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Abstract
The adaptation of neural approaches to NLP
is a landmark achievement that has called into
question the utility of linguistics in the de-
velopment of computational systems. This
research proposal consequently explores this
question in the context of a neural morpho-
logical analyzer for a polysynthetic language,
St. Lawrence Island Yupik. It asks whether in-
corporating elements of Yupik linguistics into
the implementation of the analyzer can im-
prove performance, both in low-resource set-
tings and in high-resource settings, where rich
quantities of data are readily available.

1 Introduction

In the years to come, the advent of neural ap-
proaches will undoubtedly stand out as a pivotal
point in the history of computational linguistics
and natural language processing. The introduction
of neural techniques has resulted in system imple-
mentations that are performant, but highly depen-
dent on algorithms, statistics, and vast quantities
of data. Still we consider this work to belong to
computational linguistics, which raises the ques-
tion: Where does linguistics fit in?

Researchers have endeavored to answer this
question, though some years before the popular-
ization of neural approaches, demonstrating in
particular the value of linguistics to morpholog-
ical and syntactic parsing (Johnson, 2011; Ben-
der, 2013) as well as machine translation (Raskin,
1987). This question is all the more relevant now
in light of machine learning; as such, the research
proposed herein is an exploration of the value of
linguistics and how its pairing with neural tech-
niques consequently affects system performance.

2 Previous Work

As this question is too broad in scope to explore
as is, we instead apply it to a specific context, and

ask how the use of linguistics can facilitate the de-
velopment of a neural morphological analyzer for
the language St. Lawrence Island Yupik.

St. Lawrence Island Yupik, hereafter Yupik,
is an endangered, polysynthetic language of the
Bering Strait region that exhibits considerable
morphological productivity. Yupik words may
possess several derivational suffixes, such as -pig
in (1), which are responsible for deriving new
words from existing ones: mangteghapig- ‘Yupik
house’ from mangteghagh- ‘house’. Derivational
suffixes are then followed by inflectional suffixes
which mark grammatical properties such as case,
person, and number.

(1) mangteghapiput
mangteghagh- -pig- -put
house- -real- ABS.PL.1PLPOSS

‘our Yupik houses’ (Nagai, 2001, p.22)

Analyzing a Yupik word into its constituent
morphemes thus poses a challenge given the po-
tential length and morphological complexity of
that word, as well as the fact that its morphemes’
actual forms may have been altered by the lan-
guage’s morphophonology (see § 4.2), as illus-
trated in (1). Moreover, since there exist few
Yupik texts that could qualify as training data for
a neural morphological analyzer, Yupik may also
be considered a low-resource language.

Low-resource settings offer initial insights into
how linguistics impacts a morphological ana-
lyzer’s performance. While many neural systems
perform well when they are trained on a multi-
tude of data points, studies have shown that uti-
lizing linguistic concepts and incorporating lan-
guage features can enhance performance in set-
tings where training data is scarce.

With respect to the task of morphological anal-
ysis in particular, Moeller et al. (2019) demon-
strated that when data was limited to 10,000 to
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30,000 training examples, a neural morphologi-
cal analyzer for Arapaho verbs that considered
linguistically-motivated intermediate forms ulti-
mately outperformed the analyzer that did not.

3 Linguistics in Low-Resource Settings

Given the success of Moeller et al. (2019)’s study,
we replicated the morphological parsing or analy-
sis experiments for Yupik nouns, studying the ex-
tendability of the claim that incorporating linguis-
tics eases the task of morphological analysis.

3.1 Methodology
3.1.1 Morphological Analysis as Machine

Translation
Initial steps toward recreating the Arapaho exper-
iments involved recasting morphological analy-
sis as a sequence-to-sequence machine translation
task. The input sequence consists of characters
that comprise the surface form, such as whales,
which is translated into an output sequence of
characters and morphological tags that comprise
the glossed form, such as whale[PL]:

w h a l e s
↓

w h a l e [PL]

The morphological analysis of the Yupik surface
form in (2) can consequently be regarded as the
following translation:

a g h v e g h e t
↓

a g h v e g h [ABS] [PL]

Observe that the glossed form resembles the in-
terlinear morphological gloss, underlined in (2),
which offers a lexical or linguistic description of
each individual morpheme.

(2) aghveghet
aghvegh- -et
whale- -ABS.PL

‘whales’

While this methodology of training a machine
translation system to translate between surface
forms and glossed forms (the direct strategy) has
resulted in fairly successful morphological analyz-
ers (Micher, 2017; Moeller et al., 2018; Schwartz
et al., 2019), Moeller et al. (2019) found that sup-
plementing the training procedure with an inter-
mediate translation step (the intermediate strat-
egy) improved the performance of the Arapaho

verb analyzer in instances of data scarcity. This
intermediate step utilized the second line seen in
(2) that is neglected in the direct strategy, but is
regarded as significant by linguists for listing con-
stituent morphemes in their full forms. As a re-
sult, in addition to training an analyzer via the di-
rect strategy, Moeller et al. (2019) trained a second
analyzer via the intermediate strategy, that per-
formed two sequential translation tasks, from sur-
face form (SF) to intermediate form (IF), and from
intermediate form to glossed form (GF).

SF: aghveghet

↓

IF: aghvegh-et

↓

GF: aghvegh[ABS][PL]

3.1.2 Generating Training Data

The training data in our replicated study conse-
quently consisted of Yupik SF-IF-GF triplets. Like
the training sets described in Moeller et al. (2019),
the Yupik datasets were generated via the exist-
ing finite-state morphological analyzer (Chen and
Schwartz, 2018), implemented in the foma finite-
state toolkit (Hulden, 2009). Since analyzers im-
plemented in foma perform both morphological
analysis (SF→GF) and generation (GF→SF) and
permit access to intermediate forms, the glossed
forms were generated first, by pairing a Yupik
noun root with a random selection of derivational
suffixes, and a nominal case ending, as in (3) (see
§ 4.1 for a more detailed discussion).

(3) aghvegh-ghllag[ABS][PL]

Each glossed form’s intermediate and surface
forms were subsequently generated via our Yupik
finite-state analyzer (Chen and Schwartz, 2018),
resulting in triplets such as the one seen below:

SF aghveghllaget
IF aghvegh-ghllag-et
GF aghvegh-ghllag[ABS][PL]

Each triplet was split into three training sets,
consisting of the following parallel data:

1. SF → IF
2. IF → GF
3. SF → GF
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The first two sets were used to train the analyzer
via the intermediate strategy, and the last set was
used to train the analyzer that adhered to the di-
rect strategy. Lastly, whereas Moeller et al. (2019)
developed training sets consisting of 14.5K, 18K,
27K, 31.5K, and 36K examples, the Yupik train-
ing sets varied from 1K to 20K examples in incre-
ments of 5000, to more realistically represent the
low-resource setting of Yupik.

3.1.3 Training Parameters
For training, each parallel dataset was tokenized
by character and randomly partitioned into a train-
ing set, a validation set, and a test set in a 0.8 /
0.1 / 0.1 ratio. The two analyzers trained on each
of these datasets were then implemented as bidi-
rectional recurrent encoder-decoder models with
attention (Schuster and Paliwal, 1997; Bahdanau
et al., 2014) in the Marian Neural Machine Trans-
lation framework (Junczys-Dowmunt et al., 2018).
We used the default parameters of Marian, de-
scribed in Sennrich et al. (2016), where the en-
coder and decoder consisted of one hidden layer
each, and the model was trained to convergence
via early stopping and holdout cross validation.

3.2 Results
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Figure 1: Accuracy scores of the analyzers trained
on the intermediate and direct strategies, for all five
datasets

The two trained analyzers for each dataset were
evaluated on identical held-out test sets in order to
compare their performances. As illustrated in Fig-
ure 1, it was only in the lowest data setting that
the intermediate strategy outperformed the direct
strategy with respect to accuracy. In all other in-

stances, the direct strategy emerged as the better
training methodology.

We speculate that this disparity in our results
and that of Moeller et al. (2019) is due to differ-
ences in the morphophonological systems of Ara-
paho and Yupik and their effects on spelling. Ara-
paho’s morphophonology, in particular, can radi-
cally alter the spelling of morphemes in the GF
versus SF of a given word, as seen below (Moeller
et al., 2019). It is possible that the intermediate
step consequently assists the Arapaho analyzer in
bridging this orthographical gap.

SF nonoohobeen
IF noohoween
GF [VERB][TA][ANIMATE-OBJECT]

[AFFIRMATIVE][PRESENT]
[IC]noohow[1PL-EXCL-SUBJ][2SG-OBJ]

In Yupik, however, there is considerably less
variation in the spelling (see § 3.1.2). This may
mean the addition of the intermediate step in the
Yupik analyzer only creates more room for error,
and the direct strategy fares better as a result.

Though the results of our replicated study seem
to point to the expendability of linguistics for the
task of morphological analysis, calculating the
Levenshtein distances between the incorrect out-
puts of each analyzer and their gold standard out-
puts offers a novel interpretation.

For every morphological analysis flagged as in-
correct, its Levenshtein distance to the correct
analysis was calculated, and all such distances
were averaged for each analyzer (see Figure 2).
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Figure 2: Average Levenshtein distances of the analyz-
ers trained on the intermediate and direct strategies, for
all five datasets
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(4) nunivagseghat
nunivagseghagh- -t
tundra.vegetation- -ABS.PL

‘tundra vegetation’ (Nagai, 2001, p.60)

(5) Sivuqaghhmiinguunga
Sivuqagh- -mii- -ngu- -u- -nga
St. Lawrence Island- -resident.of- -to.be. -INTR.IND- -1SG

‘I am a St. Lawrence Islander’ (Jacobson, 2001, p.42)

(6) ilughaghniighunneghtughllagyalghiit
ilughagh- -niigh- -u- -negh- -tu- -ghllag- -yalghii- -t
cousin- -tease- -do- -very.many- -do.habitually- -very- -INTR.PTCP OBL- -3PL

‘Many cousins used to teach each other a lot’ (Apassingok et al., 1993, p.47)

We found that the average Levenshtein distance
for the analyzer trained on the intermediate strat-
egy was statistically less than that of the direct
strategy analyzer (p < 0.0001), with the excep-
tion of the lowest data setting. At 15K and 20K
training examples, for instance, the average Lev-
enshtein distances differed by nearly 10 or 11 op-
erations. Furthermore, there did not appear to be a
statistically significant difference in the complex-
ity of the analyses being flagged as incorrect; the
direct strategy was just as likely as the intermedi-
ate strategy to misanalyze simple words with one
or two derivational suffixes.

The shorter Levenshtein distances suggest that
the analyzers trained on the intermediate strategy
consistently returned analyses that better resem-
bled the correct answers as compared to their di-
rect strategy counterparts. Therefore, even though
the direct strategy proved superior to the interme-
diate strategy with respect to general accuracy, the
outputs of the intermediate strategy may be more
valuable to students of Yupik who are more reliant
on the neural analyzer for an initial parse.

4 Linguistics in High-Resource Settings

The replicated study suggests that the accuracy
of the analyzer is proportional to the quantity of
training examples, especially for the direct strat-
egy, as evidenced in Figure 1. Additional experi-
ments demonstrated, however, that even using the
finite-state analyzer to generate as many as 10 mil-
lion training examples resulted in the accuracy of
the neural analyzer plateauing around 88.77% for
types and 87.19% for tokens on a blind test set
that encompassed 659 types and 796 tokens re-

spectively. This raises the question as to whether it
is possible to improve the neural analyzer to com-
petitive accuracy scores above 90% by reinforcing
the direct strategy with aspects of Yupik linguis-
tics whose effects have yet to be explored. Thus,
the remainder of this proposal introduces these lin-
guistic aspects and suggests means of integrating
them into the high-resource implementation of the
neural analyzer.

4.1 Integrating Yupik Morphology

One aspect of Yupik that may be useful is its word
structure, which typically adheres to the following
template, where ( ) denotes optionality:

Root + (Derivational Suffix(es)) + Inflectional
Suffix(es) + (Enclitic)

Most roots can be identified as common nouns
or verbs and are responsible for the most morpho-
logically complex words in the language, as they
are the only roots that can take derivational suf-
fixes. Moreover, all derivational morphology is
suffixing in nature, and Yupik words may have
anywhere from zero to seven derivational suffixes,
with seven being the maximum that has been at-
tested in Yupik literature (de Reuse, 1994). Lastly,
there are two types of inflection in Yupik: nominal
inflection and verbal inflection.

This word structure consequently results in
Yupik words of varying length as well as varying
morphological complexity (see (4), (5), and (6)),
which in turn constitutes ideal conditions for cur-
riculum learning.

Curriculum learning, with respect to machine
learning, is a training strategy that “introduces dif-
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ferent concepts at different times, exploiting previ-
ously learned concepts to ease the learning of new
abstractions” (Bengio et al., 2013). As such, “sim-
ple” examples are presented in the initial phases
of training, with each phase introducing examples
that are progressively more complex than the last,
until the system has been trained on all phases, that
is, the full curriculum.

The morphological diversity of Yupik words is
naturally suited for curriculum learning, and may
positively impact the accuracy of the neural ana-
lyzer. One proposed experiment of this paper is to
restructure the training dataset, such that the neu-
ral analyzer is trained on the simplest Yupik words
first, that is, those words consisting of an inflected
root with zero derivational suffixes. Each suc-
cessive phase introduces words with an additional
derivational suffix, until the last phase presents the
most morphologically complex words attested in
the language.

4.2 Integrating Yupik Morphophonology

A second aspect of Yupik linguistics that may be
integrated is its complex morphophonological rule
system. In particular, the suffixation of deriva-
tional and inflectional morphemes in Yupik is con-
ditioned by morphophonological rules that apply
at each morpheme boundary and obscure them,
rendering a surface form that may be unrecogniz-
able from the glossed form, as in (7):

(7) kaanneghituq
kaate- -nghite- -u- -q
arrive- -did.not- -INTR.IND- -3SG

‘he/she did not arrive’ (Jacobson, 2001, p.43)

Moreover, each morphophonological rule has
been assigned an arbitrary symbol in the Yupik
literature (Jacobson, 2001), and so, every deriva-
tional and inflectional suffix can be written with all
of the rules associated with it, as in (8). Here, @
modifies root-final -te, – deletes root-final conso-
nants, ∼f deletes root-final -e, and (g/t) designates
allomorphs that surface under distinct phonologi-
cal conditions.

(8) kaanneghituq
kaate- -@–nghite- -∼f(g/t)u- -q
arrive- -did.not- -INTR.IND- -3SG

‘he/she did not arrive’ (Jacobson, 2001, p.43)

A second proposed experiment will conse-
quently explore the potential insight provided by

including these morphophonological symbols in
the training examples, studying whether the sym-
bols facilitate learning of the surface form to
glossed form mapping or whether these additional
characters actually introduce noise. Since mini-
mal pairs do exist to differentiate the phonolog-
ical conditions under which each symbol applies
(see (9)), inclusion of the symbols may in fact as-
sist the system in learning the morphophonologi-
cal changes that are induced by certain suffixes.

(9) nuna–ghllak → nunaghllak
qulmesiite–ghllak → qulmesiiteghllak
anyagh–ghllak → angyaghllak
sikig–ghllak → sikigllak
kiiw–ghllak → kiiwhllagek

Lastly, Yupik morphophonology may also be in-
tegrated into a curriculum learning training strat-
egy, where separating the “easy-to-learn” training
examples from the “hard-to-learn” training exam-
ples can be accomplished in the following ways:

1. Quantifying the number of morphophonolog-
ical rules associated with a given morpheme,
such that the simplest training examples en-
compass all suffixes with zero symbols at-
tached, such as -ni ‘the smell of; the odor
of; the taste of ’ (Badten et al., 2008, p.658).
Subsequent phases successively increase this
quantity by one.

2. Ranking the morphophonological rules them-
selves by difficulty, such that the initial phase
introduces Yupik suffixes with the rules that
have been deemed “easiest to learn”, while
future phases gradually introduce those that
are “harder to learn” 1.

5 Presenting A Holistic Experiment

In summary, the objective of this proposed re-
search is to utilize aspects of the Yupik language to
reinforce the direct strategy in high-resource set-
tings, guiding how the training examples are struc-
tured and the nature of their content. Previous
sections share possible ways in which these lin-
guistic elements of Yupik may be taken into ac-
count, but they can in fact be integrated into a sin-
gle holistic experiment that trains multiple analyz-
ers with varying degrees of linguistic information.

1A difficulty ranking was elicited from a single student
during fieldwork conducted in March 2019, as most Yupik
students had not yet mastered the symbols and the rules they
represented.
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In particular, we propose developing several sets
of training data with the following characteristics:

1. Includes the morphophonological symbols
(§ 4.2)

2. Ranks the training examples with respect to
the number of morphemes (§ 4.1)

3. Ranks the training examples with respect to
the number of morphophonological symbols
per morpheme (§ 4.2)

4. Ranks the training examples with respect to
the learning difficulty of the symbols (§ 4.2)

Each training dataset will incorporate as many
or as few of these characteristics as desired, for
a total of 15 datasets (

(
4
4

)
+

(
4
3

)
+

(
4
2

)
+

(
4
1

)
),

and by extension, 15 neural analyzers. We expect
any training set that involves morphophonological
symbols to improve upon the existing analyzer’s
ability to distinguish between otherwise homo-
graphic suffixes, often a point of confusion. Tak-
ing morpheme count into consideration may also
improve the analyzer’s handling of words with rel-
atively few derivational suffixes (∼0-3), leaving
the bulk of errors to instead comprise the most
morphologically complex words. Furthermore, by
virtue of training on an organized dataset rather
than a randomly selected one, we predict that the
analyzer will be exposed to a much more equal
distribution of Yupik roots and suffixes. It should
then be less likely than it is now to invent roots
and suffixes that conform morphophonologically,
but do not actually exist in the attested lexicon.
Lastly, the performance of these analyzers can be
compared to the performance of a baseline system,
that is simply trained on the direct strategy with-
out any morphophonological symbols or structure
to its training data.

6 Conclusion

Moeller et al. (2019) and the replicated study for
Yupik presented herein suggest that the use of lin-
guistics can positively impact the performances of
neural morphological analyzers, at least in lower
resource settings. The proposed research, how-
ever, seeks to extend this observation to any data
setting, and explore the effects of incorporating
varying degrees of linguistic information in the
training data, in hopes of shedding light on how
best to approach to the task of morphological anal-
ysis via machine learning.
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