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Abstract

We introduce the Scratchpad Mechanism, a
novel addition to the sequence-to-sequence
(seq2seq) neural network architecture and
demonstrate its effectiveness in improving the
overall fluency of seq2seq models for natural
language generation tasks. By enabling the
decoder at each time step to write to all of
the encoder output layers, Scratchpad can em-
ploy the encoder as a “scratchpad” memory
to keep track of what has been generated so
far and thereby guide future generation. We
evaluate Scratchpad in the context of three
well-studied natural language generation tasks
— Machine Translation, Question Generation,
and Text Summarization — and obtain state-
of-the-art or comparable performance on stan-
dard datasets for each task. Qualitative as-
sessments in the form of human judgements
(question generation), attention visualization
(MT), and sample output (summarization) pro-
vide further evidence of the ability of Scratch-
pad to generate fluent and expressive output.

1 Introduction

The sequence-to-sequence neural network frame-
work (seq2seq) (Sutskever et al., 2014) has been
successful in a wide range of tasks in natural lan-
guage processing, from machine translation (Bah-
danau et al., 2014) and semantic parsing (Dong
and Lapata, 2016) to summarization (Nallapati
et al., 2016b; See et al., 2017). Despite this suc-
cess, seq2seq models are known to often exhibit
an overall lack of fluency in the natural language
output produced: problems include lexical rep-
etition, under-generation in the form of partial
phrases and lack of specificity (often caused by
the gap between the input and output vocabular-
ies) (Xie, 2017). Recently, a number of task-
specific attention variants have been proposed to
deal with these issues: See et al. (2017) intro-
duced a coverage mechanism (Tu et al., 2016)
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to deal with repetition and over-copying in sum-
marization, Hua and Wang (2018) introduced a
method of attending over keyphrases to improve
argument generation, and Kiddon et al. (2016)
introduced a method that attends to an agenda
of items to improve recipe generation. Perhaps
not surprisingly, general-purpose attention mech-
anisms targeting individual problems from the list
above have also begun to be developed. Copy-
net (Gu et al., 2016) and pointer-generator net-
works (Vinyals et al., 2015), for example, aim
to reduce input-output vocabulary mismatch and,
thereby, improve specificity, while the coverage-
based techniques of Tu et al. (2016) tackle rep-
etition and under-generation. These techniques,
however, often require significant hyperparameter
tuning and are purposely limited to fixing a spe-
cific problem in the generated text.

We present here a general-purpose addition to
the standard seq2seq framework that aims to si-
multaneously tackle all of the above issues. In
particular, we propose Scratchpad, a novel write
mechanism that allows the decoder to keep notes
on its past actions (i.e., generation, attention,
copying) by directly modifying encoder states.
The Scratchpad mechanism essentially lets the de-
coder more easily keep track of what the model
has focused on and copied from the input in the
recent past, as well as what it has produced thus
far as output. Thus, Scratchpad can alternatively
be viewed as an external memory initialized by the
input, or as an input re-encoding step that takes
into account past attention and generation.

To demonstrate general(izable) improvements
on conditional natural language generation prob-
lems broadly construed, we instantiate Scratch-
pad for three well-studied generation tasks —
Machine Translation, Question Generation, and
Summarization — and evaluate it on a diverse
set of datasets. These tasks exhibit a variety
of input modalities (structured and unstructured
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language) and typically have required a variety
of computational strategies to perform well (at-
tention, pointing, copying). We find, for each
task, that Scratchpad attains improvements over
several strong baselines: Sequence-to-Sequence
with attention (Sutskever et al., 2014; Bahdanau
et al., 2014), copy-enhanced approaches (Gu
et al., 2016; Vinyals et al., 2015), and coverage-
enhanced approaches (Tu et al., 2016; See et al.,
2017). Scratchpad furthermore obtains state-of-
the-art performance for each task. Qualitative as-
sessments in the form of human judgements (ques-
tion generation), attention visualization (MT) and
sample output (summarization) provide further ev-
idence of the ability of Scratchpad to generate flu-
ent and expressive output.

2 Background

Scratchpad builds upon a standard attention-based
seq2seq neural architecture (Bahdanau et al.,
2014) comprised of (a) an encoder that operates
token-by-token over the input, (b) a decoder that
produces the output, and (c) an attention mecha-
nism that allows the decoder to focus on differ-
ent parts of the input. In the subsections below,
we first briefly review this architecture (we assume
the reader is familiar with the framework). In Sec-
tion 3, we introduce the Scratchpad mechanism.

Encoder Let X = [x1, ..., xn] denote an input
sequence of length N where xi is the i-th token.
The encoder is a recurrent neural network (RNN)
that produces in its final layer a sequence of hidden
states [h1, ...,hn] = RNN({x1, ...,xn}). These
can be viewed as a sequence of token-level feature
vectors learned from the input.

Decoder Let the decoding sequence be indexed
by the superscript i. The decoder is an RNN
whose initial hidden state s0 is set to the final
state(s) of the of the encoder.

Attention At every decoding step i, an attention
mechanism, i.e., an attentive read (often termed at-
tentional context) (ci), is derived from the encoder
output states ([h1, ...,hn]). Concretely, attention
is applied by first computing a score for each en-
coder output, ht:

scoreit = W1(W2[s
i,ht]

T) (1)

where weight matrices W1 and W2 are learned
parameters. These scores, scorei1..T , are then nor-

malized into a probability distribution:

ai = softmax(scorei1..T ) (2)

The attentive read operation is then the weighted
average of encoder outputs according to this distri-
bution, which allows the decoder to focus on dif-
ferent parts of the input at different timesteps i:

ci =
T∑
t=1

(ait ∗ ht) (3)

3 Scratchpad Mechanism

The above attention mechanism has been widely
successful in many generation tasks but the qual-
ity of generated text still suffers from caveats and
requires significant tuning. We augment attention
with a Scratchpad mechanism to introduce higher
quality generated text with less effort. Intuitively,
Scratchpad adds one simple step to the decoder:
treating the encoder output states, [h1, ...,hn], as
a scratchpad, thus it writes to them as if the set of
states were an external memory. Exactly how this
is done is described next.

Without Scratchpad, the decoder’s workflow at
every output timestep step i is as follows:
1. Read attentively (ci) from the encoder outputs
([h1, ...,hn]) using the current state, si.
2. Update si using the most recently generated
output token, yi−1, and the results of the attentive
read (ci).
3. Output a distribution over the output vocabu-
lary ŷi.
Scratchpad simply adds a fourth step:
4. Write an update (ui) to the encoder outputs
([h1, ...,hn]) in an attentive fashion (αi1..T ), treat-
ing the encoder outputs as if they were cells in an
external memory.

More specifically, to calculate both the write-
attention and the update, Scratchpad uses the con-
catenation of the decoder state after steps 1-3
(si+1) and the attentive read (ci):

hi+1
t = αith

i
t + (1− αit)ui (4)

αit = σ(fα([s
i+1, ci,hit])) (5)

ui = tanh(fu([si+1; ci])) (6)

In essence, the Scratchpad consists of two compo-
nents. The first determines what ’notes’ to keep
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Figure 1: The Scratchpad Mechanism first computes
the update probability (αi

t) for each encoder state ac-
cording to Eq. 5, then computes a global update ui ac-
cording to Eq. 6, and finally updates the encoder states
according to Eq. 4.

(ui). The second is similar to the ’forget’ gate in
an LSTM, where the network decides how much
to overwrite a cell (1 − αit) versus how much to
keep past information (αit) for that cell. These two
components are used in concert (see Fig. 1) to pro-
vide new encoder states (hi+1

t ) to the decoder at
each decoding timestep (i). Tanh is used to en-
sure that hi+1

t remains in the range [−1, 1], since
hit ∈ [−1, 1] as [h1, ...,hn]

0 is the hidden states of
a GRU or LSTM. We parametrize fα and fu as an
MLP. Figure 1 shows the outline of the scratchpad
mechanism update at multiple timesteps.

4 Experiments

In this section we describe experimental setup and
results for Machine Translation, Question Gen-
eration, and Summarization tasks which exhibit
a variety of input modalities and strategies re-
quired to perform well. We work with struc-
tured and unstructured language and several se-
quence to sequences architectures i.e. attention,
pointing, and copying. Machine translation is a
canonical sequence-to-sequence task where pair-
wise word-level or phrase-level generation is ex-
pected. Question Generation from logical forms
requires reasoning about the syntax, parse tree,
and vocabulary of the input sequence to infer the
meaning of the logical form program and utilize
copy-mechanism to copy entities. Lastly, sum-

marization requires understanding both the global
and the local context of a sentence within a docu-
ment, identifying spans that are informative and
diverse, and generating coherent representative
summaries. Demonstrating a single mechanism
that reaches state of the art on such a diverse set
of natural language tasks underscores the gener-
alizability of our technique, particularly given the
large range in number of training examples (3k,
56k, 153k, 287k) across datasets.

4.1 Translation

We evaluate on the IWLST 14 English to German
and Spanish to English translation datasets (Cet-
tolo et al., 2015) as well as the IWSLT 15 (Cet-
tolo et al., 2015) English to Vietnamese transla-
tion dataset. For IWSLT14 (Cettolo et al., 2015),
we compare to the models evaluated by He et al.
(2018), which includes a transformer (Vaswani
et al., 2017) and RNN-based models (Bahdanau
et al., 2014). For IWSLT15, we primarily com-
pare to GNMT (Wu et al., 2016), which incorpo-
rates Coverage (Tu et al., 2016). Table 1 shows
BLEU scores of our approach on 3 IWSLT trans-
lation tasks along with reported results from previ-
ous work. Our approach achieves state-of-the-art
or comparable results on all datasets.

Model IWSLT14 IWSLT15

De→En Es →En En→Vi

MIXER 21.83 7 7

AC + LL 28.53 7 7

NPMT 29.96 7 28.07

Stanford NMT 7 7 26.1
Transformer (6 layer) 32.86 38.57 7

Layer-Coord (14 layer) 35.07 40.50 7

Scratchpad (3 layer) 35.08 40.92 29.59∗

Table 1: Performance for non-scratchpad models are
taken from He et al. (2018) except Stanford NMT (Lu-
ong and Manning, 2015). ∗: model is 2 layers.

Experimental Details For IWSLT14, our en-
coder is a 3-layer Bi-LSTM (Hochreiter and
Schmidhuber, 1997), where outputs are combined
by concatenation, and the decoder is a 3-layer
LSTM as well. For IWSLT15 the encoder and de-
coder are 2-layers. We follow Luong et al. (2015),
using the ’general’ score function, input feeding,
and combining the attentional context and hidden
state. Since we use input feeding, Steps (1) and (2)
in Section 3 are switched. All our models have a
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Model
Per-Sentence Corpus-Level

Bleu Meteor Rouge-L Bleu Meteor Rouge-L

W
eb

Q
SP

Baseline 7.51 23.9 47.1 17.96 22.9 47.13

Copynet 6.89 27.1 52.5 17.42 26.03 52.56
Copy + Coverage 14.55 33.7 58.9 26.78 30.86 58.91
Copy + Scratchpad 15.29 34.7 59.5 27.64 31.49 59.44

W
ik

iS
Q

L Baseline 9.94 26.71 47.96 17.34 25.34 47.96

Copynet 8.04 24.66 46.82 15.11 23.53 46.82
Copy + Coverage 15.76 34.04 54.94 25.01 32.38 54.94
Copy + Scratchpad 16.89 34.47 55.69 26.10 32.76 55.69

Table 2: Methods allowing the model to keep track of past attention (Coverage, Scratchpad) significantly improve
performance when combined with a copy mechanism. The Scratchpad Encoder achieves the best performance.

hidden size of 512 (for the LSTM and any MLP’s).
The internal layers of the decoder are residual,
adding their output to their input and putting it
through Layer Normalization (Ba et al., 2016).
Sentences were encoded using byte-pair encoding
(Sennrich et al., 2016), with a shared source-target
vocabulary of 10, 000 for De→En and Es→En (En
→Vi uses words as tokens to be comparable to
Wu et al. (2016)). Source and target word embed-
dings are dimension 128. We use dropout (Sri-
vastava et al., 2014) in the encoder and decoder
with a probability of 0.1. We use the Adam op-
timizer (Kingma and Ba, 2014), with an initial
learning rate of 0.002.We train for 30/20 epochs
for IWSLT14/15, decaying the learning rate by a
factor of 0.7 whenever the validation loss does not
improve from the last epoch. Each training batch
contained at most 2000 source or target tokens.
We use label smoothing with εls = 0.1 (Szegedy
et al., 2016). We average the last 5 epochs to ob-
tain the final model and run with a beam of size
4.

4.2 Question Generation

We use the task of question generation: Given
a structured representation of a query against a
knowledge base or a database (e.g. a logical form),
produce the corresponding natural language ques-
tion. We use two datasets consisting of (ques-
tion, logical form) pairs: WebQuestionsSP (Yih
et al., 2016) (a standard dataset for semantic pars-
ing, where the logical form is in SPARQL), and
WikiSQL (Zhong et al., 2017) (where the logical
form is SQL). Both datasets are small, with the
former having 3098 training and 1639 testing ex-

amples, and the latter being an order of magnitude
larger with 56346 training and 15873 testing ex-
amples.

We evaluate metrics at both a corpus level (to
indicate how natural output questions are) and at
a per-sentence level (to demonstrate how well out-
put questions exactly match the gold question).
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004)
are chosen for precision and recall-based metrics.
METEOR (Banerjee and Lavie, 2005) is chosen to
deal with stemming and synonyms.

We noticed that many tokens that appear in the
logical form are also present in the natural lan-
guage form for each example. In fact, nearly half
of the tokens in the question appear in the corre-
sponding SPARQL of the WebQuestionSP dataset
(Yih et al., 2016), implying that a network with
the ability to copy from the input could see signif-
icant gains on the task. Accordingly, we compare
our Scratchpad Mechanism against three base-
lines: (1) Seq2Seq, (2) Copynet and (3) Cover-
age, a method introduced by Tu et al. (2016) that
aims to solve attention-related problems. Seq2Seq
is the standard approach introduced in Sutskever
et al. (2014). The Copynet (He et al., 2017) base-
line additionally gives the Seq2Seq model the abil-
ity to copy vocabulary from the source to the tar-
get.

From Table 2 it is clear that our approach,
Scratchpad outperforms all baselines on all the
metrics.

Experimental Details Our encoder is a 2-layer
bi-directional GRU where outputs are combined
by concatenation, and our decoder is a 2-layer
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Model
Rouge Meteor

1 2 L exact match +stem/syn/para

Pointer-generator 36.44 15.66 33.42 15.35 16.65
See et al. (2017) 39.53 17.28 36.38 17.32 18.72
Scratchpad 39.65 17.61 36.62 17.26 18.63

CopyTransformer + Coverage Penalty 39.25 17.54 36.45 7 7

Pointer-Generator + Mask Only 37.70 15.63 35.49 7 7

Bottom-up (Gehrmann et al., 2018) 41.22 18.68 38.34 7 7

Table 3: The middle third of the table contains the end-to-end models performing the best from (Gehrmann et al.,
2018), while the bottom section contains the current state-of-the-art which involves a 2-step training process and
is not end-to-end. Scratchpad establishes a state of the art for end-to-end models on summarization without Rein-
forcement Learning on ROUGE, while remaining competitive with See et al. (2017) on METEOR. Additionally,
Scratchpad does not use an auxiliary loss as in See et al. (2017) or the middle third of the table. Gehrmann et al.
(2018) do not evaluate on METEOR.

GRU. We use the attention mechanism from 4.1.
We train all models for 75 epochs with a batch size
of 32, a hidden size of 512 (for the GRU and any
MLP’s), and a word vector size of 300. Dropout
is used on every layer except the output layer,
with a drop probability of 0.5. Where Glove vec-
tors (Pennington et al., 2014) are used to initial-
ize word vectors, we use 300-dimensional vectors
trained on Wikipedia and Gigaword (6B.300D).
We use the Adam optimizer with a learning rate
of 1e−4 and we do teacher forcing (Williams and
Zipser, 1989) with probability 0.5. These hyper-
parameters were tuned for our Seq2Seq baselines
and held constant for the rest of the models. The
vocabulary consists of all tokens appearing at least
once in the training set.

4.3 Summarization

We use the CNN/Daily Mail dataset (Hermann
et al., 2015; Nallapati et al., 2016b) as in See et al.
(2017). The dataset consists of 287,226 training,
13,368 validation, and 11,490 test examples. Each
example is an online news article (781 tokens on
average) along with a multi-sentence summary (56
tokens, 3.75 sentences on average). As in See et al.
(2017) we operate on the original non-anonymized
version of the data.

We follow See et al. (2017) in evaluating with
ROUGE (Lin, 2004) and METEOR (Banerjee and
Lavie, 2005). We report F1 scores for ROUGE-1,
ROUGE-2, and ROUGE-LCS (measuring word,
bigram, and longest-common-subsequence over-
lap, respectively) and we report METEOR in ex-
act and full mode. We compare to the pointer-

generator baseline and the coverage variant in-
troduced by See et al. (2017). See et al. (2017)
use a multi-step training procedure for the cover-
age component to improve performance where a
pointer-generator model is first trained without the
coverage component for a large number of itera-
tions, then trained with the component and a tuned
auxiliary coverage loss, finding that the auxiliary
loss and pre-training the network without coverage
are required to improve performance. As demon-
strated in Tab. 3, with Scratchpad, we are able
to improve performance over See et al. (2017) in
all the Rouge metrics, statistically significant for
Rouge-2 and Rouge-L, while remaining compara-
ble in METEOR. We reach this performance with
half of the training iterations, no pretraining, and
without the additional memory outlay and model
complexity of including an auxiliary loss.

Experimental Details We use the same setup as
in See et al. (2017): The encoder is a single-layer
bi-directional LSTM where outputs are combined
by concatenation, and the decoder consists of a
single-layer LSTM. The encoder states modified
by the scratchpad mechanism are the outputs of
the LSTM at every timestep, i.e. the ’hidden’ state.
We use the same attention mechanism as in See
et al. (2017) to calculate the attentive read and the
attentive write probabilities αit for the scratchpad
mechanism. See et al. (2017) introduce a multi-
step training procedure where a pointer-generator
model is first trained with the vanilla cross-entropy
objective for 230k iterations. Then the coverage
component is added and the full model is further
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trained for 3k iterations with the combined cross-
entropy coverage loss. See et al. (2017) use Ada-
grad (Duchi et al., 2010) with learning rate 0.15
and an initial accumulator value of 0.1. Early stop-
ping on validation is used to select the final model.

We adopt a simpler procedure, training our full
model with the scratchpad mechanism for 100k it-
erations with Adam and a learning rate of 1e−4 as
compared to the two-step procedure in See et al.
(2017) taking 230k iterations. We follow See et al.
(2017) in using a batch size of 16 and clipping gra-
dient norms to 2.

5 Analysis

To gain insight into the behaviour and perfor-
mance of our Scratchpad Mechanism, we analyze
the output for Question Generation and Transla-
tion. We start by conducting a human evaluation
study on the Question Generation task, since this
task is relatively new and it is well known that
quantitative metrics like BLEU do not always cor-
relate with human assessed quality of generated
text1. Later we use the attention heatmaps to visu-
alize how the scratchpad mechanism drives the at-
tention weights to be more focused on the relevant
source token(s). Additionally, we analize the en-
tropies of the attention weights to understand how
the scratchpad mechanism better allows models to
attend to the input. We hypothesize that this is one
of the reasons that lead to good performance of the
scratchpad mechanism as the decoder ends up be-
ing more focused than with the standard seq2seq
models.

5.1 Human Evaluations

For our human evaluation we use two standard
metrics from the machine translation community:
Adequacy and Fluency (Bojar et al., 2017). To
compute Adequacy, human judges are presented
with a reference output and the system proposed
output, and are asked to rate the adequacy of the
proposed output in conveying the meaning of the
reference output on a scale from 0-10. To com-
pute Fluency, the judges are asked to rate, on a
scale from 0-10, whether the proposed output is a
fluent English sentence. We used crowd-sourced
judges. Each output is rated by 3 judges.

1The relation between BLEU scores and more canonical
tasks such as machine translation and summarization have al-
ready been studied in the literature.(Bojar et al., 2017; Gra-
ham, 2015)

Table 4 summarizes the human evaluation re-
sults for our Scratchpad Mechanism and two more
baselines. As the table shows, the judges assigned
higher fluency and adequacy scores to our ap-
proach than both the coverage-based and copynet
baseline. In the table we also report the fluency
score of the gold questions as a way to measure
the gap between the generated questions and the
expected ones. Our approach is only 2 points be-
hind the gold when it comes to generation fluency.

Model Fluency Adequacy

Gold 9.13 7

Copynet 5.18 5.23
+ Coverage 6.64 6.16
+ Scratchpad 7.38 6.59

Table 4: Human evaluations show that the Scratchpad
delivers a large improvement in both fluency and ad-
equacy over Copynet and Coverage, accentuating the
improvement in quantitative metrics (Bleu, Rouge, Me-
teor).

Scratchpad vs. Copynet Scratchpad vs. Coverage

Both Good 9.26% Both Good 15.11%
Scratchpad 37.78% Scratchpad 23.80%
Copynet 6.46% Coverage 14.99%
Both Bad 46.5% Both Bad 43.07%

Win Rate 89.44% Win Rate 61.36%

Table 5: The percentage of times judges preferred one
result over the other. In a Head-to-Head evaluation
the output of Scratchpad Encoder is 9 and 2 times as
likely to be chosen vs. Copynet and Coverage, respec-
tively. Win rate is the percentage of times Scratchpad
was picked when the judges chose a single winner (not
a tie).

Additionally, we design a side-by-side exper-
iment where judges are presented with 2 gener-
ated questions from 2 different systems along with
the reference and asked to judge which output
presents a better paraphrase to the reference ques-
tion. Judges take into consideration the grammat-
ical correctness of the question as well as its abil-
ity to capture the meaning of the reference ques-
tion fluently. In Table 5 We show that in head-
to-head evaluations, human judges are nine times
as likely to prefer scratchpad generated questions
over copynet and nearly two times over coverage,
accentuating the improved fluency and adequacy
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of scratchpad generated questions.

5.2 Attention Visualization and Analysis

In the standard attention setup, the weights as-
signed to each encoder output is determined by the
decoder internal state and the encoder output (si

and ht) in Equation 1. Throughout the decoding
steps, only si varies from timestep to the next. Our
scratchpad mechanism allows the encoder outputs
to change in order to keep track of generated out-
put, so that both si and ht will vary from timestep
to the next, hence more focused attention can be
generated.

We demonstrate this behavior in Fig 5 where
two sentences in a German to English machine
translation system are shown. In the top figure,
attention weights are shown when the scratchpad
mechanism is utilized, while in the bottom Figure
standard attention is used. As can be seen from the
figures, attention weights are more focused espe-
cially in the first few steps of decoding that better
aligns with word-level translations (e.g. ’hand’ is
properly attended to with scratchpad, but not with
non-scratchpad). Additionally, some words that
are never properly translated (e.g. wahrscheinlich
- ’probably’) by the non-scratchpad model are not
heavily attended to, whereas with the scratchpad
mechanism, they are.

We also demonstrate this effect quantitatively.
Recall the attention distribution ait over the input
[x1, ..., xn] generated at each decoding timestep
i. By calculating the entropy enti = −

∑
t a

i
t ∗

log(ait) and taking the mean of this value across
a set of output sentences we can measure how
well the model “focuses” on input sequences (e.g.
[x1, ..., xn]) as it decodes. The lower the entropy,
the sharper the attention distribution. We evaluate
this metric on the IWSLT14 De→En test set for
the scratchpad and non-scratchpad models. By
adding the scratchpad mechanism, the mean en-
tropy decreases substantially from 1.33 to 0.887
- indicating that it makes the model more selec-
tive (focusing on fewer input tokens with higher
weights during generation). Additionally, we plot
in Fig. 2 the cumulative frequency of the word-
level entropies enti for all output timesteps i. Note
from the graph that for every value x, the scratch-
pad model produces more attention distributions
with an entropy ≤ x. Finally, the shape of the
curve changes to be less sigmoidal, with the pro-
portion of particularly peaky or focused distribu-

tions (very low entropy, e.g. ≤ 0.5) increasing
significantly, over 4× that for the non-scratchpad
model.

Figure 2: We plot the cumulative frequency of attention
distribution entropies. On the Y -axis is the proportion
of attention distribution entropies lower than or equal
to x.

Previous work based on coverage based ap-
proaches (Tu et al., 2016; See et al., 2017) either
imposed an extra term to the loss function or used
an extra vector to keep track of which parts of the
input sequences had been attended to, thereby fo-
cusing the attention weights in subsequent steps
on tokens that received little attention before. In
other words, focusing the attention on the relevant
parts of the input. Our proposed approach natu-
rally learns to focus the attention on the important
tokens, without a need for modifying the loss func-
tion or introducing coverage vectors.

6 Related work

Machine Translation Since Sutskever et al.
(2014) introduced the sequence-to-sequence
paradigm the approach became the defacto
standard for performing machine translation.
Improvements over the approach followed, first
by the introduction of attention (Bahdanau et al.,
2014) which helped seq2seq translation to focus
on certain tokens of the encoder outputs. Later
on, many improvements were described in the
Google neural machine translation system (Wu
et al., 2016), including utilizing coverage penalty
(Tu et al., 2016) while decoding. The Transformer
model was introduced to alleviate the dependence
on RNNs in both the encoder and the decoder
steps (Vaswani et al., 2017). Our proposed model
sits on top of the seq2seq framework, and could
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Figure 3: Scratchpad

Figure 4: No Scratchpad

Figure 5: Attention over the source sequence visualized at each decoder timestep with and without the scratchpad
mechanism. Darker cells mean higher values. ”@@” at the end of a bpe token denotes it should be concatenated
with the following token(s) to make a word. With Scratchpad, we see sharper attention earlier in the sentence
that better aligns with word-level translations (e.g. ’hand’ is properly attended to with scratchpad, but not with
non-scratchpad). Additionally, some words that are never properly translated (e.g. wahrscheinlich - ’probably’) by
the non-scratchpad model are not heavily attended to, whereas with the scratchpad mechanism, they are.

be used with any choice of encoder/decoder as
long as attention is used.

Summarization Since Rush et al. (2015) first
applied neural networks to abstractive text sum-
marization, work has focused on augmenting mod-
els (Chopra et al., 2016; Nallapati et al., 2016b;
Gu et al., 2016), incorporating syntactic and se-
mantic information (Takase et al., 2016), or di-
rect optimization of the metric at hand (Ranzato
et al., 2016). Nallapati et al. (2016b) adapted the
DeepMind question-answering dataset (Hermann
et al., 2015) for summarization and provided the
first abstractive and extractive (Nallapati et al.,
2016a) models. See et al. (2017) demonstrated
that pointer-generator networks can significantly
improve the quality of generated summaries. Ad-
ditionally, work has explored using Reinforcement
Learning, often with additional losses or objec-
tive functions to improve performance (Hsu et al.,
2018; Paulus et al., 2018; Li et al., 2018; elikyil-
maz et al., 2018; Pasunuru and Bansal, 2018). Fi-
nally, Gehrmann et al. (2018) demonstrated that a

two-stage procedure, where a model first identi-
fies spans in the article that could be copied into
the summary which are used to restrict a second
pointer-generator model can reap significant gains.

Question Generation Early work on translat-
ing SPARQL queries into natural language relied
heavily on hand-crafted rules (Ngonga Ngomo
et al., 2013a,b) or manually crafted templates to
map selected categories of SPARQL queries to
questions (Trivedi et al., 2017; Seyler et al., 2017).
In (Serban et al., 2016) knowledge base triplets are
used to generate questions using encoder-decoder
framework that operates on entity and predicate
embeddings trained using TransE (Bordes et al.,
2011). Later, Elsahar et al. (2018) extended this
approach to support unseen predicates. Both ap-
proaches operate on triplets, meaning they have
limited capability beyond generating simple ques-
tions and cannot generate the far more complex
compositional questions that our approach does by
operating on the more expressive SPARQL query
(logical form). In the question generation domain,
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there has been a recent surge in research on gener-
ating questions for a given paragraph of text (Song
et al., 2017; Du et al., 2017; Tang et al., 2017;
Duan et al., 2017; Wang et al., 2018; Yao et al.,
2018), with most of the work being a variant of the
seq2seq approach. In Song et al. (2017), a seq2seq
model with copynet and a coverage mechanism
(Tu et al., 2016) is used to achieve state-of-the-art
results. We have demonstrated that our Scratchpad
outperforms this approach in both quantitative and
qualitative evaluations.

Attention Closest to our work, in the general
paradigm of seq2seq learning, is the coverage
mechanism introduced in Tu et al. (2016) and later
adapted for summarization in See et al. (2017).
Both works try to minimize erroneous repetitions
generated by a copy mechanism by introducing a
new vector to keep track of what has been used
from the encoder thus far. Tu et al. (2016), for
example, use an extra GRU to keep track of this
information, whereas See et al. (2017) keep track
of the sum of attention weights and add a penalty
to the loss function based on it to discourage rep-
etition. Our approach is much simpler than either
solution since it does not require any extra vectors
or an additional loss term; rather, the encoder vec-
tor itself is being used as scratch memory. Our
experiments also show that for the question gen-
eration task, the Scratchpad performs better than
coverage based approaches.

Our idea was influenced by the dialogue gener-
ation work of Eric and Manning (2017) in which
the entire sequence of interactions is re-encoded
every time a response is generated by the decoder.

7 Conclusion

In this paper, we introduce the Mechanism, a novel
write operator, to the sequence to sequence frame-
work aimed at addressing many of the common is-
sues encountered by sequence to sequence models
and evaluate it on a variety of standard conditional
natural language generation tasks. By letting the
decoder ’keep notes’ on the encoder, or said an-
other way, re-encode the input at every decod-
ing step, the Scratchpad Mechanism effectively
guides future generation. The Scratchpad Mech-
anism attains state of the art in Machine Trans-
lation, Question Generation, and Summarization
on standard metrics and human evaluation across
multiple datasets. In addition, our approach de-
creases training time and model complexity com-

pared to other leading approaches. Our success on
such a diverse set of tasks, input data, and volumes
of training data underscores the generalizability of
our approach and its conceptual simplicity make
it easy to add to any sequence to sequence model
with attention.
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