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Abstract

We propose a new end-to-end question an-
swering model, which learns to aggregate an-
swer evidence from an incomplete knowledge
base (KB) and a set of retrieved text snip-
pets. Under the assumptions that the structured
KB is easier to query and the acquired knowl-
edge can help the understanding of unstruc-
tured text, our model first accumulates knowl-
edge of entities from a question-related KB
subgraph; then reformulates the question in the
latent space and reads the texts with the accu-
mulated entity knowledge at hand. The evi-
dence from KB and texts are finally aggregated
to predict answers. On the widely-used KBQA
benchmark WebQSP, our model achieves con-
sistent improvements across settings with dif-
ferent extents of KB incompleteness.1

1 Introduction

Knowledge bases (KBs) are considered as an es-
sential resource for answering factoid questions.
However, accurately constructing KB with a well-
designed and complicated schema requires lots of
human efforts, which inevitably limits the cover-
age of KBs (Min et al., 2013). As a matter of fact,
KBs are often incomplete and insufficient to cover
full evidence required by open-domain questions.

On the other hand, the vast amount of unstruc-
tured text on the Internet can easily cover a wide
range of evolving knowledge, which is commonly
used for open-domain question answering (Chen
et al., 2017; Wang et al., 2018). Therefore, to im-
prove the coverage of KBs, it is straightforward to
augment KB with text data. Recently, text-based
QA models along (Seo et al., 2016; Xiong et al.,
2017; Yu et al., 2018) have achieved remarkable
performance when dealing with a single passage
that is guaranteed to include the answer. However,
they are still insufficient when multiple documents

1
https://github.com/xwhan/Knowledge-Aware-Reader.

Question: Who did Cam Newton sign with?
Document Retrieval

Cam Newton plays football
Cam Newton career_starts 2011
Cam Newton date_of_birth 19890511 …

KB SubGraph

Answer: Carolina Panthers

Cameron Newton (born May 11, 1989) 
plays for the Carolina Panthers of the 
National Football League (NFL) … 

Background knowledge:
Cam Newton is a football player

Textual evidence:
Cam Newton plays for Panthers

Figure 1: A real example from WebQSP. Here the an-
swer cannot be directly found in the KB. But the knowl-
edge provided by the KB, i.e., Cam Newton is a foot-
ball player, indicates he signed with the team he plays
for. This knowledge can be essential for recognizing
the relevant text piece.

are presented. We hypothesize this is partially due
to the lack of background knowledge while distin-
guishing relevant information from irrelevant ones
(see Figure 1 for a real example).

To better utilize textual evidence for im-
proving QA over incomplete KBs, this paper
presents a new end-to-end model, which con-
sists of (1) a simple yet effective subgraph reader
that accumulates knowledge of each KB entity
from a question-related KB subgraph; and (2) a
knowledge-aware text reader that selectively in-
corporates the learned KB knowledge about en-
tities with a novel conditional gating mechanism.
With the specifically designed gate functions, our
model has the ability to dynamically determine
how much KB knowledge to incorporate while
encoding questions and passages, thus is able to
make the structured knowledge more compatible
with the text information. Compared to the previ-
ous state-of-the-art (Sun et al., 2018), our model
achieves consistent improvements with a much
more efficient pipeline, which only requires a sin-
gle pass of the evidence resources.

https://github.com/xwhan/Knowledge-Aware-Reader
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Figure 2: Model Overview. The subgraph reader a) first utilizes graph attention networks (Veličković et al., 2017)
to collect information for each entity in the question-related subgraph. The learned knowledge of each entity (~e′)
is then passed to the text reader b) to reformulate the question representation (~q′) and encode the passage in a
knowledge-aware manner. Finally, the information from the text and the KB subgraph is aggregated for answer
entity prediction.

2 Task Definition

The QA task we consider here requires answer-
ing questions by reading knowledge base tuples
K = {(es, r, eo)} and retrieved Wikipedia docu-
ments D. To build a scalable system, we follow
Sun et al. (2018) and only consider a subgraph for
each question. The subgraph is retrieved by run-
ning Personalized PageRank (Haveliwala, 2002)
from the topic entities2 (entities mentioned by the
question: E0 = {e|e ∈ Q}). The documents D are
retrieved by an existing document retriever (Chen
et al., 2017) and further ranked by Lucene index.
The entities in documents are also annotated and
linked to KB entities. For each question, the model
tries to retrieve answer entities from a candidate
set including all KB and document entities.

3 Model

The core components of our model consist of
a graph-attention based KB reader (§3.1) and a
knowledge-aware text reader (§3.2). The interac-
tion between the modules is shown in Figure 2.

3.1 SubGraph Reader
This section describes the KB subgraph reader
(SGREADER), which employs graph-attention
techniques to accumulate knowledge of each sub-
graph entity (e) from its linked neighbors (Ne).
The graph attention mechanism is particularly de-
signed to take into account two important aspects:
(1) whether the neighbor relation is relevant to the
question; (2) whether the neighbor entity is a topic

2Annotated by STAGG (Yih et al., 2014).

entity mentioned by the question. After the prop-
agation, the SGREADER finally outputs a vector-
ized representation for each entity, encoding the
knowledge indicated by its linked neighbors.
Question-Relation Matching To match the
question and KB relation in an isomorphic latent
space, we apply a shared LSTM to encode the
question {wq

1, w
q
2, ..., w

q
lq
} and the tokenized re-

lation {wr
1, w

r
2, ..., w

r
lr
}. With the derived hidden

states hq ∈ Rlq×dh and hr ∈ Rlr×dh for each
word, we first compute the representation of rela-
tions with a self-attentive encoder:

~r =
∑
i

αi
~hr
i , αi ∝ exp( ~wr · ~hr

i ),

where ~hri is the i-th row of hr and ~wr is a trainable
vector. Since a question needs to be matched with
different relations and each relation is only de-
scribed by part of the question, instead of match-
ing the relations with a single question vector,
we calculate the matching score in a more fine-
grained way. Specifically, we first use ~r to attend
each question token and then model the matching
sr by a dot product as follows:

sr = ~r ·
∑
j

βj~h
q
j , βj ∝ exp(~r · ~hq

j).

Extra Attention over Topic Entity Neighbors
In addition to the question-relation similarities, we
find another binary indicator feature derived from
the topic entity is very useful. This indicator is
defined as I[ei ∈ E0] for a neighbor (ri, ei) of an
arbitrary entity e. Intuitively, if one neighbor links
to a topic entity that appear in the question then
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the corresponding tuple (e, ri, ei) could be more
relevant than other non-topic neighbors for ques-
tion answering. Formally, the final attention score
s̃(ri,ei) over each neighbor (ri, ei) is defined as:

s̃(ri,ei) ∝ exp(I[ei ∈ E0] + sri).

Information Propagation from Neighbors To
accumulate the knowledge from the linked tuples,
we define the propagation rule for each entity e:

~e′ = γe~e+ (1− γe)
∑

(ei,ri)∈Ne

s̃(ri,ei)σ(We[~ri; ~ei]),

where ~e and ~ei are pre-computed knowledge
graph embeddings, We ∈ Rhd×2hd is a train-
able transformation matrix and σ(·) is an acti-
vation function. In addition, γe is a trade-off
parameter calculated by a linear gate function
as γe = g(~e,

∑
(ei,ri)∈Ne

s̃(ri,ei)σ(We[~ri; ~ei]))
3 ,

which controls how much information in the orig-
inal entity representation should be retained.4

3.2 Knowledge-Aware Text Reader

With the learned KB embeddings, our model en-
hances text reading with KAREADER. Briefly,
we use an existing reading comprehension
model (Chen et al., 2017) and improve it by
learning more knowledge-aware representations
for both question and documents.

Query Reformulation in Latent Space First,
we update the question representation in a way that
the KB knowledge of the topic entity can be in-
corporated. This allows the reader to discriminate
relevant information beyond text matching.

Formally, we first take the original question en-
coding hq and apply a self-attentive encoder to
get a stand-alone question representation: ~q =∑

i bi
~hqi . We collect the topic entity knowledge of

the question by ~eq =
∑

e∈E0
~e′/|E0|. Then we ap-

ply a gating mechanism to fuse the original ques-
tion representation and the KB knowledge:

~q′ = γq~q + (1− γq) tanh(Wq[~q, ~eq, ~q − ~eq]),

where Wq ∈ Rhd×3hd , and γq =
sigmoid(Wgq[~q, ~eq, ~q − ~eq]) is a linear gate.

3g(x, y) = sigmoid(W[x; y]) ∈ (0, 1).
4The above step can be viewed as a gated version of the

graph encoding techniques in NLP, e.g., (Song et al., 2018;
Xu et al., 2018). These general graph-encoders and graph-
attention techniques may help when the questions require
more hops and we leave the investigation to future work.

Knowledge-aware Passage Enhancement To
encode the retrieved passages, we use a stan-
dard bi-LSTM, which takes several token-level
features5. With the entity linking annotations in
passages, we fuse the entity knowledge with the
token-level features in a similar fashion as the
query reformulation process. However, instead of
applying a standard gating mechanism (Yang and
Mitchell, 2017; Mihaylov and Frank, 2018), we
propose a new conditional gating function that ex-
plicitly conditions on the question ~q′. This simple
modification allows the reader to dynamically se-
lect the inputs according to their relevance to the
question. Considering a passage token wd

i with its
token features ~fdwi

and its linked entity ewi
6, we

define the conditional gating function as:

~idwi
= γd~e′wi + (1− γd)~fd

wi
, where

γd = sigmoid(Wgd[~q · ~e′wi ; ~q · ~f
d
wi

]).

~e′wi denotes the entity embedding learned by our
SGREADER.

Entity Info Aggregation from Text Reading
Finally we feed the knowledge-augmented inputs
~idwi

into the biLSTM and use the output token-level
hidden state ~hdwi

to calculate the attention scores

λi = ~q′
T~hdwi

. Afterwards, we get each docu-
ment’s representation as ~d =

∑
i λi

~hdwi
. For a cer-

tain entity e and all the documents containing e:
De = {d|e ∈ d}, we simply aggregate the infor-
mation by averaging the representations of linked
documents as ~ed = 1

|De|
∑

d∈De
~d.

3.3 Answer Prediction

With entities representations (~e′ and ~ed), we pre-
dict the probability of an entity being the answer
by matching the query vectors and the entity rep-
resentations: se = σs(~q′

T
Ws[~e′;

~ed]).

4 Experiment

4.1 Setup

Dataset Our experiments are based on the We-
bQSP dataset (Yih et al., 2016). To simulate the
real-world scenarios, we test our models following
the settings of (Sun et al., 2018), where the KB is

5We use the same set of features as in (Chen et al., 2017)
except for the tagging labels.

6Non-entity tokens are encoded with token-level features
only.
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Model 10% KB 30% KB 50% KB 100% KB
Hit@1 F1 Hit@1 F1 Hit@1 F1 Hit@1 F1

KV-KB 12.5 4.3 25.8 13.8 33.3 21.3 46.7 38.6
GN-KB 15.5 6.5 34.9 20.4 47.7 34.3 66.7 62.4
SGREADER (Ours) 17.1 7.0 35.9 20.2 49.2 33.5 66.5 58.0

KV-KB+TEXT 24.6 14.4 27.0 17.7 32.5 23.6 40.5 30.9
GN-LF 29.8 17.0 39.1 25.9 46.2 35.6 65.4 56.8
GN-EF 31.5 17.7 40.7 25.2 49.9 34.7 67.8 60.4
SGREADER + KAREADER (Ours) 33.6 18.9 42.6 27.1 52.7 36.1 67.2 57.3

GN-LF+EF (ensemble) 33.3 19.3 42.5 26.7 52.3 37.4 68.7 62.3

Table 1: Comparisons with Key-Value Memory Networks and GRAFT-Nets under different KB settings.

downsampled to different extents. For a fair com-
parison, the retrieved document set is the same as
the previous work.
Baselines and Evaluation Key-Value (KV)
Memory Network (Miller et al., 2016) is a sim-
ple baseline that treats KB triples and documents
as memory cells. Specifically, we consider its two
variants, KV-KB and KV-KB+Text. The former
is a KB-only model while the latter uses both KB
and text. We also compare to the latest method
GraftNet (GN) (Sun et al., 2018), which treats
documents as a special genre of nodes in KBs
and utilizes graph convolution (Kipf and Welling,
2016) to aggregate the information. Similar to
the KV-based baselines, we denote GN-KB as the
KB-only version. Further, both GN-LF (late fu-
sion) and GN-EF (early fusion) consider both KB
and text. The former one considers KB and texts
as two separate graphs, and then ensembles the
answer scores. GN-EF is the existing best single
model, which considers KB and texts as a single
heterogeneous graph and aggregate the evidence
to predict a single answer score for each entity. F1
and His@1 are used for evaluation since multiple
correct answers are possible.

The implementation details of our model can be
found in the Appendix.

4.2 Results and Analysis

We show the main results of different incomplete
KB settings in Table 1. For reference, we also
show the results under full KB settings (i.e., 100%,
all of the required evidence is covered by KB).
The row of SGREADER shows the results of our
model using only KB evidence. Compared to the
previous KBQA methods (KV-KB and GN-KB),
SGREADER achieves better results in incomplete
KB settings and competitive performance with the
full KB. Here we do not compare with exist-
ing methods that utilize semantic parsing anno-

Model Hit@1 F1

Full Model 46.8 28.1

- w/o query reformulation 44.4 27.6
- w/o knowledge enhancement 45.2 27.0
- w/o conditional knowledge gate 44.4 27.0

Table 2: Ablation on dev under the 30% KB setting.

tations (Yih et al., 2016; Yu et al., 2017). It is
worth noting that SGREADER only needs one hop
of graph propagation while the compared methods
typically require multiple hops.

Augmenting the SGREADER with our
knowledge-aware reader (KAREADER) re-
sults in consistent improvements in the settings
with incomplete KBs. Compared to other base-
lines, although our model is built upon a stronger
KB-QA base model, it achieves the largest ab-
solute improvement. It is worth mentioning that
our model is still a single model, but it achieves
competitive results to the existing ensemble
model (GN-LF+EF). The results demonstrate the
advantage of our knowledge-aware text reader.

Ablation Study To study the effect of each
KAREADER component, we conduct ablation
analysis under the 30% KB setting (Table 2). We
see that both query reformulation and knowledge
enhancement are essential to the performance.
Additionally, we find the conditional gating mech-
anism proposed in §3.2 is important. When replac-
ing it with a standard gate function (see the row
w/o conditional knowledge gate), the performance
is even lower than the reader without knowledge
enhancement, suggesting our proposed new gate
function is crucial for the success of knowledge-
aware text reading. The potential reason is that
without the question information, the gating mech-
anism might introduce some irrelevant and mis-
leading knowledge.
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1) Question: Which airport to fly into Rome?
Groundtruth: Leonardo da Vinci-Fiumicino Airport (fb:m.01ky5r), Ciampino-G. B. Pastine International
Airport (fb:m.033 52)
SGREADER: Italian Met Office Airport (fb:m.04fngkc)
SGREADER + KAREADER: Leonardo da Vinci-Fiumicino Airport (fb:m.01ky5r)
Missing knowledge of the incomplete KB: No airport info about Rome.

1) Question: Where did George Herbert Walker Bush go to college?
Groundtruth: Yale (fb:m.08815)
SGREADER: United States of America (fb:m.09c7w0)
SGREADER + KAREADER: Yale (fb:m.08815)
Missing knowledge of the incomplete KB: No college info about George Herbert Walker Bush.

2) Question: When did Juventus win the champions league?
Groundtruth: 1996 UEFA Champions League Final (fb:m.02pt 57)
SGREADER: 1996 UEFA Super Cup (fb:m.02rw0yt)
SGREADER + KAREADER: 1996 UEFA Champions League Final (fb:m.02pt 57)
Missing knowledge of the incomplete KB: UEFA Super Cup is not UEFA Champions League Final (fb:m.05nblxt)

2) Question: What college did Albert Einstein go to?
Groundtruth: ETH Zurich (fb:m.01dyk8), University of Zurich (fb:m.01tpvt)
SGREADER: Sri Krishnaswamy matriculation higher secondary school (fb:m.0127vh33)
SGREADER + KAREADER: ETH Zurich (fb:m.01dyk8)
Missing knowledge of the incomplete KB: the answer should be a college (fb:m.01y2hnl)

3) Question: When is the last time the Denver Broncos won the Superbowl?
Groundtruth: Super Bowl XXXIII (fb:m.076y0)
SGREADER: Super Bowl XXXIII (fb:m.076y0)
SGREADER + KAREADER: 1999 AFC Championship game (fb:m.0100z7bp)

3) Question: What was Lebron James first team?
Groundtruth: Cleveland Cavaliers (fb:m.0jm7n)
SGREADER: Cleveland Cavaliers (fb:m.0jm7n)
SGREADER + KAREADER: Toronto Raptors (fb:m.0jmcb)

Table 3: Human analysis on test samples in the 30% KB settingo. 1) and 2) show some typical examples of the
case (83.2% of all test samples) where the KAREADER improves upon our SGREADER. 3) shows some examples
where using KB alone is better than using both KB and Text (16.8%). The Freebase IDs of the entities are also
included for reference.

Qualitative Analysis In Table 3, there are two
major categories of questions that can be better
answered using our full model. In the first cate-
gory, indicated by 1), the answer fact is missing
in the KB, mainly because there are no links from
the question entities to the answer entity. In these
cases, the SGREADER sometimes can predict an
answer with a correct type, but the answers are
mostly irrelevant to the question.

The second category, denoted as 2), indicates
examples where the KB provides relevant in-
formation but does not cover some of the con-
straints on answers’ properties (e.g., answers’ en-
tity types). In the two examples shown above, we
can see that SGREADER is able to give some rea-
sonable answers but the answers do not satisfy the
constraints indicated by the question.

Finally, when the KB is sufficient to an-
swer a question, there are some cases where the
KAREADER introduces wrong answers into the
top-ranked answer list. We list two examples
at the bottom of the Table 3. These newly in-
cluded incorrect answers are usually relevant to

the original questions but come from the noises
in machine reading. These cases suggest that our
concatenation-based knowledge aggregation still
has some room for improvement, which we leave
for future work.

5 Conclusion

We present a new QA model that operates over in-
complete KB and text documents to answer open-
domain questions, which yields consistent im-
provements over previous methods on the We-
bQSP benchmark with incomplete KBs. The re-
sults show that (1) with the graph attention tech-
nique, we can efficiently and accurately accumu-
late question-related knowledge for each KB en-
tity in one-pass of the KB sub-graph; (2) our de-
signed gating mechanisms could successfully in-
corporate the encoded entity knowledge while pro-
cessing the text documents. In future work, we
will extend the proposed idea to other QA tasks
with evidence of multimodality, e.g. combining
with symbolic approaches for visual QA (Gan
et al., 2017; Mao et al., 2019; Hu et al., 2019).
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Implementation Details Throughout our exper-
iments, we use the 300-dimension GloVe embed-
dings trained on the Common Crawl corpus. The
hidden dimension of LSTM and the dimension of
entity embeddings are both 100. We use the same
pre-trained entity embeddings as used by Sun et al.
(2018). For graph attention over the KB sub-
graph, we limit the max number of neighbors for
each entity to be 50. We use the norm for gradi-
ent clipping as 1.0. We apply dropout=0.2 on both
word embeddings and LSTM hidden states. The
max question length is set to 10 and the max doc-
ument length is set to 50. For optimization, we
apply label smoothing with a factor of 0.1 on the
binary cross-entropy loss. During training, we use
the Adam with a learning rate of 0.001.


