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Abstract

Heuristic-based active learning (AL) methods
are limited when the data distribution of the
underlying learning problems vary. Recent
data-driven AL policy learning methods are
also restricted to learn from closely related do-
mains. We introduce a new sample-efficient
method that learns the AL policy directly on
the target domain of interest by using wake
and dream cycles. Our approach interleaves
between querying the annotation of the se-
lected datapoints to update the underlying stu-
dent learner and improving AL policy using
simulation where the current student learner
acts as an imperfect annotator. We evaluate
our method on cross-domain and cross-lingual
text classification and named entity recogni-
tion tasks. Experimental results show that
our dream-based AL policy training strategy
is more effective than applying the pretrained
policy without further fine-tuning, and better
than the existing strong baseline methods that
use heuristics or reinforcement learning.

1 Introduction

Obtaining adequate annotated data is often expen-
sive and time consuming for many real-world NLP
tasks. Active learning (AL) aims to economically
learn an accurate model by reducing the annota-
tion cost. It is based on the premise that a model
can get better performance if it is allowed to pre-
pare its own training data, by choosing the most
beneficial data points and querying their annota-
tions from annotators. For example, the learner
can identify its knowledge gaps in order to select
the most informative query data points.

The core AL problem is how to identify the
most beneficial query data points. Tradition-
ally, they are identified using various hand crafted
heuristics (Settles, 2012). Recent work has investi-
gated learning the AL query strategy from the data

(Fang et al., 2017; Bachman et al., 2017; Wood-
ward and Finn, 2017; Contardo et al., 2017; Liu
et al., 2018a; Pang et al., 2018), as engineered
heuristics are not flexible to exploit characteristics
inherent to a given problem. These works are all
based on the idea that aims to learn an AL query
strategy on a related problem for which enough
annotated data exist via AL simulations, and then
transfers it to the target AL scenario of interest.
The success of this approach, however, highly de-
pends on the relatedness of the source and target
AL problems, as the transferred AL strategy is
not adapted to the characteristics of the target AL
problem.

To address this mismatch challenge, we intro-
duce a new approach that learns an AL query
strategy directly for the target problem of interest.
Starting from an initial (pre-trained) AL strategy,
our approach interleaves between querying the an-
notation of the selected data points to update the
underlying student model, and improving the AL
strategy using simulations. Crucially, in order to
improve the query strategy, our AL simulations are
based on the target problem, where we make use of
the current student learner as an imperfect annota-
tor. The AL query strategy is used to train the un-
derlying student learner in the wake cycles through
interactions with the human annotator, and the stu-
dent learner is used to train the query strategy in
the dream cycles via simulations, as illustrated in
Figure 1.

Our contribution are as follows: (i) we propose
a sample-efficient AL policy learning method to
make the best use of the annotation budget to im-
prove both the student learner and the AL policy
directly on the target task of interest; (ii) we pro-
vide comprehensive experimental results compar-
ing our method to strong heuristic-based and data-
driven AL query strategy learning-based methods
on cross-lingual and cross-domain text classifica-
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Figure 1: Illustration of our dream-based AL approach. Unlabelled data selection policy is learned in AL simula-
tion on source task (a). At transferring time, we interleave wake phase (b) where the learned policy is applied to
train the student learner, and dream phase (c) where the student learner in turn acts as an imperfect annotator to
fine-tune the policy.

tion, and cross annotation scheme named entity
recognition tasks1. The experiment results demon-
strate the ability of our method to quickly learn a
good policy directly on the task of interest. Com-
pared to the previous work (Fang et al., 2017; Liu
et al., 2018a) which transfers a policy learned on
a source task to target task, our dream-based AL
query policies are consistently more effective even
when the data domain and annotation scheme of
target task are different from the source task.

2 AL Query Strategy as a Sequential
Decision Process

We consider the popular pool-based AL setting
where we are given a small set of initial labelled
data Dlab, and a large pool of unlabelled data
Dunl, and a budget B for getting the annotation of
some unlabelled data by querying an oracle, e.g.
a human annotator. The goal is to intelligently
pick those unlabelled data for which if annotations
were available, the performance of the underlying
re-trained model mφφφ would be improved the most.

More specifically, a pool-based AL problem
is a Markov decision process (MDP) (Bach-
man et al., 2017; Liu et al., 2018a), denoted by
(S,A, Pr(ssst+1|ssst, at), R) where S is the state
space, A is the set of actions, Pr(ssst+1|ssst, at) is
the transition function, and R is the reward func-
tion. The state ssst ∈ S at time t consists of the
labelled Dlab

t and unlabelled Dunl
t datasets paired

with the parameters of the currently trained model
φt. An action at ∈ A corresponds to the selection
of a query datapoint, and the reward function is the
improvement in the generalisation of the student

1Source code is available at https://github.com/
trangvu/alil-dream

learner. Assuming the availability of an evaluation
setDevl, the reward function can be formalised as:

R(ssst, at, ssst+1) = loss(mφφφt−1
, Devl)− loss(mφφφt , D

evl) (1)

through a suitable loss function.
The goal is to find the optimal AL policy pre-

scribing which datapoint needs to be queried in a
given state to get the most benefit. The optimal
policy is found by maximising the following ob-
jective over the parameterised policies:

E(Dlab,Dunl,Devl)∼D

[
Eπθθθ

[ B∑
t=1

R(ssst, at, ssst+1)
]]

(2)

where πθθθ is the policy network parameterised by
θθθ, D is a distribution over possible AL problem
instances, and B is the annotation budget, i.e.
the maximum number of queries made in an AL
episode.

In the previous work, the distribution of AL
problems is constructed via simulations on a re-
lated task for which enough labelled data exist.
That is, the labelled data is randomly partitioned
into the training, evaluation, and pool of unla-
belled (by pretending the labels are unobserved)
datasets. Answering the AL queries is easy in
the simulations, as it does not involve actual in-
teraction with the human annotator. As such, a
large number of AL episodes can be simulated ef-
ficiently, allowing to learn a query policy using
reinforcement (Fang et al., 2017; Bachman et al.,
2017; Pang et al., 2018) and imitation (Liu et al.,
2018a,b) learning algorithms. However, the ef-
fectiveness of the resulting query policy depends
on the relatedness of the source and target tasks;
a notion which is hard to formalise and evaluate
in practice. Our goal in this paper is to learn the

https://github.com/trangvu/alil-dream
https://github.com/trangvu/alil-dream
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Algorithm 1 Learning to AL by Dreaming

Input: labelled data Dlab, unlabelled pool Dunl, initial stu-
dent model φ̂φφ, initial policy π̂, dream episodes E , dream
length Td , annotation budget B, wake-dream cyclesW

Output: labelled dataset, trained model, policy
1: φφφ0 ← φ̂φφ
2: π0 ← π̂
3: Tw ← B

W . length of the wake phase
4: for t ∈ 1, . . . ,W do
5: Dlab,φφφt ← wakeLearn(Dlab, Dunl,φφφt−1, πt−1, Tw)
6: πt ← dreamLearn(Dlab, Dunl,φφφt−1, πt−1, E , Td)
7: end for
8: return φφφW

query policy directly on the target AL task of in-
terest, allowing for more effective query policies.

3 Dream-based Learning of AL Policy

In this section, we propose our sample-efficient
AL policy learning method. While interacting
with the human annotator, one may decide to split
the total annotation budget B between two types
of queries: (i) those which improve the underly-
ing student learner based on the suggestions of the
policy, and (ii) those which improve the policy.
However, this approach may not make the best use
of the annotation budget, as it is not clear whether
the budget used to improve the policy (via the sec-
ond type of queries) would pay back the improve-
ment which could have been achieved on the stu-
dent learner (via the queries of the first type).

Our approach aims to spend the annotation bud-
get only for improving the student learner. To im-
prove the policy, we use the trained student learner
as an imperfect annotator in order to improve the
policy via simulations using data of the AL task
of interest. More specifically, our approach inter-
leaves between querying the annotation of the se-
lected data points to update the underlying student
model, and improving the AL strategy using sim-
ulations; see Algorithm 1. As such, the AL policy
is used to train the underlying student learner in
the wake cycles through interactions with the hu-
man annotator (line 5 of Algorithm 1), and the stu-
dent learner is used to train the query policy in the
dream cycles via simulations (line 6 of Algorithm
1), which we elaborate in the following.

3.1 Wake Phase: Improving Student Learner

Assuming that the full annotation budget is B and
the number of wake-dream cycles isW , there are
Tw = B

W AL queries asked from a human annota-
tor in each wake cycle; see Algorithm 2.

Algorithm 2 Wake Learn
Input: labelled data Dlab, unlabelled pool Dunl, student

model φφφ, query policy π, wake length Tw,
Output: labelled dataset and trained model
1: for t ∈ 1, . . . , Tw do
2: ssst ← (Dlab, Dunl,φφφ)
3: xxxt ← argmaxxxx′∈Dunl π(xxx

′;ssst)
4: yyyt ← askHumanAnnotation(xxxt)
5: Dlab ← Dlab + {(xxxt, yyyt)}
6: Dunl ← Dunl − {xxxt}
7: φ← retrainModel(φφφ,Dlab)
8: end for
9: return Dlab and φφφ

Algorithm 3 Dream Learn
Input: labelled data Dlab, unlabelled data Dunl, student

model φφφ, policy π̂, dream episodes E , dream length Td
Output: The learned policy
1: M ← ∅ . the aggregated dreamt AL trajectories
2: π̂0 ← π
3: Dpool ← labelGen(mφφφ, D

unl)
4: for τ ∈ 1, . . . , E do
5: Dtrn, Devl ← dataPartition(Dlab)
6: M+ = trajectoryGen(Dtrn, Devl, Dpool, πτ−1, Td)
7: πτ ← retrainPolicy(πτ−1,M)
8: end for
9: return π̂E

At each time step t of this real AL trajectory,
the algorithm picks the query point suggested by
the policy network (line 3 of Algorithm 2). As
the policy network π(.), we consider a feed for-
ward neural network; see Figure 1(d), which as-
signs an importance score to each potential query
from the unlabelled dataset xxx′ ∈ Dunl in the cur-
rent AL state ssst. We summarise the AL state ssst
by a fixed dimensional vector, consisting of the la-
belled and unlabelled datasets as well as the stu-
dent learner; this is problem-specific and will be
detailed in Section 4 for our classification and se-
quence labelling tasks. Together with the repre-
sentation of the candidate xxx′, they are fed to the
policy network as the input. The label of the se-
lected query is then asked from the human anno-
tator (line 4 of Algorithm 2), and added to the
labelled dataset to re-train the underlying student
learner (lines 5-7 of Algorithm 2).

3.2 Dream Phase: Policy Improvement

In each dream cycle, the student learner teaches
the AL querying policy and updates it; see Algo-
rithm 3. We first generate the labels of the unla-
belled data using the current student learner to get
a pseudo-labelled data containing imperfect labels
(line 3 of Algorithm 3). Afterwards, we synthesise
AL tasks by randomly partitioning the collected
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labelled data into training and evaluation sets, for
each of which we simulate an AL trajectory ef-
ficiently using the pseudo-labelled pool to retrain
the policy (lines 4-7 in Algorithm 3).

The policy can be re-trained using policy gra-
dient algorithms, e.g. REINFORCE in deep rein-
forcement learning (RL) (Williams, 1988), or be-
havioural cloning in deep imitation learning (IL).
We make use of DAGGER (Ross et al., 2011), a
behavioural cloning algorithm for IL, which previ-
ous work has shown to be more effective than deep
RL for learning AL policies (Liu et al., 2018a).

DAGGER with Imperfect Teacher To generate
a simulated AL trajectory (line 6 in Algorithm
3), we run the querying policy for Td time steps.
For each time step t, we either select the next
query based on the recommendation of the pol-
icy bbbt = argmax

xxx∈Dpoolt
π(ssst;xxx

′, ŷ′), or select the
best query by one-step roll-out; that is

aaat = argmax
(xxx′,ŷ′)∈Dpoolt

− loss(mφφφ′t
, Devl) (3)

where mφφφ′t
= retrainModel(φφφt−1, (xxx′, y′)). This

choice is generated by the parameter β, which we
refer to as the mixing coefficient. Importantly,
the roll-out in Equation 3 uses the imperfect la-
bel ŷ′ for a candidate data point xxx′. For com-
putational efficiency, we take the maximisation in
Equation 3 over a random subset of size k from the
full data pool, as it involves retraining the underly-
ing model and calculating the loss of the resulting
model on the evaluation set. We refer to the above
procedure to select actions aaat as the imperfect al-
gorithmic expert.

To update the policy network (line 7 in Al-
gorithm 3), we train it on a set of collected
states paired with the imperfect expert’s actions
M = {(sssi, aaai)} to maximize the objective∑|M |

i=1 logPr(aaai|D
pool
i ), where Pr(aaai|Dpool

i ) is
the probability of aaai being the best action among
all possible actions in the data pool Dpool

i at state
sssi. The probability Pr(aaai|Dpool

i ) can be estimated
using the preference score π(aaai;sssi) computed by
the AL policy π

Pr(aaai|Dpool
i ) =

expπ(aaai;sssi)∑
xxx∈Dpooli

expπ(xxx;sssi)
(4)

In addition to current trajectory, we make use of an
experience replay memoryM (Mnih et al., 2015)
to store historic state-action transitions and ran-
dom sample multiple mini-batches from it to re-
train the policy network.

Unlabelled Candidate Selection. An important
design consideration for our proposed algorithm
is the selection of the unlabelled pool in each
wake/dream cycle. To guide the policy toward se-
lecting worthwhile datapoints, the candidate pool
can be sampled randomly from a larger set of top
uncertain and diverse datapoints in the wake cy-
cles. During the dream cycles where the policy is
strengthened based on the prediction of the imper-
fect expert, we can exploit the expert by sampling
from its top confidence shortlist. We will see in the
analysis that the candidate pool selection strategy
further improves the quality of the student learner.

4 Experiments

We conduct experiments on text classification and
named entity recognition (NER). The AL sce-
narios include cross-domain sentiment classifica-
tion, cross-lingual authorship profiling, and cross-
lingual and cross-domain named entity recogni-
tion (NER), whereby an AL policy trained on a
source domain/language is transferred to the tar-
get domain/language2.

We compare our proposed dream-based AL pol-
icy learning method with the following baselines:

• Random sampling: The query datapoint is
chosen randomly.
• Diversity sampling: The query datapoint is

argminxxx
∑
xxx′∈Dlab Jaccard(xxx,xxx′), where the Jac-

card coefficient between the unigram features
of the two given texts is used as the similarity
measure.
• Uncertainty-based sampling: For text

classification, we use the datapoint
with the highest predictive entropy,
argmaxxxx−

∑
y p(y|xxx,D

lab) log p(y|xxx,Dlab)

• PAL: A reinforcement learning based ap-
proach (Fang et al., 2017), which makes use
of a deep Q-network to make the selection
decision for stream-based active learning. It
learns the policy on a source task and then
transfers it to the target task.
• ALIL: An imitation learning based approach

(Liu et al., 2018a), which transfer the learned
policy from a source task to the target task
without further fine-tuning.
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Figure 2: Accuracy of different active learning methods for cross domain sentiment classification (left two plots)
and cross lingual authorship profiling (right two plots).

doc. (src/tgt)
src tgt number avg. len. (tokens)

elec. music dev. 27k/1k 35/20
book movie 24k/2k 140/150

en sp 3.6k/4.2k 1.15k/1.35k
en pt 3.6k/1.2k 1.15k/1.03k

Table 1: The data sets used in sentiment classification
(top part) and gender profiling (bottom part).

4.1 Text Classification

Datasets and Setup. We run experiments on
sentiment classification and authorship profil-
ing tasks. Sentiment classification dataset were
extracted from the Amazon product reviews
(McAuley and Yang, 2016). The goal is to classify
these reviews as positive or negative sentiments.
The authorship profiling task aims to predict the
gender of the text author. The data came from the
gender profiling task in PAN 2017 (Rangel et al.,
2017), which consists of a large Twitter corpus in
multiple languages: English (en), Spanish (es) and
Portuguese (pt). Table 1 shows data statistics for
these two tasks.

For PAL and ALIL, the AL policy is first trained
by AL simulation on the source task and then di-
rectly transferred to the target task. In our dream-
based approach, the pretrained AL policy on the
source task is used to warm-start the AL policy
learned on the target task.

For training, 10% of the source data is used as
the evaluation set to learn the best action in imita-
tion learning. Following the experiment setting in
Liu et al. (2018a), we run T = 100 episodes with
the total annotation budget B = 100 documents in
each episode, set the sample unlabelled pool size
k = 5. , and set the mixing coefficient in DAGGER

β = 0.5. At transferring time, we take 90% of

2Source code: https://github.com/trangvu/
alil-dream

the target data as the unlabelled pool, and the re-
maining 10% as the test set. We set the number
of wake-dream cyclesW = 20 which correspond-
ing to the wake phase length Tw = 5. We set the
number of dream episode E = 5 and dream length
Td = 10. We run each AL method 20 times and
report the average test accuracy w.r.t. the number
of labelled documents selected in the AL process.

For the underlying model mφφφ, we use a fast and
efficient text classifier based on convolutional neu-
ral networks (CNN). More specifically, we apply
50 convolutional filters with ReLU activation and
width of 3 on the embedding of all words in a doc-
ument xxx. The filter outputs are averaged to pro-
duce a 50-dimensional document representation
hhh(xxx), which is then fed into a softmax to predict
the class. We use pretrained multilingual embed-
dings (Ammar et al., 2016) and fix these word em-
beddings during training for both the policy and
the underlying classification model.

State representation. The AL state is a fixed di-
mensional vector, includes: (i) the candidate doc-
ument represented by a CNN hhh(xxx), (ii) the dis-
tribution over the document’s class labels mφφφ(xxx),
(iii) the sum of all document vector representa-
tions in the labelled set

∑
xxx′∈Dlab hhh(xxx

′), (iv) the
sum of all document vectors in the sample unla-
belled pool

∑
xxx′∈Dpoolrnd

hhh(xxx′), and (v) the empirical
distribution of class labels in the labelled dataset.

Results. Figure 2 shows the result on the prod-
uct sentiment and authorship profiling tasks in
cross-domain and cross-lingual AL scenarios. Our
dream-based method consistently outperforms
both heuristic-based, RL-based (PAL) (Fang et al.,
2017) and direct-transfer IL (ALIL) (Liu et al.,
2018a) approaches across all tasks. Our approach
performs similar to the ALIL approach in the be-
ginning of AL process and starts to outperform in

https://github.com/trangvu/alil-dream
https://github.com/trangvu/alil-dream
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musical movie es pt
CL-warm-transfer (ALIL) 67.95 65.82 58.72 66.52
CL-cold-dream 62.32 64.86 57.43 58.30
CL-warm-dream 70.80 69.60 62.37 69.62
WL-warm-transfer (ALIL) 76.79 80.81 64.35 69.05
WL-cold-dream 76.00 80.07 63.78 68.56
WL-warm-dream 77.92 81.62 67.57 70.70

Table 2: Classifiers performance under different initial-
ization settings of underlying classifier and AL policy.
CL, WL denotes cold-start and warm-start classifier.

later cycles. We speculate that it is due to the noisy
learning signal in the first few dream phases. In
later cycles, the AL policy starts to adapt to the
target task and learn to select good datapoints to
train the underlying classifier.

We further investigate the combination of trans-
ferring the policy network with transferring the
underlying learner. That is, we first train a classi-
fier on all of the annotated data from the source do-
main/language; this classifier is then transferred to
the target task and further fine-tuned using the col-
lected labelled data. We compare the performance
of the warm-start student learner (WL) and the
random initialized cold-start student learner (CL)
in different policy transfer scenarios: (i) warm-
transfer (ALIL): the IL policy is transferred di-
rectly to target task, similar to ALIL approach (Liu
et al., 2018a); (ii) cold-dream: our dream-based
approach where the policy is initialized randomly;
and (iii) warm-dream: our proposed approach
where the pretrained policy is fine-tuned to the tar-
get task. The results are shown in Table 2. As an-
ticipated, the cold-dream settings always perform
worst in all tasks. In both warm-start and cold-
start student learner scenarios, the warm-dream
setting always outperforms the warm-transfer.

4.2 Named Entity Recognition

Data and setup. We use NER corpora from the
CoNLL2002/2003 shared tasks, which include an-
notated text in English (en), German (de), Span-
ish (es), and Dutch (nl). The original annotation
is based on IOB1 with four named entity classes.
We convert the annotation to IO labelling scheme
and train the policy on source language. We
consider the bilingual and cross-annotation trans-
ferring scenario. More specifically, the English
dataset with IO annotation is the source and other
languages with either IO or IBO annotation are the
target.

The CoNLL NER corpus of each language has

three subsets: train, testa and testb. During pol-
icy training with the source language, we combine
these three subsets, shuffle, and re-split them into
simulated training, unlabelled pool, and evaluation
sets in every episode. Following the experiment
setting in Liu et al. (2018a), we also train the pol-
icy in T = 100 episodes with the budget B = 200,
and set the sample size k = 5 for the AL sim-
ulation on the source task,. At transferring time,
we select B datapoints from train of the target
language (treated as the pool of unlabelled data)
and report F1 scores on testa. We set the number
of wake-dream cycles W = 20, dream episode
E = 5 and dream length Td = 10. During wake
cycle, we sample a subset of 10 unlabelled data-
points from the top 100 datapoints with the high-
est labelling uncertainty as the input to the policy
network. In the dream phase, the sample pool is
constructed randomly as usual.

The underlying model mφφφ is a conditional ran-
dom field (CRF) treating NER as a sequence la-
belling task. The prediction is made using the
Viterbi algorithm. For the word embeddings, we
also use the pretrained multilingual embeddings
(Ammar et al., 2016) with 40 dimensions and fix
these during policy training.

State representation. The input to the policy
network is the concatenation of:

(i) the representation of the candidate sen-
tence using the sentence convolution network
cnnsent (Kim, 2014)

(ii) the representation of the labelling marginals
using the label-level convolution network
cnnlab(Emφφφ(yyy|xxx)[yyy]) (Fang et al., 2017)

(iii) the bag-of-word representation of sentences
in the sample pool of unlabelled data∑

xxx′∈Dpoolrnd

∑
w∈xxx′ eee(w) where eee(w) is em-

bedding of word w
(iv) the representation of ground-truth labels in

the labelled data
∑

(xxx′,yyy′)∈Dlab cnnlab(yyy
′) us-

ing the empirical distributions
(v) the confidence of the sequential prediction

|xxx|
√

maxyyymφφφ(yyy|xxx)
(vi) the representation of the entropy sequences

for each word label in the sentence using an-
other convolution network cnnent

(vii) entropy statistics includes max entropy, aver-
age entropy and sum entropy

In cross-annotation scheme scenarios, the AL pol-
icy is trained on source task with IO annotation
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Figure 3: The performance of dreaming methods on bilingual settings under IO and IBO annotation scheme for
three target languages: German (de), Spanish (es) and Dutch (nl).

and then later transferred to target task which is
under IBO annotation scheme. With the same
named entity set, the number of prediction classes
under IO and IBO annotation scheme is 5 and 9
respectively. We only transfer the policy network
and CNNs to the target task.

Results. Figure 3 shows the results for three
target languages in cross-language and cross-
annotation scheme scenarios. In bilingual and
same annotation scenarios, our dream-based trans-
fer method consistently outperforms other data-
driven AL query strategy learning and heuristic
methods. Specifically, diversity-based query strat-
egy performs badly in almost every case because
it ignores the labelling information. ALIL and
PAL performance are either on par or slightly bet-
ter than uncertainty sampling. However, these
methods only perform similar to a random strat-
egy when testing on new labelling scheme. Un-
certainty sampling is still the best heuristic among
other strategies. In cross-annotation scheme ex-
periments, our proposed method surpasses the
uncertainty-based strategy in German and Dutch,
and achieves slightly higher score in Spanish. This
suggests that uncertainty is a good informative
measure, which is outperformed by our flexible
and adaptive data-driven AL policy learning tech-
nique.

4.3 Biomedical Named Entity Recognition

In Section 4.2, we evaluated our approach on
transferring the AL policy to a target task which
shares the same labelling scheme as the source
task. We further evaluate our methods in the sce-
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Figure 4: The performance of transferring trained pol-
icy on English NER to BioNER task.

nario where the source and target tasks have dif-
ferent characteristic. Specifically, we conduct ex-
periment on cross-domain cross-annotation NER.

Data and setup. We transfer the AL policy
trained on the CoNLL2003 English NER task in
the previous experiment, which is in the news do-
main, to the biomedical NER (BioNER) task. We
use Genia4ER named entity corpus of MEDLINE
abstracts from JNLPBA 2004 shared task.3 The
Genia4ER corpus is annotated in IBO2 scheme
and contains five classes protein, DNA, RNA, cell-
line and cell-type. The dataset has two subsets:
training set of 18,758 sentences and test set of
3,918 sentences. We take out 1,758 sentences
from the training set as validation set.

The experiment setup for policy transfer and un-
derlying model is kept the same as in the NER ex-
periments in Section 4.2. For the word embed-

3http://www.nactem.ac.uk/tsujii/GENIA/
ERtask/report.html

http://www.nactem.ac.uk/tsujii/GENIA/ERtask/report.html
http://www.nactem.ac.uk/tsujii/GENIA/ERtask/report.html
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ding, we use the pre-trained English BioNLP em-
bedding4 (Chiu et al., 2016) with 200 dimension.
Vocabulary size is set to 20,000.

Results. Figure 4 shows the F1 score on
BioNER task. Similar to the bilingual cross-
annotation NER experiment results, we observe
that our dream-based approach outperforms all
other strategies. AL policy learning methods from
previous works perform on par with random query
and slight worse than uncertainty.

We further compare the data selected by our
dream-based method to other heuristic methods in
terms of average length in every ten queried sen-
tences. While the average sentence length in ran-
dom strategy is consistently around 25-27 words,
uncertainty strategy is bias toward very long sen-
tences, up to more than 100 words in the first
20 queries, and gradually drops to 55 in the last
10 queries. Our dream-based method is also in-
clined to long sentence of 55-78 words, compared
to random selection; but generally shorter than the
uncertainty-based method.

5 Analysis

Sensitivity analysis. We evaluate the sensitivity
with respect to the parameters in our proposed al-
gorithm: the length of the wake phase Tw and
number of dream episode E . Given a fixed budget
annotation, the wake phase length Tw determines
the number of wake/dream cycles, the expert qual-
ity in the dream phase, and how often to retrain AL
policy. The number of dream episode E decides
how much adaptation to be performed to the AL
policy. Results are shown in Figure 5. We observe
some significant difference between each configu-
ration only at the beginning of AL process where
only a few labelled data are available.

Candidate selection strategy. We explore the
effect of the candidate selection strategy on our
dream-based AL policy learning. We consider two
selection strategies in the wake phase: (i) ran-
dom and (ii) uncertainty where a subset of 10 can-
didates are sampled from the top 100 datapoints
with the highest labelling entropy. In the dream
phase, five candidates are selected by the follow-
ing strategies: (i) random, (ii) certainty where
candidates are sampled from the top 100 low en-
tropy labelling distribution, and (iii) mixed strat-

4https://github.com/cambridgeltl/
BioNLP-2016
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Figure 5: The performance of Spanish NER taggers re-
spect to different wake phase length Tw and number of
dream episode E .
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Figure 6: The performance of Spanish NER taggers un-
der different candidate selection strategies.

egy whereby either random or certainty strategy
are applied with probability of 0.5.

Figure 6 shows the result of our dream-based
approach on Spanish NER task. We observe that
uncertainty strategy provides a better candidate
pool for the AL policy to improve the student
learner. Interestingly, random and mixed selec-
tion strategy seem to perform better than certainty
strategy, especially in the later stages of the AL
process where we have a better student learner.
This suggests that exploration plays a more impor-
tant role in strengthening the query policy.

6 Related Works

Heuristic-based AL. Traditional active learn-
ing algorithms rely on various heuristics (Settles,
2010) to guide the selection of most informative
datapoints, such as uncertainty sampling (Settles
and Craven, 2008; Houlsby et al., 2011), query-
by-committee (Gilad-Bachrach et al., 2006), and
diversity sampling (Brinker, 2003; Joshi et al.,
2009; Yang et al., 2015). Combined with trans-
fer learning, pre-existing labelled data from re-
lated tasks can help improve the performance of
an active learner (Xiao and Guo, 2013; Kale and
Liu, 2013; Huang and Chen, 2016; Konyushkova

https://github.com/cambridgeltl/BioNLP-2016
https://github.com/cambridgeltl/BioNLP-2016
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et al., 2017). However, these methods are not flex-
ible to exploit characteristics inherent to a particu-
lar problem.

Policy-based AL. Recent research has formal-
ized the AL process as a sequential decision pro-
cess, and applied reinforcement/imitation learning
to learn the AL query strategy (Woodward and
Finn, 2017; Bachman et al., 2017; Fang et al.,
2017; Liu et al., 2018a,b; Contardo et al., 2017).
The AL policy learned via simulations on a source
task for which enough labeled data exists. It is
then transferred to related target tasks, e.g. in other
languages or domains. However, the success of
this approach heavily depends on the relatedness
of the source and target tasks. Pang et al. (2018)
has tried to address this problem by meta-learning
a dataset-agnostic AL policy parmaterised by the
dataset embedding. Konyushkova et al. (2018) has
introduced a transferable AL strategy across unre-
lated datasets. In contrast, we learn a policy di-
rectly on the target task without requiring addi-
tional annotation budget.

Unsupervised Imitation Learning. From the
theoretical perspective, unsupervised imitation
learning has recently gained attention in machine
learning (Torabi et al., 2018; Curi et al., 2018) and
robotics (Piergiovanni et al., 2018). They consider
a problem setup assuming the existence of an ex-
pert, where the expert’s actions are unobservable
but the world state transitions are observable, e.g.
videos from a car driven by a human without ob-
serving the actual driving actions. This unsuper-
vised imitation learning scenario is different from
our more challenging problem setup, where we do
not have an already-existing expert AL strategy
to observe its world state transitions. We address
the absence of the expert by exploiting the student
learner as the imperfect annotator.

7 Conclusion

We have introduced a dream-based approach to
directly learn pool-based AL query strategies on
the target task of interest. Our approach is the
first study to interleave (i) the wake phase, where
the AL policy is exploited to improve the student
learner and (ii) the dream phase, where the stu-
dent learner in turn acts as an imperfect annotator
to enhance the AL policy. This allows the learning
of a policy from scratch, or adapt a pretrained AL
policy on the target task, without requiring addi-

tional annotation budget. We provide comprehen-
sive experimental results, comparing our method
to strong heuristic-based and AL policy learning-
based methods on several classification and se-
quence learning tasks, showing the effectiveness
of our proposed method.
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