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Abstract

The Penn Treebank (PTB) represents syntactic
structures as graphs due to nonlocal dependen-
cies. This paper proposes a method that ap-
proximates PTB graph-structured representa-
tions by trees. By our approximation method,
we can reduce nonlocal dependency identifica-
tion and constituency parsing into single tree-
based parsing. An experimental result demon-
strates that our approximation method with
an off-the-shelf tree-based constituency parser
significantly outperforms the previous meth-
ods in nonlocal dependency identification.

1 Introduction

In the Penn Treebank (PTB) (Marcus et al., 1993),
syntactic structures are represented as graphs due
to nonlocal dependencies, which capture syntac-
tic discontinuities. This paper proposes a method
that approximates PTB graph-structured represen-
tations by trees. By our approximation method,
we can reduce nonlocal dependency identification
and constituency parsing into single tree-based
parsing. The information loss of our approxima-
tion method is slight, and we can easily recover
original PTB graphs from the output of a parser
trained using the approximated ones. An experi-
mental result demonstrates that our approximation
method with an off-the-shelf tree-based parser sig-
nificantly outperforms the previous nonlocal de-
pendency identification methods.

2 Nonlocal Dependency Identification

This section explains nonlocal dependencies in the
PTB, and summarizes previous work on nonlocal
dependency identification.

2.1 Nonlocal dependency in PTB
In the PTB, a nonlocal dependency is represented
as an edge. One node is called an empty element,

which is a covert element in the syntactic repre-
sentation. The other is called a filler. PTB’s syn-
tactic representations are graph-structured, while
its constituency structures are represented by trees.
Below, a syntactic representation in the PTB is
called a PTB graph. The left graph in Figure 1 is
an example of PTB graph. The empty elements are
labelled with -NONE-. The terminal symbols such
as 0 and ∗T∗ designate their types of the empty ele-
ments. 0 and ∗T∗ represent a zero relative pronoun
and a trace of wh-movement, respectively. If a ter-
minal symbol of an empty element is indexed with
a number, its corresponding filler exists in the PTB
graph, and is indexed with the same number. For
example, the empty element of type ∗T∗ is indexed
with 1 and it has the corresponding filler WHNP-1.
For more details about PTB nonlocal dependen-
cies, we refer readers to (Bies et al., 1995).

2.2 Previous Work

Most PTB-based parsers deal with the trees ob-
tained by removing nonlocal dependencies and
empty elements (we call such trees PTB trees).
While such parsers are simple, efficient and ac-
curate, they cannot handle nonlocal dependencies.
To fill this gap, several methods have been pro-
posed so far. They can be classified into the fol-
lowing two categories: the methods that introduce
special operations handling nonlocal dependen-
cies or empty elements into parsing algorithm (Di-
enes and Dubey, 2003; Schmid, 2006; Cai et al.,
2011; Evang and Kallmeyer, 2011; Maier, 2015;
Kato and Matsubara, 2016; Hayashi and Nagata,
2016; Kummerfeld and Klein, 2017), and the ones
that recover PTB graphs from PTB trees generated
by a parser (Johnson, 2002; Campbell, 2004; Levy
and Manning, 2004). The former approach is re-
quired to design a parsing model that is suitable
for the algorithm. In the latter post-processing
approach, the pre-processing parser cannot reflect
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Figure 1: PTB graph and PTB augmented tree.

the information about nonlocal dependencies.

3 Tree Approximation of PTB Graphs

This section proposes a new approach of nonlo-
cal dependency identification. We reduce non-
local dependency identification and constituency
parsing into single tree-based parsing. In our ap-
proach, a PTB graph is converted to a tree which
approximately represents the PTB graph. The con-
version consists of the following two steps:

Removing nonlocal dependency removes the
edges between the empty elements and
their fillers, and augments the labels of
them. Augmented labels are used in order to
recover the removed edges.

Removing empty element removes the empty el-
ements and inserts new inner nodes that en-
code the empty elements.

We call the trees obtained by this conversion PTB
augmented trees. Figure 1 shows an example of
the conversion. Below, we explain each step in
detail.

3.1 Removing nonlocal dependency

By removing the nonlocal dependency edges, a
PTB graph becomes a tree. In order to approx-
imately represent the edges in the resulting tree,
we augment node labels in the annotation scheme
identical to that proposed by Kato and Matsubara
(2016). In this scheme, the labels of empty el-
ements and their fillers are augmented with spe-
cial tags. We first describe the annotation scheme,
and then how to recover removed edges using aug-
mented labels.

3.1.1 Annotation approximately representing
nonlocal dependency

Algorithm 1 is the annotation algorithm of Kato
and Matsubara (2016). Here, posi(x, y) is the rel-
ative position of x for y and defined as follows:

posi(x, y) =


A (x is an ancestor of y)
L (x occurs to the left of y)
R (x occurs to the right of y)

The tag OBJCTRL enables us to distinguish be-
tween subject and object control.

Algorithm 1 Removing nonlocal dependency
type(e) is the type of an empty element e.
cat(x) is the category of x.
par(x) is the parent of x.
SBJ(x) means the label of x has the tag SBJ

Input: an empty element e and e’s co-indexed filler f
remove the edge (e, f)
assign posi(f, e) to e
if type(e) = ∗ ∧ ¬SBJ(f) then

assign OBJCTRL to e
end if
if type(e) ∈ {∗EXP∗, ∗ICH∗, ∗RNR∗, ∗T∗} then

assign type(e), cat(par(e)) and posi(f, e) to f
end if

For example, the left PTB graph in Figure 1 is
converted to the middle tree. The boxes designate
the augmented empty element and filler.

3.1.2 nonlocal dependency recovery
This section proposes a method of recovering non-
local dependencies using the annotation described
in the previous section. This method is based on
heuristic rules, which are similar to, but simpler
than those of Kato and Matsubara (2016).1

1 Kato and Matsubara (2016) defined their recovery rules
for intermediate results in parsing. This makes their rules
somewhat complex.
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node pattern constraint imposed on the corresponding node x
e = (-NONE-L ∗) posi(x, e) = L ∧ c-cmd(x, e) ∧ SBJ(x)
e = (-NONE-R ∗) posi(x, e) = R ∧ c-cmd(x, e) ∧ SBJ(x)
e = (-NONE-L-OBJCTRL ∗) posi(x, e) = L ∧ c-cmd(x, e) ∧ cat(x) ∈ {NP, PP} ∧ cat

(
par(x)

)
= VP

e = (-NONE-L ∗T∗) posi(x, e) = L ∧ c-cmd(x, e) ∧ match(x, e)
e = (-NONE-A ∗T∗) ∃y

(
posi(x, y) = A ∧ posi(y, e) = A ∧ cat(y) = PRN

)
∧ cat

(
par(e)

)
= cat(x)

e = (-NONE-R ∗RNR∗) posi(x, e) = R ∧ c-cmd(x, e) ∧ match(x, e)
e = (-NONE-L ∗ICH∗) posi(x, e) = L ∧ match(x, e)
e = (-NONE-R ∗ICH∗) posi(x, e) = R ∧ match(x, e)
f = (X-∗EXP∗-R · · · ) posi(f, x) = R ∧ c-cmd(x, f) ∧ x = (NP (PRP it))

match(f, e) means the type, the category and the position tag of a filler f are identical to those of an empty element e.

Table 1: The rules for nonlocal dependency recovery

A rule consists of a node pattern and a con-
straint. When there is a node that matches the
pattern, we select the nearest node satisfying the
constraint as its co-indexed node. Table 1 summa-
rizes the rules.2 Here, c-cmd(x, y) is the syntactic
relation called c-command3 and holds iff the fol-
lowing condition (1) is satisfied:

∃z.
(
(z is a sibling of x) ∧ posi(z, y) = A

)
(1)

For example, the nonlocal dependency in Figure
1 can be recovered by the fourth rule in Table 1.

3.2 Removing empty elements
While the first step in the conversion can remove
nonlocal dependency edges, the empty elements
still remain. The second step removes empty ele-
ments and encodes them as inner nodes. By this
conversion, parsing algorithm require no special
operations handling empty elements.

3.2.1 Encoding empty elements
Algorithm 2 removes and encodes empty ele-
ments. For example, the middle tree in Figure 1
is converted to the right one. The dotted boxes
designate the inner nodes encoding the empty ele-
ments. Here, note that [(NP (-NONE-L ∗T∗))] is no
more than a part of the label in the PTB augmented
tree.

Kummerfeld and Klein (2017) represent empty
elements in a similar way, but important differ-
ence exists. Our method keeps empty element po-
sitions (L and R) and no nonlocal dependencies,
while they do not keep empty element positions
and reserves nonlocal dependencies. Furthermore,
while they require a specially-designed head rule

2 In the third rule, if cat(x) = PP, e is co-indexed with
not x but x’s child NP.

3 Kato and Matsubara (2016) follow Chomsky’s GB-
theory (Chomsky, 1981) to use this relation, because it holds
between co-indexed nodes in most cases. We also use this
relation.

Algorithm 2 Encoding Empty element
null(x) means all the leaves of x are empty elements.
node(l, C) creates a node with a label l and children C.
encode(x) converts the subtree rooted at x to a string.
label(x) is the label of x.

Input: a node x
〈c1, . . . , cn〉 ← children(x)
i← the leftmost position such that ¬null(ci)
C ← 〈ci〉
for j from i+ 1 to n do

if ¬null(cj) then
C ← C · 〈cj〉

else
C ← 〈node(cat(x) + ”R” + encode(cj), C)〉

end if
end for
for j from i− 1 down to 1 do

C ← 〈node(cat(x) + ”L” + encode(cj), C)〉
end for
return node(label(x), C)

to avoid constructing cyclic graphs in parsing, our
method does not need head rules in the first place.

3.2.2 Recovering empty elements
Algorithm 2 is lossless and Algorithm 3 can re-
cover the empty elements from the inner nodes in-
serted in Algorithm 2.

4 Experiment

To evaluate the performance of our proposed
method, we conducted an experiment using the
PTB. We used the Kitaev and Klein (henceforth
K&K) parser (Kitaev and Klein, 2018a)4. The
K&K parser is a state-of-the-art tree-based parser,
which can use ELMo (Peters et al., 2018) or
BERT5 (Devlin et al., 2018) as external data. PTB
graphs in the training (sections 02–21) and de-
velopment (section 22) data were converted into
PTB augmented trees by our tree approximation

4https://github.com/nikitakit/
self-attentive-parser

5The experiment using BERT is reported in (Kitaev and
Klein, 2018b).

https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser
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Empty element Nonlocal dependency Nonlocal dependency
detection identification identification
(Fillers are ignored.) (Unindexed empty elements

are excluded.)
pre. rec. F1 pre. rec. F1 pre. rec. F1

(Johnson, 2002) 85 74 79 73 63 68 – – –
(Dienes and Dubey, 2003) – – – 81.5 68.7 74.6 – – –
(Campbell, 2004) 85.2 81.7 83.4 78.3 75.1 76.7 – – –
(Schmid, 2006) 86.0 82.3 84.1 – – – 81.7 73.5 77.4
(Cai et al., 2011) 90.1 79.5 84.5 – – – – – –
(Hayashi and Nagata, 2016) 90.3 81.7 85.8 – – – – – –
(Kato and Matsubara, 2016) 88.5 82.1 85.2 81.4 75.5 78.4 79.8 73.8 76.7
(Kummerfeld and Klein, 2017) 89.5 81.6 85.4 74.3 67.3 70.6 – – –
post-processing
(using gold PTB trees)
(Johnson, 2002) 93 83 88 80 70 75 – – –
(Campbell, 2004) 94.9 91.1 93.0 90.1 86.6 88.4 – – –
ours 92.6 87.7 90.1 88.1 83.4 85.7 88.4 81.1 84.6
ours (with ELMo) 94.2 90.3 92.3 89.9 86.2 88.0 90.4 84.1 87.2
ours (with BERT) 94.9 91.4 93.1 90.8 87.4 89.0 91.6 84.9 88.1

Table 2: Comparison for nonlocal dependency identification on the test data.

Algorithm 3 Recovering empty element
decode(x) creates a tree by decoding a string assigned by
encode and returns its root.

Input: a node x
C ← children(x)
C′ ← 〈〉
while C 6= 〈〉 do

pop the first element c from C
if c is an inserted node and c has the tag L then

C ← 〈decode(c)〉 · children(c) · C
else if c is an inserted node and has the tag R then

C ← children(c) · 〈decode(c)〉 · C
else

C′ ← C′ · 〈c〉
end if

end while
return node(label(x), C′)

method6, and a parsing model was trained using
the PTB augmented trees. The hyperparameters
for training were identical to those of Kitaev and
Klein (2018a). We selected the model that maxi-
mizes the F1 score on the development data, where
we treated the node labels of PTB augmented trees
as constituent labels. For the test data (section
23), PTB graphs were recovered from the PTB
augmented trees generated by the parser. The ac-
curacy of the nonlocal dependency identification
was evaluated by the metric proposed by Johnson
(2002).

First, we evaluated the performance of our ap-
proximation method. We recovered PTB graphs
from not the parser output but the gold PTB aug-
mented trees in the development data. We ob-

6The conversion code is available at https://
github.com/yosihide/ptb2cf.

tained 99.5 F1 score in nonlocal dependency iden-
tification where unindexed empty elements were
excluded. This result means that the information
loss is slight in our approximation method.

Table 2 summarizes the performances of our
system and previous ones. These results demon-
strate that our system significantly outperforms the
previous methods in nonlocal dependency identi-
fication. Although the main reason for this is be-
cause of the performance of the K&K parser, the
important point is that our proposed approxima-
tion method enables us to use the K&K parser
for the nonlocal dependency identification task.
The previous methods that introduce additional
operations cannot adopt such parser directly. On
the other hand, although post-processing approach
can use any parser in pre-processing, our approach
outperforms the post-processing approach, even
if the pre-processing parser is assumed to always
generate gold PTB trees.

We converted PTB graphs into PTB trees to
evaluate constituency parsing performance. Table
3 shows the F1 scores of our and the K&K parser.
These results demonstrate that our tree approxima-
tion has little negative impact on the constituency
parsing performance.

5 Conclusion

This paper proposes a conversion of PTB graphs
into PTB augmented trees, which enables us to re-
duce nonlocal dependency identification and con-
stituency parsing into single parsing. Our pro-
posed conversion method can be easily combined

https://github.com/yosihide/ptb2cf
https://github.com/yosihide/ptb2cf
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pre. rec. F1
K&K 93.90 93.20 93.55
K&K (ELMo) 95.40 94.85 95.13
K&K (BERT) 96.03 95.51 95.77
Ours 93.84 92.78 93.31
Ours (ELMo) 95.27 94.70 94.99
Ours (BERT) 96.04 95.36 95.70

Table 3: Comparison for constituency parsing perfor-
mance on the test data.

with other tree-based parsers. We can expect
that the evolution of tree-based parsing technol-
ogy makes our approach improve the accuracy of
nonlocal dependency identification.
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