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Abstract

In summarization, automatic evaluation met-
rics are usually compared based on their abil-
ity to correlate with human judgments. Un-
fortunately, the few existing human judgment
datasets have been created as by-products of
the manual evaluations performed during the
DUC/TAC shared tasks. However, modern
systems are typically better than the best sys-
tems submitted at the time of these shared
tasks. We show that, surprisingly, evalua-
tion metrics which behave similarly on these
datasets (average-scoring range) strongly dis-
agree in the higher-scoring range in which cur-
rent systems now operate. It is problematic
because metrics disagree yet we can’t decide
which one to trust. This is a call for collect-
ing human judgments for high-scoring sum-
maries as this would resolve the debate over
which metrics to trust. This would also be
greatly beneficial to further improve summa-
rization systems and metrics alike.

1 Introduction

The progress in summarization is tightly inter-
twined with the capability to quickly measure im-
provements. Thus, a significant body of research
was dedicated to the development of automatic
metrics (Lloret et al., 2018). Yet, this remains an
open problem (Rankel et al., 2013).

Typically, evaluation metrics are compared
based on their ability to correlate with humans
(Lin and Hovy, 2003). Then, the selected met-
rics heavily influence summarization research by
guiding progress (Lloret et al., 2018) and by pro-
viding supervision for training summarization sys-
tems (Yogan et al., 2016).

Despite their central role, few human judgment
datasets have been created. The existing ones are
the result of the manual evaluations performed
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Figure 1: The blue distribution represents the score dis-
tribution of summaries available in the human judg-
ment datasets of TAC-2008 and TAC-2009. The red
distribution is the score distribution of summaries gen-
erated by mordern systems. The green distribution cor-
responds to the score distribution of summaries we gen-
erated in this work as described in section 3.

during shared tasks (Dang and Owczarzak, 2008,
2009).

Thus, the annotated summaries are mostly aver-
age compared to nowadays standards. Indeed, the
best systems submitted at the time of these shared-
tasks have typically served as baselines for subse-
quent works. This is illustrated by figure 1, which
compares the score distribution of summaries in
human judgment datasets with the score distri-
bution of modern summarization systems.1 The
score distribution on which evaluation metrics are
tested (blue zone) differs from the one in which
they now operate (red zone). Thus, there is no
guarantee that evaluation metrics behave accord-
ing to human judgments in the high-scoring range.
Yet, summarization systems explicitly target high-
scoring summaries (Radev et al., 2003).

In this work, we study several evaluation met-
rics in this high-scoring range based on an auto-
matically generated dataset. We show that, even
though current evaluation metrics correlate well

1for modern systems, we used the scores of summaries
from Hong et al. (2014) and other recent approaches (Cao
et al., 2015; Nallapati et al., 2017).
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with each other in the average range, they strongly
disagree for high-scoring summaries. This is re-
lated to the Simpson paradox, where different con-
clusions are drawn depending on which slice of
the population is considered (Wagner, 1982). This
is problematic because current metrics cannot be
distinguished based solely on an analysis of avail-
able human judgments. Nevertheless, they will
promote very different summaries and systems.

These results call for the gathering of human
judgments in the high-scoring range. We provide
data and code to reproduce our experiments.2

Contributions:
(i) We present a simple methodology to study

the behavior of metrics in the high-scoring range.
(ii) We observe low and even some negative cor-

relations in this range.
(iii) This work serves as a motivation to gather

human annotations in the relevant scoring range.

2 Background

Usually, evaluation metrics are compared based
on their ability to correlate with human judgments
(Lin and Hovy, 2003). Several works followed
this principle and provided different recommen-
dations about which metric to use. For instance,
Owczarzak et al. (2012) used a signed Wilcoxon
test to find significant differences between metrics
and recommended to use ROUGE-2 recall with
stemming and stopwords not removed. In a wider
study, Graham (2015) found ROUGE-2 precision
with stemming and stopwords removed to be the
best. Rankel et al. (2013) used accuracy and found
ROUGE-4 to perform well. They also observe that
the correlation between ROUGE and human judg-
ments decreases when looking at the best systems
only. This is in agreement with our work, except
that we look at summaries better than the current
state-of-the-art. Radev et al. (2003) also observed
that the high-scoring range is the most relevant for
comparing evaluation metrics because summariz-
ers aim to extract high-scoring summaries. How-
ever, they performed analysis on the best scoring
summaries from 6 systems which remain average
compared to nowadays standard.

Our analysis differs from such meta-evaluation
(evaluation of evaluation metrics) because we do
not provide another metric recommendation. In-

2https://github.com/PeyrardM/
acl-2019-Compare_Evaluation_Metrics

stead, we start from the observation that human
judgments are limited in their coverage and an-
alyze the behavior of existing candidate metrics
in the high-scoring range not available in these
datasets.

These previous works computed correlations
between metrics and humans, we compute corre-
lations between pairs of metrics in scoring ranges
for which there are no human judgments available.

3 Data Generation

In this work, we study the following metrics:
ROUGE-2 (R-2): measures the bigram overlap
between the candidate summary and the pool of
reference summaries (Lin, 2004).
ROUGE-L (R-L): a variant of ROUGE which
measures the size of the longest common sub-
sequence between candidate and reference sum-
maries.
ROUGE-WE (R-WE): instead of hard lexical
matching of bigrams, R-WE uses soft matching
based on the cosine similarity of word embeddings
(Ng and Abrecht, 2015).
JS divergence (JS-2): uses Jensen-Shannon di-
vergence between bigram distributions of refer-
ences and candidate summaries (Lin et al., 2006).
S3: a metric trained explicitly to maximize
its correlation with manual Pyramid annotations
(Peyrard et al., 2017).

We chose these metrics because they correlate
well with available human judgments (about .4
Kendall’s τ ; the exact numbers are provided in
appendix A) and are easily available. For a recent
overview of evaluation metrics, we recommend
Lloret et al. (2018).

Once an evaluation metric becomes standard, it
is optimized, either directly by supervised meth-
ods or indirectly via repeated comparisons of un-
supervised systems. To mimic this procedure, we
optimized each metric using a recently introduced
genetic algorithm for summarization (Peyrard and
Eckle-Kohler, 2016).3 The metric m is used as
the fitness function. The resulting population is a
set of summaries ranging from random to upper-
bound according to m. For both TAC-2008 and
TAC-2009, we used a population of 400 sum-
maries per topic (per metric). The final dataset
contains 160, 523 summaries for an average of

3https://github.com/UKPLab/
coling2016-genetic-swarm-MDS

https://github.com/PeyrardM/acl-2019-Compare_Evaluation_Metrics
https://github.com/PeyrardM/acl-2019-Compare_Evaluation_Metrics
https://github.com/UKPLab/coling2016-genetic-swarm-MDS
https://github.com/UKPLab/coling2016-genetic-swarm-MDS
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R-WE R-L JS-2 S3

R-2
(W)
(A)
(T)

.774

.644

.016

.708

.532
-.187

.871

.887

.284

.799

.744

.096

R-WE
(W)
(A)
(T)

-
.692
.462
-.254

.703

.530
-.145

.824

.752

.131

R-L
(W)
(A)
(T)

- -
.647
.492
-.274

.709

.571
-.200

JS-2
(W)
(A)
(T)

- - -
.738
.659
-.046

Table 1: Pairwise correlation (Kendall’s τ ) between
evaluation metrics on various scoring range. (T) is the
high-scoring range, (A) is the average-scoring range
(human judgment datasets) and (W) is the whole scor-
ing range

1, 763 summaries per topic (less than 5 ∗ 400 due
to removed duplicates). We refer to this dataset as
(W) as it covers the whole scoring range.

In order to focus on the top-scoring summaries,
we preserve the summaries scoring higher than the
LexRank baseline (Erkan and Radev, 2004) for at
least one metric. LexRank is a graph-based extrac-
tive summarizer often used as a baseline. Thus,
most current and future summarization systems
should perform better and should be covered by
the selected scoring range. Besides, LexRank is
strong enough to discard a large number of av-
erage scoring summaries. The resulting dataset
contains an average of 102 summaries kept per
topic. This dataset of top-scoring summaries is
noted (T). The ROUGE-2 score distribution of (T)
is depicted by the green area in figure 1.

We provide the pseudo-code and other details
concerning the data generation procedure in ap-
pendix B.

Additionally, we refer to the summaries avail-
able as part of the human judgment datasets as (A)
because they cover the average-scoring range.

4 Correlation Analysis

We compute the pairwise correlations between
evaluation metrics averaged over all topics for dif-
ferent scoring ranges and report the results in ta-
ble 1. For (A) and (W), we observe high correla-
tions between pairs of metrics (> .6 Kendall’s τ ).
JS-2 and R-2 have the strongest correlation, while
R-L is less correlated with the others. It is worth
remembering that JS-2 and R-2 both operate on

Figure 2: Percentage of disagreement between metrics
for increasing scores of summary pairs (Scores have
been normalized).

bigrams which also explain their stronger connec-
tion.

However, in the high-scoring range (T), corre-
lations are low and often negative. Even, R-2 and
JS-2 only retain little correlation (< 0.3 τ ).

For most pairs, the correlations are close to what
would be expected from random behavior. Addi-
tionally, R-L has negative correlations with other
metrics. It indicates that there is no global agree-
ment on what constitutes improvements when the
summaries are already better than the baseline.

This is akin to the Simpson paradox because
considering different sub-populations yields
different conclusions (Wagner, 1982). In fact,
it is simple to distinguish obviously bad from
obviously good summaries, which results in
superficially high correlations when the whole
scoring range is considered (Radev et al., 2003).
However, summarization systems target the
high-scoring range and evaluation metrics should
accurately distinguish between high-scoring sum-
maries. Unfortunately, existing metrics disagree
wildly in this range.

Disagreement increases with higher-scoring
summaries:
We also visualize the gradual change in metrics
agreement when moving from the average to the
high-scoring range in figure 2. For each pair of
metrics, the disagreement clearly increases for
higher scoring summary pairs. This confirms that
metrics disagree for high-scoring summaries. It
is more pronounced for some pairs like the ones
involving R-L as already observed in table 1.
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The problem with reporting several disagreeing
metrics:
It is a common good practice to report the results
of several evaluation metrics. In the average scor-
ing range, where metrics generally agree, this cre-
ates a robust measure of progress. The specificities
of each metric are averaged-out putting the focus
on the general trend.

However, when the metrics do not correlate, im-
provements according to one metric are rarely im-
provements for the other ones.

Let M = {m1, . . . ,mn} be the set of evalua-
tion metrics. Then, for a topic T from the dataset
(W), we select a summary s and ask: among the
summaries which are better than s for one metric
(N), how many are better for all metrics (F)? This
is given by:

F

N
=
|{x ∈ T | ∀m ∈M, m(x) > m(s)}|
|{x ∈ T | ∃m ∈M, m(x) > m(s)}|

(1)

Here, m(x) is the score of the summary x accord-
ing to the metric m. Thus, F

N measures the dif-
ficulty of finding consistent improvements across
metrics.

The process is repeated for 5, 000 randomly
sampled summaries in the sources. In figure 3, the
resulting F

N ratios are reported against the normal-
ized average score of the selected summaries s.

We observe a quick decrease in the ratio F
N . The

proportion of consistent improvements (agreed by
all metrics) is dropping when the average score of
summaries increases. When the baseline scores
go up, the disagreement between metrics is strong
enough that we cannot identify summaries which
are considered better than the baseline for each
metric. Thus, there is no common trend between
metrics that can be exploited by reporting them
together.

Discussion:
Intuitively, smaller populations and narrow scor-
ing ranges can also lead to lower correlations.
However, (T) displays low correlations with 102
summaries per topic whereas (A) has strong
correlations with 50 summaries per topic. Also,
the high-scoring range covers 38% of the full
scoring range (from LexRank to upper-bound),
while human judgments cover 35% of the full
scoring range. Thus, the width of the scoring
range and the population size do not explain the

Figure 3: The x-axis is the score of the normalized av-
erage score of s given by 1

n

∑
imi(s) after the metrics

have been normalized between 0 and 1. On the y-axis:
F
N associated to the sampled summary s. We also re-
port the average performance of current systems.

observed differences.

As a limitation of this study, we can note
that the data generation procedure simulates
further progress in summarization by stochasti-
cally optimizing each evaluation metric. While
this constitutes a good approximation, there is
no guarantee that high-scoring summaries are
sampled with the same distribution as future
summarization systems. However, the sampling
still covers a large diversity of high-scoring sum-
mary and reveal general properties of evaluation
metrics.

Other tasks:
Our analysis is performed on TAC-2008 and
TAC-2009 because they are benchmark datasets
typically used for comparing evaluation metrics.
However, our approach can be applied to any
dataset. In particular, for future work, this study
could be replicated for related fields like Machine
Translation or Natural Language Generation.

5 Conclusion

Evaluation metrics behave similarly on the aver-
age scoring range covered by existing human judg-
ment datasets. Thus, we cannot clearly decide
which one is the best. Yet, we showed that they
will promote very different summaries in the high-
scoring range. This disagreement is strong enough
that there is no common trend which could be cap-
tured by reporting improvements across several
metrics. This casts some doubts on the evaluation
methodologies in summarization and calls for the
collection of human annotations for high-scoring
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summaries.
Indeed, since metrics strongly disagree in the

high-scoring regime, at least some of them are de-
viating largely from humans. By collecting human
judgments in this specific range, we could identify
the best ones using standard meta-evaluation tech-
niques. Such annotations would also be greatly
beneficial to improve summarization systems and
evaluation metrics alike.
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A Correlation with Human Judgments

For each metric that we consider in the paper, we
computed its correlation with human judgments in
both TAC-2008 and TAC-2009 datasets (Peyrard
and Eckle-Kohler, 2017). We used two kinds of
human annotations available in these datasets: Re-
sponsiveness which is score given by human on
5-point LIKERT scale, and Pyramid where anno-
tators follow the Pyramid annotation guideline to
annotate content selection. The correlations are
computed with Kendall’s τ for each topic and av-
eraged over all topics in both datasets. The results
are reported in table 2.

responsiveness Pyramid

R-2 .391 .451
R-WE .378 .431
R-L .353 .392
JS-2 .379 .444
S3 .403 .477

Table 2: Correlation of automatic metrics with human
judgments for TAC-2008 and TAC-2009. The correla-
tion is measured with Kendall’s τ .

B Data Generation Algorithm

The general data generation procedure is
described by algorithm 1. The function
Score(S,M) takes a list S of summaries and a list
M of evaluation metrics and outputs a list where
each summary has been scored by each evalu-
ation metric in M . The SampleSummaries
function is the genetic algorithm introduced
genetic algorithm for summarization (Peyrard
and Eckle-Kohler, 2016; Peyrard and Gurevych,
2018). The evaluation metric is optimized by the
genetic algorithm and the resulting population
is a set of summaries ranging from random to
upper-bound.

We used a population of k = 400. Then, the
final dataset contains 160, 523 summaries for an
average of 1, 763 summaries per topic (less than
5 ∗ 400 due to removed duplicates).

This algorithm results in a dataset covering the
whole scoring range. In order to filter out low and
average scoring summaries, we employ the proce-
dure described by algorithm 2. In this algorithm,
the function Score(T ,m) returns a list of all the
summaries in the topic T scored by the metric m.
The baseline B is an existing algorithm used as

Algorithm 1: Generate a Dataset of
Scored Summaries
Input : D = {s1, . . . , sn}: document as a

set of sentences
L: length constraint
k: number of summaries to

generate
M = {m1, . . . ,me}: evaluation

metrics considered
Output: C = [S1, . . . , Sk]: a set of scored

summaries
1 Function GenerateData(D,L, k,M):
2 C := []
3 for m ∈M do
4 S :=

SampleSummaries(D,L, k,m)
5 S := RemoveDuplicate(S)
6 C ← Score(S,M)

7 end

a threshold: for each metric, we keep every sum-
mary scoring higher than B. The final set of top-
scoring summaries is the union of the top-scoring
summaries of each metric.

For the thresholding, we chose LexRank (Erkan
and Radev, 2004), because it is a heavily used
baseline. Therefore, most current and future
summarization systems should perform better and
should be covered by the selected scoring range.
Besides, LexRank is strong enough to discard a
large number of average scoring summaries. After
the selection, we ended up with an average of 102
summaries kept per topic.

C Scatter Matrix Plots: TAC-2008 and
TAC-2009

We compute the pairwise correlation between met-
rics using the existing human judgments (TAC-
2008 and TAC-2009). Figure 4 is the scatter ma-
trix plot describing the correlations between pairs
of candidate metrics. The number and the cell
background color indicate the Kendall’s τ between
the two metrics. This measures the proportion of
pairs of summaries ranked in the same order by
both metrics. Thus, the kendall’s τ are the ones
depicted in the paper in table 1. Diagonal cells
represent the score distribution of summaries for
the given metric.
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(a) Whole scoring range (W). (b) Average-scoring range (A). (c) High-scoring range (T).

Figure 4: Pairwise correlation between evaluation metrics on various scoring range. The generated dataset uses
the topics from TAC-2008 and TAC-2009. The human judgments are the ones available as part of TAC-2008 and
TAC-2009.

Algorithm 2: Select Top-Scoring Sum-
maries
Input : D = {T1, . . . , Tn}: dataset as a

list of topics (each topic contains
a list of summaries)
B: baseline algorithm used to

decide the high-scoring summaries
M = {m1, . . . ,me}: evaluation

metrics considered
Output: D(top): dataset which contain only

top-scoring summaries
1 Function SelectTopSummaries(D,B,M):
2 D(top) := []
3 for T ∈ D do
4 T (top) := []
5 for m ∈M do
6 S := []
7 for s ∈ Score(T ,m) do
8 if

m(s) > m(B(T .source))
then

9 S ← s
10 end
11 end
12 T (top) := T (top) ∪ S
13 end
14 D(top) ← T (top)

15 end


