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Abstract  

Robust natural language interpretation requires strong semantic domain 
models, "fall-soff" recovery heuristics, and very flexible control 
structures. Although single-strategy parsers have met with a measure of 
success, a multi.strategy approach is shown to provide a much higher 
degree of flexibility, redundancy, and ability to bring task-specific domain 
knowledge (in addition to general linguistic knowledge) to bear on both 
grammatical and ungrammatical input. A parsing algorithm is presented 
that integrates several different parsing strategies, with case-frame 
instantiation dominating. Each of these parsing strategies exploits 
different types of knowledge; and their combination provides a strong 
framework in which to process conjunctions, fragmentary input, and 
ungrammatical structures, as well as less exotic, grammatically correct 
input. Several specific heuristics for handling ungrammatical input are 
presented within this multi-strategy framework. 

1. Introduction 

When people use language spontaneously, they o~ten do not respect 
grammatical niceties. Instead of producing sequences of grammatically 
well-formed and complete sentences, they often miss out or repeat words 
or phrases, break off what they are .saying and rephrase or replace it, 
speak in fragments, or use otherwise incorrect grammar. While other 
people generally have little trouble co'reprehending ungrammatical 
utterances, most' natural language computer systems are unable to 
process errorful input at all. Such inflexibility in parsing is a serious 
impediment to the use of natural language in interactive computer 
systems. Accordingly, we [6] and other researchers including 
Wemchedel and Black [14], and Kwasny and Sondhelmer [9], have 
attempted to produce flexible parsers, i.e. parsers that can accept 
ungrammatical input, correcting the errors whan possible, and 
generating several alternative interpretations if appropriate. 

While different in many ways, all these approaches to flexible parsing 
operate by applying a uniform parsing process to a uniformly 
represented grammar. Because of the linguistic performance problems 
involved, this uniform procedure cannot be as simple and elegant as the 
procedures followed by parsers based on a pure linguistic competence 
model, such as Parsifal [10]. Indeed, their parsing procedures may 
involve several strategies that are applied in a predetermined order when 
the input deviates from the grammar, but the choice of strategy never 
depends on the specific type of construction being parsed. In light of 
experience with our own flexible parser, we have come to believe that 
such uniformity is not conducive to good flexible parsing. Rather, the 
strategies used should be dynamically selected according to the type of 
construction being parsed. For instance, partial.linear pattern matching 
may be well suited to the flexible parsing of idiomatic phrases, or 
specialized noun phrases such as names, dates, or addresses (see also 
[5]), but case constructions, such as noun phrases with trailing 
prepositional phrases, or imperative phrases, require case-oriented 
parsing strategies. The undedying principle is simple: The ap~rol~riate 

knowledge must be brought to bear at the r ight t ime -- and it 
must  not interfere at other times. Though the initial motivation for 
this approach sprang from the r~eeds of flexible parsing, such 
construction.specific techniques can provide important benefits even 
when no grammatical deviations are encountered, as we will show. This 
observation may be related to the current absence of any single universal 
parsing strategy capable of exploiting all knowledge sources (although 
ELI [12] and its offspring [2] are efforts in this direction). 

Our objective here is not to create the ultimate parser, but to build a 
very flexible and robust taak.oriented parser capable of exploiting all 
relevant domain knowledge as well as more general syntax and 
semantics. The initial application domain for the parser is the central 
component of an interface to various computer subsystems (or tools). 
This interface and, therefore the parser, should be adaptable to new 
tools by substituting domain-specific data bases (called "tool 
descriptions") that govern the behaviorof the interface, including the 
invocation of parsing strategies, dictionanes and concepts, rather than 
requiring any domain adaptations by the interface system itself. 

With these goals in mind, we proceed to give details of the kinds of 
difficulties that a uniform parsing strategy can lead to, and show how 
dynamically-selected construction.specific techniques can help. We list 
a number of such specific strategies, then we focus on our initial 
implementation of two of these strategies and the mechanism that 
dynamically selects between them while pm'alng task-oriented natural 
language imperative constructions. Imperatives were chosen largely 
because commands and queries given to a task-oriented natural 
language front end often take that form [6]. 

2. Problems with a Uniform Parsing Strategy 

Our present flexible parser, which we call RexP, is intended to parse 
correctly input that correaponds to a fixed grammar, and also to deal with 
input that deviates from that grammar by erring along certain classes of 
common ungrammaticalities. Because of these goals, the parser is 
based on the combination of two uniform parsing strategies: bottom-up 
parsing and pattern.matching. The choice of a bottom.up rather then a 
top-down strategy was based on our need to recognize isolated sentence 
fragments, rather than complete sentences, and to detect restarts and 
continuations after interjections. However, since completely bottom-up 
strategies lead to the consideration of an unnecessary number of 
alternatives in correct input, the algorithm used allowed some of the 
economies of top-dOwn parsing for non-deviant input. Technically 
speaking, this made the parser left-corner rather than bottom-up. We 
chose to use a grammar of linear patterns rather than, say, a transition 
network because pattern.matching meshes well with bottom-up parsing 
by allowing lookup of a pattern from the presence in the input of any of 
its constituents; because pattern-matching facilitates recognition of 
utterances with omissions and substitutions when patterns are 
recognized on the basis of partial matches; and because pattern. 
matching is necessary for the recognition of idiomatic phrases. More 
details of the iustifications for these choices can be found in [6]. 

1This research was .sponsored in Dart by the Defense Advanced R~Jeerc~ Promcts 
Agency (DE)O), ARPA Ck'1:ler NO. 35S7. momtored by the Air Force Avmntcs Laboratory 
un0er contract F33615.78-C-1551. anti in part by the Air Force Office o( °-,'mntifi¢ 
Research under Contract F49620-79-C-0143. The views aria cor, clusm.s ¢ontmneO in this 
document are those Of the authors and shou~ not be inte.rDreleo as tepreser~ting the 
official DOhCle~ ¢qther exl)resse0 or ,replied. o! DARPA, Ihe Air Force Office ol Scisn,fic 
Research or the US government. 

FlexP has been tested extensively in conjunction with a gracefully 
interacting interface to an electronic mail system [1]. "Gracefully 
interacting" means that the interface appears friendly, supportive, and 
robust to its user. In particular, graceful interaction requires the system 
to tolerate minor input errors and typos, so a flexible parser is an 
imbortant component of such an interface. While FlexP performed this 
task adeduately, the experience turned up some problems related to the 
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major theme of this paper. These problems are all derived from the 
incomparability between the uniform nature of The grammar 
representation and the kinds of flexible parsing strategies required to 
deal with the inherently non-uniform nature of some language 
constructions. In particular:. 

•Oifferent elements in the pattern of a single grammar rule 
can serve raclically different functions and/or exhibit 
different ease of recognition. Hence, an efficient parsing 
strategy should react to their apparent absence, for instance, 
in quite different ways. 

• The representation of a single unified construction at the 
language level may require several linear patterns at the 
grammar level, making it impossible to treat that construction 

• with the integrity required for adecluate flexible parsing. 

The second problem is directly related to the use of a pattern-matching 
grammar, but the first would arise with any uniformly represented 
grammar applied by a uniform parsing strategy. 

For our application, these problems manifested themselves most 
markedly by the presence of case constructions in the input language. 
Thus. our examples and solution methOds will be in terms of integrating 
case-frame instantiat=on with other parsing strategies. Consider, for 
example, the following noun phrase with a typical postnominal case 
frame: 

"the messages from Smith aDout ADA pragmas 
dated later than Saturday". 

The phrase has three cases marked by "from", "about", and "dated later 
than". This Wpe of phrase is actually used in FlexP's current grammar, 
and the basic pattern used to recognize descriptions of messages is: 

<?de te rm iner  eMassageAd,1 ~4essagoHoad •NOlsageC8$o) 
which says that a message description iS an optional (?) determiner. 
followed by an arbitrary number ( ' )  of message adjectives followed by a 
message head word (i.e. a word meaning "r~essage"). followed by an 
arbitrary number of message cases, in the example. "the" is the 
determiner, there are no message adjectives. "messages" is the 
message head word. and there are three message cases: "from Smith". 
• 'about ADA pragmas", end "dated later than". (~=cause each case has 
more than one component, each must be recognized by a separate 

pattern: 

<',Cf tom I~erson> 
<~'.abou t Sub jec t>  
<~,s tnce Data> 

Here % means anything in the same word class, "dated later than", for 
instance, is eauivalent to "since" for this purpOSe. 

These patterns for message descr~tions illustrate the two problems 
mentioned above: the elementS of the .case patterns have radically 
different functions - The first elements are case markers, and the second 
elements are the actual subconcepts for the case. Since case indicators 
are typically much more restriCted in expression, and therefore much 
easier to recognize than Their corresponding subconc~ts,  a plausible 
strategy for a parser that "knows" about case constructions is to scan 
input for the case indicators, and then parse the associated subconcepts 
top-down. This strategy is particularly valuable if one of the subconcepts 
is malformed or of uncertain form, such as the subject case in our 
example. Neither "ADA" nor "pragmas" is likely to be in the vocabulary 
of our system, so the only way the end of the subject field can be 
detected is by the presence of the case indicator "from" which follows iL 
However, the present parser cannot distinguish case indicators from 
case fillers - both are just elements in a pattern with exactly the same 
computational status, and hence it cannot use this strategy. 

The next section describes an algorithm for flexibly parsing case 
constructions. At the moment, the algorithm works only on a mixture of 
case constructions and linear patterns, but eventually we envisage a 

number of specific parsing algorithms, one for each of a number of 
construction types, all working together to provide a more complete 
flexible parser. 

Below, we list a number of the parsing strategies that we envisage 
might be used. Most of these strategies exploit the constrained task.- 
oriented nature of the input language: 

• Case-Frame Instant iat ion is necessary to parse general 
imperative constructs and noun phrases with posThominal 
modifiers. This method has been applied before with some 
success to linguistic or conceptual cases [12] in more 
general parsing tasks. However, it becomes much more 
powerful and robust if domain-dependent constraints among 
the cases can be exploited. For instance, in a file- 
management system, the command "Transfer UPDATE.FOR 
to the accounts directory" can be easily parsed if the 
information in the unmarked case of transfer ("ulXlate.for" in 
our example) is parsed by a file-name expert, and the 
destination case (flagged by "to") is parsed not as a physical 
location, but a logical entity ins=de a machine. The latter 
constraint enables one to interpret "directory" not as a 
phonebook or bureaucratic agency, but as a reasonable 
destination for a file in a computer. 

• Semantic Grammars [8] prove useful when there are ways 
of hierarchically clustering domain concepts into 
functionally useful categories for user interaction. Semantic 
grammars, like case systems, can bring domain knowledge 
to bear in dissmbiguatmg word meaningS. However, the 
central problem of semantic grammars is non-transferability 
to other domains, stemming from the specificity of the 
semantic categorization hierarchy built into the grammar 
rules. This problem is somewhat ameliorated if this 
technique is applied only tO parsing selected individual 
phrases [13], rather than being res0onsible for the entire 
parse. Individual constituents, such as those recognizing the 
initial segment of factual queries, apply in may domains, 
whereas a constituent recognizing a clause about file 
transfer is totally domain specific. Of course, This restriction" 
calls for a different parsing strategy at the clause and 
sentence level. 

• (Partial) Pattern Matching on strings, using non.terminal 
semantic.grammar constituents in the patterns, proves to be 
an interesting generalization of semantic grammars. This 
method is particularly useful when the patterns and semantic 
grammar non-terminal nodes interleave in a hierarchical 
fashion. 

e Transformat ions to Canonical Form prove useful both 
for domain-dependent and domain.independent constructs. 
For instance, the following rule transforms possessives into 
"of" phrases, which we chose as canonical: 

['<ATTRZBUTE> tn possess i ve  fo rm.  
<VALUE> l a g l t f m a t e  f o r  a t t r i b u t e ]  

-> 
[<VALUE> "OF" <ATTRZBUTE> In st ipple f o r l l ]  

Hence, the parser need only consider "of" constructions 
("file's destination" => "destinaUon of file"). These 
transforms simplify the pattern matcher and semantic 
grammar application process, especially when transformed 
constructions occur in many different contextS. A 
rudimentary form of string transformation was present in 
PARRY [11 ]. 

e Target-speci f ic  methods may be invoked to 
portions of sentences not easdy handlecl by The more general 
methods. For instance, if a case-grammar determines that 
the case just s=gnaled is a proper name, a special name- 
expert strategy may be called. This expe~ knows that nantes 
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can contain unknown words (e.g., Mr. Joe Gallen D'Aguila is 
obviously a name with D'Aguila as the surname) but subject 
to ordering constraints and morphological preferences. 
When unknown words are encountered in other positions in 
a sentence, the parser may try morphological 
decomposition, spelling correction, querying the user, or 
more complex processes to induce the probable meaning of 
unknown words, such as the project-and-integrate technique 
described in [3]. Clearly these unknown.word strategies 
ought to be suppressed in parsing person names. 

3. A Case-Oriented Parsing Strategy 

As part of our investigations in tosk-oriented parsing, we have 
implemented (in edditio,n to FlexP) a pure case-frame parser exploiting 
domain-specific case constraints stored in a declarative data structure, 
and a combination pattern-match, semantic grammar, canonical- 
transform parser, All three parsers have exhibited a measure of success, 
but more interestingly, the strengths of one method appear to overlap 
with the weaknesses of a different method. Hence, we are working 
towards a single parser that dynamically selects its parsing strategy to 
suit the task demands. 

Our new parser is designed primarily for task domains where the 
prevalent forms of user input are commands and queries, both expressed 
in imperative or pseudo-imperative constructs. Since in imperative 
constructs the initial word (or phrase), establishes the case.frame for the 
entire utterance, we chose the case-frame parsing strategy as priman/. 
In order to recognize an imperative command, and to instantiate each 
case, other parsing strategies are invoked. Since the parser knows what 
can fill.a particular case, it can choosethe parsing strategy best suited 
for linguistic constructions expressing that type of information. 
Moreover, it can pass any global constraints from the case frame or from 
other instantiated cases to the subsidiary parsers . thus reducing 
potential ambiguity, speeding the parse, and enhancing robustness. 

Consider our multi-strategy parsing algorithm as described below. 
Input is assumed to be in the imperative form: 

1. Apply string PATTERN-MATCH to the initial segment of the 
input using only the patterns previously indexed as 
corresponding to command words/phrases in imperative 
constructions. Patterns contain both optional constituents 
and non.terminal symbols that expand according to a 
semantic grammar. (E.g., "copy" and "do a file transfer" are 
synonyms for the same command in a file management 
system.) 

2. Access the CASE.FRAME associated with the command just 
recognized, and push it onto the context stack. In the above 
example, the case.frame is indexed under the token 
<COPY),, which was output by the pattern matcller, The case 
frame consists of list of pairs ([case.marker] [case-filler. 
information[, ...). 

3. Match the input with the case rharkers using the PATTERN- 
MATCH system descriOecl above." If no match occurs, 
assume the input corresponds to the unmarked case (or the 
first unmarked case, if more than one is present), and 
proceed to the next step. 

4. Apply the Darsin(7 strategy indicated by the type of construct 
expected as a case filler. Pass any available case constraints 
to the suO-f~arser. A partial list of parsing strategies indicated 
by expected fillers is: 

• Sub- imperat ive -- Case.frame parser, starting with 
the command-identification pattern match above. 

• S t ruc tured-ob jec t  (e.g., a concept with 
subattributes) .- Case-frame parser, starting with the 
pattern-marcher invoked on the l ist  of patterns 
corresponding to the names (or compound names) of 
the semantically permissible structured objects, 
followed by case-frame parsing of any present 
subattributes. 

• Simple Object  .- Apply the pattern matcher, using 
only the patterns indexed as relevant in the case-filler- 
information field. 

Special Object  -- Apply the .parsing strategy 
applicable to that type of special object (e.g., proper 
names, dates, quoted strings, stylized technical jargon, 
etc...) 

None of the above -- (Errorful input or parser 
deficiency) Apply the graceful recovery techniques 
discussed below. 

5. If an embedded case frame is. activated, push it onto the 
context stack. 

6. When a case filler is instantiated, remove the <case.marker), 
<case-filler-information> pair from the list of active cases in 
the appropriate case frame, proceed to the next case- 
marker, and repeat the process above until the input 
terminates. 

7, ff all the cases in a case frame have been instantiated, pop 
the context stack until that case frame is no longer in it. 
(Completed frames typically re~de at the top of the stack.) 

8. If there is more than One case frame on the stack when 
trying to parse additional inpuL apply the following 
procedure: 

• If the input only matches a case marker in one frame, 
proceed to instantiste the corresponding case-filler as 
outlined above. Also, if the matched c8~e marker is not 
on the most embedded case frame (i.e., at the top of 
the context stack), pop the stack until the frame whose 
case marker was matched appears at the top of the 
stack. 

• If no case markers are matched, attempt to parse 
unmarked cases, starting with the most deeoly 
embedded case frame (the top of the context stack) 
and proceeding outwards. If one is matched, pop the 
context stack until the corresponding case frame is at 
the top. Then, instantiats the case filler, remove the 
case from the active case frame, and proceed tO parse 
additional input. If more then one unmarked case 
matches the input, choose the most embedded one 
(i.e., the most recent context) and save the stats of the 
parse on the global history stack. (This soggeat '= an 
ambiguity that cannot be resolved with the information 
at hand.) 

• If the input matches more than one case marker in the 
context stack, try to parse the case filler via the 
indexed parsing strategy for each filler.information slot 
corresponding to a matched case marker. If more then 
one case filler parses (this is somewhat rare sJtustion - 
indicating underconstrained case frames or truly 
ambiguous input) save the stats in the global history 
stack arid pursue the parse assuming the mOst deeply 
embeded constituent, [Our case.frame attachment 
heuristic favors the most }ocal attachment permitted by 
semantic case constraints.] 
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g. If a conjunction or disjunction occurs in the input, cycle 
through the context stack trying to parse the right-hand side 
of the conjunction as filling the same case as the left hand 
side. If no such parse is feasible, interpret the conjunction 
as top-level, e.g, as two instances of the same imperative, or 
two different imperatives, ff more than one parse results, 
interact with the user to disaml~iguate. To illustrate this 
simple process, consider. 

"Transfer the programs written by Smith and Jones to ..." 

"Transfer the programs written in Fortran and the census 
data files to ..." 

"Transfer the prOgrams written in Fortran and delete ..." 

The scope of the first conjunction is the "author" 
subattribute of program, whereas the scope of the second 
coniunction is the unmarked "obieot" case of the thrustor 
action. Domain knowledge in the case-filler information of 
the "ob)ect" case in the "transfer" imperative inhibits 
"Jones" from matching a potential object for electronic file 
transfer, Similarly "Census data files" are inhibited from 
matching the "author" subattribute of a prOgram. Thus 
conjunctions in the two syntactically comparable examples 
are scoped differently by our semantic-scoping rule relying 
on domain-specific case information. "Delete" matches no 
active case filler, and hence it is parsed as the initial Segment 
Of a second conjoined utterance. Since "delete" is a known 
imperative, this parse succeeds. 

10. If the Darser fails to Darse additional input, pop the global 
history stack and pursue an alternate parse. If the stack is 
empty, invoke the graceful recovery heuristics. Here the 
DELTA-MIN method [4] can be applied to improve upon 
depth.first unwinding of the stack in the backtracking 
pro,:_ _~,s_l__ 

11. If the end of the input is reached, and the global hiMo;y stack 
is not empty, pursue the alternate parses. If any survive to 

the end of the input (this should hot be the case unless true 
amt~iguity exists), interact with the user to select the 
appropriate parse (see [7).] 

The need for embeded case structures and ambiguity resolution based 
on domain-dependent semantic expectations of the case fillers is 
illustrated by the following paJr of sentences: 

"Edit the Drograms in Forlran" 
"Edit the programs in Teco" 

"Fortran" fills the language attribute of "prOgram", but cannot fill either 
the location or instrument case of Edit (both of which can be signa~d by 
"in"). In the second sentence, however, "Teed" fills the instrument case 
of the veYO "ed i t "  and none of the attributes of "program". This 
disembiguation is significant because in the first example the user 
specified which programs (s)he wants to edit, whereas in the second 
example (s)he specified how (s)he wants to edit them. 

The algorithm Drseented is sufficient to parse grammatical input. In 
addition, since it oper-,tes in a manner specifically tailored to case 
constructions, it is easy to add medifications dealing with deviant input. 
Currently, the algorithm includes the following steps that deal with 
ungrammaticality: 

12. If step 4 fails. Le. a filler of appropriate type cannot be parsed 
at that position in the inDut, then repeat step 3 at successive 
points in the input until it produces'a match, and continue 
the regular algorithm from there. Save all words not 
matched on a SKIPPED list. This step tal~es advantage of the 
fact that case markers are often much easier to recognize 
than case fillers to realign the parser if it gets out of step with 
the input (because of unexpected interjections, or other 
spurious or missing won:is). 

13. It wor(ls are on SKIPPED at the end of the parse, and cases 
remain unfilled in the case frames that were on the context 
Mack at the time the words were skipped, then try tO parse 
each of the case fillers against successive positions of the 
skipped sequences. This step picks up cases for which the 
masker was incorrect or gadoled. 

14. if worOs are Mill on SKIPPED attempt the same matches, but 
relax the pstlern matching procedures involved. 

15. If this still does not account for all the input, interact with the 
user by asking cluestions focussed on the uninterprsted Dart 
of the input. The same focussed interaction techniclue 
(discussed in [7]) is used to resolve semantic ambiguities in 
the inpuL 

16. If user intersction proves impractical, apply the project-and- 
integrate method [3] to narrow down the meanings of 
unknown words by exploiting syntactic, semantic and 
contextual cues. 

These flexible par ing steps rely on the construction-specific 8SDe¢~ of 
the basic algorithm, and would not be easy to emulate in either a 
syntactic ATN parser or one based on a gum semantic gnlmmer. 

A further advantage of our r n i x e d . s t n l ~  approach is that the top. 
level case structure, in es~mce, partitions the semantic world 
dynamically into categories according to the semanbc constraints On the 
active case fillers. Thus, when a pattern matcfler is invoked to parle the 
recipient case of a file-transfer case frlmle, it need Only consider I::~terns 
(and semantc.gramrnm" constructs) that correspond to logical locations 
insole a computer. This form Of eX l~" ts~n-d rMm I~u~ing in restricted 
domains adds a two-fold effect to its rcbusmes¢ 

• Many smmous parses are .ever generatod (bemnmo 
patterns yielding petentisfly spurious matches are never 
in inappropriate contexts,) 

• Additional knowledge (such as additional ~ grammar 
rules, etc.) can be added without a corresponding linear 
i n c ~  in parso time since the coes.frames focus only 
upon the relevant sul3sat of patterns and rules. Th. Ink the 
efficiency of the system may actually inormme with the 
addition of more domain knowledge (in effect shebang the 
case fnmmes to further rssmct comext). Thle pehm~ior ~ 
it Do. ib is  to incrementally build the ~ wWtout the ever- 
present fesr theta new extension may mal~ ltm entire pemer 
fail due to 8n unexl:)ected application of that extension in the 
wrong context. 

In closing, we note that the algorithm ~ above does not 
mer~ion interaction with morphotogicai de¢ompoaltion or 81:XMllng 
correction. LexicaJ processing is particularly important for robust 
Parsing; indeed, based On our limited eXl::~rienca, lexicaJ-level errcra m'e 
a significant source of deviant input. The recognition and handling of 
lexical-deviation phenomena, such as abbreviations and mies~Hlings, 
must be integrated with the more usual morDhotogical analySbl. Some of 
these topics are discussed indeoendently in [6], However, i n t l . ' p r i g  
resilient morDhologicaJ analysis with the algorithm we have outlined is a 
problem we consider very important and urgent if we are to construct • 
practical flexible parser. 

4. Conclusion 

To summarize, uniform i~mng  procedures applied to uniform 
grammars are less than adeduate for par ing  ungrammatical inpuL As 
our experience with such an approach s~ows, the uniform methods are 
unable to take full advantage of domain knowledge, differing structurW 
roles (e.g,, case markers and. case fillers), and relative eese of 
identification among the various constituents in different types of 
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constrl, ctions. Instead, we advocate integrating a number of different 
parSing strategies tailored to each type of construction as dictated by the 
¢oplication domain. The parser should dynamically select parsing 
strategies according to what type of construction it expects in the course 
of the parse. We described a simple algorithm designed along these 
lines that makes dynamic choices between two parsing strategies, one 
designed for case constructions and the other for linear patterns. While 
this dynamic selection coproach was suggested by the needs of flexible 
parSing, it also seemed to give our trial implementation significant 
efficiency advantages over single-strategy approaches for grammatical 
input. 
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