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Abstract

Encoder-decoder models for unsupervised
sentence representation learning using the dis-
tributional hypothesis effectively constrain the
learnt representation of a sentence to only that
needed to reproduce the next sentence. While
the decoder is important to constrain the rep-
resentation, these models tend to discard the
decoder after training since only the encoder
is needed to map the input sentence into a vec-
tor representation. However, parameters learnt
in the decoder also contain useful information
about the language. In order to utilise the de-
coder after learning, we present two types of
decoding functions whose inverse can be eas-
ily derived without expensive inverse calcu-
lation. Therefore, the inverse of the decod-
ing function can serve as another encoder that
produces sentence representations. We show
that, with careful design of the decoding func-
tions, the model learns good sentence repre-
sentations, and the ensemble of the represen-
tations produced from the encoder and the in-
verse of the decoder demonstrate even better
generalisation ability and solid transferability.

1 Introduction

Learning sentence representations from unlabelled
data is becoming increasingly prevalent in both
the machine learning and natural language pro-
cessing research communities, as it efficiently and
cheaply allows knowledge extraction that can suc-
cessfully transfer to downstream tasks. Methods
built upon the distributional hypothesis (Harris,
1954) and distributional similarity (Firth, 1957)
can be roughly categorised into two types:

Word-prediction Objective: This objective
pushes the system to make better predictions of
words in a given sentence. As the nature of the
objective is to predict words, these are also called
generative models. In one of the two classes of
models of this type, an encoder-decoder model

is learnt using a corpus of contiguous sentences
(Kiros et al., 2015; Gan et al., 2017; Tang et al.,
2018) to make predictions of the words in the next
sentence given the words in the current one. Af-
ter training, the decoder is usually discarded as
it is only needed during training and is not de-
signed to produce sentence representations. In the
other class of models of this type, a large lan-
guage model is learnt (Peters et al., 2018; Radford
et al., 2018; Devlin et al., 2018) on unlabelled cor-
pora, which could be an autoregressive model or
a masked language model, which gives extremely
powerful language encoders but requires massive
computing resources and training time.

Similarity-based Objective: The objective
here relies on a predefined similarity function to
force the model to produce more similar represen-
tations for adjacent sentences than those that are
not (Li and Hovy, 2014; Jernite et al., 2017; Nie
et al., 2017; Logeswaran and Lee, 2018). There-
fore, the inductive biases introduced by the two
key components, the differential similarity func-
tion and the context window, in the objective cru-
cially determine the quality of learnt representa-
tions and what sentence information can be en-
coded in them.

To avoid tuning the inductive biases in the
similarity-based objective, we follow the word-
prediction objective with an encoder and a de-
coder, and we are particularly interested in exploit-
ing invertible decoding functions, which can then
be used as additional encoders during testing. The
contribution of our work is summarised as follows:

1. The decoder is used in testing to produce sen-
tence representations. With careful design,
the inverse function of the decoder is easy to
derive with no expensive inverse calculation.

2. The inverse of the decoder provides high-
quality sentence representations as well as
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the encoder and, since the inverse function
of the decoder naturally behaves differently
from the encoder, the representations from
both functions complement each other and an
ensemble of both provides good results on
downstream tasks.

3. The analyses show that the effectiveness of
the invertible constraint enforced on the de-
coder side and learning from unlabelled cor-
pora help the produced representations to bet-
ter capture the meaning of sentences.

2 Related Work

Learning vector representations for words with
a word embedding matrix as the encoder and a
context word embedding matrix as the decoder
(Mikolov et al., 2013a; Lebret and Collobert,
2014; Pennington et al., 2014; Bojanowski et al.,
2017) can be considered as a word-level example
of our approach, as the models learn to predict the
surrounding words in the context given the current
word, and the context word embeddings can also
be utilised to augment the word embeddings (Pen-
nington et al., 2014; Levy et al., 2015). We are
thus motivated to explore the use of sentence de-
coders after learning instead of ignoring them as
most sentence encoder-decoder models do.

Our approach is to invert the decoding func-
tion in order to use it as another encoder to as-
sist the original encoder. In order to make com-
putation of the inverse function well-posed and
tractable, careful design of the decoder is needed.
A simple instance of an invertible decoder is a lin-
ear projection with an orthonormal square matrix,
whose transpose is its inverse. A family of bi-
jective transformations with non-linear functions
(Dinh et al., 2014; Rezende and Mohamed, 2015;
Kingma et al., 2016) can also be considered as it
empowers the decoder to learn a complex data dis-
tribution.

In our paper, we exploit two types of plausi-
ble decoding functions, including linear projection
and bijective functions with neural networks (Dinh
et al., 2014), and with proper design, the inverse
of each of the decoding functions can be derived
without expensive inverse calculation after learn-
ing. Thus, the decoder function can be utilised
along with the encoder for building sentence rep-
resentations. We show that the ensemble of the en-
coder and the inverse of the decoder outperforms
each of them.

3 Model Design

Our model has similar structure to that of skip-
thought (Kiros et al., 2015) and, given the neigh-
bourhood hypothesis (Tang et al., 2017), learns to
decode the next sentence given the current one in-
stead of predicting both the previous sentence and
the next one at the same time.

3.1 Training Objective
We have previously shown (Tang et al., 2018)
that neither an autoregressive nor an RNN decoder
is necessary for learning sentence representations
that excel on downstream tasks. As the autoregres-
sive decoders are slow to train and the quality of
the generated sequences is not highly correlated
with that of the representations of the sentences,
our model only learns to predict words in the next
sentence in a non-autoregressive fashion.

Suppose that the i-th sentence Si =
{w1, w2, ..., wNi} has Ni words, and Si+1

has Ni+1 words. The learning objective is to
maximise the averaged log-likelihood for all
sentence pairs:

`Si+i|Si
(φ,θ) =

1

Ni+1

∑
wj∈Si+1

logP (wj |Si)

where θ and φ contain the parameters in the en-
coder fen(Si;θ) and the decoder fde(zi;φ) re-
spectively. The forward computation of our model
for a given sentence pair {Si, Si+1}, in which the
words in Si are the input to the learning system
and the words in Si+1 are targets is defined as:

zi = fen(Si;θ)

xi = fde(zi;φ)

where zi is the vector representation of Si, and
xi is the vector output of the decoder which will
be compared with the vector representations of
words in the next sentence Si+1. Since calculating
the likelihood of generating each word involves a
computationally demanding softmax function, the
negative sampling method (Mikolov et al., 2013a)
is applied to replace the softmax, and logP (wj |si)
is calculated as:

log σ(x>i vwj ) +

K∑
k=1

Ewk∼Pe(w) log σ(−x>i vwk
)

where vwk
∈ Rdv is the pretrained vector repre-

sentation for wk, the empirical distribution Pe(w)
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is the unigram distribution of words in the training
corpus raised to power 0.75 as suggested in prior
work (Mikolov et al., 2013b), and K is the num-
ber of negative samples. In this case, we enforce
the output of the decoder xi to have the same di-
mensionality as the pretrained word vectors vwj .
The loss function is summed over all contiguous
sentence pairs in the training corpus. For simplic-
ity, we omit the subscription for indexing the sen-
tences in the following sections.

3.2 Encoder

The encoder fen(S;θ) is a bi-directional Gated
Recurrent Unit (Chung et al., 2014) with d dimen-
sions in each direction. It processes word vectors
in an input sentence {vw1 ,vw2 , ...,vwN } sequen-
tially according to the temporal order of the words,
and generates a sequence of hidden states. During
learning, in order to reduce the computation load,
only the last hidden state serves as the sentence
representation z ∈ Rdz , where dz = 2d.

3.3 Decoder

As the goal is to reuse the decoding function
fde(z) as another plausible encoder for building
sentence representations after learning rather than
ignoring it, one possible solution is to find the in-
verse function of the decoder function during test-
ing, which is noted as f−1de (x). In order to reduce
the complexity and the running time during both
training and testing, the decoding function fde(z)
needs to be easily invertible. Here, two types of
decoding functions are considered and explored.

3.3.1 Linear Projection

In this case, the decoding function is a linear pro-
jection, which is x = fde(z) = Wz + b, where
W ∈ Rdv×dz is a trainable weight matrix and
b ∈ Rdv×1 is the bias term.

As fde is a linear projection, the simplest situ-
ation is when W is an orthogonal matrix and its
inverse is equal to its transpose. Often, as the di-
mensionality of vector z doesn’t necessarily need
to match that of the word vectors v, U is not a
square matrix . To enforce invertibility on W , a
row-wise orthonormal regularisation on W is ap-
plied during learning, which leads toWW> = I ,
where I is the identity matrix. Thus the inverse
function is simply z = f−1de (x) = W>(x − b),
which is easily computed. The regularisation for-
mula is ||WW>−I||F , where ||·||F is the Frobe-

nius norm.1 Specifically, the update rule (Cissé
et al., 2017) for the regularisation is:

W := (1 + β)W − β(WW>)W

The usage of the decoder during training and test-
ing is defined as follows:

Training: x = fde(z) =Wz + b

Testing: z = f−1de (x) =W>(x− b)

Therefore, the decoder is also utilised after learn-
ing to serve as a linear encoder in addition to the
RNN encoder.

3.3.2 Bijective Functions
A general case is to use a bijective function as the
decoder, as bijective functions are naturally invert-
ible. However, the inverse of a bijective function
could be hard to find and its calculation could also
be computationally expensive.

A family of bijective transformations was de-
signed in NICE (Dinh et al., 2014), and the sim-
plest continuous bijective function f : RD → RD

and its inverse f−1 is defined as:

h : y1 = x1, y2 = x2 +m(x1)

h−1 : x1 = y1, x2 = y2 −m(y1)

where x1 is a d-dimensional partition of the input
x ∈ RD, andm : Rd → RD−d is an arbitrary con-
tinuous function, which could be a trainable multi-
layer feedforward neural network with non-linear
activation functions. The layer h is named as an
‘additive coupling layer’ (Dinh et al., 2014), which
has unit Jacobian determinant. To allow the learn-
ing system to explore more powerful transforma-
tion, we follow the design of the ‘affine coupling
layer’ (Dinh et al., 2016):

h : y1 = x1, y2 = x2 ◦ exp(s(x1)) + t(x1)

h−1 : x1 = y1, x2 = (y2 − t(y1)) ◦ exp(−s(x1))

where s : Rd → RD−d and t : Rd → RD−d are
both neural networks with linear output units, and
◦ is the Hadamard product.

The requirement of the continuous bijective
transformation is that, the dimensionality of the
input x and the output y need to match exactly.

1As often the dimension of sentence vectors are equal to
or larger than that of word vectors, W has more columns
than rows. If this is not the case, then the regulariser becomes
||W>W − I||F .
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In our case, the output x ∈ Rdv of the decoding
function fde has lower dimensionality than the in-
put z ∈ Rdz does. Our solution is to add an or-
thonormal regularised linear projection before the
bijective function to transform the vector represen-
tation of a sentence to the desired dimension.

The usage of the decoder that is composed of a
bijective function and a regularised linear projec-
tion during training and testing is defined as:

Training: x = fde(z) = h(Wz + b)

Testing: z = f−1de (x) =W>(h−1(x)− b)

3.4 Using Decoder in the Test Phase

As the decoder is easily invertible, it is also
used to produce vector representations. The post-
processing step (Arora et al., 2017) that removes
the top principal component is applied on the rep-
resentations from fen and f−1de individually. In the
following sections, zen denotes the post-processed
representation from fen, and zde from f−1de . Since
fen and f−1de naturally process sentences in distinc-
tive ways, it is reasonable to expect that the ensem-
ble of zen and zde will outperform each of them.

4 Experimental Design

Experiments are conducted in PyTorch (Paszke
et al., 2017), with evaluation using the SentEval
package (Conneau et al., 2017) with modifications
to include the post-processing step. Word vec-
tors vwj are initialised with FastText (Bojanowski
et al., 2017), and fixed during learning.

4.1 Unlabelled Corpora

Two unlabelled corpora, including BookCorpus
(Zhu et al., 2015) and UMBC News Corpus (Han
et al., 2013), are used to train models with invert-
ible decoders. These corpora are referred to as B,
and U in Tables 3 and 5. The UMBC News Corpus
is roughly twice as large as the BookCorpus, and
the details are shown in Table 1.

Name # of sentences

BookCorpus (B) 74 million
UMBC News (U) 134.5 million

Table 1: Summary statistics of the two corpora used.
For simplicity, the two corpora are referred to as B and
U in the following tables respectively.

4.2 Evaluation Tasks

4.3 Unsupervised Evaluation

The unsupervised tasks include five tasks from Se-
mEval Semantic Textual Similarity (STS) in 2012-
2016 (Agirre et al., 2015, 2014, 2016, 2012, 2013)
and the SemEval2014 Semantic Relatedness task
(SICK-R) (Marelli et al., 2014).

The cosine similarity between vector represen-
tations of two sentences determines the textual
similarity of two sentences, and the performance
is reported in Pearson’s correlation score between
human-annotated labels and the model predictions
on each dataset.

4.4 Supervised Evaluation

Supervised evaluation tasks include Semantic re-
latedness (SICK) (Marelli et al., 2014), SemEval
(STS-B) (Cer et al., 2017), paraphrase detection
(MRPC) (Dolan et al., 2004), question-type clas-
sification (TREC) (Li and Roth, 2002), movie re-
view sentiment (MR) (Pang and Lee, 2005), Stan-
ford Sentiment Treebank (SST) (Socher et al.,
2013), customer product reviews (CR) (Hu and
Liu, 2004), subjectivity/objectivity classification
(SUBJ) (Pang and Lee, 2004), opinion polarity
(MPQA) (Wiebe et al., 2005).

In these tasks, MR, CR, SST, SUBJ, MPQA and
MRPC are binary classification tasks; TREC is a
multi-class classification task. SICK and MRPC
require the same feature engineering method (Tai
et al., 2015) in order to compose a vector from vec-
tor representations of two sentences to indicate the
difference between them.

4.5 Hyperparameter Tuning

The hyperparameters are tuned on the aver-
aged scores on STS14 of the model trained on
BookCorpus, thus these results are marked with a
? in Table 3 to indicate potential overfitting. These
parameters are then used for all tasks.

The hyperparameter settings for our model are
summarised as follows: the batch size N = 512,
the dimension of sentence vectors dz = 2048, the
dimension of word vectors dvwj

= 300, the num-
ber of negative samples K = 5, and the initial
learning rate is 5 × 10−4 which is kept fixed dur-
ing learning. The Adam optimiser (Kingma and
Ba, 2014) with gradient clipping (Pascanu et al.,
2013) is applied for stable learning. Each model
in our experiment is only trained for one epoch on
the given training corpus.
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Unsupervised tasks Supervised tasks

Toronto
Hrs

Avg of STS tasks Avg of Avg of Binary-CLS tasks MRPC
BookCorpus (STS12-16, SICK14) SICK-R, STS-B (MR, CR, SUBJ, MPQA, SST)

Generative Objective with Invertible Linear Projection

zen

3
64.9 82.2 86.2 75.1/83.4

zde 67.6 82.2 85.2 73.7/82.5
ensemble(zen,zde) 70.2 83.1 87.0 76.5/83.7

Generative Objective with Linear Projection

zen

3
54.6 (↓10.3) 79.5 (↓2.7) 85.6 (↓0.6) 75.1/82.5

zde 69.5 (↑1.9) 82.4 (↑0.2) 84.7 (↓0.5) 74.3/82.0
ensemble(zen,zde) 66.9 (↓3.3) 82.8 (↓0.3) 86.3 (↓0.7) 76.2/83.5

Generative Objective with Bijective Transformation + Invertible Linear Projection

zen

3.3
67.1 82.1 85.4 74.3/82.2

zde 67.6 82.1 85.0 74.6/82.4
ensemble(zen,zde) 70.0 82.9 86.5 76.2/83.0

Generative Objective with Bijective Transformation + Linear Projection

zen

3.3
63.4 (↓3.7) 81.7 (↓0.4) 85.2 (↓0.2) 76.9/84.3

zde 67.8 (↑0.2) 82.2 (↑0.1) 84.1 (↓0.9) 74.7/82.0
ensemble(zen,zde) 69.4 (↓0.6) 82.5 (↓0.4) 86.1 (↓0.4) 76.6/83.4

Table 2: The effect of the invertible constraint on linear projection. The arrow and its associated value of
a representation is the relative performance gain or loss compared to its comparison partner with the invertible
constraint. As shown, the invertible constraint does help improve each representation, and ensures the ensemble of
two encoding functions gives better performance. Better view in colour.

For the linear projection, β in the invertible con-
straint is set to be 0.01, and after learning, all 300
eigenvalues are close to 1. For the bijective trans-
formation, in order to make sure that each output
unit is influenced by all input units, we stack four
affine coupling layers in the bijective transforma-
tion (Dinh et al., 2014). The non-linear mappings
s and t are both neural networks with one hidden
layer with rectified linear activation function.

4.6 Representation Pooling

Various pooling functions are applied to produce
vector representations for input sentences.

For unsupervised evaluation tasks, as recom-
mended in previous studies (Pennington et al.,
2014; Kenter et al., 2016; Wieting and Gimpel,
2017), a global mean-pooling function is applied
on both the output of the RNN encoder fen to pro-
duce a vector representation zen and the inverse of
the decoder f−1de to produce zde.

For supervised evaluation tasks, three pooling
functions, including global max-, min-, and mean-
pooling, are applied on top of the encoder and the
outputs from three pooling functions are concate-
nated to serve as a vector representation for a given

sentence. The same representation pooling strat-
egy is applied on the inverse of the decoder.

The reasons for applying different representa-
tion pooling strategies for the two categories of
tasks include:

(1) cosine similarity of two vector representa-
tions is directly calculated in unsupervised eval-
uation tasks to determine the textual similar-
ity of two sentences; it suffers from the curse-
of-dimensionality (Donoho, 2000), which leads
to more equidistantly distributed representations
for higher dimensional vector representations de-
creasing the difference among similarity scores.

(2) given Cover’s theorem (Cover, 1965) and
the blessings-of-dimensionality property, it is
more likely for the data points to be linearly sepa-
rable when they are presented in high dimensional
space, and in the supervised evaluation tasks, high
dimensional vector representations are preferred
as a linear classifier will be learnt to evaluate how
well the produced sentence representations are lin-
early separable;

(3) in our case, both the encoder and the inverse
of the decoder are capable of producing a vector
representation per time step in a given sentence;
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1Arora et al. (2017);2Wieting et al. (2015);3Wieting and Gimpel (2018);4Conneau et al. (2017);
5Wieting and Gimpel (2018);6−10Agirre et al. (2012, 2013, 2014, 2015, 2016);

11Marelli et al. (2014);12Mikolov et al. (2017)

Task
Un. Training Semi. Su.

Linear Bijective fastText 2PSL 4Infer 3ParaNMT

B U B U 12avg 1WR 1avg 1WR Sent (concat.)
6STS12 61.5 61.3 60.8 62.7 58.3 58.8 52.8 59.5 58.2 67.7
7STS13 61.3 61.8 60.7 62.2 51.0 59.9 46.4 61.8 48.5 62.8
8STS14 ?71.6 72.1 72.1 73.2 65.2 69.4 59.5 73.5 67.1 76.9
9STS15 76.1 76.9 76.6 77.6 67.7 74.2 60.0 76.3 71.1 79.8
10STS16 74.8 76.1 75.8 76.9 64.3 72.4 - - 71.2 76.8
11SICK14 76.1 73.6 74.2 73.9 69.8 72.3 66.4 72.9 73.4 -

Average 70.2 70.3 70.0 71.1 62.7 67.8 - - 64.9 -

Table 3: Results on unsupervised evaluation tasks (Pearson’s r × 100) . Bold numbers are the best results
among unsupervised transfer models, and underlined numbers are the best ones among all models. ‘WR’ refers to
the post-processing step that removes the top principal component.

although during training only the last one is re-
garded as the sentence representation for fast train-
ing speed, it is more reasonable to make use of all
representations at all time steps with various pool-
ing functions to compute a vector representation to
produce high-quality sentence representations that
excel on the downstream tasks.

5 Discussion

It is worth discussing the motivation of the model
design and the observations in our experiments.
As mentioned as one of the take-away messages
in previous work (Wieting and Kiela, 2019), to
demonstrate the effectiveness of the invertible
constraint, the comparison of our model with the
constraint and its own variants use the same word
embeddings from FastText (Bojanowski et al.,
2017) and have the same dimensionaility of sen-
tence representations during learning, and use the
same classifier on top of the produced representa-
tions with the same hyperparameter settings.

Overall, given the performance of the inverse of
each decoder (linear and bijective function) pre-
sented in Tables 3 and 5, it is reasonable to state
that the inverse of each decoder provides high-
quality sentence representations as well as the en-
coder. We found no significant difference between
the two decoders in terms of the performance on
the downstream tasks. In this section, observations
and thoughts are presented based on the analyses
of our models with the linear invertible constraint.

5.1 Effect of Invertible Constraint

The motivation of enforcing the invertible con-
straint on the decoder during learning is to make
it usable and potentially helpful during testing in
terms of boosting the performance of the lone
RNN encoder in the encoder-decoder models (in-
stead of ignoring the decoder part after learning).
Therefore, it is important to check the necessity of
the invertible constraint on the decoders.

A model with the same hyperparameter settings
but without the invertible constraint is trained as
the baseline model, and macro-averaged results
that summarise the same type of tasks are pre-
sented in Table 2.

As noted in the prior work (Hill et al., 2016),
there exists significant inconsistency between the
group of unsupervised tasks and the group of su-
pervised ones, it is possible for a model to excel
on one group of tasks but fail on the other one. As
presented in our table, the inverse of the decoder
tends to perform better than the encoder on unsu-
pervised tasks, and the situation reverses when it
comes to the supervised ones.

In our model, the invertible constraint helps the
RNN encoder fen to perform better on the unsu-
pervised evaluation tasks, and helps the inverse
of the decoder f−1de to provide better results on
single sentence classification tasks. An interest-
ing observation is that, by enforcing the invertible
constraint, the model learns to sacrifice the per-
formance of f−1de and improve the performance of
fen on unsupervised tasks to mitigate the gap be-
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tween the two encoding functions, which leads to
more aligned vector representations between fen
and f−1de .

5.2 Effect of Ensemble
Although encouraging the invertible constraint
leads to slightly poorer performance of f−1de on un-
supervised tasks, it generally leads to better sen-
tence representations when the ensemble of the en-
coder fen and the inverse of the decoder f−1de is
considered. Specifically, for unsupervised tasks,
the ensemble is an average of the two vector repre-
sentations produced from the two encoding func-
tions during the testing time, and for supervised
tasks, the concatenation of the two representations
is regarded as the representation of a given sen-
tence. The ensemble method is recommended in
prior work (Pennington et al., 2014; Levy et al.,
2015; Wieting and Gimpel, 2017; McCann et al.,
2017; Tang et al., 2018; Wieting and Kiela, 2019).

As presented in Table 2, on unsupervised eval-
uation tasks (STS12-16 and SICK14), the ensem-
ble of two encoding functions is averaging, which
benefits from aligning representations from fen
and f−1de by enforcing the invertible constraint.
While in the learning system without the invertible
constraint, the ensemble of two encoding func-
tions provides worse performance than f−1de .

On supervised evaluation tasks, as the ensemble
method is concatenation and a linear model is ap-
plied on top of the concatenated representations,
as long as the two encoding functions process sen-
tences distinctively, the linear classifier is capa-
ble of picking relevant feature dimensions from
both encoding functions to make good predictions,
thus there is no significant difference between our
model with and without invertible constraint.

5.3 Effect of Learning
Recent research (Wieting and Kiela, 2019) showed
that the improvement on supervised evaluation
tasks obtained by learning from labelled or un-
labelled corpora is rather insignificant compared
to random initialised projections on top of pre-
trained word vectors. Another interesting direc-
tion of research that utilises probabilistic random
walk models on the unit sphere (Arora et al., 2016,
2017; Ethayarajh, 2018) derived several simple
yet effective post-processing methods that operate
on pretrained word vectors and are able to boost
the performance of the averaged word vectors as
the sentence representation on unsupervised tasks.

While these papers reveal interesting aspects of the
downstream tasks and question the need for opti-
mising a learning objective, our results show that
learning on unlabelled corpora helps.

On unsupervised evaluation tasks, in order
to show that learning from an unlabelled cor-
pus helps, the performance of our learnt repre-
sentations should be directly compared with the
pretrained word vectors, FastText in our system,
at the same dimensionality with the same post-
processing (Arora et al., 2017). The word vec-
tors are scattered in the 300-dimensional space,
and our model has a decoder that is learnt to
project a sentence representation z ∈ Rdz to
x = fde(z;φ) ∈ R300. The comparison of our
learnt representations with averaged word vectors
with the same postprocessing are presented in Ta-
ble 4.

As shown in the Table 4, the performance of our
learnt system is better than FastText at the same
dimensionality. It is worth mentioning that, in our
system, the final representation is an average of
postprocessed word vectors and the learnt repre-
sentations x, and the invertible constraint guaran-
tees that the ensemble of both gives better perfor-
mance. Otherwise, as discussed in the previous
section, an ensemble of postprocessed word vec-
tors and some random encoders won’t necessarily
lead to stronger results. Table 3 also provides ev-
idence for the effectiveness of learning on the un-
supervised evaluation tasks.

Task Linear Bijective FastText+WR

STS12 60.7 60.9 58.8
STS13 61.1 60.0 59.9
STS14 71.7 71.7 69.4
STS15 75.9 75.4 74.2
STS16 74.9 73.5 72.4

SICK14 75.7 75.8 72.3

Average 70.0 69.6 67.8

Table 4: Comparison of the learnt representations in
our system with the same dimensionality as the aver-
age of the same pretrained word vectors on unsuper-
vised evaluation tasks. The encoding function that is
learnt to compose a sentence representation from pre-
trained word vectors outperforms averaging the same
word vectors, which supports our argument that learn-
ing helps to produce higher-quality sentence represen-
tations.

On supervised evaluation tasks, we agree that
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1Conneau et al. (2017);2Hill et al. (2016); 3Kiros et al. (2015);4Ba et al. (2016);5Gan et al. (2017);
6Jernite et al. (2017);7Nie et al. (2017);8Zhao et al. (2015);9Logeswaran and Lee (2018);10Marelli et al. (2014);

11Dolan et al. (2004);12Li and Roth (2002);13Pang and Lee (2005);14Hu and Liu (2004)
15Pang and Lee (2004);16Wiebe et al. (2005);17Socher et al. (2013);18Wieting and Kiela (2019)

Model Hrs 10SICK-R 10SICK-E 11MRPC 12TREC 13MR 14CR 15SUBJ 16MPQA 17SST

Supervised task-dependent training - No transfer learning

8AdaSent - - - - 92.4 83.1 86.3 95.5 93.3 -
1TF-KLD - - - 80.4/85.9 - - - - - -

Supervised training - Transfer learning

1InferSent <24 88.4 86.3 76.2/83.1 88.2 81.1 86.3 92.4 90.2 84.6

Unsupervised training with ordered sentences

2FastSent+AE 2 - - 71.2/79.1 80.4 71.8 76.5 88.8 81.5 -
4ST+LN 720 85.8 79.5 - 88.4 79.4 83.1 93.7 89.3 82.9
5CNN-LSTM - 86.2 - 76.5/83.8 92.6 77.8 82.1 93.6 89.4 -

6DiscSent 8 - - 75.0/ - 87.2 - - 93.0 - -
7DisSent - 79.1 80.3 - / - 84.6 82.5 80.2 92.4 89.6 82.9
9MC-QT 11 86.8 - 76.9/84.0 92.8 80.4 85.2 93.9 89.4 -

B - Bijective z 3.3 87.9 84.5 76.2/83.0 89.6 80.3 82.6 94.6 89.3 85.6
B - Linear z 3 88.1 85.2 76.5/83.7 90.0 81.3 83.5 94.6 89.5 85.9

U - Bijective z 10 87.8 85.2 76.4/83.7 90.8 80.9 82.7 94.6 89.2 83.3
U - Linear z 8.8 87.8 85.9 77.5/83.8 92.2 81.3 83.4 94.7 89.5 85.9

No training - 18Global max-pooling on top of random projection

BOREP 0 85.9 84.3 73.7/ - 89.5 78.6 79.9 93.0 88.8 82.5
RandLSTM 0 86.6 83.0 74.7/ - 88.4 78.2 79.9 92.8 88.2 83.2
ESN 0 87.2 85.1 75.3/ - 92.2 79.1 80.2 93.4 88.9 84.6

Table 5: Results on supervised evaluation tasks. Bold numbers are the best results among unsupervised transfer
models with ordered sentences, and underlined numbers are the best ones among all models.

higher dimensional vector representations give
better results on the downstream tasks. Compared
to random projections with 4096 × 6 output di-
mensions, learning from unlabelled corpora lever-
ages the distributional similarity (Firth, 1957) at
the sentence-level into the learnt representations
and potentially helps capture the meaning of a sen-
tence. In our system, the raw representations are
in 2400-dimensional space, and the use of various
pooling functions expands it to 2048 × 6 dimen-
sions, which is half as large as the random projec-
tion dimension and still yields better performance.
Both our models and random projections with no
training are presented in Table 5.

The evidence from both sets of downstream
tasks support our argument that learning from un-
labelled corpora helps the representations capture
meaning of sentences. However, current ways
of incorporating the distributional hypothesis only

utilise it as a weak and noisy supervision, which
might limit the quality of the learnt sentence rep-
resentations.

6 Conclusion

Two types of decoders, including an orthonormal
regularised linear projection and a bijective trans-
formation, whose inverses can be derived effort-
lessly, are presented in order to utilise the decoder
as another encoder in the testing phase. The ex-
periments and comparisons are conducted on two
large unlabelled corpora, and the performance on
the downstream tasks shows the high usability and
generalisation ability of the decoders in testing.

Analyses show that the invertible constraint en-
forced on the decoder encourages the usual en-
coder and the invertible decoder to learn from the
other one during learning, and provides improved
encoding functions after learning. An ensemble of
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the encoder and the inverse of the decoder gives
even better performance when the invertible con-
straint is applied on the decoder side. Further-
more, by comparing with prior work, we argue
that learning from unlabelled corpora indeed helps
to improve the sentence representations, although
the current way of utilising corpora might not be
optimal.

We view our work as unifying the genera-
tive and discriminative objectives for unsupervised
sentence representation learning, as the decoder is
trained with a generative objective which when in-
verted can be seen as creating a discriminative tar-
get.

The proposed method in our implementation
doesn’t provide state-of-the-art performance on
the downstream tasks, but we see our method as
an opportunity to fuse all possible components in
a model, even a usually discarded decoder, to pro-
duce sentence representations. Future work could
potentially expand our work into an end-to-end in-
vertible model that is able to produce high-quality
representations by omnidirectional computations.
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