
Dynamic Strategy Selection in Flexible Parsing
Jaime G. Carbonel l and Philip J. Hayes

Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract

Robust natural language interpretation requires strong semantic domain
models, "fall-soff" recovery heuristics, and very flexible control
structures. Although single-strategy parsers have met with a measure of
success, a multi.strategy approach is shown to provide a much higher
degree of flexibility, redundancy, and ability to bring task-specific domain
knowledge (in addition to general linguistic knowledge) to bear on both
grammatical and ungrammatical input. A parsing algorithm is presented
that integrates several different parsing strategies, with case-frame
instantiation dominating. Each of these parsing strategies exploits
different types of knowledge; and their combination provides a strong
framework in which to process conjunctions, fragmentary input, and
ungrammatical structures, as well as less exotic, grammatically correct
input. Several specific heuristics for handling ungrammatical input are
presented within this multi-strategy framework.

1. Introduction

When people use language spontaneously, they o~ten do not respect
grammatical niceties. Instead of producing sequences of grammatically
well-formed and complete sentences, they often miss out or repeat words
or phrases, break off what they are .saying and rephrase or replace it,
speak in fragments, or use otherwise incorrect grammar. While other
people generally have little trouble co'reprehending ungrammatical
utterances, most' natural language computer systems are unable to
process errorful input at all. Such inflexibility in parsing is a serious
impediment to the use of natural language in interactive computer
systems. Accordingly, we [6] and other researchers including
Wemchedel and Black [14], and Kwasny and Sondhelmer [9], have
attempted to produce flexible parsers, i.e. parsers that can accept
ungrammatical input, correcting the errors whan possible, and
generating several alternative interpretations if appropriate.

While different in many ways, all these approaches to flexible parsing
operate by applying a uniform parsing process to a uniformly
represented grammar. Because of the linguistic performance problems
involved, this uniform procedure cannot be as simple and elegant as the
procedures followed by parsers based on a pure linguistic competence
model, such as Parsifal [10]. Indeed, their parsing procedures may
involve several strategies that are applied in a predetermined order when
the input deviates from the grammar, but the choice of strategy never
depends on the specific type of construction being parsed. In light of
experience with our own flexible parser, we have come to believe that
such uniformity is not conducive to good flexible parsing. Rather, the
strategies used should be dynamically selected according to the type of
construction being parsed. For instance, partial.linear pattern matching
may be well suited to the flexible parsing of idiomatic phrases, or
specialized noun phrases such as names, dates, or addresses (see also
[5]), but case constructions, such as noun phrases with trailing
prepositional phrases, or imperative phrases, require case-oriented
parsing strategies. The undedying principle is simple: The ap~rol~riate

knowledge must be brought to bear at the r ight t ime -- and it
must not interfere at other times. Though the initial motivation for
this approach sprang from the r~eeds of flexible parsing, such
construction.specific techniques can provide important benefits even
when no grammatical deviations are encountered, as we will show. This
observation may be related to the current absence of any single universal
parsing strategy capable of exploiting all knowledge sources (although
ELI [12] and its offspring [2] are efforts in this direction).

Our objective here is not to create the ultimate parser, but to build a
very flexible and robust taak.oriented parser capable of exploiting all
relevant domain knowledge as well as more general syntax and
semantics. The initial application domain for the parser is the central
component of an interface to various computer subsystems (or tools).
This interface and, therefore the parser, should be adaptable to new
tools by substituting domain-specific data bases (called "tool
descriptions") that govern the behaviorof the interface, including the
invocation of parsing strategies, dictionanes and concepts, rather than
requiring any domain adaptations by the interface system itself.

With these goals in mind, we proceed to give details of the kinds of
difficulties that a uniform parsing strategy can lead to, and show how
dynamically-selected construction.specific techniques can help. We list
a number of such specific strategies, then we focus on our initial
implementation of two of these strategies and the mechanism that
dynamically selects between them while pm'alng task-oriented natural
language imperative constructions. Imperatives were chosen largely
because commands and queries given to a task-oriented natural
language front end often take that form [6].

2. Problems with a Uniform Parsing Strategy

Our present flexible parser, which we call RexP, is intended to parse
correctly input that correaponds to a fixed grammar, and also to deal with
input that deviates from that grammar by erring along certain classes of
common ungrammaticalities. Because of these goals, the parser is
based on the combination of two uniform parsing strategies: bottom-up
parsing and pattern.matching. The choice of a bottom.up rather then a
top-down strategy was based on our need to recognize isolated sentence
fragments, rather than complete sentences, and to detect restarts and
continuations after interjections. However, since completely bottom-up
strategies lead to the consideration of an unnecessary number of
alternatives in correct input, the algorithm used allowed some of the
economies of top-dOwn parsing for non-deviant input. Technically
speaking, this made the parser left-corner rather than bottom-up. We
chose to use a grammar of linear patterns rather than, say, a transition
network because pattern.matching meshes well with bottom-up parsing
by allowing lookup of a pattern from the presence in the input of any of
its constituents; because pattern-matching facilitates recognition of
utterances with omissions and substitutions when patterns are
recognized on the basis of partial matches; and because pattern.
matching is necessary for the recognition of idiomatic phrases. More
details of the iustifications for these choices can be found in [6].

1This research was .sponsored in Dart by the Defense Advanced R~Jeerc~ Promcts
Agency (DE)O), ARPA Ck'1:ler NO. 35S7. momtored by the Air Force Avmntcs Laboratory
un0er contract F33615.78-C-1551. anti in part by the Air Force Office o(°-,'mntifi¢
Research under Contract F49620-79-C-0143. The views aria cor, clusm.s ¢ontmneO in this
document are those Of the authors and shou~ not be inte.rDreleo as tepreser~ting the
official DOhCle~ ¢qther exl)resse0 or ,replied. o! DARPA, Ihe Air Force Office ol Scisn,fic
Research or the US government.

FlexP has been tested extensively in conjunction with a gracefully
interacting interface to an electronic mail system [1]. "Gracefully
interacting" means that the interface appears friendly, supportive, and
robust to its user. In particular, graceful interaction requires the system
to tolerate minor input errors and typos, so a flexible parser is an
imbortant component of such an interface. While FlexP performed this
task adeduately, the experience turned up some problems related to the

143

major theme of this paper. These problems are all derived from the
incomparability between the uniform nature of The grammar
representation and the kinds of flexible parsing strategies required to
deal with the inherently non-uniform nature of some language
constructions. In particular:.

•Oifferent elements in the pattern of a single grammar rule
can serve raclically different functions and/or exhibit
different ease of recognition. Hence, an efficient parsing
strategy should react to their apparent absence, for instance,
in quite different ways.

• The representation of a single unified construction at the
language level may require several linear patterns at the
grammar level, making it impossible to treat that construction

• with the integrity required for adecluate flexible parsing.

The second problem is directly related to the use of a pattern-matching
grammar, but the first would arise with any uniformly represented
grammar applied by a uniform parsing strategy.

For our application, these problems manifested themselves most
markedly by the presence of case constructions in the input language.
Thus. our examples and solution methOds will be in terms of integrating
case-frame instantiat=on with other parsing strategies. Consider, for
example, the following noun phrase with a typical postnominal case
frame:

"the messages from Smith aDout ADA pragmas
dated later than Saturday".

The phrase has three cases marked by "from", "about", and "dated later
than". This Wpe of phrase is actually used in FlexP's current grammar,
and the basic pattern used to recognize descriptions of messages is:

<?de te rm iner eMassageAd,1 ~4essagoHoad •NOlsageC8$o)
which says that a message description iS an optional (?) determiner.
followed by an arbitrary number (') of message adjectives followed by a
message head word (i.e. a word meaning "r~essage"). followed by an
arbitrary number of message cases, in the example. "the" is the
determiner, there are no message adjectives. "messages" is the
message head word. and there are three message cases: "from Smith".
• 'about ADA pragmas", end "dated later than". (~=cause each case has
more than one component, each must be recognized by a separate

pattern:

<',Cf tom I~erson>
<~'.abou t Sub jec t>
<~,s tnce Data>

Here % means anything in the same word class, "dated later than", for
instance, is eauivalent to "since" for this purpOSe.

These patterns for message descr~tions illustrate the two problems
mentioned above: the elementS of the .case patterns have radically
different functions - The first elements are case markers, and the second
elements are the actual subconcepts for the case. Since case indicators
are typically much more restriCted in expression, and therefore much
easier to recognize than Their corresponding subconc~ts, a plausible
strategy for a parser that "knows" about case constructions is to scan
input for the case indicators, and then parse the associated subconcepts
top-down. This strategy is particularly valuable if one of the subconcepts
is malformed or of uncertain form, such as the subject case in our
example. Neither "ADA" nor "pragmas" is likely to be in the vocabulary
of our system, so the only way the end of the subject field can be
detected is by the presence of the case indicator "from" which follows iL
However, the present parser cannot distinguish case indicators from
case fillers - both are just elements in a pattern with exactly the same
computational status, and hence it cannot use this strategy.

The next section describes an algorithm for flexibly parsing case
constructions. At the moment, the algorithm works only on a mixture of
case constructions and linear patterns, but eventually we envisage a

number of specific parsing algorithms, one for each of a number of
construction types, all working together to provide a more complete
flexible parser.

Below, we list a number of the parsing strategies that we envisage
might be used. Most of these strategies exploit the constrained task.-
oriented nature of the input language:

• Case-Frame Instant iat ion is necessary to parse general
imperative constructs and noun phrases with posThominal
modifiers. This method has been applied before with some
success to linguistic or conceptual cases [12] in more
general parsing tasks. However, it becomes much more
powerful and robust if domain-dependent constraints among
the cases can be exploited. For instance, in a file-
management system, the command "Transfer UPDATE.FOR
to the accounts directory" can be easily parsed if the
information in the unmarked case of transfer ("ulXlate.for" in
our example) is parsed by a file-name expert, and the
destination case (flagged by "to") is parsed not as a physical
location, but a logical entity ins=de a machine. The latter
constraint enables one to interpret "directory" not as a
phonebook or bureaucratic agency, but as a reasonable
destination for a file in a computer.

• Semantic Grammars [8] prove useful when there are ways
of hierarchically clustering domain concepts into
functionally useful categories for user interaction. Semantic
grammars, like case systems, can bring domain knowledge
to bear in dissmbiguatmg word meaningS. However, the
central problem of semantic grammars is non-transferability
to other domains, stemming from the specificity of the
semantic categorization hierarchy built into the grammar
rules. This problem is somewhat ameliorated if this
technique is applied only tO parsing selected individual
phrases [13], rather than being res0onsible for the entire
parse. Individual constituents, such as those recognizing the
initial segment of factual queries, apply in may domains,
whereas a constituent recognizing a clause about file
transfer is totally domain specific. Of course, This restriction"
calls for a different parsing strategy at the clause and
sentence level.

• (Partial) Pattern Matching on strings, using non.terminal
semantic.grammar constituents in the patterns, proves to be
an interesting generalization of semantic grammars. This
method is particularly useful when the patterns and semantic
grammar non-terminal nodes interleave in a hierarchical
fashion.

e Transformat ions to Canonical Form prove useful both
for domain-dependent and domain.independent constructs.
For instance, the following rule transforms possessives into
"of" phrases, which we chose as canonical:

['<ATTRZBUTE> tn possess i ve fo rm.
<VALUE> l a g l t f m a t e f o r a t t r i b u t e]

->
[<VALUE> "OF" <ATTRZBUTE> In st ipple f o r l l]

Hence, the parser need only consider "of" constructions
("file's destination" => "destinaUon of file"). These
transforms simplify the pattern matcher and semantic
grammar application process, especially when transformed
constructions occur in many different contextS. A
rudimentary form of string transformation was present in
PARRY [11].

e Target-speci f ic methods may be invoked to
portions of sentences not easdy handlecl by The more general
methods. For instance, if a case-grammar determines that
the case just s=gnaled is a proper name, a special name-
expert strategy may be called. This expe~ knows that nantes

144

can contain unknown words (e.g., Mr. Joe Gallen D'Aguila is
obviously a name with D'Aguila as the surname) but subject
to ordering constraints and morphological preferences.
When unknown words are encountered in other positions in
a sentence, the parser may try morphological
decomposition, spelling correction, querying the user, or
more complex processes to induce the probable meaning of
unknown words, such as the project-and-integrate technique
described in [3]. Clearly these unknown.word strategies
ought to be suppressed in parsing person names.

3. A Case-Oriented Parsing Strategy

As part of our investigations in tosk-oriented parsing, we have
implemented (in edditio,n to FlexP) a pure case-frame parser exploiting
domain-specific case constraints stored in a declarative data structure,
and a combination pattern-match, semantic grammar, canonical-
transform parser, All three parsers have exhibited a measure of success,
but more interestingly, the strengths of one method appear to overlap
with the weaknesses of a different method. Hence, we are working
towards a single parser that dynamically selects its parsing strategy to
suit the task demands.

Our new parser is designed primarily for task domains where the
prevalent forms of user input are commands and queries, both expressed
in imperative or pseudo-imperative constructs. Since in imperative
constructs the initial word (or phrase), establishes the case.frame for the
entire utterance, we chose the case-frame parsing strategy as priman/.
In order to recognize an imperative command, and to instantiate each
case, other parsing strategies are invoked. Since the parser knows what
can fill.a particular case, it can choosethe parsing strategy best suited
for linguistic constructions expressing that type of information.
Moreover, it can pass any global constraints from the case frame or from
other instantiated cases to the subsidiary parsers . thus reducing
potential ambiguity, speeding the parse, and enhancing robustness.

Consider our multi-strategy parsing algorithm as described below.
Input is assumed to be in the imperative form:

1. Apply string PATTERN-MATCH to the initial segment of the
input using only the patterns previously indexed as
corresponding to command words/phrases in imperative
constructions. Patterns contain both optional constituents
and non.terminal symbols that expand according to a
semantic grammar. (E.g., "copy" and "do a file transfer" are
synonyms for the same command in a file management
system.)

2. Access the CASE.FRAME associated with the command just
recognized, and push it onto the context stack. In the above
example, the case.frame is indexed under the token
<COPY),, which was output by the pattern matcller, The case
frame consists of list of pairs ([case.marker] [case-filler.
information[, ...).

3. Match the input with the case rharkers using the PATTERN-
MATCH system descriOecl above." If no match occurs,
assume the input corresponds to the unmarked case (or the
first unmarked case, if more than one is present), and
proceed to the next step.

4. Apply the Darsin(7 strategy indicated by the type of construct
expected as a case filler. Pass any available case constraints
to the suO-f~arser. A partial list of parsing strategies indicated
by expected fillers is:

• Sub- imperat ive -- Case.frame parser, starting with
the command-identification pattern match above.

• S t ruc tured-ob jec t (e.g., a concept with
subattributes) .- Case-frame parser, starting with the
pattern-marcher invoked on the l ist of patterns
corresponding to the names (or compound names) of
the semantically permissible structured objects,
followed by case-frame parsing of any present
subattributes.

• Simple Object .- Apply the pattern matcher, using
only the patterns indexed as relevant in the case-filler-
information field.

Special Object -- Apply the .parsing strategy
applicable to that type of special object (e.g., proper
names, dates, quoted strings, stylized technical jargon,
etc...)

None of the above -- (Errorful input or parser
deficiency) Apply the graceful recovery techniques
discussed below.

5. If an embedded case frame is. activated, push it onto the
context stack.

6. When a case filler is instantiated, remove the <case.marker),
<case-filler-information> pair from the list of active cases in
the appropriate case frame, proceed to the next case-
marker, and repeat the process above until the input
terminates.

7, ff all the cases in a case frame have been instantiated, pop
the context stack until that case frame is no longer in it.
(Completed frames typically re~de at the top of the stack.)

8. If there is more than One case frame on the stack when
trying to parse additional inpuL apply the following
procedure:

• If the input only matches a case marker in one frame,
proceed to instantiste the corresponding case-filler as
outlined above. Also, if the matched c8~e marker is not
on the most embedded case frame (i.e., at the top of
the context stack), pop the stack until the frame whose
case marker was matched appears at the top of the
stack.

• If no case markers are matched, attempt to parse
unmarked cases, starting with the most deeoly
embedded case frame (the top of the context stack)
and proceeding outwards. If one is matched, pop the
context stack until the corresponding case frame is at
the top. Then, instantiats the case filler, remove the
case from the active case frame, and proceed tO parse
additional input. If more then one unmarked case
matches the input, choose the most embedded one
(i.e., the most recent context) and save the stats of the
parse on the global history stack. (This soggeat '= an
ambiguity that cannot be resolved with the information
at hand.)

• If the input matches more than one case marker in the
context stack, try to parse the case filler via the
indexed parsing strategy for each filler.information slot
corresponding to a matched case marker. If more then
one case filler parses (this is somewhat rare sJtustion -
indicating underconstrained case frames or truly
ambiguous input) save the stats in the global history
stack arid pursue the parse assuming the mOst deeply
embeded constituent, [Our case.frame attachment
heuristic favors the most }ocal attachment permitted by
semantic case constraints.]

145

g. If a conjunction or disjunction occurs in the input, cycle
through the context stack trying to parse the right-hand side
of the conjunction as filling the same case as the left hand
side. If no such parse is feasible, interpret the conjunction
as top-level, e.g, as two instances of the same imperative, or
two different imperatives, ff more than one parse results,
interact with the user to disaml~iguate. To illustrate this
simple process, consider.

"Transfer the programs written by Smith and Jones to ..."

"Transfer the programs written in Fortran and the census
data files to ..."

"Transfer the prOgrams written in Fortran and delete ..."

The scope of the first conjunction is the "author"
subattribute of program, whereas the scope of the second
coniunction is the unmarked "obieot" case of the thrustor
action. Domain knowledge in the case-filler information of
the "ob)ect" case in the "transfer" imperative inhibits
"Jones" from matching a potential object for electronic file
transfer, Similarly "Census data files" are inhibited from
matching the "author" subattribute of a prOgram. Thus
conjunctions in the two syntactically comparable examples
are scoped differently by our semantic-scoping rule relying
on domain-specific case information. "Delete" matches no
active case filler, and hence it is parsed as the initial Segment
Of a second conjoined utterance. Since "delete" is a known
imperative, this parse succeeds.

10. If the Darser fails to Darse additional input, pop the global
history stack and pursue an alternate parse. If the stack is
empty, invoke the graceful recovery heuristics. Here the
DELTA-MIN method [4] can be applied to improve upon
depth.first unwinding of the stack in the backtracking
pro,:_ _~,s_l__

11. If the end of the input is reached, and the global hiMo;y stack
is not empty, pursue the alternate parses. If any survive to

the end of the input (this should hot be the case unless true
amt~iguity exists), interact with the user to select the
appropriate parse (see [7).]

The need for embeded case structures and ambiguity resolution based
on domain-dependent semantic expectations of the case fillers is
illustrated by the following paJr of sentences:

"Edit the Drograms in Forlran"
"Edit the programs in Teco"

"Fortran" fills the language attribute of "prOgram", but cannot fill either
the location or instrument case of Edit (both of which can be signa~d by
"in"). In the second sentence, however, "Teed" fills the instrument case
of the veYO "ed i t " and none of the attributes of "program". This
disembiguation is significant because in the first example the user
specified which programs (s)he wants to edit, whereas in the second
example (s)he specified how (s)he wants to edit them.

The algorithm Drseented is sufficient to parse grammatical input. In
addition, since it oper-,tes in a manner specifically tailored to case
constructions, it is easy to add medifications dealing with deviant input.
Currently, the algorithm includes the following steps that deal with
ungrammaticality:

12. If step 4 fails. Le. a filler of appropriate type cannot be parsed
at that position in the inDut, then repeat step 3 at successive
points in the input until it produces'a match, and continue
the regular algorithm from there. Save all words not
matched on a SKIPPED list. This step tal~es advantage of the
fact that case markers are often much easier to recognize
than case fillers to realign the parser if it gets out of step with
the input (because of unexpected interjections, or other
spurious or missing won:is).

13. It wor(ls are on SKIPPED at the end of the parse, and cases
remain unfilled in the case frames that were on the context
Mack at the time the words were skipped, then try tO parse
each of the case fillers against successive positions of the
skipped sequences. This step picks up cases for which the
masker was incorrect or gadoled.

14. if worOs are Mill on SKIPPED attempt the same matches, but
relax the pstlern matching procedures involved.

15. If this still does not account for all the input, interact with the
user by asking cluestions focussed on the uninterprsted Dart
of the input. The same focussed interaction techniclue
(discussed in [7]) is used to resolve semantic ambiguities in
the inpuL

16. If user intersction proves impractical, apply the project-and-
integrate method [3] to narrow down the meanings of
unknown words by exploiting syntactic, semantic and
contextual cues.

These flexible par ing steps rely on the construction-specific 8SDe¢~ of
the basic algorithm, and would not be easy to emulate in either a
syntactic ATN parser or one based on a gum semantic gnlmmer.

A further advantage of our r n i x e d . s t n l ~ approach is that the top.
level case structure, in es~mce, partitions the semantic world
dynamically into categories according to the semanbc constraints On the
active case fillers. Thus, when a pattern matcfler is invoked to parle the
recipient case of a file-transfer case frlmle, it need Only consider I::~terns
(and semantc.gramrnm" constructs) that correspond to logical locations
insole a computer. This form Of eX l~" ts~n-d rMm I~u~ing in restricted
domains adds a two-fold effect to its rcbusmes¢

• Many smmous parses are .ever generatod (bemnmo
patterns yielding petentisfly spurious matches are never
in inappropriate contexts,)

• Additional knowledge (such as additional ~ grammar
rules, etc.) can be added without a corresponding linear
i n c ~ in parso time since the coes.frames focus only
upon the relevant sul3sat of patterns and rules. Th. Ink the
efficiency of the system may actually inormme with the
addition of more domain knowledge (in effect shebang the
case fnmmes to further rssmct comext). Thle pehm~ior ~
it Do. ib is to incrementally build the ~ wWtout the ever-
present fesr theta new extension may mal~ ltm entire pemer
fail due to 8n unexl:)ected application of that extension in the
wrong context.

In closing, we note that the algorithm ~ above does not
mer~ion interaction with morphotogicai de¢ompoaltion or 81:XMllng
correction. LexicaJ processing is particularly important for robust
Parsing; indeed, based On our limited eXl::~rienca, lexicaJ-level errcra m'e
a significant source of deviant input. The recognition and handling of
lexical-deviation phenomena, such as abbreviations and mies~Hlings,
must be integrated with the more usual morDhotogical analySbl. Some of
these topics are discussed indeoendently in [6], However, i n t l . ' p r i g
resilient morDhologicaJ analysis with the algorithm we have outlined is a
problem we consider very important and urgent if we are to construct •
practical flexible parser.

4. Conclusion

To summarize, uniform i~mng procedures applied to uniform
grammars are less than adeduate for par ing ungrammatical inpuL As
our experience with such an approach s~ows, the uniform methods are
unable to take full advantage of domain knowledge, differing structurW
roles (e.g,, case markers and. case fillers), and relative eese of
identification among the various constituents in different types of

146

constrl, ctions. Instead, we advocate integrating a number of different
parSing strategies tailored to each type of construction as dictated by the
¢oplication domain. The parser should dynamically select parsing
strategies according to what type of construction it expects in the course
of the parse. We described a simple algorithm designed along these
lines that makes dynamic choices between two parsing strategies, one
designed for case constructions and the other for linear patterns. While
this dynamic selection coproach was suggested by the needs of flexible
parSing, it also seemed to give our trial implementation significant
efficiency advantages over single-strategy approaches for grammatical
input.

5. References

1. Ball, J. E. and Hayes, P.J. Representation of Task-Independent
Knowledge in a Gracefully Interacting User Interface. Pro¢. 1st Annual
Meeting of the American Association for Artificial Intelligence, American
Assoc. for Artificial Intelligence, Stanford University, August, 1980, pp.
116-120.

2. Birnbaum, L and Selfridge, M. Conceptual Analysis in Natural
Language. In Inside Computer Understanding, R. Schank and
C. Riesbeck, Eds., New ~lersey: Edbaum Assoc., 1980, pp. 318-353,

3. Carbonell, J. G. Towards a Self.Extending Parser. Proceedings of
the 17th Meeting of the Association for Computational Linguistics, ACL-
79, 1979, pp. 3-7.

4. Carbonell, J. G. A.MIN: A Search-Control Method for Information-
Gathering Problems. Proceedings of the First AAAI Conference, AAAI.
80, August, 1980.

• 5. GerShman, A. V. Knowledge.Beset/Parsing. Ph.D. Th., Yale
University, April 1979. Computer Sci. Dept. report # 156

6. Hayes, P. J. and Mouradian, G. V. Rexible Parsing. Proc. of 18th
Annual Meeting of the Assoc. for Comput. Ling., Philadelphia,
June, 1980, pp. 97.103.

7. Hayes P. J. Focused Interaction in Fiexible Parsing. Carnegie.Mellon
UniverSity Computer Science Department, 1981.

8. Hendrix, G. G., Sacerdoti, E. D. and Slocum, J. Developing a Natural
Language Interface to Complex Data. Tech. Rept. Artificial Intelligence
Center., SRI International, 1976.

9. Kwasny, S. C. and Sondheimer, N. K. Ungrammaticality and Extra-
Grammaticality in Natural Language Understanding Systems. Proc. of
17th Annual Meeting of the Assoc. for Comput. Ling., La Jolla, Ca.,
August, 1979, PP. 19-23.

10. Marcus, M. A.. A Theory of Syntactic Recognition for Natural
Language. MIT Press, Cambridge, Mass., 1980.

1 1. Parkison. R. C., Colby, K. M., and Faught, W. S. "Conversational
Language Comprehension Using Integrated Pattern.Matching and
Parsing." Artificia/Intelligence 9 (1977), 111-134.

12. Riesbeck. C. and Schank. R, C. Comprehension by Computer:.
Exl:ectation.aased Analysis of Sentences in Context. Tech. Rept. 78,
Computer Science Department, Yale University, 1976:

13. Waltz, D. L. and Goodman. A. B. Writing a Natural Language Oats
Base System. IJCAIVproc, IJCAI-77, 1977, pp. 144-150.

14. We~schedel, R. M. and Black, J. Responding to Potentially
Unl:arseable Serttences, Tech. Rept. 79/3, Dept. of Computer and
Information Sciences, UniverSity of Delaware, 1979.

147

