these assumptions 
allow one to predict the counts and probabilities of 
all words after the change. Since the codelength 
of a word w with probability p(w) is approximately 
- l o g  p(~) ,  the total estimated change in description 
length of adding a new word W to a lexicon/ ;  is 

zx -c'(W) logp'(w) + d.l.(changes) + 
Z + c( 0)logp( o)) 

where c(w) is the count of the word w, primes indi- 
cated counts and probabilities after the change and 
d.l.(changes) represents the cost of writing down the 
perturbations involved in the representation of W. 
If A < 0 the word is predicted to reduce the total  
description length and is added to the lexicon. Sim- 
ilar heuristics can be used to estimate the benefit of 
deleting words. 4 

3 .2  S e a r c h  P r o p e r t i e s  

A significant source of problems in traditional gram- 
mar induction techniques is local minima (de Mar- 
cken, 1995a; Pereira and Schabes, 1992; Carroll and 
Charniak, 1992). The search algorithm described 
above avoids many of these problems. The reason 
is that  hidden structure is largely a "compile-time" 
phenomena. During parsing all that  is impor tant  
about  a word is its surface form and codelength. The 
internal representation does not matter.  Therefore, 
the internal representation is free to reorganize at 
any time; it has been decoupled. This allows struc- 
ture to be built bo t tom up or for structure to emerge 
inside already existing parameters. Furthermore, 
since parameters (words) encode surface patterns, it 

4See (de Mareken, 1995b) for more detailed discus- 
sion of these estimations. The actual formulas used in 
the tests presented in this paper are slightly more com- 
plicated than presented here. 

is relatively easy to determine when they are useful, 
and their use is limited. They usually do not have 
competing roles, in contrast, for instance, to hidden 
nodes in neural networks. And since there are no 
fixed number of parameters, when words do start to 
have multiple disparate uses, they can be split with 
common substructure shared. Finally, since add and 
delete cycles can compensate for initial mistakes, in- 
exact heuristics can be used for adding and deleting 
words. 

4 C o n c a t e n a t i o n  R e s u l t s  

The simplest reasonable instantiation of the 
composit ion-and-perturbation framework is with the  
concatenation operator and frequency perturbation.  
This instantiation is easily tested on problems of text 
segmentation and compression. Given a text docu- 
ment, the search algorithm can be used to learn a 
lexicon that  minimizes its description length. For 
testing purposes, spaces will be removed from input 
text and true words will be defined to be minimal 
sequences bordered by spaces in the original input).  
The search algorithm parses the input as it com- 
presses it, and can therefore output  a segmentation 
of the input in terms of words drawn from the lex- 
icon. These words are themselves decomposed in 
the lexicon, and can be considered to form a tree 
tha t  terminates in the characters of the sentence. 
This tree can have no more than O(n) nodes for a 
sentence with n characters, though there are O(n 2) 
possible "true words" in the input sentence; thus, 
the tree contains considerable information. Define 
recall to be the percentage of true words that  oc- 
cur at some level of the segmentation-tree. Define 
crossing-bracket to be the percentage of true words 
that  violate the segmentation-tree structure, s 

The search algorithm was applied to two texts, 
a lowercase version of the million-word Brown cor- 
pus with spaces and punctuation removed, and 4 
million characters of Chinese news articles in a two- 
byte/character  format.  In the case of the Chinese, 
which contains no inherent separators like spaces, 
segmentation performance is measured relative to 
another computer  segmentation program that  had 
access to a (human-created) lexicon. The algorithm 
was given the raw encoding and had to deduce the 
internal two-byte structure. In the case of the Brown 
corpus, word recall was 90.5% and crossing-brackets 
was 1.7%. For the Chinese word recall was 96.9% 
and crossing-brackets was 1.3%. In the case of both 
English and Chinese, most of the unfound words 
were words that  occurred only once in the corpus. 
Thus, the algorithm has done an extremely good job 
of learning words and properly using them to seg- 
ment the input. Furthermore, the crossing-bracket 

5The true word moon in the input [the/[moon] is a 
crossing-bracket violation of them in the segmentation 
tree [[th~mJfoI[on]]. 
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Kank Word 
0 [s] 
1 [the] 
2 [and] 
3 [a] 
4 [o~] 
5 [in] 
6 [ to] 

500 [s tudents]  
501 [mate r ia l ]  
502 [tun] 
503 [words] 
504 [period] 
505 [class] 
506 [question] 

5000 [ l ing] [them] ] 
5001 [ [mort] [k] ] 
5002 [ [re] [lax] ] 
5003 [[rig] [id]] 
5004 [[connect]  [ed]] 
5005 [[i]Ek]] 
5006 [[hu] [ t ] ]  

26000 [ [p loura l ]  [blood] [supply] ] 
26001 [ [anordinary] [happy] [family] ] 
26002 [[f] leas] [ibility] [of]] 
26003 [ [lunar] [brightness] [distribut ion] ] 
26004 [ [primarily] [diff] [using] ] 
26005 [[sodium] [tri] [polyphosphate]] 
26006 [[charcoal] [broil] ted]] 

Figure 4: Sections of the lexicon learned from the 
Brown corpus, ranked by frequency. The words in 
the less-frequent half  are listed with their first-level 
decomposition. Word 5000 causes crossing-bracket 
violations, and words 26002 and 26006 have internal 
structure tha t  causes recall violations. 

measure indicates tha t  the algori thm has made very 
few clear mistakes. Of  course, the hierarchical lexical 
representation does not make a commitment  to what 
levels are " t rue  words" and which are not; about  
5 times more internal nodes exist than true words. 
Experiments  in section 5 demonstrate  that  for most  
applications this is not only not a problem, but  de- 
sirable. Figure 4 displays some of the lexicon learned 
from the Brown corpus. 

The algori thm was also run as a compressor 
on a lower-case version of the Brown corpus with 
spaces and punctuat ion left in. All bits neces- 
sary for exactly reproducing the input were counted. 
Compression performance is 2.12 bits/char,  signifi- 
cantly lower than popular  algori thms like gzip (2.95 
bi ts /char) .  This  is the best text compression result 
on this corpus that  we are aware of, and should not 
be confused with lower figures tha t  do not include 
the cost of parameters .  Furthermore,  because the 
compressed text  is stored in terms of linguistic units 
like words, it can be searched, indexed, and parsed 
without decompression. 

5 L e a r n i n g  M e a n i n g s  

Unsupervised learning algorithms are rarely used in 
isolation. The goal of this work has been to ex- 
plain how linguistic units like words can be learned, 
so tha t  other processes can make use of these 
units. In this section a means of learning the map-  
pings between words and artificial representations 
of meanings is described. The composit ion-and- 
per turbat ion encompasses this application neatly. 

Imagine tha t  text utterances are paired with rep- 
resentations of meaning, s and that  the goal is to find 
the minimum-length description of both the text and 
the meaning. I f  there is mutual  information between 
the meaning and text portions of the input, then bet- 
ter compression is achieved if the two s treams are 
compressed simultaneously. If  a text word can have 
some associated meaning, then writing down that  
word to account for some portion of text also ac- 
counts for some portion of the meaning of that  text. 
The remaining meaning can be written down more 
succinctly. Thus, there is an incentive to associate 
meaning with sound, although of course the associ- 
ation pays a price in the description of the lexicon. 

Although it is obviously a naive simplification, 
many  of the interesting properties of the composi- 
tional representation surface even when meanings 
are treat ing as sets of arbi t rary symbols. A word is 
now both a character sequence and a set of symbols. 
The  composit ion operator  concatenates the charac- 
ters and unions the meaning symbols. Of course, 
there must  be some way to alter the default meaning 
of a word. One way to do this is to explicitly write 
out any symbols that  are present in the word's mean- 
ing but  not in its components,  or vice versa.  Thus, 
the word red { R E D }  might be represented as r o e o 
d + R E D .  Given an existing word berry {BERRY } ,  
the red berry cranberry  { R E D  B E R R Y }  can be rep- 
resented c o r o a o n o berry { B E R R Y } + R E D .  

5.1 R e s u l t s  

To test the a lgor i thm's  ability to infer word mean- 
ings, 10,000 utterances from an unsegmented textual 
database  of mothers '  speech to children were paired 
with representations of meaning, constructed by as- 
signing a unique symbol to each root word in the vo- 
cabulary. For example, the sentence and wha~ is he 
pa in t ing  a plc~ure o f f  is paired with the unordered 
meaning A N D  W H A T  BE H E  P A I N T  A P I C -  
T U R E  OF.  In the first experiment,  the algori thm 
received these pairs with no noise or ambiguity, us- 
ing an encoding of meaning symbols such that  each 
symbol ' s  length was 10 bits. After 8 iterations of 
training without meaning and then a further 8 it- 
erations with, the text sequences were parsed again 
without access to the true meaning. The meanings 

SThis framework is easily extended to handle multi- 
ple ambiguous meanings (with and without priors) and 
noise, but these extensions will not be discussed here. 
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of the resulting word sequences were compared with 
the true meanings. Symbol accuracy was 98.9%, re- 
call was 93.6%. Used to differentiate the true mean- 
ing from the meanings of the previous 20 sentences, 
the program selected correctly 89.1% of the time, or 
ranked the true meaning tied for first 10.8% of the 
time. 

A second test was performed in which the algo- 
r i thm received three possible meanings for each ut- 
terance, the true one and also the meaning of the 
two surrounding utterances. A uniform prior was 
used. Symbol accuracy was again 98.9%, recall was 
75.3%. 

The final lexicon includes extended phrases, but 
meanings tend to filter down to the proper level. 
For instance, although the words duck, ducks, the 
ducks and duekdrink all exist and contain the mean- 
ing DUCK,  the symbol is only written into the de- 
scription of duck. All others inherit it. Similar re- 
sults hold for similar experiments on the Brown cor- 
pus. For example, scratching her nose inherits its 
meaning completely from its parts, while kicking the 
bucke~ does not. This is exactly the result argued 
for in the motivation section of this paper, and illus- 
trates why occasional extra words in the lexicon are 
not a problem for most applications. 

6 O t h e r  A p p l i c a t i o n s  a n d  C u r r e n t  

W o r k  

We have performed other experiments using this rep- 
resentation and search algorithm, on tasks in unsu- 
pervised learning from speech and grammar induc- 
tion. 

Figure 5 contains a small portion of a lexicon 
learned from 55,000 utterances of continuous speech 
by multiple speakers. The utterances are taken from 
dictated Wall Street :Journal articles. The concate- 
nation operators was used with phonemes as termi- 
nals. A second layer was added to the framework 
to map from phonemes to speech; these extensions 
are described in more detail in (de Marcken, 1995b). 
The sound model of each phoneme was learned sep- 
arately using supervised training on different, seg- 
mented speech. Although the phoneme model is ex- 
tremely poor, many words are recognizable, and this 
is the first significant lexicon learned directly from 
spoken speech without supervision. 

If the composition operator makes use of context, 
then the representation extends naturally to a more 
powerful form of context-free grammars, where com- 
position is tree-insertion. In particular, if each word 
is associated with a part-of-speech, and parts of 
speech are permissible terminals in the lexicon, then 
"words" become production rules. For example, a 
word might be VP ~ take off NP  and represented 
in terms of the composition of VP ---* V P NP, V ---* 
~ake and P ---* off. Furthermore, VP --* V P NP  may 
be represented in terms of VP ---* V PP  and PP ---* 

P~ank w rep(w) 
5392 [wvrmr] [[w3r]mr] 
5393 [Oauzn] [O[auzn]] 
5394 [tahld] [[tah]Id] 
5395 [~ktld] [~k[tld]] 
5396 [Anitn] [An[itn]] 
5397 [m£1i~ndalrz] [[m¢liindalr]z] 
8948 [aldiiz] [[al]di~z] 
8949 [s]krti] [s~k[rti]] 
8950 [130taim ] [[130][talm]] 
8951 [s£kgIn] [[s£k] [gln]] 
8952 [wAnpA] [[wAn]PAl 
8953 [vend~r] [v[~n][d~r]] 
8954 [ollmlnei] [e[lImln][ei]] 
8955 [m~lii~] [[m~l]i[i0]] 
8956 [b£1iindal] [b~[liindal]] 
9164 [gouldm~nsmks] [[goul] d[rr~n]s [a~ks]] 
9165 [kmp~utr] [[kmp] [~ut]r] 
9166 [gavrmin] [ga[vrmin]] 
9167 [oublzohuou] [[oubl][~.ohuou]] 
9168 [ministrei~in] [[min]i[strei~in]] 
9169 [tj£rtn] [[tj£]r [in]] 
9170 [hAblhahwou] [[hAbl][h~hwou]] 
9171 [shmp~iO] [S[hmp] [6iO] ] 
9172 [prplou ,l] [[prJ[plou] .l] 
9173 [bouskgi] [[bou][skg]i] 
9174 [kg£d]il] [[kg£][dji]l] 
9175 [gouldmaiinz] [[goul]d[maiinz]] 
9176 [k~rpreiUd] [[brpr] [eitld]] 

Figure 5: Some words from a lexicon learned from 
55,000 utterances of continuous, dictated Wall Street 
:Journal articles. Although many words are seem- 
ingly random, words representing million dollars, 
Goldman-Sachs, thousand, etc. are learned. Further- 
more, as word 8950 (loTzg time) shows, they are often 
properly decomposed into components. 

P NP. In this way syntactic structure emerges in the 
internal representation of words. This sort of gram- 
mar offers significant advantages over context-free 
grammars in that  non-independent rule expansions 
can be accounted for. We are currently looking at 
various methods for automatically acquiring parts of 
speech; in initial experiments some of the first such 
classes learned are the class of vowels, of consonants, 
and of verb endings. 

7 C o n c l u s i o n s  

No previous unsupervised language-learning proce- 
dure has produced structures that match so closely 
with linguistic intuitions. We take this as a vindi- 
cation of the perturbation-of-compositions represen- 
tation. Its ability to capture the statistical and lin- 
guistic idiosyncrasies of large structures without sac- 
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rificing the obvious regularities within them makes it 
a valuable tool for a wide variety of induction prob- 
lems. 
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